WO2021249198A1 - 通信系统、通信方法及计算机存储介质 - Google Patents

通信系统、通信方法及计算机存储介质 Download PDF

Info

Publication number
WO2021249198A1
WO2021249198A1 PCT/CN2021/096390 CN2021096390W WO2021249198A1 WO 2021249198 A1 WO2021249198 A1 WO 2021249198A1 CN 2021096390 W CN2021096390 W CN 2021096390W WO 2021249198 A1 WO2021249198 A1 WO 2021249198A1
Authority
WO
WIPO (PCT)
Prior art keywords
millimeter wave
wave communication
communication unit
frequency
units
Prior art date
Application number
PCT/CN2021/096390
Other languages
English (en)
French (fr)
Inventor
樊鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021249198A1 publication Critical patent/WO2021249198A1/zh
Priority to CONC2023/0000232A priority Critical patent/CO2023000232A2/es

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase

Definitions

  • This application relates to the field of communications, and in particular to a communication system, a communication method, and a computer storage medium.
  • Millimeter wave communication is an important subject of 5G technology, which is mainly used in 5G large-capacity fronthaul/backhaul.
  • the millimeter wave communication system is applied to a higher carrier frequency, and a larger symbol rate is used in the transmission process to transmit a larger amount of information.
  • the superheterodyne scheme requires multi-stage frequency conversion, and the circuit complexity is relatively high.
  • the circuit design is also more complicated. Under the condition that the demodulation quality remains unchanged, if the requirement of the received signal is simply reduced, the circuit level complexity needs to be increased. Therefore, the superheterodyne scheme is not suitable for the millimeter wave communication system.
  • the millimeter wave communication system has a higher frequency.
  • the transmitter uses quadrature IQ modulation to directly up-convert the baseband signal to the millimeter wave frequency band
  • the receiver uses quadrature IQ Demodulate the down-converted millimeter wave signal to baseband.
  • the carrier frequency rises to the millimeter wave frequency band
  • the input IQ signal is directly up-converted to millimeter wave.
  • the carrier signal is in the center of the spectrum signal.
  • the leakage of the radio frequency module modem will cause the quality of the transmission signal to decrease, and then affect the receiving sensitivity of the millimeter wave communication system. For example, when the reverse leakage signal of the radio frequency module modem is mixed with the normal signal, frequency difference intermodulation will be generated, which will result in the failure to correctly demodulate the received millimeter wave signal.
  • the embodiments of this application provide a communication system, communication method, and computer storage medium.
  • This application solves at least one of the related technical problems to a certain extent, including: solving how to avoid frequency difference intermodulation, which leads to the inability to receive the The problem of correct demodulation of millimeter wave signals.
  • an embodiment of the present application provides a communication system, the communication system includes at least two millimeter wave communication units, each of the millimeter wave communication units includes a radio frequency module; one of the millimeter wave communication units is a reference A millimeter wave communication unit, where a frequency synchronization channel is established between the reference millimeter wave communication unit and the other millimeter wave communication units, and the reference frequency is transmitted to the other millimeter wave communication units through the frequency synchronization channel; each The millimeter wave communication unit demodulates the received millimeter wave signal through a corresponding radio frequency module based on the reference frequency.
  • the embodiment of the present application also provides a communication method, which is applied to the communication system as described above, and includes: each of the millimeter wave communication units receives a millimeter wave signal from a signal transmitting end; and each of the millimeter wave communication units For each millimeter wave signal received, demodulation is performed by the corresponding radio frequency module based on the reference frequency.
  • the embodiment of the present application also provides a communication method computer storage medium, the computer storage medium stores at least one computer program, and when the computer program is run by a processor, it executes at least one step in the communication method described above.
  • FIG. 1 is a schematic diagram of quadrature IQ demodulation of millimeter wave signals by a radio frequency module in some situations according to Embodiment 1 of the application;
  • FIG. 2 is a schematic diagram of the structure of a communication system provided by Embodiment 1 of the application;
  • FIG. 3 is a schematic structural diagram of a communication system in which the reference frequency is the baseband frequency of the reference millimeter wave communication unit provided in the first embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a communication system with a reference frequency of a reference millimeter wave communication unit's radio frequency provided by the first embodiment of the application;
  • FIG. 5 is a schematic diagram 1 of the communication method provided in Embodiment 2 of this application.
  • FIG. 6 is a second schematic diagram of the communication method provided in the second embodiment of this application.
  • FIG. 7 is a structural diagram of a millimeter wave communication unit provided in Embodiment 2 of this application.
  • FIG. 8 is a schematic diagram of a millimeter wave communication system in a hot backup scenario provided in Embodiment 2 of the application;
  • FIG. 9 is a schematic diagram of a millimeter wave communication system in a cross-polarization cancellation scenario provided in Embodiment 2 of the application.
  • the communication system of this embodiment includes at least two millimeter wave communication units that can synchronize the reference frequency, and each millimeter wave communication unit demodulates the received millimeter wave signal based on the reference frequency, thereby eliminating the The frequency difference intermodulation caused by the reverse leakage of the modulator chip (that is, the reverse leakage and the signal mutual modulation), thereby improving the signal frequency stability, and improving the received signal sensitivity (that is, the lowest signal strength that the receiver can receive and can work normally) ).
  • the communication system provided by this embodiment is shown in FIG. 2, which includes at least two millimeter wave communication units, and each millimeter wave communication unit includes a radio frequency module; of course, in some application examples, The at least two millimeter wave communication units can also be used as signal transmitters.
  • the radio frequency module can be set to modulate and transmit millimeter wave signals in addition to receiving millimeter wave signals.
  • the signal demodulation module and the signal modulation module of the millimeter wave communication unit in this embodiment may be integrated into one circuit or chip for implementation, or may be two independent modules.
  • the number of millimeter wave communication units included in the communication system in this embodiment can be flexibly set according to specific requirements.
  • the communication system may include two millimeter wave communication units, which are paired communication units; in another application scenario, the communication system may also include three or three communication units.
  • the above millimeter wave communication unit in another application scenario, the communication system may also include three or three communication units.
  • the above millimeter wave communication unit in another application scenario, the communication system may also include three or three communication units.
  • the relationship between the millimeter wave communication units can be flexibly set according to specific application scenarios. For example, when the current application scenario is a hot backup application scenario, one of the millimeter wave communication units in the communication system is the main millimeter wave communication unit in the hot backup application scenario, and the other communication units are standby millimeter wave communications in the hot backup application scenario unit.
  • the millimeter wave communication unit in the communication system can be a horizontal millimeter wave communication unit and a vertical millimeter wave communication unit in the cross-polarization cancellation application scenario, and the reference millimeter wave communication unit It is a horizontal millimeter wave communication unit or a vertical millimeter wave communication unit.
  • one of the millimeter wave communication units is the first millimeter wave communication unit in the 2*2MIMO application scenario, and the other millimeter wave communication unit
  • the unit is the second millimeter wave communication unit in the 2*2 MIMO application scenario
  • the reference millimeter wave communication unit may be the first millimeter wave communication unit or the second millimeter wave communication unit.
  • one of the millimeter wave communication units is the first dual-transmit and dual-receive millimeter wave communication in the 4*4MIMOx application scenario
  • the other millimeter wave communication unit is the second dual-transmit and dual-receive millimeter wave communication unit in the 4*4MIMOx application scenario.
  • the reference millimeter-wave communication unit can be the first dual-transmit and dual-receive millimeter wave communication unit or the second dual-transmit and dual-receive millimeter wave communication unit. Millimeter wave communication unit.
  • one of the millimeter wave communication units is a reference millimeter wave communication unit, and a frequency synchronization channel is established between the reference millimeter wave communication unit and other millimeter wave communication units.
  • each millimeter wave communication unit receives the millimeter wave signal in the millimeter wave frequency band, Then, based on the reference frequency, the received millimeter wave signal can be demodulated through the corresponding (that is, each millimeter wave communication unit's own) radio frequency module, so as to eliminate the frequency difference between the millimeter wave communication units, that is, Eliminate the frequency difference intermodulation caused by the reverse leakage of the modulator chip in each millimeter wave communication unit as the receiving end, and avoid the situation that the received millimeter wave signal cannot be correctly demodulated due to the frequency difference intermodulation.
  • the above-mentioned reference frequency may be a reference frequency injected into the reference millimeter wave communication unit from the outside of the communication system; it may also be a frequency generated by the reference millimeter wave communication unit itself, such as but not limited to a reference millimeter wave communication unit.
  • the baseband frequency or radio frequency In order to facilitate understanding, the following description of this embodiment takes the reference frequency as the baseband frequency and the radio frequency of the millimeter wave communication unit as examples.
