WO2021249033A1 - 辐射线治疗系统及照射参数验证装置的工作步骤 - Google Patents

辐射线治疗系统及照射参数验证装置的工作步骤 Download PDF

Info

Publication number
WO2021249033A1
WO2021249033A1 PCT/CN2021/088672 CN2021088672W WO2021249033A1 WO 2021249033 A1 WO2021249033 A1 WO 2021249033A1 CN 2021088672 W CN2021088672 W CN 2021088672W WO 2021249033 A1 WO2021249033 A1 WO 2021249033A1
Authority
WO
WIPO (PCT)
Prior art keywords
collimator
patient
model
outlet
radiation
Prior art date
Application number
PCT/CN2021/088672
Other languages
English (en)
French (fr)
Inventor
陈韦霖
Original Assignee
中硼(厦门)医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中硼(厦门)医疗器械有限公司 filed Critical 中硼(厦门)医疗器械有限公司
Priority to EP21821473.2A priority Critical patent/EP4144411A4/en
Priority to JP2022575314A priority patent/JP7555431B2/ja
Publication of WO2021249033A1 publication Critical patent/WO2021249033A1/zh
Priority to US18/075,547 priority patent/US20230097916A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1071Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1063Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam maintaining the position when the patient is moved from an imaging to a therapy system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1071Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan
    • A61N2005/1072Monitoring, verifying, controlling systems and methods for verifying the dose delivered by the treatment plan taking into account movement of the target
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons

