WO2021249252A1 - 抗氯离子腐蚀的钢轨及制备方法 - Google Patents

抗氯离子腐蚀的钢轨及制备方法 Download PDF

Info

Publication number
WO2021249252A1
WO2021249252A1 PCT/CN2021/097852 CN2021097852W WO2021249252A1 WO 2021249252 A1 WO2021249252 A1 WO 2021249252A1 CN 2021097852 W CN2021097852 W CN 2021097852W WO 2021249252 A1 WO2021249252 A1 WO 2021249252A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
chloride ion
steel rail
rail
content
Prior art date
Application number
PCT/CN2021/097852
Other languages
English (en)
French (fr)
Inventor
朱敏
叶佳林
庞涛
郑建国
费俊杰
周剑华
王瑞敏
欧阳珉路
赵国知
Original Assignee
武汉钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉钢铁有限公司 filed Critical 武汉钢铁有限公司
Publication of WO2021249252A1 publication Critical patent/WO2021249252A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0087Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the invention belongs to the technical field of metal material production, and specifically relates to a steel rail resistant to chloride ion corrosion and a preparation method.
  • the corrosion rate of the rails caused by chloride ions is inland. Several times in the rural atmospheric environment, the life span of the rail is greatly reduced. At the same time, the thickness of the rail waist is rapidly reduced due to the corrosion of chloride ions, which greatly reduces the support strength of the rail when the train is running, and it is prone to accidents of rail breakage, which brings great safety hazards to the train operation. Due to the serious corrosion of steel rails, the maintenance and inspection costs of the steel rails are increased, the replacement cycle of the steel rails is shortened, and a lot of manpower and maintenance cost pressures are put on the railway industry.
  • the purpose of the present invention is to address the above-mentioned technical deficiencies and provide a chloride ion-resistant steel rail and a preparation method that can generate a dense barrier layer on the surface of the steel rail to prevent chloride ions from corroding the steel rail.
  • the chloride ion-resistant steel rail designed by the present invention includes C: 0.66% to 0.76%, Si: 0.53% to 0.73%, Mn: 0.9% to 1.7%, P ⁇ 0.012%, S ⁇ 0.005%, Nb: 0.020% ⁇ 0.030%, Als ⁇ 0.003%, Cr: 1.2% ⁇ 2.2%, Cu: 2% ⁇ 4%, Co: 0.40% ⁇ 0.65%, H ⁇ 0.00006%, O ⁇ 0.0006%, the rest is Fe and impurity elements.
  • the C content is 0.73 to 0.7%.
  • the Si content is 0.58% to 0.72%.
  • the Mn content is 0.91 to 1.36%.
  • the Nb content is 0.022 to 0.028%.
  • the Cr content is 1.78-2.15%.
  • the Cu content is 3.1-3.8%.
  • the Co content is 0.51 to 0.64%.
  • the elements of Cr:1.2 ⁇ 2.2% and Cu:2 ⁇ 4% are added to the rail steel, which promotes the formation of a protective film on the surface of the rail and organizes the combination of oxygen and the rail matrix iron.
  • the chloride ion Or destroy the protective film formed by Cr and Cu on the surface of the rail.
  • Adding Co: 0.40 to 0.65% can greatly increase the density of the protective film formed by Cr and Cu on the surface of the rail and prevent chloride ions from damaging the protective film on the surface of the rail.
  • the method to reduce the content of O and H in steel is through RH vacuum dehydrogenation and oxygen treatment: using low vacuum, the treatment time of pressure ⁇ 40Pa is greater than or equal to 20min.
  • the temperature of the soaking section is controlled as: 1240 ⁇ 1260°C, and the heating time is 160 ⁇ 180min;
  • step 9 heating to 1222-1235°C, and then cooling the steel rail to room temperature at a rate of 0.22-0.27°C/s.
  • the Co element acts simultaneously with Cr and Cu to improve the compactness of the protective film, prevent chloride ions from reacting with the oxide film on the surface of the rail, and avoid damaging the protective film, thereby organizing the corrosive medium to enter the rail matrix to further corrode.
  • the presence of Co element when chloride ions react with the rail matrix to produce pitting corrosion, the Co element increases the pitting corrosion potential, prevents the microbattery reaction from occurring, plays a passivation effect, and prevents chloride ions from further corroding the rail matrix.