  • the reference frequency is the baseband frequency of the reference millimeter wave communication unit.
  • Each millimeter wave communication unit of the communication system includes a baseband subunit and a radio frequency subunit.
  • the following) millimeter wave communication unit is a reference millimeter wave communication unit;
  • the baseband subunit includes a phase-locked loop module, a physical interface transceiver module, and a modem module;
  • the radio frequency subunit includes a radio frequency module and a frequency synthesizer phase-locked loop module; frequency synchronization
  • the channel includes the baseband frequency reference synchronization channel between the millimeter wave communication units and the frequency synthesis synchronization channel for baseband frequency synchronization between the baseband subunits and the radio frequency subunits inside the millimeter wave communication units. Among them:
  • the baseband frequency reference synchronization channel between millimeter wave communication units is established by the phase locked loop module of the reference millimeter wave communication unit in Figure 3 through the physical interface transceiver module and the phase locked loop modules of other millimeter wave communication units.
  • Channel composition
  • the frequency synthesizer synchronization channel for baseband frequency synchronization between the baseband subunit and the radio frequency subunit inside the millimeter wave communication unit is composed of the phase locked loop module, the frequency synthesizer phase locked loop module and the radio frequency module in the millimeter wave communication unit in Figure 3.
  • the composition of the channel is composed of the phase locked loop module, the frequency synthesizer phase locked loop module and the radio frequency module in the millimeter wave communication unit in Figure 3.
  • the physical interface transceiver module in this embodiment may include an Ethernet port, the baseband frequency reference synchronization channel between millimeter wave communication units, and the phase-locked loop module of the reference millimeter wave communication unit can communicate with other other devices through the Ethernet port.
  • the communication unit undergoes structural transformation, with small changes, easy implementation, low cost, and good versatility; of course, in other application scenarios, a new interface can also be set on the millimeter wave communication unit to realize the standard millimeter wave communication unit.
  • the communication connection between the phase-locked loop module and the phase-locked loop module of other millimeter wave communication units may include an Ethernet port, the baseband frequency reference synchronization channel between millimeter wave communication units, and the phase-locked loop module of the reference millimeter wave
  • the reference frequency is the RF frequency of the reference millimeter wave communication unit.
  • the upper (of course, the lower) millimeter wave communication unit in Figure 4 is the reference millimeter wave communication unit; this application example Among them, the frequency synchronization channel includes the RF frequency reference synchronization channel between millimeter wave communication units; the video frequency reference synchronization channel between millimeter wave communication units is used by the frequency synthesis phase-locked loop module of the reference millimeter wave communication unit through the physical interface transceiver The module is composed of channels established between the frequency synthesis phase-locked loop modules of other millimeter wave communication units.
  • a new interface can be set on the millimeter wave communication unit or an interface that is originally provided with the millimeter wave communication unit and meets the communication performance can be used to realize the frequency synthesis phase-locked loop module of the reference millimeter wave communication unit and Communication connection between frequency synthesis phase-locked loop modules of other millimeter wave communication units.
  • the reference millimeter wave communication unit can be set to The main millimeter wave communication unit (of course, according to requirements, the reference millimeter wave communication unit can also be set as one of the backup millimeter wave communication units).
  • the reference millimeter wave communication unit may be the horizontal millimeter wave communication in the communication system.
  • the unit can also be a vertical millimeter wave communication unit in a communication system.
  • a frequency synchronization channel is established between the reference millimeter wave communication unit and the reference millimeter wave communication unit in the communication system and other millimeter wave communication units.
  • the reference millimeter wave communication unit can also detect and track the frequency synchronization situation, and when the reference switching condition is detected, it will send at least one of the other reference millimeter wave communication units Sending a reference switching notification; thereby switching one of the millimeter wave communication units in the reference switching notification to the reference millimeter wave communication unit.
  • the aforementioned reference switching notification can be sent through, but not limited to, the aforementioned frequency synchronization channel, and can also be sent through other communication channels between the reference millimeter wave communication unit and other millimeter wave communication units;
  • the aforementioned reference switching conditions may include, but are not limited to: failure of the reference millimeter wave communication unit.
  • the main and backup units that is, the main millimeter wave communication unit and the backup millimeter wave communication unit
  • the reference frequency synchronization setting between, for example, the main millimeter wave communication unit is set as the reference millimeter wave communication unit, and the radio frequency synchronization baseband frequency of the millimeter wave communication unit is set as the reference reference.
  • the millimeter wave communication cross-polarization cancellation scenario complete the scene recognition and set it as the cross-polarization cancellation scenario, and complete the horizontal/vertical unit (H/V Unit, that is, the horizontal millimeter wave communication unit and the vertical millimeter wave
  • the reference frequency synchronization setting between the communication units for example, the main millimeter wave communication unit is set as the reference millimeter wave communication unit, and the radio frequency synchronization baseband frequency of the horizontal millimeter wave communication unit is set as the reference reference, that is, the radio frequency synchronization baseband reference is set.
  • the clock of the horizontal millimeter wave communication unit fails, the clock is switched, and the vertical millimeter wave communication unit is used as the new reference millimeter wave communication unit; alarm reporting can be completed according to the requirements of the application scenario.
  • the reference frequency synchronization setting between the first millimeter wave communication unit and the second millimeter wave communication unit is completed in the above manner, for example, the first millimeter wave communication unit is initially set as the reference millimeter wave communication unit, and Set the radio frequency synchronization baseband frequency of the millimeter wave communication unit as a reference reference.
  • the first millimeter wave communication unit is initially set as the reference millimeter wave communication unit, and Set the radio frequency synchronization baseband frequency of the millimeter wave communication unit as a reference reference.
  • the millimeter wave communication unit is a reference millimeter wave communication unit, and the radio frequency synchronization baseband frequency of the millimeter wave communication unit is set as a reference reference.
  • the reference millimeter wave communication unit that provides the reference frequency can also be dynamically switched, so that in the scenario of hot backup protection and cross polarization cancellation of millimeter wave communication, the reference frequency is used as the reference synchronization to solve the frequency difference crossover. Adjust interference, eliminate frequency difference intermodulation caused by reverse leakage, improve signal frequency stability, and improve received signal sensitivity.
  • S501 Perform identification of the application scenario, perform pairing according to the identification result, and complete synchronization of the reference frequency.
  • S502 Perform tracking and switching of the reference frequency synchronization situation.
  • M/S main and standby
  • H/V horizontal and vertical
  • first and second millimeter wave communication units or the first and second dual-transmit and dual-receive millimeter wave communication units according to the above example. Clock tracking and switching between.
  • the radio frequency module of the millimeter wave communication unit completes the DC calibration of the baseband IQ signal.
  • Each millimeter wave communication unit receives a millimeter wave signal from the signal sending end.
  • each millimeter wave communication unit demodulates the millimeter wave signal based on the reference frequency through the radio frequency module; wherein, the millimeter wave signal can be demodulated by, but not limited to, the quadrature IQ demodulation method.
  • the IQ calibration function can also use the IQ calibration function to equate the constant inverse coefficient ⁇ in the demodulated signal to the DC signal. eliminate.
  • the IQ calibration function can directly use the IQ calibration function to equate the constant inverse coefficient ⁇ in the demodulated signal to a DC signal.
  • Eliminate you can also first determine whether the constant inverse coefficient ⁇ is greater than the set inverse coefficient threshold, if so, use the IQ calibration function to eliminate the constant inverse coefficient ⁇ in the demodulated signal as a DC signal; for example; Otherwise, demodulation is complete.
  • the specific value of the inverse coefficient threshold can be flexibly set according to requirements.
  • the pairing is performed according to the identification result, and the synchronization of the reference frequency is completed, it may also specifically include: At least one of the millimeter wave communication units sends a reference switching notification; one of the millimeter wave communication units in the received reference switching notification is switched to the reference millimeter wave communication unit; that is, the tracking and switching of the reference frequency synchronization condition in S502 are realized.
  • FIG. 7 includes a base-band sub-unit (Base-band Unit) and a radio frequency sub-unit (RF-band Unit).
  • the baseband sub-unit mainly includes a modem module (Modem, that is, a modulator and a demodulator are integrated in a chip), a phase-locked loop module (PLL), and a PHY (physical interface transceiver) module.
  • the PHY module includes an Ethernet interface Eth Port.
  • the radio frequency sub-unit mainly includes a frequency synthesizer phase-locked loop (PLL) and a radio frequency module (RF Block).