Definitions

  • the invention relates to a radioactive ray irradiation system, in particular to the working steps of a radiation treatment system and an irradiation parameter verification device.
  • radiotherapy such as cobalt sixty, linear accelerator, and electron beam has become one of the main methods of cancer treatment.
  • it is necessary to continuously irradiate the patient with a beam for a certain period of time.
  • the patient Before irradiation, the patient needs to be placed in a suitable position to ensure that the radiation can kill the tumor cells in the patient as much as possible and reduce the damage to the surrounding normal tissues as much as possible.
  • the position of the patient is the position parameter of the tumor center of the patient compared to the center of the collimator, that is, the irradiation parameter, and each group of the irradiation parameters includes the irradiation point and the irradiation angle.
  • image acquisition devices such as CT scanners are used to acquire the image data of the collimator and the patient, and then the corresponding irradiation parameters when the patient is in the position are obtained through calculation.
  • a collimator with an oversized size cannot be transported together with the patient into the image acquisition device for imaging.
  • the present invention provides a radiation therapy system and an irradiation parameter verification device without additional requirements on the size of the working range of the image acquisition device.
  • the radiation treatment system includes a radiation generating device for generating therapeutic radiation, an irradiation room for accommodating a patient irradiated with radiation, a mounting device for transporting and carrying the patient, and being arranged in the irradiation room
  • the collimator, the irradiation parameter verification device and the collimator model of the collimator includes a collimator outlet for radiation to be emitted
  • the collimator model includes a collimator model outlet
  • the collimator model The outlet has the same shape and size as the collimator outlet
  • the irradiation parameter verification device includes an image acquisition unit for acquiring image data of the patient and the collimator model
  • the collimator model is perpendicular to the collimator model.
  • the size in the direction of the outlet of the collimator model is smaller than the size of the collimator in the direction perpendicular to the outlet of the collimator.
  • the irradiation parameter verification device further includes a storage unit that stores the image data of the patient and the collimator obtained from the image acquisition unit, and stores the patient and the collimator in the storage unit.
  • a conversion unit that converts the image data into an irradiation parameter
  • a calculation unit that combines the irradiation parameters in the conversion unit to calculate the dose distribution of the radiation in the patient's body at the time of the corresponding setting, and the dose distribution calculated by the calculation unit
  • a comparison unit for comparison with the preset dose distribution.
  • the image acquisition unit includes a CT scanner.
  • the size of the collimator model in a direction perpendicular to the outlet of the collimator model is 1-10 mm.
  • one collimator model has a plurality of collimator model outlets with different sizes, and the shape and size of each collimator model outlet is the same as that of the collimator outlet of one collimator.
  • the shape and size correspond to the same.
  • a plurality of cavities of different sizes are processed inside the collimator model, and each cavity of different sizes represents an outlet of the collimator model.
  • a plurality of grooves of different sizes are formed at intervals on the end surface where the outlet of the collimator model is located, and each groove of different size represents an outlet of the collimator model.
  • it also includes an adjustment mechanism for adjusting and fixing the relative position between the patient and the collimator model.
  • the radiation therapy system is a neutron capture therapy system.
  • the neutron capture therapy system is a boron neutron capture therapy system.
  • the boron neutron capture therapy system is an accelerator boron neutron capture therapy system.
  • the working steps of the irradiation parameter verification device include the following steps: S1: move the mounting device to the working area of the image acquisition unit to acquire image data of the patient and the collimator model; S2: The storage unit stores the image data of the patient and the collimator model obtained from the image acquisition unit; S3: the conversion unit stores the image data of the patient and the collimator model in the storage unit Convert to the irradiation parameter; S4: The calculation unit uses other information, such as beam intensity, tumor size, etc., to calculate the radiation dose in the patient when the patient is in the setting position corresponding to the irradiation parameter in combination with the irradiation parameter S5: The comparison unit compares the dose distribution calculated from the calculation unit with the preset dose distribution; S6: Adjust the relative position of the collimator model and the patient, repeat S1-S5 until The difference between the dose distribution obtained by the calculation unit and the preset dose distribution is within an acceptable range.
  • the technical solution recorded in this embodiment has the following beneficial effects: using a collimator model whose outlet has the same shape and size as the collimator outlet, but a collimator whose length is smaller than that of the collimator.
  • the model is transported together with the patient to the inside of the image acquisition unit for image acquisition to determine whether the patient’s position relative to the exit of the collimator model is suitable for radiation treatment, without the need for a complete collimation
  • the device is put into the image acquisition unit, which reduces the requirement on the size of the working range of the image acquisition unit and reduces the manufacturing cost.
  • Figure 1 is a top view of the radiation therapy system of the present invention to remove the irradiation parameter verification device
  • FIG. 2 is a three-dimensional schematic diagram of a patient, an adjustment mechanism, and a collimator model placed by the placement device of the radiation therapy system of the present invention
  • Fig. 3 is a three-dimensional schematic diagram of the collimator model in the first embodiment of the radiation therapy system of the present invention
  • Fig. 4 is a front view of the collimator model in the second embodiment and the third embodiment of the radiation therapy system of the present invention.
  • Fig. 5 is a cross-sectional view of the collimator model in the second embodiment of the radiation therapy system of the present invention.
  • Fig. 6 is a cross-sectional view of the collimator model in the third embodiment of the radiation therapy system of the present invention.
  • Fig. 7 is a schematic diagram of the irradiation parameter verification device of the radiation therapy system of the present invention.
  • connection can be direct connection, installation, and fixation, or indirect connection, installation, and fixation.
  • Radiation therapy is a common method of treating cancer.
  • the radiation therapy system for radiation therapy includes a radiation generating device for generating therapeutic radiation.
  • the irradiation room of the patient S irradiated with radiation 2, the management room 3 for implementing irradiation control, the placing device 4 for transporting and carrying the patient S, and the irradiation parameter verification device 5 for determining whether the patient S is properly positioned.
  • the radiation generating device 1 is configured to generate radiation outside the irradiation room 2 and be able to irradiate the patient S placed in the irradiation room 2 with radiation.
  • the collimator 6 includes an inlet 61 for the radiation to enter and a collimator outlet 62 for the radiation to be emitted.
  • the center line X of the collimator outlet 62 is aligned with the patient S and needs to be irradiated Of the site.
  • the collimator 6 is divided into two parts: the section close to the inlet 61 is defined as the front end 64, and the section close to the collimator outlet 62 is defined as the end section 65.
  • the management room 3 is a room used to manage and control the overall treatment process of radiation exposure. For example, the management personnel can visually confirm whether the patient S is placed in place from the room of the management room 3, etc., the mounting device 4It is used to carry the patient S for rotation, translation and lifting movements.
  • the mounting device 4 includes a mounting member 41 for mounting a patient S, a driving member 42 that drives the mounting member 41 to rotate and/or move, and a drive member 42 connected to the mounting member 41 and The connecting member 43 between the driving members 42.
  • the mounting member 41 is a flat bed board
  • the connecting member 43 is a mechanical arm
  • the driving member 42 is a common power source or human drive such as a cylinder that drives the mechanical arm to move.
  • the mounting member 41 may be configured as a chair-mounted chair
  • the connecting member 43 may be configured as a link mechanism. Of course, it is not limited to the structures listed above.
