WO2021013017A1 - Method and device for scell beam failure recovery, ue and network device - Google Patents

Method and device for scell beam failure recovery, ue and network device Download PDF

Info

Publication number
WO2021013017A1
WO2021013017A1 PCT/CN2020/102185 CN2020102185W WO2021013017A1 WO 2021013017 A1 WO2021013017 A1 WO 2021013017A1 CN 2020102185 W CN2020102185 W CN 2020102185W WO 2021013017 A1 WO2021013017 A1 WO 2021013017A1
Authority
WO
WIPO (PCT)
Prior art keywords
scell
configuration
indication information
beam failure
information
Prior art date
Application number
PCT/CN2020/102185
Other languages
French (fr)
Inventor
Li Guo
Original Assignee
Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Oppo Mobile Telecommunications Corp., Ltd. filed Critical Guangdong Oppo Mobile Telecommunications Corp., Ltd.
Priority to CN202080019470.6A priority Critical patent/CN113615100B/en
Publication of WO2021013017A1 publication Critical patent/WO2021013017A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • the embodiments of the disclosure relate to the field of mobile communication technology, and particularly to a method and device for SCell beam failure recovery, a User Equipment (UE) and a network device.
  • UE User Equipment
  • the media access control control element (MAC CE) -based method for secondary cell (SCell) beam failure recovery has a shortcoming of a complicated scheduling request (SR) trigger mechanism, and potentially large latency is caused in transmission of an uplink SCell beam failure recovery request message.
  • SR scheduling request
  • a UE can trigger a SR only when the buffer of packets received from the upper layer is not empty.
  • SCell beam failure occurs, the UE generates a MAC CE for reporting an index of failed SCell, but the generation of MAC CE does not trigger the SR. Therefore, the transmission of the MAC CE through a physical uplink shared channel (PUSCH) transmission may wait for a long time.
  • PUSCH physical uplink shared channel
  • the embodiments of the disclosure provide a method and device for SCell beam failure recovery, a user equipment (UE) and a network device.
  • UE user equipment
  • the embodiments of the disclosure provide a method for SCell beam failure recovery, which includes operations as follows.
  • a UE transmits at least one indication information to a network device when detecting that beam failure occurs in at least one SCell.
  • the at least one indication information is used to indicate that beam failure occurs in the at least one SCell.
  • the UE receives downlink control information (DCI) transmitted by the network device.
  • DCI downlink control information
  • the DCI is used to request the UE to report first uplink control information (UCI) on a first physical channel.
  • UCI uplink control information
  • the UE reports the first UCI to the network device on the first physical channel.
  • the first UCI carries first indication information and/or second indication information.
  • the first indication information is used to indicate an index of each of the at least one SCell
  • the second indication information is used to indicate an index of a new reference signal (RS) associated to each of the at least one SCell.
  • RS new reference signal
  • the embodiments of the disclosure provide a method for SCell beam failure recovery, which includes operations as follows.
  • a network device receives at least one indication information transmitted by a user equipment (UE) .
  • the at least one indication information is used to indicate that beam failure occurs in at least one SCell.
  • the network device transmits downlink control information (DCI) to the UE.
  • DCI downlink control information
  • the DCI is used to request the UE to report first uplink control information (UCI) on a first physical channel.
  • UCI uplink control information
  • the network device receives the first UCI reported by the UE on the first physical channel.
  • the first UCI carries first indication information and/or second indication information.
  • the first indication information is used to indicate an index of each of the at least one SCell
  • the second indication information is used to indicate an index of a new reference signal (RS) associated to each of the at least one SCell.
  • RS new reference signal
  • the embodiments of the disclosure provide a device for SCell beam failure recovery, which is applied to a user equipment (UE) and includes a detecting unit, a transmitting unit and a receiving unit.
  • UE user equipment
  • the detecting unit is configured to detect that beam failure occurs in at least one SCell.
  • the transmitting unit is configured to transmit at least one indication information to a network device.
  • the at least one indication information is used to indicate that beam failure occurs in at least one SCell.
  • the receiving unit is configured to receive downlink control information (DCI) transmitted by the network device.
  • DCI downlink control information
  • the DCI is used to request the UE to report first uplink control information (UCI) on a first physical channel.
  • UCI uplink control information
  • the transmitting unit is further configured to report the first UCI to the network device on the first physical channel.
  • the first UCI carries first indication information and/or second indication information.
  • the first indication information is used to indicate an index of each of the at least one SCell
  • the second indication information is used to indicate an index of a new reference signal (RS) associated to each of the at least one SCell.
  • RS new reference signal
  • the embodiments of the disclosure provide a device for SCell beam failure recovery, which is applied to a network device and includes a receiving unit and a transmitting unit.
  • the receiving unit is configured to receive at least one indication information transmitted by a user equipment (UE) .
  • the at least one indication information is used to indicate that beam failure occurs in at least one SCell.
  • the transmitting unit is configured to transmit downlink control information (DCI) to the UE.
  • DCI downlink control information
  • the DCI is used to request the UE to report first uplink control information (UCI) on a first physical channel.
  • UCI uplink control information
  • the receiving unit is further configured to receive the first UCI reported by the UE on the first physical channel.
  • the first UCI carries first indication information and/or second indication information.
  • the first indication information is used to indicate an index of each of the at least one SCell
  • the second indication information is used to indicate an index of a new reference signal (RS) associated to each of the at least one SCell.
  • RS new reference signal
  • the embodiments of the disclosure provide a UE, which includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is configured to call and run the computer program stored in the memory to execute the above method for SCell beam failure recovery.
  • the embodiments of the disclosure provide a network device, which includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is configured to call and run the computer program stored in the memory to execute the above method for SCell beam failure recovery.
  • the embodiments of the disclosure provide a chip, which is configured to implement the above method for SCell beam failure recovery.
  • the chip includes a processor, which is configured to call and run a computer program from a memory, to enable a device installed with the chip to execute the above method for SCell beam failure recovery.
  • the embodiments of the disclosure provide a computer-readable memory medium having stored thereon a computer program, which enables a computer to execute the above method for SCell beam failure recovery.
  • the embodiments of the disclosure provide a computer program product having stored thereon a computer program instruction, which enables a computer to execute the above method for SCell beam failure recovery.
  • the embodiments of the disclosure provides a computer program, when executed on a computer, enables the computer to execute the above method for SCell beam failure recovery.
  • 100%physical layer signaling and channels are used to transmit a beam failure recovery message for a SCell, thereby obtaining a low latency beam failure recovery operation for the SCell and removing dependency on the complicated SR trigger mechanism in the higher layer.
  • FIG. 1 is a schematic diagram of architecture of a communication system according to an embodiment of the disclosure.
  • FIG. 2 is a first flowchart of a method for SCell beam failure recovery according to an embodiment of the disclosure.
  • FIG. 3 is a second flowchart of a method for SCell beam failure recovery according to an embodiment of the disclosure.
  • FIG. 4 is a third flowchart of a method for SCell beam failure recovery according to an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a device for SCell beam failure recovery according to an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of a device for SCell beam failure recovery according to an embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the disclosure.
  • FIG. 8 is a schematic structural diagram of a chip according to an embodiment of the disclosure.
  • FIG. 9 is a schematic block diagram of a communication system according to an embodiment of the disclosure.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G 5G communication system
  • future communication system for example a long term evolution (LTE) system, a LTE frequency division duplex (FDD) system, a LTE time division duplex (TDD) system, a 5G communication system and a future communication system.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G communication system a future communication system.
  • the communication system 100 may include a network device 110, which may be a device communicating with a terminal 120 (also referred to as a communication terminal, a terminal) .
  • the network device 110 may provide communication coverage in a specified geographical area, and may communicate with a terminal located within the coverage.
  • the network device 110 may be an evolutional base station (Evolutional Node B, eNodeB or eNB) or a radio controller in a cloud radio access network (CRAN) in the LTE system.
  • Evolutional Node B, eNodeB or eNB evolutional Node B
  • CRAN cloud radio access network
  • the network device may be a mobile switching center, a relay station, an access point, on-board equipment, a wearable device, a hub, a switch, a network bridge, a router, a network-side device in the 5G network or a network in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110.
  • the "terminal” used herein includes but is not limited to the connection via wired lines, such as public switched telephone networks (PSTN) and digital subscriber lines Line (DSL) , a digital cable, a direct cable connection; and/or another data connection/network; and/or via wireless interface, such as for cellular network, wireless local area network (WLAN) , such as DVB-H Digital television network, satellite network, AM-FM broadcast transmitter of the network; and/or device configured to receive/send communication signals of another terminal; and/or Internet of things (IOT) device.
  • wired lines such as public switched telephone networks (PSTN) and digital subscriber lines Line (DSL)
  • DSL digital subscriber lines Line
  • WLAN wireless local area network
  • IOT Internet of things
  • a terminal configured to communicate via a wireless interface may be referred to as a "wireless communication terminal” , “wireless terminal” or “mobile terminal” .
  • mobile terminals include, but are not limited to, satellites or cellular phones; personal communications systems that can combine cellular radiotelephony with data processing, fax, and data communication capabilities; PDAs that may include radiophones, pagers, Internet/intranet access, web browsers, notebooks, calendars, and/or global positioning system (GPS) receivers; and conventional laptop and/or handheld receivers or other electronic devices including radiophone transceivers.
  • GPS global positioning system
  • the terminal can refer to an access terminal, a user equipment (UE) , a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or a user device.
  • Access terminals can be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital processing (PDP) Assistant, PDA) , a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, an on-board device, a wearable device, a terminal in 5g network or a terminal in PLMN evolving in the future
  • the terminals 120 may perform communications on Device-to-Device (D2D) direct connection.
  • D2D Device-to-Device
  • a 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR system.
  • NR New Radio
  • FIG. 1 exemplarily illustrates one network device and two terminals.
  • the communication system 100 may include multiple network devices, each of which may include other number of terminals within the coverage thereof, which is not limited in the embodiments of the disclosure.
  • the communication system 100 may further include a network controller, a mobile management entity and other network entities, which are not limited in the embodiments of the disclosure.
  • a device having a communication function in the network system in the embodiments of the disclosure may be referred to as a communication device.
  • the communication device may include a network device 1109 and a terminal 120 which have a communication function.
  • the network device 110 and the terminal 120 may be the device described above, which is not limited herein.
  • the communication device may further include other device in the communication system 100, for example, a network controller, a mobile management entity and other network entity, which is not limited in the embodiments of the disclosure.
  • system and “network” herein may be exchanged in the specification.
  • the terms “and/or” herein may be an association relation for describing associated objects, which may represent that there are three relations.
  • a and/or B may indicate a case that there is only A, a case that there are both A and B, and a case that there is only B.
  • the character “/” generally represent a “or” relation between the associated objects.
  • Tx and Rx analog beams are employed by a base station (BS) and/or a UE to combat the large path loss in the high-frequency band.
  • BS base station
  • Rx receiving
  • the BS and the UE are deployed with large number of antennas, so that large gain beamforming can be used to defeat large path loss and signal blockage.
  • TXRUs transmission and reception units
  • hybrid beamforming mechanisms can be utilized in both the BS and the UE.
  • the BS and the UE need to align the analog beam directions for particular downlink or uplink transmission.
  • the best pair of BS Tx beam and UE Rx beam are required for downlink transmission, while the best pair of UE Tx beam and BS Rx beam are required for uplink transmission.
  • 3GPP 3 rd generation partnership project
  • the current NR specification only supports the beam failure recovery function for a Primary cell (PCell) .
  • PCell Primary cell
  • the feature of PCell beam failure recovery is based on uplink random access channel (RACH) transmission.
  • RACH uplink random access channel
  • the UE is configured with a set q 0 of beam failure detection reference signals (RSs) .
  • the UE measures hypothetical block error rate (BLER) on each RS in the set q 0 .
  • BLER block error rate
  • the UE determines a beam failure event for the PCell and then the UE may transmit a RACH configured for beam failure recovery.
  • the UE monitors a dedicated control resource set (CORESET) for beam failure recovery to detect a response from the next generation Node B (gNB) .
  • CORESET dedicated control resource set
  • the current design is using a media access control control element (MAC CE) message to report an ID of a SCell where beam failure occurs.
  • MAC CE media access control control element
  • the UE can also report an ID of a new beam through the MAC CE message.
  • SR scheduling request
  • a UE can trigger a SR only when the buffer of packets received from an upper layer is not empty.
  • SCell beam failure occurs, the UE generates one MAC CE for reporting an index of failed SCell, but the generation of MAC CE does not trigger the SR. Therefore, the transmission of the MAC CE through a PUSCH transmission might wait for a long time.
  • the embodiments of the disclosure provide the following technical solutions.
  • the methods of PUCCH-based SCell beam failure recovery are provided.
  • FIG. 2 is a first flowchart of a method for SCell beam failure recovery in the embodiments of the disclosure. As shown in FIG. 2, the method for SCell beam failure recovery includes operations 201 to 203.
  • a UE transmits at least one indication information to a network device upon detecting that beam failure occurs in at least one SCell.
  • the at least one indication information is used to indicate that beam failure occurs in the at least one SCell.
  • the UE transmits at least one indication information to a network device upon detecting that beam failure occurs in at least one SCell.
  • the network device receives the at least one indication information transmitted by the UE.
  • the at least one indication information is used to indicate that beam failure occurs in the at least one SCell.
  • the network device may be a base station, such as a gNB.
  • the network device transmits third configuration information to the UE.
  • the UE receives the third configuration information transmitted by the network device.
  • the third configuration information is used to determine at least one SCell configuration.
  • the UE detects whether beam failure occurs in each of the at least one SCell based on the at least one SCell configuration.
  • each SCell configuration includes at least one of configuration information of a beam failure detection RS, configuration information of a set of new beam identification RSs and information of a threshold for recognizing a new RS.
  • the UE can be configured to perform beam failure recovery on one or more given SCells. For each SCell configured for beam failure recovery, the UE monitors a beam failure detection RS associated with that SCell to detect a beam failure event on that SCell. When a beam failure event is detected on a given SCell, the UE can use a PUCCH to report information about the beam failure event of the SCell to a serving gNB and then wait for a response from the gNB.
  • the UE transmits indication information to the network device upon detecting that beam failure occurs in the at least one SCell.
  • the indication information is used to indicate that beam failure occurs in the at least one SCell.
  • the indication information may be transmitted by a PUCCH.
  • the network device transmits first configuration information to the UE, and the UE receives the first configuration information transmitted by the network device.
  • the first configuration information is used to determine a PUCCH configuration corresponding to the first PUCCH resource.
  • the UE transmits third indication information to the network device on the first PUCCH resource based on the first configuration information.
  • the network device receives the third indication information transmitted by the UE on the first PUCCH resource.
  • the third indication information is used to indicate that beam failure occurs in the at least one SCell.
  • the operation that the UE transmits the third indication information to the network device on the first PUCCH resource based on the first configuration information refers to an operation that the UE transmits a PUCCH on the first PUCCH resource based on the first configuration information, the PUCCH carries third indication information.
  • the UE transmits multiple indication information to the network device upon detecting beam failure occurs in multiple SCells.
  • Each of the multiple indication information is used to indicate that beam failure occurs in one of the multiple SCells.
  • Each of the multiple indication information may be transmitted through a PUCCH.
  • the at least one SCell includes a first SCell and a second SCell.
  • the network device transmits first configuration information and second configuration information to the UE.
  • the UE receives the first configuration information and the second configuration information transmitted by the network device.
  • the first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource
  • the second configuration information is used to determine a PUCCH configuration corresponding to a second PUCCH resource.
  • the UE transmits third indication information to the network device on the first PUCCH resource based on the first configuration information, and transmits fourth indication information to the network device on the second PUCCH resource based on the second configuration information.
  • the network device receives the third indication information transmitted by the UE on the first PUCCH resource and the fourth indication information transmitted by the UE on the second PUCCH resource.
  • the third indication information is used to indicate that beam failure occurs in the first SCell
  • the fourth indication information is used to indicate that beam failure occurs in the second SCell.
  • the PUCCH configuration includes at least one information of an identification of the PUCCH resource, a period of the PUCCH resource, an offset of the PUCCH resource in one period, and an index of a first resource unit of the PUCCH resource in one period.
  • the PUCCH configuration is determined based on a specific SR configuration.
  • the specific SR configuration refers to an SR configuration used for a SCell beam failure event report request. It should be noted that the PUCCH configuration determined based on the specific SR configuration cannot be used for transmitting an SR request for requesting uplink shared channel (UL-SCH) resources for new transmission.
  • UL-SCH uplink shared channel
  • the UE receives downlink control information (DCI) transmitted by the network device to request the UE to report first UCI on a first physical channel.
  • DCI downlink control information
  • the network device sends DCI to the UE, and the UE receives the DCI sent by the network device to request the UE to report first UCI on a first physical channel.
  • the first UCI refers to UCI of a SCell beam failure recovery request, or the first UCI refers to UCI of a SCell link recovery request.
  • the DCI carries fifth indication information.
  • the fifth indication information is used to indicate the first physical channel, and the first physical channel belongs to the PUCCH.