  • the radio frequency module adopts a quadrature IQ modulation and demodulation scheme.
  • a millimeter wave communication system in a hot backup scenario is shown in Figure 8.
  • the two millimeter wave communication units on the left side of the millimeter wave communication system are signal transmitters, and the right side
  • the two millimeter wave communication units on the left are signal receiving ends; correspondingly, the two millimeter wave communication units on the left can also be signal receiving ends at the same time, and the two millimeter wave communication units on the right can be signal sending ends at the same time.
  • the upper millimeter wave communication unit of the two millimeter wave communication units on the left is used as the main millimeter wave communication unit, and the lower millimeter wave communication unit is used as the backup millimeter wave communication unit; the upper millimeter wave of the two millimeter wave communication units on the right
  • the communication unit serves as the main millimeter wave communication unit, and the lower millimeter wave communication unit serves as the backup millimeter wave communication unit.
  • an Ethernet port (Eth Port) is provided between the millimeter wave communication units at the transmitting end and the receiving end as the baseband frequency reference synchronization channel of the reference frequency between the units; the baseband subunit and the radio frequency subunit inside the millimeter wave communication unit
  • the frequency synthesizer synchronization channel is provided between the units.
  • the scene identification can be completed through but not limited to the software on the millimeter wave communication unit and set as the hot backup scenario to complete the main and standby millimeter wave communication units (M/S Unit).
  • M/S Unit main and standby millimeter wave communication units
  • the first millimeter wave communication unit and the second millimeter wave communication unit in the communication system can also be used as the signal transmitting end and the signal receiving end at the same time; as the signal receiving end, the first millimeter wave communication unit and the second millimeter wave communication unit can also be used as the signal receiving end.
  • the demodulation methods for the received first space signal and the second space signal are similar to the above, and will not be repeated here.
  • a millimeter wave communication system with a cross-polarization cancellation scenario is shown in FIG. 9.
  • the two millimeter wave communication units on the left side of the millimeter wave communication system are signal transmitters.
  • the two millimeter wave communication units on the right are signal receiving ends; correspondingly, the two millimeter wave communication units on the left can also be signal receiving ends at the same time, and the two millimeter wave communication units on the right are signal sending ends at the same time.
  • the two millimeter wave communication units on the left serve as a horizontal millimeter wave communication unit and a vertical millimeter wave communication unit; the two millimeter wave communication units on the right serve as a horizontal millimeter wave communication unit and a vertical millimeter wave communication unit, respectively.
  • an Ethernet port (Eth Port) is provided between the millimeter wave communication units at the transmitting end and the receiving end as the baseband frequency reference synchronization channel of the reference frequency between the units; the baseband subunit and the radio frequency subunit inside the millimeter wave communication unit
  • the frequency synthesizer synchronization channel is provided between the units.
  • the scene recognition can be completed through but not limited to the software on the millimeter wave communication unit and set as a hot backup scenario to complete the horizontal/vertical millimeter wave communication unit (H/ Set the reference frequency synchronization between V Units, set the radio frequency synchronization baseband frequency, and perform clock switching if the clock fails in the cross-polarization cancellation scenario, and finally complete the alarm report.
  • H/ Set the reference frequency synchronization between V Units set the radio frequency synchronization baseband frequency
  • clock switching if the clock fails in the cross-polarization cancellation scenario, and finally complete the alarm report.
  • the first dual-transmit and dual-receive millimeter wave communication unit and the second dual-transmit and dual-receive millimeter wave communication unit in the communication system can also serve as the signal transmitter and the signal receiver at the same time.
  • Dual-transmit and dual-receive means that a millimeter wave communication unit can send two antenna signals at the same time when used as a signal transmitter, and can receive two signals at the same time when used as a signal receiver.
  • a dual-transmit and dual-receive millimeter wave communication unit sends out two The signal can be two-channel signals with cross-polarization cancellation relationship, or two-channel spatial signals without such relationship; in the implementation of the underlying hardware, a dual-transmit and dual-receive millimeter wave communication unit can pass but is not limited to two
  • the radio frequency transceiver module shares a modem with dual-receiving and dual-transmitting functions.
  • the internal cancellation signal of the dual-transmit and dual-receive millimeter wave communication unit can be directly transmitted inside the modem, and the dual-transmit and dual-receive millimeter wave
  • the cancellation signal between the communication units can be transmitted in accordance with the analog signal by frequency division multiplexing two cancellation signals, or the cancellation signal between the dual-transmitting and dual-receiving millimeter wave communication units can be transmitted by high-speed digital signal multiplexing.
  • the millimeter wave signal received at the receiving end can be demodulated based on the same reference frequency as shown in this embodiment, so as to eliminate the frequency difference intermodulation caused by the reverse leakage of the modulator chip.
  • the situation that the received millimeter wave signal cannot be demodulated correctly due to the frequency difference intermodulation occurs, thereby improving the signal frequency stability.
  • the specific demodulation method is similar to the above, and will not be repeated here.
  • the millimeter wave communication unit uses the quadrature IQ modulation and demodulation scheme to perform direct up and down conversion of the baseband signal. And for the scenario of millimeter wave hot backup and cross polarization cancellation, the signal cannot be demodulated due to the frequency difference intermodulation caused by the reverse leakage, which in turn leads to the problem of poor reception sensitivity.
  • This embodiment is aimed at the paired millimeter wave communication
  • the unit uses the same reference frequency to demodulate the received millimeter wave signal to eliminate frequency difference intermodulation, and in one embodiment combines the IQ calibration function of the modulation regulator to eliminate the constant reverse leakage doped in the obtained baseband signal
  • the coefficient ⁇ can not only avoid the inability to correctly demodulate the received millimeter wave signal due to frequency difference intermodulation, but also improve the signal frequency stability and improve the sensitivity of the received signal.
  • This embodiment also provides a computer-readable storage medium that stores a computer program, and the computer program can be executed by a processor to implement at least one step in the communication method described above.
  • the computer-readable storage medium in this embodiment includes volatile or non-volatile memory implemented in any method or technology configured to store information (such as computer-readable instructions, data structures, computer program modules, or other data). Sexual, removable or non-removable media.
  • Computer-readable storage media include but are not limited to RAM (Random Access Memory), ROM (Read-Only Memory, read-only memory), EEPROM (Electrically Erasable Programmable read only memory, charged Erasable Programmable Read-Only Memory) ), flash memory or other memory technology, CD-ROM (Compact Disc Read-Only Memory), digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, Or it can be set as any other medium that stores desired information and can be accessed by a computer.
  • This embodiment also provides a computer program (or computer software).
  • the computer program can be distributed on a computer-readable medium and executed by a computable device (for example, including but not limited to the millimeter wave communication unit described above) to achieve At least one step in the communication method as described above; and in some cases, at least one step shown or described may be performed in an order different from that described in the above embodiment.
  • This embodiment also provides a computer program product, including a computer readable device, and any computer program as shown above is stored on the computer readable device.
  • the computer-readable device in this embodiment may include the computer-readable storage medium as shown above.
  • the embodiments of the application provide a communication system, a communication method, and a computer storage medium.
  • the communication system includes at least two millimeter wave communication units.
  • a frequency synchronization channel is established between each millimeter wave communication unit, and the reference frequency is transmitted to other millimeter wave communication units through the frequency synchronization channel; each millimeter wave communication unit is based on the reference frequency, and uses the corresponding radio frequency module to compare the received millimeters.
  • the wave signal is demodulated to eliminate the frequency difference intermodulation caused by the reverse leakage of the modulator chip, avoid the situation that the received millimeter wave signal cannot be correctly demodulated due to the frequency difference intermodulation, thereby improving the signal frequency stability Increase the sensitivity of the received signal.
  • the functional modules/units in the system, and the device can be implemented as software (which can be implemented by computer program code executable by a computing device. ), firmware, hardware and their appropriate combination.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, a physical component may have multiple functions, or a function or step may consist of several physical components. The components are executed cooperatively.
  • Certain physical components or all physical components can be implemented as software executed by a processor, such as a central processing unit, a digital signal processor, or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • communication media usually contain computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery medium. Therefore, this application is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信系统、通信方法及计算机存储介质,通信系统包括至少两个毫米波通信单元,毫米波通信单元中的一个为基准毫米波通信单元,基准毫米波通信单元与其他各毫米波通信单元之间建立有频率同步通道,并通过频率同步通道向其他各毫米波通信单元传输基准频率;各毫米波通信单元都基于该基准频率,通过对应的射频模块对接收到的毫米波信号进行解调。

