WO2021248651A1 - 一种金属结构件多层单道连续电弧增材制造方法及系统 - Google Patents

一种金属结构件多层单道连续电弧增材制造方法及系统 Download PDF

Info

Publication number
WO2021248651A1
WO2021248651A1 PCT/CN2020/104933 CN2020104933W WO2021248651A1 WO 2021248651 A1 WO2021248651 A1 WO 2021248651A1 CN 2020104933 W CN2020104933 W CN 2020104933W WO 2021248651 A1 WO2021248651 A1 WO 2021248651A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
layer
height
path
additive manufacturing
Prior art date
Application number
PCT/CN2020/104933
Other languages
English (en)
French (fr)
Inventor
董巍
程远
唐凯
李鹏一
胡冬双
徐龙
吴晓
Original Assignee
南京英尼格玛工业自动化技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京英尼格玛工业自动化技术有限公司 filed Critical 南京英尼格玛工业自动化技术有限公司
Publication of WO2021248651A1 publication Critical patent/WO2021248651A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding

Definitions

  • the invention relates to a method and system for multi-layer single-track continuous arc additive manufacturing of metal structural parts, belonging to the field of additive manufacturing.
  • additive manufacturing technology is also known as “physical free manufacturing”, “3D printing technology”, etc., compared to the traditional subtractive manufacturing (cutting) technology, it is a “bottom-up”
  • the material accumulation manufacturing method is based on mathematical modeling, based on the discrete-stacking principle, a new manufacturing technology that stacks materials layer by layer to produce solid parts.
  • additive manufacturing technology has realized the rapid manufacturing of organic materials, inorganic non-metallic materials, and metal materials.
  • the additive manufacturing technology is classified by heat source, which can be divided into: laser additive manufacturing, arc additive manufacturing, electron beam additive manufacturing and other technologies.
  • the raw materials generally have two forms of welding wire and metal powder.
  • the existing multi-layer single-lane arc additive manufacturing technology is discontinuous. Each layer has arc starting and arc extinguishing positions. The increase of arc starting and arc extinguishing positions will further cause uneven chemical composition, insufficient strength, and failure. Fusion and other issues.
  • One object is to propose a method for multi-layer single-pass continuous arc additive manufacturing of metal structural parts.
  • a further purpose is to propose a system that implements the above method.
  • a multi-layer single-pass continuous arc additive manufacturing method for metal structural parts which uses a welding machine as a heat source and a metal wire as a forming material to plan a continuous spirally ascending slicing path for cladding printing.
  • the arc additive manufacturing method includes the following steps:
  • Step 1 Select the welding wire and substrate required to form a specific metal structure
  • Step 2 Generate a continuous spirally ascending slicing path
  • Step 3 The welding gun is driven by the robot to move according to the generated continuous spiral path.
  • step 1 further includes:
  • Step 1-1 Determine the process parameters required for forming specific metal structural parts, including welding procedure, wire feeding speed, printing speed, slice layer height, shielding gas type and flow rate.
  • the relationship between the parameters is as follows:
  • V represents the welding speed
  • F represents the cross-sectional area of the welding seam
  • v represents the wire feeding speed
  • f represents the cross-sectional area of the welding wire
  • Step 1-2 the weld cross section of the workpiece is equivalent to a rectangle, and the following relationship is satisfied at this time:
  • l represents the equivalent rectangular weld width
  • d represents the weld height, that is, the layer height
  • Step 1-3 According to the two formulas of step 1-2 and step 1-3, the relationship between wire feed speed and layer height is obtained:
  • V represents the welding speed
  • l represents the equivalent rectangular weld width
  • d represents the weld height, that is, the layer height
  • f represents the cross-sectional area of the welding wire
  • Steps 1-4 read the current and voltage values through the wire feeding speed, and then calculate the heat input per 1mm of welding wire consumed at the wire feeding speed:
  • U is the arc voltage
  • I is the welding current
  • V is the welding speed
  • k is the relative thermal conductivity
  • Steps 1-5 Wipe the polished and flat substrate with absolute ethanol or acetone, and then fix it on the workbench with a fixed clamp to ensure its level.
  • step 2 further includes:
  • Step 2-1 Perform slicing processing on the model of the printed workpiece, and divide the model into several planes along the Z-axis direction;
  • Step 2-2 Find the adjacent layer, use the layer with the higher relative position to subtract the layer with the lower relative position to obtain the layer height; then randomly select a point on the first layer slice as the starting point (that is, the welding arc point), and then use The following formula finds the offset height in the Z direction between two adjacent points:
  • d is the vertical height between the starting point and the end point in the same layer
  • X is the number of slice points in each layer
  • z is the offset height between each point in the Z direction
  • Step 2-3 Find the starting point of the next layer, requiring the point to be the closest to the end point of the previous layer, and connect the end point of the previous layer with the starting point of the layer;
  • Step 2-4 Repeat step 2-1 to step 2-3 in sequence until all the path points of the entire workpiece are connected to generate a continuous spiral path.
  • step 3 further includes: the servo system drives the welding gun manipulator according to the spiral path calculated in step 2, and the welding gun manipulator drives the welding gun to print a single weld along a predetermined track, and the welding gun prints according to the spiral path The height from the substrate gradually increased during the process.
  • step 2-1 further includes:
  • Step 2-1a Divide the model into several triangles along the Z axis to obtain the maximum and minimum values of the three-dimensional model in the Z axis. Consider the reserved machining allowance, and calculate the total number of layers:
  • Z max represents the maximum value of the three-dimensional model in the Z-axis direction
  • Z min represents the minimum value of the three-dimensional model in the Z-axis direction
  • ⁇ z represents the layer height
  • k is the adjustment coefficient
  • ⁇ z+k is the preset value
  • the adjustment factor is added on the basis of the layering height to ensure the machining allowance
  • Step 2-1b Store each triangle face of each layer in the n layer in a dynamic array, and query the triangle face Value if Then store the current triangle patch in the j-th group of the dynamic array; if Store the current triangle face in the j-1th group of the dynamic array; if Then store the current triangle patch in the j+1th group of the dynamic array;
  • h j represents the height of the j-th group
  • h j+1 represents the height of the j+1-th group.
  • the height is taken from the middle value of the minimum and maximum values of the three-dimensional model in the Z-axis direction plus the layer height
  • the product of the number of groups gives:
  • Z min represents the minimum value of the three-dimensional model in the Z-axis direction
  • Z max represents the maximum value of the three-dimensional model in the Z-axis direction
  • ⁇ z represents the layer height
  • j represents the number of groups.
  • steps 2-4 further include optimizing the trajectory of the spiral path:
  • Step 2-4a Set the linear velocity v c of the spiral path:
  • represents the angular velocity of the torch rotation
  • L represents the distance between the interpolation starting point and the origin
  • v 0 represents the radial velocity
  • Lv 0 t obtains the real-time radius of the workpiece
  • t represents the welding time
  • the angular velocity ⁇ of the torch rotation satisfies the following relationship:
  • D represents the distance of the weld bead that the welding gun moves radially when the heat source cooperates with the platform to complete a weld forming process, Means the radial velocity of the welding torch is averaged;
  • Step 2-4b Calculate the welding speed v r of the welding gun:
  • v c represents the linear velocity of the spiral ascending path
  • v 0 represents the radial velocity
  • Step 2-4c Calculate the weld bead spacing, the welding gun moves radially by one weld bead spacing, and the heat source cooperates with the platform to complete the formation of a weld bead.