  • the administrator Before performing the radiation irradiation treatment, the administrator needs to determine whether the patient S is placed in an appropriate position, specifically, whether the positioning of the patient S relative to the collimator outlet 62 is suitable for the radiation treatment.
  • the radiation can kill the tumor cells in the patient's body to the greatest extent and reduce the damage to the surrounding normal tissues as much as possible. Therefore, before the radiation treatment is performed, the irradiation parameter verification device 5 is required to verify the position of the patient S to ensure that the patient S is in a proper position to be irradiated.
  • the positioning of the patient S is the position parameter of the tumor center of the patient S compared to the origin of the coordinates, that is, the irradiation parameters.
  • Each group of the irradiation parameters includes the irradiation point and the irradiation angle.
  • the accuracy is
  • the center point of the straightener outlet 62 is the origin to determine the irradiation parameters (X, Y, Z, ⁇ ).
  • the irradiation parameter verification device 5 includes an image acquisition unit 51 for acquiring image data of the patient S and the collimator 6, the patient S and the patient S acquired from the image acquisition unit 51
  • the storage unit 52 where the image data of the collimator 6 is stored
  • the conversion unit 53 that converts the image data of the patient S in the storage unit 52 and the image data of the collimator 6 into corresponding irradiation parameters, and combines the
  • the radiation parameter in the conversion unit 53 calculates the calculation unit 54 of the dose distribution of the radiation in the patient S during the setting, and compares the dose distribution calculated by the calculation unit 54 with the preset dose distribution.
  • Unit 55 The preset dose distribution is stored in the storage unit 52.
  • the shape of the collimator 6 can be cylindrical, cuboid, conical, etc. according to actual needs.
  • This application takes the conical collimator 6 as an example.
  • the length of the collimator 6 used is 0-50 cm
  • the diameter of the entrance 61 is 0.5-30 cm
  • the size of the entrance of the image acquisition unit 51 is less than 100 cm. .
  • a complete collimator 6 cannot be transported to the image acquisition unit 51 together with the patient S Image acquisition is performed internally.
  • the conversion unit 53 only needs the image data of the relative position between the collimator exit 62 and the patient S to obtain the tumor center of the patient S compared to the coordinate origin (the collimator The center point of the outlet 62) is the position parameter, that is, the irradiation parameter.
  • the position parameter that is, the irradiation parameter.
  • the collimator model 8 includes a collimator model inlet 81 and a collimator model outlet 82.
  • the direction perpendicular to the collimator outlet 62 and the collimator model outlet 82 is defined as the length direction, then the collimator
  • the shape and size of the collimator model outlet 82 and the collimator outlet 62 are the same, but the length of the collimator model 8 is smaller than the length of the collimator 6.
  • the collimator model 8 that is exactly the same in shape and size as the end portion 65 of the collimator 6 is manufactured and transported together with the patient S to the inside of the image acquisition unit 51 for imaging. . That is, in the direction parallel to the center line X of the collimator model 8, the size of the collimator model 8 is 1 mm-10 mm.
  • an analog collimator with the same shape and size as the collimator 6 can be manufactured, and the analog collimator is compatible with the inlet 61 and the collimator 6
  • the definitions of the straightener outlet 62, the front end portion 64 and the end portion 65 are the same.
  • the end portion 65 of the simulated collimator is cut out as the collimator model 8 and placed in the same place with the patient S.
  • the imaging is performed within the working range of the image acquisition unit 51. Specifically, in a direction parallel to the center line X of the analog collimator, the size of the end portion 65 is 1 mm-10 mm.
  • a hollow cylinder with the same shape and size as the collimator outlet 62 can be manufactured as the collimator model 8 and placed in the working range of the image acquisition unit 51 together with the patient S.
  • the size of the collimator model 8 is 1 mm-10 mm.
  • the radiation therapy system further includes a method for adjusting and fixing the patient S and the collimator model 8.
  • the doctor or physicist adjusts the collimator model 8 through the adjustment mechanism 9 according to their own experience And fix it to a position that it thinks is more suitable, in this position, the tumor center of patient S corresponds to a set of irradiation parameters.
  • the structure of the adjusting mechanism 9 is not limited, as long as the relative position between the collimator model 8 and the patient S can be adjusted and fixed.
  • the doctor or physicist Place the patient S at the corresponding position on the mounting member 41 according to one's own experience and fix it, then adjust the position of the collimator model 8 relative to the patient S and lock the collimator model 8, Specific steps are as follows:
  • the carrier 41 moves to the working area of the image acquisition unit 51 to acquire the image data of the patient S and the collimator model 8;
  • the storage unit 52 stores the image data of the patient S and the collimator model 8 obtained from the image obtaining unit 51;
  • the conversion unit 53 converts the image data of the patient S and the collimator model 8 in the storage unit 52 into the irradiation parameters corresponding to the setting;
  • the calculation unit 54 uses other information, such as beam intensity, tumor size, etc., to calculate the radiation dose distribution in the patient S when the patient S is in the setting position corresponding to the irradiation parameter in combination with the irradiation parameter;
  • the comparison unit 55 compares the dose distribution calculated from the calculation unit 54 with a preset dose distribution
  • S6 Adjust the relative position of the collimator model and the patient, and repeat S1-S5 until the difference between the dose distribution obtained from the calculation unit 54 and the preset dose distribution is within an acceptable range.
  • the driving member 42 of the mounting device 4 drives the mounting member 41 to move to a position corresponding to the irradiation parameter for radiation irradiation.
  • the image acquisition unit 51 is a CT scanner. In other embodiments, other devices may be selected to acquire the image.
  • the inner cavity of the collimator model 8 is cylindrical, and one collimator model 8 corresponds to a collimator model outlet 82 with a unique shape and size.
  • a plurality of collimator model outlets 82 of different sizes are marked on one collimator model 8', 8", so as to achieve the purpose of obtaining multiple sets of the irradiation parameters in one imaging.
  • a plurality of different diameters are processed inside the collimator model 8' Cylindrical cavity 82', as shown in FIG.
  • a plurality of annular grooves 82" with different diameters are formed at intervals on the end surface of the collimator model 8", of which, several cylindrical The center lines of the cavity 82' coincide, and the center lines of a plurality of annular grooves 82" coincide.
  • Each cylindrical cavity 82' and circular groove 82" of different diameters represents a collimator model outlet 82.
  • the cylindrical cavity 82' and annular groove 82" correspond to the circular collimator outlet 62, When the shape of the collimator outlet 62 is square or other shapes, the cylindrical cavity 82' and the annular groove 82" are replaced with a square cavity, a square groove, etc., respectively.
  • the diameter of the cylindrical cavity 82' processed inside the collimator model 8' gradually decreases.
  • This application uses a collimator model 8 with the same shape and size as the collimator outlet 82 and the collimator outlet 62 but the length is less than the length of the collimator 6 and is transported to the image together with the patient S
  • the inside of the acquisition unit 51 is used for imaging without putting a complete collimator 6 into the image acquisition unit 51, which reduces the requirements on the size of the working range of the image acquisition unit 51;
  • a plurality of collimator model outlets 82 of different sizes are marked on the collimator models 8', 8", so as to achieve the purpose of obtaining multiple sets of the irradiation parameters in one radiography, which greatly reduces the manufacturing of the collimator
  • neutron capture therapy is the most common, and the neutrons for boron neutron capture therapy can be supplied by nuclear reactors or accelerators.
  • the above-mentioned radiation is a neutron beam
  • the radiation generating device 1 is a neutron beam generating device
  • the radiation treatment system is a neutron capture treatment system.
  • the neutron capture treatment system is a boron
  • the boron neutron capture treatment system is an accelerator boron neutron capture treatment system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种辐射线治疗系统及照射参数验证装置的工作步骤,辐射线治疗系统包括辐射线产生装置、用于安置患者的照射室、用于转运和承载患者的载置装置、设置在所述照射室内的准直器、用于确定患者的摆位是否适合进行辐射线照射治疗的照射参数验证装置及准直器模型,所述准直器包括准直器出口,所述准直器模型包括准直器模型出口,所述准直器模型出口与所述准直器出口的形状和尺寸相同,所述准直器模型在垂直于所述准直器模型出口的方向上的尺寸小于所述准直器在垂直于所述准直器出口的方向上的尺寸。

