WO2021248455A1 - 信道编码方法、控制设备和受控设备 - Google Patents

信道编码方法、控制设备和受控设备 Download PDF

Info

Publication number
WO2021248455A1
WO2021248455A1 PCT/CN2020/095821 CN2020095821W WO2021248455A1 WO 2021248455 A1 WO2021248455 A1 WO 2021248455A1 CN 2020095821 W CN2020095821 W CN 2020095821W WO 2021248455 A1 WO2021248455 A1 WO 2021248455A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
configuration information
control device
channel coding
coding mode
Prior art date
Application number
PCT/CN2020/095821
Other languages
English (en)
French (fr)
Inventor
赵振山
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/095821 priority Critical patent/WO2021248455A1/zh
Priority to CN202310162301.3A priority patent/CN116192335A/zh
Priority to EP20939676.1A priority patent/EP4156566A4/en
Priority to CN202080098803.9A priority patent/CN115298981A/zh
Publication of WO2021248455A1 publication Critical patent/WO2021248455A1/zh
Priority to US18/075,572 priority patent/US20230097206A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/001Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/11Semi-persistent scheduling

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, to a channel coding method, a control device, and a controlled device.
  • the control channel and the data channel can adopt different encoding methods based on the pre-configuration method.
  • the communication is greatly affected by the burst interference source. That is, there is a big difference between the target communication system and cellular communication, and how to realize the channel coding in the target communication of this application is a problem to be solved urgently.
  • this type of communication system is referred to as a burst interference system in the following.
  • the embodiments of the present application provide a channel coding method, a control device, and a controlled device, which can implement channel coding in a burst interference system.
  • a channel coding method includes:
  • the control device sends configuration information to the controlled device, where the configuration information is used to configure one of the following:
  • Channel coding mode corresponding to at least one semi-persistent scheduling configuration
  • a channel coding manner corresponding to the first transmission block, and the number of bits of the first transmission block is less than a first threshold and greater than a second threshold;
  • the channel coding mode corresponding to the first downlink control channel is the channel coding mode corresponding to the first downlink control channel.
  • a channel coding method which includes:
  • the controlled device receives the configuration information sent by the control device, where the configuration information is used to configure one of the following:
  • Channel coding mode corresponding to at least one semi-persistent scheduling configuration
  • a channel coding manner corresponding to the first transmission block, and the number of bits of the first transmission block is less than a first threshold and greater than a second threshold;
  • the channel coding mode corresponding to the first downlink control channel is the channel coding mode corresponding to the first downlink control channel.
  • a control device which is used to execute the method in the foregoing first aspect or each of its implementation manners.
  • control device includes a functional module for executing the method in the foregoing first aspect or each of its implementation manners.
  • a controlled device which is used to execute the method in the second aspect or each of its implementation manners.
  • the controlled device includes a functional module for executing the method in the foregoing second aspect or each of its implementation manners.
  • a control device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a controlled device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the second aspect or its implementation manners.
  • a device for implementing any one of the above-mentioned first aspect to the second aspect or the method in each of its implementation manners.
  • the device includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the device executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product which includes computer program instructions that cause a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program which when running on a computer, causes the computer to execute any one of the above-mentioned first to second aspects or the method in each implementation manner thereof.
  • the control device can configure at least one channel coding mode corresponding to the semi-persistent scheduling configuration; or, the control device can configure the channel coding mode corresponding to the first transmission block, and the number of bits of the first transmission block is smaller than the first transmission block.
  • the threshold value is greater than the second threshold value; or, the control device may configure a channel coding mode corresponding to the first downlink control channel. This enables channel coding in burst interference systems.
  • FIG. 1 is a schematic diagram of a burst interference system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a channel coding method according to an embodiment of the present application.
  • Fig. 3 is a schematic block diagram of a control device provided according to an embodiment of the present application.
  • Fig. 4 is a schematic block diagram of a controlled device provided according to an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 6 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the embodiments of this application can be applied to a burst interference system.
  • the burst interference system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the burst interference system 100 may include a control device 110 (or called a control node), and the control device 110 may be a device that communicates with a controlled device 120 (or called a controlled terminal).
  • the control device 110 may provide communication coverage for a specific geographic area, and may communicate with controlled devices located in the coverage area.
  • Figure 1 exemplarily shows one control device and two controlled devices.
