WO2023208024A1 - 通信装置及通信方法 - Google Patents

通信装置及通信方法 Download PDF

Info

Publication number
WO2023208024A1
WO2023208024A1 PCT/CN2023/090781 CN2023090781W WO2023208024A1 WO 2023208024 A1 WO2023208024 A1 WO 2023208024A1 CN 2023090781 W CN2023090781 W CN 2023090781W WO 2023208024 A1 WO2023208024 A1 WO 2023208024A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
local oscillator
communication device
branch
Prior art date
Application number
PCT/CN2023/090781
Other languages
English (en)
French (fr)
Inventor
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210800941.8A external-priority patent/CN117014265A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023208024A1 publication Critical patent/WO2023208024A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/144Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements

Definitions

  • the embodiments of the present application relate to the field of communication technology, and more specifically, to a communication device and a communication method.
  • signals are radiated into space through antennas in the form of electromagnetic waves.
  • the sending device Before transmitting a signal, the sending device generally modulates the signal and moves the spectrum of the baseband signal to a higher carrier frequency through upconversion, so that the communication system can work in the assigned channel.
  • the receiving device For the receiving device, the receiving device must downconvert and demodulate the signal sent by the sending device in order to obtain the information transmitted by the sending device.
  • demodulation is the reverse process of modulation. Different modulation methods have different demodulation methods. For example, if the signal modulates the information on the carrier frequency through frequency shift keying (FSK) modulation, then the receiving device needs to obtain the transmitted signal through the frequency of the received signal during the demodulation process. information.
  • FSK frequency shift keying
  • the received signal needs to be down-converted before the receiving device demodulates the received signal.
  • the receiving device can mix the local oscillator signal generated by the receiving device and the received signal to complete down-conversion processing of the received signal.
  • the frequency of the local oscillator signal generated by the receiving equipment often deviates from the ideal frequency. In this way, the baseband signal obtained after the receiving equipment demodulates the received signal There will be errors, which will seriously affect the demodulation performance of the receiving equipment.
  • Embodiments of the present application provide a communication device and a communication method.
  • the communication device can correct the frequency offset of the local oscillator signal generated by the communication device. In this way, the error of the baseband signal obtained after the communication device demodulates the received signal can be reduced. error, thereby improving the demodulation performance of the receiving device.
  • a communication device is provided.
  • the communication device is used to receive a first signal and a second signal.
  • the second signal and the first signal are both from the same device.
  • the second signal is Instructing the communication device to enter the connected state;
  • the communication device includes a first branch and a second branch; wherein the first branch includes: a first frequency amplitude converter for obtaining the third signal First amplitude information, the third signal is a signal obtained by mixing the first signal and a first local oscillator signal, and the first local oscillator signal is a local oscillator signal generated by the communication device;
  • second branch path used to demodulate a fourth signal, which is a signal obtained by mixing the second signal and a second local oscillator signal, and the second local oscillator signal is based on the first amplitude
  • the value information is a signal obtained by correcting the frequency offset of the first local oscillator signal.
  • the second branch includes a second frequency amplitude converter, and the linear working interval corresponding to the second frequency ampli
  • the communication device first passes through the first frequency amplitude converter of the first branch to obtain the first amplitude information of the third signal after mixing the first signal and the first local oscillator signal. Then, the communication device demodulates the second local oscillator signal and the fourth signal after mixing the second signal through the second branch, wherein the second local oscillator signal is based on the first amplitude information. The signal obtained after frequency offset correction of the signal.
  • the first local oscillator signal has a frequency offset
  • setting the linear working range corresponding to the first frequency amplitude converter of the first branch to be larger than the linear working range corresponding to the second frequency amplitude converter can make the third
  • the frequency of the third signal after mixing the first signal and the first local oscillator signal will not exceed the linear working range corresponding to the first frequency amplitude converter, and the first frequency amplitude converter can accurately obtain the frequency of the third signal.
  • the first amplitude information is used to subsequently accurately correct the frequency offset of the first local oscillator signal based on the first amplitude information.
  • the communication device demodulates the second local oscillator signal and the fourth signal after mixing the second signal through the second branch. Since the second local oscillator signal is a signal obtained by correcting the frequency offset of the first local oscillator signal, the frequency offset value of the fourth signal is smaller than the frequency offset of the signal after mixing the first local oscillator signal and the second signal. value, in this way, the fourth signal can still be accurately demodulated by setting the linear working interval corresponding to the second frequency amplitude converter of the second branch to be smaller than the linear working interval of the first frequency amplitude converter. Furthermore, the demodulation performance of the communication device will not be seriously affected.
  • the communication device further includes a frequency offset estimation module and a local crystal oscillator; the first frequency amplitude converter is also used to provide the frequency offset estimation module with Send the first amplitude information; the frequency offset estimation module is used to obtain a first frequency offset value according to the first amplitude information, and send the first frequency offset value to the local crystal oscillator; A local crystal oscillator is used to correct the frequency offset of the first local oscillator signal according to the first frequency offset value to obtain the second local oscillator signal.
  • the first frequency amplitude converter includes a first phase shifting unit, the first phase shifting unit converts signals of different frequencies based on the first frequency phase curve. Perform different phase movements; the second frequency amplitude converter includes a second phase moving unit that moves signals of different frequencies into different phases based on the second frequency phase curve, and the second The slope of the frequency phase curve is greater than the slope of the first frequency phase curve.
  • the second signal adopts a differential frequency modulation modulation method, and the second frequency amplitude converter is used to obtain the third amplitude of the fourth signal. value information; the second branch is also specifically used to: obtain the frequency difference of the fourth signal transmitted in adjacent time units according to the third amplitude information of the fourth signal, wherein the i-th time
  • B1 is a preset first bandwidth value, and i is an integer greater than 1; according to The frequency difference of the fourth signal is used to obtain the modulation information carried by the fourth signal.
  • the residual frequency offset of the local oscillator signal generated in the two time units before and after the communication device can be considered to be the same. In this way, By subtracting the frequencies of the fourth signals in the preceding and following time units (ie, the differential FM modulation method), the residual frequency offset of the local oscillator signal generated by the communication device can be offset, thereby further not affecting the demodulation performance of the communication device.
  • the first signal adopts a modulation method of differential frequency modulation.
  • the first branch is used to: obtain the frequency difference of the third signal transmitted in adjacent time units according to the first amplitude information, wherein the frequency difference of the third signal transmitted in the jth time unit
  • the frequency of the third signal f(j) mod[f(j-1)+ ⁇ f 1 (j), B3], where ⁇ f 1 (j) is the j-th element in the sequence of the third signal.
  • the frequency difference between the third signal and the (j-1)th third signal, B3 is a preset third bandwidth value, and j is an integer greater than 1; according to the frequency of the third signal difference to obtain the modulation information carried by the third signal.
  • the residual frequency offset of the local oscillator signal generated in the two time units before and after the communication device can be considered to be the same. In this way, By subtracting the frequencies of the third signals in the preceding and following time units (ie, the differential FM modulation method), the residual frequency offset of the local oscillator signal generated by the communication device can be offset, thereby further not affecting the demodulation performance of the communication device.
  • the communication device is further configured to receive first data and second data.
  • the first data and the first signal are sent by FDM, and/or the second data and the second signal are sent by FDM. ; Wherein, the frequency guard interval between the first signal and the first data is greater than the frequency guard interval between the second signal and the second data.
  • the communication device first uses the first signal to correct the frequency offset of the first local oscillator signal. correction, and then the received second signal is demodulated based on the second local oscillator signal that has been corrected for the first local oscillator signal. Since there is a frequency offset during the frequency offset correction of the first local oscillator signal by the communication device, the frequency guard interval between the first signal and the first data (relative to the frequency guard interval between the second signal and the second data) is Frequency guard interval) is set larger to prevent the first data normally transmitted on the adjacent frequency band from entering the first branch.
  • the second local oscillator signal If the frequency offset value is smaller than the frequency offset value of the first local oscillator signal, then the frequency guard interval between the second signal and the second data (relative to the frequency guard interval between the first signal and the first data) is set smaller. , which can prevent the second data normally transmitted on the adjacent frequency band from entering the second branch, and at the same time, the smaller guard interval improves the utilization of system resources.
  • the communication device is further configured to obtain configuration information, where the configuration information is used to indicate at least one of the following: a transmission period of the first signal, the The bit sequence of the first signal, the frequency guard interval between the first signal and the first data, and the frequency guard interval between the second signal and the second data.
  • the modulation order of the first signal is smaller than the modulation order of the second signal, or the first signal is a single frequency signal, or, The modulation order of the first signal is 2.
  • the transmission power of the first signal is greater than the transmission power of the second signal.
  • the transmission power of the first signal is greater than the transmission power of the second signal. In this way, the communication device can obtain the first signal with a stronger signal strength, and thereby obtain better demodulation performance for the first signal.
  • a communication device configured to receive a second signal, the second signal is used to instruct the communication device to enter a connected state;
  • the communication device includes a first branch and a second branch. Branch road; wherein, the mentioned One branch includes: a first frequency amplitude converter, used to obtain the second amplitude information of the fifth signal, the fifth signal being a signal obtained by mixing the second signal and the first local oscillator signal,
  • the first local oscillator signal is a local oscillator signal generated by the communication device;
  • the second branch is used to demodulate a sixth signal, and the sixth signal is a combination of the second signal and the second local oscillator signal.
  • the second local oscillator signal is a signal obtained by mixing the first local oscillator signal based on the second amplitude information.
  • the second branch includes a third Two frequency amplitude converters, the linear working interval corresponding to the second frequency amplitude converter is smaller than the linear working interval corresponding to the first frequency amplitude converter.
  • the communication device first passes through the first frequency amplitude converter of the first branch to obtain the second amplitude information of the fifth signal after mixing the second signal and the first local oscillator signal. Then, the communication device demodulates the second local oscillator signal and the sixth signal after mixing the second signal through the second branch, wherein the second local oscillator signal is based on the second amplitude information. The signal obtained after frequency offset correction of the signal.
  • the first local oscillator signal has a frequency offset
  • setting the linear working range corresponding to the first frequency amplitude converter of the first branch to be larger than the linear working range corresponding to the second frequency amplitude converter can make the third
  • the frequency of the fifth signal after mixing the first signal and the first local oscillator signal will not exceed the linear working range corresponding to the first frequency amplitude converter, and the first frequency amplitude converter can accurately obtain the frequency of the fifth signal.
  • the second amplitude information is used to subsequently accurately correct the frequency offset of the first local oscillator signal based on the second amplitude information.
  • the communication device demodulates the second local oscillator signal and the sixth signal after mixing the second signal through the second branch. Since the second local oscillator signal is a signal obtained by correcting the frequency offset of the first local oscillator signal, the frequency offset value of the sixth signal is smaller than the frequency offset of the signal after mixing the first local oscillator signal and the second signal. value, in this way, by setting the linear working interval corresponding to the second frequency amplitude converter of the second branch to be smaller than the linear working interval of the first frequency amplitude converter, the sixth signal can still be accurately demodulated. Furthermore, the demodulation performance of the communication device will not be seriously affected.
  • the communication device further includes a frequency offset estimation module and a local crystal oscillator;
  • the first frequency amplitude converter is also used to provide the frequency offset estimation module with Send the second amplitude information;
  • the frequency offset estimation module is used to obtain a second frequency offset value according to the second amplitude information, and send the second frequency offset value to the local crystal oscillator;
  • a local crystal oscillator is used to correct the frequency offset of the first local oscillator signal according to the second frequency offset value to obtain the second local oscillator signal.
  • the first frequency amplitude converter includes a first phase shifting unit, the first phase shifting unit converts signals of different frequencies based on the first frequency phase curve. Perform different phase movements; the second frequency amplitude converter includes a second phase moving unit that moves signals of different frequencies into different phases based on the second frequency phase curve, and the second The slope of the frequency phase curve is greater than the slope of the first frequency phase curve.
  • the second signal adopts a differential frequency modulation modulation method
  • the second branch is also specifically used to: obtain the filtered signal transmitted in adjacent time units.
  • the B2 is a preset second bandwidth value, and the i is an integer greater than 1; the modulation information carried by the filtered sixth signal is obtained according to the frequency difference of the filtered sixth signal.
  • the residual frequency offset of the local oscillator signal generated in the two time units before and after the communication device can be considered to be the same. In this way, By subtracting the frequencies of the sixth signal in the preceding and following time units (ie, the differential FM modulation method), the residual frequency offset of the local oscillator signal generated by the communication device can be offset, thereby further not affecting the demodulation performance of the communication device.
  • a communication device is provided, the communication device is used to receive a first signal and a second signal, the second signal and the first signal are both from the same device, and the second signal is used to Instruct the communication device to enter the connected state;
  • the communication device includes a first branch and a second branch; wherein the first branch includes: a first filter for filtering the third signal, the The third signal is a signal obtained by mixing the first signal and a first local oscillator signal, and the first local oscillator signal is a local oscillator signal generated by the communication device;
  • the second branch includes: a second Filter, used to filter a fourth signal, the fourth signal is a signal obtained by mixing the second signal and a second local oscillator signal, the second local oscillator signal is based on the third signal
  • the first amplitude information is a signal obtained by performing frequency offset correction on the first local oscillator signal, and the bandwidth of the second filter is smaller than the bandwidth of the first filter.
  • the communication device first passes through the first filter of the first branch to filter the third signal obtained by mixing the first signal and the first local oscillator signal. Then, the communication device passes the second filter of the second branch to filter the fourth signal obtained by mixing the second signal and the second local oscillator signal, where the second local oscillator signal is based on the third signal. The signal obtained by correcting the frequency offset of the first local oscillator signal with the first amplitude information.
  • the bandwidth of the first filter of the first branch is set to be larger than the bandwidth of the second filter, so that even if the first local oscillator signal has a frequency offset, The first filter still does not filter out the third signal, and then the frequency offset of the first local oscillator signal can be corrected based on the third signal.
  • the communication device filters the fourth signal obtained by mixing the second signal and the second local oscillator signal through the second filter of the second branch. Since the second local oscillator signal is a signal obtained by correcting the frequency offset of the first local oscillator signal, the frequency offset value of the fourth signal is smaller than the frequency offset value of the signal after mixing the first local oscillator signal and the second signal. , in this way, the bandwidth of the second filter of the second branch (relative to the bandwidth of the first filter) is set to a smaller bandwidth to ensure that the second filter will not filter out the third filter under the residual frequency offset.
  • the first branch further includes: a first frequency amplitude converter, used to obtain the first amplitude information; the communication device further includes The frequency offset estimation module and the local crystal oscillator; the first frequency amplitude converter is also used to send the first amplitude information to the frequency offset estimation module; the frequency offset estimation module is used to calculate the frequency according to the third frequency offset estimation module.
  • a value information obtains a first frequency offset value, and sends the first frequency offset value to the local crystal oscillator; the local crystal oscillator is used to adjust the first local oscillator signal according to the first frequency offset value. Perform frequency offset correction to obtain the second local oscillator signal.
  • the second branch further includes: a second frequency amplitude converter, used to demodulate the filtered fourth signal, the The linear working interval corresponding to the second frequency amplitude converter is smaller than the linear working interval corresponding to the first frequency amplitude converter.
  • the first frequency amplitude converter includes a first phase shifting unit, the first phase shifting unit converts signals of different frequencies based on the first frequency phase curve. Perform different phase movements; the second frequency amplitude converter includes a second phase moving unit that moves signals of different frequencies into different phases based on the second frequency phase curve, and the second The slope of the frequency phase curve is greater than the slope of the first frequency phase curve.
  • the second signal adopts a differential frequency modulation modulation method, and the second frequency amplitude converter is used to obtain the third amplitude of the fourth signal. value information; the second branch is also specifically used to: obtain the frequency difference of the fourth signal transmitted in adjacent time units according to the third amplitude information of the fourth signal, wherein the i-th time
  • the B1 is a preset first bandwidth value, and the i is an integer greater than 1; the modulation information carried by the filtered fourth signal is obtained according to the frequency difference of the filtered fourth signal.
  • the first signal adopts a differential frequency modulation modulation method
  • the first branch is used to: obtain adjacent signals based on the first amplitude information.
  • a communication device configured to receive a second signal, the second signal is used to instruct the communication device to enter a connected state;
  • the communication device includes a first branch and a second branch. branch; wherein the first branch includes: a first filter for filtering a fifth signal, the fifth signal being a signal obtained by mixing the second signal and the first local oscillator signal , the first local oscillator signal is a local oscillator signal generated by the communication device;
  • the second branch includes: a second filter for filtering the sixth signal, the sixth signal is the The signal obtained by mixing the second signal and the second local oscillator signal, the second local oscillator signal is obtained by frequency offset correction of the first local oscillator signal based on the second amplitude information of the fifth signal.
  • the bandwidth of the second filter is smaller than the bandwidth of the first filter.
  • the communication device first passes through the first filter of the first branch to filter the fifth signal obtained by mixing the second signal and the first local oscillator signal. Then, the communication device passes the second filter of the second branch to filter the sixth signal obtained by mixing the second signal and the second local oscillator signal, where the second local oscillator signal is based on the fifth signal.
  • the second amplitude information is a signal obtained by correcting the frequency offset of the first local oscillator signal.
  • the bandwidth of the first filter of the first branch is set to be larger than the bandwidth of the second filter, so that even if the first local oscillator signal has a frequency offset, The first filter still does not filter out the fifth signal, and then the frequency offset of the first local oscillator signal can be corrected based on the fifth signal.
  • the communication device filters the sixth signal obtained by mixing the second signal and the second local oscillator signal through the second filter of the second branch. Since the second local oscillator signal is a signal obtained by correcting the frequency offset of the first local oscillator signal, the frequency offset value of the sixth signal is smaller than the frequency offset of the signal after mixing the first local oscillator signal and the second signal. value, in this way, the bandwidth of the second filter of the second branch (relative to the bandwidth of the first filter) is set to a smaller bandwidth to ensure that the second filter will not filter out the residual frequency deviation.
  • the sixth signal at the same time, because the second filter has a narrow passband, it can filter out-of-band noise, reduce the noise level of the communication device, and thereby improve the demodulation performance of the sixth signal by the communication device.
  • the first branch further includes: a first frequency amplitude converter, used to obtain the second amplitude information; the communication device further includes The frequency offset estimation module and the local crystal oscillator; the first frequency amplitude converter is also used to send the second amplitude information to the frequency offset estimation module; the frequency offset estimation module is used to calculate the second amplitude information according to the third frequency offset estimation module.
  • the second amplitude information is used to obtain a second frequency offset value, and the second frequency offset value is sent to the local crystal oscillator; the local crystal oscillator is used to adjust the first local oscillator signal according to the second frequency offset value. Perform frequency offset correction to obtain the second local oscillator signal.
  • the second branch further includes: a second frequency amplitude A converter, used to demodulate the filtered sixth signal, and the linear working interval corresponding to the second frequency amplitude converter is smaller than the linear working interval corresponding to the first frequency amplitude converter.
  • the first frequency amplitude converter includes a first phase shifting unit, the first phase shifting unit converts signals of different frequencies based on the first frequency phase curve. Perform different phase movements; the second frequency amplitude converter includes a second phase moving unit that moves signals of different frequencies into different phases based on the second frequency phase curve, and the second The slope of the frequency phase curve is greater than the slope of the first frequency phase curve.
  • the second signal adopts a differential frequency modulation modulation method
  • the second branch is also specifically used to: obtain the filtered signal transmitted in adjacent time units.
  • the B2 is a preset second bandwidth value, and the i is an integer greater than 1; the modulation information carried by the filtered sixth signal is obtained according to the frequency difference of the filtered sixth signal.
  • the communication device described in any implementable manner of the first to fourth aspects may be an access network device or a chip or circuit in the access network device.
  • the communication device described in any implementable manner of the first to fourth aspects may be a terminal device or a chip or circuit in the terminal device.
  • a communication method is provided, the communication method is applied to a communication device, the communication device includes a first branch and a second branch, the first branch includes a first frequency amplitude converter, The second branch includes a second frequency amplitude converter, the linear working interval corresponding to the second frequency amplitude converter is smaller than the linear working interval corresponding to the first frequency amplitude converter, and the communication method includes : Receive a first signal and a second signal, the second signal and the first signal come from the same device, the second signal is used to instruct the communication device to enter the connection state; through the first frequency amplitude The value converter obtains first amplitude information of a third signal, the third signal is a signal obtained by mixing the first signal and a first local oscillator signal, and the first local oscillator signal is the communication device The generated local oscillator signal; the fourth signal is demodulated through the second branch, and the fourth signal is a signal obtained by mixing the second signal and the second local oscillator signal, and the second local oscillator signal is The oscil
  • the communication method before demodulating the fourth signal through the second branch, the communication method further includes: according to the first amplitude information A first frequency offset value is obtained; according to the first frequency offset value, frequency offset correction is performed on the first local oscillator signal to obtain the second local oscillator signal.
  • the first frequency amplitude converter includes a first phase shifting unit, the first phase shifting unit converts signals of different frequencies based on the first frequency phase curve. Perform different phase movements; the second frequency amplitude converter includes a second phase moving unit that moves signals of different frequencies into different phases based on the second frequency phase curve, and the second The slope of the frequency phase curve is greater than the slope of the first frequency phase curve.
  • the second signal adopts a differential frequency modulation modulation method
  • the communication method further includes: obtaining the fourth frequency amplitude converter through the second frequency amplitude converter.
  • the third amplitude information of the signal; the demodulating the fourth signal through the second branch includes: obtaining adjacent time through the second branch
  • the frequency difference of the fourth signal transmitted within the unit, where the frequency f(i) of the fourth signal transmitted within the i-th time unit mod[f(i-1)+ ⁇ f 1 (i) , B1], the ⁇ f 1 (i) is the frequency difference between the i-th fourth signal and the (i-1)-th fourth signal in the sequence of the fourth signals, and the B1 is The preset first bandwidth value, the i is an integer greater than 1; the modulation information carried by the fourth signal is obtained according to the frequency difference of the fourth signal.
  • a communication method is provided, the communication method is applied to a communication device, the communication device includes a first branch and a second branch, the first branch includes a first frequency amplitude converter, The second branch includes a second frequency amplitude converter, the linear working interval corresponding to the second frequency amplitude converter is smaller than the linear working interval corresponding to the first frequency amplitude converter, and the communication method includes : receiving a second signal, the second signal is used to instruct the communication device to enter the connection state; obtaining the second amplitude information of the fifth signal through the first frequency amplitude converter, the fifth signal is the a signal obtained by mixing the second signal and the first local oscillator signal, where the first local oscillator signal is the local oscillator signal generated by the communication device; the sixth signal is demodulated through the second branch, The sixth signal is a signal obtained by mixing the second signal and a second local oscillator signal, and the second local oscillator signal is a frequency-converted signal of the first local oscillator signal based on the second
  • the communication method before demodulating the sixth signal through the second branch, the communication method further includes: according to the second amplitude information A second frequency offset value is obtained; according to the second frequency offset value, frequency offset correction is performed on the first local oscillator signal to obtain the second local oscillator signal.
  • the first frequency amplitude converter includes a first phase shifting unit, the first phase shifting unit converts signals of different frequencies based on the first frequency phase curve. Perform different phase movements; the second frequency amplitude converter includes a second phase moving unit that moves signals of different frequencies into different phases based on the second frequency phase curve, and the second The slope of the frequency phase curve is greater than the slope of the first frequency phase curve.
  • the second signal adopts a differential frequency modulation modulation method
  • the demodulating the sixth signal through the second branch includes:
  • a communication method is provided, the communication method is applied to a communication device, the communication device includes a first branch and a second branch, the first branch includes a first filter, and the third branch The second branch includes the second filter, so The bandwidth of the second filter is smaller than the bandwidth of the first filter, and the communication method includes: receiving a first signal and a second signal, where both the second signal and the first signal come from the same device, so The second signal is used to instruct the communication device to enter the connected state; the third signal is filtered through the first filter, and the third signal is obtained by mixing the first signal and the first local oscillator signal.
  • the first local oscillator signal is the local oscillator signal generated by the communication device;
  • the fourth signal is filtered through the second filter, the fourth signal is the second signal and the second local oscillator signal.
  • the second local oscillator signal is a signal obtained by mixing the first local oscillator signal based on the first amplitude information of the third signal.
  • the first branch further includes a first frequency amplitude converter
  • the communication method further includes: obtaining the first amplitude information through the first frequency amplitude converter; obtaining a first frequency offset value according to the first amplitude information; and according to the first frequency offset value, Frequency offset correction is performed on the first local oscillator signal to obtain the second local oscillator signal.
  • the second branch further includes a second frequency amplitude converter
  • the linear working interval corresponding to the second frequency amplitude converter is smaller than the first frequency amplitude converter.
  • the communication method further includes: obtaining the third amplitude information of the fourth signal through the second frequency amplitude converter; according to the third amplitude information of the fourth signal Three amplitude information are used to demodulate the filtered fourth signal.
  • the first frequency amplitude converter includes a first phase shifting unit, the first phase shifting unit converts signals of different frequencies based on the first frequency phase curve. Perform different phase movements; the second frequency amplitude converter includes a second phase moving unit that moves signals of different frequencies into different phases based on the second frequency phase curve, and the second The slope of the frequency phase curve is greater than the slope of the first frequency phase curve.
  • the second signal adopts a differential frequency modulation modulation method, and based on the third amplitude information of the fourth signal, the filtered third signal is Demodulating four signals includes: using the second branch to obtain the frequency difference of the fourth signal transmitted in adjacent time units according to the third amplitude information of the fourth signal, where the i-th time
  • B1 is a preset first bandwidth value, and i is an integer greater than 1; according to The frequency difference of the filtered fourth signal is used to obtain the modulation information carried by the filtered fourth signal.
  • a communication method is provided, the communication method is applied to a communication device, the communication device includes a first branch and a second branch, the first branch includes a first filter, and the third branch
  • the two branches include a second filter, the bandwidth of the second filter is smaller than the bandwidth of the first filter
  • the communication method includes: receiving a second signal, the second signal is used to indicate the communication device Enter the connection state; filter the fifth signal through the first filter, the fifth signal is a signal obtained by mixing the second signal and the first local oscillator signal, and the first local oscillator signal is Place The local oscillator signal generated by the communication device; the sixth signal is filtered through the second filter, and the sixth signal is a signal obtained by mixing the second signal and the second local oscillator signal, so The second local oscillator signal is a signal obtained by performing frequency offset correction on the first local oscillator signal based on the second amplitude information of the fifth signal.
  • the first branch further includes a first frequency-to-amplitude converter
  • the sixth signal is filtered by the second filter.
  • the communication method also included: obtaining the second amplitude information through the first frequency amplitude converter; obtaining a second frequency offset value according to the second amplitude information; and obtaining a second frequency offset value according to the second frequency offset value. value, perform frequency offset correction on the first local oscillator signal to obtain the second local oscillator signal.
  • the second branch further includes a second frequency amplitude converter, and the linear working interval corresponding to the second frequency amplitude converter is smaller than the first frequency amplitude converter.
  • the communication method further includes: demodulating the filtered sixth signal.
  • the first frequency amplitude converter includes a first phase shifting unit, the first phase shifting unit converts signals of different frequencies based on the first frequency phase curve. Perform different phase movements; the second frequency amplitude converter includes a second phase moving unit that moves signals of different frequencies into different phases based on the second frequency phase curve, and the second The slope of the frequency phase curve is greater than the slope of the first frequency phase curve.
  • the second signal adopts a differential frequency modulation modulation method
  • the demodulating the filtered sixth signal includes: obtaining the data in adjacent time units.
  • the B2 is the preset second bandwidth value
  • the i is an integer greater than 1; according to the frequency difference of the filtered sixth signal, the modulation carried by the filtered sixth signal is obtained information.
  • the communication method described in any one of the implementable manners of the fifth aspect to the eighth aspect may be executed by the access network device, or may also be executed by the access network device. Chip or circuit execution in networked equipment.
  • the communication method described in any one of the implementable manners of the fifth aspect to the eighth aspect can also be executed by a terminal device, or can also be performed by a chip used in the terminal device. or circuit execution.
  • a communication device including: one or more processors; a memory; and one or more computer programs. Wherein, one or more computer programs are stored in the memory, and the one or more computer programs include instructions. When the instruction is executed by the communication device, the communication device is caused to execute the communication method in the possible implementation of any one of the above fifth to eighth aspects.
  • a computer program product containing instructions is provided.
  • the communication device causes the communication device to perform any of the possible implementations of the fifth to eighth aspects. communication method.
  • a computer-readable storage medium is provided, and the storage medium may be non-volatile.
  • the storage medium includes instructions that, when run on the communication device, cause the communication device to perform the communication method in the possible implementation of any one of the above fifth to eighth aspects.
  • a chip including at least one processor and an interface circuit.
  • the interface circuit is used to provide program instructions or data to the at least one processor.
  • the at least one processor is used to execute the program. refer to order to implement the communication method in the possible implementation of any one of the above fifth to eighth aspects.
  • a communication system including a sending device and a communication device.