  • the DCI carries fifth indication information, and the fifth indication information is used to schedule transmission of the first physical channel, and the first physical channel belongs to the PUSCH.
  • the at least one indication information in the above solution is transmitted in a time slot n, where n is a positive integer.
  • the UE receives the DCI transmitted by the network device within a time window, and a starting time slot of the time window is time slot n+1. Further, if the UE does not receive the DCI transmitted by the network device within the time window, the UE retransmits the at least one indication information to the network device.
  • the UE reports the first UCI to the network device on the first physical channel.
  • the first UCI carries first indication information and/or second indication information.
  • the first indication information is used to indicate an index of each SCell of the at least one SCell
  • the second indication information is used to indicate an index of a new RS associated with each SCell of the at least one SCell.
  • the UE reports the first UCI to the network device on the first physical channel, and the network device receives the first UCI reported by the UE on the first physical channel.
  • the first UCI carries first indication information and/or second indication information.
  • the first indication information is used to indicate an index of each SCell of the at least one SCell
  • the second indication information is used to indicate an index of a new RS associated with each SCell of the at least one SCell.
  • the DCI carries fifth indication information.
  • the fifth indication information is used to indicate the first physical channel, and the first physical channel belongs to the PUCCH.
  • the UE sends the first UCI to a network device based on the fifth indication information through the PUCCH, and the network device receives the first UCI sent by the UE on the PUCCH.
  • the DCI carries fifth indication information.
  • the fifth indication information is used to schedule transmission of the first physical channel, and the first physical channel belongs to the PUSCH.
  • the UE sends the first UCI to the network device based on the fifth indication information through the PUSCH, and the network device receives the first UCI sent by the UE on the PUSCH.
  • the UE is configured with a resource configuration of a PUCCH, which is used by the UE to report the SCell beam failure event.
  • the UE detects beam failure in one SCell, the UE reports a positive indicator in the PUCCH to notify the gNB.
  • a new UCI format (referred to first UCI) is defined for SCell beam failure recovery.
  • the UCI can be called UCI of a SCell beam failure recovery request.
  • the UCI can be called UCI of a SCell link recovery request.
  • the gNB can use DCI to trigger an aperiodic reporting of the UCI of SCell link recovery request.
  • the UCI of SCell beam failure recovery request can be carried in a PUSCH transmission, and the gNB can use DCI to request the UCI of SCell beam failure recovery request and grant a PUSCH transmission.
  • the UCI of SCell beam failure recovery request can be carried in a PUCCH transmission, and the gNB can use DCI to request the UCI of SCell beam failure recovery request and indicate a PUCCH resource to be used for transmission of the UCI.
  • a first configuration of PUCCH resource is configured for the UE to report that a beam failure event occurs in a SCell, and then the gNB triggers an aperiodic UCI report, in which the UE reports an ID of the SCell where beam failure occurs and/or an ID of one new beam.
  • the UCI report can be carried in a PUSCH.
  • the UCI report can be carried in a PUCCH.
  • An example of the first configuration of PUCCH resource is that the gNB explicitly configure the UE to use a SR configuration for reporting the beam failure event, and not use the SR configuration for UL-SCH resource requesting.
  • the UE In a second manner, for each SCell configured for beam failure recovery, the UE is configured with a dedicated configuration of PUCCH resource.
  • the UE reports a one-bit UCI in a configured PUCCH to report a beam failure event of the SCell to the gNB; the gNB can explicitly configure the UE to use a particular SR configuration for reporting the beam failure event, and not use the SR configuration for UL-SCH.
  • FIG. 3 is a second flowchart of a method for SCell beam failure recovery according to an embodiment of the disclosure. As shown in FIG. 3, the method for SCell beam failure recovery includes operations 301 to 307.
  • a serving eNB transmits configuration information to a UE.
  • the configuration information includes the following contents: a configuration of beam failure recovery for one or more SCells; a first configuration of a PUCCH for a beam failure event report request; and a configuration of UCI of a SCell beam failure recovery request: for example a betaoffset and a PUCCH resource.
  • the UE receives the configuration information regarding the SCell beam failure recovery from the serving gNB.
  • the configuration information may include the following contents:
  • a configuration of beam failure recovery for a first SCell which may include a configuration of a beam failure detection RS, a configuration of a set of new beam identification RSs and a configuration of a threshold for identifying a new RS;
  • a configuration of beam failure recovery for a second SCell which may include a configuration of a beam failure detection RS, a configuration of a set of new beam identification RSs, a configuration of a threshold for identifying a new RS;
  • the first configuration of PUCCH may include a PUCCH resource ID, a period in slots and a slot offset, the period may be in symbols and in this case, the configuration includes a starting symbol index;
  • the UE measures a beam failure detection RS based on the configuration information to detect beam failure.
  • the UE monitors a beam failure detection RS corresponding to a first SCell and a beam failure detection RS corresponding to a second SCell according to the configuration information, to detect beam failure in the first SCell and beam failure in the second SCell.
  • the UE determines a beam failure event on at least one SCell.
  • the UE transmits a positive indicator in a PUCCH resource configured in the first configuration of PUCCH.
  • the UE starts to detect DCI for the gNB to trigger aperiodic UCI of a SCell beam failure recovery request.
  • the UE when beam failure is detected in the first SCell and/or the second SCell, the UE can report a positive indicator in the PUCCH resource configured in the first configuration of PUCCH. After transmitting the positive indicator at slot n, the UE may start to monitor a PDCCH for a DCI, which triggers transmission of UCI of a SCell beam failure recovery request in a PUSCH or a PUCCH
  • the UE After transmitting the positive indicator for SCell beam failure event at slot n, the UE can monitor a PDCCH for DCI that triggers transmission of UCI of SCell beam failure recovery request during a time window starting from slot n+1. If the UE does not receive a DCI within the time window, the UE may retransmit the positive indicator in the PUCCH resource configured in the first configuration of PUCCH.
  • the serving gNB transmits DCI in a PDCCH to trigger reporting UCI of SCell Beam failure recovery request, for example, in a PUSCH or a PUCCH.
  • the serving gNB transmits DCI to trigger the UE to report UCI of a SCell beam failure recovery request in a PUSCH transmission.
  • the DCI includes one-bit field (for example referred to as a SCell link recovery request) to indicate that the UE is requested to report UCI of a SCell beam failure recovery request in the scheduled PUSCH.
  • the serving gNB transmits DCI to trigger the UE to report UCI of SCell beam failure recovery request in an indicated PUCCH resource.
  • the DCI includes a bit-field (for example referred to as a SCell link recovery request) to indicate that the UE is requested to report UCI of a SCell beam failure recovery request in a PUCCH resource in a given slot.
  • the information of PUCCH resource and an index of the slot may be configured by a higher layer and indicated by the DCI.
  • the UE reports UCI of SCell beam failure recovery request as indicated by the gNB.
  • An example of UCI contents includes an indicator of a failed SCell.
  • the UE transmits UCI of a SCell beam failure recovery request in the scheduled PUSCH or in an indicated PUCCH resource.
  • the UE can report one or more of the following information:
  • an indicator of a SCell to indicate the SCell where a beam failure event occurs
  • CSI-RS Channel state information reference signal
  • SS Synchronization signal
  • PBCH physical broadcast channel
  • the UE can be configured to perform beam failure recovery on one or more SCells.
  • the UE can be provided a higher layer parameter to explicitly configure the UE to performed beam failure recovery on the SCell.
  • SCellIndex for a SCell with index SCellIndex, if the UE is configured with a higher layer parameter SCellBeamFailureRecoveryConfig, the UE can assume that the gNB configures the UE to perform beam failure recovery on the SCell having index SCellIndex.
  • An example of the parameter SCellIndex is shown in Table 1.
  • SCellBeamFailureRecoveryConfig is given in Table 2 as follows.
  • the UE can be configured with a configuration of a SCell beam failure event report request in a PUCCH transmission using either PUCCH format 0 or PUCCH format 1.
  • the UE can be configured by a higher layer parameter SCellBeamFailureEventReportRequestConfig, which may include:
  • PUCCH resource Id PUCCH SCellBFR1 ;
  • Period SCellBFR1 a period for PUCCH transmission in slots, Period SCellBFR1 ;
  • Offset SCellBFR1 a slot offset for PUCCH transmission, Offset SCellBFR1 .
  • the UE When the UE detects beam failure in at least one SCell among the SCells which are configured for SCell beam failure recovery, the UE determines a positive indicator for a SCelll beam failure event report request. The UE transmits a PUCCH in the PUCCH resource configured in the configuration of SCell beam failure event report request. If the UE does not detect beam failure in any SCell configured for SCell beam failure recovery, the UE does not transmit in the PUCCH resource configured in the configuration of a SCell beam failure event report request.
  • the UE can be requested to perform one or more of the followings operations.
  • the UE can be requested to perform one of the followings operations.
  • the UE may drop the transmission of SCell beam failure event report request.
  • the UE may drop the SR transmission.
  • the UE may drop the transmission of SCell beam failure event report request. If the SR transmission is associated with eMBB, the UE may drop the SR transmission.
  • the UE may multiplex bits of the SR with bits of the SCell beam failure event report request.
  • a value of each bit in the SR may indicate a positive or negative SR.
  • a value of the SCell beam failure event report request may be positive or negative.
  • the UE may perform the following operations.
  • One bit representing a negative or positive SCell beam failure event report request is appended to bits of the CSI report.
  • the UE transmits the combined bits in the PUCCH resource using a PUCCH format 2 or 3 or 4 that is determined by the UE according to the size of UCI.
  • the PUCCH configuration for the SCell beam failure event report request may be one particular SR configuration.
  • the rule about how to multiplex the HARQ-ACK with the SCell beam failure event report may be same to the rule about how to multiplex the HARQ-ACK with the SR.
  • the first Configuration of PUCCH for the SCell beam failure event report request may be configured as one particular SR configuration.
  • the UE is configured, by a higher layer parameter SchedulingRequestResourceConfig, a set of K (K ⁇ 1) SR configurations for in PUCCH transmission using either PUCCH format 0 or PUCCH format 1.
  • the gNB may configure the UE to use one particular SR configuration as the configuration for the SCell beam failure event report request, and the UE may not use the SR configuration to request UL-SCH resources for new transmission.
  • the UE is configured with a set of SR configurations with configuration IDs: ⁇ SR 1 , SR 2 , ..., SR K ⁇ .
  • the gNB configures the UE to use SR configuration with configuration ID SR 1 for the SCell beam failure event report request. Then the UE may perform the following operations.
  • the UE may use PUCCH resources configured in SR configurations ⁇ SR 2 , ..., SR K ⁇ to transmit an SR request for requesting UL-SCH resources for new transmission.
  • the UE may use the PUCCH resource configured in the SR configuration SR 1 to transmit positive indicator for a SCell beam failure event report request.
  • the UE is requested to not perform transmission in the PUCCH resource configured in the SR configuration SR 1 for requesting a UL-SCH resource for new transmission.
  • Two examples of RRC signaling design in this method include a first example and a second example.
  • a first example is shown in Table 3.
  • the parameter scellBFR-schedulingRequest indicates one SR configuration ID that the UE is configured to use for a SCell beam failure event report request.
  • the parameter SCell-BFR configured in a SR configuration indicates whether the SR configuration is used for SCell beam failure event report request or not.
  • the UE may be requested to report UCI of a SCell beam failure recovery request.
  • the UE can report the following information in the UCI of SCell beam failure recovery request: a first indicator and a second indicator.
  • the first indicator indicates a SCell where beam failure is detected.
  • the first indicator may be a value of an ID of a SCell, i.e., the SCellIndex configured for the SCell.
  • the UE is configured to perform beam failure recovery on four SCells.
  • the first indicator may be a two-bit value.
  • a value 00 indicates the SCell with lowest SCellIndex among all SCells configured for beam failure recovery
  • a value 01 indicates the SCell with the second lowest SCellIndex among all SCells configured for beam failure recovery.
  • the benefit of the example is reducing payload size of the UCI.
  • the first indicator may be a bit map and each bit in the bit map corresponds to one SCell configured for beam failure recovery.
  • the UE is configured to perform beam failure recovery on four SCells and the bit-map is b 0 b 1 b 2 b 3 .
  • Bits b 0 , b 1 , b 2 and b 3 correspond to the SCell with lowest, second lowest, third lowest and largest SCellIndex among all four SCells configured for beam failure recovery.
  • the first indicator may be omitted in the reported UCI.
  • the second indicator indicates a CSI-RS resource or SS/PBCH from a set of candidate beam SRs, which is configured for beam failure recovery for the SCell that is indicated by the first indicator.
  • the length of the second indicator is zero.
  • the number of bits in the second indicator may be where L denotes the largest number of RSs among the sets of candidate beam RSs configured to all SCells configured for beam failure recovery.
  • the number of bits in the second indicator may depend on the value of the first indicator. That is, the number of bits depends on the SCellIndex reported in the same UCI.
  • the first indicator indicates that beam failure occurs in the SCell with SCellIndex.
  • the number of bits in the second indicator of the same UCI is where l denotes the number of RSs contained in the set of candidate beam RSs configured for the SCell with SCellIndex.
  • the gNB may trigger the UE to report UCI of a SCell beam failure recovery request in a PUSCH transmission.
  • a DCI format carries a field SCell_Link_Recovery_Request to trigger the UE to report UCI of a SCell beam failure recovery request in a PUSCH transmission.
  • the length of the field SCell_Link_Recovery_Request may be 1 bit. If the bit in field SCell_Link_Recovery_Request is set to zero, no UCI of SCell beam failure recovery request is requested. If the bit in the field SCell_Link_Recovery_Request is set to one, transmission of UCI of a SCell beam failure recovery request is requested
  • the UE may multiplex the UCI of a SCell beam failure recovery request in the scheduled PUSCH transmission.
  • a Beta_offset value is defined for the UE to determine the number of resources for multiplexing the UCI of a SCell beam failure recovery request in the PUSCH transmission.
  • the UE may be configured with a beta_offset value by a higher layer parameter.
  • the UE is provided with a value for the UCI of a SCell beam failure recovery request on PUSCH transmission by higher layer parameter, and the UE determines a beta_offset value according a mapping relation between beta_offset values and values.
  • the DCI for triggering transmission of UCI of a SCell beam failure recovery request may include a beta_offset value for the UCI of SCell beam failure recovery request.
  • the UE is configured with one or more beta_offset values for the UCI of a SCell beam failure recovery request.
  • An indicator field in the DCI indicates one of those configured beta_offset values, which the UE may use to multiplex the UCI of a SCell beam failure recovery request in the PUSCH scheduled by the DCI.
  • the field ‘beta_offset_indicator’ in DCI format 0_1 may be used to indicate a value for the UCI of SCell beam failure recovery request multiplexed in the PUSCH, and the UE determines a beta_offset value based on the mapping relation between beta_offset values and values.
  • the mapping relation between beta_offset values and the values is shown as follows.
  • the UCI of a SCell beam failure recovery request is mapped to REs following REs where the CSI part II are mapped in the same PUSCH.
  • the UCI of SCell beam failure recovery request is mapped along the frequency domain first and then along the time-domain.
  • the gNB may trigger the UE to report the UCI of a SCell beam failure recovery request in a PUCCH transmission.
  • a DCI format carries a field SCell_Link_Recovery_Request to trigger the UE to report UCI of a SCell beam failure recovery request in a PUCCH transmission.
  • a value of the field SCell_Link_Recovery_Request may indicate one configuration of aperiodic reporting of UCI of a SCell beam failure recovery request configured by a higher layer parameter.
  • the UE may be configured, by a higher layer parameter, with a set of configurations of aperiodic reporting of UCI of a SCell beam failure recovery request.
  • Each configuration includes information of: an ID pucchId of a PUCCH resource for transmission of UCI; and a slot offset k SCell for an occasion of PUCCH transmission.
  • the UE is configured with a mapping relation between values of the field SCell_Link_Recovery_Request and configurations of aperiodic reporting of UCI of a SCell beam failure recovery request.
  • Table 6 An example is shown in following Table 6.
  • the UE detects DCI at slot n, which triggers UCI of a SCell beam failure recovery request, the UE is requested to report the UCI of a SCell beam failure recovery in the PUCCH transmission in a PUCCH resource with pucchId at slot n+ k SCell , where pucchId and k SCell represent an ID of a PUCCH resouce and a slot offset configured in the configuration of aperiodic reporting of the UCI that is indicated by the field SCell_Link_Recovery_Request in the detected DCI.
  • the UE may perform operations as follows.
  • the UE reports an invalid combination of a value of the first indicator for an SCell index and a value of the second indicator.
  • the UE may report a value of the second indicator, that is an invalid indicator for CSI-RS or SS/PBCH block for the SCell indicated by the first indicator in reporting of the same UCI.
  • the UE may set all bits in the UCI to a special value, for example, all bits are set to 1.
  • the values of bits in the reported UCI may indicate to the gNB that there is no SCell beam failure event.
  • the UE can be configured to perform beam failure recovery on one or more SCells.
  • a dedicated configuration of PUCCH resources is configured for the UE to report the beam failure event of the SCell.
  • the UE is configured with a dedicated configuration of PUCCH resources. Only when the UE detects beam failure on the first SCell, the UE generates a positive indicator for the first SCell and then transmits a PUCCH in the PUCCH resource configured in the dedicated configuration for the beam failure recovery of the first SCell.
  • FIG. 4 is a third flowchart of a method for SCell beam failure recovery according to an embodiment of the disclosure. As shown in FIG. 4, the method for SCell beam failure recovery includes operations 401 to 406.
  • a serving gNB transmits configuration information to a UE.
  • the configuration information includes the following contents: configurations of beam failure recovery for a first cell and a second Scell; a first configuration of PUCCH for the first SCell; and a second configuration of PUCCH for the second SCell.
  • the UE measures a beam failure detection RS to detect beam failure on the first SCell and the second SCell based on the configuration information.
  • the UE determines a beam failure event on the first SCell.
  • the UE transmits a positive indicator in a PUCCH resource configured in the first configuration of PUCCH.
  • the UE determines a beam failure event on the second SCell.
  • the UE transmits a positive indicator in a PUCCH resource configured in the second configuration of PUCCH.
  • the serving gNB transmits configuration information of SCell beam failure recovery to the UE, which may include the configurations of beam failure recovery for a first SCell and a second SCell.
  • the serving gNB configures a first configuration of PUCCH for the first SCell and a second configuration of PUCCH for the second SCell.
  • the UE measures a beam failure detection RS associated with the first SCell to detect beam failure for the first SCell. If the UE determines a beam failure event on the first SCell, the UE transmits a positive indicator in the PUCCH resource in the first configuration of PUCCH corresponding to the beam failure recovery of the first SCell, to indicate to the serving gNB that beam failure occurs in the first SCell.
  • the UE determines a beam failure event on the second SCell, the UE transmits a positive indicator in the PUCCH resource in the second configuration of PUCCH corresponding to the beam failure recovery of the second SCell, to indicate to the serving gNB that beam failure occurs in the second SCell.
  • the first configuration of PUCCH for beam failure recovery of the first SCell and the second configuration of PUCCH for beam failure recovery of the second SCell may be implemented by one particular SR configuration.
