WO2021248689A1 - 一种高透光黑白屏3d打印机 - Google Patents
一种高透光黑白屏3d打印机 Download PDFInfo
- Publication number
- WO2021248689A1 WO2021248689A1 PCT/CN2020/110126 CN2020110126W WO2021248689A1 WO 2021248689 A1 WO2021248689 A1 WO 2021248689A1 CN 2020110126 W CN2020110126 W CN 2020110126W WO 2021248689 A1 WO2021248689 A1 WO 2021248689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- black
- white
- light source
- screen
- photosensitive resin
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
- B29C64/135—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
Definitions
- the invention relates to the field of 3D printing, in particular to a high-transmittance black-and-white screen 3D printer.
- LCD 3D printers on the market mainly adopt a light source solution of a vertical chip LED emitting light source and a reflective cover, and then the LCD screen mainly adopts an RGB color screen.
- the center optical power of the light source is high, and the surrounding optical power is low.
- the optical power is different due to different positions.
- the different violet energy absorbed by the resin during the curing process causes a larger size deviation. Since the function of the reflector is to collect and reflect the purple light emitted by the LED light source, the light collected by the reflector is messy and there will be stray light, which cannot reflect the very good details of the model.
- RGB color screens will block 90% of the purple light under the screen due to its relatively low transmittance, which will cause the screen to generate excessive heat and affect its screen life. Therefore, it is aimed at the above shortcomings. It is necessary to emit a black and white screen with high transmittance and its matching light source assembly.
- the technical problem to be solved by the present invention is to provide a high light transmittance black and white screen 3D printer, the light can be directly and evenly irradiated to the black and white screen, the light utilization rate can be improved under the same power, and the transmittance of purple light is high under the same conditions 3 ⁇ 4 times that of RGB color screen, high printing efficiency, high printing accuracy, and excellent heat dissipation effect during printing.
- a high light-transmitting black and white screen 3D printer including a fixed frame, a Z-axis moving mechanism, a construction platform plate, and a photosensitive resin tank, the Z-axis moving mechanism and the photosensitive resin tank are respectively arranged on the fixed frame ,
- the bottom of the Z-axis moving mechanism is connected to a build platform board, the build platform board is located above the photosensitive resin tank, and further includes a black and white liquid crystal screen, an optical conversion lens, and an LED light source.
- the black and white liquid crystal screen is arranged below the photosensitive resin tank, so The optical conversion lens is arranged above the LED light source.
- the optical conversion lens is a hemispherical lens.
- a lens base is provided at the bottom of the hemispherical lens, the lens base is hollow, and the lens base is located on the LED light source.
- the LED light source is a flip-chip LED.
- the high-transmittance black-and-white screen 3D printer further includes a light-shielding cover, the black and white liquid crystal screen is located on the top of the light-shielding cover, and the optical conversion lens and the LED light source are located in the light-shielding cover.
- the present invention uses a black and white LCD screen to transmit light, and converts the divergent light of the LED light source into energy-integrated and relatively uniform ultraviolet light through an optical conversion lens.
- the LED light source uses flip-chip LEDs.
- the heat dissipation performance of the LCD screen is very good. No reflector is needed to collect light, and the light utilization rate is greatly improved under the same power.
- the single-layer exposure time of the black and white LCD screen is 3 ⁇ 4 times that of the RGB color screen. The same model can save 3 ⁇ 4 times the time for printing with this solution, which can greatly increase the printing speed and improve the printing accuracy.
- Figure 1 is a schematic diagram of the overall structure of the present invention.
- Figure 2 is a schematic longitudinal cross-sectional view of the present invention
- Fig. 3 is a schematic diagram of the light source assembly of the present invention.
- this embodiment provides a high light-transmitting black and white screen 3D printer, which includes a fixed frame, a Z-axis moving mechanism, a construction platform plate, a photosensitive resin tank, a black and white LCD screen, an optical conversion lens, and an LED light source.
- the Z-axis moving mechanism and the photosensitive resin tank are respectively arranged on the fixing frame, the bottom of the Z-axis moving mechanism is connected to a building platform board, the building platform board is located above the photosensitive resin tank, and the black and white liquid crystal screen is arranged in the photosensitive resin tank Below, the optical conversion lens is arranged above the LED light source.
- the optical conversion lens is a hemispherical lens
- the bottom of the hemispherical lens is provided with a lens base
- the lens base is hollow
- the lens base is located on the LED light source.