  • the communication device is used to perform the communication method in the possible implementation of any one of the above fifth to eighth aspects.
  • FIG. 1 is a schematic diagram of the architecture of an example communication system suitable for embodiments of the present application.
  • Figure 2 is a schematic diagram of the relationship between the amplitude and time of the FSK signal.
  • Figure 3 is a schematic diagram of another example of the relationship between the amplitude and time of the FSK signal.
  • Figure 4 is a schematic structural diagram of an example of non-coherent FSK receiving equipment.
  • Figure 5 is a schematic structural diagram of an example FM-AM converter.
  • Figures 6 and 7 are schematic diagrams of the frequency-amplitude conversion curve of the FM-AM converter respectively.
  • FIG. 8 is a schematic structural diagram of an example communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a first signal, a first data, a second signal and a second data sent by a sending device according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a frequency-amplitude conversion curve of an FM-AM converter provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an example communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an example of a frequency-to-amplitude converter provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of an example of an RLC resonator provided by an embodiment of the present application.
  • Figures 16 to 18 are respectively schematic structural diagrams of an example of a communication device provided by an embodiment of the present application.
  • Figures 19 to 21 are respectively schematic structural diagrams of an example of a communication device provided by an embodiment of the present application.
  • Figures 22 to 26 are respectively schematic structural diagrams of an example of a communication device provided by an embodiment of the present application.
  • Figures 27 to 32 are respectively schematic flow charts of an example of a communication method provided by an embodiment of the present application.
  • "instruction” may include direct instruction and indirect instruction, and may also include explicit instruction and implicit instruction.
  • the information indicated by a certain signal (such as the first signal described below) is called information to be indicated.
  • the information to be indicated can be directly indicated.
  • Indication information such as the information to be indicated itself or the index of the information to be indicated, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be achieved by means of a pre-agreed (for example, protocol stipulated) arrangement order of each piece of information, thereby reducing the indication overhead to a certain extent.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global interoperability for microwave access
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for the method provided by the embodiment of the present application.
  • the communication system 100 may include at least one access network device, such as a base station (gNB) and a satellite station in the 5G system as shown in Figure 1; the communication system 100 may also include At least one terminal device, such as user equipment (UE) 1 to UE 9 shown in Figure 1.
  • Access network equipment and each terminal equipment can communicate through wireless links.
  • the access network device can send configuration information to the terminal device, and the terminal device can send uplink data to the access network device based on the configuration information; for another example, the access network device can send downlink data to the terminal device. Therefore, the gNB and UE 1 to UE 6 in Figure 1 can form a communication system; the satellite station and UE 7 to UE 9 in Figure 1 can also form a communication system.
  • base stations and satellite stations are connected to core network equipment in different ways, and data can be sent to each other between base stations, satellite stations and core network equipment.
  • this architecture there can be multiple satellite stations or multiple base stations, and the satellite stations can also serve UEs similar to UE 1 to UE 6.
  • Each communication device such as a base station, a satellite station, or UE 1 to UE 9, may be configured with multiple antennas, which may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they may include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers). , demodulator, demultiplexer or antenna, etc.). Therefore, the base station and UE 11 to UE 6 can communicate through multi-antenna technology, and the satellite station and UE 7 to UE 9 can communicate through multi-antenna technology.
  • the terminal devices in the communication system 100 may also constitute a communication system.
  • the links between UE 5 and UE4 and UE 6 respectively may be called sidelinks.
  • UE 5 can control UE 4 and UE 6 to execute corresponding instructions, which is not limited in this application.
  • Figure 1 is only a simplified schematic diagram for ease of understanding.
  • the communication system 100 may also include other access network equipment or other terminal equipment, which are not shown in Figure 1 .
  • the access network device in the wireless communication system can be any device with wireless transceiver functions.
  • the equipment includes but is not limited to: evolved NodeB (evolved NodeB, eNB or eNodeB), wireless network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) ), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), base band unit (BBU), wireless fidelity (wireless fidelity, WIFI) system
  • the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc. can also be 5G, such as , NR, a gNB in the system, or a transmission point (TRP or TP), one or a group (including multiple antenna panels) of antenna panels of a base station in a 5G system, or it can also be a network that constitutes
  • gNB may include centralized units (CUs) and DUs.
  • gNB is OK To include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU implements radio resource control (RRC) and packet data convergence protocol (PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless link functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (PHY) layer. Since RRC layer information will eventually become PHY layer information, or transformed from PHY layer information, in this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by DU , or sent by DU+CU.
  • the access network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into access network equipment in the access network (radio access network, RAN), or the CU can be divided into access network equipment in the core network (core network, CN). This application does not do this. limited.
  • the terminal equipment in the wireless communication system may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of this application do not limit application scenarios.
  • the terminal device or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, or wait.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiments of the present application, as long as the program recorded in the code of the method provided by the embodiments of the present application can be provided according to the embodiments of the present application.
  • the execution subject of the method provided by the embodiment of the present application can be a terminal device or an access network device, or a functional module in the terminal device or access network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, tapes, etc.), optical disks (e.g., compact discs (CD), digital versatile discs (DVD)) etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • Modulation technology A technology that controls the changes in the amplitude, phase or frequency of the carrier wave according to the information that needs to be sent, so that the information is transmitted through the carrier wave.
  • FSK modulation technology a modulation technology that modulates information on the carrier frequency.
  • Modulation order used to calculate the number of bits that each symbol (code element) of the code pattern can represent. If the modulation order is M, then the number of bits that each symbol (symbol) can represent is log 2 M, that is, one symbol (symbol) can carry log 2 M bits of information. At this time, FSK with modulation order M can be called M-FSK.
  • the modulation order is 2, one symbol (symbol) can carry 1 bit of information. At this time, it can be considered as a 01-bit sequence of transmitted information, and each symbol can transmit 1 bit.
  • the FSK signal with frequency f 1 can represent the transmission of "0”
  • the FSK signal with frequency f 2 can represent the transmission of "1”.
  • the carrier frequency f c of the FSK signal is the average of f 1 and f 2 value.
  • Figure 2 it is a schematic diagram of the relationship between the amplitude and time of an FSK signal with a modulation order of 2.
  • the modulation order is 4, one symbol (symbol) can carry 2 bits of information. At this time, it can be considered as a 01-bit sequence of transmitted information, and each symbol can transmit 2 bits.
  • the FSK signal with frequency f 1 can represent the transmission of "00”
  • the FSK signal with frequency f 2 can represent the transmission of "01”
  • the FSK signal with frequency f 3 can represent the transmission of "10”.
  • sending an FSK signal with frequency f 4 can represent the transmission of "11”.
  • the carrier frequency f c of this FSK signal is the average of f 1 , f 2 , f 3 and f 4 .
  • Figure 3 it is a schematic diagram of the relationship between the amplitude and time of an FSK signal with a modulation order of 4.
  • Demodulation technology It is the reverse process of modulation technology. Generally, the receiving device obtains the information sent by the sending device from the modulated signal (the signal modulated by the sending device) through some signal processing means.
  • FSK receiving equipment It can be divided into two basic modes: coherent FSK receiving equipment and non-coherent FSK receiving equipment. Among them, the coherent FSK receiving equipment needs to recover the carrier wave. That is to say, the coherent FSK receiving equipment needs to recover the carrier and use the recovered carrier to demodulate the FSK signal to obtain the demodulated information. Non-coherent FSK receiving equipment does not have such a need. That is to say, non-coherent FSK receiving equipment does not need to recover the carrier. It can directly demodulate based on the received FSK signal and obtain demodulated information.
  • coherent FSK receiving equipment has better demodulation performance, but the corresponding power consumption will be higher.
  • the advantages are simple structure and low power consumption.
  • the requirements for low power consumption are very high, and non-coherent FSK receiving equipment is often selected at this time.
  • the receiving device involved in the embodiment of this application is a non-coherent FSK receiving device.
  • the non-coherent FSK receiving equipment includes: radio frequency band pass filter (RF BPF), radio frequency signal amplifier (radio frequency low noise amplifier, RF LNA), local crystal oscillator (local oscillator (LO) (also called local oscillator), multiplier, intermediate noise amplifying (IF LNA), BPF, frequency modulation (FM) amplitude modulation (AM) converter, low pass Filter (low-pass filter, LPF), envelope or amplitude detection module (envelop detector).
  • RF BPF radio frequency band pass filter
  • RF LNA radio frequency signal amplifier
  • LO local oscillator
  • multiplier intermediate noise amplifying
  • IF LNA BPF
  • FM frequency modulation
  • AM frequency modulation
  • LPF low pass Filter
  • envelope or amplitude detection module envelope detector
  • the process of the non-coherent FSK receiving device receiving the FSK signal (for example, 1GHz) is roughly as follows: after the FSK signal is received by the antenna of the non-coherent FSK receiving device, it is first filtered by the RF BPF and signal amplified by the RF LNA.
  • the mixed FSK signal is down-converted to an intermediate frequency (for example, 50MHz); then, it is filtered again through the BPF, and the filtered signal is The frequency information is converted into amplitude information through the FM-AM converter, and after the noise is removed by LPF, it can be used
  • An envelope or amplitude detection module (envelop detector) is used to detect modulation information through amplitude information.
  • the FM-AM converter can convert signals of different frequencies into signals of different amplitudes.
  • the FM-AM converter includes a phase shift module and a multiplier, where the phase shift module can perform different phase rotations on signals of different frequencies.
  • the signal S(t) input to the FM-AM converter is divided into two channels. One channel directly enters the multiplier, and the other channel first enters the phase shift module. After the signal S(t) passes through the phase shift module, the signal Sp(t) is obtained. The signal Sp( t) then enters the multiplier to mix with the signal S(t) to obtain the mixed signal S(t)Sp(t).
  • phase ⁇ rot (f) rotated by the phase shift module on the signal S(t) satisfies the following formula:
  • f c is the carrier frequency
  • f FSK (t) is the frequency corresponding to the signal S(t).
  • the FM-AM converter Regardless of the content structure of the FM-AM converter, there is a linear operating range in the internal structure of the FM-AM converter. Usually, according to the frequency range of the signal received by the receiving device, it is enough to set the frequency-amplitude conversion curve of the FM-AM converter to have a linear relationship within the frequency range of the intermediate frequency signal.
  • Figures 6 and 7 are respectively schematic diagrams of an example of the frequency-amplitude conversion curve of an FM-AM converter.
  • the frequency-amplitude conversion curve of an FM-AM converter has a linear relationship, as shown by the solid lines in Figures 6 and 7.
  • the frequency-amplitude conversion curve of the FM-AM converter can only have an approximately linear relationship within a certain frequency range, as shown by the dotted lines in Figures 6 and 7.
  • the frequency of the FM-AM converter -The amplitude conversion curve only has an approximately linear relationship within the [f 11 , f 12 ] interval.
  • the frequency range in which the frequency-amplitude conversion curve of the FM-AM converter has an approximately linear relationship within a certain frequency range is called the linear working range of the FM-AM converter.
  • the frequencies of the signals after mixing the local oscillator signal generated by the LO and the received signal are f 1 , f 2 , f 3 , and f 4 , and f 1 , f 2 , f 3 , and f 4 are all in [f 11 ,f 12 ] interval
  • the amplitudes converted by the FM-AM converter are e 1 , e 2 , e 3 , and e 4 respectively.
  • the frequency difference between two adjacent frequencies in f 1 , f 2 , f 3 , and f 4 is the same, then the two adjacent frequencies in e 1 , e 2 , e 3 , and e 4
  • the amplitude difference between the amplitudes is also the same.
  • the frequency of the local oscillator signal generated by the LO is often different from the ideal There will be a deviation in frequency, which will cause the frequency of the signal after mixing the local oscillator signal generated by the LO and the received signal to deviate from the ideal frequency by ⁇ f. If this deviation ⁇ f is large, the local oscillator signal generated by the LO will be different from the received one.
  • the frequency of signal mixing exceeds the linear working range of the FM-AM converter, which may cause the converted amplitude to no longer have a linear relationship.
  • the frequency of the local oscillator signal generated by the LO and the received signal after mixing are f 1 , f 2 , f 3 , f 4 , however, due to the deviation ⁇ f in the local oscillator signal generated by the LO, the frequency of the local oscillator signal generated by the LO is f
  • the frequencies of the signals after mixing the local oscillator signal and the received signal become f 1 + ⁇ f, f 2 + ⁇ f, f 3 + ⁇ f, f 4 + ⁇ f.
  • f 1 + ⁇ f and f 2 + ⁇ f are within the interval [f 11 , f 12 ], and f 3 + ⁇ f and f 4 + ⁇ f exceed the interval [f 11 , f 12 ]. .
  • f 1 + ⁇ f, f 2 + ⁇ f, f 3 + ⁇ f, and f 4 + ⁇ f are the same, e 1 ', e 2 ', e 3 ', e 4 'The intervals between the two are not the same.
  • the baseband signal obtained after the receiving device demodulates the received signal will have errors, which will seriously affect the demodulation performance of the receiving device.
  • embodiments of the present application provide a communication device that can correct the frequency offset of the local oscillator signal generated by the communication device. In this way, the error of the baseband signal obtained after the communication device demodulates the received signal can be reduced. error, thereby improving the demodulation performance of the receiving device.
  • the communication device may be any device shown in FIG. 1 , or the communication device may be a device in any device shown in FIG. 1 .
  • the communication device includes two branches, wherein one branch corrects the frequency offset of the local oscillator signal, and the other branch demodulates the received signal according to the corrected local oscillator signal.
  • the two branches can work in a time-sharing manner or at the same time.
  • the time-sharing operation of the two branches is recorded as Embodiment 1
  • the simultaneous operation of the two branches is recorded as Embodiment 2.
  • time-sharing operation of two branches can be achieved through switches.
  • each branch is provided with at least one switch.
  • the switch in the branch can be closed so that the branch can be connected to other modules of the communication device.
  • the switch in the branch can be opened and the switch in the other branch can be closed so that the branch is connected to the communication device.
  • the other modules are disconnected, and the other branch is connected to other modules of the communication device.
  • Embodiment 1 and Embodiment 2 as examples respectively to introduce the communication device in detail.
  • FIG. 8 is a schematic structural diagram of an example communication device provided by an embodiment of the present application.
  • the communication device 800 shown in Figure 8 is used for receiving a first signal and a second signal.
  • the second signal and the first signal both come from the same device (which can be called a sending device), and the second signal is used to instruct the communication device to enter the connected state.
  • the first signal is used to perform frequency offset correction on the local oscillator signal generated by the communication device 800 (such as the first local oscillator signal described below).
  • the first signal may carry no content.
  • the first signal may also carry content.
  • the first signal may carry the identity of the cell.
  • the cell is the area served by the sending device, and the identity of the cell is used to assist the receiving device in determining whether it is receiving information from the correct sending device.
  • the sending device can be understood as the correct sending device as mentioned above.
  • the sending device can also be understood as the correct sending device as mentioned above.
  • the embodiment of the present application does not limit whether the first signal carries content. Moreover, the embodiment of the present application does not limit the name of the first signal.
  • the first signal can also be called other signals such as a reference signal. Any signal with the same function as the first signal can be considered as the first signal.
  • the embodiment of the present application does not limit the name of the second signal.
  • the second signal can also be called other signals such as a wake-up signal. Any signal with the same function as the second signal can be considered as the second signal.
  • the embodiment of the present application does not limit the sending method of the first signal and the second signal.
  • the transmitting device may periodically transmit the first signal and the second signal.
  • the communication device 800 may periodically receive the first signal and the second signal sent by the sending device.
  • the period in which the sending device sends the first signal and/or the second signal may be notified to the communication device 800 by the sending device, or the period in which the sending device sends the first signal and/or the second signal may be predetermined or configured, the embodiment of the present application does not limit this.
  • the embodiment of the present application does not limit the value of the period for sending the first signal and the second signal, and it can be determined according to the actual situation.
  • the sending device may first send the first signal and then the second signal.
  • FIG. 9 is an example in which the sending device sends the second signal immediately after sending the first signal. This should not limit the present application.
  • the sending device may send the second signal before sending the first signal; or the sending device may wait for a period of time after sending the first signal before sending the second signal.
  • the sending device may also send the first data and the second data to the communication device 800 .
  • the communication device is also used to receive the first data and the second data.
  • the embodiment of the present application does not limit the method of sending the first data and the second data.
  • the sending device may send the first signal and/or the second signal in a sending manner that the sending device notifies the communication device 800, or the sending device may send the first signal and/or the second signal in a sending manner in advance. stipulated or configured, the embodiments of this application do not limit this.
  • the sending device uses frequency division multiplexing (FDM) to send the first signal and the first data.
  • FDM frequency division multiplexing
  • the sending device may also use FDM to send the second signal and the second data.
  • the sending device uses FDM to send the first signal and the first data, and uses FDM to send the second signal and the second data, as shown in Figure 9, the first signal and the first data
  • the frequency guard interval ⁇ f 1 between the data is greater than the frequency guard interval ⁇ f 2 between the second signal and the second data.
  • the frequency guard interval ⁇ f 1 between the first signal and the first data and/or the frequency guard interval ⁇ f 2 between the second signal and the second data may be notified by the sending device to the communication device 800, Alternatively, the frequency guard interval ⁇ f 1 between the first signal and the first data and/or the frequency guard interval ⁇ f 2 between the second signal and the second data may be predetermined or configured.
  • the embodiment of the present application provides This is not a limitation.
  • the communication device 800 first uses the first signal to correct the frequency offset of the first local oscillator signal. Correction is performed, and then the received second signal is demodulated based on the second local oscillator signal that has been corrected for the first local oscillator signal. Since there is a frequency offset during the frequency offset correction process of the first local oscillator signal by the communication device 800, the frequency guard interval between the first signal and the first data (relative to the frequency guard interval between the second signal and the second data) is The frequency guard interval) is set larger to prevent the first data normally transmitted on the adjacent frequency band from entering the first branch described below.
  • the obtained second local oscillator signal The frequency offset value of the signal is less than the frequency offset value of the first local oscillator signal, then the frequency guard interval between the second signal and the second data (relative to the frequency guard interval between the first signal and the first data) is set.
  • the smaller guard interval can prevent the second data normally transmitted on the adjacent frequency band from entering the second branch described below. At the same time, the smaller guard interval improves the utilization of system resources.
  • two links are usually provided in the communication device.
  • one link is used to receive normal transceiver data.
  • the link is activated, the power consumption of the communication device is relatively large; the other link is used when the communication device is in a non-connected state.
  • the communication device consumes very little power. That is, in order to reduce the power consumption of the communication device 800, the communication device 800 may receive signals (such as the first signal and the second signal) and data (such as the first data and the second data) through two links respectively.
  • the communication device 800 when the communication device 800 is in the non-connected state, the first link of the communication device 800 is in the working state, and at this time, the second link of the communication device 800 is in the closed state.
  • the communication device 800 needs to start the second link first.
  • the communication device 800 receives a first signal and a second signal through the first link, and the communication device 800 receives in the second signal a signal indicating receiving data or
  • the communication device 800 After entering the connection state instruction information, the communication device 800 will trigger the communication device 800 to start the second link, and then after exchanging information with the sending device, the communication device 800 will enter the connection state, and then receive the first data through the second link. and secondary data.
  • the first link mentioned above can also be called a wake up link (wake up radio, WUR), and the second link can also be called a main link (main radio), which is not limited in this application. .
  • WUR wake up link
  • main radio main link
  • the communication device 800 can also receive signals (such as the first signal and the second signal) and data (such as the first data and the second data) respectively through one link, which is not limited in this application.
  • the sending device can use higher transmit power (relative to the second The transmission power of the signal) is used to transmit the first signal, so that the communication device 800 can obtain the first signal with a stronger signal strength, and obtain the modulation information of the first signal based on the first signal.
  • the sending device can use a lower modulation order (relative to the first
  • the first signal is transmitted using the modulation order of the second signal), or the lowest modulation order (for example, the modulation order is 2), or a single frequency.
  • the lower the modulation order the less information each symbol (symbol) of the first signal carries, and the communication device 800 converts the frequency into an amplitude less. In this way, within the same interval, the smaller the number of amplitudes, the larger the distance between amplitudes, and thus the better the demodulation performance of the first signal by the communication device 800.
  • the communication device 800 includes: a first branch 810 and a second branch 820 .
  • the first branch 810 includes a first frequency amplitude converter 811.
  • the first frequency amplitude converter 811 is used to obtain the first amplitude information of the third signal.
  • the third signal is the first signal and the first original signal.
  • the second branch 820 is used to demodulate the fourth signal.
  • the fourth signal is a signal obtained by mixing the second signal and the second local oscillator signal.
  • the second local oscillator signal is a signal obtained by frequency offset correction of the first local oscillator signal based on the first amplitude information. That is to say, based on the first amplitude information obtained by the first frequency amplitude converter 811, frequency offset correction is performed on the first local oscillator signal to obtain the second local oscillator signal, and the second local oscillator signal is combined with the second local oscillator signal.
  • the fourth signal obtained after mixing the signal is input to the second branch 820, and then the fourth signal can be demodulated through the second branch 820.
  • the second branch 820 includes a second frequency-to-amplitude converter 821, and the linear operating interval corresponding to the second frequency-to-amplitude converter 821 is smaller than the linear operating interval corresponding to the first frequency-to-amplitude converter 811.
  • the communication device 800 first passes through the first frequency amplitude converter 811 of the first branch 810 to obtain the first amplitude information of the third signal after mixing the first signal and the first local oscillator signal. Then, the communication device 800 demodulates the second local oscillator signal and the fourth signal after mixing the second signal through the second branch 821, where the second local oscillator signal is based on the first amplitude information. The signal obtained after frequency offset correction of the local oscillator signal. Since the first local oscillator signal has a frequency offset, the linear working range corresponding to the first frequency amplitude converter 811 of the first branch 810 is set larger than the linear working range corresponding to the second frequency amplitude converter 821.
  • the frequency of the third signal after mixing the first signal and the first local oscillator signal will not exceed the linear working range corresponding to the first frequency amplitude converter 811, and the first frequency amplitude converter 811 can accurately
  • the first amplitude information of the third signal is obtained, so that the frequency offset of the first local oscillator signal can be accurately corrected based on the first amplitude information.
  • the communication device 800 demodulates the second local oscillator signal and the fourth signal after mixing the second signal through the second branch 820 . Since the second local oscillator signal is a signal obtained by correcting the frequency offset of the first local oscillator signal, the frequency offset value of the fourth signal is smaller than the frequency offset of the signal after mixing the first local oscillator signal and the second signal. value, in this way, if the linear working interval corresponding to the second frequency amplitude converter 821 of the second branch 820 is set smaller than the linear working interval of the first frequency amplitude converter 811, the fourth signal can still be accurately solved tune. Furthermore, the demodulation performance of the communication device 800 will not be seriously affected.
  • the linear working interval corresponding to the first frequency amplitude converter 811 and the corresponding linear working interval of the second frequency amplitude converter 821 can be set through the slope of the frequency-amplitude conversion curve of the phase shift module of the FM-AM converter. linear working range.
  • the ideal conversion curve 1 is the ideal conversion curve corresponding to the first frequency phase curve
  • the actual conversion curve 1 is the actual conversion curve corresponding to the first frequency phase curve
  • the ideal conversion curve 2 is the second frequency phase curve
  • the corresponding ideal conversion curve, actual conversion curve 2 is the actual conversion curve corresponding to the second frequency phase curve. It can be seen that the slope of the actual conversion curve 2 is greater than the actual conversion curve 1, but the linear working interval corresponding to the actual conversion curve 2 is smaller than the actual conversion curve 1. Therefore, the corresponding linear working range of the frequency-amplitude converter can be set according to the slope of the frequency-amplitude conversion curve.
  • the first frequency amplitude converter 811 includes a first phase moving unit, which moves signals of different frequencies into different phases based on the first frequency phase curve;
  • the second frequency amplitude converter 821 includes a first phase shift unit.
  • a two-phase moving unit The second phase moving unit moves signals of different frequencies into different phases based on a second frequency phase curve. The slope of the second frequency phase curve is greater than the slope of the first frequency phase curve.
  • the frequencies of the signals after mixing the first local oscillator signal and the first signal are f 1 , f 2 , f 3 , and f 4 .
  • the first local oscillator signal has frequencies offset and the frequency offset is ⁇ f, then the frequency of the signal after mixing the first local oscillator signal and the first signal becomes f 1 + ⁇ f, f 2 + ⁇ f, f 3 + ⁇ f, f 4 + ⁇ f .
  • f 1 + ⁇ f, f 2 + ⁇ f, f 3 + ⁇ f, f 4 + ⁇ f are all within the linear interval [f 21 , f 22 ] of the actual conversion curve 1.
  • the Euclidean distance between the amplitudes converted based on the actual conversion curve 2 is greater than the Euclidean distance between the amplitudes converted based on the actual conversion curve 1 .
  • the communication device 800 further includes a frequency offset estimation module 812 and a local crystal oscillator 830 .
  • the first frequency amplitude converter 811 is also used to send the first amplitude information to the frequency offset estimation module 812; the frequency offset estimation module 812 is used to obtain the first frequency offset value according to the first amplitude information and send it to the local crystal oscillator.
  • 830 sends the first frequency offset value; the local crystal oscillator 830 is used to correct the frequency offset of the first local oscillator signal according to the first frequency offset value to obtain the second local oscillator signal.
  • the frequency offset estimation module 812 may obtain the first frequency offset value based on the first amplitude information and the first ideal amplitude information.
  • the first ideal amplitude information can be understood as the amplitude information corresponding to the third signal after mixing the first signal and the first local oscillator signal when there is no frequency offset in the first local oscillator signal.
  • the first ideal amplitude information may be sent by the sending device to the communication device 800, or the first ideal amplitude information may be converted by the receiving device according to the sending frequency of the first signal and the first frequency amplitude. The slope of the curve is calculated.
  • the second branch 820 is used to demodulate the fourth signal including: obtaining the third amplitude information of the fourth signal through the second frequency amplitude converter 821 of the second branch 820 , and obtain the modulation information of the fourth signal based on the third amplitude information.
  • the embodiment of the present application does not limit how the second branch 820 obtains the modulation information of the fourth signal based on the third amplitude information.
  • the second branch 820 obtains the modulation information carried by the fourth signal based on the third amplitude information of the fourth signal.
  • the second branch 820 first obtains based on the third amplitude information of the fourth signal.
  • time unit described in all embodiments of this application can be understood as the period of one element in the bit sequence.
  • the value of the time unit in this application is not limited.
  • the time unit may be a symbol.
  • the residual frequency offset of the local oscillator signal generated in the two time units before and after the communication device can be considered to be the same. In this way, By subtracting the frequencies of the fourth signals in the preceding and following time units (ie, the differential FM modulation method), the residual frequency offset of the local oscillator signal generated by the communication device can be offset, thereby further not affecting the demodulation performance of the communication device.
  • the sending device uses modulation order 4 to perform differential FM modulation on the second signal, then the 0/1 bit sequence of the transmitted second signal can be mapped to a symbol (symbol) every two bits, and every two bits Including four possibilities: "00", "01", "10” and "11".
  • the sending device may map every two bits in the bit sequence of the second signal to a first frequency difference, and modulate the second signal according to the first frequency difference mapped to every two bits in the bit sequence.
  • Table 1 is an example of the mapping relationship between each two bits in the bit sequence and the first frequency difference provided by the embodiment of the present application.
  • Table 1 is only an example, and it should not limit this application.
  • the embodiment of the present application does not limit the value of the first frequency difference mapped to every two bits in the bit sequence.
  • the specific process is as follows:
  • the frequency after the transmitting device modulates the bit sequence of the transmitted second signal is as shown in Table 2.
  • bit sequence of the second signal sent by the sending device may be the information bits sent by the sending device to the communication device 800, or the bit sequence of the second signal sent by the sending device may be predetermined or configured. There are no restrictions on this application.
  • the process of demodulating the fourth signal (the signal obtained by mixing the second signal and the second local oscillator signal) by the communication device 800 includes:
  • the frequencies corresponding to the four symbols of the fourth signal are: 70kHz, 170kHz, 170kHz, and 120kHz.
  • the four symbols include: the symbol corresponding to the first bit ("0") and the second bit ("1"), the symbol corresponding to the third bit ("1") and the fourth bit ("0") The symbol of , the symbol corresponding to the fifth bit ("0") and the sixth bit (“0"), and the symbol corresponding to the seventh bit ("1") and the eighth bit (“1").
  • S2' obtain the frequency difference of the fourth signal transmitted in adjacent time units, that is, obtain the frequency difference of the second signal transmitted by two adjacent symbols in the bit sequence of the fourth signal, and obtain the frequency difference according to the bit sequence of the second signal.
  • the modulation information is obtained from the mapping relationship between each two bits and the first frequency difference. Since the sending device modulates the second signal according to Table 1, the mapping relationship between each two bits in the bit sequence of the second signal and the first frequency difference is found according to Table 1.
  • bit sequence of the fourth signal obtained by the communication device 800 is: "01”, “10”, “00”, and "11", thereby completing the demodulation of the fourth signal.
  • the second branch 820 also includes: an envelope or amplitude detection module 822, configured to obtain the modulation information of the fourth signal according to the third amplitude information.
  • the first branch 810 is also used to demodulate the third signal.
  • the third signal is obtained through the first amplitude information of the third signal. signal modulation information.
  • the embodiment of the present application does not limit how the first branch 810 obtains the modulation information of the third signal based on the first amplitude information.
  • the first branch 810 obtains the modulation information carried by the third signal based on the first amplitude information of the third signal.
  • the first branch 810 first obtains based on the first amplitude information of the third signal.
  • the first branch 810 also includes: an envelope or amplitude detection module 822, used to obtain the modulation information of the third signal according to the first amplitude information.
  • the communication device 800 uses the first signal and the first branch 810 to perform frequency offset correction on the first local oscillator signal. Then, the communication device 800 uses the second signal and the second branch 820 to demodulate the received signal. That is to say, the sending device needs to send two signals (the first signal and the second signal). The communication device 800 uses two branches (the first branch 810 and the second branch 820) according to the two received signals. When performing frequency offset correction on the first local oscillator signal and demodulating the received signal.
  • the sending device can also send only one signal (the second signal).
  • the communication device 800 uses two branches (the first branch 810 and the second branch) according to the received signal.
  • the second branch 820 simultaneously corrects the frequency offset of the first local oscillator signal and demodulates the received signal. At this time, this solution is called Example 2.
  • Embodiment 2 Compared with Embodiment 1, the difference of Embodiment 2 is:
  • the communication device 800 is only used to receive the second signal.
  • the first frequency amplitude converter 811 of the first branch 810 of the communication device 800 is used to obtain the second amplitude information of the fifth signal.
  • the fifth signal is a mixture of the second signal and the first local oscillator signal. signal obtained later.
  • the second branch 820 of the communication device 800 is used to demodulate the sixth signal.
  • the sixth signal is a signal obtained by mixing the second signal and the second local oscillator signal.
  • the second local oscillator signal is based on
  • the second amplitude information is a signal obtained by correcting the frequency offset of the first local oscillator signal.
  • the second local oscillator signal is a signal obtained by performing frequency offset correction on the first local oscillator signal based on the second amplitude information and the second ideal amplitude information.