Description

辐射线治疗系统及照射参数验证装置的工作步骤 技术领域
本发明涉及一种放射性射线辐照系统,尤其涉及一种辐射线治疗系统及照射参数验证装置的工作步骤。
背景技术
随着原子科学的发展,例如钴六十、直线加速器、电子射束等放射线治疗已成为癌症治疗的主要手段之一。在放射治疗过程中,需要采用射束在一定时间内持续照射患者。在进行照射之前,需要将患者摆位到一个合适的位置以保证辐射线能最大限度的杀死患者体内的肿瘤细胞并尽可能能的降低辐射线对周围正常组织的损伤。患者的摆位即患者的肿瘤中心相较于准直器的中心的位置参数,即照射参数,每一组所述照射参数包括照射点和照射角度。在知道照射参数之后,再验证该组照射参数对应的剂量分布是否满足要求。
目前,采用CT扫描仪等图像获取装置获取准直器与患者的图像数据之后通过计算得到患者处于该摆位时对应的照射参数。然而,由于准直器和图像获取装置的尺寸的限制,尺寸过大的准直器无法和患者一起运送到图像获取装置内进行造影。
发明内容
为了解决上述问题,本发明提供一种对图像获取装置的工作范围的尺寸无额外要求的辐射线治疗系统及照射参数验证装置的工作步骤。
所述辐射线治疗系统包括用于产生治疗用辐射线的辐射线产生装置、用于安置接受辐射线照射的患者的照射室、用于转运和承载患者的载置装置、设置在所述照射室内的准直器、照射参数验证装置及准直器模型,所述准直器包括供辐射线射出的准直器出口,所述准直器模型包括准直器模型出口,所述准直器模型出口与所述准直器出口的形状和尺寸相同,所述照射参数验证装置包括用于获取患者和所述准直器模型的图像数据的图像获取单元,所述准直器模型在垂直于所述准直器模型出口的方向上的尺寸小于所述准直器在垂直于所述准直器出口的方向上的尺寸。
进一步地,所述照射参数验证装置还包括将从所述图像获取单元获得的患者和所述准直器的图像数据存储起来的存储单元、将所述存储单元中的患者和所述准直器的图像数据转换为照射参数的转换单元、结合所述转换单元中的所述照射参数计算在对应摆位时患者体内的辐射线的剂量分布的计算单元及将所述计算单元计算得到的剂量分布与预设的剂量分布进行对比的比较单元。
优选地,所述图像获取单元包括CT扫描仪。
进一步地,所述准直器模型在垂直于所述准直器模型出口的方向上的尺寸为1-10mm。
进一步地,一个所述准直器模型具有多个尺寸不同的准直器模型出口,每个所述准直器模型出口的形状和尺寸与一个所述准直器的所述准直器出口的形状和尺寸对应相同。
优选地,所述准直器模型的内部加工出多个尺寸不同的腔,每个不同尺寸的腔代表一个准直器模型出口。
优选地,所述准直器模型出口所在的端面上间隔成型多个具有不同尺寸的凹槽,每个不同尺寸的凹槽代表一个准直器模型出口。
进一步地,还包括用于调整和固定患者与所述准直器模型之间的相对位置的调节机构。
所述的辐射线治疗系统为中子捕获治疗系统。
优选的,中子捕获治疗系统为硼中子捕获治疗系统。
进一步地,所述硼中子捕获治疗系统为加速器硼中子捕获治疗系统。
所述的所述照射参数验证装置的工作步骤包括以下步骤:S1:将所述载置装置移动到所述图像获取单元的工作区域获取患者和所述准直器模型的图像数据;S2:所述存储单元将从所述图像获取单元获得的患者和所述准直器模型的图像数据存储起来;S3:所述转换单元将所述存储单元中的患者和所述准直器模型的图像数据转换为所述照射参数;S4:所述计算单元将其他信息,例如射束强度、肿瘤大小等,结合所述照射参数计算患者处于该所述照射参数对应的摆位时患者体内的辐射线剂量分布;S5:所述比较单元将从所述计算单元计算得到的剂量分布与预设的剂量分布进行对比;S6:调整所述准直器模型与患者的相对位置,重复S1-S5,直到从所述计算单元得到的剂量分布与预设的剂量分布之间的差值在可接受的范围内。
与现有技术相比,本实施例记载的技术方案具有以下有益效果:使用一个准直器模型出口与所述准直器出口的形状与尺寸相同但长度小于所述准直器的准直器模型与患者一起运送到所述图像获取单元的内部进行图像获取并以此判断患者相对于所述准直器模型出口的摆位是否适合进行辐射线照射治疗,而不需要将一个完整的准直器放入所述图像获取单元,降低了对所述图像获取单元的工作范围的尺寸的要求、降低了制造成本。
附图说明
图1是本发明辐射线治疗系统去除照射参数验证装置的俯视图;
图2是本发明辐射线治疗系统的载置装置载置患者、调节机构及准直器模型的立体示意图;
图3本发明辐射线治疗系统的实施例一中的准直器模型的立体示意图;
图4本发明辐射线治疗系统的实施例二和实施例三中的准直器模型的前视图;
图5本发明辐射线治疗系统的实施例二中的准直器模型的剖视图;
图6本发明辐射线治疗系统的实施例三中的准直器模型的剖视图;
图7是本发明辐射线治疗系统的照射参数验证装置的示意图。
具体实施方式
下面结合附图对本发明的实施例做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。下文描述中所述的“连接”、“安装”、“固定”等词,在没有特别说明的情况下,可以是直接连接、安装、固定,也可以是间接连接、安装、固定,即允许有第三方物质介入;可以是可拆卸式的连接、安装、固定,也可以是不可拆卸式的连接、安装、固定。
