WO2021249438A1 - 模式切换方法、终端及网络侧设备 - Google Patents

模式切换方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2021249438A1
WO2021249438A1 PCT/CN2021/099195 CN2021099195W WO2021249438A1 WO 2021249438 A1 WO2021249438 A1 WO 2021249438A1 CN 2021099195 W CN2021099195 W CN 2021099195W WO 2021249438 A1 WO2021249438 A1 WO 2021249438A1
Authority
WO
WIPO (PCT)
Prior art keywords
multicast
air interface
side device
network side
interface resources
Prior art date
Application number
PCT/CN2021/099195
Other languages
English (en)
French (fr)
Inventor
谢振华
张艳霞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to AU2021286622A priority Critical patent/AU2021286622B2/en
Priority to JP2022575245A priority patent/JP7473689B2/ja
Priority to MX2022015699A priority patent/MX2022015699A/es
Priority to CA3185315A priority patent/CA3185315A1/en
Priority to EP21822607.4A priority patent/EP4164287A4/en
Priority to BR112022025107A priority patent/BR112022025107A2/pt
Priority to KR1020237000099A priority patent/KR20230019936A/ko
Publication of WO2021249438A1 publication Critical patent/WO2021249438A1/zh
Priority to US17/994,701 priority patent/US20230089037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a mode switching method, a terminal, and a network side device.
  • the terminal can establish a Protocol Data Unit (PDU) session through the User Plane Function (UPF) network element and the Data Network (DN) network element, and the PDU Session provides the terminal and the DN network element PDU connection service between.
  • PDU Protocol Data Unit
  • UPF User Plane Function
  • DN Data Network
  • the terminal When the terminal adopts the point-to-point PDU Session mode to receive the multicast service, if it switches to the target network side device that supports the point-to-multipoint multicast service, the terminal can only use the PDU Session switching process to first switch the PDU Session to the target network side. equipment. If the terminal desires to use a more efficient multicast service data transmission method, the terminal or the target network side device needs to initiate a mode switch to switch to the point-to-multipoint multicast service transmission mode.
  • the terminal needs to first use the PDU Session switching process to switch the PDU Session to the target network side device, and then the terminal or the target network side device initiates the mode switch to switch to the point-to-multipoint multicast service transmission mode.
  • the switching efficiency of this mode switching is relatively low.
  • the purpose of the embodiments of the present application is to provide a mode switching method, terminal, and network side equipment, which can solve the problem of low switching efficiency of mode switching.
  • a mode switching method which is applied to a target network side device, and the method includes: in the case of receiving multicast service quality QoS information from the multicast broadcast network function MB NF, reserving multicast Air interface resources, wherein the multicast air interface resources are used by the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data; and to the source network side device or the MB The NF sends the multicast air interface resource.
  • a mode switching method which is applied to MB NF, and the method includes: sending multicast QoS information to a target network-side device, and the multicast QoS information is used by the target network-side device to reserve more information.
  • Broadcast air interface resources where the multicast air interface resources are used by the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • a mode switching method which is applied to a source network side device, and the method includes: receiving a multicast air interface resource, where the multicast air interface resource is the target network side device receiving a multicast from MB NF Reserved in the case of QoS information, wherein the multicast air interface resource is used for the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • a mode switching method is provided, which is applied to a terminal.
  • the method includes: receiving a multicast air interface resource, where the multicast air interface resource is the target network side device receiving multicast QoS information from MB NF In the case of reservation, wherein the multicast air interface resource is used for the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • a device for mode switching includes: a resource reservation module, configured to reserve more information when receiving multicast service quality QoS information from the multicast broadcast network function MBNF.
  • Broadcast air interface resources where the multicast air interface resources are used by the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data; the sending module is used to send the source network to the source network.
  • the side device or the MB NF sends the multicast air interface resource.
  • a device for mode switching includes: a sending module, configured to send multicast QoS information to a target network-side device, where the multicast QoS information is used for reservation by the target network-side device Multicast air interface resources, where the multicast air interface resources are used by the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • a device for mode switching includes: a receiving module, configured to receive multicast air interface resources, where the multicast air interface resource is the target network side device receiving multicast QoS from MB NF
  • the multicast air interface resource is used for the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • a device for mode switching includes: a receiving module, configured to receive multicast air interface resources, where the multicast air interface resource is the target network side device receiving multicast QoS from MB NF
  • the multicast air interface resource is used for the device to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • a terminal in a ninth aspect, includes a processor, a memory, and a program or instruction that is stored on the memory and can run on the processor.
  • the program or instruction When the program or instruction is executed by the processor, Implement the method as described in the fourth aspect.
  • a network-side device in a tenth aspect, includes a processor, a memory, and a program or instruction that is stored on the memory and can run on the processor.
  • the processor implements the method described in the first aspect, the second aspect, or the third aspect when executed.
  • a readable storage medium is provided, and a program or instruction is stored on the readable storage medium.
  • the program or instruction is executed by a processor, the first aspect, second aspect, third aspect, or The method described in the fourth aspect.
  • a chip in a twelfth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the target network side device when the target network side device receives the multicast QoS information from the MB NF, it reserves the multicast air interface resource, and sends the multicast air interface resource to the source network side device or the MB NF, so , The terminal can switch from the PDU session mode to the target mode, and receive the multicast service data through the multicast air interface resource, which improves the switching efficiency of the mode switching.
  • Fig. 1 is a block diagram of a wireless communication system according to an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a mode switching method according to an embodiment of the present application
  • Fig. 3 is a schematic flowchart of a mode switching method according to an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of a mode switching method according to an embodiment of the present application.
  • Fig. 5 is a schematic flowchart of a mode switching method according to an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of a mode switching method according to an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of a mode switching method according to an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a mode switching device according to an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a mode switching device according to an embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a mode switching apparatus according to an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a mode switching apparatus according to an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first and second in the specification and claims of this application are used to distinguish similar objects, but not to describe a specific sequence or sequence. It should be understood that the data used in this way can be interchanged under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by "first” and “second” It is usually one type, and the number of objects is not limited.
  • the first object may be one or more.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the associated objects before and after are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for exemplary purposes, and uses NR terminology in most of the description below, although these technologies can also be applied to applications other than NR system applications, such as the 6th generation ( 6 th Generation, 6G) communication system.
  • 6th generation 6 th Generation, 6G
  • Fig. 1 shows a block diagram of a wireless communication system to which an embodiment of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may also be referred to as a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer or a personal digital device.
  • UE User Equipment
  • PDA Personal Digital Assistant
  • handheld computer netbook, ultra-mobile personal computer (UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or in-vehicle device (VUE), pedestrian terminal (PUE) and other terminal side devices
  • UMPC ultra-mobile personal computer
  • MID mobile Internet device
  • Wearable Device Wearable Device
  • VUE in-vehicle device
  • PUE pedestrian terminal
  • other terminal side devices wearable devices include: bracelets, earphones, glasses, etc. It should be noted that the specific type of the terminal 11 is not limited in the embodiment of the present application.
  • the network side device 12 may be a base station or a core network, where the base station may be called Node B, Evolved Node B, Access Point, Base Transceiver Station (BTS), radio base station, radio transceiver, basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN Access Point, WiFi Node, Sending Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiments of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides a mode switching method 200, which can be executed by a target network-side device.
  • the method can be executed by software or hardware installed on the target network-side device.
  • the method 200 includes the following steps.
  • S202 When receiving multicast service quality (Quality of Service, QoS) information from a multicast broadcast network function (Multicast Broadcast Network Function, MB NF), reserve multicast air interface resources.
  • QoS Quality of Service
  • MB NF Multicast Broadcast Network Function
  • the foregoing multicast air interface resource is used for the terminal to receive multicast service data through the switched target mode.
  • the foregoing multicast QoS information corresponds to multicast service data, or in other words, the foregoing multicast QoS information is QoS information of the multicast service data.
  • MB NF Before S202, MB NF can send multicast QoS information to the target network side device.
  • the multicast QoS information is usually different from "PDU session QoS information".
  • the multicast QoS information sent by MB NF to the target network side device may also carry indication information, which is used to indicate multicast QoS information is used for multicast services.
  • MB NF mentioned in the various embodiments of this specification generally refers to the core network function that can provide multicast service data. Therefore, MB NF can be replaced by other technical terms, such as core network equipment, Multicast broadcast server and so on.
  • the terminal can use the point-to-point PDU Session mode to receive multicast services in the cell provided by the source network side device. Since the PDU Session mode is single-channel, usually each terminal corresponds to one channel, so The transmission efficiency of multicast service data is low.
  • the target mode can be a point-to-multipoint multicast service transmission mode. For example, the target network-side device sends a copy of multicast service data. Multiple terminals can receive the multicast service data. Compared with the PDU Session mode, the transmission efficiency of the multicast service data can be improved.
  • the mode switching mentioned in the various embodiments of this application may refer to the terminal switching from the PDU Session mode of the source network side device to the target mode of the target network side device.
  • the target mode is a point-to-multipoint multipoint mode. Broadcast business transmission mode.
  • the source network side device of the terminal may send a handover request message to the target network side device, and the handover request message may carry the identifier of the Protocol Data Unit (PDU) session Information, such as PDU session (Session) ID.
  • PDU Protocol Data Unit
  • Session PDU session
  • the target network side device after the target network side device receives the handover request message, it can also send a session update message to the MB NF.
  • the session update message carries the identification information of the PDU session, such as the above PDU Session ID.
  • the MB NF can send the message to the target network
  • the side device sends the foregoing multicast QoS information.
  • the source network side device of the terminal may send a handover notification message to the MBNF, and the handover notification message may carry identification information of the PDU session, such as PDU Session ID.
  • the MB NF receives the handover notification message, it can send the foregoing multicast QoS information to the target network side device.
  • S204 Send the multicast air interface resource to the source network side device or MBNF.
  • the source network-side device when the target network-side device sends multicast air interface resources to the source network-side device, the source network-side device can also forward the multicast air interface resources to the terminal; the target network-side device sends the multicast air interface resource to the MBNF.
  • the MB NF can also forward the multicast air interface resources to the terminal through the source network side device. In this way, the terminal can switch to the target network side device through the multicast air interface resource, and receive the multicast service data through the switched target mode.
  • the target network-side device may send a switching command to the source network-side device, where the switching command carries a multicast air interface resource; the source network-side device may also send a switching command that carries the foregoing multicast air interface resource to the terminal.
  • the terminal can also access the target network-side device based on the above-mentioned multicast air interface resources, and send a handover complete message to the target network-side device, such as
  • the target network side device may send the multicast air interface resource to the MB NF; the MB NF sends a handover command (such as a Handover Command message) to the source network side device, and the handover command carries the foregoing multicast air interface resource.
  • the source network side device may also send a handover command carrying the foregoing multicast air interface resource to the terminal.
  • the terminal can also access the target network side device based on the foregoing multicast air interface resources, and send a handover completion message, such as a Handover Confirm message, to the target network side device.
  • the target network side device when the target network side device receives the multicast QoS information from MB NF, it reserves multicast air interface resources, and sends the multicast air interface to the source network side device or MB NF In this way, the terminal can switch from the PDU session mode to the target mode, and receive multicast service data through the multicast air interface resource, which improves the switching efficiency of mode switching.
