WO2021248644A1 - 具有陡峭带外抑制的介质滤波器及天线 - Google Patents

具有陡峭带外抑制的介质滤波器及天线 Download PDF

Info

Publication number
WO2021248644A1
WO2021248644A1 PCT/CN2020/103909 CN2020103909W WO2021248644A1 WO 2021248644 A1 WO2021248644 A1 WO 2021248644A1 CN 2020103909 W CN2020103909 W CN 2020103909W WO 2021248644 A1 WO2021248644 A1 WO 2021248644A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric filter
coupling
resonant cavity
resonant
cross
Prior art date
Application number
PCT/CN2020/103909
Other languages
English (en)
French (fr)
Inventor
江顺喜
梁国春
殷实
项显
张丽玲
杜锦杰
Original Assignee
江苏贝孚德通讯科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏贝孚德通讯科技股份有限公司 filed Critical 江苏贝孚德通讯科技股份有限公司
Publication of WO2021248644A1 publication Critical patent/WO2021248644A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators

Definitions

  • the embodiment of the present invention relates to the field of communication technology, and in particular to a dielectric filter and antenna with steep out-of-band suppression.
  • 5G (5 th Generation, fifth-generation mobile communication system) communication is the most cutting-edge communications technology, research-related aspects of each communication companies competing to expand.
  • the Sub 6GHz segment in 5G communication uses MIMO (Multi Input Multi Output) technology. Therefore, it is necessary to integrate a large number of filters inside the antenna. This affects the insertion loss, out-of-band suppression, volume and weight of the filter. Put forward higher requirements.
  • Traditional metal filters cannot be integrated into the antenna due to their large size and weight, while dielectric filters can meet the needs of 5G systems. Therefore, dielectric filters are currently a hot area of research.
  • dielectric materials such as high dielectric constant ceramic materials
  • the surface of the body is metalized (such as silver plating) to form a dielectric resonator; through multiple dielectric resonators connected in sequence and each dielectric resonant
  • the coupling between the devices forms a dielectric filter.
  • the coupling between each dielectric resonator can be divided into positive coupling (also known as inductive coupling) and negative coupling (also known as capacitive coupling) according to polarity, and this type of dielectric filter achieves a positive polarity Cross-coupling is easier, but cross-coupling with negative polarity is more difficult to achieve.
  • a deep blind hole can be processed at a coupling window on the main circuit of the dielectric filter, which is equivalent to loading a large capacitor to realize negative cross-coupling.
  • the dielectric filter includes six resonant cavities, the dielectric filter has only two transmission zero points, and there is a certain loss to the insertion loss of the dielectric filter.
  • the embodiment of the present invention provides a dielectric filter and antenna with steep out-of-band suppression, which are used to solve the problems in the prior art.
  • the technical solution is as follows:
  • a dielectric filter with steep out-of-band suppression is provided, and the dielectric filter includes a body;
  • the body is loaded with six resonant cavities connected in sequence;
  • blind holes are loaded on the cross-coupling window between the second resonant cavity and the fifth resonant cavity among the six resonant cavities, and the blind holes are used to realize negative cross-coupling, and the negative cross-coupling forms two Transmission zero
  • Positive cross coupling is realized between the first resonant cavity and the sixth resonant cavity among the six resonant cavities, and the positive cross coupling forms two transmission zero points.
  • the blind hole is located on the surface where the six resonant cavities are located, or the blind hole is located on the back of the surface where the six resonant cavities are located.
  • the depth of the blind hole and the frequency of the dielectric filter have a negative correlation.
  • a partition wall is further provided on the body.
  • the distance between the partition wall and the blind hole is less than a predetermined distance threshold.
  • a parasitic coupling is formed between the second resonant cavity and the fourth resonant cavity in the six resonant cavities, or the third resonant cavity and the fourth resonant cavity in the six resonant cavities
  • a parasitic coupling is formed between the fifth resonant cavity, and the parasitic coupling is used to adjust the balance of the two transmission zero points formed by the negative cross-coupling.
  • the parasitic coupling is formed by shifting the coupling window between the third resonant cavity and the fourth resonant cavity to the blind hole.
  • the dielectric filter further includes an input end and an output end, and the input end and the output end are welded to the body by means of vertical pins.
  • the filter includes at least two bodies, and at least two bodies are cascaded.
  • an antenna is provided, and the above-mentioned dielectric filter is integrated inside the antenna.
  • the body of the dielectric filter is loaded with six resonant cavities connected in sequence, so that blind holes can be loaded on the cross-coupling window between the second resonant cavity and the fifth resonant cavity. It is equivalent to loading a capacitor. Therefore, loading the blind hole can realize negative cross-coupling, and the negative cross-coupling can respectively realize a transmission zero point on the left and right sides of the passband of the dielectric filter, thereby forming two transmission zero points.