辐射线治疗是一种常见的治疗癌症的手段,如图1至图3所示,进行辐射线治疗的辐射线治疗系统包括用于产生治疗用辐射线的辐射线产生装置1、用于安置接受辐射线照射的患者S的照射室2、用于实施照射控制的管理室3、用于转运和承载患者S的载置装置4及确定患者S摆位是否恰当的照射参数验证装置5。
参照图1所示,所述辐射线产生装置1构成为在所述照射室2外产生辐射线并能够向放置于所述照射室2内的患者S照射辐射线,所述照射室2内设有准直器6,所述准直器6包括供辐射线进入的入口61及供辐射线射出的准直器出口62,所述准直器出口62的中心线X对准患者S需要被照射的部位。所述准直器6被划分为两部分:将靠近所述入口61的一段定义为前端部64、将靠近所述准直器出口62的一段定义为末端部65,在平行于所述准直器6的所述中心线X的方向上,所述准直器6的所述末端部65的尺寸为1mm-10mm。所述管理室3为用于管理、控制进行辐射线照射的整体治疗工序的房间,例如,管理人员从所述管理室3的室内肉眼确认患者S是否被摆放到位等,所述载置装置4用于承载患者S做旋转、平移和升降运动。
参照图2所示,所述载置装置4包括用于载置患者S的载置件41、驱动所述载置件41旋转和/移动的驱动件42及连接在所述载置件41与所述驱动件42之间的连接件43。本申请揭示的实施例中,所述载置件41为平板状的床板、所述连接件43为机械臂、所述驱动件42为驱动机械臂运动的气缸等常见动力源或人力驱动。在其他实施方式中,所述载置件41可以设置为椅子装的载置椅、所述连接件43可以设置为连杆机构,当然,并不限于以上列举的结 构。
在进行辐射线照射治疗之前,管理人员需要确定患者S是否摆位到一个恰当的位置,具体地,确定患者S相对于所述准直器出口62的摆位是否适合进行辐射线照射治疗。以一个合适的摆位进行辐射线照射治疗时,辐射线能最大限度的杀死患者S体内的肿瘤细胞并尽可能能的降低辐射线对周围正常组织的损伤。因此,在进行辐射线照射治疗之前,需要所述照射参数验证装置5对患者S的摆位进行验证以确保患者S处于一个合适的被照射位置。患者S的摆位即患者S的肿瘤中心相较于坐标原点的位置参数,即照射参数,每一组所述照射参数包括照射点和照射角度,本申请揭示的实施例中,以所述准直器出口62的中心点为原点确定所述照射参数(X、Y、Z、φ)。
参照图3所示,所述照射参数验证装置5包括用于获取患者S和所述准直器6的图像数据的图像获取单元51、用于将从所述图像获取单元51获得的患者S和所述准直器6的图像数据存储起来的存储单元52、将所述存储单元52中的患者S和所述准直器6的图像数据转换为对应的照射参数的转换单元53、结合所述转换单元53中的所述照射参数计算在该摆位时患者S体内的辐射线的剂量分布的计算单元54及将所述计算单元54计算得到的剂量分布与预设的剂量分布进行对比的比较单元55。预设的剂量分布存储在所述存储单元52。
结合图1和图4所示,所述准直器6的形状根据实际需要可以是圆柱状、长方体状、圆锥状等。本申请以圆锥状的准直器6为例,所采用的准直器6的长度为0~50cm、所述入口61的直径为0.5~30cm,所述图像获取单元51的入口的尺寸小于100cm。在获取患者S和所述准直器6的图像数据的过程中,当所述准直器6尺寸较大时,一个完整的准直器6无法和患者S一起运送到所述图像获取单元51的内部进行图像获取。而在实际操作过程中,所述转换单元53只需要所述准直器出口62与患者S之间的相对位置的图像数据即可得到患者S的肿瘤中心相较于坐标原点(所述准直器出口62的中心点)的位置参数,即所述照射参数。具体地,只需要提供所述准直器出口62的形状、尺寸及所述准直器出口62的端面与患者S之间的相对位置的图像数据给所述转换单元53即可,因此,只需要制造一个能够切实呈现所述准直器出口62的形状与尺寸的准直器模型8与患者S一起运送到所述图像获取单元51的内部进行造影即可。所述准直器模型8包括准直器模型入口81和准直器模型出口82,定义垂直于所述准直器出口62和准直器模型出口82的方向为长度方向,则所述准直器模型出口82与所述准直器出口62的形状与尺寸相同但所述准直器模型8的长度小于所述准直器6的长度。
在本申请中,制造一个与所述准直器6的所述末端部65的形状和尺寸完全相同的所述准 直器模型8与患者S一起运送到所述图像获取单元51的内部进行造影。也就是说,在平行于所述准直器模型8的所述中心线X的方向上,所述准直器模型8的尺寸为1mm-10mm。
在其他实施方式中,可以制造一个与所述准直器6的形状和尺寸完全相同的模拟准直器,所述模拟准直器与所述准直器6的所述入口61、所述准直器出口62、所述前端部64和所述末端部65的定义一致,然后,截取所述模拟准直器的所述末端部65作为所述准直器模型8与患者S一同放入所述图像获取单元51的工作范围内进行造影。具体地,在平行于所述模拟准直器的所述中心线X的方向上,所述末端部65的尺寸为1mm-10mm。