  • the terminal needs to perform PDU session switching first, and then switch PDU session to target mode, the air interface resources required for PDU session switching and the air interface required for target mode The resources are different.
  • the target network side device not only needs to reserve the air interface resources required for PDU session switching, but also needs to reserve the air interface resources required by the target mode, and it needs to communicate with the source network side equipment, terminals, etc. To notify these air interface resources, resulting in low handover efficiency.
  • the method further includes: receiving identification information of the PDU session from the source network side device; and sending the identification information of the PDU session to the MBNF.
  • the PDU session mentioned in this example can also be referred to as the PDU session to be switched, because the terminal is about to switch from the PDU session mode to the target mode.
  • the MB NF After the MB NF receives the identification information of the PDU session, it can determine that the terminal needs to perform mode switching, and then send multicast QoS information to the target network side device.
  • the target network side device may also receive at least one of the following from the MB NF: QoS parameters corresponding to the PDU session; multicast information.
  • the multicast information includes, for example, at least one of a temporary mobile group identity (Temporary Mobile Group Identity, TMGI) and an MB NF identity.
  • TMGI Temporal Mobile Group Identity
  • the method further includes: receiving at least one of the following from the source network side device: a mode switching instruction; the target mode.
  • the mode switching instruction includes a specific QoS flow identifier.
  • the source network-side device may send at least one of a mode switching instruction and a target mode to the target network-side device to indicate that the terminal needs to perform mode switching.
  • the target network-side device may send a session update message to the MBNF. After the MB NF receives the session update message, it can determine that the terminal needs to perform mode switching, and can send multicast QoS information to the target network-side device.
  • the method further includes: receiving at least one of the following from the MB NF: a mode switching instruction; the target mode; QoS parameters corresponding to the PDU session; and multicast information.
  • the target network-side device when the target network-side device receives the QoS parameters corresponding to the PDU session, the target network-side device may also reserve air interface resources of the PDU session. In this way, the terminal can not only use the target mode to receive the multicast service data, but also use the PDU session mode to receive the multicast service data.
  • This embodiment is suitable for scenarios where the terminal needs to receive multiple different types of multicast service data, which is convenient to meet the transmission requirements of multiple different multicast service data, and at the same time facilitates the improvement of transmission efficiency.
  • the embodiment 200 further includes the following steps: sending to the MB NF at least one of the following: air interface resources of the PDU session; and multicast downlink tunnel resources for receiving the multicast service data.
  • the MB NF may also send the air interface resources of the PDU session to the terminal through the source network side device, so that the terminal can subsequently pass the PDU on the target network side device.
  • Receiving multicast service data in a session mode in the case of sending the air interface resources of the PDU session to the MB NF, the MB NF may also send the air interface resources of the PDU session to the terminal through the source network side device, so that the terminal can subsequently pass the PDU on the target network side device.
  • the target network side device may also receive the multicast service data through the multicast downlink tunnel resource; and through the multicast air interface resource Send the multicast service data to the terminal, so that the terminal can use the target mode to receive the multicast service data through the multicast air interface resource.
  • FIG. 3 and FIG. 4 are described with an example in which the source network-side device is the source gNB and the target network-side device is the target gNB.
  • the first embodiment includes the following steps.
  • the source gNB sends a handover request message to the target gNB, such as a Handover Request message, which carries identification information of the PDU session to be switched, such as PDU Session ID.
  • the switching request message may also carry a mode switching indication, which may be used to indicate that the terminal needs to perform mode switching; the switching request message may also indicate the target mode.
  • the source gNB may use a specific QoS flow identifier to identify that the terminal needs to perform mode switching.
  • S304 The target gNB sends a session update message to the MBNF based on the mode switching instruction.
  • the target gNB when MBNF is the Session Management Function (SMF), the target gNB sends the session update message to the SMF through the Access and Mobility Management Function (AMF), and when the MBNF is AMF, The target gNB directly sends the session update message to the AMF.
  • the session update message may carry identification information of the PDU session to be switched, such as PDU Session ID.
  • S306 The MB NF sends a session update response message to the target gNB.
  • the MB NF matches the PDU Session ID to the information of the multicast service that the user is receiving through the PDU Session, such as TMGI, corresponding QoS parameters, packet filtering rules, etc., and is based on the QoS information corresponding to the PDU Session and The packet filtering rules adjust the QoS information of the PDU session based on this information, such as deleting a certain flow.
  • the session update response message carries the adjusted multicast QoS information, such as the QoS parameters corresponding to the multicast service; it can also carry the QoS parameters corresponding to the PDU Session (may have been adjusted); the session update response message can also carry the multicast information , Such as TMGI and/or MB NF logo.
  • the target gNB reserves multicast air interface resources based on the multicast QoS information.
  • the target gNB may also reserve air interface resources of the PDU session based on the QoS parameters of the PDU session.
  • the target gNB returns a handover command to the source gNB, such as a Handover Response message, which carries air interface resources.
  • the air interface resources include multicast air interface resources, and may also include air interface resources of a PDU session.
  • S312 The source gNB forwards the air interface resource to the terminal UE through the handover command.
  • S314 The UE accesses the target gNB based on the multicast air interface resource, and sends a handover completion message, such as a Handover Confirm message, to the target gNB.
  • a handover completion message such as a Handover Confirm message
  • the target gNB sends a session update message to the MB NF, which may carry the received multicast information, and may also carry the multicast downlink tunnel resource information.
  • S318 The MB NF returns a session update response message to the target gNB.
  • the MB NF (such as UPF) can send multicast service data to the target gNB through multicast downlink tunnel resources, and the target gNB can send multicast service data to the UE through multicast air interface resources.
  • this embodiment includes the following steps.
  • the source gNB sends a handover notification message to the MB NF.
  • the source gNB sends the handover notification message to the SMF through AMF.
  • the source gNB directly sends the handover notification message to the AMF to notify the handover
  • the message (such as the Handover Required message) may carry the identification information of the PDU session to be switched, such as the PDU Session ID.
  • the MB NF sends a handover request message, such as a Handover Request message, to the target gNB.
  • MB NF matches the multicast service information that the user is receiving through the PDU Session through the PDU Session ID, such as TMGI, corresponding QoS parameters, packet filtering rules, etc., and based on the QoS information and packet filtering rules corresponding to the PDU Session, Adjust the QoS information of the PDU session based on this information, such as deleting a certain flow.
  • PDU Session ID such as TMGI, corresponding QoS parameters, packet filtering rules, etc.
  • the switching request message may carry a mode switching indication, which may indicate a mode switching or a target mode. Specifically, the mode switching indication may also be indicated by a multicast QoS parameter.
  • the handover request message also carries the adjusted QoS information, such as the multicast QoS information corresponding to the multicast service, and the QoS parameters corresponding to the PDU Session (which may have been adjusted).
  • the handover request message may also carry multicast information, such as TMGI and/or MBNF identifiers.
  • the target gNB reserves multicast air interface resources, and may also reserve air interface resources for the PDU session based on the QoS parameters of the PDU session.
  • the target gNB may reserve the multicast air interface resources based on the mode switching indication and the multicast QoS information, or may reserve the multicast air interface resources based only on the multicast QoS information.
  • the target gNB returns a handover response message to the MB NF, such as a Handover Response message, which carries air interface resources (including multicast air interface resources, and possibly PDU session air interface resources if there is still a flow in the PDU session) that needs to be sent to the source gNB.
  • the gNB can also reserve multicast downlink tunnel resources for multicast service data, which are used by the MB NF to send multicast service data to the target gNB.
  • the MB NF sends a handover command, such as a Handover Command message, to the source gNB, which carries air interface resources.
  • the air interface resources include multicast air interface resources, and may also include air interface resources of a PDU session.
  • S412 The source gNB forwards the air interface resources to the terminal UE.
  • S414 The UE accesses the target gNB based on the multicast air interface resource, and sends a handover complete message, such as a Handover Confirm message, to the target gNB.
  • a handover complete message such as a Handover Confirm message
  • the target gNB sends a session update message to the MB NF, which may carry the received multicast information. If the multicast downlink tunnel resource information is not sent in step 408, it is sent in this step S416.
  • S418 The MB NF returns a session update response message to the target gNB.
  • the MB NF (such as UPF) can send multicast service data to the target gNB through multicast downlink tunnel resources, and the target gNB can send multicast service data to the UE through multicast air interface resources.
  • the mode switching method according to the embodiment of the present application is described in detail above with reference to FIGS. 2 to 4.
  • the mode switching method according to several other embodiments of the present application will be described in detail with reference to FIG. 5 to FIG. 7. It is understandable that the descriptions from the MB NF side, the source network side device side, and the terminal side are the same as the descriptions on the target network side device side in the methods shown in Figures 2 to 4. To avoid repetition, relevant descriptions are appropriately omitted. .
  • FIG. 5 is a schematic diagram of the implementation process of the mode switching method according to an embodiment of the present application, which can be applied to the MB NF side. As shown in FIG. 5, the method 500 includes the following steps.
  • S502 Send multicast QoS information to the target network side device, where the multicast QoS information is used for the target network side device to reserve multicast air interface resources.
  • the multicast air interface resource is used by the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • the target network side device when the target network side device receives the multicast QoS information from the MB NF, it reserves the multicast air interface resource, and sends the multicast air interface resource to the source network side device or the MB NF, so , The terminal can switch from the PDU session mode to the target mode, and receive the multicast service data through the multicast air interface resource, which improves the switching efficiency of the mode switching.
  • the method further includes: receiving the multicast air interface resource.
  • the method further includes: receiving identification information of a PDU session from the target network-side device, wherein the identification information of the PDU session is sent by the source network-side device to The target network side device.
  • the method further includes: sending to the target network side device at least one of the following: QoS parameters corresponding to the PDU session; and multicast information.
  • the method further includes: sending at least one of the following to the target network side device:
  • the method further includes: receiving at least one of the following from the target network side device: air interface resources of a PDU session; and multicast downlink tunnel resources used to send the multicast service data.
  • the method further includes: sending the multicast service data through the multicast downlink tunnel resource.
  • FIG. 6 is a schematic diagram of the implementation process of the mode switching method according to an embodiment of the present application, which can be applied to the source network side device side. As shown in FIG. 6, the method 600 includes the following steps.
  • S602 Receive a multicast air interface resource, where the multicast air interface resource is reserved by the target network side device after receiving the multicast QoS information from the MB NF.
  • the multicast air interface resource is used for the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • the source network side device receives multicast air interface resources, which are reserved by the target network side device after receiving multicast QoS information from MB NF, and the source network side device also
  • the multicast air interface resource can be sent to the terminal, so that the terminal can switch from the PDU session mode to the target mode, and receive multicast service data through the multicast air interface resource, which improves the switching efficiency of mode switching.
  • the method further includes: sending identification information of the PDU session to the target network side device.
  • FIG. 7 is a schematic diagram of the implementation process of the mode switching method according to the embodiment of the present application, which can be applied to the terminal side. As shown in FIG. 7, the method 700 includes the following steps.
  • S702 Receive a multicast air interface resource, where the multicast air interface resource is reserved by the target network side device after receiving the multicast QoS information from the MB NF.
  • the multicast air interface resource is used by the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • the terminal receives the multicast air interface resource, which is reserved by the target network side device after receiving the multicast QoS information from MB NF. In this way, the terminal can start from the PDU session mode. Switch to the target mode and receive multicast service data through the multicast air interface resource, which improves the switching efficiency of mode switching.
  • the execution subject of the mode switching method provided in the embodiment of the present application may be a mode switching device, or a control module in the mode switching device for executing the mode switching method.
  • the method for performing mode switching by the mode switching apparatus is taken as an example to describe the mode switching apparatus provided in the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of an apparatus for mode switching according to an embodiment of the present application, and the apparatus corresponds to the target network side device introduced in the foregoing embodiment.