  • positive cross-coupling can be realized between the first resonant cavity and the sixth resonant cavity in the six resonant cavities, and the positive cross-coupling can form two other transmission zero points. In this way, four can be formed in the entire dielectric filter. The transmission zero point, therefore, the out-of-band suppression is more steep. Since there is no negative cross-coupling on the transmission main path of the dielectric filter, the overall insertion loss of the dielectric filter is lower, and the out-of-band suppression is higher.
  • Fig. 1 is a schematic diagram of a dielectric filter in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a topological structure of a dielectric filter in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of a dielectric filter in an embodiment of the present invention.
  • Fig. 4 is a frequency response curve diagram of a dielectric filter in an embodiment of the present invention.
  • FIG. 1 shows a dielectric filter with steep out-of-band suppression provided by an embodiment of the present invention.
  • the dielectric filter includes a body 100.
  • the body 100 is made of a solid dielectric material with a high dielectric constant.
  • ceramics have a relatively high dielectric constant, and the hardness and high temperature resistance of the ceramics are also good. Therefore, the body 100 can be made of ceramic materials.
  • the solid dielectric material can also be other materials such as glass, which is not limited in this embodiment.
  • the body 100 is loaded with six resonant cavities 110 connected in sequence.
  • the six resonant cavities 110 can be loaded on the body 100 in any arrangement.
  • the six resonant cavities 110 may be arranged in two rows, as shown in FIG. 1, the first to third resonant cavities 100 are arranged in a row, and the fourth to sixth resonant cavities 100 are arranged in a row.
  • the body 100 is provided with six debugging holes, and a partition wall 120 is arranged around the six debugging holes, so that six resonant cavities 110 are loaded through the debugging holes and the partition wall.
  • the resonance frequency can be reduced, and the size of the dielectric filter can be reduced, thereby realizing a miniaturized dielectric filter.
  • the partition wall 120 in FIG. 2 may be rectangular, cross-shaped, etc. The shape of the partition wall 120 is not limited in this embodiment.
  • the cross-coupling window between the second resonant cavity 110 and the fifth resonant cavity 110 of the six resonant cavities 110 is loaded with a blind hole 130.
  • the blind hole 130 is used to realize negative cross-coupling.
  • Cross-coupling forms two transmission zero points.
  • the blind hole 130 is loaded on the cross-coupling window between the second resonant cavity 110 and the fifth resonant cavity 110, it is equivalent to loading a larger capacitor on the cross-coupling window. Therefore, negative cross-coupling can be realized, and the negative cross-coupling will form a transmission zero point on both sides of the passband of the dielectric filter, thereby obtaining two transmission zero points. Since the negative cross-coupling is not loaded on the transmission main circuit of the dielectric filter, the transmission polarity of each resonant cavity 110 in the dielectric filter is not changed, and the second resonant cavity 110 and the fifth resonant cavity 110 are not changed at the same time. The quality factor Q value has little influence.
  • a positive cross-coupling can also be established between the first resonant cavity 110 and the sixth resonant cavity 110. That is, positive cross-coupling is realized between the first resonant cavity 110 and the sixth resonant cavity 110 among the six resonant cavities 110, and the positive cross-coupling can form the other two transmission zero points. In this way, four transmission zeros are formed in the entire dielectric filter. A transmission zero point, therefore, has a steeper out-of-band suppression characteristic.
  • the coupling window 140 is a coupling window between the first resonant cavity 110 and the sixth resonant cavity, and the coupling window 140 can realize the other two transmission zeros.
  • the transmission zeros on both sides of the passband are basically balanced, but the transmission polarity of the resonant cavity has been changed. Therefore, the first resonant cavity and the sixth The positive cross-coupling between two resonant cavities cannot achieve the other two transmission zeros.
  • the negative cross-coupling does not change the transmission polarity of the resonant cavity 110, two other transmission zeros can be formed.
  • the blind holes 130 may be located on the surface where the six resonant cavities 110 are located, that is, the blind holes 130 and the six resonant cavities 110 are located on the same surface; or, the blind holes 130 may be located on the surface where the six resonant cavities 110 are located.
  • the back side that is, the blind hole 130 and the six resonant cavities 110 are located on the opposite surface. If the surface where the six resonant cavities 110 are located in FIG. 1 is used as the front side of the dielectric filter, the blind holes 130 can be loaded on the front side of the dielectric filter in FIG. 1 or on the reverse side of the dielectric filter in FIG. Can play the same role.
  • the depth of the blind hole 130 can also be adjusted according to the frequency of the dielectric filter.