  • the UE is configured, by a higher layer parameter SchedulingRequestResourceConfig, a set of K (K ⁇ 1) SR configurations for in a PUCCH transmission using either PUCCH format 0 or PUCCH format 1.
  • the gNB may configure the UE to use a particular SR configuration as the first configuration for failure recovery of the first SCell beam, and use another particular SR configruation as the second configuration for failure recovery of the second SCell beam. With the configruation, the UE may not use the two SR configruations to request UL-SCH resources for new transmission.
  • the UE is configrued with a set of SR configurations with configruation IDs: ⁇ SR 1 , SR 2 , ..., SR K ⁇ . and the gNB configures the UE to use an SR configuraiton with a configuration ID SR 1 for beam failure recovery of the first SCell, and to use an SR configuraiton with a configuration ID SR 2 for beam failure recovery of the second SCell.
  • the UE may perform operations as follows.
  • the UE may use PUCCH resources configured in SR configurations ⁇ SR 3 , ..., SR K ⁇ to transmit a SR request for requesting UL-SCH resources for new transmission.
  • the UE may use a PUCCH resource configured in the SR configuration with configuration ID SR 1 to transmit a positive indicator to the gNB when the UE determine beam failure in the first SCell.
  • the UE is requested not to transmit a PUCCH in the PUCCH resource configured in the SR configuration with configuration ID SR 1 for requesing a UL-SCH resource for new transmission.
  • the UE may use a PUCCH resource configured in the SR configuration with configuration ID SR 2 to transmit a positive indicator to the gNB when the UE determine beam failure in the second SCell.
  • the UE is requested not to transmit a PUCCH in the PUCCH resource configured in the SR configuration with configuration ID SR 2 for requesing a UL-SCH resource for new transmission.
  • Two examples of RRC signaling design for the method includes a first example and a second example.
  • a first example is shown in Table 7.
  • the parameter Scell-SR configures an association relation between SR configuration IDs and SCells.
  • the UE is configured to use an SR configuration associated with a SCell for beam failure recovery for the SCell.
  • the parameter SCell-BFR configured in an SR configuration indicates an SCell that is associated with the SR configuration, and the UE may use the SR configuration associated to an SCell for beam failure recovery for the SCell.
  • the methods of physical layer-based SCell beam failure recovery are presented.
  • the methods are presented in the disclosure.
  • the information of SCell beam failure including an index of a SCell that meets beam failure and an index of a new beam is reported as one new format of UCI.
  • FIG. 5 is a schematic structural diagram of a device for SCell beam failure recovery in the embodiments of the disclosure.
  • the device for SCell beam failure recovery is applied to a UE.
  • the device for SCell beam failure recovery includes a detecting unit 501, a transmitting unit 502 and a receiving unit 503.
  • the detecting unit 501 is configured to detect that beam failure occurs in at least one SCell.
  • the transmitting unit 502 is configured to transmit at least one indication information to a network device.
  • the at least one indication information is used to indicate that beam failure occurs in at least one SCell.
  • the receiving unit 503 is configured to receive DCI transmitted by the network device.
  • the DCI is used to request the UE to report first UCI on a first physical channel.
  • the transmitting unit 502 is further configured to report the first UCI to the network device on the first physical channel.
  • the first UCI carries first indication information and/or second indication information.
  • the first indication information is used to indicate an index of each of the at least one SCell
  • the second indication information is used to indicate an index of a new RS associated to each of the at least one SCell.
  • the receiving unit 503 is further configured to receive first configuration information transmitted by the network device.
  • the first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource.
  • the transmitting unit 502 is configured to transmit third indication information to the network device on the first PUCCH resource based on the first configuration information.
  • the third indication information is used to indicate that beam failure occurs in the at least one SCell.
  • the at least one SCell includes a first SCell and a second SCell.
  • the receiving unit 503 is further configured to receive first configuration information and second configuration information transmitted by the network device.
  • the first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource
  • the second configuration information is used to determine a PUCCH configuration corresponding to a second PUCCH resource.
  • the transmitting unit 502 is configured to transmit third indication information to the network device on the first PUCCH resource based on the first configuration information, and transmits fourth indication information to the network device on the second PUCCH resource based on the second configuration information.
  • the third indication information is used to indicate that beam failure occurs in the first SCell
  • the fourth indication information is used to indicate that beam failure occurs in the second SCell.
  • the PUCCH configuration includes at least one information of an identification of the PUCCH resource, a period of the PUCCH resource, an offset of the PUCCH resource in one period, and an index of a first resource unit of the PUCCH resource in one period.
  • the PUCCH configuration is determined based on a specific SR configuration.
  • the specific SR configuration refers to an SR configuration used for a SCell beam failure event report request.
  • the receiving unit 503 is further configured to receive third configuration information transmitted by the network device.
  • the third configuration information is used to determine at least one SCell configuration.
  • the detecting unit 501 is configured to detect whether beam failure occurs in each of at least one SCell based on the at least one SCell configuration.
  • each SCell configuration includes at least one of configuration information of a beam failure detection RS, configuration information of a set of new beam identification RSs and information of a threshold for recognizing a new RS.
  • the first UCI refers to UCI of a SCell beam failure recovery request.
  • the first UCI refers to UCI of a SCell link recovery request.
  • the DCI carries fifth indication information.
  • the fifth indication information is used to indicate a first physical channel, and the first physical channel belongs to the PUCCH.
  • the transmitting unit 502 is configured to transmit the first UCI to the network device through the PUCCH based on the fifth indication information.
  • the DCI carries fifth indication information, and the fifth indication information is used to schedule transmission of the first physical channel, and the first physical channel belongs to the PUSCH.
  • the transmitting unit 502 is configured to transmit the first UCI to the network device through the PUSCH based on the fifth indication information.
  • the at least one indication information is transmitted in a time slot n, and n is a positive integer.
  • the receiving unit 503 is configured to receive the DCI transmitted by the network device within a time window, and a starting time slot of the time window is time slot n+1.
  • the transmitting unit 502 retransmits the at least one indication information to the network device.
  • FIG. 6 is a schematic structural diagram of a device for SCell beam failure recovery in the embodiments of the disclosure.
  • the device for SCell beam failure recovery is applied to a network device.
  • the device for SCell beam failure recovery includes a receiving unit 601 and a transmitting unit 602.
  • the receiving unit 601 is configured to receive at least one instruction information transmitted by a UE.
  • the at least one instruction information is used to indicate that beam failure occurs in at least one SCell.
  • the transmitting unit 602 is configured to transmit DCI to the UE.
  • the DCI is used to request the UE to report first UCI on a first physical channel.
  • the receiving unit 601 is further configured to receive first UCI reported by the UE on the first physical channel.
  • the first UCI carries first indication information and/or second indication information.
  • the first indication information is used to indicate an index of each of the at least one SCell
  • the second indication information is used to indicate an index of a new RS associated to each of the at least one SCell.
  • the transmitting unit 602 is further configured to transmit first configuration information to the UE.
  • the first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource.
  • the receiving unit 601 is configured to receive third indication information transmitted by the UE on the first PUCCH resource.
  • the third indication information is used to indicate that beam failure occurs in the at least one SCell.
  • the at least one SCell includes a first SCell and a second SCell.
  • the transmitting unit 602 is further configured to transmit first configuration information and second configuration information to the UE.
  • the first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource
  • the second configuration information is used to determine a PUCCH configuration corresponding to a second PUCCH resource.
  • the receiving unit 601 is configured to receive third indication information transmitted by the UE on the first PUCCH resource, and fourth indication information transmitted by the UE on the second PUCCH resource.
  • the third indication information is used to indicate that beam failure occurs in the first SCell
  • the fourth indication information is used to indicate that beam failure occurs in the second SCell.
  • the PUCCH configuration includes at least one information of an identification of the PUCCH resource, a period of the PUCCH resource, an offset of the PUCCH resource in one period and an index of a first resource unit of the PUCCH resource in one period.
  • the PUCCH configuration is determined based on a specific SR configuration.
  • the specific SR configuration refers to an SR configuration used for a SCell beam failure event report request.
  • the transmitting unit 602 is further configured to transmit third configuration information to the UE.
  • the third configuration information is used to determine at least one SCell configuration.
  • the third configuration information is used by the UE to detect whether beam failure occurs in each of at least one SCell.
  • each SCell configuration includes at least one of configuration information of a beam failure detection RS, configuration information of a set of new beam identification RSs and information of a threshold for recognizing a new RS.
  • the first UCI refers to UCI of a SCell beam failure recovery request.
  • the first UCI refers to UCI of a SCell link recovery request.
  • the DCI carries fifth indication information.
  • the fifth indication information is used to indicate a first physical channel, and the first physical channel belongs to the PUCCH.
  • the receiving unit 601 is configured to receive first UCI transmitted by the UE on the PUCCH.
  • the DCI carries fifth indication information, and the fifth indication information is used to schedule transmission of the first physical channel, and the first physical channel belongs to the PUSCH.
  • the receiving unit 601 is configured to receive the first UCI transmitted by the UE on the PUSCH.
  • FIG. 7 is a schematic structural diagram of a communication device 700 provided in the embodiments of the disclosure.
  • the communication device can be a UE or network device.
  • the communication device 700 illustrated in FIG. 7 includes processor 710, and processor 710 can call and run computer programs from memory to realize the method in the embodiments of the present disclosure.
  • the communication device 700 may further include a memory 720.
  • the processor 710 can invoke and run the computer program from memory 720 to implement the method in the embodiments of the disclosure.
  • the memory 720 may be a separate device independent of the processor 710 or integrated into the processor 710.
  • the communication device 700 may also include a transceiver 730.
  • the processor 710 may control the transceiver 730 to communicate with other devices, in particular, to send information or data to other devices, or receive information or data sent by other devices.
  • the transceiver 730 may include a transmitter and a receiver.
  • the transceiver 730 may further include an antenna (s) , the number of which may be one or more.
  • the communication device 700 can be specifically a network device of the embodiment of the disclosure, and the communication device 700 can realize the corresponding process realized by the network device in each method of the embodiments of the present disclosure. For the sake of simplicity, it will not be elaborated here.
  • the communication device 700 can be a mobile terminal/UE according to the embodiments of the disclosure, and the communication device 700 can realize the corresponding flow realized by the mobile terminal/UE in the various methods of the embodiments of the present disclosure. For the sake of brevity, it will not be described here.
  • FIG. 8 is a schematic structural diagram of a chip according to an embodiment of the present disclosure.
  • the chip 800 illustrated in FIG. 8 includes processor 810, and processor 810 can call and run computer programs from memory to implement the method in the embodiments of the disclosure.
  • the chip 800 may also include a memory 820.
  • the processor 810 can call and run the computer program from memory 820 to implement the method in the embodiments of the disclosure.
  • the memory 820 may be a separate device independent of the processor 810 or integrated into the processor 810.
  • the chip 800 may also include an input interface 830.
  • the processor 810 can control the input interface 830 to communicate with other devices or chips, and in particular can obtain information or data sent by other devices or chips.
  • the chip 800 may also include an output interface 840.
  • the processor 810 may control the output interface 840 to communicate with other devices or chips, and in particular may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiments of the present disclosure, and the chip can realize the corresponding process realized by the network device in each method of the embodiments of the disclosure.
  • the chip can realize the corresponding process realized by the network device in each method of the embodiments of the disclosure.
  • the chip can be applied to the mobile terminal/UE in the embodiments of the disclosure, and the chip can realize the corresponding flow realized by the mobile terminal/UE in each method of the embodiment of the disclosure. For the sake of simplicity, it will not be described here.
  • chips mentioned in the embodiments of the present disclosure can also be referred to as system level chips, system chips, chip systems or on-chip system chips, etc.
  • FIG. 9 is a schematic block diagram of a communication system 900 provided by an embodiment of the disclosure. As illustrated in FIG. 9, the communication system 900 includes a UE 910 and a network device 920.
  • the UE 910 can be used to realize the corresponding functions realized by the UE in the above method
  • the network device 920 can be used to realize the corresponding functions realized by the network device in the above method. For the sake of simplicity, it will not be elaborated here.
  • the processor of the embodiment of the disclosure may be an integrated circuit chip with signal processing capability.
  • each step of the above method embodiment can be completed by the instruction in the form of integrated logic circuit of hardware or software in the processor.
  • the above processors can be general purpose processors, digital signal processors (DSPs) , application specific integrated circuits (ASICs) , field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the disclosed methods, steps and logic block diagrams in the embodiments of the disclosure can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiment of the disclosure can be directly embodied to be executed and completed by the hardware decoding processor, or by the combination of the hardware and software modules in the decoding processor.
  • the software module can be arranged in a random memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register and other mature storage media in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with hardware thereof.
  • the memory in the embodiments of the disclosure may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the nonvolatile memory can be read-only memory (ROM) , programmable ROM (PROM) , erasable PROM (EPROM) , electrically erasable EPROM (EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM) , which is used as an external cache.
  • RAM direct Rambus RAM
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchlink DRAM
  • DR RAM direct Rambus RAM
  • the memory in the embodiment of the disclosure can also be static RAM (SRAM) , dynamic RAM (DRAM) , synchronous dynamic random access memory (synchronous DRAM (SDRAM) , double data rate SDRAM (DDR SDRAM) , enhanced SDRAM (ESDRAM) , synchronous link DRAM (SLDRAM) , direct Rambus RAM (DR RAM) , etc. That is to say, the memory in the embodiments of the present disclosure is intended to include, but not limited to, these and any other suitable types of memory.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link DRAM
  • DR RAM direct Rambus RAM
  • the embodiments of the disclosure also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the disclosure, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the disclosure.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the disclosure. For the sake of brevity, it will not be repeated here.
  • the computer-readable storage medium can be applied to the mobile terminal/UE in the embodiment of the present disclosure, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/UE in the various methods of the embodiment of the disclosure. For the sake of brevity, it will not be repeated here.
  • the embodiment of the disclosure also provides a computer program product, including a computer program instruction.
  • the computer program product can be applied to the network device in the embodiments of the disclosure, and the computer program instruction enables the computer to execute the corresponding flows implemented by the network device in the various methods of the embodiment of the disclosure.
  • the computer program instruction enables the computer to execute the corresponding flows implemented by the network device in the various methods of the embodiment of the disclosure.
  • the computer program instruction enables the computer to execute the corresponding flows implemented by the network device in the various methods of the embodiment of the disclosure.
  • the computer program product can be applied to the mobile terminal/UE in the embodiments of the disclosure, and the computer program instruction enables the computer to execute the corresponding flows implemented by the mobile terminal/UE in the various methods of the embodiment of the disclosure, for the sake of brevity, it will not be repeated here.
  • the embodiment of the present disclosure also provides a computer program.
  • the computer program can be applied to the network device in the embodiments of the disclosure.
  • the computer program runs on the computer, the computer executes the corresponding process realized by the network device in each method of the embodiment of the disclosure. For the sake of brevity, it will not be described here.
  • the computer program can be applied to the mobile terminal/UE in the embodiments of the disclosure.
  • the computer program runs on the computer, the computer executes the corresponding flow realized by the mobile terminal/UE in the various methods of the embodiment of the disclosure. For the sake of brevity, it will not be elaborated here.
  • the disclosed systems, devices and methods can be realized in other ways.
  • the embodiment of the device described above is only schematic.
  • the division of the unit is only a logical function division, and there can be another division method in actual implementation, for example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the mutual coupling or direct coupling or communication connection illustrated or discussed can be indirect coupling or communication connection through some interfaces, devices or units, and can be electric, mechanical or other forms.
  • the unit described as a separation part may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to the actual needs to achieve the purpose of the embodiment.
  • each functional unit in each embodiment of the disclosure may be integrated in one processing unit, each unit may exist physically alone, or two or more units may be integrated in one unit.
  • the function can be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium, which includes several instructions for making a computer device (which can be a personal computer, a server, a network device, etc. ) to perform all or a part of the steps of the method according to each embodiment of the disclosure.
  • the aforementioned storage media include: a U disk, mobile hard disk, read-only memory (ROM) , random access memory (RAM) , disk or optical disk and other media that can store a program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and device for SCell beam failure recovery, a user equipment (UE) and a network device are provided. The method includes operations as follows. A UE transmits at least one indication information to a network device when detecting that beam failure occurs in at least one SCell. The at least one indication information is used to indicate that beam failure occurs in the at least one SCell. The UE receives downlink control information (DCI) transmitted by the network device. The DCI is used to request the UE to report first uplink control information (UCI) on a first physical channel. The UE reports the first UCI to the network device on the first physical channel. The first UCI carries first indication information and/or second indication information. The first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to indicate an index of a new reference signal (RS) associated to each of the at least one SCell.