  • the expression for the weld bead spacing D is as follows:
  • n represents the number of welding torches
  • v 0 represents the radial velocity
  • t represents the welding time
  • represents the angular velocity of the torch rotation
  • d represents the compensation height
  • the compensation height d is determined by the interpolation accuracy and satisfies the following relationship:
  • Step 2-4d calculate the modified welding speed v r repair :
  • n represents the number of welding torches
  • v 0 represents the radial velocity
  • represents the angular velocity of the torch rotation
  • d represents the compensation height
  • It represents the average value of the radial velocity of the welding torch
  • D represents the distance of the welding bead that the welding torch moves in the radial direction when the heat source cooperates with the platform to complete the formation of a weld.
  • a multi-layer single-pass continuous arc additive manufacturing system for metal structural parts including basic components for placing specific metal structural parts; a path generation module for generating a continuous spirally ascending slicing path; A torch robot that tracks and welds through a spirally ascending slice path; and a visual sensor module for real-time monitoring of printed workpieces.
  • the basic assembly includes a worktable for placing the shaped workpiece, and a substrate fixed on the worktable by a fixing fixture;
  • the path generation module is further used for slicing the model of the printed workpiece, dividing the model into several planes along the Z-axis direction; searching for adjacent layers, subtracting the layer with a relatively high position from the layer with a relatively low position to obtain the layer height; Then randomly select a point on the first layer slice as the starting point (that is, the welding arc point), and then use the following formula to find the offset height in the Z direction between two adjacent points; to find the starting point of the next layer, this The distance between the point and the end point of the upper layer is the closest, and the end point of the upper layer is connected with the starting point of the layer; the starting point of the adjacent layer and the next layer is repeatedly searched, until all the path points of the entire workpiece are connected to generate a continuous Spiral path
  • the welding torch robot includes a servo system, a welding torch mechanical arm electrically connected to the servo system, and a welding torch installed on the welding torch mechanical arm; the servo system drives the welding torch mechanical arm according to the spiral path generated by the path generation module, and The welding torch manipulator drives the welding torch to print a single weld along a predetermined trajectory, and the height of the welding torch from the substrate gradually increases during the printing process according to the spiral path;
  • the visual sensing module includes a dot matrix projector and an industrial camera installed on one side of the welding gun; the dot matrix projector is used to project a predetermined amount of light onto the identification object, and the built-in central processing unit projects according to the
  • the periscope structured light scan collects the object information, and the structured light image is obtained by the industrial camera to identify the surface of the object, and perform three-dimensional modeling.
  • the welding torch further includes a welding torch nozzle, and a gas protection cover installed on the welding torch nozzle; the gas protection cover is clamped to the welding torch nozzle by a quick-change clamp, and the gas protection cover is a square shell Body, one side is completely open, one side is provided with through holes for passing through the nozzle of the welding torch, the four side walls of the gas shield are provided with multiple vent holes, and each vent hole is connected to a gas hose.
  • the gas delivery hose is assembled into a main gas pipe connected to the protective gas cylinder, and a filter screen is arranged inside the gas protective cover.
  • the present invention proposes a multilayer single-pass continuous arc additive manufacturing method for metal structural parts, and independently develops a continuous spiral printing path.
  • the welding gun is driven by the robot to perform 3D printing according to the generated continuous spiral path.
  • the entire printing process ensures consistent dry elongation without arc extinguishing, and realizes the digitization, intelligence and parallelization of parts manufacturing.
  • Multi-layer single-pass 3D printing of metal structural parts is carried out according to a continuous spiral ascending path, the chemical composition of the formed workpiece is uniform, the purity is high, and the structure is almost non-anisotropic.
  • Multi-layer single-pass 3D printing of metal structural parts is carried out according to the continuous spiral ascending path.
  • the grain size of the formed workpiece is small and uniform, and the mechanical properties are good, which can exceed the level of castings of the same composition.
  • Figure 1 is a flow chart of the overall work of the present invention.
  • FIG. 2 is a schematic diagram of a continuous spiral ascending path of an aluminum alloy structure (hoist) in Embodiment 1 of the present invention.
  • Embodiment 3 is a schematic diagram of the continuous spiral ascent path of the aluminum alloy structure (twisted large vase) in Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a continuous spiral ascending path of a stainless steel structure (twisted stool) in Embodiment 3 of the present invention.
  • Fig. 5 is a schematic diagram of grouping and sorting for slicing a model of a printed workpiece according to the present invention.
  • Fig. 6 is a schematic diagram of generating a continuous spirally ascending slice path in the present invention.
  • the applicant proposes a multi-layer single-pass continuous arc additive manufacturing method for metal structural parts, which can realize continuous additive manufacturing of thin-walled ring-shaped and cabin-like metal products (the printing process does not extinguish the arc). It can effectively reduce production costs, shorten production cycles, and obtain metal structural parts with uniform chemical composition, high dimensional accuracy and good metallurgical properties.
  • the arc additive manufacturing technology uses a welding machine as a heat source, and a metal wire as a forming material, and performs cladding printing according to a self-planned continuous spirally rising slicing path.
  • the specific steps are as follows:
  • the welding speed is proportional to the wire feeding speed, which can be expressed by the relation (1)
  • the welding seam section of the workpiece is equivalent to a rectangle
  • l equivalent rectangular weld width
  • the current and voltage values can be read on the control panel, and then the heat input of each 1mm welding wire consumed at the wire feeding speed can be calculated:
  • U arc voltage
  • the control of heat input is extremely important. If the heat is too low, the weld will not be formed, the workpiece will not be fused, and the heat will cause the workpiece to collapse. Therefore, combining various wire properties with the printing process
  • the relationship of temperature can be inferred suitable for the heat input of the wire, and then the process parameters, such as wire feeding speed, welding speed and layer height can be determined.
  • the STL model of the workpiece to be printed is sliced.
  • STL model slicing algorithms There are many existing STL model slicing algorithms. We use the STL slicing algorithm based on the geometric characteristics of the triangle to process the STL model, and divide the model into several planes along the Z axis;
  • d is the vertical height between the starting point and the end point in the same layer
  • X is the number of points per slice
  • z is the offset height in the Z direction between each point.
  • This method is used in turn to connect all path points of the entire workpiece to generate a continuous spiral path to realize continuous arc additive manufacturing of the workpiece.
  • the welding gun is driven by the robot to move according to the generated continuous spiral path.
  • the process parameters are determined according to the method of step 1), and a single weld seam is printed on the substrate.
  • the height of the welding gun from the substrate during the printing process according to the continuous spiral path is gradually Elevated.