  • the second ideal amplitude information can be understood as the amplitude information corresponding to the fifth signal after mixing the second signal and the first local oscillator signal when there is no frequency offset in the first local oscillator signal.
  • the second ideal amplitude information may be notified by the sending device to the communication device 800, or the second ideal amplitude information may also be the receiving device's sending frequency and second frequency amplitude conversion curve according to the second signal. The slope is calculated.
  • Embodiment 1 the relevant descriptions in Embodiment 1 above are replaced by the following four points: (1) Replace the communication device 800 for receiving the first signal and the second signal with the communication device 800 for receiving the second signal; (2) Replace the third signal with the fifth signal; (3) Replace the first amplitude information with the second amplitude information, and replace the first frequency offset value with the second frequency offset value; (4) Replace the fourth signal As the sixth signal, the relevant description of Embodiment 2 can be obtained, so the details will not be repeated here.
  • Embodiment 1 and Embodiment 2 it can be seen that two branches need to be set up in the communication device 800, and a frequency amplitude converter needs to be set up on each branch to achieve one branch to the communication device.
  • the local oscillator signal generated by 800 is corrected for frequency offset, and the other branch demodulates the signal received by communication device 800.
  • the embodiment of the present application also provides another communication device, in which only one line is required, and a linear working interval is set on one line along with the communication.
  • a frequency-to-amplitude converter that can adjust the frequency offset of the local oscillator signal generated by the device.
  • the communication device only needs to pass through one path and one frequency amplitude converter, which can not only correct the frequency offset of the local oscillator signal generated by the communication device, but also accurately demodulate the signal received by the communication device.
  • the communication device will be described below with reference to FIGS. 13 to 26 .
  • Figure 13 is a schematic structural diagram of another communication device 1400 provided by an embodiment of the present application.
  • the communication device 1400 may be any device shown in FIG. 1 , or the communication device 1400 may be a device in any device shown in FIG. 1 .
  • the communication device 1400 shown in Figure 13 is used for receiving the second signal.
  • the second signal is used to instruct the communication device to enter the connected state.
  • the sending device may send the second signal periodically.
  • the communication device 1400 may periodically receive the second signal sent by the sending device.
  • the sending device can also send data to the communication device 1400.
  • the communication device 1400 is also used to receive data.
  • the embodiment of the present application does not limit the method of sending the data.
  • the sending device uses FDM to send the second signal and data.
  • a frequency guard interval may be set between the second signal and the data.
  • the communication device 1400 may receive the second signal and data through two links respectively.
  • the communication device 1400 when the communication device 1400 is in the non-connected state, the first link of the communication device 1400 is in the working state, and at this time, the second link of the communication device 1400 is in the closed state.
  • the communication device 1400 needs to start the second link first. For example, when the communication device 1400 is in a non-connected state, the communication device 1400 receives a second signal through the first link, and the communication device 1400 receives in the second signal a signal indicating receiving data or entering the connected state. After indicating the information, the communication device 1400 triggers the communication device 1400 to activate the second link. After exchanging information with the sending device, the communication device 1400 enters the connected state, and then receives data through the second link.
  • the communication device 1400 includes a frequency amplitude converter 1410 for using a first linear working interval to obtain the second amplitude information of the fifth signal.
  • the fifth signal is the second signal and the first amplitude.
  • the frequency-to-amplitude converter 1410 is also used to demodulate the sixth signal using the second linear working interval.
  • the sixth signal is a signal obtained by mixing the second signal and the second local oscillator signal
  • the second local oscillator signal is a signal obtained by frequency offset correction of the first local oscillator signal based on the second amplitude information.
  • the second linear working interval is smaller than the first linear working interval. Make interval.
  • the frequency-amplitude converter 1410 of the communication device 1400 adopts the first linear working interval by default.
  • the communication device 1400 first obtains the second amplitude information of the fifth signal after mixing the second signal and the first local oscillator signal through the frequency-amplitude converter 1410 using the first linear operating interval. Then, the communication device 1400 demodulates the second local oscillator signal and the sixth signal after mixing the second signal through the frequency-amplitude converter 1410 using the second linear working interval, where the second local oscillator signal is A signal obtained by performing frequency offset correction on the first local oscillator signal based on the second amplitude information. Since the first local oscillator signal has a frequency offset, setting the first linear working interval corresponding to the frequency amplitude converter 1410 to be larger than the second linear working interval can make the second signal and the first local oscillator signal mixed.
  • the frequency of the fifth signal will not exceed the second linear working interval corresponding to the frequency amplitude converter 1410, and the frequency amplitude converter 1410 can accurately obtain the second amplitude information of the fifth signal, so that it can be subsequently used based on the second
  • the amplitude information accurately corrects the frequency offset of the first local oscillator signal.
  • the communication device 1400 demodulates the second local oscillator signal and the sixth signal after mixing the second local oscillator signal and the second signal through the frequency amplitude converter 1410 using the second linear working interval. Since the second local oscillator signal is a signal obtained by correcting the frequency offset of the first local oscillator signal, the frequency offset value of the sixth signal is smaller than the frequency offset of the signal after mixing the first local oscillator signal and the second signal. value, in this way, even if the second linear working interval (relative to the first linear working interval) corresponding to the frequency-to-amplitude converter 1410 is set smaller, the sixth signal can still be accurately demodulated. Furthermore, the demodulation performance of the communication device 1400 will not be seriously affected.
  • the frequency amplitude converter 1410 includes a first capacitor 1411, an RLC resonator 1412 and a multiplier 1413.
  • the signal S(t) input to the frequency-amplitude converter 1410 is divided into two channels, one channel directly enters the multiplier 1413, and the other channel enters the first capacitor 1411, and is combined with the signal generated by the RLC resonator 1412 to form the signal Sp(t) , the signal Sp(t) then enters the multiplier 1413 and is mixed with the signal S(t) to obtain the mixed signal S(t)Sp(t).
  • the other end of the RLC resonator 1412 is grounded.
  • the RLC resonator 1412 includes a second capacitor 14121, an inductor 14122, and a variable resistor 14123 that are respectively connected in parallel.
  • the frequency f c of the resonant signal generated by the RLC resonator 1412 satisfies:
  • L is the inductance value of the inductor 14122
  • C is the capacitance value of the second capacitor 14121.
  • f c is also the frequency of signal S(t).
  • the signal Sp(t) After the signal S(t) passes through the phase shift module, the signal Sp(t) is obtained. The signal Sp(t) then enters the multiplier and is mixed with the signal S(t) to obtain the mixed signal S(t)Sp(t). .
  • phase ⁇ rot (f) rotated by the frequency-to-amplitude converter 1410 on the signal S(t) satisfies the following formula:
  • R is the resistance value of the variable resistor
  • -2 ⁇ f c RC is the slope of the frequency amplitude transfer curve corresponding to the frequency amplitude converter 1410. It can be seen that the slope of the frequency-amplitude conversion curve is negatively linearly related to the resistance value R of the variable resistor 14123. Then, the frequency-amplitude conversion can be achieved by adjusting the resistance value R of the variable resistor 14123. Adjustment of the slope of the curve.
  • the linear working range corresponding to the frequency-amplitude converter 1410 is related to the slope of the frequency-amplitude conversion curve.
  • the slope of the frequency-amplitude conversion curve is negatively linearly related to the resistance value R of the variable resistor 14123, the resistance value of the resistor R in the frequency-to-amplitude converter 1410 can be increased to realize changing the frequency. The purpose of increasing the slope of the frequency-amplitude conversion curve of the amplitude converter 1410.
  • the communication device 1400 further includes a frequency offset estimation module 1420.
  • the frequency amplitude converter 1410 is also used to send the second amplitude information to the frequency offset estimation module 1420; the frequency offset estimation module 1420 is used to obtain the second frequency offset value according to the second amplitude information; the frequency offset estimation module 1420, It is also used to send a control signal to the frequency offset estimation module 1420 when the second frequency offset value is less than the preset frequency offset value.
  • the control signal is used to instruct the frequency amplitude converter 1410 to reduce its corresponding linear working interval. ; Frequency amplitude converter 1410 is also used to adjust the linear working interval corresponding to the frequency amplitude converter 1410 from the first linear working interval to the second linear working interval.
  • the embodiment of the present application does not limit the specific value of the preset frequency offset value, which can be determined according to the actual situation.
  • the frequency offset estimation module 1420 can obtain the second frequency offset value according to the second amplitude information and the second ideal amplitude information.
  • the second ideal amplitude information can be understood as the amplitude information corresponding to the fifth signal after mixing the second signal and the first local oscillator signal when there is no frequency offset in the first local oscillator signal.
  • the second ideal amplitude information may be sent by the sending device to the communication device 1400, or the second ideal amplitude information may be converted by the receiving device according to the sending frequency of the second signal and the first frequency amplitude. The slope of the curve is calculated.
  • the communication device 1400 also includes a local crystal oscillator 1430.
  • the frequency offset estimation module 1420 is also used to send the second frequency offset value to the local crystal oscillator 1430; the local crystal oscillator 1430 uses Perform frequency offset correction on the first local oscillator signal according to the second frequency offset value to obtain a second local oscillator signal.
  • the communication device 1400 further includes an envelope or amplitude detection module 1440.
  • the frequency-amplitude converter 1410 is also specifically configured to obtain the fourth amplitude information of the sixth signal using the second linear working interval, and send the fourth amplitude information to the envelope or amplitude detection module 1440; the envelope or amplitude
  • the detection module 1440 is used to obtain the modulation information of the sixth signal according to the fourth amplitude information.
  • the embodiment of the present application does not limit how the envelope or amplitude detection module 1440 obtains the modulation information of the sixth signal based on the fourth amplitude information.
  • the envelope or amplitude detection module 1440 obtains the modulation information carried by the sixth signal based on the second amplitude information of the fifth signal. .
  • the envelope or amplitude detection module 1440 first determines the second amplitude of the fifth signal based on the second amplitude of the fifth signal.
  • the residual frequency offset of the local oscillator signal generated in the two time units before and after the communication device can be considered to be the same.
  • the frequency subtraction of the fifth signal in the preceding and following time units ie, the differential FM modulation method
  • BPF is also a key module, which can filter signals in different frequency bands.
  • the frequency of the local oscillator signal generated by the LO often deviates from the ideal frequency. This will cause the frequency of the signal after mixing the local oscillator signal generated by the LO and the received signal to deviate from the ideal frequency. ⁇ f. If the deviation ⁇ f is large, the mixing frequency of the local oscillator signal generated by the LO and the received signal will exceed or partially exceed the bandwidth of the BPF. In this way, the BPF will filter out or partially filter out the local oscillator signal and the received signal. Mixed signal. This will cause the receiving device to be unable to demodulate the signal sent by the sending device.
  • embodiments of the present application also provide another communication device that can correct the frequency offset of the local oscillator signal, and during the process of correcting the frequency offset of the local oscillator signal, the filter will not filter out the local oscillator.
  • the signal is mixed with the received signal.
  • the communication device can not only receive the signal sent by the sending device, but also reduce the error of the baseband signal obtained after demodulating the received signal, thereby improving the demodulation performance of the receiving device.
  • the communication device may be any device shown in FIG. 1 , or the communication device may be a device in any device shown in FIG. 1 .
  • the communication device also includes two branches, wherein one branch filters the mixed local oscillator signal before correction and the received signal, and the other branch filters the corrected local oscillator signal and The received signal is mixed and the signal is filtered.
  • the two branches can work in a time-sharing manner or at the same time.
  • the time-sharing operation of the two branches is recorded as Embodiment 4
  • the simultaneous operation of the two branches is recorded as Embodiment 5.
  • Embodiment 4 and Embodiment 5 as examples respectively to introduce the communication device in detail.
  • FIG. 19 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device 900 shown in Figure 19 is used for receiving a first signal and a second signal.
  • the second signal and the first signal both come from the same device (which can be called a sending device), and the second signal is used to instruct the communication device to enter the connected state.
  • the communication device 900 includes: a first branch 910 and a second branch 920 .
  • the first branch 910 includes a first filter 911, which is used to filter the third signal.
  • the third signal is a signal obtained by mixing the first signal and the first local oscillator signal.
  • the second branch 920 includes a second filter 921.
  • the second filter 921 is used to filter the fourth signal.
  • the fourth signal is a signal obtained by mixing the second signal and the second local oscillator signal.
  • the second local oscillator signal is mixed.
  • the oscillation signal is a signal obtained by correcting the frequency offset of the first local oscillator signal based on the first amplitude information of the third signal, and the bandwidth of the second filter is smaller than the bandwidth of the first filter.
  • the embodiment of the present application does not limit the types of the first filter 911 and/or the second filter 921.
  • the first filter 911 and/or the second filter 921 may be a band-pass filter or a low-pass filter.
  • the communication device 900 first passes through the first filter 911 of the first branch 910 to filter the third signal obtained by mixing the first signal and the first local oscillator signal. Then, the communication device 900 filters the fourth signal obtained by mixing the second signal and the second local oscillator signal through the second filter 921 of the second branch 920.
  • the second local oscillator signal is a signal obtained by performing frequency offset correction on the first local oscillator signal based on the first amplitude information of the third signal.
  • the bandwidth of the first filter 911 of the first branch 910 can ensure that even if the first local oscillator signal has a frequency offset, In this case, the first filter 911 still does not filter out the third signal, and subsequently the frequency offset correction of the first local oscillator signal can be performed based on the third signal.
  • the communication device 900 filters the fourth signal obtained by mixing the second signal and the second local oscillator signal through the second filter 921 of the second branch 920 .
  • the second local oscillator signal is a signal obtained by correcting the frequency offset of the first local oscillator signal
  • the frequency offset value of the fourth signal is smaller than the frequency offset of the signal after mixing the first local oscillator signal and the second signal. value, in this way, the bandwidth of the second filter 921 of the second branch 920 (relative to the bandwidth of the first filter 911) is set to a smaller bandwidth to ensure that the second filter 921 does not
  • the fourth signal will be filtered out.
  • the second filter 921 has a narrow passband, it can filter out-of-band noise, reduce the noise level of the communication device 900, and thereby improve the demodulation performance of the fourth signal by the communication device 900. .
  • the first branch 910 of the communication device 900 also includes a first frequency amplitude converter 912, the first frequency amplitude converter 912 is used to obtain the third The first amplitude information of the signal.
  • the communication device 900 also includes a frequency offset estimation module 913 and a local crystal oscillator 930 .
  • the first frequency amplitude converter 912 is also used to send the first amplitude information to the frequency offset estimation module 913; the frequency offset estimation module 913 is used to obtain the first frequency offset value according to the first amplitude information, and send the first frequency offset value to the local crystal oscillator.
  • 930 sends the first frequency offset value; the local crystal oscillator 930 is used to correct the frequency offset of the first local oscillator signal according to the first frequency offset value to obtain the second local oscillator signal.
  • the third signal described in the first frequency amplitude converter 912 is used to obtain the first amplitude information of the third signal is the third signal obtained after the first filter 911 filters the third signal. .
  • the internal structure of the first frequency amplitude converter 911 is the same as the internal structure of the first frequency amplitude converter 811 described in Embodiment 1 above.
  • the first frequency amplitude converter 911 For the undescribed parts of the value converter 911, reference can be made to the relevant description of the first frequency-amplitude converter 811 above, and will not be described again here.
  • the second branch 920 of the communication device 900 also includes a second frequency amplitude converter 922 for demodulating the filtered fourth signal.
  • the linear working interval corresponding to the second frequency amplitude converter 922 is smaller than the linear working interval corresponding to the first frequency amplitude converter 912 .
  • the internal structure of the second frequency amplitude converter 922 is the same as the internal structure of the second frequency amplitude converter 821 described in Embodiment 1 above.
  • the second frequency amplitude converter 922 For the undescribed parts of the value converter 922, reference may be made to the related description of the second frequency-amplitude converter 821 above, and will not be described again here.
  • the linear working interval corresponding to the converter 821 is set to be smaller than the linear working interval corresponding to the first frequency amplitude converter 821, and the linear working interval corresponding to the second frequency amplitude converter 821 is set to be smaller than the first frequency amplitude converter 821.
  • the technical effects brought about by the linear working interval corresponding to 821 will not be repeated here.
  • the second branch 920 is used to demodulate the fourth signal.
  • the process of demodulating the fourth signal by the second branch 920 may be referred to the process of demodulating the fourth signal by the second branch 820 in Embodiment 1 above.
  • I won’t go into details here.
  • the communication device 900 uses the first branch 810 to filter the fifth signal obtained by mixing the received first signal and the first local oscillator signal, The fifth signal is used to correct the frequency offset of the first local oscillator signal. Then, the communication device 900 uses the second branch 920 to filter the sixth signal obtained by mixing the received second signal and the second local oscillator signal. That is to say, the sending device needs to send two signals (the first signal and the second signal), and the communication device 900 uses two branches (the first branch 910 and the second branch 920) according to the two received signals. Filter the two received signals.
  • the sending device can also send only one signal (the second signal).
  • the communication device 900 uses two branches (the first branch 910 and the second branch) according to the received signal.
  • the second branch 920) simultaneously filters the two received signals.
  • the filtered signal in one branch can be used to correct the frequency offset of the first local oscillator signal.
  • this solution is called Example 5.
  • Embodiment 5 Compared with Embodiment 4, the difference between Embodiment 5 and Embodiment 5 is:
  • the communication device 900 is only used to receive the second signal.
  • the first filter 911 of the first branch 910 of the communication device 900 is used to filter the fifth signal.
  • the fifth signal is a signal obtained by mixing the second signal and the first local oscillator signal.
  • the second filter 921 of the second branch 920 of the communication device 900 is used to filter the sixth signal.
  • the sixth signal is a signal obtained by mixing the second signal and the second local oscillator signal.
  • the second The local oscillator signal is a signal obtained by performing frequency offset correction on the first local oscillator signal based on the second amplitude information of the fifth signal.
  • Embodiment 4 the relevant descriptions in Embodiment 4 above are replaced by the following four points: (1) Replace the communication device 900 for receiving the first signal and the second signal with the communication device 900 for receiving the second signal; (2) Replace the third signal with the fifth signal; (3) Replace the first amplitude information with the second amplitude information, and replace the first frequency offset value with the second frequency offset value; (4) Replace the fourth signal As the sixth signal, the relevant description of Embodiment 5 can be obtained, so the details will not be repeated here.
  • Embodiment 4 and Embodiment 5 it can be seen that two branches need to be set up in the communication device 900, and a filter needs to be set up on each branch to achieve the effect of one branch on the communication device 900.
  • the mixed signal of the local oscillator signal and the received signal is filtered, and the other branch filters the signal obtained by correcting the frequency difference of the local oscillator signal generated by the communication device 900 and the mixed signal of the received signal.
  • embodiments of the present application also provide another communication device, in which only one line is required, and a bandwidth set on one line can be adjusted according to the communication device.
  • the frequency offset of the generated local oscillator signal can be adjusted by the filter.
  • the communication device only needs to pass through one path and one filter, which can not only filter the mixed signal between the local oscillator signal before correction and the received signal, but also filter the local oscillator signal after correction and the received signal.
  • the mixed signal is filtered.
  • the communication device will be described below with reference to FIGS. 22 to 26 .
  • FIG. 22 is a schematic structural diagram of another communication device 1500 provided by an embodiment of the present application.
  • the communication device 1500 may be any device shown in FIG. 1 , or the communication device 1500 may be a device in any device shown in FIG. 1 .
  • the communication device 1500 shown in Figure 22 is used for receiving the second signal. Among them, the second signal is used to instruct the communication device Set into connected state.
  • the communication device 1500 includes a filter 1510 for filtering a fifth signal using a first bandwidth.
  • the fifth signal is a signal obtained by mixing the second signal and the first local oscillator signal.
  • the filter 1510 is used to filter the sixth signal using the second bandwidth.
  • the sixth signal is a signal obtained by mixing the second signal and the second local oscillator signal
  • the second local oscillator signal is obtained by frequency offset correction of the first local oscillator signal based on the second amplitude information of the fifth signal. signal
  • the second bandwidth is smaller than the first bandwidth.
  • the embodiment of the present application does not limit the type of filter 1510.
  • the filter 1510 may be a band pass filter or a low pass filter.
  • the filter 1510 of the communication device 1500 adopts the first bandwidth by default.
  • the filter 1510 of the communication device 1510 uses the first bandwidth to filter the fifth signal obtained by mixing the second signal and the first local oscillator signal. Then, the filter 1510 uses the second bandwidth to filter the sixth signal obtained by mixing the second signal and the second local oscillator signal, where the second local oscillator signal is based on the second amplitude of the fifth signal.
  • the signal obtained by correcting the frequency offset of the first local oscillator signal Since the first local oscillator signal has a frequency offset, setting the bandwidth of the filter 1510 to be larger than the second bandwidth can prevent the filter 1510 from filtering out the first local oscillator signal even if there is a frequency offset.
  • the fifth signal is then used to correct the frequency offset of the first local oscillator signal based on the fifth signal.
  • the filter 1510 of the communication device 1510 uses the second bandwidth to filter the sixth signal obtained by mixing the second signal and the second local oscillator signal. Since the second local oscillator signal is a signal obtained by correcting the frequency offset of the first local oscillator signal, the frequency offset value of the sixth signal is smaller than the frequency offset of the signal after mixing the first local oscillator signal and the second signal. value, in this way, even if the bandwidth of the filter 1510 (relative to the first bandwidth) is set to a smaller bandwidth, it is guaranteed that the filter 1510 will not filter out the sixth signal under the residual frequency offset. At the same time, the filter Because of the narrow passband, the bandwidth of 1510 can filter out-of-band noise, reduce the noise level of the communication device 1500, and thereby improve the demodulation performance of the sixth signal by the communication device 1500.
  • the communication device 1510 also includes a frequency amplitude converter 1410.
  • the purpose of the frequency amplitude converter 1410 is as described in Embodiment 3 and will not be described again here.
  • the fifth signal described in the frequency-to-amplitude converter 1410 is used to obtain the second amplitude information of the fifth signal is the fifth signal obtained after the filter 1510 uses the first bandwidth to filter the fifth signal.
  • the sixth signal described in the frequency-to-amplitude converter 1410 is used to demodulate the sixth signal is the sixth signal obtained by filtering the sixth signal by the filter 1510 using the second bandwidth.
  • the communication device 1500 further includes a frequency offset estimation module 1420.
  • the purpose of the frequency offset estimation module 1420 is as described in Embodiment 3, which will not be described again here.
  • the communication device 1500 also includes a local crystal oscillator 1430.
  • the purpose of the frequency offset estimation module 1430 is as described in Embodiment 3, which will not be described again here.
  • the communication device 1500 further includes an envelope or amplitude detection module 1440.
  • the purpose of the envelope or amplitude detection module 1440 is as described in Embodiment 3, and will not be described again here.
  • the communication device 800, the communication device 1400, the communication device 900, and/or the communication device 1500 as described above may also include other undescribed modules, which are not limited by this application. .
  • the communication device 800, the communication device 1400, the communication device 900, and/or the communication device 1500 may also include other filters, amplifiers, and the like.
  • filters may include RF BPF and/or LPF.
  • the RF BPF is used to filter the first signal and/or the second signal received by the communication device 800 through the antenna;
  • the LPF is used to filter the first frequency amplitude converter 811 and/or the second frequency amplitude.
  • the amplitude information obtained by converter 821 is filtered.
  • the RF BPF is used to filter the second signal received by the communication device 1400 and/or the communication device 1500 through the antenna;
  • the LPF is used to filter the amplitude obtained by the frequency amplitude converter 1410 Information is filtered.
  • the RF BPF is used to filter the second signal received by the communication device 900 through the antenna;
  • the LPF is used to filter the amplitude obtained by the first frequency amplitude converter 912 and/or the second frequency amplitude converter 922. Value information is filtered.
  • amplifiers may include RF LNAs and IF LNAs.
  • the RF LNA is used to amplify the RF BPF filtered first signal and/or the second signal; the IF LNA is used to amplify the third signal and/or the fourth signal.
  • the RF LNA is used to amplify the RF BPF filtered second signal; the IF LNA is used to amplify the fifth signal and/or the sixth signal.
  • the communication method can be applied to a communication system composed of a first device and a second device.
  • the first device may be the base station or satellite station described in Figure 1
  • the second device may be the terminal device described in Figure 1.
  • the first device may be a terminal device described in FIG. 1
  • the second device may be another terminal device described in FIG. 1 .
  • the first device may be the sending device described above in relation to the communication device 800, the communication device 1400, the communication device 900, or the communication device 1500
  • the second device may be the communication device 800, the communication device 1500, or the communication device 1500.
  • Device 1400, communication device 900, or communication device 1500 may be the sending device described above in relation to the communication device 800, the communication device 1400, the communication device 900, or the communication device 1500.
  • the second device includes a first branch and a second branch
  • the first branch includes a first frequency amplitude converter
  • the second branch includes a second frequency amplitude converter
  • the The linear working range corresponding to the second frequency amplitude converter is smaller than the linear working range corresponding to the first frequency amplitude converter.
  • Figure 27 is a schematic flow chart of an example communication method 1000 provided by the embodiment of the present application.
  • the communication method 1000 includes S1010 to S1030.
  • S1010 to S1030 are described in detail below respectively.
  • the first device sends a first signal to the second device.
  • the second device receives the first signal sent by the first device.
  • the first device sends a second signal to the second device.
  • the second device receives the second signal sent by the first device.
  • the second device obtains the first amplitude information of the third signal through the first frequency amplitude converter.
  • the third signal is a signal obtained by mixing the first signal and the first local oscillator signal;
  • the second device demodulates the fourth signal through the second branch.
  • the fourth signal is a signal obtained by mixing the second signal and the second local oscillator signal.
  • the second local oscillator signal is based on the first amplitude information.
  • Figure 28 is a schematic flow chart of an example communication method 1100 provided by the embodiment of the present application.
  • the communication method 1100 includes S1110 to S1130.
  • S1110 to S1130 are described in detail below respectively.
  • the first device sends a second signal to the second device.
  • the second device receives the second signal sent by the first device.
  • the second device obtains the second amplitude information of the fifth signal through the first frequency amplitude converter.
  • the fifth signal is a signal obtained by mixing the second signal and the first local oscillator signal.
  • the second device demodulates the sixth signal through the second branch.
  • the sixth signal is a signal obtained by mixing the second signal and the second local oscillator signal.
  • the second local oscillator signal is based on the second amplitude information.
  • the second device includes a line, and the line includes a frequency amplitude converter.
  • the linear working interval corresponding to the frequency amplitude converter can be adjusted according to the frequency offset of the local oscillator signal generated by the second device. Able to adjust.
  • the communication method in this implementable manner will be described below with reference to Figure 29.
  • Figure 29 is a schematic flow chart of an example communication method 1600 provided by the embodiment of the present application.
  • the communication method 1600 includes S1610 to S1630.
  • S1610 to S1630 are described in detail below respectively.
  • the first device sends a second signal to the second device.
  • the second device receives the second signal sent by the first device.
  • the frequency-to-amplitude converter of the second device uses the first linear working interval to obtain the second amplitude information of the fifth signal.
  • the fifth signal is a signal obtained by mixing the second signal and the first local oscillator signal.
  • the frequency-to-amplitude converter of the second device demodulates the sixth signal using the second linear working interval.
  • the sixth signal is a signal obtained by mixing the second signal and the second local oscillator signal
  • the second local oscillator signal is a signal obtained by frequency offset correction of the first local oscillator signal based on the second amplitude information.
  • the second linear working interval is smaller than the first linear working interval.
  • the second device includes a first branch and a second branch, the first branch includes a first filter, the second branch includes a second filter, and the bandwidth of the second filter smaller than the bandwidth of the first filter.
  • Figure 30 is a schematic flow chart of an example communication method 1200 provided by the embodiment of the present application.
  • the communication method 1200 includes S1210 to S1240.
  • S1210 to S1230 are described in detail below respectively.
  • the first device sends the first signal to the second device.
  • the second device receives the message sent by the first device.
  • the first signal The first signal.
  • the first device sends a second signal to the second device.
  • the second device receives the second signal sent by the first device.
  • the second device filters the third signal through the first filter.
  • the third signal is a signal obtained by mixing the first signal and the first local oscillator signal.
  • the second device filters the fourth signal through the second filter.
  • the fourth signal is a signal obtained by mixing the second signal and the second local oscillator signal.
  • the second local oscillator signal is a signal obtained by performing frequency offset correction on the first local oscillator signal based on the first amplitude information of the third signal.
  • Figure 31 is a schematic flow chart of an example communication method 1300 provided by the embodiment of the present application.
  • the communication method 1300 includes S1310 to S1330.
  • S1310 to S1330 are described in detail below respectively.
  • the first device sends a second signal to the second device.
  • the second device receives the second signal sent by the first device.
  • the second device filters the fifth signal through the first filter.
  • the fifth signal is a signal obtained by mixing the second signal and the first local oscillator signal.
  • the second device filters the sixth signal through the second filter.
  • the sixth signal is a signal obtained by mixing the second signal and the second local oscillator signal.
  • the second local oscillator signal is a signal obtained by performing frequency offset correction on the first local oscillator signal based on the second amplitude information of the fifth signal.
  • the second device includes a line, the line includes a filter, and the bandwidth of the filter can be adjusted according to the frequency offset of the local oscillator signal generated by the second device.
  • the communication method in this implementable manner will be described below with reference to Figure 32.
  • Figure 32 is a schematic flow chart of an example communication method 1700 provided by the embodiment of the present application.
  • the communication method 1700 includes S1710 to S1730.
  • S1710 to S1730 are described in detail below respectively.
  • the first device sends a second signal to the second device.
  • the second device receives the second signal sent by the first device.
  • the filter of the second device uses the first bandwidth to filter the fifth signal.
  • the fifth signal is a signal obtained by mixing the second signal and the first local oscillator signal.
  • the filter of the second device uses the second bandwidth to filter the sixth signal.
  • the sixth signal is a signal obtained by mixing the second signal and the second local oscillator signal
  • the second local oscillator signal is obtained by frequency offset correction of the first local oscillator signal based on the second amplitude information of the fifth signal. signal
  • the second bandwidth is smaller than the first bandwidth.
  • Embodiments of the present application provide a communication system, including a first device and a second device.
  • the system is configured to implement the technical solutions in the above embodiments.
  • the implementation principles and technical effects are similar to the above-mentioned method-related embodiments, and will not be described again here.
  • Embodiments of the present application provide a computer program product.
  • the computer program product When the computer program product is running on a device, it causes The equipment is obtained to implement the technical solutions in the above embodiments.
  • the implementation principles and technical effects are similar to the above-mentioned method-related embodiments, and will not be described again here.
  • the device may include the first device or the second device described in the above embodiment.
  • Embodiments of the present application provide a readable storage medium.
  • the readable storage medium contains instructions. When the instructions are run on a device, they cause the device to execute the technical solutions of the above embodiments. The implementation principles and technical effects are similar and will not be described again here.
  • the device may include the first device or the second device described in the above embodiment.
  • Embodiments of the present application provide a chip.
  • the chip is used to execute instructions.
  • the technical solutions in the above embodiments are executed.
  • the implementation principles and technical effects are similar and will not be described again here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

