WO2021248839A1 - 牵引变流器接地故障检测方法及装置 - Google Patents

牵引变流器接地故障检测方法及装置 Download PDF

Info

Publication number
WO2021248839A1
WO2021248839A1 PCT/CN2020/130524 CN2020130524W WO2021248839A1 WO 2021248839 A1 WO2021248839 A1 WO 2021248839A1 CN 2020130524 W CN2020130524 W CN 2020130524W WO 2021248839 A1 WO2021248839 A1 WO 2021248839A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
ground fault
pulse
voltage
quadrant
Prior art date
Application number
PCT/CN2020/130524
Other languages
English (en)
French (fr)
Inventor
苏鹏程
王龙刚
于森林
张瑞峰
詹哲军
贺志学
Original Assignee
中车永济电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车永济电机有限公司 filed Critical 中车永济电机有限公司
Publication of WO2021248839A1 publication Critical patent/WO2021248839A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/008Testing of electric installations on transport means on air- or spacecraft, railway rolling stock or sea-going vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/56Testing of electric apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to ground fault detection of a traction converter, in particular to a method and device for detecting a ground fault of a traction converter.
  • the traction converter is the core component of the train’s electric drive system. Its high reliability is an important guarantee for the safe and stable operation of the train.
  • the ground fault is the most frequent type of fault in the traction converter. A point ground fault will not affect the operation of the converter, but when two or more points of ground fault occur, it will cause a short circuit fault and cause serious damage to the train traction system, and even threaten the personal safety of passengers. Therefore, when the traction converter is grounded at a single point, how to quickly and accurately detect the grounding point without shutting down and online is very critical, thereby avoiding the occurrence of two or more points of grounding faults.
  • the main circuit of the existing train traction electrical system generally uses floating grounding.
  • the ground voltage sensor detects the voltage value of the negative terminal of the DC bus in real time, and judges whether there is a single-point ground fault according to the change law of the ground voltage. This method can quickly The positive and negative grounding faults of the DC bus are detected, but it is not easy to distinguish the grounding faults of the inverter output and the input of the four-quadrant rectifier, which requires complicated logic judgments, and may require shutdown processing; on the other hand, the four-quadrant rectifier cannot be distinguished only by grounding voltage Input the ground fault terminal, it is impossible to distinguish the inverter U, V, W phase ground fault terminal.
  • the present invention solves the problems of the existing traction converter ground fault detection method and provides a traction converter ground fault detection method and device.
  • the detection method can detect various ground faults online in real time without shutting down and complex detection logic. At the same time, it can distinguish the input ground fault terminal of the four-quadrant rectifier and the inverter U, V, W phase ground fault terminal.
  • the detection device makes full use of the inherent resources on the locomotive, and only needs to add a part of the detection board to complete the detection circuit construction.
  • the present invention is realized by adopting the following technical scheme:
  • the ground fault detection method of the traction converter is realized by the following steps:
  • the voltage comparator contains a timer.
  • the timer control period T ctl is n power frequency periods T f , n can take an empirical value of 5 to 9 (the greater the value of n The higher the accuracy, but the real-time nature must be considered, so the value of n cannot be too large);
  • T ctl n*T f (n is a positive integer, 5 ⁇ n ⁇ 9)
  • f is the standard network voltage frequency of 50Hz
  • the filter circuit filters the modulated pulse signal, and the filter circuit sets the threshold value according to the magnitude of the pulse amplitude, and the threshold value of g_AH and g_BH is a;
  • V 1 is the voltage amplitude of the four-quadrant modulation pulse high level
  • V 2 is the high-level voltage amplitude of the inverter modulated pulse
  • the traction converter ground fault detection device includes a sensor TV1 that collects the DC bus voltage U dc , and a sensor TV2 that collects the negative end of the DC bus voltage U gnd ; it also includes a voltage comparator, a DC bus positive and negative ground fault judgment module, and a trigger Converter, divider, switch control module, filter processing module, multiplier, integrator, four-quadrant inverter ground fault judgment module;
  • the voltage comparator contains a timer inside, and the timer control period T ctl is n power frequency periods T f , and n can take an empirical value of 5-9;
  • T ctl n*T f (n is a positive integer, 5 ⁇ n ⁇ 9)
  • f is the standard network voltage frequency of 50Hz
  • the U dc signal collected by TV1 and the U gnd signal collected by TV2 are sent to the voltage comparator.
  • One output terminal of the voltage comparator is connected to the input terminal of the trigger, and the other output terminal is connected to the DC bus positive and negative ground fault judgment module, trigger
  • the output terminal of is connected to the control terminal of the switch control module;
  • the U dc signal collected by TV1 and the U gnd signal collected by TV2 are sent to the divider, and U gnd /U dc is used as the output of the divider;
  • the threshold of g_AH and g_BH is a, when the pulse amplitude of g_AH and g_BH is greater than or equal to a, output 1; when the pulse amplitude is less than a, output 0; g_UH, The g_VH and g_WH thresholds are b.
  • the pulse amplitude of g_UH, g_VH and g_WH is greater than or equal to b, output 1 and output 0 when the pulse amplitude is less than b;
  • the control terminal of the switch control module is controlled by the output terminal of the trigger, so that the switches in the switch control module can be opened and closed; the output signal of the divider and the output signal of the filter processing module are sent to the multiplier through the switch in the switch control module.
  • the output terminal of the multiplier is connected with the input terminal of the integrator, and the output terminal of the integrator is connected with the four-quadrant inverter ground fault judgment module.
  • the detection method of the present invention has a simple and effective algorithm. It can distinguish four-quadrant and inverter grounding faults without complicated control logic, and can distinguish four-quadrant rectifier positive and negative grounding faults and inverter U, V, W phase grounding. Fault. Faults can be detected online in real time to avoid downtime. The invention makes full use of the inherent components of the TCU to quickly build a detection device.