- the hemispherical lens can convert the oblique light emitted by the LED light source into energy-integrated and relatively uniform ultraviolet light.
- the energy-integrated and relatively uniform ultraviolet light passes through the black-and-white liquid crystal screen.
- the black-and-white liquid crystal screen has high light transmittance.
- the high light transmittance referred to in this embodiment refers to purple light.
- the black and white liquid crystal screen in this embodiment has a purple light transmittance that is 3 to 4 times higher than that of the RGB color screen under the same conditions.
- the calorific value of the black and white LCD screen will be greatly reduced, extending its service life.
- the power of the whole machine will also be reduced. Under the same scheme, compared with the RGB color screen, the power of the whole machine can be reduced by 1/3.
- the LED light source in this embodiment is a flip-chip LED.
- Flip-chip LEDs are used in 3D printing and have very obvious effects: the chips can be placed more densely, the same size, flip-chip can put more chips, and achieve the characteristics of small size and high current light concentration.
- the flip chip has better heat dissipation performance in direct contact with the substrate, and does not require a heat sink or a heat dissipation fan. In 3D printing, the cost reduction and assembly efficiency are greatly improved.
- a light shield is also provided, the black and white liquid crystal screen is located on the top of the light shield, and the optical conversion lens and the LED light source are located in the light shield.
- the hood can block and absorb excess ultraviolet light to prevent the light from shining outside.
- the LED light source emits ultraviolet light in a specific wavelength band at a certain angle, and is uniformly irradiated on the black and white liquid crystal screen through the conversion of the optical conversion lens.
- the ultraviolet light converted by the optics passes through the black and white LCD screen.
- the black and white LCD screen displays the required patterns under the control of the drive board.
- the ultraviolet light converted by the optics irradiates the pattern displayed on the black and white LCD screen, and passes through the black and white LCD screen and the photosensitive resin in the trough to undergo curing reaction.
- the resin above the display area of the black and white LCD screen is not liquid, and the cured resin is located on the build platform.
- the black and white LCD screen continuously displays the required shape under the action of the driver board, and at the same time the Z axis moves up and down, driving the construction platform to move up and down, so that the resin is cured layer by layer on the construction platform, and the required printing is repeated.