本申请实施例提供了一种通信装置及通信方法。该通信装置用于接收来自相同设备的第一信号和第二信号,第二信号用于指示通信装置进入连接态;通信装置包括第一支路和第二支路;第一支路包括:第一频率幅值转换器,用于得到第三信号的第一幅值信息,第三信号是第一信号和第一本振信号混频后的信号;第二支路,用于对第四信号进行解调,第四信号是第二信号和第二本振信号混频后的信号,第二本振信号是基于第一幅值信息对第一本振信号进行频偏纠正后的信号,第二支路包括第二频率幅值转换器,第二频率幅值转换器的线性工作区间小于第一频率幅值转换器的线性工作区间。这样可以提高该通信装置对信号的解调性能。

Description

通信装置及通信方法
本申请要求于2022年4月29日提交中国专利局、申请号为202210474157.2、申请名称为“一种接收机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2022年7月8日提交中国专利局、申请号为202210800941.8、申请名称为“通信装置及通信方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,并且更具体地,涉及一种通信装置及通信方法。
背景技术
在无线通信系统中,信号是以电磁波的形式通过天线辐射到空间的。发送设备在信号发射之前,一般会对信号进行调制处理,并通过上变频将基带信号的频谱搬至较高的载波频率上,使得通信系统可以在分配的信道中工作。对于接收设备而言,接收设备必须对发送设备发送的信号进行下变频和解调处理,才能获取发送设备传输的信息。其中,解调是调制的逆过程,调制方式不同,解调方式也不同。例如,若信号是通过频移键控(frequency shift keying,FSK)的调制方式将信息调制在载波频率上,那么,接收设备在解调的过程中,需要通过接收的信号的频率来获取发送的信息。
由于发送设备侧发送的基带信号在经过上变频之后,使用射频频率,因此,在接收设备对接收的信号进行解调之前,需要先对接收的信号进行降频处理。通常,接收设备可以将接收设备产生的本振信号与接收的信号进行混频,完成对接收的信号的下变频处理。但是,受接收设备晶振的稳定性和周围环境等因素的影响,该接收设备产生的本振信号的频率和理想的频率往往存在偏差,这样接收设备对接收的信号进行解调后得到的基带信号会存在误差,进而对接收设备的解调性能造成严重影响。
发明内容
本申请实施例提供一种通信装置及通信方法,该通信装置可以对通信装置产生的本振信号进行频偏纠正,这样,可以减小通信装置对接收的信号进行解调后得到的基带信号的误差,进而提高接收设备的解调性能。
第一方面,提供了一种通信装置,所述通信装置,用于接收第一信号和第二信号,所述第二信号和所述第一信号均来自相同的设备,所述第二信号用于指示所述通信装置进入连接态;所述通信装置包括第一支路和第二支路;其中,所述第一支路包括:第一频率幅值转换器,用于得到第三信号的第一幅值信息,所述第三信号是所述第一信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;所述第二支 路,用于对第四信号进行解调,所述第四信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第一幅值信息对所述第一本振信号进行频偏纠正后得到的信号,所述第二支路包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间。
在该技术方案中,该通信装置先通过第一支路的第一频率幅值转换器,得到第一信号和第一本振信号混频后的第三信号的第一幅值信息。然后,该通信装置再通过第二支路对第二本振信号和第二信号混频后的第四信号进行解调,其中第二本振信号是基于第一幅值信息对第一本振信号进行频偏纠正后得到的信号。由于第一本振信号存在频偏,这样,将第一支路的第一频率幅值转换器对应的线性工作区间设置的比第二频率幅值转换器对应的线性工作区间大,可以使得第一信号和第一本振信号混频后的第三信号的频率,不会超出第一频率幅值转换器对应的线性工作区间,进而第一频率幅值转换器可以准确地得到第三信号的第一幅值信息,以便后续基于第一幅值信息对第一本振信号进行准确地频偏纠正。
进一步地,该通信装置通过第二支路,对第二本振信号和第二信号混频后的第四信号进行解调。由于第二本振信号是对第一本振信号进行了频偏纠正后得到的信号,因此,第四信号的频偏值小于第一本振信号和第二信号混频后的信号的频偏值,这样,将第二支路的第二频率幅值转换器对应的线性工作区间设置的小于第一频率幅值转换器的线性工作区间,仍然可以准确地对第四信号进行解调。进而,不会对该通信装置的解调性能造成严重影响。
结合第一方面,在第一方面的某些实现方式中,所述通信装置还包括频偏估计模块和本地晶振;所述第一频率幅值转换器,还用于向所述频偏估计模块发送所述第一幅值信息;所述频偏估计模块,用于根据所述第一幅值信息得到第一频偏值,并向所述本地晶振发送所述第一频偏值;所述本地晶振,用于根据所述第一频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
结合第一方面,在第一方面的某些实现方式中,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
结合第一方面,在第一方面的某些实现方式中,所述第二信号采用差分调频的调制方式,所述第二频率幅值转换器,用于得到所述第四信号的第三幅值信息;所述第二支路,还具体用于:根据所述第四信号的第三幅值信息,获取相邻时间单元内传输的所述第四信号的频差,其中第i个时间单元内所传输的所述第四信号的频率f(i)=mod[f(i-1)+△f1(i),B1],所述△f1(i)为所述第四信号的序列中第i个所述第四信号与第(i-1)个所述第四信号的频差,所述B1为预设的第一带宽值,所述i为大于1的整数;根据所述第四信号的频差,获取所述第四信号所携带的调制信息。
因为前后两个时间单元的时间间隔很短,即使通信装置产生的本振信号存在残余频偏,通信装置前后两个时间单元内产生的本振信号的残余频偏可以认为是相同的,这样通过对前后时间单元内的第四信号的频率相减(即差分调频调制方式),可以把通信装置产生的本振信号的残余的频偏抵消,从而进一步不影响该通信装置的解调性能。
结合第一方面,在第一方面的某些实现方式中,所述第一信号采用差分调频的调制方 式,所述第一支路,用于:根据所述第一幅值信息,获取相邻时间单元内传输的所述第三信号的频差,其中第j个时间单元内所传输的所述第三信号的频率f(j)=mod[f(j-1)+△f1(j),B3],所述△f1(j)为所述第三信号的序列中第j个所述第三信号与第(j-1)个所述第三信号的频差,所述B3为预设的第三带宽值,所述j为大于1的整数;根据所述第三信号的频差,获取所述第三信号所携带的调制信息。
因为前后两个时间单元的时间间隔很短,即使通信装置产生的本振信号存在残余频偏,通信装置前后两个时间单元内产生的本振信号的残余频偏可以认为是相同的,这样通过对前后时间单元内的第三信号的频率相减(即差分调频调制方式),可以把通信装置产生的本振信号的残余的频偏抵消,从而进一步不影响该通信装置的解调性能。
结合第一方面,在第一方面的某些实现方式中,所述通信装置,还用于接收第一数据和第二数据。
在一种可实现的方式中,所述第一数据和所述第一信号是通过FDM的方式发送的,和/或,所述第二数据和所述第二信号是通过FDM的方式发送的;其中,所述第一信号与所述第一数据之间的频率保护间隔大于所述第二信号与所述第二数据之间的频率保护间隔。
因为第一信号是用于对第一本振信号进行频偏纠正,第二信号用于指示通信装置进入连接态,故该通信装置是先采用第一信号对第一本振信号的频偏进行纠正,然后才根据对第一本振信号纠偏后的第二本振信号对接收的第二信号进行解调。由于在通信装置对第一本振信号进行频偏纠正的过程中存在频偏,这样,将第一信号和第一数据之间的频率保护间隔(相对于第二信号和第二数据之间的频率保护间隔)设置的更大,可以避免相邻频带上正常传输的第一数据进入第一支路。在对第一本振信号纠偏后的第二本振信号对接收的第二信号进行解调的过程中,由于已经对第一本振信号进行了频偏纠正,这样,第二本振信号的频偏值小于第一本振信号的频偏值,那么将第二信号和第二数据之间的频率保护间隔(相对于第一信号和第一数据之间的频率保护间隔)设置的更小,既可以避免相邻频带上正常传输的第二数据进入第二支路,同时更小的保护间隔提高了系统资源的利用率。
结合第一方面,在第一方面的某些实现方式中,所述通信装置,还用于获取配置信息,所述配置信息用于指示以下至少一项:所述第一信号的发送周期、所述第一信号的比特序列、所述第一信号与所述第一数据之间的频率保护间隔、所述第二信号与所述第二数据之间的频率保护间隔。
结合第一方面,在第一方面的某些实现方式中,所述第一信号的调制阶数小于所述第二信号的调制阶数,或,所述第一信号为单频率信号,或,所述第一信号的调制阶数为2。
调制阶数越低,信号的每个符号(码元)携带的信息越少,通信装置将频率转换为幅值的数量就越少。这样,在相同的区间内,幅值的数量越少,幅值之间的距离就越大,进而该通信装置对第一信号的解调性能就越好。
结合第一方面,在第一方面的某些实现方式中,所述第一信号的发射功率大于所述第二信号的发射功率。
第一信号的发射功率大于第二信号的发射功率,这样,该通信装置可以获取到信号强度较强的第一信号,进而对第一信号可以获取到更好的解调性能。
第二方面,提供了一种通信装置,所述通信装置用于接收第二信号,所述第二信号用于指示所述通信装置进入连接态;所述通信装置包括第一支路和第二支路;其中,所述第 一支路包括:第一频率幅值转换器,用于得到第五信号的第二幅值信息,所述第五信号是所述第二信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;所述第二支路,用于对第六信号进行解调,所述第六信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第二幅值信息对所述第一本振信号进行频偏纠正后得到的信号,所述第二支路包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间。
在该技术方案中,该通信装置先通过第一支路的第一频率幅值转换器,得到第二信号和第一本振信号混频后的第五信号的第二幅值信息。然后,该通信装置再通过第二支路对第二本振信号和第二信号混频后的第六信号进行解调,其中第二本振信号是基于第二幅值信息对第一本振信号进行频偏纠正后得到的信号。由于第一本振信号存在频偏,这样,将第一支路的第一频率幅值转换器对应的线性工作区间设置的比第二频率幅值转换器对应的线性工作区间大,可以使得第一信号和第一本振信号混频后的第五信号的频率,不会超出第一频率幅值转换器对应的线性工作区间,进而第一频率幅值转换器可以准确地得到第五信号的第二幅值信息,以便后续基于第二幅值信息对第一本振信号进行准确地频偏纠正。
进一步地,该通信装置通过第二支路,对第二本振信号和第二信号混频后的第六信号进行解调。由于第二本振信号是对第一本振信号进行了频偏纠正后得到的信号,因此,第六信号的频偏值小于第一本振信号和第二信号混频后的信号的频偏值,这样,将第二支路的第二频率幅值转换器对应的线性工作区间设置的小于第一频率幅值转换器的线性工作区间,仍然可以准确地对第六信号进行解调。进而,不会对该通信装置的解调性能造成严重影响。
结合第二方面,在第二方面的某些实现方式中,所述通信装置还包括频偏估计模块和本地晶振;所述第一频率幅值转换器,还用于向所述频偏估计模块发送所述第二幅值信息;所述频偏估计模块,用于根据所述第二幅值信息得到第二频偏值,并向所述本地晶振发送所述第二频偏值;所述本地晶振,用于根据所述第二频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
结合第二方面,在第二方面的某些实现方式中,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
结合第二方面,在第二方面的某些实现方式中,所述第二信号采用差分调频的调制方式,所述第二支路,还具体用于:获取相邻时间单元内传输的滤波后的所述第六信号的频差,其中第i个时间单元内所传输的滤波后的所述第六信号的频率f(i)=mod[f(i-1)+△f2(i),B2],所述△f2(i)为滤波后的所述第六信号的序列中第i个所述第六信号与第(i-1)个所述第六信号的频差,所述B2为预设的第二带宽值,所述i为大于1的整数;根据滤波后的所述第六信号的频差,获取滤波后的所述第六信号所携带的调制信息。
因为前后两个时间单元的时间间隔很短,即使通信装置产生的本振信号存在残余频偏,通信装置前后两个时间单元内产生的本振信号的残余频偏可以认为是相同的,这样通过对前后时间单元内的第六信号的频率相减(即差分调频调制方式),可以把通信装置产生的本振信号的残余的频偏抵消,从而进一步不影响该通信装置的解调性能。
第三方面,提供了一种通信装置,所述通信装置用于接收第一信号和第二信号,所述第二信号和所述第一信号均来自相同的设备,所述第二信号用于指示所述通信装置进入连接态;所述通信装置包括第一支路和第二支路;其中,所述第一支路包括:第一滤波器,用于对第三信号进行滤波,所述第三信号是所述第一信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;所述第二支路包括:第二滤波器,用于对第四信号进行滤波,所述第四信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第三信号的第一幅值信息对所述第一本振信号进行频偏纠正后得到的信号,所述第二滤波器的带宽小于所述第一滤波器的带宽。
在该技术方案中,该通信装置先通过第一支路的第一滤波器,对第一信号和第一本振信号混频后得到的第三信号进行滤波。然后,该通信装置再通过第二支路的第二滤波器,对第二信号和第二本振信号混频后得到的第四信号进行滤波,其中第二本振信号是基于第三信号的第一幅值信息对第一本振信号进行频偏纠正后得到的信号。由于第一本振信号存在频偏,因此,将第一支路的第一滤波器的带宽设置的比第二滤波器的带宽大,可以使得即使第一本振信号存在频偏的情况下,第一滤波器仍然不会滤除掉第三信号,进而后续便可以根据第三信号对第一本振信号进行频偏纠正。
进一步地,该通信装置通过第二支路的第二滤波器,对第二信号和第二本振信号混频后得到的第四信号进行滤波。由于第二本振信号是对第一本振信号进行了频偏纠正后得到的信号,因此,第四信号频偏值小于第一本振信号和第二信号混频后的信号的频偏值,这样,将第二支路的第二滤波器的带宽(相对于第一滤波器的带宽)设置为较小的带宽,保证在残余的频偏下,第二滤波器不会滤除掉第四信号,同时,第二滤波器因为通带窄,可以滤除带外噪声,降低该通信装置的噪声水平,进而提升该通信装置对第四信号的解调性能。
结合第三方面,在第三方面的某些实现方式中,所述第一支路还包括:第一频率幅值转换器,用于得到所述第一幅值信息;所述通信装置还包括频偏估计模块和本地晶振;所述第一频率幅值转换器,还用于向所述频偏估计模块发送所述第一幅值信息;所述频偏估计模块,用于根据所述第一幅值信息得到第一频偏值,并向所述本地晶振发送所述第一频偏值;所述本地晶振,用于根据所述第一频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
结合第三方面,在第三方面的某些实现方式中,所述第二支路还包括:第二频率幅值转换器,用于对滤波后的所述第四信号进行解调,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间。
结合第三方面,在第三方面的某些实现方式中,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
结合第三方面,在第三方面的某些实现方式中,所述第二信号采用差分调频的调制方式,所述第二频率幅值转换器,用于得到所述第四信号的第三幅值信息;所述第二支路,还具体用于:根据所述第四信号的第三幅值信息,获取相邻时间单元内传输的所述第四信号的频差,其中第i个时间单元内所传输的所述第四信号的频率f(i)=mod[f(i-1)+△f1 (i),B1],所述△f1(i)为所述第四信号的序列中第i个所述第四信号与第(i-1)个所述第四信号的频差,所述B1为预设的第一带宽值,所述i为大于1的整数;根据滤波后的所述第四信号的频差,获取滤波后的所述第四信号所携带的调制信息。
结合第三方面,在第三方面的某些实现方式中,所述第一信号采用差分调频的调制方式,所述第一支路,用于:根据所述第一幅值信息,获取相邻时间单元内传输的所述第三信号的频差,其中第j个时间单元内所传输的所述第三信号的频率f(j)=mod[f(j-1)+△f1(j),B3],所述△f1(j)为所述第三信号的序列中第j个所述第三信号与第(j-1)个所述第三信号的频差,所述B3为预设的第三带宽值,所述j为大于1的整数;根据所述第三信号的频差,获取所述第三信号所携带的调制信息。
第三方面中任一项可能的实现方式的技术效果可以参考相应第一方面的实现方式的技术效果,这里不再赘述。
第四方面,提供了一种通信装置,所述通信装置用于接收第二信号,所述第二信号用于指示所述通信装置进入连接态;所述通信装置包括第一支路和第二支路;其中,所述第一支路包括:第一滤波器,用于对第五信号进行滤波,所述第五信号是所述第二信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;所述第二支路包括:第二滤波器,用于对所述第六信号进行滤波,所述第六信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第五信号的第二幅值信息对所述第一本振信号进行频偏纠正后得到的信号,所述第二滤波器的带宽小于所述第一滤波器的带宽。
在该技术方案中,该通信装置先通过第一支路的第一滤波器,对第二信号和第一本振信号混频后得到的第五信号进行滤波。然后,该通信装置再通过第二支路的第二滤波器,对第二信号和第二本振信号混频后得到的第六信号进行滤波,其中第二本振信号是基于第五信号的第二幅值信息对第一本振信号进行频偏纠正后得到的信号。由于第一本振信号存在频偏,因此,将第一支路的第一滤波器的带宽设置的比第二滤波器的带宽大,可以使得即使第一本振信号存在频偏的情况下,第一滤波器仍然不会滤除掉第五信号,进而后续便可以根据第五信号对第一本振信号进行频偏纠正。
进一步地,该通信装置通过第二支路的第二滤波器,对第二信号和第二本振信号混频后得到的第六信号进行滤波。由于第二本振信号是对第一本振信号进行了频偏纠正后得到的信号,因此,第六信号的频偏值小于第一本振信号和第二信号混频后的信号的频偏值,这样,将第二支路的第二滤波器的带宽(相对于第一滤波器的带宽)设置为较小的带宽,保证在残余的频偏下,第二滤波器不会滤除掉第六信号,同时,第二滤波器因为通带窄,可以滤除带外噪声,降低该通信装置的噪声水平,进而提升该通信装置对第六信号的解调性能。
结合第四方面,在第四方面的某些实现方式中,所述第一支路还包括:第一频率幅值转换器,用于得到所述第二幅值信息;所述通信装置还包括频偏估计模块和本地晶振;所述第一频率幅值转换器,还用于向所述频偏估计模块发送所述第二幅值信息;所述频偏估计模块,用于根据所述第二幅值信息得到第二频偏值,并向所述本地晶振发送所述第二频偏值;所述本地晶振,用于根据所述第二频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
结合第四方面,在第四方面的某些实现方式中,所述第二支路还包括:第二频率幅值 转换器,用于对滤波后的所述第六信号进行解调,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间。
结合第四方面,在第四方面的某些实现方式中,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
结合第四方面,在第四方面的某些实现方式中,所述第二信号采用差分调频的调制方式,所述第二支路,还具体用于:获取相邻时间单元内传输的滤波后的所述第六信号的频差,其中第i个时间单元内所传输的滤波后的所述第六信号的频率f(i)=mod[f(i-1)+△f2(i),B2],所述△f2(i)为滤波后的所述第六信号的序列中第i个所述第六信号与第(i-1)个所述第六信号的频差,所述B2为预设的第二带宽值,所述i为大于1的整数;根据滤波后的所述第六信号的频差,获取滤波后的所述第六信号所携带的调制信息。
第四方面中任一项可能的实现方式的技术效果可以参考相应第二方面的实现方式的技术效果,这里不再赘述。
示例性地,在一种可实现的方式中,第一方面至第四方面中的任一项可实现方式中所述的通信装置可以为接入网设备或接入网设备中的芯片或电路。在另一种可实现的方式中,该第一方面至第四方面中的任一项可实现方式中所述的通信装置可以为终端设备或终端设备中的芯片或电路。
第五方面,提供了一种通信方法,所述通信方法应用于通信装置,所述通信装置包括第一支路和第二支路,所述第一支路包括第一频率幅值转换器,所述第二支路包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间,所述通信方法包括:接收第一信号和第二信号,所述第二信号和所述第一信号均来自相同的设备,所述第二信号用于指示所述通信装置进入连接态;通过所述第一频率幅值转换器得到第三信号的第一幅值信息,所述第三信号是所述第一信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;通过所述第二支路对第四信号进行解调,所述第四信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第一幅值信息对所述第一本振信号进行频偏纠正后得到的信号。
结合第五方面,在第五方面的某些实现方式中,在所述通过所述第二支路对第四信号进行解调之前,所述通信方法还包括:根据所述第一幅值信息得到第一频偏值;根据所述第一频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
结合第五方面,在第五方面的某些实现方式中,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
结合第五方面,在第五方面的某些实现方式中,所述第二信号采用差分调频的调制方式,所述通信方法还包括:通过所述第二频率幅值转换器得到所述第四信号的第三幅值信息;所述通过所述第二支路对第四信号进行解调包括:通过所述第二支路,获取相邻时间 单元内传输的所述第四信号的频差,其中第i个时间单元内所传输的所述第四信号的频率f(i)=mod[f(i-1)+△f1(i),B1],所述△f1(i)为所述第四信号的序列中第i个所述第四信号与第(i-1)个所述第四信号的频差,所述B1为预设的第一带宽值,所述i为大于1的整数;根据所述第四信号的频差,获取所述第四信号所携带的调制信息。
结合第五方面,在第五方面的某些实现方式中,所述第一信号采用差分调频的调制方式,所述方法还包括:通过所述第一支路,根据所述第一幅值信息,获取相邻时间单元内传输的所述第三信号的频差,其中第j个时间单元内所传输的所述第三信号的频率f(j)=mod[f(j-1)+△f1(j),B3],所述△f1(j)为所述第三信号的序列中第j个所述第三信号与第(j-1)个所述第三信号的频差,所述B3为预设的第三带宽值,所述j为大于1的整数;根据所述第三信号的频差,获取所述第三信号所携带的调制信息。
第五方面中任一项可能的实现方式的技术效果可以参考相应第一方面的实现方式的技术效果,这里不再赘述。
第六方面,提供了一种通信方法,所述通信方法应用于通信装置,所述通信装置包括第一支路和第二支路,所述第一支路包括第一频率幅值转换器,所述第二支路包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间,所述通信方法包括:接收第二信号,所述第二信号用于指示所述通信装置进入连接态;通过所述第一频率幅值转换器得到第五信号的第二幅值信息,所述第五信号是所述第二信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;通过所述第二支路对第六信号进行解调,所述第六信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第二幅值信息对所述第一本振信号进行频偏纠正后得到的信号。
结合第六方面,在第六方面的某些实现方式中,在所述通过所述第二支路对第六信号进行解调之前,所述通信方法还包括:根据所述第二幅值信息得到第二频偏值;根据所述第二频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
结合第六方面,在第六方面的某些实现方式中,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
结合第六方面,在第六方面的某些实现方式中,所述第二信号采用差分调频的调制方式,所述通过所述第二支路对第六信号进行解调包括:通过所述第二支路,获取相邻时间单元内传输的滤波后的所述第六信号的频差,其中第i个时间单元内所传输的滤波后的所述第六信号的频率f(i)=mod[f(i-1)+△f2(i),B2],所述△f2(i)为滤波后的所述第六信号的序列中第i个所述第六信号与第(i-1)个所述第六信号的频差,所述B2为预设的第二带宽值,所述i为大于1的整数;根据滤波后的所述第六信号的频差,获取滤波后的所述第六信号所携带的调制信息。
第六方面中任一项可能的实现方式的技术效果可以参考相应第二方面的实现方式的技术效果,这里不再赘述。
第七方面,提供了一种通信方法,所述通信方法应用于通信装置,所述通信装置包括第一支路和第二支路,所述第一支路包括第一滤波器,所述第二支路包括第二滤波器,所 述第二滤波器的带宽小于所述第一滤波器的带宽,所述通信方法包括:接收第一信号和第二信号,所述第二信号和所述第一信号均来自相同的设备,所述第二信号用于指示所述通信装置进入连接态;通过所述第一滤波器对第三信号进行滤波,所述第三信号是所述第一信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;通过所述第二滤波器对第四信号进行滤波,所述第四信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第三信号的第一幅值信息对所述第一本振信号进行频偏纠正后得到的信号。
结合第七方面,在第七方面的某些实现方式中,所述第一支路还包括第一频率幅值转换器,在所述通过所述第二滤波器对第四信号进行滤波之前,所述通信方法还包括:通过所述第一频率幅值转换器得到所述第一幅值信息;根据所述第一幅值信息得到第一频偏值;根据所述第一频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
结合第七方面,在第七方面的某些实现方式中,所述第二支路还包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间,所述通信方法还包括:通过所述第二频率幅值转换器得到所述第四信号的第三幅值信息;根据所述第四信号的第三幅值信息,对滤波后的所述第四信号进行解调。
结合第七方面,在第七方面的某些实现方式中,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
结合第七方面,在第七方面的某些实现方式中,所述第二信号采用差分调频的调制方式,所述根据所述第四信号的第三幅值信息,对滤波后的所述第四信号进行解调包括:通过所述第二支路,根据所述第四信号的第三幅值信息,获取相邻时间单元内传输的所述第四信号的频差,其中第i个时间单元内所传输的所述第四信号的频率f(i)=mod[f(i-1)+△f1(i),B1],所述△f1(i)为所述第四信号的序列中第i个所述第四信号与第(i-1)个所述第四信号的频差,所述B1为预设的第一带宽值,所述i为大于1的整数;根据滤波后的所述第四信号的频差,获取滤波后的所述第四信号所携带的调制信息。
结合第七方面,在第七方面的某些实现方式中,所述第一信号采用差分调频的调制方式,所述方法还包括:通过所述第一支路,根据所述第一幅值信息,获取相邻时间单元内传输的所述第三信号的频差,其中第j个时间单元内所传输的所述第三信号的频率f(j)=mod[f(j-1)+△f1(j),B3],所述△f1(j)为所述第三信号的序列中第j个所述第三信号与第(j-1)个所述第三信号的频差,所述B3为预设的第三带宽值,所述j为大于1的整数;根据所述第三信号的频差,获取所述第三信号所携带的调制信息。
第七方面中任一项可能的实现方式的技术效果可以参考相应第三方面的实现方式的技术效果,这里不再赘述。
第八方面,提供了一种通信方法,所述通信方法应用于通信装置,所述通信装置包括第一支路和第二支路,所述第一支路包括第一滤波器,所述第二支路包括第二滤波器,所述第二滤波器的带宽小于所述第一滤波器的带宽,所述通信方法包括:接收第二信号,所述第二信号用于指示所述通信装置进入连接态;通过所述第一滤波器对第五信号进行滤波,所述第五信号是所述第二信号和第一本振信号混频后得到的信号,所述第一本振信号是所 述通信装置产生的本振信号;通过所述第二滤波器对所述第六信号进行滤波,所述第六信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第五信号的第二幅值信息对所述第一本振信号进行频偏纠正后得到的信号。
结合第八方面,在第八方面的某些实现方式中,所述第一支路还包括第一频率幅值转换器,在所述通过所述第二滤波器对所述第六信号进行滤波之前,所述通信方法还包括:通过所述第一频率幅值转换器得到所述第二幅值信息;根据所述第二幅值信息得到第二频偏值;根据所述第二频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
结合第八方面,在第八方面的某些实现方式中,所述第二支路还包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间,所述通信方法还包括:对滤波后的所述第六信号进行解调。
结合第八方面,在第八方面的某些实现方式中,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
结合第八方面,在第八方面的某些实现方式中,所述第二信号采用差分调频的调制方式,所述对滤波后的所述第六信号进行解调包括:获取相邻时间单元内传输的滤波后的所述第六信号的频差,其中第i个时间单元内所传输的滤波后的所述第六信号的频率f(i)=mod[f(i-1)+△f2(i),B2],所述△f2(i)为滤波后的所述第六信号的序列中第i个所述第六信号与第(i-1)个所述第六信号的频差,所述B2为预设的第二带宽值,所述i为大于1的整数;根据滤波后的所述第六信号的频差,获取滤波后的所述第六信号所携带的调制信息。
第八方面中任一项可能的实现方式的技术效果可以参考相应第四方面的实现方式的技术效果,这里不再赘述。
示例性地,在一种可实现的方式中,第五方面至第八方面中的任一项可实现方式中所述的通信方法可以由接入网设备执行,或者,也可以由用于接入网设备中的芯片或电路执行。在另一种可实现的方式中,第五方面至第八方面中的任一项可实现方式中所述的通信方法也可以由终端设备执行,或者,也可以由用于终端设备中的芯片或电路执行。