  • Figure 1 is the topological diagram of the electrical circuit of the traction converter
  • FIG. 2 is a block diagram of the ground fault detection device of the present invention.
  • Figure 3 is a schematic diagram of the four-quadrant and inverter ground fault detection method of the present invention.
  • the electrical main circuit of the traction converter is shown in Figure 1; the main components are: rated input 25KV50Hz transformer, pre-charging module, four-quadrant rectifier, intermediate DC circuit, grounding detection module, and inverter module.
  • the pre-charging module includes a pre-charging contactor K1 and a main working contactor K2;
  • the four-quadrant rectifier includes two bridge arms: A bridge arm and B bridge arm, a total of 4 switch tubes (AH, AB, BH, BB ), the secondary side of the transformer is connected to the four-quadrant rectifier A and B bridge arms through two wires;
  • the intermediate DC loop includes a DC side supporting capacitor C1, a DC bus voltage sensor TV1 and a grounding detection module;
  • the grounding detection module includes a capacitor C2, in series The resistance values of resistors R2 and R3, R2 and R3 are equal, and the ground voltage sensor TV2;
  • the inverter module includes three bridge arms: U bridge arm, V bridge arm and W bridge arm, a total of six switch tubes (UH, UB, VH, VB, WH, WB), the three bridge arms are connected to the three-phase AC motor through three wires.
  • grounding points that are prone to ground faults in traction converters are: four-quadrant input positive and negative terminals (point a, b), DC bus positive and negative terminals (point c, point d), inverter output U, V, and W terminals (E point, f point, g point).
  • the ground fault detection device is shown in Figure 2.
  • the grid voltage transformer collects the pantograph and grid voltage, passes the analog-to-digital conversion, and then filters it, and inputs it to the converter control and modulation module. According to the collected grid voltage, the grid voltage amplitude and phase are calculated, and it is applied to the four-quadrant rectification control and modulation. ;
  • Four-quadrant and inverter current sensors collect four-quadrant input current and inverter output current, pass analog-to-digital conversion, filter processing, and input to the converter control and modulation module, which are respectively applied to four-quadrant rectification and inverter control and modulation ;
  • the motor speed sensor collects the motor speed in real time, passes the analog-to-digital conversion, and then undergoes filtering processing, and then inputs it to the variable current control and modulation module, which is used for inverter control and modulation;
  • the intermediate bus voltage sensor collects the intermediate DC bus voltage, passes the analog-to-digital conversion, and then passes through the filtering process. On the one hand, it is input to the converter control and modulation module; on the other hand, it is input to the voltage comparator and divider;
  • the ground voltage sensor collects the ground voltage, passes the analog-to-digital conversion, and then filters it. On the one hand, it is input to the voltage comparator, and on the other hand, it is input to the switch control module through the divider.
  • the function of the divider is to divide the ground voltage with the DC bus voltage. Divide;
  • the electrical signal input from the external sensor of the converter control and modulation module is used for four-quadrant and inverter control and modulation, and finally four-quadrant converter modulation pulse and inverter modulation pulse are generated;
  • Modulation pulse generation and previous steps can be completed by the converter control core unit TCU, which can be directly borrowed by the present invention patent;
  • the modulated pulse is amplified and input to the drive pole (IGBT) of each bridge arm switch tube to control the switching action of the device; on the other hand, it is input to the switch control module after a special filtering process;
  • the voltage comparator contains a timer inside, and the timer control period T ctl is n power frequency periods T f , and the value of n can be set according to the actual situation;
  • T ctl n*T f (n is a positive integer, 5 ⁇ n ⁇ 9)
  • f is the standard network voltage frequency of 50Hz
  • the voltage comparator compares the relationship between the DC bus voltage and the ground voltage. On the one hand, it outputs a control signal to the trigger, and on the other hand, it distinguishes the positive and negative ground faults of the DC bus based on the voltage comparison result;
  • the voltage comparator After the event of case 4 occurs, the voltage comparator outputs the flag bit to the trigger, and the preliminary judgment results are as follows:
  • the switch control module triggers the internal switch to close according to the control signal sent by the trigger.
  • the internal switch strobes the divider output signal and modulated pulse signal;
  • Modulation pulses are divided into two types, including a total of 5 pulses, namely: four-quadrant A bridge arm upper tube pulse g_AH, four-quadrant B bridge arm upper tube pulse g_BH, inverter U bridge arm upper tube pulse g_UH, inverter V bridge Upper arm tube pulse g_VH, inverter W bridge arm upper tube pulse g_WH, 5 pulses are respectively input to the filter processing module;
  • the filter processing module sets a reasonable threshold according to the magnitude of the pulse amplitude, the output is 1 for greater than or equal to the threshold, 0 for less than the threshold, and the four-quadrant two-way pulse sets the threshold to a.
  • the pulse amplitude is greater than or equal to a, it outputs 1, the pulse amplitude when the output is less than a 0; pulse inverter is provided a three-way threshold b, the output amplitude is greater than 1 when the pulse is equal to b, 0 is output, two four-quadrant pulse filtering result of the road arm referred to as U n b is smaller than the pulse amplitude,
  • U m The pulse filtering result of the bridge arm of the inverter on the three-way is recorded as U m , and the calculation formula is as follows:
  • V 1 is the voltage amplitude of the four-quadrant modulation pulse high level
  • V 2 is the high-level voltage amplitude of the inverter modulated pulse
  • the ratio of the ground voltage to the DC bus voltage is multiplied by the filtered pulses, and the product result is integrated in a control cycle.
  • the four-quadrant integration result is recorded as S n
  • the inverter integral result is recorded as S m .
  • the formula is as follows:
  • T ctl is the timer control period