Description

通信系统、通信方法及计算机存储介质
相关申请的交叉引用
本申请基于申请号为202010536981.7、申请日为2020年06月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域,尤其涉及一种通信系统、通信方法及计算机存储介质。
背景技术
毫米波通信是5G技术的重要课题,主要应用于5G大容量前传/回传。毫米波通信系统应用在较高载频,传递过程中使用了较大符号速率,以传递更大的信息量。
毫米波通信实现方案中有超外差方案和正交IQ调制解调方案。超外差方案需要多级变频,电路复杂度较高,且在毫米波通信领域,特别是毫米波全室外设备,对于接收信号具有较高要求,因此电路的设计也较为复杂。在解调质量不变的条件下,若只简单的降低接收信号的要求,就需要增加电路级的复杂性,因此超外差方案不适合于毫米波通信系统。
采用正交IQ调制解调方案时,毫米波通信系统由于频率较高,为了使得架构设计简洁,发射端应用了正交IQ调制直接上变频基带信号至毫米波频段,接收端应用了正交IQ解调下变频毫米波信号至基带。当载波频率上升到毫米波频段后,输入的IQ信号直接上变频到毫米波,此时载波信号处于频谱信号的正中心。随着载频的提高,射频模块调制解调器的泄露会导致传输信号质量下降,进而影响毫米波通信系统的接收灵敏度。例如,当射频模块调制解调器的反向泄露信号与正常信号混合时就会产生频差交调,进而导致不能对接收到的毫米波信号进行正确解调。
发明内容
本申请实施例提供的一种通信系统、通信方法及计算机存储介质,本申请至少在一定程度上解决相关的技术问题之一,包括:解决如何避免产生频差交调进而导致不能对接收到的毫米波信号进行正确解调的问题。
有鉴于此,本申请实施例提供了一种通信系统,所述通信系统包括至少两个毫米波通信单元,各所述毫米波通信单元包括射频模块;所述毫米波通信单元中的一个为基准毫米波通信单元,所述基准毫米波通信单元与所述其他各毫米波通信单元之间建立有频率同步通道,并通过所述频率同步通道向所述其他各毫米波通信单元传输基准频率;各所述毫米波通信单元基于所述基准频率,通过对应的射频模块对接收到的毫米波信号进行解调。
本申请实施例还提供了一种通信方法,应用于如上所述的通信系统,包括:所述各所述毫米波通信单元从信号发送端接收毫米波信号;所述各所述毫米波通信单元针对接收到的每一毫米波信号,基于所述基准频率,通过对应的射频模块进行解调。
本申请实施例还提供了一种通信方法计算机存储介质,所述计算机存储介质存储有至少一个计算机程序,所述计算机程序被处理器运行时,执行如上所述的通信方法中的至少一个步骤。
本申请其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本申请说明书中的记载变的显而易见。
附图说明
图1为本申请实施例一提供的在一些情形下射频模块正交IQ解调毫米波信号的示意图;
图2为本申请实施例一提供的通信系统结构示意图;
图3为本申请实施例一提供的基准频率为基准毫米波通信单元的基带频率的通信系统结构示意图;
图4为本申请实施例一提供的基准频率为基准毫米波通信单元的射频频率的通信系统结构示意图;
图5为本申请实施例二提供的通信方法示意图一;
图6为本申请实施例二提供的通信方法示意图二;
图7为本申请实施例二提供的毫米波通信单元结构意图;
图8为本申请实施例二提供的热备份场景毫米波通信系统示意图;
图9为本申请实施例二提供的交叉极化抵消场景毫米波通信系统示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本申请实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例一:
在一些情形下,存在作为接收端的各毫米波通信单元内的调制器芯片反向泄露导致的频差交调,进而导致不能对接收到的毫米波信号进行正确解调的情况发生。例如见图1中的βcosω 1t,其中β为调制解调器的反向泄露系数,调制解调器芯片一旦生产出来,该反向泄露系数为常数。反向泄露信号βcosω 1t与正常信号s(t)混合,从而产生频差交调。例如在图1中,发射端的IQ调制器将a和b上变频后输出正常信号s(t)=a cosω 0t-b sinω 0t;通信系统的接收端,由于反向泄露掺杂进s(t)信号,因此以对I路信号解调得到的I 1信号(其中Q1路、I2 路及Q2路的解调过程类似,在此不再赘述)为例,解调过程如下式(1):
Figure PCTCN2021096390-appb-000001
其中:上述βcosω 1t为本振信号的反向泄露;ω 1=ω 0+Δω;
Figure PCTCN2021096390-appb-000002
可见:
(一)当反向泄露系数β非常小时,此时
Figure PCTCN2021096390-appb-000003
从而I 1=a;但是基于在一些情形下难以控制所有出厂芯片的反向泄露系数达到技术要求;
(二)当反向泄露系数β较大时,且Δω=0时,I 1=a+β,计算过程如式(2),可见如果将通信单元之间的频率同步,基带信号中便只掺杂常量反向泄露系数β,通过调制解调器内部IQ校准功能便可将反向泄露系数β等同为直流信号消除,从而正常解调信号,提高接收信号的灵敏度;
Figure PCTCN2021096390-appb-000004
(三)当反向泄露系数β较大时,且Δω≠0时,
Figure PCTCN2021096390-appb-000005
此时第毫米波系统无法正确解调接收到的毫米波信号,原因就是基带信号中掺杂了由于频差导致的交调干扰,也即产生了频差交调。因此,如何避免产生频差交调进而导致不能对接收到的毫米波信号进行正确解调,是目前急需解决的技术问题。
本实施例的通信系统所包括的至少两个毫米波通信单元之间可实基准频率的同步,且各毫米波通信单元都基于该基准频率对接收到的毫米波信号进行解调,从而消除由于调制器芯片反向泄露导致的频差交调(即反向泄露与信号互相调制),进而提高信号频率稳定度,提升接收 信号灵敏度(即接收机可以接收到的并能正常工作的最低信号强度)。
在一种应用示例中,本实施例所提供的通信系统请参见图2所示,其包括至少两个毫米波通信单元,且各毫米波通信单元包括射频模块;当然,在一些应用示例中,该至少两个毫米波通信单元还可作为信号发送端,此时射频模块除了被设置为接收毫米波信号外,还可被设置为调制并发送毫米波信号。应当理解的是,本实施例中毫米波通信单元的信号解调模块和信号调制模块可以集成在一个电路或芯片中实现,也可为两个相互独立的模块。
另外,应当理解的是,本实施例中通信系统所包括的毫米波通信单元的个数可以根据具体需求灵活设置。例如一种应用场景中,通信系统可包括两个毫米波通信单元,该两个毫米波通信单元为成对的通信单元;在另一种应用场景中,通信系统也可包括三个或三个以上的毫米波通信单元。且应当理解的是,各毫米波通信单元之间的关系可根据具体应用场景灵活设置。例如,当当前应用场景为热备份应用场景时,通信系统中的其中一个毫米波通信单元为热备份应用场景下的主毫米波通信单元,其他通信单元为热备份应用场景下的备用毫米波通信单元。当当前应用场景为交叉极化抵消应用场景时,通信系统为中的毫米波通信单元可分别为交叉极化抵消应用场景下的水平毫米波通信单元和垂直毫米波通信单元,基准毫米波通信单元为水平毫米波通信单元或垂直毫米波通信单元。当前应用场景为2*2MIMO应用场景时,通信系统所包括的两个毫米波通信单元中,其中一个毫米波通信单元为2*2MIMO应用场景下的第一毫米波通信单元,另一毫米波通信单元为2*2MIMO应用场景下第二毫米波通信单元,基准毫米波通信单元可为第一毫米波通信单元或第二毫米波通信单元。又例如,当前应用场景为4*4MIMO应用场景时,通信系统所包括的两个毫米波通信单元中,其中一个毫米波通信单元为4*4MIMOx应用场景下的第一双发双收毫米波通信单元,另一毫米波通信单元为4*4MIMOx应用场景下第二双发双收毫米波通信单元,基准毫米波通信单元可为第一双发双收毫米波通信单元或第二双发双收毫米波通信单元。