在其他实施方式中,可以制造一个与所述准直器出口62的形状和尺寸相同的空心圆柱作为所述准直器模型8与患者S一同放入所述图像获取单元51的工作范围内进行造影,在平行于所述准直器模型8的所述中心线X的方向上,所述准直器模型8的尺寸为1mm-10mm。
参照图4及图5所示,为实现患者S与所述准直器模型8之间的相对位置的调整和固定,所述辐射线治疗系统还包括用于调整和固定患者S与所述准直器模型8之间的相对位置的调节机构9。在将患者S和所述准直器模型8运送到所述图像获取单元51的工作范围内进行造影之前,医生或物理师根据自身经验通过所述调节机构9将所述准直器模型8调整并固定到一个其认为较为合适的位置,在该位置,患者S的肿瘤中心对应一组照射参数。所述调节机构9的结构不受限制,只要能够调整和固定所述准直器模型8与患者S之间的相对位置即可。
在进行辐射线照射治疗之前,需要通过所述照射参数验证装置5确定患者S相对于所述准直器模型出口82的摆位是否适合进行辐射线照射治疗,在进行验证之前,医生或物理师根据自身经验将患者S放置在所述载置件41上的相应位置,并进行固定,然后,调整所述准直器模型8相对患者S的位置并将所述准直器模型8进行锁定,具体步骤如下:
S1:所述载置件41移动到所述图像获取单元51的工作区域获取患者S和所述准直器模型8的图像数据;
S2:所述存储单元52将从所述图像获取单元51获得的患者S和所述准直器模型8的图像数据存储起来;
S3:所述转换单元53将所述存储单元52中的患者S和所述准直器模型8的图像数据转换为该摆位对应的照射参数;
S4:所述计算单元54将其他信息,例如射束强度、肿瘤大小等,结合所述照射参数计算患者S处于该所述照射参数对应的摆位时患者S体内的辐射线剂量分布;
S5:所述比较单元55将从所述计算单元54计算得到的剂量分布与预设的剂量分布进行对比;
S6:调整所述准直器模型与患者的相对位置,重复S1-S5,直到从所述计算单元54得到的剂量分布与预设的剂量分布之间的差值在可接受的范围内。
在获得对应的剂量分布在可接受范围内的所述照射参数之后,所述载置装置4的所述驱动件42驱动所述载置件41运动到该照射参数对应的位置进行辐射线照射。
本申请揭示的实施例中,所述图像获取单元51为CT扫描仪,在其他实施例中,可以选用其他设备获取图像。
在实施例一中,所述准直器模型8的内腔是一个圆柱体状,且一个所述准直器模型8对应一个形状和尺寸唯一的准直器模型出口82。在实施例二和实施例三中,在一个准直器模型8’、8”上标记出多个不同尺寸的准直器模型出口82,从而实现一次造影获得多组所述照射参数的目的。具体地,参照图5所示,在实施例二中,在平行于所述准直器模型8’的中心的方向上,在所述准直器模型8’的内部加工出多个直径不同的圆柱形腔82’,参照图6所示,在实施例三中,在所述准直器模型8”的的端面上间隔成型多个具有不同直径的环形凹槽82”,其中,若干圆柱形腔82’的中心线重合,若干圆环形凹槽82”的中心线重合。每个不同直径的圆柱形腔82’和圆环形凹槽82”代表一个准直器模型出口82。所述圆柱形腔82’和环形凹槽82”对应圆形的准直器出口62,当所述准直器出口62的形状为方形或其他形状时,所述圆柱形腔82’和环形凹槽82”相应地被替换为方形腔、方形凹槽等。优选的,从所述准直器模型出口82到所述准直器模型入口81的方向上,在所述准直器模型8’的内部加工出的圆柱形腔82’的直径逐渐减小。
本申请使用一个准直器模型出口82与所述准直器出口62的形状与尺寸相同但长度小于所述准直器6长度的所述准直器模型8与患者S一起运送到所述图像获取单元51的内部进行造影,而不需要将一个完整的准直器6放入所述图像获取单元51,降低了对所述图像获取单元51的工作范围的尺寸的要求;另外,在一个所述准直器模型8’、8”上标记出多个不同尺寸的所述准直器模型出口82,从而实现一次造影获得多组所述照射参数的目的,大大降低了制造所述准直器模型8’、8”的成本和对所述准直器模型8’、8”和患者S进行造影的成本。
中子捕获治疗作为一种有效的治疗癌症的手段近年来的应用逐渐增加,其中以硼中子捕获治疗最为常见,供应硼中子捕获治疗的中子可以由核反应堆或加速器供应。优选的,上述辐射线为中子束、所述辐射线产生装置1为中子束产生装置、所述辐射线治疗系统为中子捕获治疗系统,更优选的,中子捕获治疗系统为硼中子捕获治疗系统,更进一步地,所述硼中子捕获治疗系统为加速器硼中子捕获治疗系统。
以上实施例仅用于说明本发明而并非限制本发明所描述的技术方案,对本说明书的理解应该以所属技术领域的技术人员为基础,尽管本说明书参照上述的实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本发明进行修改或者等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,均应涵盖在本发明的权利要求范围内。