  • the depth of the blind hole 130 and the frequency of the dielectric filter have a negative correlation. That is, when the frequency of the dielectric filter is required to be lower, a deeper blind hole 130 may be provided; when the frequency of the dielectric filter is required to be higher, a shallower blind hole 130 may be provided.
  • the distance between the partition wall 120 and the blind hole 130 can also be adjusted.
  • the distance between the partition wall 120 and the blind hole 130 may be set to be less than a predetermined distance threshold.
  • the predetermined distance threshold may be a preset value, so that when the distance between the partition wall 120 and the blind hole 130 is less than the predetermined distance threshold, the blind hole 130 can maintain a reasonable depth, thereby ensuring reliability.
  • a parasitic coupling may be formed between the second resonant cavity 110 and the fourth resonant cavity 110 among the six resonant cavities 110, or the third resonant cavity of the six resonant cavities 110 may be formed.
  • a parasitic coupling is formed between 110 and the fifth resonant cavity 110, and the parasitic coupling is used to adjust the balance of the two transmission zero points formed by the negative cross-coupling.
  • the parasitic coupling is formed by shifting the coupling window between the third resonant cavity 110 and the fourth resonant cavity 110 to the blind hole 130.
  • the coupling window 150 is the coupling window between the third resonant cavity 110 and the fourth resonant cavity 110.
  • the center of the coupling window 150 is not in the third resonant cavity 110 and the fourth resonant cavity 110. In the middle of the four resonant cavities 110, it is shifted to the blind hole 130.
  • the purpose is to produce a small parasitic coupling between the second resonant cavity 110 and the fourth resonant cavity 110, which is used to adjust the passband of the dielectric filter. The balance of transmission zeros on both sides.
  • a positive cross-coupling is formed between the first resonant cavity 110 and the sixth resonant cavity 110, and the second resonant cavity 110 and the fifth resonant cavity 110 are different from each other.
  • a negative cross-coupling is formed between them, and a parasitic coupling is formed between the second resonant cavity 110 and the fourth resonant cavity 110.
  • the dielectric filter further includes an input terminal 160 and an output terminal 170.
  • the input terminal 160 and the output terminal 170 are welded to the body 100 by means of vertical pins.
  • the port impedance of the input terminal 160 and the output terminal 170 may be 50 ohms.
  • the port impedance may also be other values, which is not limited in this embodiment.
  • the input terminal 160 and the output terminal 170 are located on the back of the surface where the six resonant cavities 110 are located.
  • the body 100 described above includes six resonant cavities 110. In actual implementation, at least two bodies 100 may be cascaded to form a dielectric filter with more resonant cavities 110.
  • the main body 100 can be produced in an integrated manner, that is, the generated main body 100 has debugging holes and blind holes 130 on it.
  • the use of an integrated forming method to obtain the dielectric filter can make its processing technology simpler.
  • the surface of the body 100 can be metalized by silver plating, so as to realize the metal boundary condition.
  • the dielectric filter in this embodiment has two more transmission zero points than the dielectric filter in the prior art, under the same bandwidth condition, the out-of-band suppression will be about 10dB higher than the dielectric filter in the prior art.
  • dielectric filter described in this embodiment can be applied to the sub6GHz frequency band in 5G communication, and can also be applied to other frequency bands, which is not limited in this embodiment.
  • the dielectric filter can achieve the frequency response of six cavities and four transmission zero points, and it can be adjusted between 3/4 resonant cavity 110
  • the position of the coupling window is used to adjust the balance of the zero point.
  • the body of the dielectric filter is loaded with six resonant cavities connected in sequence; in this way, it can be between the second resonant cavity and the fifth resonant cavity.
  • the blind hole is loaded on the cross-coupling window. Since loading the blind hole is equivalent to loading a capacitor, the negative cross-coupling can be realized by loading the blind hole, and the negative cross-coupling can be on the left and right sides of the passband of the dielectric filter, respectively One transmission zero point is realized, thereby forming two transmission zero points.
  • positive cross-coupling can be realized between the first resonant cavity and the sixth resonant cavity in the six resonant cavities, and the positive cross-coupling can form two other transmission zero points.
  • An embodiment of the present invention also provides an antenna, which is based on MIMO technology and integrates a plurality of the above-mentioned dielectric filters inside the antenna.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明实施例公开了一种具有陡峭带外抑制的介质滤波器及天线,属于通讯技术领域。该介质滤波器包括本体;所述本体上加载有顺次连接的六个谐振腔;所述六个谐振腔中的第二个谐振腔和第五个谐振腔之间的交叉耦合窗口上加载有盲孔,所述盲孔用于实现负交叉耦合,所述负交叉耦合形成两个传输零点;所述六个谐振腔中的第一个谐振腔和第六个谐振腔之间实现正交叉耦合,所述正交叉耦合形成两个传输零点。本发明实施例中整个介质滤波器可以形成四个传输零点,因此,带外抑制更加陡峭。由于没有在介质滤波器的传输主路上加载负交叉耦合,因此,介质滤波器的整体插损较低,且带外抑制度更高。