  • the beneficial effects of the present invention are as follows: the present invention generates a dense barrier layer on the surface of the rail by controlling the shape of inclusions and rolling the rail to prevent the corrosion of the rail by chloride ions; When used in an environment with high chloride ion content (2.2-3.5%), its relative corrosion resistance is 4 times (300%) higher than that of U75V rails and U71Mn rails used by Chinese railways, thereby reducing rail maintenance and replacement costs , Improve the safety of rails and ensure the safety of passenger production and property, which can solve the problem of rail corrosion in most areas of our country and promote the development of the railway industry.
  • composition and weight percentage of the steel rail resistant to chloride ion corrosion include C: 0.68%, Si: 0.66%, Mn: 1.02%, P: 0.005%, S: 0.002%, Nb: 0.026%, Als: 0.002%, Cr: 1.28%, Cu: 2.7%, Co: 0.49%, H: 0.00005%, O: 0.0004%, the rest is Fe and impurity elements.
  • the temperature of the soaking section is controlled as: 1245°C, and the heating time is 170min;
  • the components and weight percentages of steel rails resistant to chloride ion corrosion include C: 0.71%, Si: 0.58%, Mn: 0.95%, P: 0.003%, S: 0.002%, Nb: 0.023%, Als: 0.001%, Cr: 1.37 %, Cu: 2.7%, Co: 0.49%, H: 0.00005%, O: 0.0004%, and the rest are Fe and impurity elements.
  • the temperature of the soaking section is controlled as 1252°C, and the heating time is 165min;
  • the components and weight percentages of the rail resistant to chloride ion corrosion include C: 0.73%, Si: 0.62%, Mn: 1.36%, P: 0.004%, S: 0.001%, Nb: 0.028%, Als: 0.002%, Cr: 1.78 %, Cu: 3.1%, Co: 0.51%, H: 0.000035%, O: 0.0002%, and the rest are Fe and impurity elements.
  • the temperature of the soaking section is controlled as: 1258°C, and the heating time is 174min;
  • the components and weight percentages of rails resistant to chloride ion corrosion include C: 0.74%, Si: 0.72%, Mn: 1.40%, P: 0.006%, S: 0.003%, Nb: 0.022%, Als: 0.001%, Cr: 1.86 %, Cu: 3.3%, Co: 0.62%, H: 0.00002%, O: 0.0002%, and the rest are Fe and impurity elements.
  • the temperature of the soaking section is controlled as: 1241°C, and the heating time is 161min;
  • the components and weight percentages of rails resistant to chloride ion corrosion include C: 0.70%, Si: 0.58%, Mn: 0.91%, P: 0.009%, S: 0.005%, Nb: 0.024%, Als: 0.001%, Cr: 2.15 %, Cu: 3.8%, Co: 0.64%, H: 0.00005%, O: 0.0003%, and the rest are Fe and impurity elements.
  • the temperature of the soaking section is controlled as: 1255°C, and the heating time is 177min;
  • the steel rails produced in Examples 1 to 5 are resistant to chloride ion corrosion and the two comparative steel grades U75V (comparative steel grade 1) and U71Mn (comparative steel grade 2) currently commonly used in my country, according to TB/T 2375 "Railway Weathering Steel Cycle” Infiltration Corrosion Test Method” Carry out accelerated corrosion test, measure the corrosion rate of two steel grades under the same chloride ion conditions, and compare their corrosion resistance.
  • Comparative steel 1 the composition is 0.75% C, 0.76% Mn, 0.52% Si, 0.018% P, 0.011% S, 0.05% V;
  • the comparative steel 2 the composition is 0.70% C, 1.03% Mn, 0.32% Si, 0.010% P, 0.003%S.
  • the mechanical properties and corrosion rate of the above seven component steels were tested.
  • the chloride ion corrosion resistance of the steel of the present invention is at least 434% higher than that of the comparative example, that is, the corrosion resistance is increased by 4.34 times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种抗氯离子腐蚀的钢轨及制备方法,按重量百分比包括C:0.66%~0.76%、Si:0.53%~0.73%、Mn:0.9%~1.7%、P≤0.012%、S≤0.005%、Nb:0.020%~0.030%、Als≤0.003%、Cr:1.2%~2.2%、Cu:2%~4%、Co:0.40%~0.65%、H≤0.00006%、O≤0.0006%,其余为Fe和杂质元素。通过控制夹杂物形状和在轧制成钢轨轨在钢轨表层生成一层致密的阻隔层,阻止氯离子对钢轨造成腐蚀;当钢轨在氯离子含量较高(2.2~3.5%)的环境下服役时,其相对耐蚀性能较我国铁路使用的U75V钢轨和U71Mn钢轨提高到4倍以上。