Description

METHOD AND DEVICE FOR SCELL BEAM FAILURE RECOVERY, UE AND NETWORK DEVICE
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to US Patent Application No. 62/878,460, filed on July 25, 2019, the entire contents of which are incorporated herein by reference.
TECHNICAL FIELD
The embodiments of the disclosure relate to the field of mobile communication technology, and particularly to a method and device for SCell beam failure recovery, a User Equipment (UE) and a network device.
BACKGROUND
The media access control control element (MAC CE) -based method for secondary cell (SCell) beam failure recovery has a shortcoming of a complicated scheduling request (SR) trigger mechanism, and potentially large latency is caused in transmission of an uplink SCell beam failure recovery request message. In the SR mechanism, a UE can trigger a SR only when the buffer of packets received from the upper layer is not empty. In contrast, when SCell beam failure occurs, the UE generates a MAC CE for reporting an index of failed SCell, but the generation of MAC CE does not trigger the SR. Therefore, the transmission of the MAC CE through a physical uplink shared channel (PUSCH) transmission may wait for a long time.
SUMMARY
The embodiments of the disclosure provide a method and device for SCell beam failure recovery, a user equipment (UE) and a network device.
The embodiments of the disclosure provide a method for SCell beam failure recovery, which includes operations as follows.
A UE transmits at least one indication information to a network device when detecting that beam failure occurs in at least one SCell. The at least one indication information is used to indicate that beam failure occurs in the at least one SCell.
The UE receives downlink control information (DCI) transmitted by the network device. The DCI is used to request the UE to report first uplink control information (UCI) on a first physical channel.
The UE reports the first UCI to the network device on the first physical channel. The first UCI carries first indication information and/or second indication information. The first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to indicate an index of a new reference signal (RS) associated to each of the at least one SCell.
The embodiments of the disclosure provide a method for SCell beam failure recovery, which includes operations as follows.
A network device receives at least one indication information transmitted by a user equipment (UE) . The at least one indication information is used to indicate that beam failure occurs in at least one SCell.
The network device transmits downlink control information (DCI) to the UE. The DCI is used to request the UE to report first uplink control information (UCI) on a first physical channel.
The network device receives the first UCI reported by the UE on the first physical channel. The first UCI carries first indication information and/or second indication information. The first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to  indicate an index of a new reference signal (RS) associated to each of the at least one SCell.
The embodiments of the disclosure provide a device for SCell beam failure recovery, which is applied to a user equipment (UE) and includes a detecting unit, a transmitting unit and a receiving unit.
The detecting unit is configured to detect that beam failure occurs in at least one SCell.
The transmitting unit is configured to transmit at least one indication information to a network device. The at least one indication information is used to indicate that beam failure occurs in at least one SCell.
The receiving unit is configured to receive downlink control information (DCI) transmitted by the network device. The DCI is used to request the UE to report first uplink control information (UCI) on a first physical channel.
The transmitting unit is further configured to report the first UCI to the network device on the first physical channel. The first UCI carries first indication information and/or second indication information. The first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to indicate an index of a new reference signal (RS) associated to each of the at least one SCell.
The embodiments of the disclosure provide a device for SCell beam failure recovery, which is applied to a network device and includes a receiving unit and a transmitting unit.
The receiving unit is configured to receive at least one indication information transmitted by a user equipment (UE) . The at least one indication information is used to indicate that beam failure occurs in at least one SCell.
The transmitting unit is configured to transmit downlink control information (DCI) to the UE. The DCI is used to request the UE to report first uplink control information (UCI) on a first physical channel.
The receiving unit is further configured to receive the first UCI reported by the UE on the first physical channel. The first UCI carries first indication information and/or second indication information. The first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to indicate an index of a new reference signal (RS) associated to each of the at least one SCell.
The embodiments of the disclosure provide a UE, which includes a processor and a memory. The memory is used to store a computer program, and the processor is configured to call and run the computer program stored in the memory to execute the above method for SCell beam failure recovery.
The embodiments of the disclosure provide a network device, which includes a processor and a memory. The memory is used to store a computer program, and the processor is configured to call and run the computer program stored in the memory to execute the above method for SCell beam failure recovery.
The embodiments of the disclosure provide a chip, which is configured to implement the above method for SCell beam failure recovery.
The chip includes a processor, which is configured to call and run a computer program from a memory, to enable a device installed with the chip to execute the above method for SCell beam failure recovery.
The embodiments of the disclosure provide a computer-readable memory medium having stored thereon a computer program, which enables a computer to execute the above method for SCell beam failure recovery.
The embodiments of the disclosure provide a computer program product having stored thereon a computer program instruction, which enables a computer to execute the above method for SCell beam failure recovery.
The embodiments of the disclosure provides a computer program, when executed on a computer, enables the computer to execute the above method for SCell beam failure recovery.
In the methods according to the embodiments of the disclosure, 100%physical layer signaling and channels are used to transmit a beam failure recovery message for a SCell, thereby obtaining a low latency beam failure recovery operation for the SCell and removing dependency on the complicated SR trigger mechanism in the higher layer.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings described herein are adopted to provide a further understanding to the disclosure and form a part of the disclosure. Schematic embodiments of the disclosure and descriptions thereof are adopted to explain the disclosure and not intended to form improper limits to the disclosure. In the drawings:
FIG. 1 is a schematic diagram of architecture of a communication system according to an embodiment  of the disclosure.
FIG. 2 is a first flowchart of a method for SCell beam failure recovery according to an embodiment of the disclosure.
FIG. 3 is a second flowchart of a method for SCell beam failure recovery according to an embodiment of the disclosure.
FIG. 4 is a third flowchart of a method for SCell beam failure recovery according to an embodiment of the disclosure.
FIG. 5 is a schematic structural diagram of a device for SCell beam failure recovery according to an embodiment of the disclosure.
FIG. 6 is a schematic structural diagram of a device for SCell beam failure recovery according to an embodiment of the disclosure.
FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the disclosure.
FIG. 8 is a schematic structural diagram of a chip according to an embodiment of the disclosure.
FIG. 9 is a schematic block diagram of a communication system according to an embodiment of the disclosure.
DETAILED DESCRIPTION
The technical solutions according to the embodiments of the disclosure are described below in conjunction with the accompany drawings of the embodiments of the disclosure. Apparently, the described embodiments are only a part rather than all of the embodiments. Based on the embodiments of the disclosure, all other embodiments acquired by those skilled in the art without paying creative labor based on the embodiments of the disclosure all fall within the scope of protection of the disclosure.
The technical solutions of the embodiments of the disclosure may be applied to various communication systems, for example a long term evolution (LTE) system, a LTE frequency division duplex (FDD) system, a LTE time division duplex (TDD) system, a 5G communication system and a future communication system.
Exemplarily, a communication system 100 to which the embodiments of the disclosure are applied is shown in FIG. 1. The communication system 100 may include a network device 110, which may be a device communicating with a terminal 120 (also referred to as a communication terminal, a terminal) . The network device 110 may provide communication coverage in a specified geographical area, and may communicate with a terminal located within the coverage. Alternatively, the network device 110 may be an evolutional base station (Evolutional Node B, eNodeB or eNB) or a radio controller in a cloud radio access network (CRAN) in the LTE system. Alternatively, the network device may be a mobile switching center, a relay station, an access point, on-board equipment, a wearable device, a hub, a switch, a network bridge, a router, a network-side device in the 5G network or a network in a future communication system.
The communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110. The "terminal" used herein includes but is not limited to the connection via wired lines, such as public switched telephone networks (PSTN) and digital subscriber lines Line (DSL) , a digital cable, a direct cable connection; and/or another data connection/network; and/or via wireless interface, such as for cellular network, wireless local area network (WLAN) , such as DVB-H Digital television network, satellite network, AM-FM broadcast transmitter of the network; and/or device configured to receive/send communication signals of another terminal; and/or Internet of things (IOT) device. A terminal configured to communicate via a wireless interface may be referred to as a "wireless communication terminal" , "wireless terminal" or "mobile terminal" . Examples of mobile terminals include, but are not limited to, satellites or cellular phones; personal communications systems that can combine cellular radiotelephony with data processing, fax, and data communication capabilities; PDAs that may include radiophones, pagers, Internet/intranet access, web browsers, notebooks, calendars, and/or global positioning system (GPS) receivers; and conventional laptop and/or handheld receivers or other electronic devices including radiophone transceivers. The terminal can refer to an access terminal, a user equipment (UE) , a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or a user device. Access terminals can be a cellular telephone, a cordless telephone, a session initiation protocol (SIP) telephone, a wireless local loop (WLL) station, a personal digital processing (PDP) Assistant, PDA) , a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, an on-board device, a  wearable device, a terminal in 5g network or a terminal in PLMN evolving in the future
Optionally, the terminals 120 may perform communications on Device-to-Device (D2D) direct connection.
Optionally, a 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR system.
FIG. 1 exemplarily illustrates one network device and two terminals. Optionally, the communication system 100 may include multiple network devices, each of which may include other number of terminals within the coverage thereof, which is not limited in the embodiments of the disclosure.
Optionally, the communication system 100 may further include a network controller, a mobile management entity and other network entities, which are not limited in the embodiments of the disclosure.
It should be understood that a device having a communication function in the network system in the embodiments of the disclosure may be referred to as a communication device. Taking the communication system 100 illustrated in FIG. 1 as an example, the communication device may include a network device 1109 and a terminal 120 which have a communication function. The network device 110 and the terminal 120 may be the device described above, which is not limited herein. The communication device may further include other device in the communication system 100, for example, a network controller, a mobile management entity and other network entity, which is not limited in the embodiments of the disclosure.
It should be understood that the terms "system" and "network" herein may be exchanged in the specification. The terms "and/or" herein may be an association relation for describing associated objects, which may represent that there are three relations. For example, A and/or B may indicate a case that there is only A, a case that there are both A and B, and a case that there is only B. In addition, the character "/" generally represent a "or" relation between the associated objects.
For easily understanding the technical solutions in the embodiments of the disclosure, the technical solutions in the embodiments of the disclosure are illustrated below.
In 5G NR release 15, multi-beam-based systems are supported. Multiplex transmission (Tx) and receiving (Rx) analog beams are employed by a base station (BS) and/or a UE to combat the large path loss in the high-frequency band. In a high frequency band system, for example, the mmWave system, the BS and the UE are deployed with large number of antennas, so that large gain beamforming can be used to defeat large path loss and signal blockage. Due to limitation and cost of hardware, the BS and the UE may only be equipped with limited number of transmission and reception units (TXRUs) . Therefore, hybrid beamforming mechanisms can be utilized in both the BS and the UE. To get the best link quality between the BS and the UE, the BS and the UE need to align the analog beam directions for particular downlink or uplink transmission. The best pair of BS Tx beam and UE Rx beam are required for downlink transmission, while the best pair of UE Tx beam and BS Rx beam are required for uplink transmission. In 3 rd generation partnership project (3GPP) 5G specification, the following functions are defined to support such multi-beam-based operation: beam measurement and reporting, and beam indication and beam switching.
The current NR specification only supports the beam failure recovery function for a Primary cell (PCell) . The feature of PCell beam failure recovery is based on uplink random access channel (RACH) transmission. For beam failure detection, the UE is configured with a set q 0 of beam failure detection reference signals (RSs) . The UE measures hypothetical block error rate (BLER) on each RS in the set q 0. When hypothetical BLERs of all the RSs in the set q 0 are all above a certain threshold, the UE determines a beam failure event for the PCell and then the UE may transmit a RACH configured for beam failure recovery. After transmitting the RACH, the UE monitors a dedicated control resource set (CORESET) for beam failure recovery to detect a response from the next generation Node B (gNB) .
For beam failure recovery in a secondary cell (SCell) , the current design is using a media access control control element (MAC CE) message to report an ID of a SCell where beam failure occurs. The UE can also report an ID of a new beam through the MAC CE message.
The shortcoming of MAC CE-based method for SCell beam failure recovery is complicated scheduling request (SR) trigger mechanism, and potentially large latency is caused in transmission for an uplink SCell beam failure recovery request message. In the SR mechanism, a UE can trigger a SR only when the buffer of packets received from an upper layer is not empty. In contrast, when SCell beam failure occurs, the UE generates one MAC CE for reporting an index of failed SCell, but the generation of MAC CE does not trigger the SR. Therefore, the transmission of the MAC CE through a PUSCH transmission might wait for a long time.
In view of this, the embodiments of the disclosure provide the following technical solutions. In this disclosure, the methods of PUCCH-based SCell beam failure recovery are provided.
FIG. 2 is a first flowchart of a method for SCell beam failure recovery in the embodiments of the disclosure. As shown in FIG. 2, the method for SCell beam failure recovery includes operations 201 to 203.
At 201, a UE transmits at least one indication information to a network device upon detecting that  beam failure occurs in at least one SCell. The at least one indication information is used to indicate that beam failure occurs in the at least one SCell.
In the embodiment of the disclosure, the UE transmits at least one indication information to a network device upon detecting that beam failure occurs in at least one SCell. The network device receives the at least one indication information transmitted by the UE. The at least one indication information is used to indicate that beam failure occurs in the at least one SCell. The network device may be a base station, such as a gNB.
In the embodiment of the disclosure, the network device transmits third configuration information to the UE. The UE receives the third configuration information transmitted by the network device. The third configuration information is used to determine at least one SCell configuration. The UE detects whether beam failure occurs in each of the at least one SCell based on the at least one SCell configuration.
In the above solution, each SCell configuration includes at least one of configuration information of a beam failure detection RS, configuration information of a set of new beam identification RSs and information of a threshold for recognizing a new RS.
In the embodiment of the disclosure, the UE can be configured to perform beam failure recovery on one or more given SCells. For each SCell configured for beam failure recovery, the UE monitors a beam failure detection RS associated with that SCell to detect a beam failure event on that SCell. When a beam failure event is detected on a given SCell, the UE can use a PUCCH to report information about the beam failure event of the SCell to a serving gNB and then wait for a response from the gNB.
In an optional manner, the UE transmits indication information to the network device upon detecting that beam failure occurs in the at least one SCell. The indication information is used to indicate that beam failure occurs in the at least one SCell.
The indication information may be transmitted by a PUCCH. The network device transmits first configuration information to the UE, and the UE receives the first configuration information transmitted by the network device. The first configuration information is used to determine a PUCCH configuration corresponding to the first PUCCH resource. The UE transmits third indication information to the network device on the first PUCCH resource based on the first configuration information. The network device receives the third indication information transmitted by the UE on the first PUCCH resource. The third indication information is used to indicate that beam failure occurs in the at least one SCell.
It should be illustrated that the operation that the UE transmits the third indication information to the network device on the first PUCCH resource based on the first configuration information refers to an operation that the UE transmits a PUCCH on the first PUCCH resource based on the first configuration information, the PUCCH carries third indication information.
In another optional manner, the UE transmits multiple indication information to the network device upon detecting beam failure occurs in multiple SCells. Each of the multiple indication information is used to indicate that beam failure occurs in one of the multiple SCells.
Each of the multiple indication information may be transmitted through a PUCCH. Taking two SCells as an example, the at least one SCell includes a first SCell and a second SCell. The network device transmits first configuration information and second configuration information to the UE. The UE receives the first configuration information and the second configuration information transmitted by the network device. The first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource, and the second configuration information is used to determine a PUCCH configuration corresponding to a second PUCCH resource. The UE transmits third indication information to the network device on the first PUCCH resource based on the first configuration information, and transmits fourth indication information to the network device on the second PUCCH resource based on the second configuration information. The network device receives the third indication information transmitted by the UE on the first PUCCH resource and the fourth indication information transmitted by the UE on the second PUCCH resource. The third indication information is used to indicate that beam failure occurs in the first SCell, and the fourth indication information is used to indicate that beam failure occurs in the second SCell.
It should be illustrated that the technical solution in the embodiments of the disclosure is not limited to the above solution of two SCells, and the technical solution in the embodiments of the disclosure may also be applied to a scenario of more than two SCells.
In the above solution, in an optional embodiment, the PUCCH configuration includes at least one information of an identification of the PUCCH resource, a period of the PUCCH resource, an offset of the PUCCH resource in one period, and an index of a first resource unit of the PUCCH resource in one period.
In the above solution, in another optional manner, the PUCCH configuration is determined based on a specific SR configuration. The specific SR configuration refers to an SR configuration used for a SCell beam failure event report request. It should be noted that the PUCCH configuration determined based on the specific SR configuration cannot be used for transmitting an SR request for requesting uplink shared channel (UL-SCH) resources for new transmission.
At 202, the UE receives downlink control information (DCI) transmitted by the network device to request the UE to report first UCI on a first physical channel.
In the embodiment of the disclosure, the network device sends DCI to the UE, and the UE receives the DCI sent by the network device to request the UE to report first UCI on a first physical channel.
In the embodiment of the disclosure, the first UCI refers to UCI of a SCell beam failure recovery request, or the first UCI refers to UCI of a SCell link recovery request.
In an optional manner, the DCI carries fifth indication information. The fifth indication information is used to indicate the first physical channel, and the first physical channel belongs to the PUCCH.
In another optional manner, the DCI carries fifth indication information, and the fifth indication information is used to schedule transmission of the first physical channel, and the first physical channel belongs to the PUSCH.
In an example, the at least one indication information in the above solution is transmitted in a time slot n, where n is a positive integer. The UE receives the DCI transmitted by the network device within a time window, and a starting time slot of the time window is time slot n+1. Further, if the UE does not receive the DCI transmitted by the network device within the time window, the UE retransmits the at least one indication information to the network device.
At 203, the UE reports the first UCI to the network device on the first physical channel. The first UCI carries first indication information and/or second indication information. The first indication information is used to indicate an index of each SCell of the at least one SCell, and the second indication information is used to indicate an index of a new RS associated with each SCell of the at least one SCell.
In the embodiment of the disclosure, the UE reports the first UCI to the network device on the first physical channel, and the network device receives the first UCI reported by the UE on the first physical channel. The first UCI carries first indication information and/or second indication information. The first indication information is used to indicate an index of each SCell of the at least one SCell, and the second indication information is used to indicate an index of a new RS associated with each SCell of the at least one SCell.