Description

具有陡峭带外抑制的介质滤波器及天线 技术领域
本发明实施例涉及通讯技术领域,特别涉及一种具有陡峭带外抑制的介质滤波器及天线。
背景技术
5G(5 th Generation,第五代移动通信系统)通信是目前最前沿的通信技术,各通信公司竞相展开相关方面的研究。5G通信中的Sub 6GHz段采用MIMO(Multi Input Multi Output,多输入多输出)技术,因此,需要在天线内部集成大量的滤波器,这对滤波器的插损、带外抑制、体积和重量都提出了更高的要求。传统的金属滤波器由于体积和重量太大,无法集成于天线内部,而介质滤波器能够满足5G系统的需求,因此,介质滤波器是目前研究的热点领域。
通常采用固态介电材料(如高介电常数的陶瓷材料)制成本体,并在本体表面金属化(如镀银)来形成介质谐振器;通过依次连接的多个介质谐振器以及各个介质谐振器之间的耦合(包括相邻介质谐振器之间的直接耦合和非相邻介质谐振器之间的交叉耦合)形成介质滤波器。其中,各个介质谐振器之间的耦合根据极性可分为正耦合(也可以称为电感耦合)和负耦合(也可称为电容耦合),且该类介质滤波器实现极性为正的交叉耦合较容易,但是极性为负的交叉耦合较难实现。
相关技术中,可以在介质滤波器的主路上的一个耦合窗口处加工一个很深的盲孔,这就相当于加载一个很大的电容来实现负交叉耦合。当介质滤波器中包括六个谐振腔时,该介质滤波器只有两个传输零点,且对介质滤波器的插损有一定的损失。
发明内容
本发明实施例提供了一种具有陡峭带外抑制的介质滤波器及天线,用于解决现有技术中的问题。所述技术方案如下:
一方面,提供了一种具有陡峭带外抑制的介质滤波器,所述介质滤波器 包括本体;
所述本体上加载有顺次连接的六个谐振腔;
所述六个谐振腔中的第二个谐振腔和第五个谐振腔之间的交叉耦合窗口上加载有盲孔,所述盲孔用于实现负交叉耦合,所述负交叉耦合形成两个传输零点;
所述六个谐振腔中的第一个谐振腔和第六个谐振腔之间实现正交叉耦合,所述正交叉耦合形成两个传输零点。
在一种可能的实施方式中,所述盲孔位于所述六个谐振腔所在的表面,或者,所述盲孔位于所述六个谐振腔所在的表面的背面。
在一种可能的实施方式中,所述盲孔的深度和所述介质滤波器的频率呈负相关关系。
在一种可能的实施方式中,所述本体上还设置有隔墙。
在一种可能的实施方式中,所述隔墙与所述盲孔之间的距离小于预定距离阈值。
在一种可能的实施方式中,所述六个谐振腔中的第二个谐振腔和第四个谐振腔之间形成寄生耦合,或者,所述六个谐振腔中的第三个谐振腔和第五个谐振腔之间形成寄生耦合,所述寄生耦合用于调节所述负交叉耦合形成的两个传输零点的平衡。
在一种可能的实施方式中,所述寄生耦合是第三个谐振腔和第四个谐振腔之间的耦合窗口向所述盲孔偏移所形成的。
在一种可能的实施方式中,所述介质滤波器还包括输入端和输出端,所述输入端和所述输出端通过垂直插针的方式焊接在所述本体上。
在一种可能的实施方式中,所述滤波器中包括至少两个所述本体,至少两个所述本体之间级联。
一方面,提供了一种天线,所述天线内部集成有如上所述的介质滤波器。
本发明实施例提供的技术方案的有益效果至少包括:
介质滤波器的本体上加载有顺次连接的六个谐振腔,这样,可以在其中的第二个谐振腔和第五个谐振腔之间的交叉耦合窗口上加载盲孔,由于加载 该盲孔相当于加载一个电容,所以,加载该盲孔可以实现负交叉耦合,且该负交叉耦合可以在介质滤波器的通带的左边和右边分别实现一个传输零点,从而形成两个传输零点。另外,六个谐振腔中的第一个谐振腔和第六个谐振腔之间可以实现正交叉耦合,该正交叉耦合能够形成另外两个传输零点,这样,整个介质滤波器中可以形成四个传输零点,因此,带外抑制更加陡峭。由于没有在介质滤波器的传输主路上加载负交叉耦合,因此,介质滤波器的整体插损较低,带外的抑制度更高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例中的一种介质滤波器的示意图;