  • the continuous spiral path combined with the process parameters calculated according to the heat input in 1) can ensure that the dry elongation of the welding wire remains unchanged during the printing process, and the arc will not be extinguished during the entire printing process, and finally a metal structure with good structural performance is formed.
  • the substrate is selected from metal and its alloy plates with a thickness of 10-50mm;
  • the welding wire adopts metal and its alloy welding wire with a diameter of 0.8mm or 1.0mm or 1.2mm or 1.6mm; the forming process parameter wire feeding speed is 2.3m/min-10m/min; welding current is 53- 161A; welding speed is 5-20mm/s; single-pass weld width is 3-9mm; slice layer height is 0.6-3.5mm.
  • gases such as Arcal1, Arcal4, Arcal5, Arcl12, Arcal15, Arcal33 are used to protect the metal structural parts from the front, and the gas flow rate is 15-20L/ min, the classification of protective gas types is shown in Table 1.
  • the two-layer printing process at the bottom of the workpiece adopts the CMT+P mode, that is, the cold metal transition + pulse mode, and the printing process on the upper part of the workpiece adopts the AC cold metal transition mode.
  • Example 1 Multi-layer single-pass arc additive manufacturing of 4mm thick 4043 aluminum alloy ring-shaped regular structural parts
  • the aluminum alloy structure has a height of 200mm and a wall thickness of 6mm. It is formed by 181 layers of continuous spirally rising weld arc additive manufacturing, and the weld height of each layer is 1.1mm. It is manufactured by the multi-layer single-pass arc additive method of a metal structure according to the present invention. Specifically:
  • the welding wire used is 1.2mm 4043 aluminum alloy welding wire.
  • the heat input is calculated by the optimal temperature required for the workpiece forming, so as to obtain a set of suitable forming process parameters: select The welding process is CMT+P and CMT Advance, the welding current is 59A, the wire feeding speed is 2.8m/min, the welding speed is 12mm/s, the shielding gas is 99.9995% pure argon, and the gas flow rate is 18L/min.
  • the width of a single weld is 4mm and the height of the layer is 1.1mm, which can ensure that the welding torch moves according to the continuous spiral path generated by the robot, the dry elongation of the printing process is unchanged, and the arc is not extinguished in the whole process. It can also ensure that the inter-pass fusion and the overall forming accuracy of the workpiece are good.
  • polish the acid-washed substrate wipe it clean with absolute ethanol or acetone, and fix it on the welding workbench to ensure the substrate is level.
  • the STL model is processed by the STL slicing algorithm based on the geometric characteristics of the triangular facets, and then the continuous spiral printing path is calculated and generated.
  • the first layer of printing adopts the CMT+P process
  • the welding current is 168A
  • the wire feeding speed is 8.1m/min
  • the welding speed is 12mm/s.
  • the second layer and above are printed using the CMT Advance process.
  • the forming process parameters are The welding current is 59A
  • the wire feeding speed is 2.8m/min
  • the welding speed is 12mm/s.
  • the entire printing path is shown in Figure 2.
  • the welding torch moves according to the continuous spiral path generated by the robot, and the height of the welding torch from the substrate gradually during the printing process Increase, but keep the dry elongation unchanged, the entire printing process will not extinguish the arc, and finally form a metal structure with excellent performance.
  • Example 2 Multi-layer single arc additive manufacturing of 8mm thick 4043 aluminum alloy twisted polygonal ring structure
  • the height of the aluminum alloy structure is 500mm, and the wall thickness is 8mm. It is formed by 556 layers of continuously spirally rising weld arc additive manufacturing, and the weld height of each layer is 0.9mm. It is manufactured by adopting the multi-layer single-pass continuous arc additive method of the metal structure of the present invention. Specifically:
  • the welding wire used is 1.2mm 4043 aluminum alloy welding wire.
  • the heat input is calculated based on the optimal temperature required for the workpiece to be formed, so that a set of suitable forming process parameters: select welding The process is CMT+P, the welding current is 90A, the wire feeding speed is 4.5m/min, the welding speed is 12mm/s, the shielding gas is 99.9995% pure argon, and the gas flow rate is 17L/min.
  • a single-pass weld has a width of 8mm and a layer height of 0.9mm, which can ensure that the welding torch moves in a continuous spiral path generated by the robot, and the dry elongation during the printing process is unchanged, and the arc is not extinguished in the entire process. It can also ensure that the inter-pass fusion and the overall forming accuracy of the workpiece are good.
  • polish the acid-washed substrate wipe it clean with absolute ethanol or acetone, and fix it on the welding workbench to ensure the substrate is level.
  • the STL model is processed by the STL slicing algorithm based on the geometric characteristics of the triangular facets, and then the continuous spiral printing path is calculated and generated.
  • the first layer of printing adopts the CMT+P process
  • the welding current is 176A
  • the wire feeding speed is 8.2m/min
  • the welding speed is 12mm/s.
  • the second layer and above are printed using the CMT+P process, and the forming process parameters
  • the welding current is 90A
  • the wire feeding speed is 4.5m/min
  • the welding speed is 12mm/s.
  • the entire printing path is shown in Figure 3.
  • the welding torch moves according to the continuous spiral path generated by the robot.
  • the height of the welding torch from the substrate during the printing process Gradually increase, but keep the dry elongation unchanged, the entire printing process will not extinguish the arc, and finally form the metal structure.
  • Example 3 Multi-layer single arc additive manufacturing of 6mm thick stainless steel regular structural parts
  • the stainless steel structure has a height of 420mm and a wall thickness of 6mm. It is formed by 323 layers of continuously spirally rising weld arc additive manufacturing, and the weld height of each layer is 1.3mm. It is manufactured by adopting the multi-layer single-pass continuous arc additive method of the metal structure of the present invention. Specifically:
  • the welding wire used is 0.8mm 308L stainless steel welding wire.
  • polish the acid-washed substrate wipe it clean with absolute ethanol or acetone, and fix it on the welding workbench to ensure the substrate is level.
  • the STL model is processed by the STL slicing algorithm based on the geometric characteristics of the triangular facets, and then the continuous spiral printing path is calculated and generated.
  • the first layer of printing adopts the CMT+P process
  • the welding current is 158A
  • the wire feeding speed is 17.1m/min
  • the welding speed is 10mm/s.
  • the second layer and above are printed using the CMT process, and the forming process parameter is welding.
  • the current is 90A
  • the wire feeding speed is 8.5m/min
  • the welding speed is 10mm/s.
  • the entire printing path is shown in Figure 4.
  • the welding torch moves according to the continuous spiral path generated by the robot, and the height of the welding torch from the substrate gradually rises during the printing process. High, but keeping the dry elongation unchanged, the entire printing process will not extinguish the arc, and the metal structure is finally formed.
  • the arc additive manufacturing adopts a continuous ascending spiral path.
  • the requirements for the protective atmosphere are very high.
  • the nozzle atmosphere protection of the welding gun is not enough to meet the requirements of the continuous ascending spiral path additive process. Therefore, a gas shield type welding gun is designed.
  • the four vent holes on the shield are connected to the four gas hoses to form a thicker gas pipe connected to the shield gas cylinder, and there is a filter inside the shield to make the shielding gas blow out more uniformly .
  • the gas shield expands the protective atmosphere area, reduces the generation of pores in the workpiece, and improves the mechanical properties of the material.
  • the protective gas in the protective cover and the protective gas at the nozzle form a double protection for the molten pool, ensuring the stability of the arc during the printing process and improving the printing efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