Description

抗氯离子腐蚀的钢轨及制备方法 技术领域
本发明属于金属材料生产技术领域,具体涉及一种抗氯离子腐蚀的钢轨及制备方法。
背景技术
随着我国铁路的高速建设和发展,铁路历程越来越多,铁路建设的环境也越来越复杂。近海地区、海底隧道等铁路建设量越来越大,由于临近海岸线,海水中的氯离子在降雨或者伴随潮湿海洋大气中沉降到钢轨上;在海底隧道内(如广深港高铁狮子洋隧道)由于海水渗透,列车运行时将海水带到钢轨上,海水中的氯离子(氯离子含量约3.5%)长期富集在钢轨表面,造成钢轨腐蚀严重,氯离子造成的钢轨腐蚀速率是在内陆乡村大气环境中的数倍,大幅度降低了钢轨寿命。同时,由于氯离子的腐蚀造成钢轨腰部厚度迅速减薄,大大降低了钢轨的对列车运行时的支撑强度,很容易发生钢轨断裂的事故,给列车运行带来极大的安全隐患。由于钢轨腐蚀严重,增加了钢轨的养护和检查成本,缩短钢轨更换周期,给铁路行业造成大量人力和维护成本压力。
发明内容
本发明的目的就是针对上述技术的不足,提供一种能在钢轨表层生成一层致密阻隔层阻止氯离子对钢轨造成腐蚀的抗氯离子腐蚀的钢轨及制备方法。
为实现上述目的,本发明所设计的抗氯离子腐蚀的钢轨,其组分按重量百分比包括C:0.66%~0.76%、Si:0.53%~0.73%、Mn:0.9%~1.7%、P≤0.012%、S≤0.005%、Nb:0.020%~0.030%、Als≤0.003%、Cr:1.2%~2.2%、Cu:2%~4%、Co:0.40%~0.65%、H≤0.00006%、O≤0.0006%,其余为Fe和杂质元素。
进一步地,所述C含量为0.73~0.7%。
进一步地,所述Si含量为0.58~0.72%。
进一步地,所述Mn含量为0.91~1.36%。
进一步地,所述Nb含量为0.022~0.028%。
进一步地,所述Cr含量为1.78~2.15%。
进一步地,所述Cu含量为3.1~3.8%。
进一步地,所述Co含量为0.51~0.64%。
钢轨钢中添加了Cr:1.2~2.2%、Cu:2~4%元素,促使钢轨表面形成一层保护膜,组织了氧与钢轨基体铁的结合,但是由于在含氯离子环境下,氯离子或破坏Cr和Cu在钢轨表面形成的保护膜,添加Co:0.40~0.65%可以大幅提高Cr和Cu在钢轨表面形成的保护膜的致密度,阻止氯离子破坏钢轨表层的保护膜。
严格控制钢中S、O含量含量和H,将S含量降低到S≤0.005%、O≤0.0006%是为了减少钢轨中的硫化物夹杂和氧化物夹杂,硫化物夹杂、氧化物夹杂和钢轨基体存在这界面,这些界面正好是腐蚀发生的源泉,因此减少S、O含量含量就降低了腐蚀发生的原始地点,提高钢轨的耐蚀性。降低钢中O含量含量和H的方法是通过RH真空脱氢、氧处理:采用低真空度,压力≤40Pa的处理时间大于等于20min。
还提供一种如上述所述抗氯离子腐蚀钢轨的制备方法如下:
1)进行铁水深脱硫,采用转炉冶炼,并控制出钢温度在1660~1670℃;
2)每吨钢水加入45~55kg活性石灰造白渣,深度脱氧、脱硫,然后每吨钢水加入35~45kg的石英砂,炉渣碱度控制在0.7~1.1,LF炉处理时间为30~50min,将钢中夹杂变成塑性化夹杂;
3)RH真空脱氢、氧处理:采用低真空度,压力≤40Pa的处理时间20~60min;
4)钢水连铸,采用大罐长水口和结晶器浸入式水口保护浇注,浸入深度在80~95mm;中包钢水温度按照在其钢种液相温度线以上5~15℃控制;铸坯拉速控制在0.3~0.4m/min;
5)对铸坯加盖保温罩进行缓慢冷却,冷速0.3~0.5℃/s,促进钢坯中氢逸出,降低钢坯中氢含量;
6)对钢坯加热,控制均热段温度为:1240~1260℃,加热时间160~180min;
7)进行粗轧,并控制其开轧温度在1050~1100℃;
8)进行精轧,控制其终轧温度在960~1000℃;
9)精轧以后的钢轨,将其加热到1220~1240℃,保温260~300min,然后以0.2~0.3℃/s的速度使钢轨冷却到室温。
进一步地,所述步骤9)中,加热到1222~1235℃,然后以0.22~0.27℃/s的速度使钢轨冷却到室温。