图2是本发明一个实施例中的一种介质滤波器的拓扑结构示意图;
图3是本发明一个实施例中的一种介质滤波器的示意图;
图4是本发明一个实施例中的介质滤波器的频率响应曲线图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
请参考图1,其示出了本发明实施例提供的一种具有陡峭带外抑制的介质滤波器,该介质滤波器包括本体100。
其中,本体100是采用高介电常数的固态介电材料制成的。其中,陶瓷具有较高的介电常数,且陶瓷的硬度及耐高温的性能也都较好,所以,可以选用陶瓷材料制成本体100。当然,固态介电材料还可以是玻璃等其他材料,本实施例不作限定。
本实施例中,本体100上加载有顺次连接的六个谐振腔110。其中,这六个谐振腔110可以以任意排列方式加载在本体100上。在一种实现方式中, 这六个谐振腔110可以呈两列排布,如图1中的第一至三个谐振腔100排成一列,第四至六个谐振腔100排成一列。
在一种实现方式中,本体100上设置有六个调试孔,且这六个调试孔周围设置有隔墙120,从而通过调试孔和隔墙加载六个谐振腔110。这样,可以降低谐振频率,减小介质滤波器的尺寸,从而实现小型化介质滤波器。请参考图1,图2中的隔墙120可以是矩形、十字形等等,本实施例不对隔墙120的形状作限定。
本实施例中,六个谐振腔110中的第二个谐振腔110和第五个谐振腔110之间的交叉耦合窗口上加载有盲孔130,该盲孔130用于实现负交叉耦合,负交叉耦合形成两个传输零点。
需要说明的是,当在第二个谐振腔110和第五个谐振腔110之间的交叉耦合窗口上加载盲孔130时,也就相当于在该交叉耦合窗口上加载了一个较大的电容,从而可以实现负交叉耦合,且该负交叉耦合会在介质滤波器的通带的两边各形成一个传输零点,从而得到两个传输零点。由于该负交叉耦合没有加载在介质滤波器的传输主路上,因此,没有改变介质滤波器中每一个谐振腔110的传输极性,同时对第二个谐振腔110和第五个谐振腔110的品质因数Q值影响较小。
在上述负交叉耦合的基础上,还可以在第一个谐振腔110和第六个谐振腔110之间开一个正交叉耦合。即,六个谐振腔110中的第一个谐振腔110和第六个谐振腔110之间实现正交叉耦合,正交叉耦合可以形成另外两个传输零点,这样,整个介质滤波器中形成有四个传输零点,因此,有更加陡峭的带外抑制特性。
请参考图1中的耦合窗口140,耦合窗口140是第一个谐振腔110和第六个谐振腔之间的耦合窗口,该耦合窗口140可以实现另外两个传输零点。现有技术中,由于负交叉耦合加载在介质滤波器的传输主路上,因此,通带两边的传输零点基本平衡,但是谐振腔的传输极性已经改变,所以,第一个谐振腔和第六个谐振腔之间的正交叉耦合不能够实现另外两个传输零点,而本实施例中,由于负交叉耦合没有改变谐振腔110的传输极性,所以可以形成另外两个传输零点。
本实施例中,盲孔130可以位于六个谐振腔110所在的表面,即,盲孔 130与六个谐振腔110位于同一表面;或者,盲孔130可以位于六个谐振腔110所在的表面的背面,即,盲孔130与六个谐振腔110位于相对的表面。若将图1中六个谐振腔110所在的表面作为介质滤波器的正面,则盲孔130可以加载在图1中介质滤波器的正面,也可以加载在图1中介质滤波器的反面,都可以起到相同的作用。
本实施例中,还可以根据介质滤波器的频率来调节盲孔130的深度。其中,盲孔130的深度和介质滤波器的频率呈负相关关系。即,当要求介质滤波器的频率较低时,可以设置较深的盲孔130;当要求介质滤波器的频率较高时,可以设置较浅的盲孔130。
由于本体100上还设置有隔墙120,还可以调节隔墙120与盲孔130之间的距离。为了避免盲孔130的深度较深,导致盲孔130的顶端到对面的壁厚太薄,从而影响可靠性,可以设置隔墙120与盲孔130之间的距离小于预定距离阈值。其中,该预定距离阈值可以是预先设置的数值,使得在隔墙120与盲孔130之间的距离小于该预定距离阈值时,盲孔130可以保持一个合理的深度,从而保证可靠性。