Claims (15)

  1. 一种对患者进行辐射线治疗的辐射线治疗系统,其特征在于:包括用于产生治疗用辐射线的辐射线产生装置、用于安置接受辐射线照射的患者的照射室、用于转运和承载患者的载置装置、设置在所述照射室内的准直器、照射参数验证装置及准直器模型,所述准直器包括供辐射线射出的准直器出口,所述准直器模型包括准直器模型出口,所述准直器模型出口与所述准直器出口的形状和尺寸相同,所述照射参数验证装置包括用于获取患者和所述准直器模型的图像数据的图像获取单元,所述准直器模型在垂直于所述准直器模型出口的方向上的尺寸小于所述准直器在垂直于所述准直器出口的方向上的尺寸。
  2. 根据权利要求1所述的辐射线治疗系统,其特征在于:所述照射参数验证装置还包括将从所述图像获取单元获得的患者和所述准直器的图像数据存储起来的存储单元、将所述存储单元中的患者和所述准直器模型的图像数据转换为照射参数的转换单元、结合所述转换单元中的所述照射参数计算在对应摆位时患者体内的辐射线的剂量分布的计算单元及将所述计算单元计算得到的剂量分布与预设的剂量分布进行对比的比较单元。
  3. 根据权利要求2所述的辐射线治疗系统,其特征在于:所述图像获取单元包括CT扫描仪。
  4. 根据权利要求1所述的辐射线治疗系统,其特征在于:所述准直器模型在垂直于所述准直器模型出口的方向上的尺寸为1-10mm。
  5. 根据权利要求1所述的辐射线治疗系统,其特征在于:每个所述准直器模型具有多个尺寸不同的准直器模型出口,每个所述准直器模型出口的形状和尺寸与一个所述准直器的所述准直器出口的形状和尺寸对应相同。
  6. 根据权利要求5所述的辐射线治疗系统,其特征在于:所述准直器模型的内部加工出多个尺寸不同的腔,每个不同尺寸的腔代表一个准直器模型出口。
  7. 根据权利要求5所述的辐射线治疗系统,其特征在于:所述准直器模型出口所在的端面上间隔成型多个具有不同尺寸的环形凹槽,每个不同尺寸的凹槽代表一个准直器模型出口。
  8. 根据权利要求1所述的辐射线治疗系统,其特征在于:还包括用于调整和固定患者与所述准直器模型之间的相对位置的调节机构。
  9. 根据权利要求8所述的辐射线治疗系统,其特征在于:所述载置装置包括用于载置患者的载置件、驱动所述载置件运动的驱动件及连接在所述载置件与所述驱动件之间的连接件。
  10. 根据权利要求9所述的辐射线治疗系统,其特征在于:所述辐射线治疗系统为中子捕获治疗系统。
  11. 一种如权利要求1所述的照射参数验证装置的工作步骤,其特征在于:所述照射参 数验证装置还包括存储所述图像数据及预设的剂量分布的存储单元、将所述图像数据转换为照射参数的转换单元、结合所述照射参数计算在对应摆位时患者体内的辐射线的剂量分布的计算单元及将所述计算单元计算得到的剂量分布与预设的剂量分布进行对比的比较单元,其包括以下步骤:
    S1:所述载置装置移动到所述图像获取单元的工作区域获取患者和所述准直器模型的图像数据;
    S2:所述存储单元将从所述图像获取单元获得的患者和所述准直器模型的图像数据存储起来;
    S3:所述转换单元将所述存储单元中的患者和所述准直器模型的图像数据转换为所述照射参数;
    S4:所述计算单元将其他信息,例如射束强度、肿瘤大小等,结合所述照射参数计算患者处于该所述照射参数对应的摆位时患者体内的辐射线剂量分布;
    S5:所述比较单元将从所述计算单元计算得到的剂量分布与预设的剂量分布进行对比;
    S6:调整所述准直器模型与患者的相对位置,重复S1-S5,直到从所述计算单元得到的剂量分布与预设的剂量分布之间的差值在可接受的范围内。
  12. 一种对患者进行辐射线治疗的辐射线治疗系统,其特征在于:包括用于产生治疗用辐射线的辐射线产生装置、用于安置接受辐射线照射的患者的照射室、用于转运和承载患者的载置装置、设置在所述照射室内的准直器及准直器模型,所述准直器包括供辐射线射出的准直器出口,所述准直器模型包括准直器模型出口,所述准直器模型出口与所述准直器出口的形状和尺寸相同,所述准直器模型在垂直于所述准直器模型出口的方向上的尺寸小于所述准直器在垂直于所述准直器出口的方向上的尺寸。
  13. 根据权利要求12所述的辐射线治疗系统,其特征在于:所述准直器模型在垂直于所述准直器模型出口的方向上的尺寸为1-10mm。
  14. 根据权利要求12所述的辐射线治疗系统,其特征在于:还包括用于对患者的摆位进行验证的照射参数验证装置。
  15. 根据权利要求14所述的辐射线治疗系统,其特征在于:所述照射参数验证装置包括用于获取患者和所述准直器模型的图像数据的图像获取单元、将从所述图像获取单元获得的患者和所述准直器的图像数据存储起来的存储单元、将所述存储单元中的患者和所述准直器模型的图像数据转换为照射参数的转换单元、结合所述转换单元中的所述照射参数计算在对应摆位时患者体内的辐射线的剂量分布的计算单元及将所述计算单元计算得到的剂量分布与预设的剂量分布进行对比的比较单元。
PCT/CN2021/088672 2020-06-08 2021-04-21 辐射线治疗系统及照射参数验证装置的工作步骤 WO2021249033A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21821473.2A EP4144411A4 (en) 2020-06-08 2021-04-21 RADIOTHERAPY SYSTEM AND OPERATING PROCEDURE OF AN IRRADIATION PARAMETER CHECK DEVICE
JP2022575314A JP7555431B2 (ja) 2020-06-08 2021-04-21 放射線療法システム及び照射パラメータ検証装置の動作手順
US18/075,547 US20230097916A1 (en) 2020-06-08 2022-12-06 Radiation treatment system and operation procedure of irradiation parameter verification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010510248.8A CN113827876A (zh) 2020-06-08 2020-06-08 辐射线治疗系统及照射参数验证装置的工作步骤
CN202010510248.8 2020-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/075,547 Continuation US20230097916A1 (en) 2020-06-08 2022-12-06 Radiation treatment system and operation procedure of irradiation parameter verification device

Publications (1)

Publication Number Publication Date
WO2021249033A1 true WO2021249033A1 (zh) 2021-12-16

Family

ID=78845199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088672 WO2021249033A1 (zh) 2020-06-08 2021-04-21 辐射线治疗系统及照射参数验证装置的工作步骤

Country Status (6)