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)

Abstract

一种牵引变流器接地故障检测方法及装置,该牵引变流器接地故障检测装置包括采集直流母线电压U dc的传感器TV1,采集直流母线负端对地电压U gnd的传感器TV2;还包括电压比较器、直流母线正负接地故障判断模块、触发器、除法器、开关控制模块、滤波处理模块、乘法器、积分器、四象限逆变接地故障判断模块。能够解决现有牵引变流器接地故障检测方法存在的问题,无需停机及复杂检测逻辑可实时在线检测出各类接地故障,同时可区分四象限整流器输入接地故障端及逆变器U、V、W相接地故障端。

Description

牵引变流器接地故障检测方法及装置 技术领域
本发明涉及牵引变流器接地故障检测,具体为牵引变流器接地故障检测方法及装置。
背景技术
牵引变流器作为列车电传动系统的核心部件,其高可靠性是列车安全稳定运行的重要保障,接地故障是牵引变流器各类故障中最频发的一类故障,一般来说,单点接地故障不会对变流器运行造成影响,但是当发生两点或多点接地故障时,就会导致短路故障进而造成列车牵引系统严重的损坏,甚至威胁到旅客的人身安全。因此当牵引变流器发生单点接地时,如何在不停机在线状态下快速准确地检测出接地点就显得十分关键,进而避免了两点或多点接地故障的发生。
现有的列车牵引电气系统主回路普遍采用浮点接地方式,通过接地电压传感器实时检测直流母线负端对地电压值,根据接地电压变化规律来判断是否存在单点接地故障点,该方法可快速检测出直流母线正负接地故障,但是对于逆变器输出和四象限整流器输入接地故障不容易区分,需要复杂的逻辑判断,有可能需要停机处理;另一方面仅依靠接地电压无法区分四象限整流器输入接地故障端,无法区分逆变器U、V、W相接地故障端。
发明内容
本发明解决现有牵引变流器接地故障检测方法存在的问题,提供一种牵引变流器接地故障检测方法及装置,该检测方法无需停机及复杂检测逻辑可实时在线检测出各类接地故障,同时可区分四象限整流器输入接地故障端及逆变器U、V、W相接地故障端。该检测装置充分利用机车上固有资源,仅需外加部分检测板卡即可完成检测电路搭建。
本发明是采用如下技术方案实现的:牵引变流器接地故障检测方法,是由如下步骤实现的:
(1)采集直流母线电压U dc;采集直流母线负端对地电压U gnd
(2)U dc和U gnd输入电压比较器进行比较,电压比较器内部含有定时器,定时器控制周期T ctl为n个工频周期T f,n可取经验值5~9(n值越大准确性越高,但是又要考虑到实时性,n值就不能给太大);
Figure PCTCN2020130524-appb-000001
T ctl=n*T f(n为正整数,5≤n≤9)
其中:f为标准网压频率50Hz;
根据U dc和U gnd做如下判断:
情况1:在一个T ctl周期内,
Figure PCTCN2020130524-appb-000002
工作正常,无故障;
情况2:在一个T ctl周期内,U gnd=U dc;工作异常,为直流母线正接地故障;
情况3:在一个T ctl周期内,U gnd=0;工作异常,为直流母线负接地故障;
情况4:在一个T ctl周期内,U gnd在0和U dc之间交替出现;工作异常,四象限整流器接地故障或者逆变器接地故障,有待进一步判断;
(3)采集四象限整流器和逆变器的调制脉冲信号:四象限A桥臂上管脉冲g_AH、四象限B桥臂上管脉冲g_BH、逆变U桥臂上管脉冲g_UH、逆变V桥臂上管脉冲g_VH、逆变W桥臂上管脉冲g_WH;
(4)滤波电路对调制脉冲信号进行滤波,滤波电路根据脉冲幅值大小设置阈值,g_AH和g_BH的阈值为a;
Figure PCTCN2020130524-appb-000003
其中V 1为四象限调制脉冲高电平的电压幅值;
当g_AH和g_BH的脉冲幅值大于等于a时输出1,脉冲幅值小于a时输出0;g_UH、g_VH和g_WH阈值为b;
Figure PCTCN2020130524-appb-000004
其中V 2为逆变调制脉冲高电平的电压幅值;
当g_UH、g_VH和g_WH的脉冲幅值大于等于b时输出1,脉冲幅值小于b时输出0,g_AH和g_BH的滤波结果记为U n,g_UH、g_VH和g_WH的滤波结果记为U m,计算公式如下:
Figure PCTCN2020130524-appb-000005