一种金属结构件多层单道连续电弧增材制造方法,采用焊机作为热源,金属丝材作为成形材料,焊接装置在机器人驱动下按照规划的连续螺旋上升的切片路径运动,在基板上进行电弧增材制造;由伺服系统根据计算出来的螺旋路径驱动焊枪机械臂,由焊枪机械臂驱动焊枪沿着预定轨迹打印单道焊缝。

Description

一种金属结构件多层单道连续电弧增材制造方法及系统 技术领域
本发明涉及一种金属结构件多层单道连续电弧增材制造方法及系统,属于增材制造领域。
背景技术
增材制造技术(Additive Manufacturing,AM)也被称为“实体自由制造”、“3D打印技术”等,相对于传统的减材制造(切削加工)技术,它是一种“自下而上”材料累加的制造方法,是以数学建模为基础,基于离散-堆积原理,将材料逐层堆积制造出实体零件的新兴制造技术。经过近一个世纪的发展,增材制造技术实现了有机材料、无机非金属材料、金属材料产品的快速制造。针对金属材料,将增材制造技术按热源分类,可分为:激光增材制造、电弧增材制造、电子束增材制造等技术,原材料一般有焊丝和金属粉末两种形式。
现有的多层单道电弧增材制造技术增材过程是不连续的,每层均存在起弧和熄弧位置,起弧熄弧位置的增多进一步会引起化学成分不均匀、强度不够、未熔合等问题。
发明内容
发明目的:一个目的是提出一种金属结构件多层单道连续电弧增材制造方法。进一步目的是提出一种实现上述方法的系统。
技术方案:一种金属结构件多层单道连续电弧增材制造方法,以焊机作为热源、金属丝材作为成形材料,规划出连续螺旋上升切片路径进行熔覆打印。
在进一步的实施例中,该电弧增材制造方法包括如下步骤:
步骤1、选择成形特定金属结构件所需要的焊丝和基板;
步骤2、生成连续螺旋上升切片路径;
步骤3、焊枪在机器人驱动下按生成的连续螺旋路径运动。
在进一步的实施例中,步骤1进一步包括:
步骤1-1、确定成形特定金属结构件所需要的工艺参数,包括焊接程序、送丝速度、打印速度、切片层高、保护气种类与流量,各参数之间关系如下:
V×F=v×f
式中,V表示焊接速度,F表示焊缝截面积,v表示送丝速度,f表示焊丝截面积;
步骤1-2、将工件焊缝截面等效为长方形,此时满足如下关系式:
F=ld
式中,l表示等效长方形焊缝宽度,d表示焊缝高度即层高;
步骤1-3、根据步骤1-2和步骤1-3的两式得到式送丝速度与层高之间的关系式:
Figure PCTCN2020104933-appb-000001
式中,V表示焊接速度,l表示等效长方形焊缝宽度,d表示焊缝高度即层高,f表示焊丝截面积;
步骤1-4、通过送丝速度读出电流和电压值,进而计算该送丝速度下每消耗1mm焊丝的热输入量:
Figure PCTCN2020104933-appb-000002
式中,U表示电弧电压、I表示焊接电流,V表示焊接速度,k表示相对热传导率;
步骤1-5、将打磨平整的基板用无水乙醇或丙酮擦拭干净后通过固定夹具固定在工作台上,保证其水平。
在进一步的实施例中,步骤2进一步包括:
步骤2-1、对打印工件的模型进行切片处理,将模型沿Z轴方向分成若干平面;
步骤2-2、寻找相邻层,利用相对位置高的层减去相对位置低的层,得到层高;然后在首层切片上随机取一点作为起始点(即焊接起弧点),然后利用下式,求出相邻两点之间Z方向的偏移高度:
Figure PCTCN2020104933-appb-000003
其中,d是同一层中起始点与末端点之间的竖直高度;X是每层切片的点数;z是各点之间Z方向的偏移高度;
步骤2-3、寻找下一层的起始点,要求该点与上一层末端点的距离最近,将上一层末端点与该层起始点连接起来;
步骤2-4、依次重复步骤2-1至步骤2-3,直至连接整个工件的所有路径点,生成连续的螺旋上升路径。
在进一步的实施例中,步骤3进一步包括:伺服系统根据步骤2中计算出来的螺旋路径驱动焊枪机械臂,由焊枪机械臂驱动焊枪沿着预定轨迹打印单道焊缝,焊枪根据螺旋路径在打印过程中距离基板的高度逐渐升高。
在进一步的实施例中,步骤2-1进一步包括:
步骤2-1a、将模型沿Z轴方向分成若干三角面片,得到三维模型在Z轴方向上的最大值和最小值,考虑预留加工余量,计算出总层数:
Figure PCTCN2020104933-appb-000004
式中,Z max表示三维模型在Z轴方向上的最大值,Z min表示三维模型在Z轴方向上的最小值,Δz表示分层高度,k为调节系数,Δz+k为在预设的分层高度的基础之上加上调节系数以保证加工余量;
步骤2-1b、将n层中每一层的每一块三角面片存储在动态数组中,查询每一块三角面片的
Figure PCTCN2020104933-appb-000005
值,若
Figure PCTCN2020104933-appb-000006
则将当前的三角面片存储在动态数组的第j个分组中;若
Figure PCTCN2020104933-appb-000007
则将当前的三角面片存储在动态数组的第j-1个分组中;若
Figure PCTCN2020104933-appb-000008
则将当前的三角面片存储在动态数组的第j+1个分组中;
其中,h j表示第j个分组的高度,h j+1表示第j+1个分组高度,该高度由三维模型在Z轴方向上的最小值和最大值取中间值之后加上分层高度与分组数的乘积得出:
h j=(Z min+Z max)/2+Δz×j
式中,Z min表示三维模型在Z轴方向上的最小值,Z max表示三维模型在Z轴方向上的最大值,Δz表示分层高度,j表示分组数。
在进一步的实施例中,步骤2-4进一步包括对螺旋上升路径的轨迹优化:
步骤2-4a、设定螺旋上升路径的线速度v c
v c=ω(L-v 0t)
式中,ω表示焊枪旋转的角速度,L表示插补起点距原点的距离,v 0表示径向速度,L-v 0t得出的是工件的实时半径,t表示焊接时间;
其中,焊枪旋转的角速度ω满足如下关系式:
Figure PCTCN2020104933-appb-000009
式中,D表示热源配合平台完成一条焊缝成形的过程中焊枪所径向移动的焊道间距,
Figure PCTCN2020104933-appb-000010
表示对焊枪的径向速度取均值;
步骤2-4b、计算焊枪的熔敷速度v r
Figure PCTCN2020104933-appb-000011
式中,v c表示螺旋上升路径的线速度,v 0表示径向速度;
步骤2-4c、计算焊道间距,焊枪径向移动一个焊道间距,热源配合平台完成一条焊缝成形,其中焊道间距D的表达式如下:
Figure PCTCN2020104933-appb-000012
式中,n表示焊枪数量,v 0表示径向速度,t表示焊接时间,ω表示焊枪旋转的角速度,d表示补偿高度;
其中补偿高度d由插补精度决定,满足如下关系式:
Figure PCTCN2020104933-appb-000013
式中,
Figure PCTCN2020104933-appb-000014
表示对焊枪的径向速度取均值,t′表示在插补区间内的运动时间;
步骤2-4d、计算出修正后的熔敷速度v r修