第九方面,提供了一种通信装置,包括:一个或多个处理器;存储器;以及一个或多个计算机程序。其中,一个或多个计算机程序被存储在存储器中,一个或多个计算机程序包括指令。当指令被通信装置执行时,使得通信装置执行上述第五方面至第八方面中任一项可能的实现中的通信方法。
第十方面,提供了一种包含指令的计算机程序产品,当所述计算机程序产品在通信装置上运行时,使得所述通信装置执行上述第五方面至第八方面中任一项可能的实现中的通信方法。
第十一方面,提供了一种计算机可读存储介质,该存储介质可以是非易失性的。该存储介质包括指令,当所述指令在通信装置上运行时,使得所述通信装置执行上述第五方面至第八方面中任一项可能的实现中的通信方法。
第十二方面,提供了一种芯片,包括至少一个处理器和接口电路,所述接口电路用于为所述至少一个处理器提供程序指令或者数据,所述至少一个处理器用于执行所述程序指 令,以实现上述第五方面至第八方面中任一项可能的实现中的通信方法。
第十三方面,提供了一种通信系统,包括发送设备和通信装置。其中,所述通信装置用于执行上述第五方面至第八方面中任一项可能的实现中的通信方法。
附图说明
图1为适用于本申请实施例的一例通信系统的架构的示意图。
图2为一例FSK信号的幅值与时间的关系曲线示意图。
图3为另一例FSK信号的幅值与时间的关系曲线示意图。
图4为一例非相干FSK接收设备的示意性结构图。
图5为一例FM-AM转换器的示意性结构图。
图6和图7分别为FM-AM转换器的频率-幅值转换曲线的示意图。
图8为本申请实施例提供的一例通信装置的示意性结构图。
图9为本申请实施例提供的一例发送设备发送的第一信号、第一数据、第二信号和第二数据的示意图。
图10为本申请实施例提供的一例FM-AM转换器的频率-幅值转换曲线的示意图。
图11为本申请实施例提供的另一例通信装置的示意性结构图。
图12为本申请实施例提供的又一例通信装置的示意性结构图。
图13为本申请实施例提供的一例通信装置的示意性结构图。
图14为本申请实施例提供的一例频率幅值转换器的示意性结构图。
图15为本申请实施例提供的一例RLC谐振器的示意性结构图。
图16至图18分别为本申请实施例提供的一例通信装置的示意性结构图。
图19至图21分别为本申请实施例提供的一例通信装置的示意性结构图。
图22至图26分别为本申请实施例提供的一例通信装置的示意性结构图。
图27至图32分别为本申请实施例提供的一例通信方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
为了便于理解本申请实施例,在介绍本申请实施例之前,先作出以下几点说明。
第一,在本申请实施例中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信号(如下文所述的第一信号)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
第二,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信号、支路等。
第三,本申请实施例中涉及的“多个”是指两个或两个以上。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global  system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的方法的通信系统。图1示出了适用于本申请实施例提供的方法的通信系统100的示意图。
在一个示例中,如图1所示,该通信系统100可以包括至少一个接入网设备,如图1中所示的5G系统中的基站(gNB)和卫星站;该通信系统100还可以包括至少一个终端设备,如图1中所示的用户设备(user equipment,UE)1至UE 9。接入网设备与各终端设备之间可以通过无线链路通信。例如,接入网设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向接入网设备发送上行数据;又例如,接入网设备可以向终端设备发送下行数据。因此,图1中的gNB和UE 1至UE 6可以构成一个通信系统;图1中的卫星站和UE 7至UE 9也可以构成一个通信系统。此外,基站和卫星站通过不同的方式连接到核心网设备,基站和卫星站与核心网设备之间可以进行相互的数据发送。本架构中可以为多个卫星站或者多个基站,卫星站也可以服务类似UE 1至UE 6的UE。本申请对此不作限定。各通信设备,如基站、卫星站或UE 1至UE 9,可以配置多个天线,该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,基站与UE 11至UE 6可通过多天线技术通信,卫星站与UE 7至UE 9可通过多天线技术通信。
在另一个示例中,该通信系统100中的终端设备,如,UE 4至UE 6,也可以构成一个通信系统。示例性地,UE 5分别与UE4、UE 6之间的链路可以称为侧行链路(sidelink)。例如,UE 5可以控制UE 4和UE 6执行相应的指令,本申请对此不作限定。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他接入网设备或者还可以包括其他终端设备,图1中未予以画出。
应理解,该无线通信系统中的接入网设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved NodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可 以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,接入网设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
在本申请实施例中,终端设备或接入网设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先对本申请中涉及到的相关技术内容作简单说明。
1、调制技术:根据需要发送的信息,控制载波的振幅、相位或频率的变化,从而使信息通过载波进行传输的一种技术。
2、FSK调制技术:将信息调制在载波频率上的一种调制技术。
3、调制阶数:用于计算码型每个符号(码元)所能代表的比特数。若调制阶数为M,则每个符号(码元)所能代表的比特数为log2M,也即一个符号(码元)可携带log2M比特的信息。此时,调制阶数为M的FSK可称为M-FSK。
例如,若调制阶数为2,则一个符号(码元)可携带1比特的信息。此时,可认为传输的信息的01比特序列,每个码元可以传输1bit。发送频率为f1的FSK信号可代表传输的是“0”,发送频率为f2的FSK信号可代表传输的是“1”,该FSK信号的载频fc为f1和f2的平均值。例如,如图2所示,为一种调制阶数为2的FSK信号的幅值与时间的关系曲线示意图。
又例如,若调制阶数为4,则一个符号(码元)可携带2比特的信息。此时,可认为传输的信息的01比特序列,每个码元可以传输2bit。发送频率为f1的FSK信号可代表传输的是“00”,发送频率为f2的FSK信号可代表传输的是“01”,发送频率为f3的FSK信号可代表传输的是“10”,发送频率为f4的FSK信号可代表传输的是“11”。该FSK信号的载频fc为f1,f2,f3和f4的平均值。例如,如图3所示,为一种调制阶数为4的FSK信号的幅值与时间的关系曲线示意图。
需要说明的是,图2和图3仅为FSK信号的两种示例,其不应对本申请构成限制。
4、解调技术:是调制技术的逆过程。一般接收设备通过某种信号处理手段从已调信号(发送设备调制后的信号)中得到发送设备所发送的信息。
5、FSK接收设备:可以分为相干FSK接收设备和非相干FSK接收设备两种基本模式。其中,相干FSK接收设备需要对载波进行恢复。也就是说,相干FSK接收设备需要对载波进行恢复,并使用恢复的载波对FSK信号进行解调,得到解调的信息。而非相干FSK接收设备则没有这样的需要,也就是说,非相干FSK接收设备不需要对载波进行恢复,直接根据接收的FSK信号进行解调,也可得到解调的信息。
一般,相干FSK接收设备具有更好的解调性能,但是相应的功耗会更高。非相干FSK接收设备的解调性能有一些差距,但是优势在于结构简单,功耗低。在很多通信系统中,对于低功耗的要求很高,此时往往会选择非相干FSK接收设备。
需要说明的是,本申请实施例中涉及的接收设备是非相干FSK接收设备。
下面,以图4所示的非相干FSK接收设备为例,对非相干FSK接收设备的电路进行说明。
例如,如图4所示,该非相干FSK接收设备包括:射频带通滤波器(radio frequency band pass filter,RF BPF)、射频信号放大器(radio frequency low noise amplifier,RF LNA)、本地晶振(local oscillator,LO)(也可以称为本地振荡器)、乘法器、中频信号放大器(intermediate noise amplifying,IF LNA)、BPF、调频(frequency modulation,FM)调幅(amplitude modulation,AM)转换器、低通滤波器(low-pass filter,LPF)、包络或幅值检测模块(envelop detector)。
该非相干FSK接收设备接收FSK信号(例如,1GHz)的过程大致如下:FSK信号在被该非相干FSK接收设备的天线接收到之后,首先,通过RF BPF进行滤波,并通过RF LNA进行信号放大之后,再与LO输出的本振信号通过乘法器进行混频,并将混频后的FSK信号下变频至中频(例如,50MHz);然后,通过BPF再进行一次滤波,将滤波后的信号的频率信息通过FM-AM转换器转换为幅值信息,并经过LPF去除噪声后,就可以使 用包络或幅值检测模块(envelop detector)来通过幅值信息检测调制信息。
一方面,在如图4所示的非相干FSK接收设备中,FM-AM转换器可以将不同频率的信号转换为不同幅值的信号。
下面,以图5所示的FM-AM转换器的内部结构为例,对FM-AM转换器进行说明。需要说明的是,图5仅为FM-AM转换器的内部结构的一种示例,其不应对本申请构成限制。
例如,如图5所示,该FM-AM转换器包括相位移动模块和乘法器,其中相位移动模块可以对不同频率的信号进行不同的相位旋转。输入FM-AM转换器的信号S(t)分两路,一路直接进入乘法器,另一路先进入相位移动模块,信号S(t)经相位移动模块后得到信号Sp(t),信号Sp(t)再进入乘法器与信号S(t)进行混频,得到混频后的信号S(t)Sp(t)。
其中,相位移动模块对信号S(t)旋转的相位φrot(f)满足以下公式:
其中,fc为载频、fFSK(t)为信号S(t)对应的频率。
这样,信号Sp(t)的幅值和时间的关系式如下:
Sp(t)=cos[2πfct+φ(t,α)+φrot(fFSK(t))]
信号S(t)Sp(t)滤除高频成分后的信号的幅值和时间的关系式如下:
当2πK(fFSK(t)-fc)较小时,sin[2πK(fFSK(t)-fc)]≈2πK(fFSK(t)-fc),这样FM-AM转换器就完成了频率到幅值的转换。
无论FM-AM转换器的内容结构如何,FM-AM转换器的内部结构都存在一个线性工作区间。通常,根据接收设备接收的信号的频率范围,设置FM-AM转换器的频率-幅值转换曲线在中频信号的频率范围内呈线性关系即可。
图6和图7分别为FM-AM转换器的频率-幅值转换曲线的一例示意图。例如,如图6和图7所示,在理想状态下,FM-AM转换器的频率-幅值转换曲线呈线性关系,如6和图7中的实线所示。在实际的状态中,FM-AM转换器的频率-幅值转换曲线只能在一定的频率区间内呈近似线性关系,如图6和图7中的虚线所示,FM-AM转换器的频率-幅值转换曲线只在[f11,f12]区间内呈近似线性关系。
为了方便描述,将FM-AM转换器的频率-幅值转换曲线在一定的频率区间内呈近似线性关系中的频率区间称为FM-AM转换器的线性工作区间。
如果LO产生的本振信号和接收的信号混频之后的信号的频率为f1、f2、f3、f4,且f1、f2、f3、f4均在[f11,f12]区间内,则FM-AM转换器转换过来的幅值分别为e1、e2、e3、e4。如图6所示,若f1、f2、f3、f4中两个相邻频率之间的频率差是相同的,那么e1、e2、e3、e4中两个相邻幅值之间的幅值差也是相同的。
但是,由于LO本身的原因(例如LO的稳定性)可能会造成其性能不稳定,或者,由于LO的性能容易受到其周围环境如温度的影响,LO产生的本振信号的频率往往与理想的频率会存在偏差,这样会使得LO产生的本振信号和接收的信号混频后的信号的频率和理想的频率存在偏差△f。如果这个偏差△f较大,会使得LO产生的本振信号和接收的 信号混频会的频率超出FM-AM转换器的线性工作区间,可能会使得转换出来的幅值不再呈线性关系。
例如,若LO产生的本振信号和接收的信号混频之后的信号的频率为f1、f2、f3、f4,但是,由于LO产生的本振信号存在偏差f,LO产生的本振信号和接收的信号混频之后的信号的频率变为f1+△f、f2+△f、f3+△f、f4+△f。例如,如图7所示,f1+△f和f2+△f在[f11,f12]区间内,f3+△f、f4+△f超出[f11,f12]区间。这样,即使f1+△f、f2+△f、f3+△f、f4+△f两两之间的间隔相同的,也会使得e1'、e2'、e3'、e4'两两之间的间隔不相同。
这样,接收设备对接收的信号进行解调后得到的基带信号会存在误差,进而对接收设备的解调性能造成严重影响。
因此,本申请实施例提供了一种通信装置,该通信装置可以对通信装置产生的本振信号进行频偏纠正,这样,可以减小通信装置对接收的信号进行解调后得到的基带信号的误差,进而提高接收设备的解调性能。
本申请对该实施例中所述的通信装置的类型不作限定。示例性地,该通信装置可以为图1中所示的任一设备,或者,该通信装置可以为图1中所示的任一设备中的装置。
示例性地,该通信装置包括两路支路,其中,一条支路对本振信号的频偏进行纠正,另外一条支路根据纠偏后的本振信号对接收的信号进行解调。
该两条支路可以分时工作,也可以同时工作。为了方便描述,将两条支路分时工作记为实施例1,将两条支路同时工作记为实施例2。
在一个示例中,可以通过开关实现两条支路分时工作。具体的,每条支路都设置至少一个开关,当需要两条支路中的一个支路工作时,可以将该支路中的开关闭合,以使该支路与该通信装置的其他模块接通;当需要两条支路中的另一支路工作时,可以将该支路中的开关断开,并将该另一支路中的开关闭合,以使该支路与该通信装置的其他模块断开,该另一支路与该通信装置的其他模块接通。
下面分别以实施例1和实施例2为例,对该通信装置进行详细的介绍。
实施例1
图8为本申请实施例提供的一例通信装置的示意性结构图。
如图8所示的通信装置800,用于接收第一信号和第二信号。其中,第二信号和第一信号均来自相同的设备(可以称为发送设备),第二信号用于指示通信装置进入连接态。
该第一信号用于对通信装置800产生的本振信号(如下文所述的第一本振信号)进行频偏纠正。
在一个示例中,该第一信号可以不携带任何内容。
在另一个示例中,该第一信号也可以携带内容。
例如,该第一信号可以携带小区的标识。其中,小区为发送设备所服务的区域,该小区的标识用于辅助接收设备确定是否是从正确的发送设备上接收信息。
需要说明的是,若接收设备在发送设备的覆盖范围内,那么该发送设备即可理解为是上文所述的正确的发送设备。或者,若接收设备和发送设备已建立连接,那么该发送设备也即可理解为是上文所述的正确的发送设备。
本申请实施例对该第一信号是否携带内容不作限定。以及,本申请实施例对该第一信号的名称不作限定,例如,该第一信号还可以称为其他信号如参考信号,只要与第一信号功能相同的信号都可认为是第一信号。
此外,本申请实施例对该第二信号的名称不作限定,例如,该第二信号还可以称为其他信号如唤醒信号,只要与第二信号功能相同的信号都可认为是第二信号。
本申请实施例对该第一信号和第二信号的发送方式不作限定。
在一个示例中,发送设备可以周期性地发送第一信号和第二信号。相应地,该通信装置800可以周期性地接收发送设备发送的第一信号和第二信号。
示例性地,发送设备发送第一信号和/或第二信号的周期可以是发送设备通知该通信装置800的,或者,发送设备发送第一信号和/或第二信号的周期可以是预先规定或配置的,本申请实施例对此不作限定。
本申请实施例对发送第一信号和第二信号的周期的取值不作限定,其可以根据实际情况而定。
可选地,在该示例中,如图9所示,在一个周期T内,发送设备可以先发第一信号,后发第二信号。
需要说明的是,图9是以发送设备在发送完第一信号之后,随即发送第二信号为例进行说明,其不应对本申请构成限制。例如,发送设备也可以没有发送完第一信号,便发送第二信号;或者,发送设备也可以在发送完第一信号之后,停一段时间,再发送第二信号。
可选地,在该示例中,发送设备还可以向该通信装置800发送第一数据和第二数据。相应地,该通信装置还用于接收第一数据和第二数据。
本申请实施例对该第一数据和第二数据的发送方式不作限定。
示例性地,发送设备发送第一信号和/或第二信号的发送方式可以是发送设备通知该通信装置800的,或者,发送设备发送第一信号和/或第二信号的发送方式可以是预先规定或配置的,本申请实施例对此不作限定。
示例性地,发送设备采用频分复用(frequency division multiplexing,FDM)的方式发送第一信号和第一数据。
示例性地,发送设备也可以采用FDM的方式发送第二信号和第二数据。
需要说明的是,在发送设备采用FDM的方式发送第一信号和第一数据,以及采用FDM的方式发送第二信号和第二数据的情况下,如图9所示,第一信号和第一数据之间的频率保护间隔f1大于第二信号和第二数据之间的频率保护间隔f2
示例性地,第一信号和第一数据之间的频率保护间隔f1和/或第二信号和第二数据之间的频率保护间隔f2可以是发送设备通知该通信装置800的,或者,第一信号和第一数据之间的频率保护间隔f1和/或第二信号和第二数据之间的频率保护间隔f2可以是预先规定或配置的,本申请实施例对此不作限定。
因为第一信号是用于对第一本振信号进行频偏纠正,第二信号用于指示通信装置进入连接态,故该通信装置800是先采用第一信号对第一本振信号的频偏进行纠正,然后才根据对第一本振信号纠偏后的第二本振信号对接收的第二信号进行解调。由于在通信装置800对第一本振信号进行频偏纠正的过程中存在频偏,这样,将第一信号和第一数据之间的频率保护间隔(相对于第二信号和第二数据之间的频率保护间隔)设置的更大,可以避免相邻频带上正常传输的第一数据进入下文所述的第一支路。在对第一本振信号纠偏后的第二本振信号对接收的第二信号进行解调的过程中,由于已经对第一本振信号进行了频偏纠正,这样,得到的第二本振信号的频偏值小于第一本振信号的频偏值,那么将第二信号和第二数据之间的频率保护间隔(相对于第一信号和第一数据之间的频率保护间隔)设置 的更小,既可以避免相邻频带上正常传输的第二数据进入下文所述的第二支路,同时更小的保护间隔提高了系统资源的利用率。
在一个示例中,为了降低通信装置的功耗,通常在该通信装置中设置两个链路。其中,一个链路用于接收正常收发数据,在该链路启动的情况下,该通信装置的耗电量较大;另一个链路在该通信装置处于非连接态时使用,在该另一个链路启动的情况下,该通信装置的耗电量微小。也就是说,为了降低通信装置800的功耗,该通信装置800可以通过两个链路分别接收信号(如第一信号和第二信号)和数据(如第一数据和第二数据)。
具体的,在该通信装置800处于非连接态的情况下,该通信装置800的第一链路处于工作状态,此时,该通信装置800的第二链路处于关闭状态。当该通信装置800需要进入连接态的情况下,该通信装置800需要首先启动第二链路。例如,在该通信装置800处于非连接态的情况下,该通信装置800通过第一链路接收第一信号和第二信号,该通信装置800在第二信号中接收到用于指示接收数据或进入连接态的指示信息后,该通信装置800会触发通信装置800启动第二链路,进而在与发送设备交互信息后,该通信装置800进入连接态,然后通过第二链路接收第一数据和第二数据。
示例性地,上文所述的第一链路还可以称为唤醒链路(wake up radio,WUR),第二链路还可以称为主链路(main radio),本申请对此不作限定。
需要说明的是,该通信装置800也可以通过一个链路分别接收信号(如第一信号和第二信号)和数据(如第一数据和第二数据),本申请对此不作限定。
可选地,在一个示例中,若第一信号携带了内容,为了该通信装置800可以对第一信号获取到更好的解调性能,发送设备可以采用更高的发射功率(相对于第二信号的发射功率)来发送第一信号,以便该通信装置800可以获取信号强度较强的第一信号,并基于第一信号获取第一信号的调制信息。
可选地,在一个示例中,若第一信号携带了内容,为了该通信装置800可以对第一信号获取到更好的解调性能,发送设备可以采用较低的调制阶数(相对于第二信号的调制阶数)、或最低的调制阶数(例如调制阶数为2)、或单频率来发送第一信号。调制阶数越低,该第一信号的每个符号(码元)携带的信息越少,该通信装置800将频率转换为幅值的数量就越少。这样,在相同的区间内,幅值的数量越少,幅值之间的距离就越大,进而该通信装置800对第一信号的解调性能就越好。
例如,如图8所示,该通信装置800包括:第一支路810和第二支路820。
其中,第一支路810包括第一频率幅值转换器811,该第一频率幅值转换器811用于得到第三信号的第一幅值信息,第三信号是第一信号和第一本振信号混频后得到的信号。也就是说,将第一信号和第一本振信号混频后得到的第三信号输入第一频率幅值转换器811,该第一频率幅值转换器811即可得到第三信号的第一幅值信息。
第二支路820用于对第四信号进行解调。第四信号是第二信号和第二本振信号混频后得到的信号,第二本振信号是基于第一幅值信息对第一本振信号进行频偏纠正后得到的信号。也就是说,基于第一频率幅值转换器811得到的第一幅值信息,对第一本振信号进行频偏纠正即可得到第二本振信号,并将第二信号和第二本振信号的混频后得到的第四信号输入第二支路820,便可通过第二支路820对第四信号进行解调。
此外,第二支路820包括第二频率幅值转换器821,该第二频率幅值转换器821对应的线性工作区间小于第一频率幅值转换器811对应的线性工作区间。
如上文所述,该通信装置800先通过第一支路810的第一频率幅值转换器811,得到第一信号和第一本振信号混频后的第三信号的第一幅值信息。然后,该通信装置800再通过第二支路821对第二本振信号和第二信号混频后的第四信号进行解调,其中第二本振信号是基于第一幅值信息对第一本振信号进行频偏纠正后得到的信号。由于第一本振信号存在频偏,这样,将第一支路810的第一频率幅值转换器811对应的线性工作区间设置的比第二频率幅值转换器821对应的线性工作区间大,可以使得第一信号和第一本振信号混频后的第三信号的频率,不会超出第一频率幅值转换器811对应的线性工作区间,进而第一频率幅值转换器811可以准确地得到第三信号的第一幅值信息,以便后续基于第一幅值信息对第一本振信号进行准确地频偏纠正。
进一步地,该通信装置800通过第二支路820,对第二本振信号和第二信号混频后的第四信号进行解调。由于第二本振信号是对第一本振信号进行了频偏纠正后得到的信号,因此,第四信号的频偏值小于第一本振信号和第二信号混频后的信号的频偏值,这样,将第二支路820的第二频率幅值转换器821对应的线性工作区间设置的小于第一频率幅值转换器811的线性工作区间,仍然可以准确地对第四信号进行解调。进而,不会对该通信装置800的解调性能造成严重影响。
可选地,在一个示例中,若第一频率幅值转换器811内部结构和第二频率幅值转换器821的内部结构均如由上文图5所示的FM-AM转换器的内部结构,此时,可以通过FM-AM转换器的相位移动模块的频率-幅值转换曲线的斜率来设定第一频率幅值转换器811对应的线性工作区间和第二频率幅值转换器821对应的线性工作区间。
例如,如图10所示,理想转换曲线1是第一频率相位曲线对应的理想转换曲线,实际转换曲线1是第一频率相位曲线对应的际转换曲线;理想转换曲线2是第二频率相位曲线对应的理想转换曲线,实际转换曲线2是第二频率相位曲线对应的际转换曲线。由此可见,实际转换曲线2的斜率大于实际转换曲线1,但是实际转换曲线2对应的线性工作区间小于实际转换曲线1。因此,可以根据频率-幅值转换曲线的斜率来设定频率幅值转换器对应的线性工作区间。
具体的,第一频率幅值转换器811包括第一相位移动单元,第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;第二频率幅值转换器821包括第二相位移动单元,第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,第二频率相位曲线的斜率大于第一频率相位曲线的斜率。
例如,若理想情况下,第一本振信号和第一信号混频之后的信号的频率为f1、f2、f3、f4,但是,在实际情况中,第一本振信号存在频偏且频偏为△f,那么第一本振信号和第一信号混频之后的信号的频率变为f1+△f、f2+△f、f3+△f、f4+△f。如图10所示,f1+△f、f2+△f、f3+△f、f4+△f都在实际转换曲线1的线性区间[f21,f22]内,这样,f1+△f、f2+△f、f3+△f、f4+△f中相邻的两个频率之间的频率间隔是相同的,使用实际转换曲线2得到的幅值e1”、e2”、e3”、e4”中相邻两个幅值之间的间隔也相同。虽然相比于图6所示的理想的幅值,因为频偏的存在,图10所示的实际得到的幅值发生了整体的偏移,但是因为仍然在第一频率幅值转换器811对应的线性工作区间内,因此,后续基于e1”、e2”、e3”、e4”的偏移大小和实际转换曲线1的斜率,也能够比较准确地对第一本振信号进行频偏纠正。
此外,由于实际转换曲线2的斜率大于实际转换曲线1的斜率,这样,基于实际转换曲线2转换的幅值之间的欧氏距离大于基于实际转换曲线1转换的幅值之间的欧氏距离。 此外,由于相同区间内,欧氏距离越近的话,解调的抗噪声能力越差。因此,采用实际转换曲线2对第四信号进行解调的过程中,由于幅值之间的欧氏距离相对较远,因此便可以获得较高的解调性能。
可选地,在一个示例中,如图11所示,该通信装置800还包括频偏估计模块812和本地晶振830。第一频率幅值转换器811,还用于向频偏估计模块812发送第一幅值信息;频偏估计模块812,用于根据第一幅值信息得到第一频偏值,并向本地晶振830发送第一频偏值;本地晶振830,用于根据第一频偏值,对第一本振信号进行频偏纠正,得到第二本振信号。
在一个示例中,频偏估计模块812可以根据第一幅值信息和第一理想幅值信息,得到第一频偏值。
其中,第一理想幅值信息可以理解为,在第一本振信号不存在频偏的情况下,第一信号和第一本振信号混频后的第三信号对应的幅值信息。
需要说明的是,该第一理想幅值信息可以是发送设备发送给通信装置800,或者,该第一理想幅值信息也可以是接收设备根据第一信号的发送频率和第一频率幅值转换曲线的斜率计算出来的。
可选地,在一个示例中,第二支路820用于对第四信号进行解调包括:通过第二支路820的第二频率幅值转换器821得到第四信号的第三幅值信息,并根据第三幅值信息得到第四信号的调制信息。
本申请实施例对第二支路820如何根据第三幅值信息得到第四信号的调制信息不作限定。
在一个示例中,若发送设备对第二信号进行频移键控调制,那么,该第二支路820根据第四信号的第三幅值信息,得到第四信号所携带的调制信息。
在另一个示例中,若发送设备对第二信号进行差分调频调制,即第二信号采用差分调频的调制方式,那么,该第二支路820先根据第四信号的第三幅值信息,获取相邻时间单元内传输的第四信号的频差,其中第i个时间单元内所传输的第四信号的频率f(i)=mod[f(i-1)+△f1(i),B1],所述△f1(i)为所述第四信号的序列中第i个所述第四信号与第(i-1)个所述第四信号的频差,所述B1为预设的第一带宽值,i为大于1的整数;然后根据第四信号的频差,获取第四信号所携带的调制信息。
需要说明的是,当i取2时,f(i-2)=f(1)可以取任意值,本申请实施例对f(1)的具体取值不作限定。
此外,本申请所有实施例中所述的时间单元可以理解为比特序列中的一个元素的周期。本申请该时间单元的取值不作限定,例如,该时间单元可以为一个符号。
因为前后两个时间单元的时间间隔很短,即使通信装置产生的本振信号存在残余频偏,通信装置前后两个时间单元内产生的本振信号的残余频偏可以认为是相同的,这样通过对前后时间单元内的第四信号的频率相减(即差分调频调制方式),可以把通信装置产生的本振信号的残余的频偏抵消,从而进一步不影响该通信装置的解调性能。
例如,若发送设备采用调制阶数4对第二信号进行差分调频调制,那么传输的第二信号的0/1比特序列可以每两个bit映射到一个码元(symbol)上,每两个bit包括“00”、“01”、“10”和“11”四种可能性。发送设备可以将第二信号的比特序列中每两个bit映射一个第一频差,并根据比特序列中每两个bit映射的第一频差,对第二信号进行调制。
表1为本申请实施例提供的一例比特序列中每两个bit和第一频差的映射关系。
需要说明的是,表1仅为示例,其不应对本申请构成限制。本申请实施例对比特序列中每两个bit映射的第一频差的取值不作限定。
表1
例如,作出以下假设:(1)发送设备传输的第二信号的比特序列为:“01100011”;(2)当i取2时,f(i-1)=f(1)=20kHz,此时,f(1)可以称为第二信号的初始频率;(3)B1=200kHz;(4)比特序列中每两个bit和第一频差的映射关系为表1所示的映射关系。那么发送设备需要根据第二信号的比特序列,对第二信号进行调制,具体过程如下:
S1:发送设备对第二信号的比特序列中第一个bit(“0”)和第二个bit(“1”)对应的符号所传输的第二信号进行调制后,得到的频率为20kHz(初始频率)+50kHz(第一个bit(“0”)和第二个bit(“1”)所映射的第一频差)=70kHz。
S2:发送设备对第二信号的比特序列中第三个bit(“1”)和第四个bit(“0”)对应的符号所传输的第二信号进行调制后,得到的频率为70kHz(第一个bit(“0”)和第二个bit(“1”)对应的符号所传输的第二信号调制后的频率)+100kHz(第三个bit(“1”)和第四个bit(“0”)所映射的第一频差)=170kHz。
S3:发送设备对第二信号的比特序列中第五个bit(“0”)和第六个bit(“0”)对应的符号所传输的第二信号进行调制后,得到的频率为170kHz(第三个bit(“1”)和第四个bit(“0”)对应的符号所传输的第二信号调制后的频率)+0kHz(第五个bit(“0”)和第六个bit(“0”)所映射的第一频差)=170kHz。
S4:发送设备对第二信号的比特序列中第七个bit(“1”)和第八个bit(“1”)对应的符号所传输的第二信号进行调制后,得到的频率为170kHz(第五个bit(“0”)和第六个bit(“0”)调制后的频率)+150kHz(第七个bit(“1”)和第八个bit(“1”)所映射的第一频差)=320kHz。但是,由于320kHz超过了预设的第一带宽值B1,因此,需要根据f(i)=mod[f(i-1)+△f1(i),B1],对第二信号的比特序列中第七个bit(“1”)和第八个bit(“1”)对应的符号所传输的第二信号调制后的频率进行调整,最终第二信号的比特序列中第七个bit(“1”)和第八个bit(“1”)对应的符号所传输的第二信号调制后的频率为mod[320,200]=120kHz。
这样,发送设备对传输的第二信号的比特序列进行调制后的频率如表2所示。
表2