Figure PCTCN2020130524-appb-000006
(5)进行如下计算:
Figure PCTCN2020130524-appb-000007
Figure PCTCN2020130524-appb-000008
(6)根据计算结果作如下判断:
情况4.1:max(S 1,S 2,S 3,S 4,S 5)=S 1,此时报四象限整流器正接地;
情况4.2:max(S 1,S 2,S 3,S 4,S 5)=S 2,此时报四象限整流器负接地;
情况4.3:max(S 1,S 2,S 3,S 4,S 5)=S 3,此时报逆变器U相接地;
情况4.4:max(S 1,S 2,S 3,S 4,S 5)=S 4,此时报逆变器V相接地;
情况4.5:max(S 1,S 2,S 3,S 4,S 5)=S 5,此时报逆变器W相接地。
牵引变流器接地故障检测装置,包括采集直流母线电压U dc的传感器TV1,采集直流母线负端对地电压U gnd的传感器TV2;还包括电压比较器、直流母线正负接地故障判断模块、触发器、除法器、开关控制模块、滤波处理模块、乘法器、积分器、四象限逆变接地故障判断模块;
电压比较器内部含有定时器,定时器控制周期T ctl为n个工频周期T f,n可取经验值5~9;
Figure PCTCN2020130524-appb-000009
T ctl=n*T f(n为正整数,5≤n≤9)
其中:f为标准网压频率50Hz;
TV1采集的U dc信号和TV2采集的U gnd信号送入电压比较器,电压比较器的一个输出端与触发器的输入端连接、另一个输出端连接直流母线正负接地故障判断模块,触发器的输出端与开关控制模块的控制端相连;TV1采集的U dc信号和TV2采集的U gnd信号送入除法器,并以U gnd/U dc作为除法器的输出;
四象限A桥臂上管脉冲g_AH、四象限B桥臂上管脉冲g_BH、逆变U桥臂上管脉冲g_UH、逆变V桥臂上管脉冲g_VH、逆变W桥臂上管脉冲g_WH,送入滤波处理模块的输入端;滤波处理模块内设置阈值:g_AH和g_BH的阈值为a,当g_AH和g_BH的脉冲幅值大于等于a时输出1,脉冲幅值小于a时输出0;g_UH、g_VH和g_WH阈值为b,当g_UH、g_VH和g_WH的脉冲幅值大于等于b时输出1,脉冲幅值小于b时输出0;
开关控制模块的控制端受触发器输出端的控制,使开关控制模块内的各开关实现开闭;除法器的输出信号和滤波处理模块的输出信号,经开关控制模块内的开关送入乘法器,乘 法器的输出端与积分器的输入端相连,积分器的输出端连接四象限逆变接地故障判断模块。
本发明的检测方法,算法简单有效,无需复杂的控制逻辑,即可区分出四象限和逆变接地故障,同时可区分四象限整流器正负接地故障及逆变器U、V、W相接地故障。可实时在线检测故障,避免停机事件发生。发明充分利用TCU固有组件,可快速搭建检测装置。
附图说明
图1为牵引变流器电气回路拓扑图;
图2为本发明接地故障检测装置框图;
图3为本发明四象限和逆变接地故障检测方法示意图。
具体实施方式
下面结合附图对本发明进行详细说明。
牵引变流器的电气主回路如图1所示;主要组成:额定输入25KV50Hz变压器、预充电模块、四象限整流器、中间直流回路、接地检测模块、逆变模块。
其中,预充电模块包括预充电接触器K1和主工作接触器K2;所述四象限整流器包括两个桥臂:A桥臂和B桥臂,总共4个开关管(AH、AB、BH、BB),变压器副边通过两根导线与四象限整流器A、B桥臂连接;所述中间直流回路包括直流侧支撑电容C1、直流母线电压传感器TV1和接地检测模块;接地检测模块包括电容C2、串联电阻R2和R3,R2和R3的电阻值相等,以及接地电压传感器TV2;逆变模块包括三个桥臂:U桥臂、V桥臂和W桥臂,总共六个开关管(UH、UB、VH、VB、WH、WB),三个桥臂通过三根导线与三相交流电机连接。
牵引变流器易发生接地故障的接地点为:四象限输入正负端(a点、b点)、直流母线正负端(c点、d点)、逆变器输出U、V、W端(e点、f点、g点)。
接地故障检测装置如图2所示。
网压互感器采集弓网电压,通过模数转换,再经过滤波处理,输入到变流控制和调制模块,根据采集的网压计算出网压幅值和相位,应用于四象限整流控制和调制;
四象限和逆变电流传感器采集四象限输入电流和逆变器输出电流,通过模数转换,再经过滤波处理,输入到变流控制和调制模块,分别应用于四象整流和逆变控制及调制;