在本实施例中,通信系统所包括的毫米波通信单元中,其中一个毫米波通信单元为基准毫米波通信单元,基准毫米波通信单元与其他各毫米波通信单元之间建立有频率同步通道,并通过该频率同步通道向其他各毫米波通信单元传输基准频率,从而完成通信系统中各毫米波通信单元之间的载波同步,然后各毫米波通信单元在毫米波频段接收到毫米波信号之后,则可都基于该基准频率,通过对应的(也即各毫米波通信单元自身的)射频模块对接收到的毫米波信号进行解调,从而消除各毫米波通信单元之间的频差,也即消除作为接收端的各毫米波通信单元内的调制器芯片反向泄露导致的频差交调,避免因频差交调导致不能对接收到的毫米波信号进行正确解调的情况发生。
在本实施例中,上述基准频率可以为由通信系统外部向基准毫米波通信单元注入的基准频 率;也可为基准毫米波通信单元自身产生的频率,例如可以为但不限于基准毫米波通信单元的基带频率或射频频率。为了便于理解,本实施例下面分别以基准频率为基准毫米波通信单元的基带频率和射频频率为示例进行说明。
基准频率为基准毫米波通信单元的基带频率的示例请参见图3所示,通信系统的各毫米波通信单元包括基带子单元和射频子单元,本示例中图3中上面的(当然也可为下面的)毫米波通信单元为基准毫米波通信单元;基带子单元包括锁相环模块、物理接口收发器模块和调制解调模块,射频子单元包括射频模块和频综锁相环模块;频率同步通道包括毫米波通信单元之间的基带频率参考同步通道和毫米波通信单元内部的基带子单元和射频子单元间进行基带频率同步的频综同步通道,其中:
毫米波通信单元之间的基带频率参考同步通道,由图3中基准毫米波通信单元的锁相环模块通过物理接口收发器模块,与其他其他毫米波通信单元的锁相环模块之间建立的通道组成;
毫米波通信单元内部的基带子单元和射频子单元间进行基带频率同步的频综同步通道,由图3中毫米波通信单元内部的锁相环模块、频综锁相环模块和射频模块之间的通道组成。
其中,本实施例中的物理接口收发器模块可包括以太网端口,毫米波通信单元之间的基带频率参考同步通道,可由基准毫米波通信单元的锁相环模块通过以太网端口,与其他其他毫米波通信单元的锁相环模块之间建立的通道组成;也即直接借用毫米波通信单元原本就设置有的太网端口(Eth Port)连接形成基带频率参考同步通道,而不需要对毫米波通信单元进行结构上的改造,改动小、容易实现且成本低,通用性好;当然,在其他的应用场景中,也可在毫米波通信单元上设置新的接口以实现基准毫米波通信单元的锁相环模块与其他其他毫米波通信单元的锁相环模块之间的通信连接。
基准频率为基准毫米波通信单元的射频频率的示例请参见图4所示,本示例中图4中上面的(当然也可为下面的)毫米波通信单元为基准毫米波通信单元;本应用示例中,频率同步通道包括毫米波通信单元之间的射频频率参考同步通道;毫米波通信单元之间的视频频率参考同步通道,由基准毫米波通信单元的频综锁相环模块通过物理接口收发器模块,与其他其他毫米波通信单元的频综锁相环模块之间建立的通道组成。在一些应用场景中,可在毫米波通信单元上设置新的接口或借助毫米波通信单元原本就设置有的且满足通信性能的接口,以实现基准毫米波通信单元的频综锁相环模块与其他其他毫米波通信单元的频综锁相环模块之间的通信连接。
应当理解的是,本实施例通信系统的各毫米波通信单元中,具体选用哪个毫米波通信单元可以根据具体应用场景灵活设定。例如当通信系统中的其中一个毫米波通信单元为热备份应用场景下的主毫米波通信单元,其他通信单元为热备份应用场景下的备用毫米波通信单元是,基 准毫米波通信单元可设置为主毫米波通信单元(当然根据需求,也可设置基准毫米波通信单元为其中的一个备用毫米波通信单元)。
又例如,当通信系统为中的毫米波通信单元分别为交叉极化抵消应用场景下的水平毫米波通信单元和垂直毫米波通信单元,基准毫米波通信单元可为通信系统中的水平毫米波通信单元,也可为通信系统中的垂直毫米波通信单元。
在一实施方式中,为了提升通信系统的可靠性和实用性,在设置好通信系统中的上述基准毫米波通信单元以及基准毫米波通信单元与其他各毫米波通信单元之间建立有频率同步通道,实现各毫米波通信单元之间的频率同步后;基准毫米波通信单元还可对频率同步情况进行检测跟踪,在检测到基准切换条件触发时,向其他各基准毫米波通信单元中的至少一个发送基准切换通知;从而使得接收到基准切换通知中的其中一个毫米波通信单元切换为基准毫米波通信单元。应当理解的是:
上述基准切换通知可以通过但不限于上述频率同步通道发送,也可通过基准毫米波通信单元与其他毫米波通信单元之间的其他通信通道发送;
上述基准切换条件可以包括但不限于:基准毫米波通信单元出现故障。
为了便于理解,本实施例下面仍以上述示例的几种应用场景进行说明。
在毫米波通信系统热备份场景下,在完成场景识别并设置为热备份场景,按照上述方式完成主、备单元(M/S Unit,也即主毫米波通信单元和备用毫米波通信单元)之间的基准频率同步设置,例如设置主毫米波通信单元为基准毫米波通信单元,且设置毫米波通信单元的射频同步基带频率作为基准参考。在本应用场景中,在热备份场景下,如果主毫米波通信单元出现故障进行主备倒换和时钟切换,切换为新的主毫米波通信单元的毫米波通信单元作为新的基准毫米波通信单元;并可根据应用场景需求完成告警上报。
在毫米波通信交叉极化抵消场景下,完成场景识别并设置为交叉极化抵消场景,按照上述方式完成完成水平/垂直单元(H/V Unit,也即水平毫米波通信单元和垂直用毫米波通信单元)之间的基准频率同步设置,例如设置主毫米波通信单元为基准毫米波通信单元,且设置水平毫米波通信单元的射频同步基带频率作为基准参考,也即设置射频同步基带参考,在该场景下如果水平毫米波通信单元的时钟出现故障进行时钟切换,将垂直用毫米波通信单元作为新的基准毫米波通信单元;并可根据应用场景需求完成告警上报。
在2*2MIMO应用场景下,按照上述方式完成第一毫米波通信单元和第二毫米波通信单元之间的基准频率同步设置,例如初始设置第一毫米波通信单元为基准毫米波通信单元,且设置毫米波通信单元的射频同步基带频率作为基准参考。在本应用场景中,如果检测到第一毫米波通信单元出现故障进行切换,切换为第二毫米波通信单元作为新的基准毫米波通信单元,并可 根据应用场景需求完成告警上报。
在4*4MIMOx应用场景下,按照上述方式完成第一双发双收毫米波通信单元和第二双发双收毫米波通信单元之间的基准频率同步设置,例如初始设置第二双发双收毫米波通信单元为基准毫米波通信单元,且设置毫米波通信单元的射频同步基带频率作为基准参考。在本应用场景中,如果检测到第二双发双收毫米波通信单元出现故障进行切换,切换为第一双发双收毫米波通信单元作为新的基准毫米波通信单元,并可根据应用场景需求完成告警上报。
也即本实施例中还可对提供基准频率的基准毫米波通信单元进行动态的切换,从而在毫米波通信的热备份保护和交叉极化抵消场景下,使用基准频率作为参考同步解决频差交调干扰,消除由于反向泄露导致的频差交调,提高信号频率稳定度,提高接收信号灵敏度。
实施例二:
为了便于理解,本实施例下面在上述实施例所示的通信系统架构基础上,以该通信系统的通信方法为示例进行说明。请参见图5所示,该过程包括:
S501:进行应用场景的识别,根据识别结果进行配对,并完成基准频率的同步。
例如进行毫米波通信系统的热备份应用场景、交叉极化抵消应用场景、2*2MIMO或4*4MIMOx的识别,然后根据识别结果进行通信系统中毫米波通信单元的对应配对;然后按照上述方式完成基准频率的同步。
S502:进行基准频率同步情况的跟踪和切换。
例如按照上述示例方式完成进行主、备(M/S)单元、水平垂直(H/V)单元、第一、第二毫米波通信单元、或第一、第二双发双收毫米波通信单元之间的时钟跟踪和切换。
S503:毫米波通信单元的射频模块完成基带IQ信号的直流校准。
其中,信号的接收和解调过程请参见图6所示,包括:
S601:各毫米波通信单元从信号发送端接收毫米波信号。
S602:各毫米波通信单元针对接收到的每一毫米波信号,基于基准频率,通过射频模块进行解调;其中可以采用但不限于通过正交IQ解调方式对毫米波信号进行解调。
且在一实施方式中,在射频模块通过正交IQ解调方式对毫米波信号进行解调后,还可通过IQ校准功能对解调得到的信号中的常量反向系数β等同为直流信号进行消除。例如,在一些应用示例中,在射频模块通过正交IQ解调方式对毫米波信号进行解调后,可直接通过IQ校准功能对解调得到的信号中的常量反向系数β等同为直流信号进行消除;也可先判断常量反向系数β是否大于设定的反向系数阈值,如是,则通过IQ校准功能对解调得到的信号中的常量反向系数β等同为直流信号进行消除;如否,则解调完成。其中,该反向系数阈值的具体取值可以根 据需求灵活设定。