In an optional manner, the DCI carries fifth indication information. The fifth indication information is used to indicate the first physical channel, and the first physical channel belongs to the PUCCH. The UE sends the first UCI to a network device based on the fifth indication information through the PUCCH, and the network device receives the first UCI sent by the UE on the PUCCH.
In another optional manner, the DCI carries fifth indication information. The fifth indication information is used to schedule transmission of the first physical channel, and the first physical channel belongs to the PUSCH. The UE sends the first UCI to the network device based on the fifth indication information through the PUSCH, and the network device receives the first UCI sent by the UE on the PUSCH.
The above technical solution of the embodiments of the disclosure includes the following two parts.
In the first part, referring to the above operation 201, the UE is configured with a resource configuration of a PUCCH, which is used by the UE to report the SCell beam failure event. When the UE detects beam failure in one SCell, the UE reports a positive indicator in the PUCCH to notify the gNB.
In the second component, referring to  above operations  202 and 203, a new UCI format (referred to first UCI) is defined for SCell beam failure recovery. In one example the UCI can be called UCI of a SCell beam failure recovery request. In one example, the UCI can be called UCI of a SCell link recovery request. The gNB can use DCI to trigger an aperiodic reporting of the UCI of SCell link recovery request. In an optional manner, the UCI of SCell beam failure recovery request can be carried in a PUSCH transmission, and the gNB can use DCI to request the UCI of SCell beam failure recovery request and grant a PUSCH transmission. In another optional manner, the UCI of SCell beam failure recovery request can be carried in a PUCCH transmission, and the gNB can use DCI to request the UCI of SCell beam failure recovery request and indicate a PUCCH resource to be used for transmission of the UCI.
For the first part in the above solution, the following two manners are further provided.
In a first manner, a first configuration of PUCCH resource is configured for the UE to report that a beam failure event occurs in a SCell, and then the gNB triggers an aperiodic UCI report, in which the UE reports an ID of the SCell where beam failure occurs and/or an ID of one new beam. The UCI report can be carried in a PUSCH. The UCI report can be carried in a PUCCH. An example of the first configuration of PUCCH resource is that the gNB explicitly configure the UE to use a SR configuration for reporting the beam failure event, and not use the SR configuration for UL-SCH resource requesting.
In a second manner, for each SCell configured for beam failure recovery, the UE is configured with a dedicated configuration of PUCCH resource. When beam failure occurs in a SCell, the UE reports a one-bit UCI in a configured PUCCH to report a beam failure event of the SCell to the gNB; the gNB can explicitly configure the UE to use a particular SR configuration for reporting the beam failure event, and not use the SR configuration for UL-SCH.
The above first and second manners are described in detail below in conjunction with FIG. 3 and FIG. 4.
FIG. 3 is a second flowchart of a method for SCell beam failure recovery according to an embodiment of the disclosure. As shown in FIG. 3, the method for SCell beam failure recovery includes operations 301 to 307.
At 301, a serving eNB transmits configuration information to a UE.
Here, the configuration information includes the following contents: a configuration of beam failure recovery for one or more SCells; a first configuration of a PUCCH for a beam failure event report request; and a configuration of UCI of a SCell beam failure recovery request: for example a betaoffset and a PUCCH resource.
The UE receives the configuration information regarding the SCell beam failure recovery from the serving gNB. The configuration information may include the following contents:
a configuration of beam failure recovery for a first SCell, which may include a configuration of a beam failure detection RS, a configuration of a set of new beam identification RSs and a configuration of a threshold for identifying a new RS;
a configuration of beam failure recovery for a second SCell, which may include a configuration of a beam failure detection RS, a configuration of a set of new beam identification RSs, a configuration of a threshold for identifying a new RS;
a first Configuration of PUCCH for a SCell beam failure event report request, in one example, the first configuration of PUCCH may include a PUCCH resource ID, a period in slots and a slot offset, the period may be in symbols and in this case, the configuration includes a starting symbol index;
a list of configurations of PUCCH resources and time-offset information, that is used for a UE to report aperiodic UCI of a SCell beam failure recovery request; and
a betaOffset value for UCI of a SCell beam failure recovery request when the UCI is multiplexed in PUSCH transmission.
At 302, for each SCell configured for beam failure recovery, the UE measures a beam failure detection RS based on the configuration information to detect beam failure.
Herein, taking two SCells as an example, the UE monitors a beam failure detection RS corresponding to a first SCell and a beam failure detection RS corresponding to a second SCell according to the configuration information, to detect beam failure in the first SCell and beam failure in the second SCell.
At 303, the UE determines a beam failure event on at least one SCell.
At 304, the UE transmits a positive indicator in a PUCCH resource configured in the first configuration of PUCCH.
At 305, the UE starts to detect DCI for the gNB to trigger aperiodic UCI of a SCell beam failure recovery request.
In the operations 303 to 305, when beam failure is detected in the first SCell and/or the second SCell, the UE can report a positive indicator in the PUCCH resource configured in the first configuration of PUCCH. After transmitting the positive indicator at slot n, the UE may start to monitor a PDCCH for a DCI, which triggers transmission of UCI of a SCell beam failure recovery request in a PUSCH or a PUCCH
After transmitting the positive indicator for SCell beam failure event at slot n, the UE can monitor a PDCCH for DCI that triggers transmission of UCI of SCell beam failure recovery request during a time window starting from slot n+1. If the UE does not receive a DCI within the time window, the UE may retransmit the positive indicator in the PUCCH resource configured in the first configuration of PUCCH.
At 306, the serving gNB transmits DCI in a PDCCH to trigger reporting UCI of SCell Beam failure recovery request, for example, in a PUSCH or a PUCCH.
In an optional manner, the serving gNB transmits DCI to trigger the UE to report UCI of a SCell beam failure recovery request in a PUSCH transmission. The DCI includes one-bit field (for example referred to as a SCell link recovery request) to indicate that the UE is requested to report UCI of a SCell beam failure recovery request in the scheduled PUSCH.
In another optional manner, the serving gNB transmits DCI to trigger the UE to report UCI of SCell beam failure recovery request in an indicated PUCCH resource. The DCI includes a bit-field (for example referred to as a SCell link recovery request) to indicate that the UE is requested to report UCI of a SCell beam failure recovery request in a PUCCH resource in a given slot. The information of PUCCH resource and an index of the slot may be configured by a higher layer and indicated by the DCI.
At 307, the UE reports UCI of SCell beam failure recovery request as indicated by the gNB. An example of UCI contents includes an indicator of a failed SCell.
According to the DCI received from the serving gNB, the UE transmits UCI of a SCell beam failure recovery request in the scheduled PUSCH or in an indicated PUCCH resource. In the UCI of the SCell beam failure recovery request, the UE can report one or more of the following information:
an indicator of a SCell to indicate the SCell where a beam failure event occurs; and
an indicator of a Channel state information reference signal (CSI-RS) resource or an Synchronization signal (SS) /physical broadcast channel (PBCH) block selected from the set of new beam identification RSs configured for the beam failure recovery for the reported SCell.
In one method, the UE can be configured to perform beam failure recovery on one or more SCells. For a given SCell, the UE can be provided a higher layer parameter to explicitly configure the UE to performed beam failure recovery on the SCell. In one example, for a SCell with index SCellIndex, if the UE is configured with a higher layer parameter SCellBeamFailureRecoveryConfig, the UE can assume that the gNB configures the UE to perform beam failure recovery on the SCell having index SCellIndex. An example of the parameter SCellIndex is shown in Table 1.
Figure PCTCN2020102185-appb-000001
Table 1
Another example for SCellBeamFailureRecoveryConfig is given in Table 2 as follows.
Figure PCTCN2020102185-appb-000002
Table 2
In one method, the UE can be configured with a configuration of a SCell beam failure event report request in a PUCCH transmission using either PUCCH format 0 or PUCCH format 1. In one example, the UE can be configured by a higher layer parameter SCellBeamFailureEventReportRequestConfig, which may include:
an PUCCH resource Id, PUCCH SCellBFR1;
a period for PUCCH transmission in slots, Period SCellBFR1; and
a slot offset for PUCCH transmission, Offset SCellBFR1.
When the UE detects beam failure in at least one SCell among the SCells which are configured for SCell beam failure recovery, the UE determines a positive indicator for a SCelll beam failure event report request. The UE transmits a PUCCH in the PUCCH resource configured in the configuration of SCell beam failure event report request. If the UE does not detect beam failure in any SCell configured for SCell beam failure recovery, the UE does not transmit in the PUCCH resource configured in the configuration of a SCell beam failure event report request.
If an occasion of PUCCH transmission for the SCell beam failure event report request overlaps with an occasion of transmission for another UCI, that is, a PUCCH resource used for transmission of one SCell beam failure event report request overlaps with at least one PUCCH resource used for transmission of another UCI, the UE can be requested to perform one or more of the followings operations.
If an occasion of PUCCH transmission for the SCell beam failure event report request overlaps with an occasion of SR transmission, the UE can be requested to perform one of the followings operations.
The UE may drop the transmission of SCell beam failure event report request.
The UE may drop the SR transmission.
If the SR transmission is associated with URLLC, the UE may drop the transmission of SCell beam failure event report request. If the SR transmission is associated with eMBB, the UE may drop the SR transmission.
The UE may multiplex bits of the SR with bits of the SCell beam failure event report request. A value of each bit in the SR may indicate a positive or negative SR. A value of the SCell beam failure event report request may be positive or negative.
If the PUCCH transmission of the SCell beam failure event report request overlaps with a PUCCH for one or more CSI reports, the UE may perform the following operations. One bit representing a negative or positive SCell beam failure event report request is appended to bits of the CSI report.
If the PUCCH transmission of the SCell beam failure event report request overlaps with a PUCCH for HARQ-ACK information, the following operations are executed.
If the PUCCH for HARQ-ACK information is transmitted in a PUCCH resource using PUCCH format 2 or 3 or 4, one bit representing a negative or positive SCell beam failure event report request is appended to the bits of the HARQ-ACK information, the UE transmits the combined bits in the PUCCH resource using a PUCCH format 2 or 3 or 4 that is determined by the UE according to the size of UCI.
It should be noted that, in one example, the PUCCH configuration for the SCell beam failure event report request may be one particular SR configuration. In this case, the rule about how to multiplex the HARQ-ACK with the SCell beam failure event report may be same to the rule about how to multiplex the HARQ-ACK with the SR.
In one example, the first Configuration of PUCCH for the SCell beam failure event report request may be configured as one particular SR configuration. The UE is configured, by a higher layer parameter SchedulingRequestResourceConfig, a set of K (K≥1) SR configurations for in PUCCH transmission using either PUCCH format 0 or PUCCH format 1. The gNB may configure the UE to use one particular SR configuration as the configuration for the SCell beam failure event report request, and the UE may not use the SR configuration to request UL-SCH resources for new transmission. In one example, the UE is configured with a set of SR configurations with configuration IDs: {SR 1, SR 2, …, SR K} . The gNB configures the UE to use SR configuration with configuration ID SR 1 for the SCell beam failure event report request. Then the UE may perform the following operations.
The UE may use PUCCH resources configured in SR configurations {SR 2, …, SR K } to transmit an SR request for requesting UL-SCH resources for new transmission.
The UE may use the PUCCH resource configured in the SR configuration SR 1 to transmit positive indicator for a SCell beam failure event report request. The UE is requested to not perform transmission in the PUCCH resource configured in the SR configuration SR 1 for requesting a UL-SCH resource for new transmission.
Two examples of RRC signaling design in this method include a first example and a second example.
A first example is shown in Table 3.
Figure PCTCN2020102185-appb-000003
Figure PCTCN2020102185-appb-000004
Table 3
The parameter scellBFR-schedulingRequest indicates one SR configuration ID that the UE is configured to use for a SCell beam failure event report request.
A second example is shown in Table 4.
Figure PCTCN2020102185-appb-000005
Table 4
The parameter SCell-BFR configured in a SR configuration indicates whether the SR configuration is used for SCell beam failure event report request or not.
In one method, the UE may be requested to report UCI of a SCell beam failure recovery request. In transmission of the UCI of the SCell beam failure recovery request, the UE can report the following information in the UCI of SCell beam failure recovery request: a first indicator and a second indicator.
The first indicator indicates a SCell where beam failure is detected.
In one example, the first indicator may be a value of an ID of a SCell, i.e., the SCellIndex configured for the SCell.
In one example, the UE is configured to perform beam failure recovery on four SCells. The first indicator may be a two-bit value. A value 00 indicates the SCell with lowest SCellIndex among all SCells configured for beam failure recovery, a value 01 indicates the SCell with the second lowest SCellIndex among  all SCells configured for beam failure recovery. The benefit of the example is reducing payload size of the UCI.
In one example, the first indicator may be a bit map and each bit in the bit map corresponds to one SCell configured for beam failure recovery. For example, the UE is configured to perform beam failure recovery on four SCells and the bit-map is b 0b 1b 2b 3. Bits b 0, b 1, b 2 and b 3 correspond to the SCell with lowest, second lowest, third lowest and largest SCellIndex among all four SCells configured for beam failure recovery.
If only one SCell is configured for beam failure recovery, the first indicator may be omitted in the reported UCI.
The second indicator indicates a CSI-RS resource or SS/PBCH from a set of candidate beam SRs, which is configured for beam failure recovery for the SCell that is indicated by the first indicator.
In an example, if none of the SCells configured for beam failure recovery is configured with a set of candidate beam SRs, the length of the second indicator is zero.
In an example, the number of bits in the second indicator may be
Figure PCTCN2020102185-appb-000006
where L denotes the largest number of RSs among the sets of candidate beam RSs configured to all SCells configured for beam failure recovery.
In an example, in a given UCI report, the number of bits in the second indicator may depend on the value of the first indicator. That is, the number of bits depends on the SCellIndex reported in the same UCI. For example, in a given UCI report, the first indicator indicates that beam failure occurs in the SCell with SCellIndex. The number of bits in the second indicator of the same UCI is
Figure PCTCN2020102185-appb-000007
 where l denotes the number of RSs contained in the set of candidate beam RSs configured for the SCell with SCellIndex.
In a method, the gNB may trigger the UE to report UCI of a SCell beam failure recovery request in a PUSCH transmission.
A DCI format carries a field SCell_Link_Recovery_Request to trigger the UE to report UCI of a SCell beam failure recovery request in a PUSCH transmission. The length of the field SCell_Link_Recovery_Request may be 1 bit. If the bit in field SCell_Link_Recovery_Request is set to zero, no UCI of SCell beam failure recovery request is requested. If the bit in the field SCell_Link_Recovery_Request is set to one, transmission of UCI of a SCell beam failure recovery request is requested
If the DCI requests transmission of UCI of a SCell beam failure recovery request, the UE may multiplex the UCI of a SCell beam failure recovery request in the scheduled PUSCH transmission.
A Beta_offset value is defined for the UE to determine the number of resources for multiplexing the UCI of a SCell beam failure recovery request in the PUSCH transmission.
In an example, for the UCI of a SCell beam failure recovery request, the UE may be configured with a beta_offset value by a higher layer parameter.
The UE is provided with a 
Figure PCTCN2020102185-appb-000008
 value for the UCI of a SCell beam failure recovery request on PUSCH transmission by higher layer parameter, and the UE determines a beta_offset value according a mapping relation between beta_offset values and 
Figure PCTCN2020102185-appb-000009
 values.
In an example, the DCI for triggering transmission of UCI of a SCell beam failure recovery request may include a beta_offset value for the UCI of SCell beam failure recovery request.
In this example, the UE is configured with one or more beta_offset values for the UCI of a SCell beam failure recovery request. An indicator field in the DCI indicates one of those configured beta_offset values, which the UE may use to multiplex the UCI of a SCell beam failure recovery request in the PUSCH scheduled by the DCI.
In an example, the field ‘beta_offset_indicator’ in DCI format 0_1 may be used to indicate a 
Figure PCTCN2020102185-appb-000010
 value for the UCI of SCell beam failure recovery request multiplexed in the PUSCH, and the UE determines a beta_offset value based on the mapping relation between beta_offset values and 
Figure PCTCN2020102185-appb-000011
 values. The mapping relation between beta_offset values and the 
Figure PCTCN2020102185-appb-000012
 values is shown as follows.
Figure PCTCN2020102185-appb-000013
Table 5
The UCI of a SCell beam failure recovery request is mapped to REs following REs where the CSI part II are mapped in the same PUSCH. The UCI of SCell beam failure recovery request is mapped along the  frequency domain first and then along the time-domain.
In a method, the gNB may trigger the UE to report the UCI of a SCell beam failure recovery request in a PUCCH transmission.
A DCI format carries a field SCell_Link_Recovery_Request to trigger the UE to report UCI of a SCell beam failure recovery request in a PUCCH transmission. A value of the field SCell_Link_Recovery_Request may indicate one configuration of aperiodic reporting of UCI of a SCell beam failure recovery request configured by a higher layer parameter.
The UE may be configured, by a higher layer parameter, with a set of configurations of aperiodic reporting of UCI of a SCell beam failure recovery request. Each configuration includes information of: an ID pucchId of a PUCCH resource for transmission of UCI; and a slot offset k SCell for an occasion of PUCCH transmission.
The UE is configured with a mapping relation between values of the field SCell_Link_Recovery_Request and configurations of aperiodic reporting of UCI of a SCell beam failure recovery request. An example is shown in following Table 6.
Figure PCTCN2020102185-appb-000014
Table 6
If the UE detects DCI at slot n, which triggers UCI of a SCell beam failure recovery request, the UE is requested to report the UCI of a SCell beam failure recovery in the PUCCH transmission in a PUCCH resource with pucchId at slot n+ k SCell, where pucchId and k SCell represent an ID of a PUCCH resouce and a slot offset configured in the configuration of aperiodic reporting of the UCI that is indicated by the field SCell_Link_Recovery_Request in the detected DCI.
In an example, if the UE receives DCI that triggers reporting of UCI of a SCell beam failure recovery but the UE does not detect any SCell beam failure recovery, the UE may perform operations as follows.
The UE reports an invalid combination of a value of the first indicator for an SCell index and a value of the second indicator. For example, the UE may report a value of the second indicator, that is an invalid indicator for CSI-RS or SS/PBCH block for the SCell indicated by the first indicator in reporting of the same UCI.
The UE may set all bits in the UCI to a special value, for example, all bits are set to 1.
In this case, the values of bits in the reported UCI may indicate to the gNB that there is no SCell beam failure event.
In an embodiment, the UE can be configured to perform beam failure recovery on one or more SCells. For each of the SCells, a dedicated configuration of PUCCH resources is configured for the UE to report the beam failure event of the SCell. For a first SCell, the UE is configured with a dedicated configuration of PUCCH resources. Only when the UE detects beam failure on the first SCell, the UE generates a positive indicator for the first SCell and then transmits a PUCCH in the PUCCH resource configured in the dedicated configuration for the beam failure recovery of the first SCell.
FIG. 4 is a third flowchart of a method for SCell beam failure recovery according to an embodiment of the disclosure. As shown in FIG. 4, the method for SCell beam failure recovery includes operations 401 to 406.
At 401, a serving gNB transmits configuration information to a UE.
Here, the configuration information includes the following contents: configurations of beam failure recovery for a first cell and a second Scell; a first configuration of PUCCH for the first SCell; and a second configuration of PUCCH for the second SCell.
At 402, for each SCell configured for beam failure recovery, the UE measures a beam failure detection RS to detect beam failure on the first SCell and the second SCell based on the configuration information.
At 403, the UE determines a beam failure event on the first SCell.
At 404, the UE transmits a positive indicator in a PUCCH resource configured in the first configuration of PUCCH.
At 405, the UE determines a beam failure event on the second SCell.
At 406, the UE transmits a positive indicator in a PUCCH resource configured in the second configuration of PUCCH.
It should be illustrated that, operations 305 to 307 in the above solution may be executed after operation 406.
As shown in FIG. 4, the serving gNB transmits configuration information of SCell beam failure recovery to the UE, which may include the configurations of beam failure recovery for a first SCell and a second SCell. The serving gNB configures a first configuration of PUCCH for the first SCell and a second configuration of PUCCH for the second SCell. Based on the configuration information, the UE measures a beam failure detection RS associated with the first SCell to detect beam failure for the first SCell. If the UE determines a beam failure event on the first SCell, the UE transmits a positive indicator in the PUCCH resource in the first configuration of PUCCH corresponding to the beam failure recovery of the first SCell, to indicate to the serving gNB that beam failure occurs in the first SCell. If the UE determines a beam failure event on the second SCell, the UE transmits a positive indicator in the PUCCH resource in the second configuration of PUCCH corresponding to the beam failure recovery of the second SCell, to indicate to the serving gNB that beam failure occurs in the second SCell.