电机速度传感器实时采集电机转速,通过模数转换,再经过滤波处理,输入到变流控制和调制模块,应用于逆变器控制和调制;
中间母线电压传感器采集中间直流母线电压,通过模数转换,再经过滤波处理,一方面输入到变流控制和调制模块;另一方面输入到电压比较器和除法器中;
接地电压传感器采集接地电压,通过模数转换,再经过滤波处理,一方面输入到电压比较器,另一方面经过除法器最后输入到开关控制模块,除法器的作用是将接地电压与直流母线电压进行整除;
变流控制及调制模块外部传感器输入的电信号,进行四象限和逆变控制及调制,最终生成四象限变流器调制脉冲和逆变器调制脉冲;
调制脉冲生成及之前步骤可由变流器控制核心单元TCU来完成,本发明专利可直接借用该部件;
调制脉冲一方面经过放大处理,输入到各个桥臂开关管的驱动极(IGBT),来控制器件的开关动作;另一方面经过特殊滤波处理后输入到开关控制模块中;
电压比较器内部含有定时器,定时器控制周期T ctl为n个工频周期T f,可根据实际情况设定n值;
Figure PCTCN2020130524-appb-000010
T ctl=n*T f(n为正整数,5≤n≤9)
其中:f为标准网压频率50Hz;
电压比较器通过比较直流母线电压和接地电压之间关系,一方面输出控制信号给触发器,另一方面根据电压比较结果区分出直流母线正负接地故障;
直流母线电压和接地电压关系分为以下情况:
情况1:在一个T ctl周期内,
Figure PCTCN2020130524-appb-000011
情况1结论:工作正常,无故障;
情况2:在一个T ctl周期内,U gnd=U dc
情况3:在一个T ctl周期内,U gnd=0;
情况4:在一个T ctl周期内,接地电压值在0和U dc之间交替出现;
情况2或情况3事件发生后,电压比较器输出标志位到直流母线正负接地故障判断模块,判断结果如下:
情况2结论:工作异常,为直流母线正接地故障;
情况3结论:工作异常,为直流母线负接地故障;
情况4事件发生后,电压比较器输出标志位到触发器,初步判断结果如下:
情况4结论:工作异常,四象限接地故障或者逆变接地故障,有待进一步判断;
情况4事件发生后,开关控制模块根据触发器送来的控制信号,来触发内部开关闭合。内部开关选通除法器输出信号和调制脉冲信号;
四象限和逆变接地故障检测方法如图3所示;
调制脉冲分为两类,总共包含5路脉冲,分别为:四象限A桥臂上管脉冲g_AH、四象限B桥臂上管脉冲g_BH、逆变U桥臂上管脉冲g_UH、逆变V桥臂上管脉冲g_VH、逆变W桥臂上管脉冲g_WH,5路脉冲分别输入到滤波处理模块;
滤波处理模块是根据脉冲幅值大小设置合理阈值,大于等于阈值输出为1,小于阈值输出为0,四象限两路脉冲设置阈值为a,当脉冲幅值大于等于a时输出1,脉冲幅值小于a时输出0;逆变三路脉冲设置阈值为b,当脉冲幅值大于等于b时输出1,脉冲幅值小于b时输出0,四象限两路上桥臂脉冲滤波结果记为U n,逆变三路上桥臂脉冲滤波结果记为U m,计算公式如下:
Figure PCTCN2020130524-appb-000012
其中V 1为四象限调制脉冲高电平的电压幅值;
Figure PCTCN2020130524-appb-000013
Figure PCTCN2020130524-appb-000014
其中V 2为逆变调制脉冲高电平的电压幅值;
Figure PCTCN2020130524-appb-000015
接地电压与直流母线电压的比值与滤波后的各路脉冲相乘,乘积结果在一个控制周期内进行积分运算,四象限积分结果记为S n,逆变积分结果记为S m,公式如下:
Figure PCTCN2020130524-appb-000016
Figure PCTCN2020130524-appb-000017
其中:T ctl为定时器控制周期
最后根据各路脉冲积分计算结果,求取最大值来判断接地故障类型;
情况1:最大值为max(S 1,S 2,S 3,S 4,S 5)=S 1,此时报四象限正接地;
情况2:最大值为max(S 1,S 2,S 3,S 4,S 5)=S 2,此时报四象限负接地;
情况3:最大值为max(S 1,S 2,S 3,S 4,S 5)=S 3,此时报逆变U相接地;
情况4:最大值为max(S 1,S 2,S 3,S 4,S 5)=S 4,此时报逆变V相接地;
情况5:最大值为max(S 1,S 2,S 3,S 4,S 5)=S 5,此时报逆变W相接地。