Figure PCTCN2020104933-appb-000015
式中,n表示焊枪数量,v 0表示径向速度,ω表示焊枪旋转的角速度,d表示补偿高度,
Figure PCTCN2020104933-appb-000016
表示对焊枪的径向速度取均值,D表示热源配合平台完成一条焊缝成形的过程中焊枪所径向移动的焊道间距。
一种金属结构件多层单道连续电弧增材制造系统,包括用于放置特定金属结构件的基础组件;用于生成连续螺旋上升切片路径的路径生成模块;用于根据路径生成模块生成的连续螺旋上升切片路径进行跟踪焊接的焊枪机器人;以及用于实时监控已打印工件的视觉感应模块。
在进一步的实施例中,所述基础组件包括用于放置成形工件的工作台,以及通过固定夹具固定在所述工作台上的基板;
所述路径生成模块进一步用于对打印工件的模型进行切片处理,将模型沿Z轴方向分成若干平面;寻找相邻层,利用相对位置高的层减去相对位置低的层,得到层高;然后在首层切片上随机取一点作为起始点(即焊接起弧点),然后利用下式,求出相邻两点之间Z方向的偏移高度;寻找下一层的起始点,要求该点与上一层末端点的距离最近,将上一层末端点与该层起始点连接起来;重复寻找相邻层和下一层的起始点,直至连接 整个工件的所有路径点,生成连续的螺旋上升路径;
所述焊枪机器人包括伺服系统,与所述伺服系统电性连接的焊枪机械臂,以及安装在所述焊枪机械臂上的焊枪;由伺服系统根据路径生成模块生成的螺旋路径驱动焊枪机械臂,由焊枪机械臂驱动焊枪沿着预定轨迹打印单道焊缝,焊枪根据螺旋路径在打印过程中距离基板的高度逐渐升高;
所述视觉感应模块包括安装在所述焊枪一侧的点阵投射器和工业相机;所述点阵投射器用于投射出预定数量的光线到识别物体上,并由内建的中央处理器根据投射的潜望结构光线扫描采集物体信息,由工业相机拍摄识别物体表面得到结构光图像,并进行三维建模。
在进一步的实施例中,所述焊枪进一步包括焊枪喷嘴,以及安装在所述焊枪喷嘴上的气体保护罩;所述气体保护罩通过快换夹具卡接在焊枪喷嘴处,气体保护罩为四方壳体,其一面为完全开口,一面设有用于穿过焊枪喷嘴的通孔,气体保护罩的四个侧壁设有多个通气孔,每个通气孔分别连接一根输气软管,多个输气软管汇总为一根总气管连接至保护气瓶,所述气体保护罩内部设有过滤网。
相比于现有技术,本发明技术方案显著优点如下:
(1)本发明提出金属结构件多层单道连续电弧增材制造方法,自主开发连续的螺旋上升打印路径。
(2)焊枪在机器人驱动下按生成的连续螺旋上升路径进行3D打印,整个打印过程保证干伸长一致且不会熄弧,实现了零件制造的数字化、智能化和并行化。
(3)按照连续螺旋上升路径进行金属结构件多层单道3D打印,成形工件的化学成分均匀,纯度高,而且组织几乎无各向异性。
(4)按照连续螺旋上升路径进行金属结构件多层单道3D打印,成形工件的晶粒尺寸细小均匀,机械性能好,能够超过同成分铸件的水平。
(5)相比于传统的加工技术工序显著减少,同时省去了设计、加工模具的时间和费用,大大缩短了产品研制周期、提高了效率。
附图说明
图1为本发明的整体工作流程图。
图2为本发明实施例1中铝合金结构件(葫芦)连续螺旋上升路径示意图。
图3为本发明的实施例2中铝合金结构件(扭折大花瓶)连续螺旋上升路径示意图。
图4为本发明的实施例3中不锈钢结构件(扭折凳子)连续螺旋上升路径示意图。
图5为本发明对打印工件的模型进行切片处理的分组排序示意图。
图6为本发明中生成连续螺旋上升切片路径的示意图。
具体实施方式
申请人认为,现有的多层单道电弧增材制造技术增材过程是不连续的,每层均存在起弧和熄弧位置,起弧熄弧位置会存在化学成分不均匀、强度不够、未熔合等问题。
为此,申请人提出一种金属结构件多层单道连续电弧增材制造方法,采用本方法可实现薄壁环状、舱段类金属产品的连续增材(打印过程不熄弧)。可有效降低生产成本、缩短生产周期,获得化学成分均匀、尺寸精度高、冶金性能良好的金属结构件。
该电弧增材制造技术采用焊机作为热源,金属丝材作为成形材料,根据自主规划的连续螺旋上升切片路径进行熔覆打印,具体步骤如下:
1)选择成形特定金属结构件所需要的焊丝和基板,确定成形特定金属结构件所需要的工艺参数,包括焊接程序、送丝速度、打印速度、切片层高、保护气种类与流量,各参数之间关系如下:
焊接速度与送丝速度成正比,可以用关系式(1)表示
V×F=v×f………………………………(1)
V:焊接速度;
F:焊缝截面积
v:送丝速度
f:焊丝截面积
将工件焊缝截面等效为长方形,那么
F=ld....................................(2)
其中,l:等效长方形焊缝宽度;
d:焊缝高度(即层高)
由式(1)与(2)得到式送丝速度与层高之间的关系,如式(3)所示:
Figure PCTCN2020104933-appb-000017
通过送丝速度,可在控制面板上读出电流和电压值,进而计算该送丝速度下每消耗1mm焊丝的热输入量:
Figure PCTCN2020104933-appb-000018
其中,U:电弧电压;
I:焊接电流;
V:焊接速度;
K:相对热传导率;
电弧增材制造过程,热输入量的控制极其重要,热量太低会导致焊缝不成形,工件存在未熔合,热量过高会导致工件塌陷,因此,结合各种丝材性能与打印过程层间温度的关系,可以推断适合该丝材的热量输入,进而确定工艺参数,如送丝速度、焊接速度与层高等。
2)将打磨平整的基板用无水乙醇或丙酮擦拭干净后固定在工作台上,保证其水平;
3)连续螺旋上升切片路径的生成,具体如下:
首先对待打印工件的STL模型进行切片处理,现有的STL模型切片算法有很多,我们采用基于三角面片几何特征的STL切片算法来处理STL模型,将模型沿Z轴方向分成若干平面;
其次,寻找相邻层,利用相对位置高的层减去相对位置低的层,得到层高;
然后在首层切片上随机取一点作为起始点(即焊接起弧点),然后利用下式,求出相邻两点之间Z方向的偏移高度:
Figure PCTCN2020104933-appb-000019
其中,d是同一层中起始点与末端点之间的竖直高度;
X是每层切片的点数;
z是各点之间Z方向的偏移高度。
然后寻找下一层的起始点,要求该点与上一层末端点的距离最近,将上一层末端点与该层起始点连接起来,即实现了两层之间轨迹的连续,打印过程不会熄弧。
依次利用该方法连接整个工件的所有路径点,生成连续的螺旋上升路径,实现工件的连续电弧增材制造。
4)焊枪在机器人驱动下按生成的连续螺旋路径运动,同时根据步骤1)的方法确定工艺参数,在基板上开始打印单道焊缝,焊枪根据连续螺旋路径在打印过程中距离基板的高度逐渐升高。连续的螺旋路径与1)中根据热输入量计算的工艺参数相结合,可以保证打印过程焊丝干伸长不变,整个打印过程不会熄弧,最终成形结构性能良好的金属结 构件。
进一步地,所述基板选用厚度为10-50mm的金属及其合金板材;
进一步地,所述焊丝采用直径为0.8mm或1.0mm或1.2mm或1.6mm的金属及其合金焊丝;所述成形工艺参数送丝速度为2.3m/min~10m/min;焊接电流为53~161A;焊接速度为5~20mm/s;单道焊缝宽度3~9mm;切片层高0.6~3.5mm。