Country Link
US (1) US20230097916A1 (zh)
EP (1) EP4144411A4 (zh)
JP (1) JP7555431B2 (zh)
CN (1) CN113827876A (zh)
TW (2) TWI813494B (zh)
WO (1) WO2021249033A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125662A1 (zh) * 2021-12-30 2023-07-06 中硼(厦门)医疗器械有限公司 激光定位系统校准方法、校准装置及校准系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077812A (ja) * 2014-10-22 2016-05-16 住友重機械工業株式会社 中性子捕捉療法装置
CN107297031A (zh) * 2017-05-17 2017-10-27 上海交通大学医学院附属第九人民医院 一种高精度放疗准直器
CN109011221A (zh) * 2018-09-04 2018-12-18 东莞东阳光高能医疗设备有限公司 一种剂量引导的中子俘获治疗系统及其操作方法
WO2019116678A1 (ja) * 2017-12-11 2019-06-20 住友重機械工業株式会社 中性子捕捉療法システム、中性子捕捉療法用患者載置台、患者姿勢確認システム、および患者姿勢確認方法
CN109925612A (zh) * 2017-12-18 2019-06-25 南京中硼联康医疗科技有限公司 中子捕获治疗系统
CN110664429A (zh) * 2018-09-29 2020-01-10 上海联影医疗科技有限公司 准直器组件及系统
CN212880642U (zh) * 2020-06-08 2021-04-06 中硼(厦门)医疗器械有限公司 辐射线治疗系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4402851B2 (ja) * 2001-04-11 2010-01-20 財団法人若狭湾エネルギー研究センター 分離型スノートを有する粒子線治療装置
JP5940471B2 (ja) * 2013-02-27 2016-06-29 住友重機械工業株式会社 中性子捕捉療法システム
CA2989042C (en) * 2015-06-13 2020-12-08 Saskatchewan Cancer Agency Mini-beam collimators for medical linear accelerators
JP6439092B2 (ja) * 2015-08-25 2018-12-19 住友重機械工業株式会社 中性子捕捉療法システム
WO2018160763A1 (en) * 2017-02-28 2018-09-07 Sun Nuclear Corporation Radiation therapy treatment verification with electronic portal imaging device transit images
CN208212308U (zh) * 2017-05-31 2018-12-11 西安大医数码科技有限公司 一种准直体和多源聚焦放射治疗头
CN208541704U (zh) * 2017-09-12 2019-02-26 南京航空航天大学 一种基于超声电机驱动的可变野准直器
EP3708225B1 (en) * 2017-12-18 2021-10-20 Neuboron Medtech Ltd. Neutron capture therapy system
CN110496321B (zh) * 2018-05-18 2024-04-19 中硼(厦门)医疗器械有限公司 中子捕获治疗系统及载置台

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016077812A (ja) * 2014-10-22 2016-05-16 住友重機械工業株式会社 中性子捕捉療法装置
CN107297031A (zh) * 2017-05-17 2017-10-27 上海交通大学医学院附属第九人民医院 一种高精度放疗准直器
WO2019116678A1 (ja) * 2017-12-11 2019-06-20 住友重機械工業株式会社 中性子捕捉療法システム、中性子捕捉療法用患者載置台、患者姿勢確認システム、および患者姿勢確認方法
CN109925612A (zh) * 2017-12-18 2019-06-25 南京中硼联康医疗科技有限公司 中子捕获治疗系统
CN109011221A (zh) * 2018-09-04 2018-12-18 东莞东阳光高能医疗设备有限公司 一种剂量引导的中子俘获治疗系统及其操作方法
CN110664429A (zh) * 2018-09-29 2020-01-10 上海联影医疗科技有限公司 准直器组件及系统
CN212880642U (zh) * 2020-06-08 2021-04-06 中硼(厦门)医疗器械有限公司 辐射线治疗系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4144411A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023125662A1 (zh) * 2021-12-30 2023-07-06 中硼(厦门)医疗器械有限公司 激光定位系统校准方法、校准装置及校准系统

Also Published As

Publication number Publication date
JP2023529402A (ja) 2023-07-10
JP7555431B2 (ja) 2024-09-24
EP4144411A1 (en) 2023-03-08
TW202310893A (zh) 2023-03-16
TWI786624B (zh) 2022-12-11
US20230097916A1 (en) 2023-03-30
CN113827876A (zh) 2021-12-24
EP4144411A4 (en) 2023-10-04
TW202146076A (zh) 2021-12-16
TWI813494B (zh) 2023-08-21

Similar Documents

Publication Publication Date Title
Smith et al. The MD Anderson proton therapy system
JP5555826B2 (ja) Imrt検証のための方法およびデバイス
US11351396B2 (en) Methods for inverse planning
TW201318663A (zh) 帶電粒子線照射系統及帶電粒子線照射計劃方法
CN104414662A (zh) 成像设备的位置校准和误差补偿装置及其补偿方法
CN104307115A (zh) 动态电子限光筒、电子容积调强拉弧放射治疗系统及方法
CN115738106A (zh) 自屏蔽的集成控制放射外科系统
WO2021249033A1 (zh) 辐射线治疗系统及照射参数验证装置的工作步骤
CN212880642U (zh) 辐射线治疗系统
WO2016076598A1 (ko) 방사선 치료기 및 방사선 치료기의 정도 관리 방법
US20220249867A1 (en) Independent stereotactic radiotherapy dose calculation and treatment plan verification
Sutton et al. Accuracy and precision of cone-beam computed tomography guided intensity modulated radiation therapy
WO2021249241A1 (zh) 放射治疗系统及其治疗计划生成方法
Hamers et al. In vivo dosimetry with TLD in conservative treatment of breast cancer patients treated with the EORTC protocol 22881
JP2001095932A (ja) 陽子線治療システムの治療台
EP4400161A1 (en) Quality assurance system for particle radiation therapy
CN113797448B (zh) 照射参数选取装置及其使用方法
TWI853170B (zh) 放射治療系統及其治療計畫生成方法
Bidmead et al. Brachytherapy treatment planning
Hartmann Clinical Treatment Planning in External Photon Beam Radiotherapy
Pantelis et al. Quality Control
WO2023238121A1 (en) Installation of proton therapy equipment in existing radiotherapy treatment vaults
CN117919608A (zh) 放射线治疗系统及其自动摆位方法
Miszczak Modern Brachytherapy Techniques-Real-Time High Dose Rate Brachytherapy for Prostate Cancer
Kragl et al. Dosimetric commissioning of a TPS for a synchrotron-based proton PBS delivery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575314

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021821473

Country of ref document: EP

Effective date: 20221201

NENP Non-entry into the national phase

Ref country code: DE