精轧以后的钢轨,将其加热到1220~1240℃,保温260~300min,其目的是当钢轨轧 制成型以后,通过高温段长时间保温,促进Cr和Cu沿着晶界析出并在晶界和晶面均匀分布,形成致密的保护膜;其中Cu:2~4%,是保证有足够的Cu元素在晶界和镜面分布,起到保护作用,Cr:1.2~2.2%保证了Cr元素在已经生产的氧化物和钢轨基体之间沉淀大量Cr元素,阻挡氯离子与基体结合发生腐蚀。Co元素同时和Cr和Cu作用,提高了保护膜的致密性,阻止氯离子与钢轨表层的氧化膜发生反应,避免破坏保护膜,从而组织了腐蚀介质进入钢轨基体进一步发生腐蚀反应。Co元素的存在,当氯离子与钢轨基体发生反应时产生孔蚀时,Co元素提高了孔蚀电位,阻止微电池反应发生,起到钝化效应,避免了氯离子进一步腐蚀钢轨基体。
精轧以后的钢轨,将其加热到1220~1240℃,保温260~300min,然后以0.2~0.3℃/s的速度使钢轨冷却到室温,另一作用就是促使钢轨中的氢在高温段完全逸出钢轨,避免氢气在钢轨中聚集形成微小空隙,减少腐蚀发生源泉。由于钢轨在高温状态保持260~300min,可以促进钢中残余的硫化物形成纺锤状,减少其尖锐角度,减少应力集中,减少钢轨应力腐蚀源。
与现有技术相比,本发明的有益效果如下:本发明通过控制夹杂物形状和在轧制成钢轨轨在钢轨表层生成一层致密的阻隔层,阻止氯离子对钢轨造成腐蚀;当钢轨在氯离子含量较高(2.2~3.5%)的环境下服役时,其相对耐蚀性能较我国铁路使用的U75V钢轨和U71Mn钢轨提高到4倍(300%)以上,从而降低钢轨的维护和更换成本,提高钢轨安全性,保障乘客生产财产安全,可以解决我国大部分地区钢轨腐蚀问题,促进铁路行业发展。
具体实施方式
下面结合具体实施例和对比例对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。
实施例1
抗氯离子腐蚀的钢轨其组分及重量百分比包括C:0.68%、Si:0.66%、Mn:1.02%、P:0.005%、S:0.002%、Nb:0.026%、Als:0.002%、Cr:1.28%、Cu:2.7%、Co:0.49%、H:0.00005%、O:0.0004%,其余为Fe和杂质元素。
1)进行铁水深脱硫,采用转炉冶炼,并控制出钢温度在1661℃;
2)每吨钢水加入46kg活性石灰造白渣,深度脱氧、脱硫,然后每吨钢水加入石英砂37kg,炉渣碱度控制在0.8,LF炉处理时间53min,将钢中夹杂变成塑性化夹杂;
3)RH真空脱氢、氧处理:采用低真空度,压力≤40Pa的处理时间26min;
4)钢水连铸,采用大罐长水口和结晶器浸入式水口保护浇注,浸入深度在86mm;中包钢水温度按照在其钢种液相温度线以上8℃控制;铸坯拉速控制在0.32m/min;
5)对铸坯加盖保温罩进行缓慢冷却,冷速0.35℃/s,促进钢坯中氢逸出,降低钢坯中氢含量;
6)对钢坯加热,控制均热段温度为:1245℃,加热时间170min;
7)进行粗轧,并控制其开轧温度1060℃;
8)进行精轧,控制其终轧温度970℃;
9)精轧以后的钢轨,将其加热到1225℃,保温266min,然后以0.23/s的速度使钢轨冷却到室温。
实施例2
抗氯离子腐蚀的钢轨组分及重量百分比包括C:0.71%、Si:0.58%、Mn:0.95%、P:0.003%、S:0.002%、Nb:0.023%、Als:0.001%、Cr:1.37%、Cu:2.7%、Co:0.49%、H:0.00005%、O:0.0004%,其余为Fe和杂质元素。
1)进行铁水深脱硫,采用转炉冶炼,并控制出钢温度在1666℃;
2)每吨钢水加入48kg活性石灰造白渣,深度脱氧、脱硫,然后每吨钢水加入石英砂39kg,炉渣碱度控制在0.9,LF炉处理时间55min,将钢中夹杂变成塑性化夹杂;
3)RH真空脱氢、氧处理:采用低真空度,压力≤40Pa的处理时间23min;
4)钢水连铸,采用大罐长水口和结晶器浸入式水口保护浇注,浸入深度在88mm;中包钢水温度按照在其钢种液相温度线以上12℃控制;铸坯拉速控制在0.35m/min;
5)对铸坯加盖保温罩进行缓慢冷却,冷速0.45℃/s,促进钢坯中氢逸出,降低钢坯中氢含量;
6)对钢坯加热,控制均热段温度为:1252℃,加热时间165min;
7)进行粗轧,并控制其开轧温度1093℃;
8)进行精轧,控制其终轧温度980℃;
9)精轧以后的钢轨,将其加热到1230℃,保温286min,然后以0.24/s的速度使钢轨冷却到室温。
实施例3
抗氯离子腐蚀的钢轨组分及重量百分比包括C:0.73%、Si:0.62%、Mn:1.36%、P:0.004%、S:0.001%、Nb:0.028%、Als:0.002%、Cr:1.78%、Cu:3.1%、Co:0.51%、H:0.000035%、O:0.0002%,其余为Fe和杂质元素。