在本实施例中所示的通信方法中,在进行应用场景的识别,根据识别结果进行配对,并完成基准频率的同步后,还可具体包括在检测到基准切换条件触发时,向其他各基准毫米波通信单元中的至少一个发送基准切换通知;接收到基准切换通知中的其中一个毫米波通信单元切换为基准毫米波通信单元;也即实现上述S502中的基准频率同步情况的跟踪和切换。
为了便于理解,本实施例下面结合一种具体的通信系统所包括的毫米波通信单元的结构为示例进行说明。请参见图7所示,其包括基带子单元(Base-band Unit)和射频子单元(RF-band Unit)。基带子单元主要包括调制解调模块(Modem,即调制器和解调器集成在一个芯片中实现)、锁相环模块(PLL)、PHY(物理接口收发器)模块,PHY模块包括以太网接口Eth Port。射频子单元主要包括频综锁相环(PLL)、射频模块(RF Block),射频模块采用正交IQ调制解调方案。
基于图7所示的毫米波通信单元,一种热备份场景的毫米波通信系统请参见图8所示,该毫米波通信系统的左侧的两个毫米波通信单元为信号发送端,右侧的两个毫米波通信单元为信号接收端;相应的,左侧的两个毫米波通信单元也可同时为信号接收端,右侧的两个毫米波通信单元同时为信号发送端。左侧的两个毫米波通信单元中上面的毫米波通信单元作为主毫米波通信单元,下面的毫米波通信单元作为备用毫米波通信单元;右侧的两个毫米波通信单元中上面的毫米波通信单元作为主毫米波通信单元,下面的毫米波通信单元作为备用毫米波通信单元。在本应用场景中,发送端和接收端的毫米波通信单元之间提供太网端口(Eth Port)作为单元间基准频率的基带频率参考同步通道;在毫米波通信单元内部的基带子单元和射频子单元间提供频综同步通道。在本应用场景中,毫米波通信系统热备份场景下,可通过但不限于毫米波通信单元上的软件完成场景识别并设置为热备份场景,完成主、备毫米波通信单元(M/S Unit)之间的基准频率同步设置,设置射频同步基带频率,在热备份场景下如果主毫米波通信单元出现故障进行主备倒换和时钟切换,并可根据需求完成告警上报。
对于2*2MIMO应用场景下,通信系统中的第一毫米波通信单元和第二毫米波通信单元也可同时作为信号发送端和信号接收端;作为信号接收端时分别从信号发送端接收第一空间信号和第二空间信号,对于接收到的第一空间信号和第二空间信号的解调方式与上述类似,在此不再赘述。
基于图7所示的毫米波通信单元,一种交叉极化抵消场景的毫米波通信系统请参见图9所示,该毫米波通信系统的左侧的两个毫米波通信单元为信号发送端,右侧的两个毫米波通信单元为信号接收端;相应的,左侧的两个毫米波通信单元也可同时为信号接收端,右侧的两个毫米波通信单元同时为信号发送端。左侧的两个毫米波通信单元分别作为水平毫米波通信单元和 垂直毫米波通信单元;右侧的两个毫米波通信单元分别作为水平毫米波通信单元和垂直毫米波通信单元。在本应用场景中,发送端和接收端的毫米波通信单元之间提供太网端口(Eth Port)作为单元间基准频率的基带频率参考同步通道;在毫米波通信单元内部的基带子单元和射频子单元间提供频综同步通道。在本应用场景中,毫米波通信系统交叉极化抵消场景下,可通过但不限于毫米波通信单元上的软件完成场景识别并设置为热备份场景,完成水平/垂直毫米波通信单元(H/V Unit)之间的基准频率同步设置,设置射频同步基带频率,在交叉极化抵消场景下如果时钟出现故障进行时钟切换,最后完成告警上报。
对于4*4MIMOx应用场景下,通信系统中的第一双发双收毫米波通信单元和第二双发双收毫米波通信单元也可同时作为信号发送端和信号接收端,本应用场景中的双发双收是指一个毫米波通信单元作为信号发送端时可以同时发送两路天线信号,作为信号接收端时可以同时接收两路信号,一个双发双收毫米波通信单元所发出的两路信号可以为具有交叉极化抵消关系的两路信号,也可为没有该关系的两路空间信号;在底层硬件实现上,一个双发双收毫米波通信单元中可以通过但不限于设置两个射频收发模块共用一个具有双收双发功能的调制解调模块modem实现。在本应用场景中,因为双发双收毫米波通信单元中的modem支持双发双收,因此双发双收毫米波通信单元内部抵消信号可直接在在modem内部传递,双发双收毫米波通信单元之间的抵消信号可以通过频分复用两个抵消信号按照模拟信号传递,或者双发双收毫米波通信单元之间抵消信号通过高速数字信号复用传递。双发双收毫米波通信单元内部的双发信号之间不存在反向泄露,但是双发双收毫米波通信单元之间仍存在反向泄露,因此对于双发双收毫米波通信单元之间仍存在反向泄露也可采用本实施例所示的基于相同基准频率的方式对接收端接收到的毫米波信号进行解调,从而消除由于调制器芯片反向泄露导致的频差交调,避免因频差交调导致不能对接收到的毫米波信号进行正确解调的情况发生,进而提高信号频率稳定度,具体解调方式与上述类似,在此不再赘述。
可见,本实施例中,相对于超外差式方案,毫米波通信单元使用正交IQ调制解调方案进行基带信号的直接上下变频。且针对毫米波热备份和交叉极化抵消场景下,因为反向泄露导致的频差交调,而使得信号无法解调,进而导致接收灵敏度变差的问题,本实施例针对配对的毫米波通信单元采用相同的基准频率对接收到的毫米波信号进行解调以消除频差交调,并在一实施方式中结合调制调节器的IQ校准功能消除得到的基带信号中掺杂的常量反向泄露系数β,既能避免因频差交调导致不能对接收到的毫米波信号进行正确解调的情况发生,又能提高信号频率稳定度,提升接收信号灵敏度。
本实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序, 计算机程序可被处理器执行,以实现如上所述的通信方法中的至少一个步骤。
本实施例中的该计算机可读存储介质包括在被设置为存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或技术中实施的易失性或非易失性、可移除或不可移除的介质。计算机可读存储介质包括但不限于RAM(Random Access Memory,随机存取存储器),ROM(Read-Only Memory,只读存储器),EEPROM(Electrically Erasable Programmable read only memory,带电可擦可编程只读存储器)、闪存或其他存储器技术、CD-ROM(Compact Disc Read-Only Memory,光盘只读存储器),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以被设置为存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例还提供了一种计算机程序(或称计算机软件),该计算机程序可以分布在计算机可读介质上,由可计算装置(例如包括但不限于上述毫米波通信单元)来执行,以实现如上所述的通信方法中的至少一个步骤;并且在某些情况下,可以采用不同于上述实施例所描述的顺序执行所示出或描述的至少一个步骤。
本实施例还提供了一种计算机程序产品,包括计算机可读装置,该计算机可读装置上存储有如上所示的任一计算机程序。本实施例中该计算机可读装置可包括如上所示的计算机可读存储介质。
本申请实施例提供了一种通信系统、通信方法及计算机存储介质,通信系统包括至少两个毫米波通信单元,毫米波通信单元中的一个为基准毫米波通信单元,基准毫米波通信单元与其他各毫米波通信单元之间建立有频率同步通道,并通过频率同步通道向其他各毫米波通信单元传输基准频率;各毫米波通信单元都基于该基准频率,通过对应的射频模块对接收到的毫米波信号进行解调,从而消除由于调制器芯片反向泄露导致的频差交调,避免因频差交调导致不能对接收到的毫米波信号进行正确解调的情况发生,进而提高信号频率稳定度,提升接收信号灵敏度。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计 算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本申请不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本申请实施例所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请范围的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (11)