In an example, the first configuration of PUCCH for beam failure recovery of the first SCell and the second configuration of PUCCH for beam failure recovery of the second SCell may be implemented by one particular SR configuration. The UE is configured, by a higher layer parameter SchedulingRequestResourceConfig, a set of K (K≥1) SR configurations for in a PUCCH transmission using either PUCCH format 0 or PUCCH format 1. The gNB may configure the UE to use a particular SR configuration as the first configuration for failure recovery of the first SCell beam, and use another particular SR configruation as the second configuration for failure recovery of the second SCell beam. With the configruation, the UE may not use the two SR configruations to request UL-SCH resources for new transmission. In an example, the UE is configrued with a set of SR configurations with configruation IDs: {SR 1, SR 2, …, SR K} . and the gNB configures the UE to use an SR configuraiton with a configuration ID SR 1 for beam failure recovery of the first SCell, and to use an SR configuraiton with a configuration ID SR 2 for beam failure recovery of the second SCell. The UE may perform operations as follows.
The UE may use PUCCH resources configured in SR configurations {SR 3, …, SR K } to transmit a SR request for requesting UL-SCH resources for new transmission.
The UE may use a PUCCH resource configured in the SR configuration with configuration ID SR 1 to transmit a positive indicator to the gNB when the UE determine beam failure in the first SCell. The UE is requested not to transmit a PUCCH in the PUCCH resource configured in the SR configuration with configuration ID SR 1 for requesing a UL-SCH resource for new transmission.
The UE may use a PUCCH resource configured in the SR configuration with configuration ID SR 2 to transmit a positive indicator to the gNB when the UE determine beam failure in the second SCell. The UE is requested not to transmit a PUCCH in the PUCCH resource configured in the SR configuration with configuration ID SR 2 for requesing a UL-SCH resource for new transmission.
Two examples of RRC signaling design for the method includes a first example and a second example.
A first example is shown in Table 7.
Figure PCTCN2020102185-appb-000015
Figure PCTCN2020102185-appb-000016
Table 7
The parameter Scell-SR configures an association relation between SR configuration IDs and SCells. the UE is configured to use an SR configuration associated with a SCell for beam failure recovery for the SCell.
A second example is shown in Table 8.
Figure PCTCN2020102185-appb-000017
Table 8
The parameter SCell-BFR configured in an SR configuration indicates an SCell that is associated with the SR configuration, and the UE may use the SR configuration associated to an SCell for beam failure recovery for the SCell.
In the above solutions according to the embodiments of the disclosure, the methods of physical layer-based SCell beam failure recovery (BFR) are presented. The methods are presented in the disclosure. The information of SCell beam failure including an index of a SCell that meets beam failure and an index of a new beam is reported as one new format of UCI.
FIG. 5 is a schematic structural diagram of a device for SCell beam failure recovery in the embodiments of the disclosure. The device for SCell beam failure recovery is applied to a UE. As shown in FIG. 5, the device for SCell beam failure recovery includes a detecting unit 501, a transmitting unit 502 and a receiving unit 503.
The detecting unit 501 is configured to detect that beam failure occurs in at least one SCell.
The transmitting unit 502 is configured to transmit at least one indication information to a network  device. The at least one indication information is used to indicate that beam failure occurs in at least one SCell.
The receiving unit 503 is configured to receive DCI transmitted by the network device. The DCI is used to request the UE to report first UCI on a first physical channel.
The transmitting unit 502 is further configured to report the first UCI to the network device on the first physical channel. The first UCI carries first indication information and/or second indication information. The first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to indicate an index of a new RS associated to each of the at least one SCell.
In an optional manner, the receiving unit 503 is further configured to receive first configuration information transmitted by the network device. The first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource.
The transmitting unit 502 is configured to transmit third indication information to the network device on the first PUCCH resource based on the first configuration information. The third indication information is used to indicate that beam failure occurs in the at least one SCell.
In an optional manner, the at least one SCell includes a first SCell and a second SCell.
The receiving unit 503 is further configured to receive first configuration information and second configuration information transmitted by the network device. The first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource, and the second configuration information is used to determine a PUCCH configuration corresponding to a second PUCCH resource.
The transmitting unit 502 is configured to transmit third indication information to the network device on the first PUCCH resource based on the first configuration information, and transmits fourth indication information to the network device on the second PUCCH resource based on the second configuration information. The third indication information is used to indicate that beam failure occurs in the first SCell, and the fourth indication information is used to indicate that beam failure occurs in the second SCell.
In an optional manner, the PUCCH configuration includes at least one information of an identification of the PUCCH resource, a period of the PUCCH resource, an offset of the PUCCH resource in one period, and an index of a first resource unit of the PUCCH resource in one period.
In an optional manner, the PUCCH configuration is determined based on a specific SR configuration. The specific SR configuration refers to an SR configuration used for a SCell beam failure event report request.
In an optional manner, the receiving unit 503 is further configured to receive third configuration information transmitted by the network device. The third configuration information is used to determine at least one SCell configuration.
The detecting unit 501 is configured to detect whether beam failure occurs in each of at least one SCell based on the at least one SCell configuration.
In an optional manner, each SCell configuration includes at least one of configuration information of a beam failure detection RS, configuration information of a set of new beam identification RSs and information of a threshold for recognizing a new RS.
In an optional manner, the first UCI refers to UCI of a SCell beam failure recovery request.
Alternatively, the first UCI refers to UCI of a SCell link recovery request.
In an optional manner, the DCI carries fifth indication information. The fifth indication information is used to indicate a first physical channel, and the first physical channel belongs to the PUCCH.
In an optional manner, the transmitting unit 502 is configured to transmit the first UCI to the network device through the PUCCH based on the fifth indication information.
In an optional manner, the DCI carries fifth indication information, and the fifth indication information is used to schedule transmission of the first physical channel, and the first physical channel belongs to the PUSCH.
In an optional manner, the transmitting unit 502 is configured to transmit the first UCI to the network device through the PUSCH based on the fifth indication information.
In an optional manner, the at least one indication information is transmitted in a time slot n, and n is a positive integer.
The receiving unit 503 is configured to receive the DCI transmitted by the network device within a time window, and a starting time slot of the time window is time slot n+1.
In an optional manner, if the receiving unit 503 does not receive DCI transmitted by the network device within the time window, the transmitting unit 502 retransmits the at least one indication information to the network device.
It should be understood by those skilled in the art that, regarding the related description for the above device for SCell beam failure recovery in the embodiments of the disclosure, reference may be made to the related description on the method for SCell beam failure recovery in the embodiments of the disclosure.
FIG. 6 is a schematic structural diagram of a device for SCell beam failure recovery in the embodiments of the disclosure. The device for SCell beam failure recovery is applied to a network device. As  shown in FIG. 6, the device for SCell beam failure recovery includes a receiving unit 601 and a transmitting unit 602.
The receiving unit 601 is configured to receive at least one instruction information transmitted by a UE. The at least one instruction information is used to indicate that beam failure occurs in at least one SCell.
The transmitting unit 602 is configured to transmit DCI to the UE. The DCI is used to request the UE to report first UCI on a first physical channel.
The receiving unit 601 is further configured to receive first UCI reported by the UE on the first physical channel. The first UCI carries first indication information and/or second indication information. The first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to indicate an index of a new RS associated to each of the at least one SCell.
In an optional manner, the transmitting unit 602 is further configured to transmit first configuration information to the UE. The first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource.
The receiving unit 601 is configured to receive third indication information transmitted by the UE on the first PUCCH resource. The third indication information is used to indicate that beam failure occurs in the at least one SCell.
In an optional manner, the at least one SCell includes a first SCell and a second SCell.
The transmitting unit 602 is further configured to transmit first configuration information and second configuration information to the UE. The first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource, and the second configuration information is used to determine a PUCCH configuration corresponding to a second PUCCH resource.
The receiving unit 601 is configured to receive third indication information transmitted by the UE on the first PUCCH resource, and fourth indication information transmitted by the UE on the second PUCCH resource. The third indication information is used to indicate that beam failure occurs in the first SCell, and the fourth indication information is used to indicate that beam failure occurs in the second SCell.
In an optional manner, the PUCCH configuration includes at least one information of an identification of the PUCCH resource, a period of the PUCCH resource, an offset of the PUCCH resource in one period and an index of a first resource unit of the PUCCH resource in one period.
In an optional manner, the PUCCH configuration is determined based on a specific SR configuration. The specific SR configuration refers to an SR configuration used for a SCell beam failure event report request.
In an optional manner, the transmitting unit 602 is further configured to transmit third configuration information to the UE. The third configuration information is used to determine at least one SCell configuration.
The third configuration information is used by the UE to detect whether beam failure occurs in each of at least one SCell.
In an optional manner, each SCell configuration includes at least one of configuration information of a beam failure detection RS, configuration information of a set of new beam identification RSs and information of a threshold for recognizing a new RS.
In an optional manner, the first UCI refers to UCI of a SCell beam failure recovery request.
The first UCI refers to UCI of a SCell link recovery request.
In an optional manner, the DCI carries fifth indication information. The fifth indication information is used to indicate a first physical channel, and the first physical channel belongs to the PUCCH.
In an optional manner, the receiving unit 601 is configured to receive first UCI transmitted by the UE on the PUCCH.
In an optional manner, the DCI carries fifth indication information, and the fifth indication information is used to schedule transmission of the first physical channel, and the first physical channel belongs to the PUSCH.
In an optional manner, the receiving unit 601 is configured to receive the first UCI transmitted by the UE on the PUSCH.
It should be understood by those skilled in the art that, regarding the related description for the above device for SCell beam failure recovery in the embodiments of the disclosure, reference may be made to the related description on the method for SCell beam failure recovery in the embodiments of the disclosure.
FIG. 7 is a schematic structural diagram of a communication device 700 provided in the embodiments of the disclosure. The communication device can be a UE or network device. The communication device 700 illustrated in FIG. 7 includes processor 710, and processor 710 can call and run computer programs from memory to realize the method in the embodiments of the present disclosure.
Optionally, as illustrated in FIG. 7, the communication device 700 may further include a memory 720. The processor 710 can invoke and run the computer program from memory 720 to implement the method in the embodiments of the disclosure.
The memory 720 may be a separate device independent of the processor 710 or integrated into the processor 710.
Optionally, as illustrated in FIG. 7, the communication device 700 may also include a transceiver 730. The processor 710 may control the transceiver 730 to communicate with other devices, in particular, to send information or data to other devices, or receive information or data sent by other devices.
The transceiver 730 may include a transmitter and a receiver. The transceiver 730 may further include an antenna (s) , the number of which may be one or more.
Optionally, the communication device 700 can be specifically a network device of the embodiment of the disclosure, and the communication device 700 can realize the corresponding process realized by the network device in each method of the embodiments of the present disclosure. For the sake of simplicity, it will not be elaborated here.
Optionally, the communication device 700 can be a mobile terminal/UE according to the embodiments of the disclosure, and the communication device 700 can realize the corresponding flow realized by the mobile terminal/UE in the various methods of the embodiments of the present disclosure. For the sake of brevity, it will not be described here.
FIG. 8 is a schematic structural diagram of a chip according to an embodiment of the present disclosure. The chip 800 illustrated in FIG. 8 includes processor 810, and processor 810 can call and run computer programs from memory to implement the method in the embodiments of the disclosure.
Optionally, as illustrated in FIG. 8, the chip 800 may also include a memory 820. The processor 810 can call and run the computer program from memory 820 to implement the method in the embodiments of the disclosure.
The memory 820 may be a separate device independent of the processor 810 or integrated into the processor 810.
Optionally, the chip 800 may also include an input interface 830. The processor 810 can control the input interface 830 to communicate with other devices or chips, and in particular can obtain information or data sent by other devices or chips.
Optionally, the chip 800 may also include an output interface 840. The processor 810 may control the output interface 840 to communicate with other devices or chips, and in particular may output information or data to other devices or chips.
Optionally, the chip can be applied to the network device in the embodiments of the present disclosure, and the chip can realize the corresponding process realized by the network device in each method of the embodiments of the disclosure. For the sake of brevity, it will not be elaborated here.
Optionally, the chip can be applied to the mobile terminal/UE in the embodiments of the disclosure, and the chip can realize the corresponding flow realized by the mobile terminal/UE in each method of the embodiment of the disclosure. For the sake of simplicity, it will not be described here.
It is to be understood that the chips mentioned in the embodiments of the present disclosure can also be referred to as system level chips, system chips, chip systems or on-chip system chips, etc.
FIG. 9 is a schematic block diagram of a communication system 900 provided by an embodiment of the disclosure. As illustrated in FIG. 9, the communication system 900 includes a UE 910 and a network device 920.
The UE 910 can be used to realize the corresponding functions realized by the UE in the above method, and the network device 920 can be used to realize the corresponding functions realized by the network device in the above method. For the sake of simplicity, it will not be elaborated here.
It is to be understood that the processor of the embodiment of the disclosure may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method embodiment can be completed by the instruction in the form of integrated logic circuit of hardware or software in the processor. The above processors can be general purpose processors, digital signal processors (DSPs) , application specific integrated circuits (ASICs) , field programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components. The disclosed methods, steps and logic block diagrams in the embodiments of the disclosure can be implemented or executed. The general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the method disclosed in connection with the embodiment of the disclosure can be directly embodied to be executed and completed by the hardware decoding processor, or by the combination of the hardware and software modules in the decoding processor. The software module can be arranged in a random memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register and other mature storage media in the art. The storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with hardware thereof.
It is to be understood that the memory in the embodiments of the disclosure may be volatile memory  or non-volatile memory, or may include both volatile and non-volatile memory. The nonvolatile memory can be read-only memory (ROM) , programmable ROM (PROM) , erasable PROM (EPROM) , electrically erasable EPROM (EEPROM) or flash memory. Volatile memory can be random access memory (RAM) , which is used as an external cache. Many forms of RAMs are available, such as static RAM (SRAM) , dynamic RAM (DRAM) , synchronous DRAM (SDRAM) , double data rate SDRAM (DDR SDRAM, enhanced SDRAM (ESDRAM) , synchlink DRAM (SLDRAM) and direct Rambus RAM (DR RAM) . It is to be noted that the memory of the systems and methods described herein is intended to include, but is not limited to, these and any other suitable types of memory.
It is to be understood that the above described memory is exemplary but not restrictive. For example, the memory in the embodiment of the disclosure can also be static RAM (SRAM) , dynamic RAM (DRAM) , synchronous dynamic random access memory (synchronous DRAM (SDRAM) , double data rate SDRAM (DDR SDRAM) , enhanced SDRAM (ESDRAM) , synchronous link DRAM (SLDRAM) , direct Rambus RAM (DR RAM) , etc. That is to say, the memory in the embodiments of the present disclosure is intended to include, but not limited to, these and any other suitable types of memory.
The embodiments of the disclosure also provide a computer-readable storage medium for storing computer programs.
Optionally, the computer-readable storage medium can be applied to the network device in the embodiment of the disclosure, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the disclosure. For the sake of brevity, it will not be repeated here.
Optionally, the computer-readable storage medium can be applied to the mobile terminal/UE in the embodiment of the present disclosure, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/UE in the various methods of the embodiment of the disclosure. For the sake of brevity, it will not be repeated here.
The embodiment of the disclosure also provides a computer program product, including a computer program instruction.
Optionally, the computer program product can be applied to the network device in the embodiments of the disclosure, and the computer program instruction enables the computer to execute the corresponding flows implemented by the network device in the various methods of the embodiment of the disclosure. For the sake of brevity, it will not be repeated here.
Optionally, the computer program product can be applied to the mobile terminal/UE in the embodiments of the disclosure, and the computer program instruction enables the computer to execute the corresponding flows implemented by the mobile terminal/UE in the various methods of the embodiment of the disclosure, for the sake of brevity, it will not be repeated here.
The embodiment of the present disclosure also provides a computer program.
Optionally, the computer program can be applied to the network device in the embodiments of the disclosure. When the computer program runs on the computer, the computer executes the corresponding process realized by the network device in each method of the embodiment of the disclosure. For the sake of brevity, it will not be described here.
Optionally, the computer program can be applied to the mobile terminal/UE in the embodiments of the disclosure. When the computer program runs on the computer, the computer executes the corresponding flow realized by the mobile terminal/UE in the various methods of the embodiment of the disclosure. For the sake of brevity, it will not be elaborated here.
Those of ordinary skill in the art may realize that the unit and algorithm steps of each example described in combination with the disclosed embodiments herein can be realized by the combination of electronic hardware, or computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. A professional technician may use different methods to implement the described functions for each specific application, but such implementation shall not be considered beyond the scope of the present disclosure.
Those skilled in the art can clearly understand that for the convenience and simplicity of the description, the specific working process of the system, device and unit described above can refer to the corresponding process in the embodiment of the method described above, and will not be described here.
In several embodiments provided by the present disclosure, it should be understood that the disclosed systems, devices and methods can be realized in other ways. For example, the embodiment of the device described above is only schematic. For example, the division of the unit is only a logical function division, and there can be another division method in actual implementation, for example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not implemented. On the other hand, the mutual coupling or direct coupling or communication connection illustrated or discussed can be indirect coupling or communication connection through some interfaces, devices or units, and can be electric,  mechanical or other forms.
The unit described as a separation part may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to the actual needs to achieve the purpose of the embodiment.
In addition, each functional unit in each embodiment of the disclosure may be integrated in one processing unit, each unit may exist physically alone, or two or more units may be integrated in one unit.
If the function is realized in the form of a software function unit and sold or used as an independent product, the function can be stored in a computer readable storage medium. Based on such understanding, essential parts of the technical solution of the present disclosure or the parts of the technical solution making contributions to the conventional art, or the part of the technical solution may be embodied in the form of a software product. The computer software product is stored in a storage medium, which includes several instructions for making a computer device (which can be a personal computer, a server, a network device, etc. ) to perform all or a part of the steps of the method according to each embodiment of the disclosure. The aforementioned storage media include: a U disk, mobile hard disk, read-only memory (ROM) , random access memory (RAM) , disk or optical disk and other media that can store a program code.
The foregoing is only the specific embodiments of the disclosure, but the scope of protection of the disclosure is not limited thereto. Any person skilled in the technical field who can easily think of change or replacement within the technical scope of the disclosure shall be covered in the scope of protection of the disclosure. Therefore, the protection scope of the disclosure shall be subject to the protection scope of the claims.