- the present invention uses a black and white LCD screen to transmit light, and converts the divergent light of the LED light source into energy-integrated and relatively uniform ultraviolet light through an optical conversion lens.
- the LED light source uses flip-chip LEDs.
- the heat dissipation performance of the LCD screen is very good. No reflector is needed to collect light, and the light utilization rate is greatly improved under the same power.
- the single-layer exposure time of the black and white LCD screen is 3 ⁇ 4 times that of the RGB color screen. The same model can save 3 ⁇ 4 times the time for printing with this solution, which can greatly increase the printing speed and improve the printing accuracy.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Liquid Crystal (AREA)
Abstract
一种高透光黑白屏3D打印机,包括固定架、Z轴移动机构(1)、构建平台板(2)、光敏树脂槽(3),Z轴移动机构(1)、光敏树脂槽(3)分别设于固定架上,Z轴移动机构(1)底部连接构建平台板(2),构建平台板(2)位于光敏树脂槽(3)上方,还包括黑白液晶屏(5)、光学转换透镜(6)、LED光源(8),黑白液晶屏(5)设于光敏树脂槽(3)下方,光学转换透镜(6)设于LED光源(8)上方;光学转换透镜(6)为半球形透镜。采用黑白液晶屏(5)透光,通过光学转换透镜(6)将LED光源(8)的发散光线转换成能量集成且比较均匀的紫外光线,LED光源(8)采用倒装芯片LED,光源和黑白液晶屏的散热性能都非常好,在同样的功率下大大的提高了光的利用率,能极大提高打印的速度及精度。
Description
本发明涉及3D打印领域,尤其涉及的是一种高透光黑白屏3D打印机。
现有技术中,市场上的LCD 3D打印机主要采用垂直芯片LED发射光源加反射罩的光源方案,然后LCD屏幕主要采用RGB彩屏。这样造成的后果是,紫外光线经过LCD屏幕之后,光源的中心光功率高,四周光功率低,导致在打印尺寸要求精度比较高的模型(±0.05mm)中,由于不同位置光功率大小不一样,树脂在固化过程中吸收的紫光能量不一样造成尺寸偏差较大。由于反射罩的作用是收集并反射LED光源发出的紫光,通过反射罩收集的光比较凌乱,并且会有杂光,无法体现模型很好的细节。
采用RGB彩屏由于其透过率比较低所以会把90%的紫光挡在屏幕下方,会造成屏幕发热量过大影响其屏幕寿命。因此针对于以上缺点。需要发出一种高透过率的黑白屏及其所配套的光源组件。
本发明所要解决的技术问题是:提供一种高透光黑白屏3D打印机,光线可以直接均匀照射到黑白屏,同样的功率下能提高光的利用率,紫光的穿透率在同等条件下高于RGB彩屏的3~4倍,打印效率高,打印精度高,打印过程的散热效果非常好。
本发明的技术方案如下:一种高透光黑白屏3D打印机,包括固定架、Z轴移动机构、构建平台板、光敏树脂槽,所述Z轴移动机构、光敏树脂槽分别设于固定架上,所述Z轴移动机构底部连接构建平台板,所述构建平台板位于光敏树脂槽上方,还包括黑白液晶屏、光学转换透镜、LED光源,所述黑白液晶屏设于光敏树脂槽下方,所述光学转换透镜设于LED光源上方。
其中,所述光学转换透镜为半球形透镜。
采用上述各个技术方案,所述的高透光黑白屏3D打印机中,所述半球形透镜底部设置有透镜底座,所述透镜底座为中空设置,所述透镜底座位于LED光源上。
采用上述各个技术方案,所述的高透光黑白屏3D打印机中,所述LED光源为倒装芯片LED。
采用上述各个技术方案,所述的高透光黑白屏3D打印机中,还包括遮光罩,所述黑白液晶屏位于遮光罩顶部,所述光学转换透镜和LED光源位于遮光罩中。
采用上述各个技术方案,本发明采用黑白液晶屏透光,通过光学转换透镜将LED光源的发散光线转换成能量集成且比较均匀的紫外光线,LED光源采用倒装芯片LED,整个方案的光源和黑白液晶屏的散热性能都非常好。不需要反射罩来收集光线,在同样的功率下大大的提高了光的利用率。黑白液晶屏单层曝光时间是RGB彩屏的3~4倍,同样的模型用此方案进行打印可以节约3~4倍的时间,能极大提高打印的速度,以及提高打印精度。
图1为本发明的整体结构示意图;
图2为本发明的纵剖面示意图;
图3为本发明的光源组件示意图。
以下结合附图和具体实施例,对本发明进行详细说明。
如图1~3,本实施例提供了一种高透光黑白屏3D打印机,包括固定架、Z轴移动机构、构建平台板、光敏树脂槽、黑白液晶屏、光学转换透镜、LED光源。所述Z轴移动机构、光敏树脂槽分别设于固定架上,所述Z轴移动机构底部连接构建平台板,所述构建平台板位于光敏树脂槽上方,所述黑白液晶屏设于光敏树脂槽下方,所述光学转换透镜设于LED光源上方。
其中,所述光学转换透镜为半球形透镜,所述半球形透镜底部设置有透镜底座,所述透镜底座为中空设置,所述透镜底座位于LED光源上。LED光源发光后,半球形透镜可以将LED光源发出的倾斜光线转换为能量集成且比较均匀的紫外光线。