  • the device 800 includes:
  • the resource reservation module 802 may be used to reserve multicast air interface resources when the multicast QoS information from MB NF is received, where the multicast air interface resources are used by the terminal to receive multicast data in the target mode after the handover. Broadcast service data, where the multicast QoS information corresponds to the multicast service data;
  • the sending module 804 may be used to send the multicast air interface resource to the source network side device or the MB NF.
  • the target network side device when the target network side device receives the multicast QoS information from the MB NF, it reserves the multicast air interface resource, and sends the multicast air interface resource to the source network side device or the MB NF, so , The terminal can switch from the PDU session mode to the target mode, and receive the multicast service data through the multicast air interface resource, which improves the switching efficiency of the mode switching.
  • the apparatus 800 further includes a receiving module, which can be used to receive the identification information of the protocol data unit PDU session from the source network side device; the sending module 804 can be used to send a message to the MB The NF sends the identification information of the PDU session.
  • a receiving module which can be used to receive the identification information of the protocol data unit PDU session from the source network side device; the sending module 804 can be used to send a message to the MB The NF sends the identification information of the PDU session.
  • the apparatus 800 further includes a receiving module, which may be used to receive at least one of the following from the source network side device:
  • the target mode is the target mode.
  • the mode switching instruction includes a specific QoS flow identifier.
  • the device 800 further includes a receiving module, which may be used to receive at least one of the following from the MB NF:
  • the device 800 further includes a receiving module, which may be used to receive at least one of the following from the MB NF:
  • the resource reservation module 802 may be used to reserve air interface resources of the PDU session.
  • the sending module 804 may be used to send at least one of the following to the MBNF:
  • the multicast downlink tunnel resource used to receive the multicast service data.
  • the device 800 further includes a receiving module, which can be used to receive the multicast service data through the multicast downlink tunnel resource; the sending module 804, which can be used to communicate through the multicast air interface The resource sends the multicast service data to the terminal.
  • a receiving module which can be used to receive the multicast service data through the multicast downlink tunnel resource
  • the sending module 804 which can be used to communicate through the multicast air interface
  • the resource sends the multicast service data to the terminal.
  • Fig. 9 is a schematic structural diagram of a mode switching device according to an embodiment of the present application, and the device corresponds to the MB NF introduced in the previous embodiment. As shown in FIG. 9, the device 900 includes:
  • the sending module 902 may be used to send multicast QoS information to the target network side device, where the multicast QoS information is used for the target network side device to reserve multicast air interface resources, where the multicast air interface resources are used for the terminal
  • the multicast service data is received through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • the target network side device when the target network side device receives the multicast QoS information from the MB NF, it reserves the multicast air interface resource, and sends the multicast air interface resource to the source network side device or the MB NF, so , The terminal can switch from the PDU session mode to the target mode, and receive the multicast service data through the multicast air interface resource, which improves the switching efficiency of the mode switching.
  • the apparatus 900 further includes a receiving module, which may be used to receive the multicast air interface resource.
  • the apparatus 900 further includes a receiving module, which may be used to receive the identification information of the PDU session from the target network side device, wherein the identification information of the PDU session is determined by the The source network side device sends to the target network side device.
  • a receiving module which may be used to receive the identification information of the PDU session from the target network side device, wherein the identification information of the PDU session is determined by the The source network side device sends to the target network side device.
  • the sending module 902 may be configured to send at least one of the following to the target network side device: QoS parameters corresponding to the PDU session; multicast information.
  • the sending module 902 may be used to send at least one of the following to the target network side device:
  • the apparatus 900 further includes a receiving module, which may be used to receive at least one of the following from the target network side device: air interface resources of the PDU session; Multicast downlink tunnel resources.
  • the sending module 902 may be configured to send the multicast service data through the multicast downlink tunnel resource.
  • Fig. 10 is a schematic structural diagram of an apparatus for mode switching according to an embodiment of the present application, and the apparatus corresponds to the source network side device introduced in the foregoing embodiment.
  • the device 1000 includes:
  • the receiving module 1002 may be used to receive multicast air interface resources, where the multicast air interface resources are reserved by the target network side device after receiving multicast QoS information from MB NF, where the multicast air interface resources It is used for the terminal to receive the multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • the device for mode switching receives multicast air interface resources, which are reserved by the target network side device after receiving multicast QoS information from MB NF, and the device for mode switching also
  • the multicast air interface resource can be sent to the terminal, so that the terminal can switch from the PDU session mode to the target mode, and receive multicast service data through the multicast air interface resource, which improves the switching efficiency of mode switching.
  • the apparatus 1000 includes a sending module, which may be used to send identification information of the PDU session to the target network side device.
  • FIG. 11 is a schematic structural diagram of a mode switching device according to an embodiment of the present application, and the device corresponds to the terminal introduced in the previous embodiment. As shown in FIG. 11, the device 1100 includes:
  • the receiving module 1102 is configured to receive multicast air interface resources, where the multicast air interface resources are reserved by the target network side device after receiving multicast QoS information from MB NF, where the multicast air interface resources are used
  • the device receives the multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • the device for mode switching receives multicast air interface resources.
  • the multicast air interface resources are reserved by the target network side device after receiving the multicast QoS information from MB NF.
  • the mode switching A device such as a terminal, can switch from the PDU session mode to the target mode, and receive multicast service data through the multicast air interface resource, which improves the switching efficiency of mode switching.
  • the mode switching device in the embodiment of the present application may be a device, or a component, integrated circuit, or chip in a terminal.
  • the device can be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but is not limited to the types of the terminal 11 listed above, and the non-mobile terminal may be a server, a network attached storage (NAS), a personal computer (PC), a television ( Television, TV), teller machines, self-service machines, etc., are not specifically limited in the embodiments of the present application.
  • the device for mode switching in the embodiment of the present application may be a device with an operating system.
  • the operating system may be an Android operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiment of the present application.
  • the mode switching device provided in the embodiment of the present application can implement the various processes implemented by the method embodiments in FIG. 2 to FIG. 7 and achieve the same technical effect. To avoid repetition, details are not described herein again.
  • an embodiment of the present application further provides a communication device 1200, including a processor 1201, a memory 1202, and programs or instructions that are stored on the memory 1202 and run on the processor 1201,
  • a communication device 1200 including a processor 1201, a memory 1202, and programs or instructions that are stored on the memory 1202 and run on the processor 1201,
  • the communication device 1200 is a terminal
  • the program or instruction is executed by the processor 1201
  • each process of the foregoing mode switching method embodiment is realized, and the same technical effect can be achieved.
  • the communication device 1200 is a network-side device
  • the program or instruction is executed by the processor 1201
  • each process of the above-mentioned mode switching method embodiment can be realized, and the same technical effect can be achieved. To avoid repetition, details are not described herein again.
  • FIG. 13 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1300 includes but is not limited to: a radio frequency unit 1301, a network module 1302, an audio output unit 1303, an input unit 1304, a sensor 1305, a display unit 1306, a user input unit 1307, an interface unit 1308, a memory 1309, a processor 1310 and other components .
  • the terminal 1300 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 1310 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power source such as a battery
  • the terminal structure shown in FIG. 13 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1304 may include a graphics processing unit (GPU) 13041 and a microphone 13042.
  • the graphics processor 13041 is used by the image capture device ( For example, the image data of the still picture or video obtained by the camera) is processed.
  • the display unit 1306 may include a display panel 13061, and the display panel 13061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1307 includes a touch panel 13071 and other input devices 13072.
  • the touch panel 13071 is also called a touch screen.
  • the touch panel 13071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 13072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the radio frequency unit 1301 receives the downlink data from the network-side device and sends it to the processor 1310 for processing; in addition, it sends the uplink data to the network-side device.
  • the radio frequency unit 1301 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1309 can be used to store software programs or instructions and various data.
  • the memory 1309 may mainly include a storage program or instruction area and a data storage area, where the storage program or instruction area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.).
  • the memory 1309 may include a high-speed random access memory, and may also include a non-volatile memory, where the non-volatile memory may be a read-only memory (Read-Only Memory, ROM) or a programmable read-only memory (Programmable ROM).
  • PROM erasable programmable read-only memory
  • Erasable PROM EPROM
  • Electrically erasable programmable read-only memory Electrically EPROM, EEPROM
  • flash memory For example, at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 1310 may include one or more processing units; optionally, the processor 1310 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs or instructions, etc.
  • the modem processor mainly deals with wireless communication, such as a baseband processor. It can be understood that the foregoing modem processor may not be integrated into the processor 1310.
  • the radio frequency unit 1301 is used to receive multicast air interface resources, which are reserved by the target network side device when the target network side device receives the multicast QoS information from the MB NF.
  • the multicast air interface resource is used by the terminal to receive multicast service data through the switched target mode, and the multicast QoS information corresponds to the multicast service data.
  • the terminal receives the multicast air interface resource, which is reserved by the target network side device after receiving the multicast QoS information from MB NF. In this way, the terminal can start from the PDU session mode. Switch to the target mode and receive multicast service data through the multicast air interface resource, which improves the switching efficiency of mode switching.
  • the embodiment of the present application also provides a network side device.
  • the network side equipment 1400 includes: an antenna 141, a radio frequency device 142, and a baseband device 143.
  • the antenna 141 is connected to the radio frequency device 142.
  • the radio frequency device 142 receives information through the antenna 141, and sends the received information to the baseband device 143 for processing.
  • the baseband device 143 processes the information to be sent and sends it to the radio frequency device 142, and the radio frequency device 142 processes the received information and sends it out via the antenna 141.
  • the foregoing frequency band processing device may be located in the baseband device 143, and the method executed by the network-side device in the foregoing embodiment may be implemented in the baseband device 143.
  • the baseband device 143 includes a processor 144 and a memory 145.
  • the baseband device 143 may include, for example, at least one baseband board, and multiple chips are arranged on the baseband board, as shown in FIG.
  • the network side device shown in the above method embodiment operates.
  • the baseband device 143 may also include a network interface 146 for exchanging information with the radio frequency device 142.
  • the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device of the embodiment of the present invention further includes: instructions or programs stored on the memory 145 and running on the processor 144, and the processor 144 calls the instructions or programs in the memory 145 to execute the instructions or programs shown in FIGS. 2 to 6 Shows the method of execution of each module, and achieves the same technical effect, in order to avoid repetition, so I will not repeat it here.
  • the embodiments of the present application also provide a readable storage medium having a program or instruction stored on the readable storage medium.
  • the program or instruction is executed by a processor, each process of the above-mentioned mode switching method embodiment is realized, and the same can be achieved. In order to avoid repetition, I won’t repeat them here.
  • the processor may be the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks, or optical disks.
  • An embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled with the processor, and the processor is used to run a program or an instruction to implement the above-mentioned mode switching method embodiment
  • the chip includes a processor and a communication interface
  • the communication interface is coupled with the processor
  • the processor is used to run a program or an instruction to implement the above-mentioned mode switching method embodiment
  • the chip mentioned in the embodiment of the present application may also be called a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种模式切换方法、终端及网络侧设备。所述方法可以应用于目标网络侧设备,包括:在接收到来自多播广播网络功能MB NF的多播服务质量QoS信息的情况下,预留多播空口资源,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据;向源网络侧设备或所述MB NF发送所述多播空口资源。