进一步地,所述金属结构件多层单道连续电弧增材制造的方法中,采用Arcal1、Arcal4、Arcal5、Arcl12、Arcal15、Arcal33等气体对金属结构件进行正面保护,气体流量为15-20L/min,保护气种类分类如表1所示。
表1液化空气焊接保护气对照表
产品名称 产品规格 气瓶类型 气瓶水溶积/充装压力
ARCAL1 99.995%Ar 钢瓶 50L/195±5bar@20℃
ARCAL4 99.999%He 钢瓶 50L/195±5bar@20℃
ARCAL5 82%Ar+18%CO 2 钢瓶 50L/195±5bar@20℃
ARCAL12 98%Ar+2%CO 2 钢瓶 50L/195±5bar@20℃
ARCAL15 95%Ar+5%H 2 钢瓶 50L/195±5bar@20℃
ARCAL33 70%Ar+30%He 钢瓶 50L/195±5bar@20℃
ARCAL35 50%Ar+50%He 钢瓶 50L/195±5bar@20℃
进一步地,所述步骤4)中工件底部两层打印过程工艺采用CMT+P模式,即冷金属过渡+脉冲模式,工件上部打印过程工艺采用交流冷金属过渡模式。
下面结合附图和具体实施例对本发明所述的一种金属结构件多层单道连续电弧增材制造的方法。根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例1:4mm厚4043铝合金环形规则结构件多层单道电弧增材制造
如图2所示,铝合金结构件高度为200mm,壁厚6mm,由181层连续螺旋上升的焊缝电弧增材制造形成,每层焊缝高度为1.1mm。其采用本发明所述的一种金属结构件多层单道电弧增材方法制造。具体为:
打印所选基板厚度为15mm的6061铝合金板材,采用的焊丝为直径1.2mm 4043铝 合金焊丝,先通过工件成形所需最佳温度计算热输入量,从而得到一组合适的成形工艺参数:选择焊接工艺为CMT+P与CMT Advance,焊接电流59A、送丝速度2.8m/min、焊接速度12mm/s,保护气体为99.9995%纯氩气,气体流量为18L/min。此组工艺参数下,单道焊缝宽度4mm,层高1.1mm,能够保证焊枪在机器人驱动下按生成的连续螺旋上升路径运动,打印过程干伸长不变,整个过程不熄弧。也可以保证道间熔合和工件整体成形精度良好。
将经过酸洗的基板打磨平整并用无水乙醇或丙酮擦拭干净后固定在焊接工作台上,保证基板水平。
通过基于三角面片几何特征的STL切片算法来处理STL模型,进而计算生成连续螺旋上升的打印路径。
打印首层采用CMT+P工艺,焊接电流168A、送丝速度为8.1m/min、焊接速度为12mm/s,打印首层结束后,第二层及以上打印选用CMT Advance工艺,成形工艺参数为焊接电流59A、送丝速度2.8m/min、焊接速度12mm/s,整个打印路径如图2所示,焊枪在机器人驱动下按生成的连续螺旋路径运动,焊枪在打印过程中距离基板的高度逐渐升高,但保持干伸长不变,整个打印过程不会熄弧,最终成形得到性能优异的金属结构件。
实施例2:8mm厚4043铝合金扭曲多边形环形结构件多层单道电弧增材制造
与实施例1不同之处在于:
如图3所示,铝合金结构件高度为500mm,壁厚8mm,由556层连续螺旋上升的焊缝电弧增材制造形成,每层焊缝高度为0.9mm。其采用本发明所述的一种金属结构件多层单道连续电弧增材方法制造。具体为:
打印所选基板厚度为16mm的6061铝合金板材,采用的焊丝为直径1.2mm 4043铝合金焊丝,先通过工件成形所需最佳温度计算热输入量,从而一组合适的成形工艺参数:选择焊接工艺为CMT+P,焊接电流90A、送丝速度4.5m/min、焊接速度12mm/s,保护气体为99.9995%纯氩气,气体流量为17L/min。此组工艺参数下,单道焊缝宽度8mm,层高0.9mm,能够保证焊枪在机器人驱动下按生成的连续螺旋路径运动,打印过程干伸长不变,整个过程不熄弧。也可以保证道间熔合和工件整体成形精度良好。
将经过酸洗的基板打磨平整并用无水乙醇或丙酮擦拭干净后固定在焊接工作台上,保证基板水平。
通过基于三角面片几何特征的STL切片算法来处理STL模型,进而计算生成连续螺旋上升的打印路径。
打印首层采用CMT+P工艺,焊接电流176A、送丝速度为8.2m/min、焊接速度为12mm/s,打印首层结束后,第二层及以上打印选用CMT+P工艺,成形工艺参数为焊接电流90A、送丝速度4.5m/min、焊接速度12mm/s,整个打印路径如图3所示,焊枪在机器人驱动下按生成的连续螺旋路径运动,焊枪在打印过程中距离基板的高度逐渐升高,但保持干伸长不变,整个打印过程不会熄弧,最终成形得到金属结构件。
实施例3:6mm厚不锈钢规则结构件多层单道电弧增材制造
如图4所示,不锈钢结构件高度为420mm,壁厚6mm,由323层连续螺旋上升的焊缝电弧增材制造形成,每层焊缝高度为1.3mm。其采用本发明所述的一种金属结构件多层单道连续电弧增材方法制造。具体为:
打印所选基板厚度为16mm的Q235碳钢基板,采用的焊丝为直径0.8mm 308L不锈钢焊丝,先通过工件成形所需最佳温度计算热输入量,从而得到一组合适的成形工艺参数:选择焊接工艺为CMT,焊接电流90A、送丝速度8.5m/min、焊接速度10mm/s,保护气体为Arcal 12(98%Ar+2%CO2),气体流量为18L/min。此组工艺参数下,单道焊缝宽度6mm,层高1.3mm。能够保证焊枪在机器人驱动下按生成的连续螺旋路径运动,打印过程干伸长不变,整个过程不熄弧。也可以保证道间熔合和工件整体成形精度良好。
将经过酸洗的基板打磨平整并用无水乙醇或丙酮擦拭干净后固定在焊接工作台上,保证基板水平。
通过基于三角面片几何特征的STL切片算法来处理STL模型,进而计算生成连续螺旋上升的打印路径。
打印首层采用CMT+P工艺,焊接电流158A、送丝速度为17.1m/min、焊接速度为10mm/s,打印首层结束后,第二层及以上打印选用CMT工艺,成形工艺参数为焊接电流90A、送丝速度8.5m/min、焊接速度10mm/s,整个打印路径如图4所示,焊枪在机器人驱动下按生成的连续螺旋路径运动,焊枪在打印过程中距离基板的高度逐渐升高,但保持干伸长不变,整个打印过程不会熄弧,最终成形得到金属结构件。
采用连续上升的螺旋路径电弧增材制造,为保证工件成形质量,对保护气氛的要求很高。
焊枪自带的喷嘴气氛保护不足以满足连续上升螺旋路径增材工艺的要求。因此设计 气体保护罩式焊枪,保护罩上四个通气孔连接四根输气软管汇总为一根较粗气管连接至保护气瓶,且保护罩内部有过滤网,使得保护气吹出时更加均匀。气体保护罩扩大了保护气氛区域,减少了工件中气孔的产生,提升了材料的力学性能。在电弧增材制造过程,保护罩中的保护气与喷嘴处的保护气对熔池形成双重保护,保证打印过程电弧的稳定性,提高了打印效率。
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上做出各种变化。