能量集成且比较均匀的紫外光线再穿过黑白液晶屏,黑白液晶屏具有高透光性,当然,本实施例所指的高透光是指透紫光。黑白液晶屏的每一个像素点内无色彩过滤片,可以让紫光直接穿过。本实施例中的黑白液晶屏与常规的RGB彩屏相比:紫光的穿透率在同等的条件下会高于RGB彩屏的3~4倍。同时,黑白液晶屏的发热量会大大降低,延长其使用寿命。整机的功率也会降低,在同等方案下,与RGB彩屏相比可降低1/3的整机功率。
传统的方案都是采用正装芯片LED,本实施例的LED光源则为倒装芯片LED。倒装芯片LED应用于3D打印中,具有非常明显的效果:芯片可以摆放的比较密集,同样的尺寸,倒装可以放更多的芯片,实现小尺寸大电流光集中的特点。另外,倒装芯片直接和基板接触散热性能更好,不需要散热片和散热风扇,在3D打印中,对于成本的降低和组装效率有很大的提升。
如图2,本实施例中,还设置有遮光罩,所述黑白液晶屏位于遮光罩顶部,所述光学转换透镜和LED光源位于遮光罩中。遮光罩可以遮挡、吸收多余的紫外光线,防止光线照射到外面。
如图1和图2,3D打印的具体工作过程如下:
1、LED光源成一定角度发射特定波段的紫外光,通过光学转换透镜的转换,均匀照射到黑白液晶屏幕上。
2、通过光学转换的紫外光穿过黑白液晶屏。
3、黑白液晶屏上方有光敏树脂槽,光敏树脂槽内部装有液体光敏树脂。
4、在驱动板的控制下黑白液晶屏显示所需要的图案。
5、通过光学转换的紫外光照射黑白液晶屏显示的图案,并穿过黑白液晶屏和料槽里面的光敏树脂发生固化反应。
6、黑白液晶屏没有显示区域上方的树脂成液态,固化的树脂则位于构建平台板上。
7、黑白液晶屏在驱动板的作用下不断显示所需要的形状,同时Z轴上下移动,带动构建平台板上下移动,使树脂一层一层的固化在构建平台板上,周而复始打印出所需要的三维立体产品。
采用上述各个技术方案,本发明采用黑白液晶屏透光,通过光学转换透镜将LED光源的发散光线转换成能量集成且比较均匀的紫外光线,LED光源采用倒装芯片LED,整个方案的光源和黑白液晶屏的散热性能都非常好。不需要反射罩来收集光线,在同样的功率下大大的提高了光的利用率。黑白液晶屏单层曝光时间是RGB彩屏的3~4倍,同样的模型用此方案进行打印可以节约3~4倍的时间,能极大提高打印的速度,以及提高打印精度。
以上仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (4)
- 一种高透光黑白屏3D打印机,包括固定架、Z轴移动机构、构建平台板、光敏树脂槽,所述Z轴移动机构、光敏树脂槽分别设于固定架上,所述Z轴移动机构底部连接构建平台板,所述构建平台板位于光敏树脂槽上方,其特征在于,还包括黑白液晶屏、光学转换透镜、LED光源,所述黑白液晶屏设于光敏树脂槽下方,所述光学转换透镜设于LED光源上方;其中,所述光学转换透镜为半球形透镜。
- 根据权利要求1所述的高透光黑白屏3D打印机,其特征在于,所述半球形透镜底部设置有透镜底座,所述透镜底座为中空设置,所述透镜底座位于LED光源上。
- 根据权利要求2所述的高透光黑白屏3D打印机,其特征在于,所述LED光源为倒装芯片LED。
- 根据权利要求1所述的高透光黑白屏3D打印机,其特征在于,还包括遮光罩,所述黑白液晶屏位于遮光罩顶部,所述光学转换透镜和LED光源位于遮光罩中。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010517806.3 | 2020-06-09 | ||
CN202010517806.3A CN111531877A (zh) | 2020-06-09 | 2020-06-09 | 一种高透光黑白屏3d打印机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021248689A1 true WO2021248689A1 (zh) | 2021-12-16 |
Family
ID=71972710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/110126 WO2021248689A1 (zh) | 2020-06-09 | 2020-08-20 | 一种高透光黑白屏3d打印机 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111531877A (zh) |
WO (1) | WO2021248689A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114536749A (zh) * | 2022-01-28 | 2022-05-27 | 华南理工大学 | Lcd光固化3d打印机动态背光分布实时计算方法与光源模组 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111531877A (zh) * | 2020-06-09 | 2020-08-14 | 深圳市智能派科技有限公司 | 一种高透光黑白屏3d打印机 |
WO2022036584A1 (zh) * | 2020-08-19 | 2022-02-24 | 普罗森科技股份有限公司 | 三维打印机 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108466427A (zh) * | 2017-02-23 | 2018-08-31 | 上海冠显光电科技有限公司 | 一种光固化3d打印光学模块及光固化3d打印系统 |
CN208343459U (zh) * | 2018-06-21 | 2019-01-08 | 中南大学 | 一种快速光固化的lcd 3d打印机 |
CN209022451U (zh) * | 2018-07-30 | 2019-06-25 | 中南大学 | 一种大尺寸微纳米加工及增材制造设备 |
CN110328853A (zh) * | 2019-08-22 | 2019-10-15 | 上海幻嘉信息科技有限公司 | 一种彩色光固化3d打印系统 |
WO2020005717A1 (en) * | 2018-06-29 | 2020-01-02 | Intrepid Automation | Closed loop print process adjustment based on real time feedback |