Description

模式切换方法、终端及网络侧设备
相关申请的交叉引用
本申请主张在2020年06月09日在中国提交的中国专利申请号202010519756.2的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种模式切换方法、终端及网络侧设备。
背景技术
终端可以通过用户面功能(User Plane Function,UPF)网元与数据网络(Data Network,DN)网元建立协议数据单元(Protocol Data Unit,PDU)会话(Session),PDU Session提供终端与DN网元之间的PDU连接服务。
终端采用点到点的PDU Session方式接收多播业务时,如果切换到支持点到多点的多播业务的目标网络侧设备,终端只能使用PDU Session切换流程先把PDU Session切换到目标网络侧设备。如果终端期望使用更高效的多播业务数据传输方式,则需要由终端或目标网络侧设备发起模式切换,以切换到点到多点的多播业务传输模式。
从上述介绍可知,终端需要首先使用PDU Session切换流程把PDU Session切换到目标网络侧设备,然后再由终端或目标网络侧设备发起模式切换,以切换到点到多点的多播业务传输模式,这种模式切换的切换效率比较低。
发明内容
本申请实施例的目的是提供一种模式切换方法、终端及网络侧设备,能够解决模式切换的切换效率低的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,提供了一种模式切换方法,应用于目标网络侧设备,所述方法包括:在接收到来自多播广播网络功能MB NF的多播服务质量QoS 信息的情况下,预留多播空口资源,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据;向源网络侧设备或所述MB NF发送所述多播空口资源。
第二方面,提供了一种模式切换方法,应用于MB NF,所述方法包括:向目标网络侧设备发送多播QoS信息,所述多播QoS信息用于所述目标网络侧设备预留多播空口资源,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
第三方面,提供了一种模式切换方法,应用于源网络侧设备,所述方法包括:接收多播空口资源,所述多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
第四方面,提供了一种模式切换方法,应用于终端,所述方法包括:接收多播空口资源,所述多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,其中,所述多播空口资源用于所述终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
第五方面,提供了一种模式切换的装置,所述装置包括:资源预留模块,用于在接收到来自多播广播网络功能MB NF的多播服务质量QoS信息的情况下,预留多播空口资源,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据;发送模块,用于向源网络侧设备或所述MB NF发送所述多播空口资源。
第六方面,提供了一种模式切换的装置,所述装置包括:发送模块,用于向目标网络侧设备发送多播QoS信息,所述多播QoS信息用于所述目标网络侧设备预留多播空口资源,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
第七方面,提供了一种模式切换的装置,所述装置包括:接收模块,用于接收多播空口资源,所述多播空口资源是目标网络侧设备在接收到来 自MB NF的多播QoS信息的情况下预留的,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
第八方面,提供了一种模式切换的装置,所述装置包括:接收模块,用于接收多播空口资源,所述多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,其中,所述多播空口资源用于所述装置通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
第九方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第四方面所述的方法。
第十方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面、第二方面或第三方面所述的方法。
第十一方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面、第二方面、第三方面或第四方面所述的方法。
第十二方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面、第二方面、第三方面或第四方面所述的方法。
在本申请实施例中,目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下,预留多播空口资源,并向源网络侧设备或MB NF发送该多播空口资源,这样,终端可以从PDU会话模式切换到目标模式,并通过该多播空口资源接收多播业务数据,提升了模式切换的切换效率。
附图说明
图1是根据本申请的一个实施例的无线通信系统的框图;
图2是根据本申请的一个实施例的模式切换方法的示意性流程图;
图3是根据本申请的一个实施例的模式切换方法的示意性流程图;
图4是根据本申请的一个实施例的模式切换方法的示意性流程图;
图5是根据本申请的一个实施例的模式切换方法的示意性流程图;
图6是根据本申请的一个实施例的模式切换方法的示意性流程图;
图7是根据本申请的一个实施例的模式切换方法的示意性流程图;
图8是根据本申请的一个实施例的模式切换的装置的结构示意图;
图9是根据本申请的一个实施例的模式切换的装置的结构示意图;
图10是根据本申请的一个实施例的模式切换的装置的结构示意图;
图11是根据本申请的一个实施例的模式切换的装置的结构示意图;
图12是根据本申请的一个实施例的通信设备的结构示意图;
图13是根据本申请的一个实施例的终端的结构示意图;
图14是根据本申请的一个实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系 统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的模式切换方法、终端及网络侧设备进行详细地说明。
如图2所示,本申请的一个实施例提供一种模式切换方法200,该方法可以由目标网络侧设备执行,换言之,该方法可以由安装在目标网络侧设备的软件或硬件来执行,该方法200包括如下步骤。
S202:在接收到来自多播广播网络功能(Multicast Broadcast Network Function,MB NF)的多播服务质量(Quality of Service,QoS)信息的情况下,预留多播空口资源。
其中,上述多播空口资源用于终端通过切换后的目标模式接收多播业务数据。上述多播QoS信息对应于多播业务数据,或者说,上述多播QoS信息是多播业务数据的QoS信息。
在S202之前,MB NF可以向目标网络侧设备发送多播QoS信息。该多播QoS信息通常是区别于“PDU会话的QoS信息”,在一个例子中,MB NF向目标网络侧设备发送的多播QoS信息中还可以携带指示信息,该指示信息用于指示多播QoS信息是用于多播业务。
需要说明的是,本说明书各个实施例中提到的MB NF,通常是指能够提供多播业务数据的核心网功能,因此,MB NF可以用其它的技术术语来替代,例如,核心网设备,多播广播服务器等等。
在该实施例中,终端在源网络侧设备提供的小区内可以采用点到点的PDU Session方式接收多播业务,该PDU Session方式由于是单通道的,通常是每个终端对应一个通道,因此多播业务数据的传输效率较低。终端在切换到目标网络侧设备提供的小区内后,可以切换到目标模式,该目标模式可以是点到多点的多播业务传输模式,例如,目标网络侧设备发送一份多播业务数据,多个终端均可以接收到该多播业务数据,相对于PDU Session方式可以提高多播业务数据的传输效率。基于上述介绍,本申请各个实施例中提到的模式切换,可以是指终端从源网络侧设备的PDU Session方式,切换到目标网络侧设备的目标模式,该目标模式即点到多点的多播业务传输模式。
该实施例中,在一个例子中,在S202之前,终端的源网络侧设备可以向目标网络侧设备发送切换请求消息,该切换请求消息可以携带协议数据单元(Protocol Data Unit,PDU)会话的标识信息,比如PDU会话(Session)ID。这样,目标网络侧设备在接收到该切换请求消息之后,还可以向MB NF发送会话更新消息,该会话更新消息携带PDU会话的标识信息,比如上述PDU Session ID,这样,MB NF可以向目标网络侧设备发送上述多播QoS信息。
该实施例中,在另一个例子中,在S202之前,终端的源网络侧设备可以向MB NF发送切换通知消息,该切换通知消息可以携带PDU会话的标识信息,比如PDU Session ID。这样,MB NF在接收到该切换通知消息之后,可以向目标网络侧设备发送上述多播QoS信息。
S204:向源网络侧设备或MB NF发送多播空口资源。
该实施例中,在目标网络侧设备向源网络侧设备发送多播空口资源的情况下,源网络侧设备还可以将该多播空口资源转发给终端;在目标网络侧设备向MB NF发送多播空口资源的情况下,MB NF还可以通过源网络侧设备将该多播空口资源转发给终端。这样,终端即可通过该多播空口资源切换到目标网络侧设备,通过切换后的目标模式接收多播业务数据。
在一个例子中,目标网络侧设备可以向源网络侧设备发送切换命令,该切换命令携带多播空口资源;源网络侧设备还可以向终端发送携带有上述多播空口资源的切换命令。这样,终端还可以基于上述多播空口资源接入到目标网络侧设备,向目标网络侧设备发送切换完成消息,比如
Handover Confirm消息。
在另一个例子中,目标网络侧设备可以向MB NF发送多播空口资源;MB NF向源网络侧设备发送切换命令(比如Handover Command消息),该切换命令携带上述多播空口资源。源网络侧设备还可以向终端发送携带有上述多播空口资源的切换命令。这样,终端还可以基于上述多播空口资源接入到目标网络侧设备,向目标网络侧设备发送切换完成消息,比如Handover Confirm消息。
本申请实施例提供的模式切换方法,目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下,预留多播空口资源,并向源网络侧设备或MB NF发送该多播空口资源,这样,终端可以从PDU会话模式切换到目标模式,并通过该多播空口资源接收多播业务数据,提升了模式切换的切换效率。
对于上述提到的提升了模式切换的切换效率,由于相关技术中终端需要先进行PDU会话切换,再进行PDU会话至目标模式的切换,PDU会话切换所需要的空口资源和目标模式所需要的空口资源是不同的,这样,目标网络侧设备不仅需要预留PDU会话切换所需要的空口资源,还需要预留目标模式所需要的空口资源,且需要和源网络侧设备、终端等进行信令交互来通知这些空口资源,导致切换效率较低。本申请实施例无需预留PDU会话切换所需要的空口资源,且省略了通知上述空口资源所需的信令交互过程,因此提升了模式切换的切换效率。