Claims (3)

  1. 一种牵引变流器接地故障检测方法,其特征在于,是由如下步骤实现的:
    (1)采集直流母线电压U dc;采集直流母线负端对地电压U gnd
    (2)U dc和U gnd输入电压比较器进行比较,电压比较器内部含有定时器,定时器控制周期T ctl为n个工频周期T f,n取经验值5~9;
    Figure PCTCN2020130524-appb-100001
    T ctl=n*T f,n为正整数,5≤n≤9
    其中:f为标准网压频率50Hz;根据U dc和U gnd做如下判断:
    情况1:在一个T ctl周期内,
    Figure PCTCN2020130524-appb-100002
    工作正常,无故障;
    情况2:在一个T ctl周期内,U gnd=U dc;工作异常,为直流母线正接地故障;
    情况3:在一个T ctl周期内,U gnd=0;工作异常,为直流母线负接地故障;
    情况4:在一个T ctl周期内,U gnd在0和U dc之间交替出现;工作异常,四象限整流器接地故障或者逆变器接地故障,有待进一步判断;
    (3)采集四象限整流器和逆变器的调制脉冲信号:四象限A桥臂上管脉冲g_AH、四象限B桥臂上管脉冲g_BH、逆变U桥臂上管脉冲g_UH、逆变V桥臂上管脉冲g_VH、逆变W桥臂上管脉冲g_WH;
    (4)滤波电路对调制脉冲信号进行滤波,滤波电路根据脉冲幅值大小设置阈值,g_AH和g_BH的阈值为a,当g_AH和g_BH的脉冲幅值大于等于a时输出1,脉冲幅值小于a时输出0;g_UH、g_VH和g_WH阈值为b,当g_UH、g_VH和g_WH的脉冲幅值大于等于b时输出1,脉冲幅值小于b时输出0,g_AH和g_BH的滤波结果记为U n,g_UH、g_VH和g_WH的滤波结果记为U m,计算公式如下:
    Figure PCTCN2020130524-appb-100003
    其中V 1为四象限调制脉冲高电平的电压幅值;
    Figure PCTCN2020130524-appb-100004
    Figure PCTCN2020130524-appb-100005
    其中V 2为逆变调制脉冲高电平的电压幅值;
    Figure PCTCN2020130524-appb-100006
    (5)进行如下计算:
    Figure PCTCN2020130524-appb-100007
    Figure PCTCN2020130524-appb-100008
    (6)根据计算结果作如下判断:
    情况4.1:max(S 1,S 2,S 3,S 4,S 5)=S 1,此时报四象限整流器正接地;
    情况4.2:max(S 1,S 2,S 3,S 4,S 5)=S 2,此时报四象限整流器负接地;
    情况4.3:max(S 1,S 2,S 3,S 4,S 5)=S 3,此时报逆变器U相接地;
    情况4.4:max(S 1,S 2,S 3,S 4,S 5)=S 4,此时报逆变器V相接地;
    情况4.5:max(S 1,S 2,S 3,S 4,S 5)=S 5,此时报逆变器W相接地。
  2. 实现如权利要求1所述检测方法的牵引变流器接地故障检测装置,包括采集直流母线电压U dc的传感器TV1,采集直流母线负端对地电压U gnd的传感器TV2;其特征在于,还包括电压比较器、直流母线正负接地故障判断模块、触发器、除法器、开关控制模块、滤波处理模块、乘法器、积分器、四象限逆变接地故障判断模块;
    电压比较器内部含有定时器,定时器控制周期T ctl为n个工频周期T f,n取经验值5~9;
    Figure PCTCN2020130524-appb-100009
    T ctl=n*T f,n为正整数,5≤n≤9
    其中:f为标准网压频率50Hz;
    TV1采集的U dc信号和TV2采集的U gnd信号送入电压比较器,电压比较器的一个输出端与触发器的输入端连接、另一个输出端连接直流母线正负接地故障判断模块,触发器的输出端与开关控制模块的控制端相连;TV1采集的U dc信号和TV2采集的U gnd信号送入除法器,并以U gnd/U dc作为除法器的输出;
    四象限A桥臂上管脉冲g_AH、四象限B桥臂上管脉冲g_BH、逆变U桥臂上管脉冲g_UH、逆变V桥臂上管脉冲g_VH、逆变W桥臂上管脉冲g_WH,送入滤波处理模块的输入端;滤波处理模块内设置阈值:g_AH和g_BH的阈值为a,当g_AH和g_BH的脉冲幅值大于等于a时输出1,脉冲幅值小于a时输出0;g_UH、g_VH和g_WH阈值为b, 当g_UH、g_VH和g_WH的脉冲幅值大于等于b时输出1,脉冲幅值小于b时输出0;
    开关控制模块的控制端受触发器输出端的控制,使开关控制模块内的各开关实现开闭;除法器的输出信号和滤波处理模块的输出信号,经开关控制模块内的开关送入乘法器,乘法器的输出端与积分器的输入端相连,积分器的输出端连接四象限逆变接地故障判断模块。
  3. 根据权利要求2所述的牵引变流器接地故障检测装置,其特征在于,TV1采集的U dc信号和TV2采集的U gnd信号,通过模数转换,再经过滤波处理后,再分别送入电压比较器和除法器。
PCT/CN2020/130524 2020-06-07 2020-11-20 牵引变流器接地故障检测方法及装置 WO2021248839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010509496.0A CN111766534B (zh) 2020-06-07 2020-06-07 牵引变流器接地故障检测方法及装置
CN202010509496.0 2020-06-07