  • the burst interference system 100 may include multiple control devices and the coverage of each control device may include other numbers of controlled devices.
  • Equipment this embodiment of the application does not limit this.
  • the burst interference system 100 may also include other network entities, which is not limited in the embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication device may include a control device 110 and a controlled device 120 with communication functions, and the control device 110 and the controlled device 120 may be the specific devices described above. The details are not repeated here; the communication device may also include other devices in the burst interference system 100, which is not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, an indirect indication, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B relation.
  • the indication information in the embodiment of this application includes physical layer signaling such as downlink control information (DCI), radio resource control (Radio Resource Control, RRC) signaling, and media access control unit (Media At least one of Access Control Control Element, MAC CE).
  • DCI downlink control information
  • RRC Radio Resource Control
  • MAC CE Media At least one of Access Control Control Element
  • correlate can mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association relationship between the two, or indicating and being instructed, configuring and being Configuration and other relationships.
  • the controlled device in the embodiment of the application may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, and wireless terminal equipment in smart grid , Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the controlled device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets and smart jewelry for physical sign monitoring.
  • the function of the control device is similar to the base station in the cellular network, responsible for sending synchronization signals, sending broadcast information, access control, data sending and receiving, sending high-level information, etc. Function;
  • the controlled device is responsible for detecting synchronization signals, receiving broadcast messages, sending and receiving data according to the scheduling of the control device, and receiving high-level information.
  • the transmission from the control device to the controlled device is referred to as downlink, and the transmission from the controlled device to the control device is referred to as uplink.
  • the control channel and the data channel can adopt different coding methods based on the pre-configuration information.
  • the control channel uses Polar Code
  • the data channel uses Low Density Parity-check codes (LDPC) coding.
  • LDPC Low Density Parity-check codes
  • the receiving end it can receive and decode according to the channel type and the number of bits sent by the channel (known to the receiving end).
  • the traditional cellular communication system does not support the selection of different encoding methods according to different channel environments.
  • the channel environment mentioned here can be a real channel interference environment or a predicted interference environment that may occur.
  • the controlled node can be based on the current time and geographic location.
  • FIG. 2 is a schematic flowchart of a channel coding method 200 according to an embodiment of the present application. As shown in FIG. 2, the channel coding method 200 may include but is not limited to the following content:
  • control device sends configuration information to the controlled device
  • the configuration information is used to configure one of the following:
  • Channel coding mode corresponding to at least one semi-persistent scheduling configuration
  • a channel coding manner corresponding to the first transmission block, and the number of bits of the first transmission block is less than a first threshold and greater than a second threshold;
  • S220 The controlled device receives the configuration information sent by the control device.
  • the embodiments of the present application may be applied to the burst interference system 100 shown in FIG. 1.
  • the uplink refers to a link in which the controlled device serves as the originating end and the control device as the receiving end; and the downlink refers to a link in which the controlled device acts as the receiving end and the control device as the originating end.
  • the controlled device may determine the corresponding channel coding method based on the configuration information.
  • the channel coding manner includes at least one of the following:
  • Polarization coding Polarization coding
  • LDPC coding Reed-Solomon (RS) coding.
  • RS Reed-Solomon
  • the first threshold and the second threshold are pre-configured or agreed upon by agreement, or the first threshold and the second threshold are determined by the control device.
  • the number of bits in the first transmission block is 32.
  • the at least one semi-persistent scheduling configuration may be part or all of the semi-persistent scheduling configuration configured by the control device to the controlled device.
  • the first transmission block may be a transmission block on an uplink data channel, or the first transmission block may be a transmission block on a downlink data channel.
  • the semi-persistent scheduling configuration is used to configure the semi-persistent scheduling resources
  • the originating device can encode the physical channel sent on the semi-persistent scheduling resources based on the channel coding method corresponding to the semi-persistent scheduling configuration
  • the receiving device can The physical channel received on the semi-persistent scheduling resource is decoded based on the channel coding method corresponding to the semi-persistent scheduling configuration.
  • control device configures the first semi-persistent scheduling configuration to correspond to the first coding mode, and configures the second semi-persistent scheduling configuration to correspond to the second coding mode. If the coding mode configuration is not included in the semi-static configuration signaling, it means that the current semi-persistent scheduling configuration corresponds to the default coding mode or the default coding mode.