本实施例中,由于加载的负交叉耦合是在第二个谐振腔110和第五个谐振腔110之间,所以,介质滤波器在左边的零点靠近通带,而右边的零点远离通带,使得介质滤波器的传输零点很难平衡,会导致介质滤波器不能满足指标的性能需求。为了解决上述问题,可以在六个谐振腔110中的第二个谐振腔110和第四个谐振腔110之间形成寄生耦合,或者,也可以在六个谐振腔110中的第三个谐振腔110和第五个谐振腔110之间形成寄生耦合,该寄生耦合用于调节负交叉耦合形成的两个传输零点的平衡。其中,寄生耦合是第三个谐振腔110和第四个谐振腔110之间的耦合窗口向盲孔130偏移所形成的。
请参考图1中的耦合窗口150,该耦合窗口150是第三个谐振腔110和第四个谐振腔110之间的耦合窗口,该耦合窗口150的中心位置不在第三个谐振腔110和第四个谐振腔110中间,而是向盲孔130偏移,目的是在第二个谐振腔110和第四个谐振腔110之间产生一个较小的寄生耦合,用来调节介质滤波器通带两边的传输零点的平衡。
请参考图2所示的介质滤波器的拓扑结构,其中,第一个谐振腔110和 第六个谐振腔110之间形成正交叉耦合,第二个谐振腔110和第五个谐振腔110之间形成负交叉耦合,第二个谐振腔110和第四个谐振腔110之间形成寄生耦合。
请参考图3,介质滤波器还包括输入端160和输出端170,输入端160和输出端170通过垂直插针的方式焊接在本体100上。在一个可选的实施例中,输入端160和输出端170的端口阻抗可以是50欧姆,当然,端口阻抗还可以是其他数值,本实施例不作限定。
需要说明的是,输入端160和输出端170位于六个谐振腔110所在的表面的背面。
上文中所述的本体100中包括六个谐振腔110,在实际实现时,还可以将至少两个本体100进行级联,从而形成具有更多谐振腔110的介质滤波器。
在实现时,可以通过一体成形的方式来生产本体100,即生成的本体100上带有调试孔和盲孔130。采用一体化成形的方式来获得介质滤波器,可以使得其加工工艺更简单。
在得到本体100后,可以在本体100的表面通过镀银来进行金属化,从而实现金属边界条件。
由于本实施例中的介质滤波器相比现有技术中的介质滤波器多两个传输零点,因此,在相同的带宽条件下,带外抑制会比现有技术中的介质滤波器高大约10dB。
本实施例中介质滤波器的所有尺寸是按照滤波器的技术指标,由电磁仿真软件(HFSS、CST)通过仿真优化得到。
需要说明的是,本实施例中所述的介质滤波器可以应用于5G通信中sub6GHz频段,也可以应用于其他频段,本实施例不作限定。
请参考图4所示的介质滤波器的频率响应曲线,通过该频率响应曲线可知,该介质滤波器可以实现六腔四个传输零点的频率响应,且可以通过调整3/4谐振腔110之间的耦合窗口的位置来调整零点的平衡。
综上所述,本实施例提供的介质滤波器,介质滤波器的本体上加载有顺次连接的六个谐振腔;这样,可以在其中的第二个谐振腔和第五个谐振腔之间的交叉耦合窗口上加载盲孔,由于加载该盲孔相当于加载一个电容,所以,加载该盲孔可以实现负交叉耦合,且该负交叉耦合可以在介质滤波器的通带 的左边和右边分别实现一个传输零点,从而形成两个传输零点。另外,六个谐振腔中的第一个谐振腔和第六个谐振腔之间可以实现正交叉耦合,该正交叉耦合能够形成另外两个传输零点,这样,整个介质滤波器中可以形成四个传输零点,因此,带外抑制更加陡峭。由于没有在介质滤波器的传输主路上加载负交叉耦合,因此,介质滤波器的整体插损较低,且带外抑制度更高。
本发明一个实施例还提供了一种天线,基于MIMO技术,该天线内部集成有多个上文中所述的介质滤波器。
以上所述并不用以限制本发明实施例,凡在本发明实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明实施例的保护范围之内。