1)进行铁水深脱硫,采用转炉冶炼,并控制出钢温度在1669℃;
2)每吨钢水加入50kg活性石灰造白渣,深度脱氧、脱硫,然后每吨钢水加入石英砂41kg,炉渣碱度控制在1.0,LF炉处理时间55min,将钢中夹杂变成塑性化夹杂;
3)RH真空脱氢、氧处理:采用低真空度,压力≤40Pa的处理时间25min;
4)钢水连铸,采用大罐长水口和结晶器浸入式水口保护浇注,浸入深度在90mm;中包钢水温度按照在其钢种液相温度线以上13℃控制;铸坯拉速控制在0.37m/min;
5)对铸坯加盖保温罩进行缓慢冷却,冷速0.47℃/s,促进钢坯中氢逸出,降低钢坯中氢含量;
6)对钢坯加热,控制均热段温度为:1258℃,加热时间174min;
7)进行粗轧,并控制其开轧温度1084℃;
8)进行精轧,控制其终轧温度973℃;
9)精轧以后的钢轨,将其加热到1235℃,保温291min,然后以0.22/s的速度使钢轨冷却到室温。
实施例4
抗氯离子腐蚀的钢轨组分及重量百分比包括C:0.74%、Si:0.72%、Mn:1.40%、P:0.006%、S:0.003%、Nb:0.022%、Als:0.001%、Cr:1.86%、Cu:3.3%、Co:0.62%、H:0.00002%、O:0.0002%,其余为Fe和杂质元素。
1)进行铁水深脱硫,采用转炉冶炼,并控制出钢温度在1662℃;
2)每吨钢水加入51kg活性石灰造白渣,深度脱氧、脱硫,然后每吨钢水加入石英砂43kg,炉渣碱度控制在0.7,LF炉处理时间58min,将钢中夹杂变成塑性化夹杂;
3)RH真空脱氢、氧处理:采用低真空度,压力≤40Pa的处理时间27min;
4)钢水连铸,采用大罐长水口和结晶器浸入式水口保护浇注,浸入深度在82mm;中包钢水温度按照在其钢种液相温度线以上14℃控制;铸坯拉速控制在0.31m/min;
5)对铸坯加盖保温罩进行缓慢冷却,冷速0.49℃/s,促进钢坯中氢逸出,降低钢坯中氢含量;
6)对钢坯加热,控制均热段温度为:1241℃,加热时间161min;
7)进行粗轧,并控制其开轧温度1072℃;
8)进行精轧,控制其终轧温度989℃;
9)精轧以后的钢轨,将其加热到1226℃,保温296min,然后以0.28/s的速度使钢轨冷却到室温。
实施例5
抗氯离子腐蚀的钢轨组分及重量百分比包括C:0.70%、Si:0.58%、Mn:0.91%、P:0.009%、S:0.005%、Nb:0.024%、Als:0.001%、Cr:2.15%、Cu:3.8%、Co:0.64%、H:0.00005%、O:0.0003%,其余为Fe和杂质元素。
1)进行铁水深脱硫,采用转炉冶炼,并控制出钢温度在1663℃;
2)每吨钢水加入53kg活性石灰造白渣,深度脱氧、脱硫,然后每吨钢水加入石英砂45kg,炉渣碱度控制在0.7,LF炉处理时间51min,将钢中夹杂变成塑性化夹杂;
3)RH真空脱氢、氧处理:采用低真空度,压力≤40Pa的处理时间22min;
4)钢水连铸,采用大罐长水口和结晶器浸入式水口保护浇注,浸入深度在91mm;中包钢水温度按照在其钢种液相温度线以上9℃控制;铸坯拉速控制在0.39m/min;
5)对铸坯加盖保温罩进行缓慢冷却,冷速0.30℃/s,促进钢坯中氢逸出,降低钢坯中氢含量;
6)对钢坯加热,控制均热段温度为:1255℃,加热时间177min;
7)进行粗轧,并控制其开轧温度1053℃;
8)进行精轧,控制其终轧温度961℃;
9)精轧以后的钢轨,将其加热到1222℃,保温260min,然后以0.27/s的速度使钢轨冷却到室温。
将实施例1~5生产抗氯离子腐蚀的钢轨和我国目前普遍应用的U75V(对比钢种1) 和U71Mn(对比钢种2)两个对比钢种,按照TB/T 2375《铁路耐候钢周期浸润腐蚀试验方法》进行加速腐蚀实验,测定相同氯离子条件下,两个钢种的腐蚀速率,比较其耐蚀性。对比钢1,成分为0.75%C、0.76%Mn、0.52%Si、0.018%P、0.011%S、0.05%V;对比钢2,成分为0.70%C、1.03%Mn、0.32%Si、0.010%P、0.003%S。对上述七种成分钢进行力学性能及腐蚀速率进行检验。
Figure PCTCN2021097852-appb-000001
从表中可以看出,本发明钢种耐氯离子腐蚀性较比对比例至少提高434%,即耐蚀性提高4.34倍。