  • control device determines the configuration information according to the first information, or the configuration information is determined according to the first information.
  • control device may further determine the configuration information based on the first information and the first correspondence, or, further, the configuration information may be based on the first information and the first correspondence definite.
  • the first information includes at least one of the following:
  • the geographic location of the control device At the current time, the geographic location of the control device, the geographic location of the controlled device, and the channel interference situation.
  • the current time may be the time when the control device determines the configuration information.
  • the channel interference condition is obtained by detecting the received power on at least one subcarrier.
  • control device obtains the channel interference condition by detecting the received power on at least one subcarrier.
  • the controlled device obtains the channel interference condition by detecting the received power on at least one subcarrier.
  • the at least one subcarrier is selected by the control device or the controlled device according to its own implementation mode, or is randomly selected by the control device or the controlled device.
  • the first correspondence relationship includes at least one of the following:
  • the first correspondence relationship is determined based on pre-configuration information.
  • the control device determines the first correspondence relationship according to the pre-configuration information.
  • control device determines or updates the first correspondence relationship according to the channel interference situation.
  • first correspondence is determined or updated based on channel interference conditions.
  • the control device determines, according to the pre-configuration information, that all geographic areas where the control device is located use polarization coding. If the control device detects that the received power on one or several subcarriers in a certain geographic area is higher than the uplink reference signal If the received power of the subcarrier is X1, or the control device detects that the received power of one or several subcarriers in a certain geographic area is higher than Y1, the control device updates the coding method corresponding to the geographic area to RS code.
  • the control device when the first information changes, sends dynamic signaling to the controlled device, and the dynamic signaling is used to instruct the controlled device to change the configuration information The configured channel coding method.
  • the controlled device receives dynamic signaling sent by the control device when the first information changes, and the dynamic signaling is used to instruct the controlled device to change the channel coding mode configured for the configuration information.
  • the dynamic signaling is also used for scheduling downlink transmission or uplink transmission, and the changed channel coding mode indicated by the dynamic signaling is only valid for the downlink transmission or uplink transmission scheduled by the dynamic signaling.
  • the changed channel coding mode indicated by the dynamic signaling is only valid for the downlink control channel sent in one radio frame.
  • the dynamic signaling is carried in a downlink control channel, or the dynamic signaling is carried in a broadcast channel.
  • the uplink data channel is similar to the physical uplink shared channel (PUSCH) in the cellular network
  • the uplink control channel is similar to the physical uplink control channel in the cellular network.
  • Control Channel, PUCCH) the downlink data channel is similar to the Physical Downlink Shared Channel (PDSCH) in the cellular network
  • the downlink control channel is similar to the Physical Downlink Control Channel (PDCCH) in the cellular network.
  • the broadcast channel is similar to the Physical Broadcast Channel (PBCH) in the cellular network.
  • PBCH Physical Broadcast Channel
  • the configuration information is used to configure the channel coding mode corresponding to the at least one semi-persistent scheduling configuration.
  • the configuration information is semi-static configuration information.
  • the control device configures one or more semi-persistent scheduling configurations for the controlled node through radio resource control (Radio Resource Control, RRC) signaling, and the semi-persistent scheduling resources configured for one or more of the semi-persistent scheduling configurations ,
  • RRC Radio Resource Control
  • the control device can configure the encoding method it adopts.
  • the semi-persistent scheduling configuration without a channel coding mode corresponds to the default coding mode or the default coding mode.
  • the physical channel to be transmitted is encoded in a corresponding coding mode
  • a corresponding encoding method is adopted to decode the received physical channel.
  • the physical channel is an uplink data channel or a downlink data channel.
  • the control device may determine the encoding method to be adopted according to its current geographic location, and adjust the encoding method as the geographic location changes. For example, if the current location of the control device is the first geographic area, the control device configures the encoding method corresponding to a certain semi-persistent scheduling configuration as the first encoding method, and when the control device enters the second geographic area, the half The coding mode corresponding to the static scheduling configuration is configured as the second coding mode through RRC signaling.
  • the control device may determine the coding mode to be adopted according to its current time, and adjust the coding mode as time goes by. For example, if the current time is the first time period, the control device configures the coding mode corresponding to a certain semi-persistent scheduling configuration as the first coding mode, and after the first time period, the coding mode corresponding to the semi-persistent scheduling configuration is passed The RRC signaling is configured as the second encoding mode.