Claims (10)

  1. 一种具有陡峭带外抑制的介质滤波器,其特征在于,所述介质滤波器包括本体;
    所述本体上加载有顺次连接的六个谐振腔;
    所述六个谐振腔中的第二个谐振腔和第五个谐振腔之间的交叉耦合窗口上加载有盲孔,所述盲孔用于实现负交叉耦合,所述负交叉耦合形成两个传输零点;
    所述六个谐振腔中的第一个谐振腔和第六个谐振腔之间实现正交叉耦合,所述正交叉耦合形成两个传输零点。
  2. 根据权利要求1所述的介质滤波器,其特征在于,
    所述盲孔位于所述六个谐振腔所在的表面,或者,
    所述盲孔位于所述六个谐振腔所在的表面的背面。
  3. 根据权利要求1所述的介质滤波器,其特征在于,所述盲孔的深度和所述介质滤波器的频率呈负相关关系。
  4. 根据权利要求1所述的介质滤波器,其特征在于,所述本体上还设置有隔墙。
  5. 根据权利要求4所述的介质滤波器,其特征在于,所述隔墙与所述盲孔之间的距离小于预定距离阈值。
  6. 根据权利要求1所述的介质滤波器,其特征在于,所述六个谐振腔中的第二个谐振腔和第四个谐振腔之间形成寄生耦合,或者,所述六个谐振腔中的第三个谐振腔和第五个谐振腔之间形成寄生耦合,所述寄生耦合用于调节所述负交叉耦合形成的两个传输零点的平衡。
  7. 根据权利要求6所述的介质滤波器,其特征在于,所述寄生耦合是第三个谐振腔和第四个谐振腔之间的耦合窗口向所述盲孔偏移所形成的。
  8. 根据权利要求1所述的介质滤波器,其特征在于,所述介质滤波器还包括输入端和输出端,所述输入端和所述输出端通过垂直插针的方式焊接在所述本体上。
  9. 根据权利要求1至8中任一项所述的介质滤波器,其特征在于,所述滤波器中包括至少两个所述本体,至少两个所述本体之间级联。
  10. 一种天线,其特征在于,所述天线内集成有如权利要求1至9中任一项所述的介质滤波器。
PCT/CN2020/103909 2020-06-09 2020-07-24 具有陡峭带外抑制的介质滤波器及天线 WO2021248644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010519745.4 2020-06-09
CN202010519745.4A CN111668580A (zh) 2020-06-09 2020-06-09 具有陡峭带外抑制的介质滤波器及天线

Publications (1)

Publication Number Publication Date
WO2021248644A1 true WO2021248644A1 (zh) 2021-12-16

Family

ID=72386228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103909 WO2021248644A1 (zh) 2020-06-09 2020-07-24 具有陡峭带外抑制的介质滤波器及天线

Country Status (2)