Claims (10)

  1. 一种金属结构件多层单道连续电弧增材制造方法,其特征是以焊机作为热源、金属丝材作为成形材料,规划出连续螺旋上升切片路径进行熔覆打印。
  2. 根据权利要求1所述的一种金属结构件多层单道连续电弧增材制造方法,其特征在于,进一步包括如下步骤:
    步骤1、选择成形特定金属结构件所需要的焊丝和基板;
    步骤2、生成连续螺旋上升切片路径;
    步骤3、焊枪在机器人驱动下按生成的连续螺旋路径运动。
  3. 根据权利要求2所述的一种金属结构件多层单道连续电弧增材制造方法,其特征在于,步骤1进一步包括:
    步骤1-1、确定成形特定金属结构件所需要的工艺参数,包括焊接程序、送丝速度、打印速度、切片层高、保护气种类与流量,各参数之间关系如下:
    V×F=v×f
    式中,V表示焊接速度,F表示焊缝截面积,v表示送丝速度,f表示焊丝截面积;
    步骤1-2、将工件焊缝截面等效为长方形,此时满足如下关系式:
    F=ld
    式中,l表示等效长方形焊缝宽度,d表示焊缝高度即层高;
    步骤1-3、根据步骤1-2和步骤1-3的两式得到式送丝速度与层高之间的关系式:
    Figure PCTCN2020104933-appb-100001
    式中,V表示焊接速度,l表示等效长方形焊缝宽度,d表示焊缝高度即层高,f表示焊丝截面积;
    步骤1-4、通过送丝速度读出电流和电压值,进而计算该送丝速度下每消耗1mm焊丝的热输入量:
    Figure PCTCN2020104933-appb-100002
    式中,U表示电弧电压、I表示焊接电流,V表示焊接速度,k表示相对热传导率;
    步骤1-5、将打磨平整的基板用无水乙醇或丙酮擦拭干净后通过固定夹具固定在工作台上,保证其水平。
  4. 根据权利要求2所述的一种金属结构件多层单道连续电弧增材制造方法,其特征在于,步骤2进一步包括:
    步骤2-1、对打印工件的模型进行切片处理,将模型沿Z轴方向分成若干平面;
    步骤2-2、寻找相邻层,利用相对位置高的层减去相对位置低的层,得到层高;然后在首层切片上随机取一点作为起始点(即焊接起弧点),然后利用下式,求出相邻两点之间Z方向的偏移高度:
    Figure PCTCN2020104933-appb-100003
    其中,d是同一层中起始点与末端点之间的竖直高度;X是每层切片的点数;z是各点之间Z方向的偏移高度;
    步骤2-3、寻找下一层的起始点,要求该点与上一层末端点的距离最近,将上一层末端点与该层起始点连接起来;
    步骤2-4、依次重复步骤2-1至步骤2-3,直至连接整个工件的所有路径点,生成连续的螺旋上升路径。
  5. 根据权利要求2所述的一种金属结构件多层单道连续电弧增材制造方法,其特征在于,步骤3进一步包括:伺服系统根据步骤2中计算出来的连续螺旋上升路径驱动焊枪机械臂,由焊枪机械臂驱动焊枪沿着预定轨迹打印单道焊缝,焊枪根据螺旋路径在打印过程中距离基板的高度逐渐升高。
  6. 根据权利要求4所述的一种金属结构件多层单道连续电弧增材制造方法,其特征在于,步骤2-1进一步包括:
    步骤2-1a、将模型沿Z轴方向分成若干三角面片,得到三维模型在Z轴方向上的最大值和最小值,考虑预留加工余量,计算出总层数:
    Figure PCTCN2020104933-appb-100004
    式中,Z max表示三维模型在Z轴方向上的最大值,Z min表示三维模型在Z轴方向上的最小值,Δz表示分层高度,k为调节系数,Δz+k为在预设的分层高度的基础之上加上调节系数以保证加工余量;
    步骤2-1b、将n层中每一层的每一块三角面片存储在动态数组中,查询每一块三角面片的
    Figure PCTCN2020104933-appb-100005
    值,若
    Figure PCTCN2020104933-appb-100006
    则将当前的三角面片存储在动态数组的第j个分组中;若
    Figure PCTCN2020104933-appb-100007
    则将当前的三角面片存储在动态数组的第j-1个分组中;若
    Figure PCTCN2020104933-appb-100008
    则将当前的三角面片存储在动态数组的第j+1个分组中;
    其中,h j表示第j个分组的高度,h j+1表示第j+1个分组高度,该高度由三维模型 在Z轴方向上的最小值和最大值取中间值之后加上分层高度与分组数的乘积得出:
    h j=(Z min+Z max)/2+Δz×j
    式中,Z min表示三维模型在Z轴方向上的最小值,Z max表示三维模型在Z轴方向上的最大值,Δz表示分层高度,j表示分组数。
  7. 根据权利要求4所述的一种金属结构件多层单道连续电弧增材制造方法,其特征在于,步骤2-4进一步包括对连续螺旋上升路径的轨迹优化:
    步骤2-4a、设定螺旋上升路径的线速度v c
    v c=ω(L-v 0t)
    式中,ω表示焊枪旋转的角速度,L表示插补起点距原点的距离,v 0表示径向速度,L-v 0t得出的是工件的实时半径,t表示焊接时间;
    其中,焊枪旋转的角速度ω满足如下关系式:
    Figure PCTCN2020104933-appb-100009
    式中,D表示热源配合平台完成一条焊缝成形的过程中焊枪所径向移动的焊道间距,
    Figure PCTCN2020104933-appb-100010
    表示对焊枪的径向速度取均值;
    步骤2-4b、计算焊枪的熔敷速度v r
    Figure PCTCN2020104933-appb-100011
    式中,v c表示螺旋上升路径的线速度,v 0表示径向速度;
    步骤2-4c、计算焊道间距,焊枪径向移动一个焊道间距,热源配合平台完成一条焊缝成形,其中焊道间距D的表达式如下:
    Figure PCTCN2020104933-appb-100012
    式中,n表示焊枪数量,v 0表示径向速度,t表示焊接时间,ω表示焊枪旋转的角速度,d表示补偿高度;
    其中补偿高度d由插补精度决定,满足如下关系式:
    Figure PCTCN2020104933-appb-100013
    式中,
    Figure PCTCN2020104933-appb-100014
    表示对焊枪的径向速度取均值,t′表示在插补区间内的运动时间;
    步骤2-4d、计算出修正后的熔敷速度v r修
    Figure PCTCN2020104933-appb-100015
    式中,n表示焊枪数量,v 0表示径向速度,ω表示焊枪旋转的角速度,d表示补偿高度,
    Figure PCTCN2020104933-appb-100016
    表示对焊枪的径向速度取均值,D表示热源配合平台完成一条焊缝成形的过程中焊枪所径向移动的焊道间距。
  8. 一种金属结构件多层单道连续电弧增材制造系统,其特征在于,包括如下模块:
    用于放置特定金属结构件的基础组件;
    用于生成连续螺旋上升切片路径的路径生成模块;
    用于根据路径生成模块生成的连续螺旋上升切片路径进行跟踪焊接的焊枪机器人;
    用于实时监控已打印工件的视觉感应模块。
  9. 根据权利要求8所述的一种金属结构件多层单道连续电弧增材制造系统,其特征在于,所述基础组件包括用于放置成形工件的工作台,以及通过固定夹具固定在所述工作台上的基板;
    所述路径生成模块进一步用于对打印工件的模型进行切片处理,将模型沿Z轴方向分成若干平面;寻找相邻层,利用相对位置高的层减去相对位置低的层,得到层高;然后在首层切片上随机取一点作为起始点,求出相邻两点之间Z方向的偏移高度;寻找下一层的起始点,要求该点与上一层末端点的距离最近,将上一层末端点与该层起始点连接起来;重复寻找相邻层和下一层的起始点,直至连接整个工件的所有路径点,生成连续的螺旋上升路径;
    所述焊枪机器人包括伺服系统,与所述伺服系统电性连接的焊枪机械臂,以及安装在所述焊枪机械臂上的焊枪;由伺服系统根据路径生成模块生成的螺旋路径驱动焊枪机械臂,由焊枪机械臂驱动焊枪沿着预定轨迹打印单道焊缝,焊枪根据连续螺旋路径在打印过程中距离基板的高度逐渐升高;
    所述视觉感应模块包括安装在所述焊枪一侧的点阵投射器和工业相机;所述点阵投射器用于投射出预定数量的光线到识别物体上,并由内建的中央处理器根据投射的潜望结构光线扫描采集物体信息,由工业相机拍摄识别物体表面得到结构光图像,并进行三维建模。
  10. 根据权利要求9所述的一种金属结构件多层单道连续电弧增材制造系统,其特 征在于,所述焊枪进一步包括焊枪喷嘴,以及安装在所述焊枪喷嘴上的气体保护罩;所述气体保护罩通过快换夹具卡接在焊枪喷嘴处,气体保护罩为四方壳体,其一面为完全开口,一面设有用于穿过焊枪喷嘴的通孔,气体保护罩的四个侧壁设有多个通气孔,每个通气孔分别连接一根输气软管,多个输气软管汇总为一根总气管连接至保护气瓶,所述气体保护罩内部设有过滤网。
PCT/CN2020/104933 2020-06-10 2020-07-27 一种金属结构件多层单道连续电弧增材制造方法及系统 WO2021248651A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010524671.3 2020-06-10
CN202010524671.3A CN111702292B (zh) 2020-06-10 2020-06-10 一种金属结构件多层单道连续电弧增材制造方法及系统

Publications (1)

Publication Number Publication Date
WO2021248651A1 true WO2021248651A1 (zh) 2021-12-16