需要说明的是,发送设备发送的第二信号的比特序列可以是发送设备发送给该通信装置800的信息bit,或者,发送设备发送的第二信号的比特序列可以是预先规定或配置的,本申请对此不作限定。
相应地,该通信装置800对第四信号(第二信号和第二本振信号混频后的信号)进行解调的过程包括:
S1’,根据第四信号的第三幅值信息,可得到第四信号的四个符号对应的频率依次为:70kHz、170kHz、170kHz、120kHz。其中,四个符号包括:第一个bit(“0”)和第二个bit(“1”)对应的符号、第三个bit(“1”)和第四个bit(“0”)对应的符号、第五个bit(“0”)和第六个bit(“0”)对应的符号、以及第七个bit(“1”)和第八个bit(“1”)对应的符号。
S2’,获取相邻时间单元内传输的第四信号的频差,即获取第四信号的比特序列中相邻两个符号所传输的第二信号的频差,并根据第二信号的比特序列中每两个bit和第一频差的映射关系获取调制信息。其中,由于发送设备是按照表1对第二信号进行调制的,故这里的第二信号的比特序列中每两个bit和第一频差的映射关系是按照表1查找的。
具体的,第四信号的第一符号所传输的第四信号与第二信号的初始频率的频差为:70kHz-20kHz=50kHz。根据表1可知,频差50kHz对应“01”bit。
第四信号的第二个符号所传输的第四信号与第四信号中第一个符号所传输的第四信号的频差为:170kHz-70kHz=150kHz。根据表1可知,频差150kHz对应“11”bit。
第四信号的比特序列中第三个符号所传输的第四信号与第四信号的第二符号所传输的第四信号的频差为:170kHz-170kHz=0kHz。根据表1可知,频差0kHz对应“00”bit。
由于第四信号的比特序列中第四个符号所传输的第四信号的频率小于第四信号的比特序列中第三个符号所传输的第四信号的频率,故发送设备在对该第四信号的第四个符号所传输的第四信号进行调制的过程中,对其频率进行了调整,因此,该通信装置800需要根据f(i)=mod[f(i-1)+△f1(i),B1],对其进行恢复。具体的,第四信号的比特序列中第四个符号所传输的第四信号的频率与第四信号的比特序列中第三个符号所传输的第四信号的频差为:120kHz+200kHz-170kHz=150kHz。根据表1可知,频差150kHz对应“11”元素。
这样,该通信装置800得到的第四信号的比特序列为:“01”、“10”、“00”、“11”,进而完成对第四信号的解调。
可选地,在一个示例中,如图12所示,该第二支路820还包括:包络或幅值检测模块822,用于根据第三幅值信息得到第四信号的调制信息。
可选地,在一个示例中,若第一信号携带了内容,该第一支路810还用于对第三信号进行解调,具体的,通过第三信号的第一幅值信息得到第三信号的调制信息。
本申请实施例对该第一支路810如何根据第一幅值信息得到第三信号的调制信息不作限定。
在一个示例中,若发送设备对第一信号进行频移键控调制,那么,该第一支路810根据第三信号的第一幅值信息,得到第三信号所携带的调制信息。
在另一个示例中,若发送设备对第一信号进行差分调频调制,即第一信号采用差分调频的调制方式,那么,该第一支路810先根据第三信号的第一幅值信息,获取相邻时间单元内传输的第三信号的频差,其中第j个时间单元内所传输的第三信号的频率f(j)=mod[f(j-1)+△f1(j),B3],所述△f1(j)为所述第三信号的序列中第j个所述第三信号与第(j-1)个所述第三信号的频差,所述B3为预设的第三带宽值,所述j为大于1的整数;然后根据第三信号的频差,获取第三信号所携带的调制信息。
需要说明的是,当j取2时,f(j-1)=f(1)可以取任意值,本申请实施例对f(1)的具体取值不作限定。
可选地,在一个示例中,如图11所示,该第一支路810还包括:包络或幅值检测模块822,用于根据第一幅值信息得到第三信号的调制信息。
实施例2
根据上文对实施例1的描述可知,在实施例1中,通信装置800采用第一信号和第一支路810对第一本振信号进行频偏纠正。然后,该通信装置800再采用第二信号和第二支路820对接收的信号进行解调。也就是说,发送设备需要发送两个信号(第一信号和第二信号),通信装置800根据接收的两个信号,采用两条支路(第一支路810和第二支路820)分时对第一本振信号进行频偏纠正和对接收的信号进行解调。
进一步地,为了减少发送设备的信令开销,发送设备也可以仅发送一个信号(第二信号),这样,该通信装置800根据接收的一个信号,采用两条支路(第一支路810和第二支路820)同时对第一本振信号进行频偏纠正和对接收的信号进行解调。此时,将该方案称为实施例2。
与实施例1相比,该实施例2的区别在于:
1、该通信装置800仅用于接收第二信号。
2、该通信装置800的第一支路810的第一频率幅值转换器811,用于得到第五信号的第二幅值信息,第五信号是第二信号和第一本振信号混频后得到的信号。
3、该通信装置800的第二支路820,用于对第六信号进行解调,第六信号是第二信号和第二本振信号混频后得到的信号,第二本振信号是基于第二幅值信息对第一本振信号进行频偏纠正后得到的信号。
可选地,在一个示例中,第二本振信号是基于第二幅值信息和第二理想幅值信息对第一本振信号进行频偏纠正后得到的信号。
其中,第二理想幅值信息可以理解为,在第一本振信号不存在频偏的情况下,第二信号和第一本振信号混频后的第五信号对应的幅值信息。
需要说明的是,该第二理想幅值信息可以是发送设备通知通信装置800,或者,该第二理想幅值信息也可以是接收设备根据第二信号的发送频率和第二频率幅值转换曲线的斜率计算出来的。
这样,将上文实施例1中的相关描述做以下4点替换:(1)将通信装置800用于接收第一信号和第二信号替换为通信装置800用于接收第二信号;(2)将第三信号替换为第五信号;(3)将第一幅值信息替换为第二幅值信息,并将第一频偏值替换为第二频偏值;(4)将第四信号替换为第六信号,便可得到实施例2的相关描述,因此,这里不再赘述。
实施例3
根据上文对实施例1和实施例2的描述可知,通信装置800中需要设置两条支路,并分别需要在每条支路上设置一个频率幅值转换器,才能实现一条支路对通信装置800产生的本振信号进行频偏纠正,另一条支路对通信装置800接收的信号进行解调。
进一步,为了减小通信装置800的系统的复杂性和成本,本申请实施例还提供了另一种通信装置,该通信装置中仅需设置一条线路,且一条线路上设置一个线性工作区间随通信装置产生的本振信号的频偏能够调整的频率幅值转换器。这样,该通信装置仅需通过一条路径和一个频率幅值转换器,既能实现对通信装置产生的本振信号进行频偏纠正,也能实现对通信装置接收的信号进行准确解调。下面结合图13至图26,对该通信装置进行说明。
图13为本申请实施例提供的另一种通信装置1400的示意性结构图。
本申请对该实施例中所述的通信装置1400的类型不作限定。示例性地,该通信装置1400可以为图1中所示的任一设备,或者,该通信装置1400可以为图1中所示的任一设备中的装置。
如图13所示的通信装置1400,用于接收第二信号。其中,第二信号用于指示通信装置进入连接态。
在一个示例中,发送设备可以周期性地发送第二信号。相应地,该通信装置1400可以周期性地接收发送设备发送的第二信号。
关于该实施例中第二信号未描述的部分可以参考实施例1中的相关描述,这里不再赘述。
可选地,发送设备还可以向该通信装置1400发送数据。相应地,该通信装置1400还用于接收数据。
本申请实施例对该数据的发送方式不作限定。
示例性地,发送设备采用FDM的方式发送第二信号和数据。可选地,在该示例中,该第二信号和数据之间可以设置频率保护间隔。
在一个示例中,为了降低通信装置1400的功耗,该通信装置1400可以通过两个链路分别接收第二信号和数据。
具体的,在该通信装置1400处于非连接态的情况下,该通信装置1400的第一链路处于工作状态,此时,该通信装置1400的第二链路处于关闭状态。当该通信装置1400需要进入连接态的情况下,该通信装置1400需要首先启动第二链路。例如,在该通信装置1400处于非连接态的情况下,该通信装置1400通过第一链路接收第二信号,该通信装置1400在第二信号中接收到用于指示接收数据或进入连接态的指示信息后,该通信装置1400会触发通信装置1400启动第二链路,进而在与发送设备交互信息后,该通信装置1400进入连接态,然后通过第二链路接收数据。
例如,如图13所示,该通信装置1400包括频率幅值转换器1410,用于采用第一线性工作区间得到第五信号的第二幅值信息,第五信号是第二信号和第一本振信号混频后得到的信号。也就是说,将第二信号和第一本振信号混频后得到的第五信号输入频率幅值转换器1410,该频率幅值转换器1410即可得到第五信号的第二幅值信息。
此外,该频率幅值转换器1410,还用于采用第二线性工作区间对第六信号进行解调。其中,第六信号是第二信号和第二本振信号混频后得到的信号,第二本振信号是基于第二幅值信息对第一本振信号进行频偏纠正后得到的信号,第二线性工作区间小于第一线性工 作区间。
需要说明的是,在通信装置1400处于非连接状态的情况下,该通信装置1400的频率幅值转换器1410默认采用第一线性工作区间。
如上文所述,该通信装置1400先通过采用第一线性工作区间的频率幅值转换器1410,得到第二信号和第一本振信号混频后的第五信号的第二幅值信息。然后,该通信装置1400再通过采用第二线性工作区间的频率幅值转换器1410,对第二本振信号和第二信号混频后的第六信号进行解调,其中第二本振信号是基于第二幅值信息对第一本振信号进行频偏纠正后得到的信号。由于第一本振信号存在频偏,这样,将频率幅值转换器1410对应的第一线性工作区间设置的比第二线性工作区间大,可以使得第二信号和第一本振信号混频后的第五信号的频率,不会超出频率幅值转换器1410对应的第二线性工作区间,进而频率幅值转换器1410可以准确地得到第五信号的第二幅值信息,以便后续基于第二幅值信息对第一本振信号进行准确地频偏纠正。
进一步地,该通信装置1400通过采用第二线性工作区间的频率幅值转换器1410对第二本振信号和第二信号混频后的第六信号进行解调。由于第二本振信号是对第一本振信号进行了频偏纠正后得到的信号,因此,第六信号的频偏值小于第一本振信号和第二信号混频后的信号的频偏值,这样,即使将频率幅值转换器1410对应的第二线性工作区间(相对于第一线性工作区间)设置的较小,仍然可以准确地对第六信号进行解调。进而,不会对该通信装置1400的解调性能造成严重影响。
可选地,在一个示例中,如图14所示,该频率幅值转换器1410包括第一电容1411、RLC谐振器1412和乘法器1413。输入频率幅值转换器1410的信号S(t)分两路,一路直接进入乘法器1413,另一路进入第一电容1411,并与RLC谐振器1412产生的信号汇成一路形成信号Sp(t),信号Sp(t)再进入乘法器1413与信号S(t)进行混频,得到混频后的信号S(t)Sp(t)。其中,RLC谐振器1412的另一端接地。
可选地,在一个示例中,如图15所示,RLC谐振器1412包括分别并联连接的第二电容14121、电感14122、和可变电阻14123。该RLC谐振器1412产生的谐振信号的频率fc满足:
其中,L为电感14122的电感值,C为第二电容14121的电容值。fc也为信号S(t)的频率。
信号S(t)经相位移动模块后得到信号Sp(t),信号Sp(t)再进入乘法器与信号S(t)进行混频,得到混频后的信号S(t)Sp(t)。
该频率幅值转换器1410对信号S(t)旋转的相位φrot(f)满足以下公式:
其中,R为可变电阻的14123电阻值,-2πfcRC为频率幅值转换器1410对应的频率幅值转移曲线的斜率。由此可见,频率-幅值转换曲线的斜率与可变电阻14123的电阻值R呈负线性相关,那么,可以通过调整可变电阻14123的电阻值R的大小,来实现对频率-幅值转换曲线的斜率的调整。
根据上文实施例1中的描述可知,频率幅值转换器1410对应的线性工作区间与频率-幅值转换曲线的斜率有关,频率-幅值转换曲线的斜率越大,频率幅值转换器1410对应的 线性工作区间越小。因此,若想将第一线性工作区间调至比其小的第二线性工作区间,则可以将频率幅值转换器1410的频率-幅值转换曲线的斜率调大。进一步地,由于频率-幅值转换曲线的斜率与可变电阻14123的电阻值R呈负线性相关,那么,可以将频率幅值转换器1410中的电阻R的阻值调大,来实现将频率幅值转换器1410的频率-幅值转换曲线的斜率调大的目的。
可选地,在一个示例中,如图16所示,该通信装置1400还包括频偏估计模块1420。频率幅值转换器1410,还用于向频偏估计模块1420发送第二幅值信息;频偏估计模块1420,用于根据第二幅值信息得到第二频偏值;频偏估计模块1420,还用于在第二频偏值小于预设频偏值的情况下,向频偏估计模块1420发送控制信号,该控制信号用于指示频率幅值转换器1410将其对应的线性工作区间调小;频率幅值转换器1410,还用于将频率幅值转换器1410对应的线性工作区间从第一线性工作区间调整至第二线性工作区间。
本申请实施例对预设频偏值的具体取值不作限定,其可以根据实际情况而定。
在一个示例中,频偏估计模块1420可以根据第二幅值信息和第二理想幅值信息,得到第二频偏值。
其中,第二理想幅值信息可以理解为,在第一本振信号不存在频偏的情况下,第二信号和第一本振信号混频后的第五信号对应的幅值信息。
需要说明的是,该第二理想幅值信息可以是发送设备发送给通信装置1400,或者,该第二理想幅值信息也可以是接收设备根据第二信号的发送频率和第一频率幅值转换曲线的斜率计算出来的。
可选地,在一个示例中,如图17所示,该通信装置1400还包括本地晶振1430,频偏估计模块1420,还用于向本地晶振1430发送第二频偏值;本地晶振1430,用于根据第二频偏值,对第一本振信号进行频偏纠正,得到第二本振信号。
可选地,在一个示例中,如图18所示,该通信装置1400还包括包络或幅值检测模块1440。频率幅值转换器1410,还具体用于采用第二线性工作区间得到第六信号的第四幅值信息,并向包络或幅值检测模块1440发送第四幅值信息;包络或幅值检测模块1440,用于根据第四幅值信息得到第六信号的调制信息。
本申请实施例对该包络或幅值检测模块1440如何根据第四幅值信息得到第六信号的调制信息不作限定。
在一个示例中,若发送设备对第二信号进行频移键控调制,那么,该包络或幅值检测模块1440根据第五信号的第二幅值信息,得到第六信号所携带的调制信息。
在另一个示例中,若发送设备对第二信号进行差分调频调制,即第二信号采用差分调频的调制方式,那么,该包络或幅值检测模块1440先根据第五信号的第二幅值信息,获取相邻时间单元内传输的第五信号的频差,其中第k个时间单元内所传输的第五信号的频率f(k)=mod[f(k-1)+△f1(k),B4],所述△f1(k)为所述第五信号的序列中第k个所述第五信号与第(k-1)个所述第五信号的频差,所述B4为预设的第四带宽值,所述k为大于1的整数;然后根据第五信号的频差,获取第五信号所携带的调制信息。
需要说明的是,当k取2时,f(k-1)=f(1)可以取任意值,本申请实施例对f(1)的具体取值不作限定。
因为前后两个时间单元的时间间隔很短,即使通信装置产生的本振信号存在残余频偏,通信装置前后两个时间单元内产生的本振信号的残余频偏可以认为是相同的,这样通过对 前后时间单元内的第五信号的频率相减(即差分调频调制方式),可以把通信装置产生的本振信号的残余的频偏抵消,从而进一步不影响该通信装置1400的解调性能。
关于该示例的举例参见上文实施例1中的相关举例,这里不再赘述。
另一方面,在如图4所示的非相干FSK接收设备中,BPF也是一个关键模块,其可以对不同频带的信号进行滤波。但是,如上文所述,LO产生的本振信号的频率往往与理想的频率会存在偏差,这样会使得LO产生的本振信号和接收的信号混频后的信号的频率和理想的频率存在偏差△f。如果这个偏差△f较大,会使得LO产生的本振信号和接收的信号混频会的频率超出或部分超出BPF的带宽,这样BPF会滤除或部分滤除掉本振信号和接收的信号混频后的信号。这样会造成接收设备无法解调到发送设备发送的信号。
因此,本申请实施例还提供了另一种通信装置,该通信装置可以对本振信号进行频偏纠正,且在对本振信号进行频偏纠正的过程中,滤波器也不会滤除掉本振信号和接收的信号混频后的信号。这样,该通信装置不仅可以接收到发送设备发送的信号,还可以减小对接收的信号进行解调后得到的基带信号的误差,进而提高接收设备的解调性能。
本申请对该实施例中所述的通信装置的类型不作限定。示例性地,该通信装置可以为图1中所示的任一设备,或者,该通信装置可以为图1中所示的任一设备中的装置。
示例性地,该通信装置也包括两路支路,其中,一条支路对纠正前的本振信号和接收的信号混频后的信号进行滤波,另外一条支路对纠偏后的本振信号和接收的信号混频后的信号进行滤波。
该两条支路可以分时工作,也可以同时工作。为了方便描述,将两条支路分时工作记为实施例4,将两条支路同时工作记为实施例5。
关于如何实现该两条支路分时工作的示例可以参考上文的相关描述,这里不再赘述。
下面分别以实施例4和实施例5为例,对该通信装置进行详细的介绍。
实施例4
图19为本申请实施例提供的另一例通信装置的示意性结构图。
如图19所示的通信装置900,用于接收第一信号和第二信号。其中,第二信号和第一信号均来自相同的设备(可以称为发送设备),第二信号用于指示通信装置进入连接态。
关于通信装置900用于接收第一信号和第二信号的描述,可以参考上文实施例1中通信装置800用于接收第一信号和第二信号的相关描述,这里不再赘述。
例如,如图19所示,该通信装置900包括:第一支路910和第二支路920。
其中,第一支路910包括第一滤波器911,该第一滤波器911用于对第三信号进行滤波,第三信号是第一信号和第一本振信号混频后得到的信号。
第二支路920包括第二滤波器921,该第二滤波器921用于对第四信号进行滤波,第四信号是第二信号和第二本振信号混频后得到的信号,第二本振信号是基于第三信号的第一幅值信息对第一本振信号进行频偏纠正后得到的信号,第二滤波器的带宽小于第一滤波器的带宽。
需要说明的是,本申请实施例对第一滤波器911和/或第二滤波器921的类型不作限定。例如,该第一滤波器911和/或第二滤波器921可以是带通滤波器或低通滤波器。
如上文所述,该通信装置900先通过第一支路910的第一滤波器911,对第一信号和第一本振信号混频后得到的第三信号进行滤波。然后,该通信装置900再通过第二支路920的第二滤波器921,对第二信号和第二本振信号混频后得到的第四信号进行滤波,其 中第二本振信号是基于第三信号的第一幅值信息对第一本振信号进行频偏纠正后得到的信号。由于第一本振信号存在频偏,因此,将第一支路910的第一滤波器911的带宽设置的比第二滤波器921的带宽大,可以使得即使第一本振信号存在频偏的情况下,第一滤波器911仍然不会滤除掉第三信号,进而后续便可以根据第三信号对第一本振信号进行频偏纠正。
进一步地,该通信装置900通过第二支路920的第二滤波器921,对第二信号和第二本振信号混频后得到的第四信号进行滤波。由于第二本振信号是对第一本振信号进行了频偏纠正后得到的信号,因此,第四信号的频偏值小于第一本振信号和第二信号混频后的信号的频偏值,这样,将第二支路920的第二滤波器921的带宽(相对于第一滤波器911的带宽)设置为较小的带宽,保证在残余的频偏下,第二滤波器921不会滤除掉第四信号,同时,第二滤波器921因为通带窄,可以滤除带外噪声,降低该通信装置900的噪声水平,进而提升该通信装置900对第四信号的解调性能。
可选地,在一个示例中,如图20所示,该通信装置900的第一支路910还包括第一频率幅值转换器912,该第一频率幅值转换器912用于得到第三信号的第一幅值信息。此外该通信装置900还包括频偏估计模块913和本地晶振930。其中,第一频率幅值转换器912还用于向频偏估计模块913发送第一幅值信息;频偏估计模块913用于根据第一幅值信息得到第一频偏值,并向本地晶振930发送第一频偏值;本地晶振930用于根据第一频偏值,对第一本振信号进行频偏纠正,得到第二本振信号。
需要说明的是,第一频率幅值转换器912用于得到第三信号的第一幅值信息中所述的第三信号为第一滤波器911对第三信号进行滤波后得到的第三信号。
可选地,在一个示例中,该第一频率幅值转换器911的内部结构和上文实施例1中所述的第一频率幅值转换器811内部结构的相同,关于该第一频率幅值转换器911的未描述的部分可以参考上文第一频率幅值转换器811的相关描述,这里不再赘述。
可选地,在一个示例中,如图21所示,该通信装置900的第二支路920还包括第二频率幅值转换器922,用于对滤波后的第四信号进行解调,第二频率幅值转换器922对应的线性工作区间小于第一频率幅值转换器912对应的线性工作区间。
可选地,在一个示例中,该第二频率幅值转换器922的内部结构和上文实施例1中所述的第二频率幅值转换器821内部结构的相同,关于该第二频率幅值转换器922的未描述的部分可以参考上文第二频率幅值转换器821的相关描述,这里不再赘述。
关于将第二频率幅值转换器922对应的线性工作区间设置为小于第一频率幅值转换器912对应的线性工作区间的原因、如何实现将第二频率幅值转换器922对应的线性工作区间设置为小于第一频率幅值转换器912对应的线性工作区间、以及将第二频率幅值转换器922对应的线性工作区间设置为小于第一频率幅值转换器912对应的线性工作区间所带来的技术效果,可以参考上文将第二频率幅值转换器821对应的线性工作区间设置为小于第一频率幅值转换器821对应的线性工作区间的原因、如何实现将第二频率幅值转换器821对应的线性工作区间设置为小于第一频率幅值转换器821对应的线性工作区间、以及将第二频率幅值转换器821对应的线性工作区间设置为小于第一频率幅值转换器821对应的线性工作区间所带来的技术效果,这里不再赘述。
可选地,在一个示例中,第二支路920用于对第四信号进行解调。第二支路920对第四信号进行解调的过程,可以参考上文实施例1中第二支路820对第四信号进行解调的相 关描述,这里不再赘述。
实施例5
根据上文对实施例4的描述可知,在实施例4中,通信装置900采用第一支路810,对接收的第一信号和第一本振信号混频后得到的第五信号进行滤波,该第五信号用于对第一本振信号进行频偏纠正。然后,该通信装置900再采用第二支路920,对接收的第二信号和第二本振信号混频后得到的第六信号进行滤波。也就是说,发送设备需要发送两个信号(第一信号和第二信号),通信装置900根据接收的两个信号,采用两条支路(第一支路910和第二支路920)分时对接收的两个信号进行滤波。
进一步地,为了减少发送设备的信令开销,发送设备也可以仅发送一个信号(第二信号),这样,该通信装置900根据接收的一个信号,采用两条支路(第一支路910和第二支路920)同时对接收的两个信号进行滤波。其中,一支路中滤波后的信号可以用于对第一本振信号进行频偏纠正。此时,将该方案称为实施例5。
与实施例4相比,该实施例5的区别在于:
1、该通信装置900仅用于接收第二信号。
2、该通信装置900的第一支路910的第一滤波器911,用于对第五信号进行滤波,第五信号是第二信号和第一本振信号混频后得到的信号。
3、该通信装置900的第二支路920的第二滤波器921,用于对第六信号进行滤波,第六信号是第二信号和第二本振信号混频后得到的信号,第二本振信号是基于第五信号的第二幅值信息对第一本振信号进行频偏纠正后得到的信号。
这样,将上文实施例4中的相关描述做以下4点替换:(1)将通信装置900用于接收第一信号和第二信号替换为通信装置900用于接收第二信号;(2)将第三信号替换为第五信号;(3)将第一幅值信息替换为第二幅值信息,并将第一频偏值替换为第二频偏值;(4)将第四信号替换为第六信号,便可得到实施例5的相关描述,因此,这里不再赘述。
实施例6
根据上文对实施例4和实施例5的描述可知,通信装置900中需要设置两条支路,并分别需要在每条支路上设置一个滤波器,才能实现一条支路对通信装置900产生的本振信号和接收的信号混合后的信号进行滤波,另一条支路对通信装置900产生的本振信号进行频差纠正后得到的信号和接收的信号混合后的信号进行滤波。
进一步,为了减小通信装置900的系统的复杂性和成本,本申请实施例还提供了另一种通信装置,该通信装置中仅需设置一条线路,且一条线路上设置一个带宽可随通信装置产生的本振信号的频偏能够调整的滤波器。这样,该通信装置仅需通过一条路径和一个滤波器,既能实现对纠正前的本振信号和接收的信号混频后的信号进行滤波,也能实现对纠偏后的本振信号和接收的信号混频后的信号进行滤波。下面结合图22至图26,对该通信装置进行说明。
图22为本申请实施例提供的另一例通信装置1500的示意性结构图。
本申请对该实施例中所述的通信装置1500的类型不作限定。示例性地,该通信装置1500可以为图1中所示的任一设备,或者,该通信装置1500可以为图1中所示的任一设备中的装置。
如图22所示的通信装置1500,用于接收第二信号。其中,第二信号用于指示通信装 置进入连接态。
关于通信装置1500用于接收第二信号的描述,可以参考上文通信装置1400用于接收第二信号的相关描述,这里不再赘述。
例如,如图22所示,该通信装置1500包括滤波器1510,用于采用第一带宽对第五信号进行滤波,第五信号是第二信号和第一本振信号混频后得到的信号。
此外,该滤波器1510,用于采用第二带宽对第六信号进行滤波。其中,第六信号是第二信号和第二本振信号混频后得到的信号,第二本振信号是基于第五信号的第二幅值信息对第一本振信号进行频偏纠正后得到的信号,第二带宽小于第一带宽。
需要说明的是,本申请实施例对滤波器1510的类型不作限定。例如,该滤波器1510可以是带通滤波器或低通滤波器。
以及,在通信装置1500处于非连接状态的情况下,该通信装置1500的滤波器1510的默认采用第一带宽。
如上文所述,该通信装置1510的滤波器1510采用第一带宽,对第二信号和第一本振信号混频后得到的第五信号进行滤波。然后,该的滤波器1510再采用第二带宽,对第二信号和第二本振信号混频后得到的第六信号进行滤波,其中第二本振信号是基于第五信号的第二幅值信息对第一本振信号进行频偏纠正后得到的信号。由于第一本振信号存在频偏,因此,将滤波器1510的带宽设置的比第二带宽大,可以使得即使第一本振信号存在频偏的情况下,滤波器1510仍然不会滤除掉第五信号,进而后续便可以根据第五信号对第一本振信号进行频偏纠正。
进一步地,该通信装置1510的滤波器1510采用第二带宽,对第二信号和第二本振信号混频后得到的第六信号进行滤波。由于第二本振信号是对第一本振信号进行了频偏纠正后得到的信号,因此,第六信号的频偏值小于第一本振信号和第二信号混频后的信号的频偏值,这样,即使将滤波器1510的带宽(相对于第一带宽)设置为较小的带宽,保证在残余的频偏下,滤波器1510也不会滤除掉第六信号,同时,滤波器1510的带宽因为通带窄,可以滤除带外噪声,降低该通信装置1500的噪声水平,进而提升该通信装置1500对第六信号的解调性能。
可选地,在一个示例中,如图23所示,该通信装置1510还包括频率幅值转换器1410,频率幅值转换器1410的用途如实施例3中所述,这里不再赘述。
需要说明的是,频率幅值转换器1410用于得到第五信号的第二幅值信息中所述的第五信号为滤波器1510采用第一带宽对第五信号进行滤波后得到的第五信号。以及该频率幅值转换器1410用于对第六信号进行解调中所述的第六信号为滤波器1510采用第二带宽对第六信号进行滤波后得到的第六信号。
关于频率幅值转换器1410的其他说明,可参见上文实施例3中的相关描述,这里不再赘述。
可选地,在一个示例中,如图24所示,该通信装置1500还包括频偏估计模块1420,该频偏估计模块1420的用途如实施例3中所述,这里不再赘述。
可选地,在一个示例中,如图25所示,该通信装置1500还包括本地晶振1430,该频偏估计模块1430的用途如实施例3中所述,这里不再赘述。
可选地,在一个示例中,如图26所示,该通信装置1500还包括包络或幅值检测模块1440。该包络或幅值检测模块1440的用途如实施例3中所述,这里不再赘述。
需要说明的是,在本申请实施例中,如上文所述的通信装置800、通信装置1400、通信装置900、和/或通信装置1500还可以包括其他未描述的模块,本申请对此不作限定。
示例性地,通信装置800、通信装置1400、通信装置900、和/或通信装置1500还可以包括其他滤波器、放大器等。
例如,其他滤波器可以包括RF BPF和/或LPF。
在通信装置800中,RF BPF用于对通信装置800通过天线接收的第一信号和/或第二信号进行滤波;LPF用于对第一频率幅值转换器811和/或第二频率幅值转换器821得到的幅值信息进行滤波。
在通信装置1400和/或通信装置1500中,RF BPF用于对通信装置1400和/或通信装置1500通过天线接收的第二信号进行滤波;LPF用于对频率幅值转换器1410得到的幅值信息进行滤波。
在通信装置900中,RF BPF用于对通信装置900通过天线接收的第二信号进行滤波;LPF用于对第一频率幅值转换器912和/或第二频率幅值转换器922得到的幅值信息进行滤波。
例如,放大器可以包括RF LNA和IF LNA。
在通信装置800中,RF LNA用于对RF BPF滤波后的第一信号和/或第二信号进行放大;IF LNA用于对第三信号和/或第四信号进行放大。
在通信装置1400、通信装置900、和/或通信装置1500中,RF LNA用于对RF BPF滤波后的第二信号进行放大;IF LNA用于对第五信号和/或第六信号进行放大。
下面,结合图27至图32,详细描述本申请实施例提供的通信方法进行说明。
该通信方法可以应用于第一设备和第二设备组成的通信系统中。在一个示例中,第一设备可以为图1中所述的基站或卫星站,第二设备可以为图1中所述的终端设备。
在另一个示例中,第一设备可以图1中所述的一个终端设备,第二设备可以为图1所述的另一个终端设备。
在又一个示例中,第一设备可以为上文关于通信装置800、通信装置1400、通信装置900、或通信装置1500的相关描述中所述的发送设备,第二设备可以为通信装置800、通信装置1400、通信装置900、或通信装置1500。
在一种可实现的方式中,第二设备包括第一支路和第二支路,第一支路包括第一频率幅值转换器,第二支路包括第二频率幅值转换器,第二频率幅值转换器对应的线性工作区间小于第一频率幅值转换器对应的线性工作区间。下面结合图27和图28,对该可实现方式下的通信方法进行说明。
图27为本申请实施例提供的一例通信方法1000的示意性流程图。
例如,如图27所示,该通信方法1000的包括S1010至S1030。下面分别对S1010至S1030进行详细描述。
S1010,第一设备向第二设备发送第一信号。相应地,第二设备接收第一设备发送的第一信号。
S1020,第一设备向第二设备发送第二信号。相应地,第二设备接收第一设备发送的第二信号。
S1030,第二设备通过第一频率幅值转换器得到第三信号的第一幅值信息,第三信号是第一信号和第一本振信号混频后得到的信号;
S1040,第二设备通过第二支路对第四信号进行解调,第四信号是第二信号和第二本振信号混频后得到的信号,第二本振信号是基于第一幅值信息对第一本振信号进行频偏纠正后得到的信号。
关于通信方法1000中未描述的部分,可以参见上文实施例1中的相关描述,这里不再赘述。
图28为本申请实施例提供的一例通信方法1100的示意性流程图。
例如,如图28所示,该通信方法1100的包括S1110至S1130。下面分别对S1110至S1130进行详细描述。
S1110,第一设备向第二设备发送第二信号。相应地,第二设备接收第一设备发送的第二信号。
S1120,第二设备通过第一频率幅值转换器得到第五信号的第二幅值信息,第五信号是第二信号和第一本振信号混频后得到的信号。
S1130,第二设备通过第二支路对第六信号进行解调,第六信号是第二信号和第二本振信号混频后得到的信号,第二本振信号是基于第二幅值信息对第一本振信号进行频偏纠正后得到的信号。
关于通信方法1100中未描述的部分,可以参见上文实施例2中的相关描述,这里不再赘述。
在另一种可实现的方式中,第二设备包括一条线路,该一条线路包括频率幅值转换器,频率幅值转换器对应的线性工作区间可以随第二设备产生的本振信号的频偏能够调整。下面结合图29,对该可实现方式下的通信方法进行说明。
图29为本申请实施例提供的一例通信方法1600的示意性流程图。
例如,如图29所示,该通信方法1600的包括S1610至S1630。下面分别对S1610至S1630进行详细描述。
S1610,第一设备向第二设备发送第二信号。相应地,第二设备接收第一设备发送的第二信号。
S1620,第二设备的频率幅值转换器采用第一线性工作区间得到第五信号的第二幅值信息,第五信号是第二信号和第一本振信号混频后得到的信号。
S1630,第二设备的频率幅值转换器采用第二线性工作区间对第六信号进行解调。其中,第六信号是第二信号和第二本振信号混频后得到的信号,第二本振信号是基于第二幅值信息对第一本振信号进行频偏纠正后得到的信号,第二线性工作区间小于第一线性工作区间。
关于通信方法1600中未描述的部分,可以参见上文实施例3中的相关描述,这里不再赘述。
在又一种可实现的方式中,第二设备包括第一支路和第二支路,第一支路包括第一滤波器,第二支路包括第二滤波器,第二滤波器的带宽小于第一滤波器的带宽。下面结合图30和图31,对该可实现方式下的通信方法进行说明。
图30为本申请实施例提供的一例通信方法1200的示意性流程图。
例如,如图30所示,该通信方法1200的包括S1210至S1240。下面分别对S1210至S1230进行详细描述。
S1210,第一设备向第二设备发送第一信号。相应地,第二设备接收第一设备发送的 第一信号。
S1220,第一设备向第二设备发送第二信号。相应地,第二设备接收第一设备发送的第二信号。
S1230,第二设备通过第一滤波器对第三信号进行滤波,第三信号是第一信号和第一本振信号混频后得到的信号。
S1240,第二设备通过第二滤波器对第四信号进行滤波,第四信号是第二信号和第二本振信号混频后得到的信号。其中,第二本振信号是基于第三信号的第一幅值信息对第一本振信号进行频偏纠正后得到的信号。
关于通信方法1200中未描述的部分,可以参见上文实施例4中的相关描述,这里不再赘述。
图31为本申请实施例提供的一例通信方法1300的示意性流程图。
例如,如图31所示,该通信方法1300的包括S1310至S1330。下面分别对S1310至S1330进行详细描述。
S1310,第一设备向第二设备发送第二信号。相应地,第二设备接收第一设备发送的第二信号。
S1320,第二设备通过第一滤波器对第五信号进行滤波,第五信号是第二信号和第一本振信号混频后得到的信号。
S1330,第二设备通过第二滤波器对第六信号进行滤波,第六信号是第二信号和第二本振信号混频后得到的信号。其中,第二本振信号是基于第五信号的第二幅值信息对第一本振信号进行频偏纠正后得到的信号。
关于通信方法1200中未描述的部分,可以参见上文实施例5中的相关描述,这里不再赘述。
在又一种可实现的方式中,第二设备包括一条线路,该一条线路包括一个滤波器,滤波器的带宽可以随第二设备产生的本振信号的频偏能够调整。下面结合图32,对该可实现方式下的通信方法进行说明。
图32为本申请实施例提供的一例通信方法1700的示意性流程图。
例如,如图32所示,该通信方法1700的包括S1710至S1730。下面分别对S1710至S1730进行详细描述。
S1710,第一设备向第二设备发送第二信号。相应地,第二设备接收第一设备发送的第二信号。
S1720,第二设备的滤波器采用第一带宽对第五信号进行滤波,第五信号是第二信号和第一本振信号混频后得到的信号。
S1730,第二设备的滤波器采用第二带宽对第六信号进行滤波。其中,第六信号是第二信号和第二本振信号混频后得到的信号,第二本振信号是基于第五信号的第二幅值信息对第一本振信号进行频偏纠正后得到的信号,第二带宽小于第一带宽。
关于通信方法1700中未描述的部分,可以参见上文实施例6中的相关描述,这里不再赘述。
本申请实施例提供了一种通信系统,包括第一设备和第二设备,该系统用于执行上述实施例中的技术方案。其实现原理和技术效果与上述方法相关实施例类似,此处不再赘述。
本申请实施例提供一种计算机程序产品,当所述计算机程序产品在设备运行时,使 得设备执行上述实施例中的技术方案。其实现原理和技术效果与上述方法相关实施例类似,此处不再赘述。其中,设备可以包括上文实施例中所述的第一设备或第二设备。
本申请实施例提供一种可读存储介质,所述可读存储介质包含指令,当所述指令在设备运行时,使得所述设备执行上述实施例的技术方案。其实现原理和技术效果类似,此处不再赘述。其中,设备可以包括上文实施例中所述的第一设备或第二设备。
本申请实施例提供一种芯片,所述芯片用于执行指令,当所述芯片运行时,执行上述实施例中的技术方案。其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (43)