Claims (10)

  1. 一种抗氯离子腐蚀的钢轨,其特征在于:其组分按重量百分比包括C:0.66%~0.76%、Si:0.53%~0.73%、Mn:0.9%~1.7%、P≤0.012%、S≤0.005%、Nb:0.020%~0.030%、Als≤0.003%、Cr:1.2%~2.2%、Cu:2%~4%、Co:0.40%~0.65%、H≤0.00006%、O≤0.0006%,其余为Fe和杂质元素。
  2. 根据权利要求1所述抗氯离子腐蚀的钢轨,其特征在于:所述C含量为0.73~0.7%。
  3. 根据权利要求1所述抗氯离子腐蚀的钢轨,其特征在于:所述Si含量为0.58~0.72%。
  4. 根据权利要求1所述抗氯离子腐蚀的钢轨,其特征在于:所述Mn含量为0.91~1.36%。
  5. 根据权利要求1所述抗氯离子腐蚀的钢轨,其特征在于:所述Nb含量为0.022~0.028%。
  6. 根据权利要求1所述抗氯离子腐蚀的钢轨,其特征在于:所述Cr含量为1.78~2.15%。
  7. 根据权利要求1所述抗氯离子腐蚀的钢轨,其特征在于:所述Cu含量为3.1~3.8%。
  8. 根据权利要求1所述抗氯离子腐蚀的钢轨,其特征在于:所述Co含量为0.51~0.64%。
  9. 一种如权利要求1所述抗氯离子腐蚀钢轨的制备方法,其特征在于:所述制备方法如下:
    1)进行铁水深脱硫,采用转炉冶炼,并控制出钢温度在1660~1670℃;
    2)每吨钢水加入45~55kg活性石灰造白渣,深度脱氧、脱硫,然后每吨钢水加入35~45kg的石英砂,炉渣碱度控制在0.7~1.1,LF炉处理时间为30~50min,将钢中夹杂变成塑性化夹杂;
    3)RH真空脱氢、氧处理:采用低真空度,压力≤40Pa的处理时间20~60min;
    4)钢水连铸,采用大罐长水口和结晶器浸入式水口保护浇注,浸入深度在80~95mm;中包钢水温度按照在其钢种液相温度线以上5~15℃控制;铸坯拉速控制在0.3~0.4m/min;
    5)对铸坯加盖保温罩进行缓慢冷却,冷速0.3~0.5℃/s,促进钢坯中氢逸出,降低钢坯中氢含量;
    6)对钢坯加热,控制均热段温度为:1240~1260℃,加热时间160~180min;
    7)进行粗轧,并控制其开轧温度在1050~1100℃;
    8)进行精轧,控制其终轧温度在960~1000℃;
    9)精轧以后的钢轨,将其加热到1220~1240℃,保温260~300min,然后以0.2~0.3℃/s的速度使钢轨冷却到室温。
  10. 根据权利要求9所述抗氯离子腐蚀钢轨的制备方法,其特征在于:所述步骤9)中,加热到1222~1235℃,然后以0.22~0.27℃/s的速度使钢轨冷却到室温。
PCT/CN2021/097852 2020-06-11 2021-06-02 抗氯离子腐蚀的钢轨及制备方法 WO2021249252A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010531775.7 2020-06-11
CN202010531775.7A CN111719083B (zh) 2020-06-11 2020-06-11 抗氯离子腐蚀的钢轨及制备方法