Claims (62)

  1. A method for secondary cell (SCell) beam failure recovery, comprising:
    in response to that detecting, by a user equipment (UE) , that beam failure occurs in at least one SCell, transmitting, by the UE, at least one indication information to a network device, wherein the at least one instruction information is used to indicate that beam failure occurs in the at least one SCell;
    receiving, by the UE, downlink control information (DCI) transmitted by the network device to request the UE to report first uplink control information (UCI) on a first physical channel; and
    reporting, by the UE, the first UCI to the network device on the first physical channel, wherein the first UCI carries at least one of first indication information or second indication information, the first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to indicate an index of a new reference signal (RS) of each of the at least one SCell.
  2. The method of claim 1, further comprising:
    receiving, by the UE, first configuration information transmitted by the network device, wherein the first configuration information is used to determine a physical uplink control channel (PUCCH) configuration corresponding to a first PUCCH resource,
    wherein transmitting, by the UE, the at least one indication information to the network device comprises:
    transmitting, by the UE, third indication information to the network device on the first PUCCH resource based on the first configuration information, wherein the third indication information is used to indicate that beam failure occurs in the at least one SCell.
  3. The method of claim 1, wherein the at least one SCell comprises a first SCell and a second SCell,
    wherein the method further comprises:
    receiving, by the UE, first configuration information and second configuration information transmitted by the network device, wherein the first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource, and the second configuration information is used to determine a PUCCH configuration corresponding to a second PUCCH resource,
    wherein transmitting, by the UE, the at least one indication information to the network device comprises:
    transmitting, by the UE, third indication information to the network device on the first PUCCH resource based on the first configuration information, and transmitting, by the UE, fourth indication information to the network device on the second PUCCH resource based on the second configuration information, wherein the third indication information is used to indicate that beam failure occurs in the first SCell, and the fourth indication information is used to indicate that beam failure occurs in the second SCell.
  4. The method of claim 2 or 3, wherein the PUCCH configuration comprises at least one information of an identification of a PUCCH resource, a period of a PUCCH resource, an offset of a PUCCH resource in one period, and an index of a first resource unit of a PUCCH resource in one period.
  5. The method of claim 2 or 3, wherein the PUCCH configuration is determined based on a specific SR configuration, the specific SR configuration refers to an SR configuration used for a SCell beam failure event report request.
  6. The method of any one of claims 1 to 5, further comprising:
    receiving, the UE, third configuration information transmitted by the network device, wherein the third configuration information is used to determine at least one SCell configuration; and
    detecting, by the UE according to the at least one SCell configuration, whether beam failure occurs in each of the at least one SCell.
  7. The method of claim 6, wherein each SCell configuration comprises at least one of configuration information of a beam failure detection RS, configuration information of a set of new beam identification RSs and information of a threshold for recognizing a new RS.
  8. The method of any one of claims 1 to 7, wherein
    the first UCI is UCI of a SCell beam failure recovery request; or
    the first UCI is UCI of a SCell link recovery request.
  9. The method of any one of claims 1 to 8, wherein the DCI carries fifth indication information, and the fifth indication information is used to indicate the first physical channel, and the first physical channel is of a PUCCH.
  10. The method of claim 9, wherein the reporting, by the UE, the first UCI to the network device on the first physical channel comprises: transmitting, by the UE, the first UCI to the network device through the PUCCH based on the fifth indication information.
  11. The method of any one of claims 1 to 8, wherein the DCI carries fifth indication information, the fifth indication information is used to schedule transmission of the first physical channel, the first physical channel is of a physical uplink shared channel (PUSCH) .
  12. The method of claim 11, wherein reporting, by the UE, the first UCI to the network device on the first physical channel comprises: transmitting, by the UE, the first UCI to the network device through the PUSCH based on the fifth indication information.
  13. The method of any one of claims 1 to 12, wherein the at least one indication information is transmitted in a time slot n, n being a positive integer,
    wherein receiving, by the UE, DCI transmitted by the network device comprises:
    receiving, by the UE, DCI transmitted by the network device in a time window, a starting time slot of the time window is a time slot n+1.
  14. The method of claim 13, further comprising:
    retransmitting, by the UE, the at least one indication information to the network device in response to that the UE does not receive the DCI transmitted by the network device within the time window.
  15. A method for secondary cell (SCell) beam failure recovery, comprising:
    receiving, by a network device, at least one indication information transmitted by a user equipment (UE) , wherein the at least one instruction information is used to indicate that beam failure occurs in the at least one SCell;
    transmitting, by the network device, downlink control information (DCI) to the UE to request the UE to report first uplink control information (UCI) on a first physical channel; and
    receiving, by the network device, first UCI reported by the UE on the first physical channel, wherein the first UCI carries at least one of first indication information or second indication information, the first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to indicate an index of a new reference signal (RS) of each of the at least one SCell.
  16. The method of claim 15, further comprising:
    transmitting, by the network device, first configuration information to the UE, wherein the first configuration information is used to determine a physical uplink control channel (PUCCH) configuration corresponding to a first PUCCH resource,
    wherein receiving, by the network device, at least one indication information transmitted by the UE comprises: receiving, by the network device, third indication information transmitted by the UE on the first PUCCH resource, wherein the third indication information is used to indicate that beam failure occurs in the at least one SCell.
  17. The method of claim 15, wherein the at least one SCell comprises a first SCell and a second SCell,
    the method further comprises:
    transmitting, by the network, first configuration information and second configuration information to the UE, wherein the first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource, and the second configuration information is used to determine a PUCCH configuration corresponding to a second PUCCH resource,
    wherein receiving, by the network device, at least one indication information transmitted by the UE comprises:
    receiving, by the network device, third indication information transmitted by the UE on the first  PUCCH resource, and receiving, by the network device, fourth indication information transmitted by the UE on the second PUCCH resource, wherein the third indication information is used to indicate that beam failure occurs in the first SCell, and the fourth indication information is used to indicate that beam failure occurs in the second SCell.
  18. The method of claim 16 or 17, wherein the PUCCH configuration comprises at least one information of an identification of a PUCCH resource, a period of a PUCCH resource, an offset of a PUCCH resource in one period, and an index of a first resource unit of a PUCCH resource in one period.
  19. The method of claim 16 or 17, wherein the PUCCH configuration is determined based on a specific SR configuration, the specific SR configuration refers to an SR configuration used for a SCell beam failure event report request.
  20. The method of any one of claims 15 to 19, further comprising:
    transmitting, by network device, third configuration information to the UE, wherein the third configuration information is used to determine at least one SCell configuration; and
    the third configuration information is used by the UE to detect whether beam failure occurs in each of the at least one SCell.
  21. The method of claim 20, wherein each SCell configuration comprises at least one of configuration information of a beam failure detection RS, configuration information of a set of new beam identification RSs and information of a threshold for recognizing a new RS.
  22. The method of any one of claims 15 to 21, wherein
    the first UCI is UCI of a SCell beam failure recovery request; or
    the first UCI is UCI of a SCell link recovery request.
  23. The method of any one of claims 15 to 22, wherein the DCI carries fifth indication information, and the fifth indication information is used to indicate the first physical channel, and the first physical channel is of a PUCCH.
  24. The method of claim 23, wherein receiving, by the network device, the first UCI reported by the UE on the first physical channel comprises: receiving, by the network device, the first UCI transmitted by the UE on the PUCCH.
  25. The method of any one of claims 15 to 22, wherein the DCI carries fifth indication information, the fifth indication information is used to schedule transmission of the first physical channel, the first physical channel is of a physical uplink shared channel (PUSCH) .
  26. The method of claim 25, wherein receiving, by the network device, the first UCI reported by the UE on the first physical channel comprises: receiving, by the network device, the first UCI transmitted by the UE on the PUSCH.
  27. A device for secondary cell (SCell) beam failure recovery, applied to a user equipment (US) and comprising:
    a detecting unit configured to detect that beam failure occurs in at least one SCell;
    a transmitting unit configured to transmit at least one indication information to a network device, wherein the at least one instruction information is used to indicate that beam failure occurs in the at least one SCell; and
    a receiving unit configured to receive downlink control information (DCI) transmitted by the network device, to request the UE to report first uplink control information (UCI) on a first physical channel,
    wherein the transmitting unit is further configured to report the first UCI to the network device on the first physical channel, wherein the first UCI carries at least one of first indication information or second indication information, the first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to indicate an index of a new reference signal (RS) of each of the at least one SCell.
  28. The device of claim 27, wherein the receiving unit is further configured to receive first configuration information transmitted by the network device, wherein the first configuration information is used to determine  a physical uplink control channel (PUCCH) configuration corresponding to a first PUCCH resource;
    the transmitting unit is configured to transmit third indication information to the network device on the first PUCCH resource based on the first configuration information, wherein the third indication information is used to indicate that beam failure occurs in the at least one SCell.
  29. The device of claim 27, wherein the at least one SCell comprises a first SCell and a second SCell,
    the receiving unit is further configured to receive first configuration information and second configuration information transmitted by the network device, wherein the first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource, and the second configuration information is used to determine a PUCCH configuration corresponding to a second PUCCH resource,
    the transmitting unit is configured to transmit third indication information to the network device on the first PUCCH resource based on the first configuration information, and transmit fourth indication information to the network device on the second PUCCH resource based on the second configuration information, wherein the third indication information is used to indicate that beam failure occurs in the first SCell, and the fourth indication information is used to indicate that beam failure occurs in the second SCell.
  30. The device of claim 28 or 29, wherein the PUCCH configuration comprises at least one information of an identification of a PUCCH resource, a period of a PUCCH resource, an offset of a PUCCH resource in one period, and an index of a first resource unit of a PUCCH resource in one period.
  31. The device of claim 28 or 29, wherein the PUCCH configuration is determined based on a specific SR configuration, the specific SR configuration refers to an SR configuration used for a SCell beam failure event report request.
  32. The device of any one of claims 27 to 31, wherein
    the receiving unit is further configured to receive third configuration information transmitted by the network device, wherein the third configuration information is used to determine at least one SCell configuration; and
    the detecting unit is configured to detect according to the at least one SCell configuration, whether beam failure occurs in each of the at least one SCell.
  33. The device of claim 32, wherein each SCell configuration comprises at least one of configuration information of a beam failure detection RS, configuration information of a set of new beam identification RSs and information of a threshold for recognizing a new RS.
  34. The device of any one of claims 27 to 33, wherein
    the first UCI is UCI of a SCell beam failure recovery request; or
    the first UCI is UCI of a SCell link recovery request.
  35. The device of any one of claims 27 to 34, wherein the DCI carries fifth indication information, and the fifth indication information is used to indicate the first physical channel, and the first physical channel is of a PUCCH.
  36. The device of claim 35, wherein the transmitting unit is configured to transmit the first UCI to the network device through the PUCCH based on the fifth indication information.
  37. The device of any one of claims 27 to 34, wherein the DCI carries fifth indication information, the fifth indication information is used to schedule transmission of the first physical channel, the first physical channel is of a physical uplink shared channel (PUSCH) .
  38. The device of claim 37, wherein the transmitting unit is configured to transmit the first UCI to the network device through the PUSCH based on the fifth indication information.
  39. The device of any one of claims 27 to 38, wherein the at least one indication information is transmitted in a time slot n, n being a positive integer,
    the receiving unit is configured to receive DCI transmitted by the network device in a time window, a starting time slot of the time window is a time slot n+1.
  40. The device of claim 39, wherein the transmitting unit is configured to retransmit the at least one indication information to the network device in response to that the receiving unit does not receive the DCI transmitted by the network device within the time window.
  41. A device for secondary cell (SCell) beam failure recovery, applied to a network device and comprising:
    a receiving unit configured to receive at least one indication information transmitted by a user equipment (UE) , wherein the at least one instruction information is used to indicate that beam failure occurs in the at least one SCell; and
    a transmitting unit configured to transmit downlink control information (DCI) to the UE, to request the UE to report first uplink control information (UCI) on a first physical channel,
    wherein the receiving unit is further configured to receive first UCI reported by the UE on the first physical channel, wherein the first UCI carries at least one of first indication information or second indication information, the first indication information is used to indicate an index of each of the at least one SCell, and the second indication information is used to indicate an index of a new reference signal (RS) of each of the at least one SCell.
  42. The device of claim 41, wherein
    the transmitting unit is further configured to transmit first configuration information to the UE, wherein the first configuration information is used to determine a physical uplink control channel (PUCCH) configuration corresponding to a first PUCCH resource,
    the receiving unit is configured to receive third indication information transmitted by the UE on the first PUCCH resource, wherein the third indication information is used to indicate that beam failure occurs in the at least one SCell.
  43. The device of claim 41, wherein the at least one SCell comprises a first SCell and a second SCell,
    the transmitting unit is further configured to transmit first configuration information and second configuration information to the UE, wherein the first configuration information is used to determine a PUCCH configuration corresponding to a first PUCCH resource, and the second configuration information is used to determine a PUCCH configuration corresponding to a second PUCCH resource,
    the receiving unit is configured to receive third indication information transmitted by the UE on the first PUCCH resource, and receive fourth indication information transmitted by the UE on the second PUCCH resource, wherein the third indication information is used to indicate that beam failure occurs in the first SCell, and the fourth indication information is used to indicate that beam failure occurs in the second SCell.
  44. The device of claim 42 or 43, wherein the PUCCH configuration comprises at least one information of an identification of a PUCCH resource, a period of a PUCCH resource, an offset of a PUCCH resource in one period, and an index of a first resource unit of a PUCCH resource in one period.
  45. The device of claim 42 or 43, wherein the PUCCH configuration is determined based on a specific SR configuration, the specific SR configuration refers to an SR configuration used for a SCell beam failure event report request.
  46. The device of any one of claims 41 to 45, wherein the transmitting unit is further configured to transmit third configuration information to the UE, wherein the third configuration information is used to determine at least one SCell configuration,
    the third configuration information is used by the UE to detect whether beam failure occurs in each of the at least one SCell.
  47. The device of claim 46, wherein each SCell configuration comprises at least one of configuration information of a beam failure detection RS, configuration information of a set of new beam identification RSs and information of a threshold for recognizing a new RS.
  48. The device of any one of claims 41 to 47, wherein
    the first UCI is UCI of a SCell beam failure recovery request; or
    the first UCI is UCI of a SCell link recovery request.
  49. The device of any one of claims 41 to 48, wherein the DCI carries fifth indication information, and the fifth indication information is used to indicate the first physical channel, and the first physical channel is of a PUCCH.
  50. The device of claim 49, wherein the receiving unit is configured to receive the first UCI transmitted by the UE on the PUCCH.
  51. The device of any one of claims 41 to 48, wherein the DCI carries fifth indication information, the fifth indication information is used to schedule transmission of the first physical channel, the first physical channel is of a physical uplink shared channel (PUSCH) .
  52. The device of claim 51, wherein the receiving unit is configured to receive the first UCI transmitted by the UE on the PUSCH.
  53. A user equipment (UE) , comprising a processor and a memory, wherein the memory is configured to store a computer program, the processor is configured to call and run the computer program stored in the memory, to execute the method of any one of claims 1 to 14.
  54. A network device, comprising a processor and a memory, wherein the memory is configured to store a computer program, the processor is configured to call and run the computer program stored in the memory, to execute the method of any one of claims 15 to 26.
  55. A chip, comprising a processor configured to call and run a computer program from a memory, to enable the device installed with chip to execute the method of any one of claims 1 to 14.
  56. A chip, comprising a processor configured to call and run a computer program from a memory, to enable the device installed with chip to execute the method of any one of claims 15 to 26.
  57. A computer readable memory medium having stored thereon a computer program, when executed by a computer, to enable the computer to execute the method of any one of claims 1 to 14.
  58. A computer readable memory medium having stored thereon a computer program, when executed by a computer, to enable the computer to execute the method of any one of claims 15 to 26.
  59. A computer program product comprising a computer program instruction which enables a computer to execute the method of any one of claims 1 to 14.
  60. A computer program product comprising a computer program instruction which enables a computer to execute the method of any one of claims 15 to 26.
  61. A computer program which enables a computer to execute the method of any one of claims 1 to 14.
  62. A computer program product comprising a computer program instruction which enables a computer to execute the method of any one of claims 15 to 26.
PCT/CN2020/102185 2019-07-25 2020-07-15 Method and device for scell beam failure recovery, ue and network device WO2021013017A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080019470.6A CN113615100B (en) 2019-07-25 2020-07-15 Method and device for recovering beam failure of second cell, user equipment and network equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962878460P 2019-07-25 2019-07-25
US62/878,460 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021013017A1 true WO2021013017A1 (en) 2021-01-28