  1. 一种通信装置,其特征在于,
    所述通信装置,用于接收第一信号和第二信号,所述第二信号和所述第一信号均来自相同的设备,所述第二信号用于指示所述通信装置进入连接态;
    所述通信装置包括第一支路和第二支路;
    其中,所述第一支路包括:第一频率幅值转换器,用于得到第三信号的第一幅值信息,所述第三信号是所述第一信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;
    所述第二支路,用于对第四信号进行解调,所述第四信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第一幅值信息对所述第一本振信号进行频偏纠正后得到的信号,所述第二支路包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间。
  2. 根据权利要求1所述的通信装置,其特征在于,
    所述通信装置还包括频偏估计模块和本地晶振;
    所述第一频率幅值转换器,还用于向所述频偏估计模块发送所述第一幅值信息;
    所述频偏估计模块,用于根据所述第一幅值信息得到第一频偏值,并向所述本地晶振发送所述第一频偏值;
    所述本地晶振,用于根据所述第一频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
  3. 根据权利要求1或2所述的通信装置,其特征在于,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;
    所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
  4. 根据权利要求1至3中任一项所述的通信装置,其特征在于,所述第二信号采用差分调频的调制方式,
    所述第二频率幅值转换器,用于得到所述第四信号的第三幅值信息;
    所述第二支路,还具体用于:
    根据所述第四信号的第三幅值信息,获取相邻时间单元内传输的所述第四信号的频差,其中第i个时间单元内所传输的所述第四信号的频率f(i)=mod[f(i-1)+△f1(i),B1],所述△f1(i)为所述第四信号的序列中第i个所述第四信号与第(i-1)个所述第四信号的频差,所述B1为预设的第一带宽值,所述i为大于1的整数;
    根据所述第四信号的频差,获取所述第四信号所携带的调制信息。
  5. 根据权利要求1至4中任一项所述的通信装置,其特征在于,所述第一信号采用差分调频的调制方式,所述第一支路,用于:
    根据所述第一幅值信息,获取相邻时间单元内传输的所述第三信号的频差,其中第j个时间单元内所传输的所述第三信号的频率f(j)=mod[f(j-1)+△f1(j),B3],所述△f1 (j)为所述第三信号的序列中第j个所述第三信号与第(j-1)个所述第三信号的频差,所述B3为预设的第三带宽值,所述j为大于1的整数;
    根据所述第三信号的频差,获取所述第三信号所携带的调制信息。
  6. 一种通信装置,其特征在于,
    所述通信装置用于接收第二信号,所述第二信号用于指示所述通信装置进入连接态;
    所述通信装置包括第一支路和第二支路;
    其中,所述第一支路包括:第一频率幅值转换器,用于得到第五信号的第二幅值信息,所述第五信号是所述第二信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;
    所述第二支路,用于对第六信号进行解调,所述第六信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第二幅值信息对所述第一本振信号进行频偏纠正后得到的信号,所述第二支路包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间。
  7. 根据权利要求6所述的通信装置,其特征在于,
    所述通信装置还包括频偏估计模块和本地晶振;
    所述第一频率幅值转换器,还用于向所述频偏估计模块发送所述第二幅值信息;
    所述频偏估计模块,用于根据所述第二幅值信息得到第二频偏值,并向所述本地晶振发送所述第二频偏值;
    所述本地晶振,用于根据所述第二频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
  8. 根据权利要求6或7所述的通信装置,其特征在于,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;
    所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
  9. 根据权利要求6至8中任一项所述的通信装置,其特征在于,所述第二信号采用差分调频的调制方式,所述第二支路,还具体用于:
    获取相邻时间单元内传输的滤波后的所述第六信号的频差,其中第i个时间单元内所传输的滤波后的所述第六信号的频率f(i)=mod[f(i-1)+△f2(i),B2],所述△f2(i)为滤波后的所述第六信号的序列中第i个所述第六信号与第(i-1)个所述第六信号的频差,所述B2为预设的第二带宽值,所述i为大于1的整数;
    根据滤波后的所述第六信号的频差,获取滤波后的所述第六信号所携带的调制信息。
  10. 一种通信装置,其特征在于,
    所述通信装置用于接收第一信号和第二信号,所述第二信号和所述第一信号均来自相同的设备,所述第二信号用于指示所述通信装置进入连接态;
    所述通信装置包括第一支路和第二支路;
    其中,所述第一支路包括:第一滤波器,用于对第三信号进行滤波,所述第三信号是所述第一信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;
    所述第二支路包括:第二滤波器,用于对第四信号进行滤波,所述第四信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第三信号的第一幅值信息对所述第一本振信号进行频偏纠正后得到的信号,所述第二滤波器的带宽小于所述第一滤波器的带宽。
  11. 根据权利要求10所述的通信装置,其特征在于,
    所述第一支路还包括:第一频率幅值转换器,用于得到所述第一幅值信息;
    所述通信装置还包括频偏估计模块和本地晶振;
    所述第一频率幅值转换器,还用于向所述频偏估计模块发送所述第一幅值信息;
    所述频偏估计模块,用于根据所述第一幅值信息得到第一频偏值,并向所述本地晶振发送所述第一频偏值;
    所述本地晶振,用于根据所述第一频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
  12. 根据权利要求11所述的通信装置,其特征在于,所述第二支路还包括:第二频率幅值转换器,用于对滤波后的所述第四信号进行解调,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间。
  13. 根据权利要求12所述的通信装置,其特征在于,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;
    所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
  14. 根据权利要求12或13所述的通信装置,其特征在于,所述第二信号采用差分调频的调制方式,
    所述第二频率幅值转换器,用于得到所述第四信号的第三幅值信息;
    所述第二支路,还具体用于:
    根据所述第四信号的第三幅值信息,获取相邻时间单元内传输的所述第四信号的频差,其中第i个时间单元内所传输的所述第四信号的频率f(i)=mod[f(i-1)+△f1(i),B1],所述△f1(i)为所述第四信号的序列中第i个所述第四信号与第(i-1)个所述第四信号的频差,所述B1为预设的第一带宽值,所述i为大于1的整数;
    根据滤波后的所述第四信号的频差,获取滤波后的所述第四信号所携带的调制信息。
  15. 根据权利要求11至14中任一项所述的通信装置,其特征在于,所述第一信号采用差分调频的调制方式,所述第一支路,用于:
    根据所述第一幅值信息,获取相邻时间单元内传输的所述第三信号的频差,其中第j个时间单元内所传输的所述第三信号的频率f(j)=mod[f(j-1)+△f1(j),B3],所述△f1(j)为所述第三信号的序列中第j个所述第三信号与第(j-1)个所述第三信号的频差,所述B3为预设的第三带宽值,所述j为大于1的整数;
    根据所述第三信号的频差,获取所述第三信号所携带的调制信息。
  16. 一种通信装置,其特征在于,
    所述通信装置用于接收第二信号,所述第二信号用于指示所述通信装置进入连接态;
    所述通信装置包括第一支路和第二支路;
    其中,所述第一支路包括:第一滤波器,用于对第五信号进行滤波,所述第五信号是所述第二信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;
    所述第二支路包括:第二滤波器,用于对所述第六信号进行滤波,所述第六信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第五信号的第二幅值信息对所述第一本振信号进行频偏纠正后得到的信号,所述第二滤波器的带宽小于所述第一滤波器的带宽。
  17. 根据权利要求16所述的通信装置,其特征在于,
    所述第一支路还包括:第一频率幅值转换器,用于得到所述第二幅值信息;
    所述通信装置还包括频偏估计模块和本地晶振;
    所述第一频率幅值转换器,还用于向所述频偏估计模块发送所述第二幅值信息;
    所述频偏估计模块,用于根据所述第二幅值信息得到第二频偏值,并向所述本地晶振发送所述第二频偏值;
    所述本地晶振,用于根据所述第二频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
  18. 根据权利要求17所述的通信装置,其特征在于,所述第二支路还包括:第二频率幅值转换器,用于对滤波后的所述第六信号进行解调,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间。
  19. 根据权利要求18所述的通信装置,其特征在于,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;
    所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
  20. 根据权利要求18或19所述的通信装置,其特征在于,所述第二信号采用差分调频的调制方式,所述第二支路,还具体用于:
    获取相邻时间单元内传输的滤波后的所述第六信号的频差,其中第i个时间单元内所传输的滤波后的所述第六信号的频率f(i)=mod[f(i-1)+△f2(i),B2],所述△f2(i)为滤波后的所述第六信号的序列中第i个所述第六信号与第(i-1)个所述第六信号的频差,所述B2为预设的第二带宽值,所述i为大于1的整数;
    根据滤波后的所述第六信号的频差,获取滤波后的所述第六信号所携带的调制信息。
  21. 一种通信方法,其特征在于,所述通信方法应用于通信装置,所述通信装置包括第一支路和第二支路,所述第一支路包括第一频率幅值转换器,所述第二支路包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间,所述通信方法包括:
    接收第一信号和第二信号,所述第二信号和所述第一信号均来自相同的设备,所述第二信号用于指示所述通信装置进入连接态;
    通过所述第一频率幅值转换器得到第三信号的第一幅值信息,所述第三信号是所述第一信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;
    通过所述第二支路对第四信号进行解调,所述第四信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第一幅值信息对所述第一本振信号进行频偏纠正后得到的信号。
  22. 根据权利要求21所述的通信方法,其特征在于,在所述通过所述第二支路对第四信号进行解调之前,所述通信方法还包括:
    根据所述第一幅值信息得到第一频偏值;
    根据所述第一频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
  23. 根据权利要求21或22所述的通信方法,其特征在于,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;
    所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
  24. 根据权利要求21至23中任一项所述的通信方法,其特征在于,所述第二信号采用差分调频的调制方式,
    所述通信方法还包括:
    通过所述第二频率幅值转换器得到所述第四信号的第三幅值信息;
    所述通过所述第二支路对第四信号进行解调包括:
    通过所述第二支路,获取相邻时间单元内传输的所述第四信号的频差,其中第i个时间单元内所传输的所述第四信号的频率f(i)=mod[f(i-1)+△f1(i),B1],所述△f1(i)为所述第四信号的序列中第i个所述第四信号与第(i-1)个所述第四信号的频差,所述B1为预设的第一带宽值,所述i为大于1的整数;
    根据所述第四信号的频差,获取所述第四信号所携带的调制信息。
  25. 根据权利要求21至24中任一项所述的通信方法,其特征在于,所述第一信号采用差分调频的调制方式,所述方法还包括:
    通过所述第一支路,根据所述第一幅值信息,获取相邻时间单元内传输的所述第三信号的频差,其中第j个时间单元内所传输的所述第三信号的频率f(j)=mod[f(j-1)+△f1(j),B3],所述△f1(j)为所述第三信号的序列中第j个所述第三信号与第(j-1)个所述第三信号的频差,所述B3为预设的第三带宽值,所述j为大于1的整数;
    根据所述第三信号的频差,获取所述第三信号所携带的调制信息。
  26. 一种通信方法,其特征在于,所述通信方法应用于通信装置,所述通信装置包括第一支路和第二支路,所述第一支路包括第一频率幅值转换器,所述第二支路包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间,所述通信方法包括:
    接收第二信号,所述第二信号用于指示所述通信装置进入连接态;
    通过所述第一频率幅值转换器得到第五信号的第二幅值信息,所述第五信号是所述第二信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;
    通过所述第二支路对第六信号进行解调,所述第六信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第二幅值信息对所述第一本振信号进 行频偏纠正后得到的信号。
  27. 根据权利要求26所述的通信方法,其特征在于,在所述通过所述第二支路对第六信号进行解调之前,所述通信方法还包括:
    根据所述第二幅值信息得到第二频偏值;
    根据所述第二频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
  28. 根据权利要求26或27所述的通信方法,其特征在于,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行不同相位的移动;
    所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
  29. 根据权利要求26至28中任一项所述的通信方法,其特征在于,所述第二信号采用差分调频的调制方式,所述通过所述第二支路对第六信号进行解调包括:
    通过所述第二支路,获取相邻时间单元内传输的滤波后的所述第六信号的频差,其中第i个时间单元内所传输的滤波后的所述第六信号的频率f(i)=mod[f(i-1)+△f2(i),B2],所述△f2(i)为滤波后的所述第六信号的序列中第i个所述第六信号与第(i-1)个所述第六信号的频差,所述B2为预设的第二带宽值,所述i为大于1的整数;
    根据滤波后的所述第六信号的频差,获取滤波后的所述第六信号所携带的调制信息。
  30. 一种通信方法,其特征在于,所述通信方法应用于通信装置,所述通信装置包括第一支路和第二支路,所述第一支路包括第一滤波器,所述第二支路包括第二滤波器,所述第二滤波器的带宽小于所述第一滤波器的带宽,所述通信方法包括:
    接收第一信号和第二信号,所述第二信号和所述第一信号均来自相同的设备,所述第二信号用于指示所述通信装置进入连接态;
    通过所述第一滤波器对第三信号进行滤波,所述第三信号是所述第一信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;
    通过所述第二滤波器对第四信号进行滤波,所述第四信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第三信号的第一幅值信息对所述第一本振信号进行频偏纠正后得到的信号。
  31. 根据权利要求30所述的通信方法,其特征在于,所述第一支路还包括第一频率幅值转换器,在所述通过所述第二滤波器对第四信号进行滤波之前,所述通信方法还包括:
    通过所述第一频率幅值转换器得到所述第一幅值信息;
    根据所述第一幅值信息得到第一频偏值;
    根据所述第一频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
  32. 根据权利要求31所述的通信方法,其特征在于,所述第二支路还包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间,所述通信方法还包括:
    通过所述第二频率幅值转换器得到所述第四信号的第三幅值信息;
    根据所述第四信号的第三幅值信息,对滤波后的所述第四信号进行解调。
  33. 根据权利要求32所述的通信方法,其特征在于,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行 不同相位的移动;
    所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
  34. 根据权利要求32或33所述的通信方法,其特征在于,所述第二信号采用差分调频的调制方式,所述根据所述第四信号的第三幅值信息,对滤波后的所述第四信号进行解调包括:
    通过所述第二支路,根据所述第四信号的第三幅值信息,获取相邻时间单元内传输的所述第四信号的频差,其中第i个时间单元内所传输的所述第四信号的频率f(i)=mod[f(i-1)+△f1(i),B1],所述△f1(i)为所述第四信号的序列中第i个所述第四信号与第(i-1)个所述第四信号的频差,所述B1为预设的第一带宽值,所述i为大于1的整数;
    根据滤波后的所述第四信号的频差,获取滤波后的所述第四信号所携带的调制信息。
  35. 根据权利要求31至34中任一项所述的通信方法,其特征在于,所述第一信号采用差分调频的调制方式,所述方法还包括:
    通过所述第一支路,根据所述第一幅值信息,获取相邻时间单元内传输的所述第三信号的频差,其中第j个时间单元内所传输的所述第三信号的频率f(j)=mod[f(j-1)+△f1(j),B3],所述△f1(j)为所述第三信号的序列中第j个所述第三信号与第(j-1)个所述第三信号的频差,所述B3为预设的第三带宽值,所述j为大于1的整数;
    根据所述第三信号的频差,获取所述第三信号所携带的调制信息。
  36. 一种通信方法,其特征在于,所述通信方法应用于通信装置,所述通信装置包括第一支路和第二支路,所述第一支路包括第一滤波器,所述第二支路包括第二滤波器,所述第二滤波器的带宽小于所述第一滤波器的带宽,所述通信方法包括:
    接收第二信号,所述第二信号用于指示所述通信装置进入连接态;
    通过所述第一滤波器对第五信号进行滤波,所述第五信号是所述第二信号和第一本振信号混频后得到的信号,所述第一本振信号是所述通信装置产生的本振信号;
    通过所述第二滤波器对所述第六信号进行滤波,所述第六信号是所述第二信号和第二本振信号混频后得到的信号,所述第二本振信号是基于所述第五信号的第二幅值信息对所述第一本振信号进行频偏纠正后得到的信号。
  37. 根据权利要求36所述的通信方法,其特征在于,所述第一支路还包括第一频率幅值转换器,在所述通过所述第二滤波器对所述第六信号进行滤波之前,所述通信方法还包括:
    通过所述第一频率幅值转换器得到所述第二幅值信息;
    根据所述第二幅值信息得到第二频偏值;
    根据所述第二频偏值,对所述第一本振信号进行频偏纠正,得到所述第二本振信号。
  38. 根据权利要求37所述的通信方法,其特征在于,所述第二支路还包括第二频率幅值转换器,所述第二频率幅值转换器对应的线性工作区间小于所述第一频率幅值转换器对应的线性工作区间,所述通信方法还包括:
    对滤波后的所述第六信号进行解调。
  39. 根据权利要求38所述的通信方法,其特征在于,所述第一频率幅值转换器包括第一相位移动单元,所述第一相位移动单元基于第一频率相位曲线将不同频率的信号进行 不同相位的移动;
    所述第二频率幅值转换器包括第二相位移动单元,所述第二相位移动单元基于第二频率相位曲线将不同频率的信号进行不同相位的移动,所述第二频率相位曲线的斜率大于所述第一频率相位曲线的斜率。
  40. 根据权利要求38或39所述的通信方法,其特征在于,所述第二信号采用差分调频的调制方式,所述对滤波后的所述第六信号进行解调包括:
    获取相邻时间单元内传输的滤波后的所述第六信号的频差,其中第i个时间单元内所传输的滤波后的所述第六信号的频率f(i)=mod[f(i-1)+△f2(i),B2],所述△f2(i)为滤波后的所述第六信号的序列中第i个所述第六信号与第(i-1)个所述第六信号的频差,所述B2为预设的第二带宽值,所述i为大于1的整数;
    根据滤波后的所述第六信号的频差,获取滤波后的所述第六信号所携带的调制信息。
  41. 一种通信装置,其特征在于,包括:
    一个或多个处理器;
    一个或多个存储器;
    以及一个或多个计算机程序,其中所述一个或多个计算机程序被存储在所述一个或多个存储器中,所述一个或多个计算机程序包括指令,当所述指令被所述一个或多个处理器执行时,使得所述通信装置执行如权利要求21至40中任一项所述的通信方法。
  42. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在通信装置上运行时,使得所述通信装置执行如权利要求21至40中任一项所述的通信方法。
  43. 一种芯片,其特征在于,包括至少一个处理器和接口电路,所述接口电路用于为所述至少一个处理器提供程序指令或者数据,所述至少一个处理器用于执行所述程序指令,以实现如权利要求21至40中任一项所述的通信方法。
PCT/CN2023/090781 2022-04-29 2023-04-26 通信装置及通信方法 WO2023208024A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210474157.2 2022-04-29
CN202210474157 2022-04-29
CN202210800941.8 2022-07-08
CN202210800941.8A CN117014265A (zh) 2022-04-29 2022-07-08 通信装置及通信方法