Family

ID=72539691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104933 WO2021248651A1 (zh) 2020-06-10 2020-07-27 一种金属结构件多层单道连续电弧增材制造方法及系统

Country Status (2)

Country Link
CN (1) CN111702292B (zh)
WO (1) WO2021248651A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985778A (zh) * 2022-05-31 2022-09-02 太原理工大学 一种层状异构钢及其电弧增材制造系统和方法
CN115106620A (zh) * 2022-08-09 2022-09-27 湖南大学 一种基于电弧增材制造提高7系铝合金韧性的方法
CN115319241A (zh) * 2022-07-11 2022-11-11 北京航星机器制造有限公司 一种基于构造曲面的电弧增材制造路径规划方法及装置
CN115945698A (zh) * 2023-03-13 2023-04-11 西安石油大学 基于cmt增材再制造的金属熔覆层成形质量优化方法
CN116140755A (zh) * 2023-02-27 2023-05-23 北京工业大学 一种电弧增材制造高强Al-Mg系合金成形件的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112692400A (zh) * 2020-12-22 2021-04-23 重庆邮电大学 Tig电弧増材成形时变参数定距自适应控制方法
CN112846446B (zh) * 2020-12-31 2022-04-26 南京英尼格玛工业自动化技术有限公司 一种曲面金属结构连续生长的电弧增材制造方法、装置、设备及计算机存储介质
CN112846445B (zh) * 2020-12-31 2022-04-15 南京英尼格玛工业自动化技术有限公司 一种金属结构多层多道复合电弧增材制造方法及系统
CN112894067B (zh) * 2021-01-29 2022-12-27 重庆邮电大学 圆环结构件丝弧增材制造形貌控制方法
CN113909630B (zh) * 2021-09-29 2022-07-26 南京英尼格玛工业自动化技术有限公司 一种加强筋金属结构件分区打印填充的电弧增材制造方法
CN116921701B (zh) * 2023-09-15 2023-12-12 苏州融速智造科技有限公司 异形金属结构件的多层单道打印路径规划方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105965885A (zh) * 2015-03-10 2016-09-28 西门子产品生命周期管理软件公司 用于增材制造的装置和方法
CN106180710A (zh) * 2016-07-14 2016-12-07 武汉鑫双易科技开发有限公司 基于等离子体电弧熔覆的3d金属增材制造装置及方法
US20170155309A1 (en) * 2015-12-01 2017-06-01 General Electric Company Method of fabricating electric machine laminations using additive manufacturing
CN108705224A (zh) * 2018-05-02 2018-10-26 华中科技大学 一种高能束移锋加工路径规划方法
CN108723549A (zh) * 2018-05-28 2018-11-02 河海大学常州校区 一种电弧增材制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106112206B (zh) * 2016-07-22 2019-08-16 天津津航技术物理研究所 一种基于弧焊法的多轴联动式金属3d打印机及打印方法
CN106392270B (zh) * 2016-10-27 2018-11-09 北京航星机器制造有限公司 用电弧增材制造铝合金多层单道闭合结构件的方法
US10041612B1 (en) * 2017-03-15 2018-08-07 Arevo, Inc. Curvilinear duct fabricated with additive manufacturing
CN108000866B (zh) * 2017-11-27 2019-11-29 共享智能装备有限公司 一种单线条螺旋连续打印的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105965885A (zh) * 2015-03-10 2016-09-28 西门子产品生命周期管理软件公司 用于增材制造的装置和方法
US20170155309A1 (en) * 2015-12-01 2017-06-01 General Electric Company Method of fabricating electric machine laminations using additive manufacturing
CN106180710A (zh) * 2016-07-14 2016-12-07 武汉鑫双易科技开发有限公司 基于等离子体电弧熔覆的3d金属增材制造装置及方法
CN108705224A (zh) * 2018-05-02 2018-10-26 华中科技大学 一种高能束移锋加工路径规划方法
CN108723549A (zh) * 2018-05-28 2018-11-02 河海大学常州校区 一种电弧增材制造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985778A (zh) * 2022-05-31 2022-09-02 太原理工大学 一种层状异构钢及其电弧增材制造系统和方法
CN114985778B (zh) * 2022-05-31 2024-03-15 太原理工大学 一种层状异构钢及其电弧增材制造系统和方法
CN115319241A (zh) * 2022-07-11 2022-11-11 北京航星机器制造有限公司 一种基于构造曲面的电弧增材制造路径规划方法及装置
CN115319241B (zh) * 2022-07-11 2024-04-05 北京航星机器制造有限公司 一种基于构造曲面的电弧增材制造路径规划方法及装置
CN115106620A (zh) * 2022-08-09 2022-09-27 湖南大学 一种基于电弧增材制造提高7系铝合金韧性的方法
CN115106620B (zh) * 2022-08-09 2023-08-22 湖南大学 一种基于电弧增材制造提高7系铝合金韧性的方法
CN116140755A (zh) * 2023-02-27 2023-05-23 北京工业大学 一种电弧增材制造高强Al-Mg系合金成形件的方法
CN116140755B (zh) * 2023-02-27 2024-05-28 北京工业大学 一种电弧增材制造高强Al-Mg系合金成形件的方法
CN115945698A (zh) * 2023-03-13 2023-04-11 西安石油大学 基于cmt增材再制造的金属熔覆层成形质量优化方法

Also Published As

Publication number Publication date
CN111702292B (zh) 2021-05-28
CN111702292A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2021248651A1 (zh) 一种金属结构件多层单道连续电弧增材制造方法及系统
CN104607639B (zh) 一种用于金属3d打印的表面修复塑形装置
US11235409B2 (en) Method and apparatus for fabrication of articles by molten and semi-molten deposition
CN112846445B (zh) 一种金属结构多层多道复合电弧增材制造方法及系统
WO2021248649A1 (zh) 一种高铁枕梁工艺孔自动焊接方法
CN110000381B (zh) 一种推进器模型的电弧增减材复合一体化制造方法
CN111037052B (zh) 电弧增材制造成形检测反馈补偿系统及检测反馈补偿方法
US9835114B1 (en) Freeform deposition method for coolant channel closeout
WO2016023255A1 (zh) 一种同步送粉空间激光加工与三维成形方法及装置
US20200282497A1 (en) Method for designing laminate molded article, production method, production device, and program
CN109202283B (zh) 一种t型接头双光束填丝焊接工艺调控装置及焊接方法
WO2021248652A1 (zh) 一种针对高铁枕梁工艺孔的焊枪自动轨迹避让方法
CN112846446B (zh) 一种曲面金属结构连续生长的电弧增材制造方法、装置、设备及计算机存储介质
WO2021248653A1 (zh) 一种高铁枕梁工艺孔用移载式双机器人电弧3d打印工作站及其工作方法
JP7160759B2 (ja) 構造体の製造システム及び製造方法
CN113290257B (zh) 同一光斑异种材料同步分区送粉激光熔覆方法
CN110280872B (zh) 应用于大尺寸Invar钢模具的自动焊接装备以及焊接方法
CN113909630B (zh) 一种加强筋金属结构件分区打印填充的电弧增材制造方法
CN112846232A (zh) 一种金属结构多层多道电弧增材自动轨迹规划方法及系统
US20210114112A1 (en) Method for shaping laminated shaped product, device for manufacturing laminated shaped product, and program
CN212371483U (zh) 一种用于反应堆容器的连接结构
EP3946780A1 (en) Systems and methods for non-continuous deposition of a component
US20150128881A1 (en) Method for manufacturing boiler water walls and boiler with laser/arc welded water walls
CN210387898U (zh) 应用于大尺寸Invar钢模具的自动焊接装备
CN114669834A (zh) 一种坡口焊接方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939517

Country of ref document: EP

Kind code of ref document: A1