KR20200010678A (ko) * | 2018-07-09 | 2020-01-31 | 이광민 | 3차원물체를 성형하는 3d 프린터 |
CN111531877A (zh) * | 2020-06-09 | 2020-08-14 | 深圳市智能派科技有限公司 | 一种高透光黑白屏3d打印机 |
-
2020
- 2020-06-09 CN CN202010517806.3A patent/CN111531877A/zh active Pending
- 2020-08-20 WO PCT/CN2020/110126 patent/WO2021248689A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108466427A (zh) * | 2017-02-23 | 2018-08-31 | 上海冠显光电科技有限公司 | 一种光固化3d打印光学模块及光固化3d打印系统 |
CN208343459U (zh) * | 2018-06-21 | 2019-01-08 | 中南大学 | 一种快速光固化的lcd 3d打印机 |
WO2020005717A1 (en) * | 2018-06-29 | 2020-01-02 | Intrepid Automation | Closed loop print process adjustment based on real time feedback |
KR20200010678A (ko) * | 2018-07-09 | 2020-01-31 | 이광민 | 3차원물체를 성형하는 3d 프린터 |
CN209022451U (zh) * | 2018-07-30 | 2019-06-25 | 中南大学 | 一种大尺寸微纳米加工及增材制造设备 |
CN110328853A (zh) * | 2019-08-22 | 2019-10-15 | 上海幻嘉信息科技有限公司 | 一种彩色光固化3d打印系统 |
CN111531877A (zh) * | 2020-06-09 | 2020-08-14 | 深圳市智能派科技有限公司 | 一种高透光黑白屏3d打印机 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114536749A (zh) * | 2022-01-28 | 2022-05-27 | 华南理工大学 | Lcd光固化3d打印机动态背光分布实时计算方法与光源模组 |
CN114536749B (zh) * | 2022-01-28 | 2023-10-27 | 华南理工大学 | Lcd光固化3d打印机动态背光分布实时计算方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111531877A (zh) | 2020-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021248689A1 (zh) | 一种高透光黑白屏3d打印机 | |
JP6119490B2 (ja) | 光源装置、および表示装置 | |
US11335874B2 (en) | Quantum dot color filter substrate, fabricating method thereof, and display panel | |
US20120140148A1 (en) | Liquid crystal display panel, method for manufacturing liquid crystal display panel, and liquid crystal display device | |
JP6422636B2 (ja) | 光源装置 | |
TWI591405B (zh) | 光致發光顯示裝置及其製造方法 | |
KR101305696B1 (ko) | 표시장치 및 광학 부재 | |
CN107450218B (zh) | 光致发光显示装置及其制造方法 | |
CN108919558B (zh) | 一种楔形基板的量子点彩膜结构 | |
CN108845448B (zh) | 一种改善量子点彩膜出光纯度的基板结构 | |
CN108466427A (zh) | 一种光固化3d打印光学模块及光固化3d打印系统 | |
CN1790098A (zh) | 液晶显示装置和投影型液晶显示设备 | |
JP2023013880A (ja) | 光固化3dプリンタの光学機器、プリンタ及び3d印刷方法 | |
CN113721385A (zh) | 一种均匀出光的Mini LED芯片背光模组 | |
TWI736046B (zh) | 背光單元及包含該背光單元的顯示裝置 | |
WO2021258524A1 (zh) | 一种多尺寸光固化3d打印机拼接光源 | |
KR102568654B1 (ko) | 백라이트 유닛, 백라이트 유닛을 포함하는 표시 장치 및 표시 장치를 제조하는 방법 | |
CN207020426U (zh) | 一种可缩短混光距离的背光模组 | |
CN114932680A (zh) | 投影装置、光固化打印机和投影方法 | |
CN212603427U (zh) | 一种高透光黑白屏3d打印机 | |
CN217574083U (zh) | 投影装置和光固化打印机 | |
CN215849653U (zh) | 一种用于光固化三维成型的光学系统 | |
CN215986818U (zh) | 背光组件和显示装置 | |
CN107390479A (zh) | 一种曝光机光源光学模组 | |
CN213240576U (zh) | 一种兔丝印导光板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20940166 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20940166 Country of ref document: EP Kind code of ref document: A1 |