可选地,在实施例200的S202之前,所述方法还包括:接收来自所 述源网络侧设备的PDU会话的标识信息;向所述MB NF发送所述PDU会话的所述标识信息。该例子中提到的PDU会话还可以称作是待切换的PDU会话,因为终端即将从PDU会话模式切换到目标模式。MB NF在接收到PDU会话的标识信息之后,即可明确终端需要进行模式切换,即可向目标网络侧设备发送多播QoS信息。
该实施例在向所述MB NF发送所述PDU会话的所述标识信息之后,目标网络侧设备还可以接收来自所述MB NF的如下至少之一:所述PDU会话对应的QoS参数;多播信息。该多播信息比如包括临时移动组标识(Temporary Mobile Group Identity,TMGI)和MB NF的标识这两者的至少之一。
可选地,在实施例200的S202之前,所述方法还包括:接收来自所述源网络侧设备的如下至少之一:模式切换指示;所述目标模式。在一个例子中,所述模式切换指示包括特定的QoS流标识。该实施例中,源网络侧设备可以向目标网络侧设备发送模式切换指示和目标模式的至少之一,以表明终端需要进行模式切换,这样,目标网络侧设备可以向MB NF发送会话更新消息,MB NF在接收到会话更新消息之后,即可明确终端需要进行模式切换,即可向目标网络侧设备发送多播QoS信息。
可选地,在实施例200的S202之前,所述方法还包括:接收来自所述MB NF的如下至少之一:模式切换指示;所述目标模式;PDU会话对应的QoS参数;多播信息。
在上述多个例子中,在目标网络侧设备接收到PDU会话对应的QoS参数的情况下,目标网络侧设备还可以预留所述PDU会话的空口资源。这样,终端不仅可以采用目标模式接收多播业务数据,还可以采用PDU会话方式接收多播业务数据。该实施例适用于终端需要接收多种不同类型的多播业务数据的场景下,便于满足多种不同的多播业务数据的传输需求,同时便于提升传输效率。
可选地,在实施例200还包括如下步骤:向所述MB NF发送如下至少之一:PDU会话的空口资源;用于接收所述多播业务数据的多播下行隧道资源。
该实施例中,在向所述MB NF发送PDU会话的空口资源的情况下,MB NF还可以通过源网络侧设备将PDU会话的空口资源发送给终端,便 于终端后续在目标网络侧设备通过PDU会话的方式接收多播业务数据。
该实施例中,在向所述MB NF发送多播下行隧道资源的情况下,目标网络侧设备还可以通过所述多播下行隧道资源接收所述多播业务数据;通过所述多播空口资源向所述终端发送所述多播业务数据,使得终端可以利用目标模式,通过所述多播空口资源接收多播业务数据。
为详细说明本申请实施例提供的模式切换方法,以下将结合图3和图4两个具体的实施例进行说明。图3和图4所示的实施例以源网络侧设备是源gNB,目标网络侧设备是目标gNB为例进行说明。
实施例一
如图3所示,该实施例一包括如下步骤。
S302:源gNB向目标gNB发送切换请求消息,比如Handover Request消息,携带要切换的PDU会话的标识信息,比如PDU Session ID。
可选地,切换请求消息还可以携带模式切换指示,可以是用于指示终端需要进行模式切换;切换请求消息还可以指示目标模式。可选地,源gNB可以通过特定的QoS流标识来标识终端需要进行模式切换。
S304:目标gNB基于模式切换指示,向MB NF发送会话更新消息。
比如,MB NF为会话管理功能(Session Management Function,SMF)时,目标gNB通过接入和移动性管理功能(Access and Mobility Management Function,AMF)将会话更新消息发送给SMF,MB NF为AMF时,目标gNB直接将会话更新消息发给AMF。该会话更新消息可以携带要切换的PDU会话的标识信息,比如PDU Session ID。
S306:MB NF向目标gNB发送会话更新响应消息。
该实施例中,MB NF通过PDU Session ID匹配到用户正在通过该PDU Session接收的多播业务的信息,比如TMGI、相应的QoS参数、报文过滤规则等,并基于PDU Session对应的QoS信息和报文过滤规则,基于这些信息调整PDU会话的QoS信息,比如删除某个流。会话更新响应消息携带携带调整后的多播QoS信息,比如多播业务对应的QoS参数;还可以带上PDU Session对应的QoS参数(可能调整过了);会话更新响应消息还可以携带多播信息,比如TMGI和/或MB NF的标识。
S308:目标gNB基于多播QoS信息预留多播空口资源。
可选地,目标gNB还可以基于PDU会话的QoS参数预留PDU会话 的空口资源。
S310:目标gNB向源gNB返回切换命令,比如Handover Response消息,携带空口资源。该空口资源包括多播空口资源,还可以包括PDU会话的空口资源。
S312:源gNB通过切换命令将空口资源转发给终端UE。
S314:UE基于多播空口资源接入到目标gNB,向目标gNB发送切换完成消息,比如Handover Confirm消息。
S316:目标gNB向MB NF发送会话更新消息,可以携带收到的多播信息,还可以携带多播下行隧道资源信息。
S318:MB NF向目标gNB返回会话更新响应消息。
至此,MB NF(比如UPF)可以通过多播下行隧道资源向目标gNB发送多播业务数据,目标gNB可以通过多播空口资源向UE发送多播业务数据。
实施例二
如图4所示,该实施例包括如下步骤。
S402:源gNB向MB NF发送切换通知消息,比如MB NF为SMF时,源gNB通过AMF将切换通知消息发送给SMF,MB NF为AMF时,源gNB直接将切换通知消息发给AMF,切换通知消息(比如Handover Required消息)可以携带要切换的PDU会话的标识信息,比如PDU Session ID。
S404:MB NF向目标gNB发送切换请求消息,比如Handover Request消息。
MB NF通过PDU Session ID匹配到用户正在通过该PDU Session接收的多播业务的信息,比如TMGI、相应的QoS参数、报文过滤规则等,并基于PDU Session对应的QoS信息和报文过滤规则,基于这些信息调整PDU会话的QoS信息,比如删除某个流。
切换请求消息可以携带模式切换指示,可以是指示模式切换,也可以是指示目标模式,具体的,模式切换指示还可以通过多播QoS参数指示。切换请求消息还携带调整后的QoS信息,比如多播业务对应的多播QoS信息,还可以带上PDU Session对应的QoS参数(可能调整过了)。切换请求消息还可以携带多播信息,比如TMGI和/或MB NF的标识。
S406:目标gNB预留多播空口资源,还可基于PDU会话的QoS参数 预留PDU会话的空口资源。
该步骤中,目标gNB可以基于模式切换指示和多播QoS信息预留多播空口资源,还可以是仅基于多播QoS信息预留多播空口资源。
S408:目标gNB向MB NF返回切换响应消息,比如Handover Response消息,携带需要发送给源gNB的空口资源(包括多播空口资源,可能还包括PDU会话空口资源如果PDU会话还有流存在),目标gNB还可以预留多播业务数据的多播下行隧道资源,用于MB NF向目标gNB发送多播业务数据。
S410:MB NF向源gNB发送切换命令,比如Handover Command消息,携带空口资源。该空口资源包括多播空口资源,还可以包括PDU会话的空口资源。
S412:源gNB将空口资源转发给终端UE。
S414:UE基于多播空口资源接入到目标gNB,向目标gNB发送切换完成消息,比如Handover Confirm消息。
S416:目标gNB向MB NF发送会话更新消息,可以携带收到的多播信息,如果步骤408中没有发送多播下行隧道资源信息,则此步骤S416中发送。
S418:MB NF向目标gNB返回会话更新响应消息。
至此,MB NF(比如UPF)可以通过多播下行隧道资源向目标gNB发送多播业务数据,目标gNB可以通过多播空口资源向UE发送多播业务数据。
以上结合图2至图4详细描述了根据本申请实施例的模式切换方法。下面将结合图5至图7详细描述根据本申请另外几个实施例的模式切换方法。可以理解的是,从MB NF侧、源网络侧设备侧以及终端侧的描述,与图2至图4所示的方法中的目标网络侧设备侧的描述相同,为避免重复,适当省略相关描述。
图5是本申请实施例的模式切换方法实现流程示意图,可以应用在MB NF侧。如图5所示,该方法500包括如下步骤。
S502:向目标网络侧设备发送多播QoS信息,该多播QoS信息用于目标网络侧设备预留多播空口资源。
其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业 务数据,所述多播QoS信息对应于所述多播业务数据。
在本申请实施例中,目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下,预留多播空口资源,并向源网络侧设备或MB NF发送该多播空口资源,这样,终端可以从PDU会话模式切换到目标模式,并通过该多播空口资源接收多播业务数据,提升了模式切换的切换效率。
可选地,作为一个实施例,所述方法还包括:接收所述多播空口资源。
可选地,作为一个实施例,所述方法还包括:接收来自所述目标网络侧设备的PDU会话的标识信息,其中,所述PDU会话的所述标识信息由所述源网络侧设备发送给所述目标网络侧设备。
可选地,作为一个实施例,所述方法还包括:向所述目标网络侧设备发送如下至少之一:所述PDU会话对应的QoS参数;多播信息。
可选地,作为一个实施例,所述方法还包括:向所述目标网络侧设备发送如下至少之一:
模式切换指示;
所述目标模式;
PDU会话对应的QoS参数;
多播信息。
可选地,作为一个实施例,所述方法还包括:接收来自所述目标网络侧设备如下至少之一:PDU会话的空口资源;用于发送所述多播业务数据的多播下行隧道资源。
可选地,作为一个实施例,所述方法还包括:通过所述多播下行隧道资源发送所述多播业务数据。
图6是本申请实施例的模式切换方法实现流程示意图,可以应用在源网络侧设备侧。如图6所示,该方法600包括如下步骤。
S602:接收多播空口资源,该多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的。
其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
在本申请实施例中,源网络侧设备接收多播空口资源,该多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,源网络侧设备还可以向终端发送该多播空口资源,这样,终端可以从 PDU会话模式切换到目标模式,并通过该多播空口资源接收多播业务数据,提升了模式切换的切换效率。
可选地,作为一个实施例,所述方法还包括:向所述目标网络侧设备发送PDU会话的标识信息。
图7是本申请实施例的模式切换方法实现流程示意图,可以应用在终端侧。如图7所示,该方法700包括如下步骤。
S702:接收多播空口资源,该多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的。
其中,所述多播空口资源用于所述终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
在本申请实施例中,终端接收多播空口资源,该多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,这样,终端可以从PDU会话模式切换到目标模式,并通过该多播空口资源接收多播业务数据,提升了模式切换的切换效率。
需要说明的是,本申请实施例提供的模式切换方法,执行主体可以为模式切换装置,或者,该模式切换装置中的用于执行模式切换的方法的控制模块。本申请实施例中以模式切换装置执行模式切换的方法为例,说明本申请实施例提供的模式切换的装置。