Country Link
CN (1) CN111668580A (zh)
WO (1) WO2021248644A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116345095A (zh) * 2023-03-01 2023-06-27 安徽蓝讯通信科技有限公司 一种八阶ltcc微腔滤波器及其设计方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952312A (zh) * 2021-01-26 2021-06-11 南京邮电大学 一种传输零点可控的双模介质波导滤波器
CN112952327A (zh) * 2021-03-11 2021-06-11 华中科技大学温州先进制造技术研究院 高带外抑制特性的六腔四零点陶瓷波导滤波器
CN113594653B (zh) * 2021-07-30 2022-03-29 江苏贝孚德通讯科技股份有限公司 具有正交谐振腔的介质滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027317A2 (en) * 1994-04-01 1995-10-12 Com Dev Ltd Dielectric resonator filter
CN110364790A (zh) * 2019-07-05 2019-10-22 京信通信技术(广州)有限公司 滤波器及其多零点实现模块
CN209592274U (zh) * 2019-04-15 2019-11-05 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备
CN110429364A (zh) * 2019-08-27 2019-11-08 京信通信技术(广州)有限公司 滤波器及其滤波回路结构
CN210040477U (zh) * 2019-08-28 2020-02-07 中兴通讯股份有限公司 一种交叉耦合滤波器
CN110828947A (zh) * 2019-11-15 2020-02-21 中国电子科技集团公司第二十六研究所 一种交叉耦合介质波导滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027317A2 (en) * 1994-04-01 1995-10-12 Com Dev Ltd Dielectric resonator filter
CN209592274U (zh) * 2019-04-15 2019-11-05 江苏贝孚德通讯科技股份有限公司 介质滤波器及5g通信设备
CN110364790A (zh) * 2019-07-05 2019-10-22 京信通信技术(广州)有限公司 滤波器及其多零点实现模块
CN110429364A (zh) * 2019-08-27 2019-11-08 京信通信技术(广州)有限公司 滤波器及其滤波回路结构
CN210040477U (zh) * 2019-08-28 2020-02-07 中兴通讯股份有限公司 一种交叉耦合滤波器
CN110828947A (zh) * 2019-11-15 2020-02-21 中国电子科技集团公司第二十六研究所 一种交叉耦合介质波导滤波器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116345095A (zh) * 2023-03-01 2023-06-27 安徽蓝讯通信科技有限公司 一种八阶ltcc微腔滤波器及其设计方法
CN116345095B (zh) * 2023-03-01 2023-10-24 安徽蓝讯通信科技有限公司 一种八阶ltcc微腔滤波器及其设计方法

Also Published As

Publication number Publication date
CN111668580A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2021248644A1 (zh) 具有陡峭带外抑制的介质滤波器及天线
CN109860966B (zh) 介质滤波器及5g通信设备
CN103730709B (zh) 基于基片集成波导复合左右手和互补开口谐振环缺陷地的双带滤波器
CN107819180B (zh) 基片集成波导器件与基片集成波导滤波器
US11139548B2 (en) Dual-mode monoblock dielectric filter and control elements
CN110797613B (zh) 一种十阶六陷波的介质波导滤波器
CN110729533B (zh) 非对称sir加载的宽阻带抑制宽带带通滤波器
CN106025464B (zh) 一种基片集成波导式腔体滤波器
CN109742493B (zh) 一种基于四模介质谐振器的差分双通带滤波器
CN105958164A (zh) 悬置带线交叉耦合带通滤波器
CN112332051B (zh) 一种超宽带滤波器
US10541457B2 (en) Bandpass filter having resonant holes formed in a block, where the resonant holes include hollowed-out sub regions
CN105655673B (zh) 一种介质加载半模基片集成波导带通滤波器
CN113300065B (zh) 基于三角形基片集成波导的混合模式带通滤波器
CN112563693A (zh) 介质滤波器
CN207690974U (zh) 基片集成波导滤波器
CN212182505U (zh) 具有陡峭带外抑制的介质滤波器及天线
CN106532201A (zh) 基于环形谐振器的小型化宽阻带双模平衡带通滤波器
CN111740192A (zh) 一种叉指结构加载的基片集成波导滤波器
CN104009271B (zh) 一种基于级联四个谐振器的平面带通滤波器
CN112382835B (zh) 一种全可调交叉耦合介质波导滤波器
CN113594653B (zh) 具有正交谐振腔的介质滤波器
US6646524B1 (en) Dielectric filter, dielectric duplexer, and communication apparatus
CN209747694U (zh) 一种互补开口谐振环和u槽缺陷地的低通滤波器
CN111710943A (zh) 一种微型窄带低频带通滤波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939872

Country of ref document: EP

Kind code of ref document: A1