Family

ID=74193326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102185 WO2021013017A1 (en) 2019-07-25 2020-07-15 Method and device for scell beam failure recovery, ue and network device

Country Status (2)

Country Link
CN (1) CN113615100B (en)
WO (1) WO2021013017A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130299A1 (en) * 2022-01-06 2023-07-13 Qualcomm Incorporated Resource configuration for scheduling requests for multiple node beam failure recovery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024098208A1 (en) * 2022-11-07 2024-05-16 北京小米移动软件有限公司 Beam indication method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338653A (en) * 2014-08-07 2016-02-17 北京三星通信技术研究有限公司 Method and equipment supporting UE bearing recovery
US20190190582A1 (en) * 2017-12-19 2019-06-20 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039408B (en) * 2017-06-09 2021-07-13 维沃移动通信有限公司 Beam failure processing method, terminal and network equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338653A (en) * 2014-08-07 2016-02-17 北京三星通信技术研究有限公司 Method and equipment supporting UE bearing recovery
US20190190582A1 (en) * 2017-12-19 2019-06-20 Samsung Electronics Co., Ltd. Method and apparatus for beam reporting in next generation wireless systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASUSTEK: "Remaining Issues for Beam Failure Recovery Procedure", 3GPP DRAFT; R1-1720567 REMAINING ISSUES FOR BEAM FAILURE RECOVERY PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051369042 *
AT&T: "Remaining Details on Mechanisms to Recover from Beam Failure", 3GPP DRAFT; R1-1719633 REMAININGDETAILSONMECHANISMSTORECOVERFROMBEAMFAILURE_V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051369440 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130299A1 (en) * 2022-01-06 2023-07-13 Qualcomm Incorporated Resource configuration for scheduling requests for multiple node beam failure recovery

Also Published As

Publication number Publication date
CN113615100B (en) 2023-10-10
CN113615100A (en) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2021013013A1 (en) Methods and devices for determining spatial relation, user equipment and network device
CN112655262B (en) Resource allocation method, terminal equipment and network equipment
US20220070853A1 (en) Method and apparatus for beam management, and computer-readable storage medium
WO2018170673A1 (en) Method for transmitting data, terminal device and network device
US20220116882A1 (en) Reference signal determination method and device, and ue
US20200145973A1 (en) Information transmission method, apparatus and terminal
US11229048B2 (en) Uplink channel transmitting method, and terminal device
US12003450B2 (en) Signal transmission method and device and terminal
US20220416870A1 (en) Method and Apparatus for Transmitting SCell Beam Failure Recovery Requests
US12041641B2 (en) Resource indication method and terminal device
WO2020191559A1 (en) Data channel transmission method and terminal device
US11758541B2 (en) Information transmission method, terminal device and network device
CN113767685A (en) Method and device for uplink information transmission and user equipment
CN112740587A (en) Wireless communication method, terminal equipment and network equipment
WO2021013017A1 (en) Method and device for scell beam failure recovery, ue and network device
US20220232541A1 (en) Wireless communication method, terminal device, and network device
WO2020206581A1 (en) Signal transmission method, terminal device, and network device
WO2020062318A1 (en) Wireless communication method and terminal device
JP2021536206A (en) Resource determination and setting method, equipment, terminals, network equipment
WO2021088262A1 (en) Method and apparatus for determining slot format
WO2020211095A1 (en) Signal scrambling method and device, and communication device
US11985026B2 (en) Processing method and device for link recovery process, and terminal
JP2022511321A (en) Feedback resource allocation method, terminal equipment and network equipment
US20240147332A1 (en) Methods and apparatuses for deactivating and activating a secondary cell group (scg) in a multiradio dual connectivity (mr-dc) scenario
US20230397174A1 (en) Methods and apparatuses for indicating a set of resources on a nr sidelink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843041

Country of ref document: EP

Kind code of ref document: A1