图8是根据本申请实施例的模式切换的装置的结构示意图,该装置对应于前文实施例中介绍的目标网络侧设备。如图8所示,该装置800包括:
资源预留模块802,可以用于在接收到来自MB NF的多播QoS信息的情况下,预留多播空口资源,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据;
发送模块804,可以用于向源网络侧设备或所述MB NF发送所述多播空口资源。
在本申请实施例中,目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下,预留多播空口资源,并向源网络侧设备或MB NF发送该多播空口资源,这样,终端可以从PDU会话模式切换到目标模式,并通过该多播空口资源接收多播业务数据,提升了模式切换的切换效率。
可选地,作为一个实施例,所述装置800还包括接收模块,可以用于 接收来自所述源网络侧设备的协议数据单元PDU会话的标识信息;发送模块804,可以用于向所述MB NF发送所述PDU会话的所述标识信息。
可选地,作为一个实施例,所述装置800还包括接收模块,可以用于接收来自所述源网络侧设备的如下至少之一:
模式切换指示;
所述目标模式。
可选地,作为一个实施例,所述模式切换指示包括特定的QoS流标识。
可选地,作为一个实施例,所述装置800还包括接收模块,可以用于接收来自所述MB NF的如下至少之一:
所述PDU会话对应的QoS参数;
多播信息。
可选地,作为一个实施例,所述装置800还包括接收模块,可以用于接收来自所述MB NF的如下至少之一:
模式切换指示;
所述目标模式;
PDU会话对应的QoS参数;
多播信息。
可选地,作为一个实施例,在接收到所述PDU会话对应的所述QoS参数的情况下,资源预留模块802,可以用于预留所述PDU会话的空口资源。
可选地,作为一个实施例,发送模块804,可以用于向所述MB NF发送如下至少之一:
PDU会话的空口资源;
用于接收所述多播业务数据的多播下行隧道资源。
可选地,作为一个实施例,所述装置800还包括接收模块,可以用于通过所述多播下行隧道资源接收所述多播业务数据;发送模块804,可以用于通过所述多播空口资源向所述终端发送所述多播业务数据。
图9是根据本申请实施例的模式切换的装置的结构示意图,该装置对应于前文实施例中介绍的MB NF。如图9所示,该装置900包括:
发送模块902,可以用于向目标网络侧设备发送多播QoS信息,所述多播QoS信息用于所述目标网络侧设备预留多播空口资源,其中,所述多 播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
在本申请实施例中,目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下,预留多播空口资源,并向源网络侧设备或MB NF发送该多播空口资源,这样,终端可以从PDU会话模式切换到目标模式,并通过该多播空口资源接收多播业务数据,提升了模式切换的切换效率。
可选地,作为一个实施例,所述装置900还包括接收模块,可以用于接收所述多播空口资源。
可选地,作为一个实施例,所述装置900还包括接收模块,可以用于接收来自所述目标网络侧设备的PDU会话的标识信息,其中,所述PDU会话的所述标识信息由所述源网络侧设备发送给所述目标网络侧设备。
可选地,作为一个实施例,发送模块902,可以用于向所述目标网络侧设备发送如下至少之一:所述PDU会话对应的QoS参数;多播信息。
可选地,作为一个实施例,发送模块902,可以用于向所述目标网络侧设备发送如下至少之一:
模式切换指示;
所述目标模式;
PDU会话对应的QoS参数;
多播信息。
可选地,作为一个实施例,所述装置900还包括接收模块,可以用于接收来自所述目标网络侧设备如下至少之一:PDU会话的空口资源;用于发送所述多播业务数据的多播下行隧道资源。
可选地,作为一个实施例,发送模块902,可以用于通过所述多播下行隧道资源发送所述多播业务数据。
图10是根据本申请实施例的模式切换的装置的结构示意图,该装置对应于前文实施例中介绍的源网络侧设备。如图10所示,该装置1000包括:
接收模块1002,可以用于接收多播空口资源,所述多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
在本申请实施例中,模式切换的装置接收多播空口资源,该多播空口 资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,模式切换的装置还可以向终端发送该多播空口资源,这样,终端可以从PDU会话模式切换到目标模式,并通过该多播空口资源接收多播业务数据,提升了模式切换的切换效率。
可选地,作为一个实施例,所述装置1000包括发送模块,可以用于向所述目标网络侧设备发送PDU会话的标识信息。
图11是根据本申请实施例的模式切换的装置的结构示意图,该装置对应于前文实施例中介绍的终端。如图11所示,该装置1100包括:
接收模块1102,用于接收多播空口资源,所述多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,其中,所述多播空口资源用于所述装置通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
在本申请实施例中,模式切换的装置接收多播空口资源,该多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,这样,模式切换的装置,如终端可以从PDU会话模式切换到目标模式,并通过该多播空口资源接收多播业务数据,提升了模式切换的切换效率。
本申请实施例中的模式切换的装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的模式切换的装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
本申请实施例提供的模式切换的装置能够实现图2至图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图12所示,本申请实施例还提供一种通信设备1200,包括处理器1201,存储器1202,存储在存储器1202上并可在所述处理器1201上运行的程序或指令,例如,该通信设备1200为终端时,该程序或指令被 处理器1201执行时实现上述模式切换方法实施例的各个过程,且能达到相同的技术效果。该通信设备1200为网络侧设备时,该程序或指令被处理器1201执行时实现上述模式切换方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
图13为实现本申请实施例的一种终端的硬件结构示意图。
该终端1300包括但不限于:射频单元1301、网络模块1302、音频输出单元1303、输入单元1304、传感器1305、显示单元1306、用户输入单元1307、接口单元1308、存储器1309、以及处理器1310等部件。
本领域技术人员可以理解,终端1300还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图13中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1304可以包括图形处理器(Graphics Processing Unit,GPU)13041和麦克风13042,图形处理器13041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1306可包括显示面板13061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板13061。用户输入单元1307包括触控面板13071以及其他输入设备13072。触控面板13071,也称为触摸屏。触控面板13071可包括触摸检测装置和触摸控制器两个部分。其他输入设备13072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1301将来自网络侧设备的下行数据接收后,给处理器1310处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1301包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1309可用于存储软件程序或指令以及各种数据。存储器1309可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1309可以包括高速随机存取存储器, 还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1310可包括一个或多个处理单元;可选的,处理器1310可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1310中。
其中,射频单元1301,用于接收多播空口资源,该多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的。
其中,所述多播空口资源用于所述终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
在本申请实施例中,终端接收多播空口资源,该多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,这样,终端可以从PDU会话模式切换到目标模式,并通过该多播空口资源接收多播业务数据,提升了模式切换的切换效率。
具体地,本申请实施例还提供了一种网络侧设备。如图14所示,该网络侧设备1400包括:天线141、射频装置142、基带装置143。天线141与射频装置142连接。在上行方向上,射频装置142通过天线141接收信息,将接收的信息发送给基带装置143进行处理。在下行方向上,基带装置143对要发送的信息进行处理,并发送给射频装置142,射频装置142对收到的信息进行处理后经过天线141发送出去。
上述频带处理装置可以位于基带装置143中,以上实施例中网络侧设备执行的方法可以在基带装置143中实现,该基带装置143包括处理器144和存储器145。
基带装置143例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为处理器144,与存储器145连接,以调用存储器145中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置143还可以包括网络接口146,用于与射频装置142交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器145上并可在处理器144上运行的指令或程序,处理器144调用存储器145中的指令或程序执行图2至图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述模式切换方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器可以为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述模式切换方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (29)