Publications (1)

Publication Number Publication Date
WO2023208024A1 true WO2023208024A1 (zh) 2023-11-02

Family

ID=88517746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090781 WO2023208024A1 (zh) 2022-04-29 2023-04-26 通信装置及通信方法

Country Status (1)

Country Link
WO (1) WO2023208024A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1493113A (zh) * 2000-08-25 2004-04-28 因特威夫通讯有限公司 用于接收通道噪声抑制的方法和装置
CN102307071A (zh) * 2011-09-27 2012-01-04 石家庄开发区泰顺电子通讯有限公司 轻便型广播监测接收机
US20170134198A1 (en) * 2014-08-07 2017-05-11 Kabushiki Kaisha Toshiba Radio communication device and radio communication method
CN108092929A (zh) * 2017-12-27 2018-05-29 北京理工大学 一种用于太赫兹通信的同步方法
CN108183876A (zh) * 2017-12-27 2018-06-19 北京航天测控技术有限公司 一种fsk信号解调及脉冲恢复系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1493113A (zh) * 2000-08-25 2004-04-28 因特威夫通讯有限公司 用于接收通道噪声抑制的方法和装置
CN102307071A (zh) * 2011-09-27 2012-01-04 石家庄开发区泰顺电子通讯有限公司 轻便型广播监测接收机
US20170134198A1 (en) * 2014-08-07 2017-05-11 Kabushiki Kaisha Toshiba Radio communication device and radio communication method
CN108092929A (zh) * 2017-12-27 2018-05-29 北京理工大学 一种用于太赫兹通信的同步方法
CN108183876A (zh) * 2017-12-27 2018-06-19 北京航天测控技术有限公司 一种fsk信号解调及脉冲恢复系统及方法

Similar Documents

Publication Publication Date Title
CN113785497B (zh) 具有数字辅助频率转换和相位调整的模拟相控阵列转发器
US11336348B2 (en) Reference signal for receive beam refinement in cellular systems
US9408014B2 (en) Data transmission method for machine type communication (MTC) and MTC apparatus
EP3295722B1 (en) Techniques for determining power offsets of a physical downlink shared channel
WO2016022924A1 (en) User equipment and methods for allocation and signaling of time resources for device to device (d2d) communication
WO2017171956A1 (en) Uplink modulation coding scheme and configuration
WO2017019238A1 (en) Secure firmware upgrade for cellular iot
JP2009519665A (ja) 5GHzWLANにおけるGSM高調波エミッションのディセンシタイゼーション
WO2007101382A1 (fr) Procédé et système mixtes de multiplexage par répartition orthogonale de la fréquence à étalement du spectre
US10390232B2 (en) Systems and methods for a wireless network bridge
US20220116193A1 (en) Wireless communication method and apparatus, and radio frequency subsystem
TWI706657B (zh) 通信裝置及避免互調變失真之方法
WO2017136843A1 (en) Timer configuration techniques for coverage enhancement
US10045178B2 (en) Apparatus and method for communicating
WO2023208024A1 (zh) 通信装置及通信方法
WO2008074190A1 (fr) Procédé de réception et d'émission de signaux bluetooth et émetteur-récepteur bluetooth mettant en oeuvre ce procédé
WO2023208025A1 (zh) 通信方法及通信装置
CN107667562A (zh) 增强型重叠式码分多址(cdma)
US20220116139A1 (en) Apparatus used in wlans
CN117014265A (zh) 通信装置及通信方法
US20240097710A1 (en) Radio access technology (rat) spectrum translator
CN117014266A (zh) 通信方法及通信装置
WO2024064124A2 (en) Radio access technology (rat) spectrum translator
US20210359816A1 (en) Downlink phase-tracking reference signal resource mapping
CN115733596A (zh) 参考信号关联方法与装置、终端和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795456

Country of ref document: EP

Kind code of ref document: A1