Publications (1)

Publication Number Publication Date
WO2021249252A1 true WO2021249252A1 (zh) 2021-12-16

Family

ID=72566492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097852 WO2021249252A1 (zh) 2020-06-11 2021-06-02 抗氯离子腐蚀的钢轨及制备方法

Country Status (2)

Country Link
CN (1) CN111719083B (zh)
WO (1) WO2021249252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672730A (zh) * 2022-03-18 2022-06-28 武汉钢铁有限公司 一种客货混运铁路用耐滚动接触疲劳钢轨及其生产方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719083B (zh) * 2020-06-11 2021-07-06 武汉钢铁有限公司 抗氯离子腐蚀的钢轨及制备方法
CN112159940A (zh) * 2020-10-27 2021-01-01 攀钢集团攀枝花钢铁研究院有限公司 大过冷度深硬化层道岔钢轨及其制备方法
CN116695001A (zh) * 2023-06-30 2023-09-05 武汉钢铁有限公司 提高重轨钢抗延迟开裂性能的制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1353211A (zh) * 2000-11-14 2002-06-12 济南钢铁股份有限公司 耐大气腐蚀结构钢
JP2010018844A (ja) * 2008-07-10 2010-01-28 Nippon Steel Corp 耐摩耗性および延性に優れたパーライト系レール
CN105132627A (zh) * 2015-09-01 2015-12-09 河北钢铁股份有限公司邯郸分公司 一种能提高U71Mn重轨钢产品质量的炼钢工艺
CN105239023A (zh) * 2015-11-18 2016-01-13 钢铁研究总院 一种耐高温酸性氯离子腐蚀钢板及其制造方法
JP2016053191A (ja) * 2014-09-03 2016-04-14 新日鐵住金株式会社 延性に優れたパーライト系高炭素鋼レール及びその製造方法
CN107208216A (zh) * 2015-01-23 2017-09-26 新日铁住金株式会社 钢轨
CN109652736A (zh) * 2018-12-27 2019-04-19 钢铁研究总院 一种油轮用免涂层耐蚀型钢
CN111719083A (zh) * 2020-06-11 2020-09-29 武汉钢铁有限公司 抗氯离子腐蚀的钢轨及制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101818312B (zh) * 2010-01-19 2012-07-25 钢铁研究总院 具有优良强韧性能抗疲劳性能和耐磨性能耐蚀重轨钢
CN104060187B (zh) * 2014-07-14 2016-08-17 攀钢集团攀枝花钢铁研究院有限公司 耐腐蚀性的微合金化钢和钢轨及其制备方法
CN104060065B (zh) * 2014-07-14 2016-04-06 攀钢集团攀枝花钢铁研究院有限公司 耐海洋环境腐蚀的钢轨
JP6459955B2 (ja) * 2015-12-25 2019-01-30 Jfeスチール株式会社 レール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1353211A (zh) * 2000-11-14 2002-06-12 济南钢铁股份有限公司 耐大气腐蚀结构钢
JP2010018844A (ja) * 2008-07-10 2010-01-28 Nippon Steel Corp 耐摩耗性および延性に優れたパーライト系レール
JP2016053191A (ja) * 2014-09-03 2016-04-14 新日鐵住金株式会社 延性に優れたパーライト系高炭素鋼レール及びその製造方法
CN107208216A (zh) * 2015-01-23 2017-09-26 新日铁住金株式会社 钢轨
CN105132627A (zh) * 2015-09-01 2015-12-09 河北钢铁股份有限公司邯郸分公司 一种能提高U71Mn重轨钢产品质量的炼钢工艺
CN105239023A (zh) * 2015-11-18 2016-01-13 钢铁研究总院 一种耐高温酸性氯离子腐蚀钢板及其制造方法
CN109652736A (zh) * 2018-12-27 2019-04-19 钢铁研究总院 一种油轮用免涂层耐蚀型钢
CN111719083A (zh) * 2020-06-11 2020-09-29 武汉钢铁有限公司 抗氯离子腐蚀的钢轨及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114672730A (zh) * 2022-03-18 2022-06-28 武汉钢铁有限公司 一种客货混运铁路用耐滚动接触疲劳钢轨及其生产方法
WO2023173803A1 (zh) * 2022-03-18 2023-09-21 武汉钢铁有限公司 一种客货混运铁路用耐滚动接触疲劳钢轨及其生产方法