  1. 一种模式切换方法,应用于目标网络侧设备,所述方法包括:
    在接收到来自多播广播网络功能MB NF的多播服务质量QoS信息的情况下,预留多播空口资源,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据;
    向源网络侧设备或所述MB NF发送所述多播空口资源。
  2. 根据权利要求1所述的方法,其中,所述预留多播空口资源之前,所述方法还包括:
    接收来自所述源网络侧设备的协议数据单元PDU会话的标识信息;
    向所述MB NF发送所述PDU会话的所述标识信息。
  3. 根据权利要求1所述的方法,其中,所述预留多播空口资源之前,所述方法还包括:接收来自所述源网络侧设备的如下至少之一:
    模式切换指示;
    所述目标模式。
  4. 根据权利要求3所述的方法,其中,所述模式切换指示包括特定的QoS流标识。
  5. 根据权利要求2所述的方法,其中,所述方法还包括:接收来自所述MB NF的如下至少之一:
    所述PDU会话对应的QoS参数;
    多播信息。
  6. 根据权利要求1所述的方法,其中,所述预留多播空口资源之前,所述方法还包括:接收来自所述MB NF的如下至少之一:
    模式切换指示;
    所述目标模式;
    PDU会话对应的QoS参数;
    多播信息。
  7. 根据权利要求5或6所述的方法,其中,在接收到所述PDU会话对应的所述QoS参数的情况下,所述方法还包括:
    预留所述PDU会话的空口资源。
  8. 根据权利要求1所述的方法,其中,所述方法还包括:向所述MBNF发送如下至少之一:
    PDU会话的空口资源;
    用于接收所述多播业务数据的多播下行隧道资源。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    通过所述多播下行隧道资源接收所述多播业务数据;
    通过所述多播空口资源向所述终端发送所述多播业务数据。
  10. 一种模式切换方法,应用于MB NF,所述方法包括:
    向目标网络侧设备发送多播QoS信息,所述多播QoS信息用于所述目标网络侧设备预留多播空口资源,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    接收所述多播空口资源。
  12. 根据权利要求10所述的方法,其中,所述方法还包括:
    接收来自所述目标网络侧设备的PDU会话的标识信息,其中,所述PDU会话的所述标识信息由所述源网络侧设备发送给所述目标网络侧设备。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:向所述目标网络侧设备发送如下至少之一:
    所述PDU会话对应的QoS参数;
    多播信息。
  14. 根据权利要求10所述的方法,其中,所述方法还包括:向所述目标网络侧设备发送如下至少之一:
    模式切换指示;
    所述目标模式;
    PDU会话对应的QoS参数;
    多播信息。
  15. 根据权利要求10所述的方法,其中,所述方法还包括:接收来自所述目标网络侧设备如下至少之一:
    PDU会话的空口资源;
    用于发送所述多播业务数据的多播下行隧道资源。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    通过所述多播下行隧道资源发送所述多播业务数据。
  17. 一种模式切换方法,应用于源网络侧设备,所述方法包括:
    接收多播空口资源,所述多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:
    向所述目标网络侧设备发送PDU会话的标识信息。
  19. 一种模式切换方法,应用于终端,其特征在于,所述方法包括:
    接收多播空口资源,所述多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,其中,所述多播空口资源用于所述终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
  20. 一种模式切换的装置,所述装置包括:
    资源预留模块,用于在接收到来自MB NF的多播QoS信息的情况下,预留多播空口资源,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据;
    发送模块,用于向源网络侧设备或所述MB NF发送所述多播空口资源。
  21. 一种模式切换的装置,所述装置包括:
    发送模块,用于向目标网络侧设备发送多播QoS信息,所述多播QoS信息用于所述目标网络侧设备预留多播空口资源,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
  22. 一种模式切换的装置,所述装置包括:
    接收模块,用于接收多播空口资源,所述多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,其中,所述多播空口资源用于终端通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
  23. 一种模式切换的装置,所述装置包括:
    接收模块,用于接收多播空口资源,所述多播空口资源是目标网络侧设备在接收到来自MB NF的多播QoS信息的情况下预留的,其中,所述多播空口资源用于所述装置通过切换后的目标模式接收多播业务数据,所述多播QoS信息对应于所述多播业务数据。
  24. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求19所述的模式切换方法。
  25. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至18任一项所述的模式切换方法。
  26. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-18任一项所述的模式切换方法,或者实现如权利要求19所述的模式切换方法。
  27. 一种计算机程序产品,其特征在于,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1-18中任一项所述的模式切换方法,或者实现如权利要求19所述的模式切换方法。
  28. 一种电子设备,其特征在于,包括所述电子设备被配置成用于执行如权利要求1-18中任一项所述的模式切换方法,或者实现如权利要求19所述的模式切换方法。
  29. 一种芯片,其特征在于,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-18中任一项所述的模式切换方法,或者实现如权利要求19所述的模式切换方法。
PCT/CN2021/099195 2020-06-09 2021-06-09 模式切换方法、终端及网络侧设备 WO2021249438A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2021286622A AU2021286622B2 (en) 2020-06-09 2021-06-09 Mode Switching Method, Terminal, and Network-Side Device
JP2022575245A JP7473689B2 (ja) 2020-06-09 2021-06-09 モード切り替え方法、端末及びネットワーク側機器
MX2022015699A MX2022015699A (es) 2020-06-09 2021-06-09 Metodo de cambio de modo, terminal y dispositivo del lado de la red.
CA3185315A CA3185315A1 (en) 2020-06-09 2021-06-09 Mode switching method, terminal, and network side device
EP21822607.4A EP4164287A4 (en) 2020-06-09 2021-06-09 MODE SWITCHING METHOD, TERMINAL AND NETWORK SIDE DEVICE
BR112022025107A BR112022025107A2 (pt) 2020-06-09 2021-06-09 Método de comutação de modo, terminal e dispositivo do lado da rede.
KR1020237000099A KR20230019936A (ko) 2020-06-09 2021-06-09 모드 전환 방법, 단말 및 네트워크 측 기기
US17/994,701 US20230089037A1 (en) 2020-06-09 2022-11-28 Mode switching method, terminal, and network-side device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010519756.2 2020-06-09
CN202010519756.2A CN113784384B (zh) 2020-06-09 2020-06-09 模式切换方法、终端及网络侧设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/994,701 Continuation US20230089037A1 (en) 2020-06-09 2022-11-28 Mode switching method, terminal, and network-side device