  1. 一种通信系统,其中,所述通信系统包括至少两个毫米波通信单元,各所述毫米波通信单元包括射频模块,所述毫米波通信单元中的一个为基准毫米波通信单元;
    所述基准毫米波通信单元与其他各所述毫米波通信单元之间建立有频率同步通道,并通过所述频率同步通道向其他各所述毫米波通信单元传输基准频率;
    各所述毫米波通信单元基于所述基准频率,通过对应的所述射频模块对接收到的毫米波信号进行解调。
  2. 如权利要求1所述的通信系统,其中,所述基准毫米波通信单元在检测到基准切换条件触发时,向其他各所述基准毫米波通信单元中的至少一个发送基准切换通知;
    接收到所述基准切换通知中的其中一个所述毫米波通信单元切换为所述基准毫米波通信单元。
  3. 如权利要求2所述的通信系统,其中,所述基准切换条件包括:基准毫米波通信单元出现故障。
  4. 如权利要求1-3任一项所述的通信系统,其中,所述通信系统中的其中一个毫米波通信单元为热备份应用场景下的主毫米波通信单元,其他毫米波通信单元为热备份应用场景下的备用毫米波通信单元,所述基准毫米波通信单元为所述主毫米波通信单元;
    或,
    所述通信系统为中的毫米波通信单元分别为交叉极化抵消应用场景下的水平毫米波通信单元和垂直毫米波通信单元,所述基准毫米波通信单元为所述水平毫米波通信单元或垂直毫米波通信单元;
    或,
    所述通信系统中包括两个毫米波通信单元,其中一个所述毫米波通信单元为2*2 MIMO应用场景下的第一毫米波通信单元,另一所述毫米波通信单元为2*2 MIMO应用场景下第二毫米波通信单元,所述基准毫米波通信单元为所述第一毫米波通信单元或第二毫米波通信单元;
    或,
    所述通信系统中包括两个毫米波通信单元,其中一个所述毫米波通信单元为4*4 MIMOx应用场景下的第一双发双收毫米波通信单元,另一所述毫米波通信单元为4*4 MIMOx应用场景下第二双发双收毫米波通信单元,所述基准毫米波通信单元为所述第一双发双收毫米波通信单元或第二双发双收毫米波通信单元。
  5. 如权利要求1-3任一项所述的通信系统,其中,各所述毫米波通信单元包括基带子单元和射频子单元,所述基带子单元包括调制解调模块、锁相环模块和物理接口收发器模块,所述 射频子单元包括频综锁相环模块和所述射频模块;
    所述频率同步通道包括:所述毫米波通信单元之间的基带频率参考同步通道,以及所述毫米波通信单元内部的基带子单元和射频子单元间进行基带频率同步的频综同步通道;
    所述基带频率参考同步通道,由所述基准毫米波通信单元的锁相环模块通过所述物理接口收发器模块,与其他其他所述毫米波通信单元的锁相环模块之间建立的通道组成;
    所述频综同步通道,由所述毫米波通信单元内部的锁相环模块、频综锁相环模块和射频模块之间的通道组成。
  6. 如权利要求5所述的通信系统,其中,所述物理接口收发器模块包括以太网端口,所述毫米波通信单元之间的基带频率参考同步通道,由所述基准毫米波通信单元的锁相环模块通过所述以太网端口,与其他其他所述毫米波通信单元的锁相环模块之间建立的通道组成。
  7. 如权利要求1-3任一项所述的通信系统,其中,各所述毫米波通信单元包括基带子单元和射频子单元,所述射频子单元包括频综锁相环模块和所述射频模块;
    所述频率同步通道包括所述毫米波通信单元之间的射频频率参考同步通道;
    所述毫米波通信单元之间的射频频率参考同步通道,由所述基准毫米波通信单元的频综锁相环模块通过物理接口收发器模块,与其他所述毫米波通信单元的频综锁相环模块之间建立的通道组成。
  8. 一种通信方法,应用于如权利要求1-7任一项所述的通信系统,包括:
    所述各所述毫米波通信单元从信号发送端接收毫米波信号;
    所述各所述毫米波通信单元针对接收到的每一毫米波信号,基于所述基准频率,通过对应的所述射频模块进行解调。
  9. 如权利要求8所述的通信方法,还包括:
    在检测到基准切换条件触发时,向其他各所述基准毫米波通信单元中的至少一个发送基准切换通知;
    接收到所述基准切换通知中的其中一个所述毫米波通信单元切换为所述基准毫米波通信单元。
  10. 如权利要求8或9所述的通信方法,其中,所述射频模块通过正交IQ解调方式对所述毫米波信号进行解调;
    所述方法还包括:在所述射频模块通过正交IQ解调方式对所述毫米波信号进行解调后,通过IQ校准功能对解调得到的信号中的常量反向系数等同为直流信号进行消除。
  11. 一种计算机存储介质,所述计算机存储介质存储有至少一个计算机程序,其中,所述计算机程序被处理器运行时,执行如权利要求8-10任一项所述的通信方法中的至少一个步骤。
PCT/CN2021/096390 2020-06-12 2021-05-27 通信系统、通信方法及计算机存储介质 WO2021249198A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CONC2023/0000232A CO2023000232A2 (es) 2020-06-12 2023-01-11 Sistema de comunicación, método de comunicación y medio de almacenamiento informático