Publications (1)

Publication Number Publication Date
WO2021248839A1 true WO2021248839A1 (zh) 2021-12-16

Family

ID=72720309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130524 WO2021248839A1 (zh) 2020-06-07 2020-11-20 牵引变流器接地故障检测方法及装置

Country Status (2)

Country Link
CN (1) CN111766534B (zh)
WO (1) WO2021248839A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421578A (zh) * 2020-11-03 2021-02-26 中车青岛四方机车车辆股份有限公司 牵引变流器的故障处理方法、装置、系统及相关设备
CN114488998A (zh) * 2021-12-29 2022-05-13 中车永济电机有限公司 一种牵引逆变器控制单元故障保护逻辑自动化测试方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766534B (zh) * 2020-06-07 2021-07-13 中车永济电机有限公司 牵引变流器接地故障检测方法及装置
CN112731192B (zh) * 2020-12-14 2024-04-19 中车永济电机有限公司 一种机车牵引变流器有功功率的保护方法及试验验证方法
CN112630596B (zh) * 2020-12-15 2024-06-11 重庆大学 一种风电变流器igbt器件开路故障综合诊断方法
DE102020216215A1 (de) * 2020-12-18 2022-06-23 Siemens Mobility GmbH Fahrzeug, insbesondere Schienenfahrzeug, mit Gleichspannungszwischenkreis
CN113489315B (zh) * 2021-06-30 2022-09-09 中车大连电力牵引研发中心有限公司 基于一体化设计间歇式供电牵引控制器
CN114475255B (zh) * 2022-02-23 2023-08-08 中车青岛四方车辆研究所有限公司 一种轨道车辆牵引变流器高压带载自检方法和系统
CN117233662B (zh) * 2023-11-13 2024-01-23 江苏新誉阿尔斯通牵引系统有限公司 一种地铁多变流器并联牵引传动系统接地点检测方法
CN117970183B (zh) * 2024-03-29 2024-06-07 湖南大学 一种牵引传动系统主回路接地故障诊断方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158065A (ja) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp インバータ装置
CN105067940A (zh) * 2015-08-06 2015-11-18 株洲南车时代电气股份有限公司 一种机车牵引变流器主回路的接地诊断方法
CN109444631A (zh) * 2018-11-12 2019-03-08 中车永济电机有限公司 交直交电力机车牵引变流器主回路接地判断方法
CN109459651A (zh) * 2018-11-12 2019-03-12 中车永济电机有限公司 机车变流器接地故障检测电路及方法
CN109782129A (zh) * 2019-01-24 2019-05-21 中国铁道科学研究院集团有限公司 轨道交通牵引辅助变流器的接地故障点定位方法及装置
CN110161364A (zh) * 2019-06-20 2019-08-23 中车永济电机有限公司 交流传动电力机车主回路接地故障检测方法
CN110488135A (zh) * 2019-07-25 2019-11-22 中车永济电机有限公司 一种大功率永磁直驱机车变流器接地故障判断方法及定位策略
CN110703138A (zh) * 2019-10-22 2020-01-17 中车青岛四方车辆研究所有限公司 动车组牵引系统接地故障检测方法及装置
CN111766534A (zh) * 2020-06-07 2020-10-13 中车永济电机有限公司 牵引变流器接地故障检测方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104076243B (zh) * 2013-03-29 2016-11-09 北京映翰通网络技术股份有限公司 一种小电流接地配电网单相接地故障检测指示方法与设备
US9383399B2 (en) * 2013-10-01 2016-07-05 Rockwell Automation Technologies, Inc. HRG ground fault detector and method using phase inputs to generate a simulated neutral voltage
US20150346266A1 (en) * 2014-05-30 2015-12-03 Eaton Corporation System and method for pulsed ground fault detection and localization
US9903917B2 (en) * 2014-10-07 2018-02-27 Texas Instruments Incorporated Method and circuitry for detecting faults in field oriented controlled permanent magnet synchronous machines
CN105720831A (zh) * 2014-12-02 2016-06-29 永济新时速电机电器有限责任公司 带双电压传感器母线电压检测电路的牵引变流器
CN104764971A (zh) * 2015-03-18 2015-07-08 广东电网有限责任公司电力科学研究院 配电网架空线路单相接地故障识别定位方法和故障指示器
CN106908697B (zh) * 2017-04-20 2019-08-13 广西电网有限责任公司电力科学研究院 一种综合工频和暂态无功功率方向的配电网故障选线方法
CN109752607A (zh) * 2017-11-06 2019-05-14 株洲中车时代电气股份有限公司 一种牵引变流器故障诊断的方法及系统
CN110275082B (zh) * 2018-03-16 2021-08-17 中车株洲电力机车研究所有限公司 一种变流器主电路的接地诊断方法、系统及装置
CN110286297A (zh) * 2019-06-12 2019-09-27 北京中电泰瑞科技有限公司 一种小电流接地系统单相接地故障选线装置及方法
CN110231552B (zh) * 2019-07-08 2023-12-01 冯琛 煤矿电缆绝缘监测选线方法、信号注入电路及相应装置
CN110794327A (zh) * 2019-10-29 2020-02-14 中车永济电机有限公司 Hxd2型电力机车整流器和逆变器接地点的判断方法
CN111007427B (zh) * 2019-11-23 2021-05-04 清华大学 配电线路单相接地故障选线方法及计算机可读存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158065A (ja) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp インバータ装置
CN105067940A (zh) * 2015-08-06 2015-11-18 株洲南车时代电气股份有限公司 一种机车牵引变流器主回路的接地诊断方法
CN109444631A (zh) * 2018-11-12 2019-03-08 中车永济电机有限公司 交直交电力机车牵引变流器主回路接地判断方法
CN109459651A (zh) * 2018-11-12 2019-03-12 中车永济电机有限公司 机车变流器接地故障检测电路及方法
CN109782129A (zh) * 2019-01-24 2019-05-21 中国铁道科学研究院集团有限公司 轨道交通牵引辅助变流器的接地故障点定位方法及装置
CN110161364A (zh) * 2019-06-20 2019-08-23 中车永济电机有限公司 交流传动电力机车主回路接地故障检测方法
CN110488135A (zh) * 2019-07-25 2019-11-22 中车永济电机有限公司 一种大功率永磁直驱机车变流器接地故障判断方法及定位策略
CN110703138A (zh) * 2019-10-22 2020-01-17 中车青岛四方车辆研究所有限公司 动车组牵引系统接地故障检测方法及装置
CN111766534A (zh) * 2020-06-07 2020-10-13 中车永济电机有限公司 牵引变流器接地故障检测方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421578A (zh) * 2020-11-03 2021-02-26 中车青岛四方机车车辆股份有限公司 牵引变流器的故障处理方法、装置、系统及相关设备
CN114488998A (zh) * 2021-12-29 2022-05-13 中车永济电机有限公司 一种牵引逆变器控制单元故障保护逻辑自动化测试方法
CN114488998B (zh) * 2021-12-29 2023-12-19 中车永济电机有限公司 一种牵引逆变器控制单元故障保护逻辑自动化测试方法