Publications (1)

Publication Number Publication Date
WO2021249438A1 true WO2021249438A1 (zh) 2021-12-16

Family

ID=78834481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099195 WO2021249438A1 (zh) 2020-06-09 2021-06-09 模式切换方法、终端及网络侧设备

Country Status (10)

Country Link
US (1) US20230089037A1 (zh)
EP (1) EP4164287A4 (zh)
JP (1) JP7473689B2 (zh)
KR (1) KR20230019936A (zh)
CN (1) CN113784384B (zh)
AU (1) AU2021286622B2 (zh)
BR (1) BR112022025107A2 (zh)
CA (1) CA3185315A1 (zh)
MX (1) MX2022015699A (zh)
WO (1) WO2021249438A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515858A (zh) * 2008-02-21 2009-08-26 华为技术有限公司 无线网络中终端加入多播广播业务的方法、系统和终端
CN104519556A (zh) * 2013-09-30 2015-04-15 中国电信股份有限公司 移动中继系统及其实现基站节能的方法和基站
CN108401271A (zh) * 2017-02-07 2018-08-14 中兴通讯股份有限公司 基站的切换方法和系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100571208C (zh) * 2006-04-20 2009-12-16 中兴通讯股份有限公司 一种实现多播/广播业务的资源预留方法
CN101155343B (zh) * 2006-09-29 2012-09-05 华为技术有限公司 无线网络中终端加入多播广播业务的方法及其系统
CN101299825B (zh) * 2007-04-30 2012-07-25 华为技术有限公司 一种实现组播承载资源控制的方法、系统及装置
JP2011507385A (ja) * 2007-12-13 2011-03-03 ポスコ アイシーティー カンパニー リミテッド マルチキャスト及びブロードキャストのためのシステム並びに方法
EP2269348B1 (en) * 2008-04-25 2017-03-08 Telefonaktiebolaget LM Ericsson (publ) Congestion handling in multicast networks
CN101820585B (zh) * 2009-02-26 2013-06-19 中国电信股份有限公司 移动通信网络中的资源动态分配的方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515858A (zh) * 2008-02-21 2009-08-26 华为技术有限公司 无线网络中终端加入多播广播业务的方法、系统和终端
CN104519556A (zh) * 2013-09-30 2015-04-15 中国电信股份有限公司 移动中继系统及其实现基站节能的方法和基站
CN108401271A (zh) * 2017-02-07 2018-08-14 中兴通讯股份有限公司 基站的切换方法和系统
US20200008109A1 (en) * 2017-02-07 2020-01-02 Zte Corporation Base station handover method, system, and computer storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NSN: "Potential alternatives for inter-RAT HO signalling latency", 3GPP DRAFT; R3-131768 ALTERNATIVES FOR IMPROVEMENTS IN SIGNALLING LATENCY IN INTER-RAT HO, vol. RAN WG3, 11 October 2013 (2013-10-11), Venice, Italy, pages 1 - 7, XP050719939 *
See also references of EP4164287A4 *

Also Published As

Publication number Publication date
JP7473689B2 (ja) 2024-04-23
US20230089037A1 (en) 2023-03-23
EP4164287A4 (en) 2023-12-06
KR20230019936A (ko) 2023-02-09
AU2021286622B2 (en) 2024-05-16
CA3185315A1 (en) 2021-12-16
CN113784384A (zh) 2021-12-10
EP4164287A1 (en) 2023-04-12
AU2021286622A1 (en) 2022-12-22
JP2023529390A (ja) 2023-07-10
CN113784384B (zh) 2024-03-08
BR112022025107A2 (pt) 2022-12-27
MX2022015699A (es) 2023-01-24

Similar Documents

Publication Publication Date Title
KR20220061199A (ko) 전송 구성 상태 활성화 방법, 장치 및 저장 매체
WO2022022634A1 (zh) 接入控制方法、装置及通信设备
WO2022017359A1 (zh) 直接通信启动控制方法及相关设备
CN114422094A (zh) Pdcp重复的配置、激活或去激活方法和终端
JP2023536198A (ja) 情報伝送方法、装置、端末及びネットワーク側機器
EP4192054A1 (en) Method for splitting end-to-end qos requirement information, terminal, and network side device
WO2022033560A1 (zh) 上报能力的方法、终端设备和网络设备
US20230262654A1 (en) Paging message receiving method, paging configuration method, terminal, and network side device
WO2021249438A1 (zh) 模式切换方法、终端及网络侧设备
EP4199630A1 (en) Data transmission processing method, resource configuration method, and related device
WO2022012526A1 (zh) 处理方法、发送方法及相关设备
WO2022262843A1 (zh) Gap请求消息的发送/接收方法和设备
WO2022017480A1 (zh) 管理目标业务的方法、装置和通信设备
WO2022206552A1 (zh) 切换方法、装置、网络侧设备及终端
WO2023280022A1 (zh) 多路径通信方法和设备
US20230262794A1 (en) Method for establishing connected state, terminal, core network function, and access network device
WO2023005898A1 (zh) 多终端联合会话管理方法、网络侧设备及终端
WO2022068752A1 (zh) 通信资源激活方法、终端及网络侧设备
US20230156550A1 (en) Connection establishment method and device
WO2022083630A1 (zh) 寻呼方法、装置、终端、网络侧设备及可读存储介质
WO2022194053A1 (zh) 传输方法、装置、设备及可读存储介质
WO2023274170A1 (zh) 成功切换报告shr的处理、管理、控制方法及装置
WO2022206898A1 (zh) 寻呼方法、装置、终端及网络侧设备
WO2023280100A1 (zh) 初始带宽部分确定方法、装置及相关设备
CN113950042A (zh) 识别方法、发送方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3185315

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022575245

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022025107

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021286622

Country of ref document: AU

Date of ref document: 20210609

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022025107

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221208

ENP Entry into the national phase

Ref document number: 20237000099

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021822607

Country of ref document: EP

Effective date: 20230109