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010536981.7 2020-06-12
CN202010536981.7A CN113810078A (zh) 2020-06-12 2020-06-12 通信系统、通信方法及计算机存储介质

Publications (1)

Publication Number Publication Date
WO2021249198A1 true WO2021249198A1 (zh) 2021-12-16

Family

ID=78845246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096390 WO2021249198A1 (zh) 2020-06-12 2021-05-27 通信系统、通信方法及计算机存储介质

Country Status (3)

Country Link
CN (1) CN113810078A (zh)
CO (1) CO2023000232A2 (zh)
WO (1) WO2021249198A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710256A (zh) * 2021-12-30 2022-07-05 北京力通通信有限公司 射频和基带同步方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1647403A (zh) * 2002-02-18 2005-07-27 独立行政法人情报通信研究机构 用于在多个无线电通信终端间通信的无线电通信方法和系统
CN102404023A (zh) * 2010-09-09 2012-04-04 索尼公司 信号发送装置、电子仪器、基准信号输出装置、通信装置、基准信号接收装置和信号传输方法
CN106019285A (zh) * 2016-08-16 2016-10-12 上海航天测控通信研究所 一种微型无人机毫米波雷达
US20180124837A1 (en) * 2016-11-03 2018-05-03 Samsung Electronics Co., Ltd. Method and apparatus for random access in millimeter wave systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1647403A (zh) * 2002-02-18 2005-07-27 独立行政法人情报通信研究机构 用于在多个无线电通信终端间通信的无线电通信方法和系统
CN102404023A (zh) * 2010-09-09 2012-04-04 索尼公司 信号发送装置、电子仪器、基准信号输出装置、通信装置、基准信号接收装置和信号传输方法
CN106019285A (zh) * 2016-08-16 2016-10-12 上海航天测控通信研究所 一种微型无人机毫米波雷达
US20180124837A1 (en) * 2016-11-03 2018-05-03 Samsung Electronics Co., Ltd. Method and apparatus for random access in millimeter wave systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114710256A (zh) * 2021-12-30 2022-07-05 北京力通通信有限公司 射频和基带同步方法

Also Published As

Publication number Publication date
CO2023000232A2 (es) 2023-04-05
CN113810078A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN110475337B (zh) 通信方法及装置
US11751088B2 (en) Channel state information (CSI) measurements and CSI reporting in licensed assisted access (LAA)
US8406709B2 (en) Carrier recovery in re-modulation communication systems
JP6962519B2 (ja) 無線通信方法および機器
EP3437221A1 (en) Uplink modulation coding scheme and configuration
EP3949480A1 (en) Apparatus and method of beam failure recovery for secondary cell
US20230171771A1 (en) Apparatus and method of wireless communication
WO2021249198A1 (zh) 通信系统、通信方法及计算机存储介质
WO2020207333A1 (zh) 链路失败恢复的方法和装置
WO2021190358A1 (en) Apparatus and method of wireless communication
US8554164B2 (en) Dual polarization transmission system, dual polarization transmission method, reception apparatus, transmission apparatus, reception method, and transmission method
WO2020147762A1 (zh) 波束失败恢复方法、装置、ue、基站及可读存储介质
WO2017099831A1 (en) Control signaling in multiple beam operation
WO2021013017A1 (en) Method and device for scell beam failure recovery, ue and network device
US8055253B2 (en) Transceiver device capable of calibration and calibration method used by the same
US20200127759A1 (en) Wireless communication with modulation and demodulation set based on channel information
US20220159767A1 (en) Communication Method And Communications Apparatus
US20220287131A1 (en) User equipment in wireless communication system, electronic apparatus, method, and storage medium
US11431403B2 (en) Radio frequency repeater circuitry
US8351871B2 (en) Apparatus and method for interferometric frequency modulation to exploit cooperative interference in wireless communications
CN115694564B (zh) 蓝牙系统、处理蓝牙信号的方法、芯片以及电子设备
US20240106497A1 (en) Near-field communication chip, phase synchronization method, and electronic device
WO2023208024A1 (zh) 通信装置及通信方法
US12021671B2 (en) Communication device for performing differential phase shift keying based on a plurality of previous signals and operating method thereof
WO2024065291A1 (en) Methods and apparatus of csi reporting on amplitude and phase coefficients for coherent joint transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21822088

Country of ref document: EP

Kind code of ref document: A1