Also Published As

Publication number Publication date
CN111719083A (zh) 2020-09-29
CN111719083B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2021249252A1 (zh) 抗氯离子腐蚀的钢轨及制备方法
WO2021017520A1 (zh) 一种表面质量优良的耐磨钢及其制备方法
CN109023112B (zh) 高强度耐大气腐蚀冷镦钢及其制备方法
EP3159424B1 (en) Rebar and preparation method thereof
CN107723413A (zh) 一种重轨钢MnS夹杂物的变性方法
CN109338215B (zh) 一种8~25mm厚低屈强比罐车用高强钢板及其制造方法
WO2023173803A1 (zh) 一种客货混运铁路用耐滚动接触疲劳钢轨及其生产方法
WO2022267173A1 (zh) 一种海洋工程用调质处理高强度耐低温h型钢及其制备方法
CN111172462A (zh) 450MPa级耐候钢及其制备方法
CN113046627B (zh) 一种345MPa级耐候桥梁钢及其制造方法
CN109295274A (zh) 一种耐混凝土腐蚀的槽型钢轨及其生产方法
CN107699659A (zh) 一种重轨钢硫化物夹杂物的变性方法
CN109355562A (zh) 一种高强度特种钢的生产方法
WO2023087882A1 (zh) 一种含稀土的nm600耐磨钢板及其制备方法
CN111101070A (zh) 一种低温液体集装箱罐车用钢及其制备方法
WO2024120028A1 (zh) 一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法
CN109112468B (zh) 氧化膜、耐腐蚀钢轨及该钢轨的制备方法
CN115652209B (zh) 650MPa级耐硫酸露点腐蚀用稀土钢及其制造方法
CN116770191A (zh) 耐腐蚀疲劳弹簧钢丝、盘条及其生产方法
CN116623098A (zh) 适用于高寒地区客运机车车轮用钢及生产方法、车轮及生产方法
WO2024027264A1 (zh) 一种具有高屈服强度的中等强度钢轨及其生产方法
CN116287992A (zh) 一种nm400级淬火型马氏体耐磨钢板及其制备方法
CN115717214A (zh) 一种沿海大气环境炼化管道用钢及其制备方法
CN115896612A (zh) 一种屈服强度500MPa低碳当量耐候钢及其生产方法
CN110923405B (zh) 一种减少钢轨中氢危害的工艺控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821399

Country of ref document: EP

Kind code of ref document: A1