Also Published As

Publication number Publication date
CN111766534A (zh) 2020-10-13
CN111766534B (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2021248839A1 (zh) 牵引变流器接地故障检测方法及装置
CN105158627B (zh) 双绕组永磁容错电机驱动系统的开路故障诊断方法
US8947838B2 (en) Overcurrent fault detection device for electrical drive control system
CN109459651B (zh) 机车变流器接地故障检测电路及方法
CN107878203B (zh) 一种列车受电弓失电检测和保护装置及方法
CN104422825B (zh) 一种直流电源对地绝缘阻抗检测装置和方法
CN110474307B (zh) 基于电流暂降检测的自适应故障分量电流差动保护方法
CN102608483B (zh) 小电流接地配电系统的接地故障方向诊断系统
CN108761319B (zh) 光伏并网逆变器的继电器失效检测方法、装置以及系统
CN103560725B (zh) 一种独立于转速的无刷直流电机位置检测方法
CN102565523B (zh) 一种电流谐波检测系统及工作方法
CN110488135B (zh) 一种大功率永磁直驱机车变流器接地故障判断方法及定位策略
CN102353851A (zh) 基于直流母线电压的变频器输入缺相检测方法
CN107247242A (zh) 变频器故障检测方法及装置
CN112557814A (zh) 一种低压配网中性线断线的监测方法
CN106199145A (zh) 基于电流变化率的船舶交流系统短路电流方向判断方法
CN106226682A (zh) 功率因数校正器及其电流检测电路的故障诊断方法、装置
CN104682394A (zh) 一种基于自适应的双向无隙换流的防晃电装置及方法
CN112083353B (zh) 一种基于开关模态特征对变流器开路故障进行检测的方法及系统
CN106711953A (zh) 光伏逆变器直流侧短路保护装置及保护方法
CN110514947B (zh) 一种机车牵引变流器网压中断检测及控制方法
WO2022183743A1 (zh) 牵引网高次谐波抑制方法及系统、轨道交通车辆
CN112098705B (zh) 一种交直流供电制式快速辨识系统及方法
EP2163909B1 (en) Method of detecting a sustained parallel source condition
CN106159899A (zh) 地铁能量回馈装置的传感器故障监测保护装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939816

Country of ref document: EP

Kind code of ref document: A1