  • the control device may determine the encoding method to be adopted according to its current time and current position, and adjust the encoding method as time passes or the position changes. For example, if the current time is the first time period and the current location is the first geographic area, the control device configures the coding mode corresponding to a certain semi-persistent scheduling configuration as the first coding mode, and vice versa, the coding mode corresponding to the semi-persistent scheduling configuration The mode is configured as the second coding mode through RRC signaling.
  • the control device may change the coding mode used in the semi-persistent scheduling configuration through dynamic signaling, for example, through dynamic signaling carried by a downlink control channel.
  • the control device may configure the coding mode corresponding to a certain semi-persistent scheduling configuration as the first coding mode, and when certain conditions are met, indicate the corresponding coding mode as the second coding mode through the downlink control channel.
  • the control device uses the second encoding method to transmit the downlink data channel, and for the controlled device, it shall use the second encoding method Receive the downlink channel and decode it; if the semi-persistent scheduling configuration configured in the semi-persistent scheduling configuration is used for uplink data transmission, the controlled device should use the second encoding method to transmit the uplink data channel, and the control device shall use the second encoding method to transmit the uplink data channel.
  • the uplink channel is received and decoded.
  • the encoding mode changed by dynamic signaling is only valid for the downlink or uplink transmission indicated by the dynamic signaling.
  • both uplink and downlink transmission are used The coding mode corresponding to the semi-persistent scheduling configuration.
  • the control device can also select the encoding method to be adopted according to the currently measured channel interference situation. For example, when the control device detects that the received power on one or several subcarriers is higher than the uplink reference signal When the received power of the sub-carrier is X1, or the received power of a certain sub-carrier or a few sub-carriers is higher than Y1, the control device resets the coding mode corresponding to a semi-persistent scheduling configuration using the first coding mode It is configured as a second coding mode, the first coding mode may be a polarization code, and the second coding mode may be an RS code.
  • the configuration information is used to configure the channel coding mode corresponding to the first transmission block.
  • the configuration information is semi-static configuration information, or the configuration information is dynamic configuration information.
  • the first transmission block is encoded using an encoding method corresponding to the first transmission block; and/or, for receiving the first transmission block
  • the device uses the coding mode corresponding to the first transmission block to decode the first transmission block.
  • the dynamic scheduling signaling carries The specific information field indicates the coding mode corresponding to the first transmission block.
  • the control device indicates the coding mode corresponding to the first transmission block through semi-static signaling, such as RRC signaling.
  • the control device selects or determines the encoding method corresponding to the first transmission block according to the currently measured channel interference situation. For example, the control device detects that the received power on one or several subcarriers is high.
  • the control device In the case of the received power X2 of the subcarrier where the uplink reference signal is located, or when the control device detects that the received power on one or several subcarriers is higher than Y2, the control device encodes the corresponding code of the first transmission block
  • the mode is indicated as the first coding mode (such as RS code) through dynamic signaling or semi-static signaling. Otherwise, the control device indicates the coding mode corresponding to the first transmission block as the second through dynamic signaling or semi-static semi-static signaling.
  • Encoding method for example, polarization code
  • the control device can also determine the encoding method to be adopted according to its current geographic location, and adjust the encoding method as the geographic location changes.
  • the control device will indicate the coding mode corresponding to the first transmission block as the first coding mode, and when the control device enters the second geographic area, the first transmission The coding mode corresponding to the block is indicated as the second coding mode.
  • the control device can also determine the encoding method used according to its current time, and adjust the encoding method as time goes by.
  • the control device can also determine the encoding method to be adopted according to its current time and current location, and adjust the encoding method as time passes or the position changes.
  • the control device uses semi-static signaling, such as RRC signaling, to indicate the encoding mode corresponding to the first transmission block, and when certain conditions are met, dynamic signaling can be used to change the first transmission block.
  • the encoding method corresponding to the transmission block For example, the control device may configure the coding mode corresponding to the first transmission block as the first coding mode through semi-static signaling, and when certain conditions are met, indicate the coding mode corresponding to the first transmission block as the second coding mode through the downlink control channel.
  • Encoding Preferably, the control device selects or determines the coding mode corresponding to the first transmission block according to the currently measured channel interference situation.
  • the control device can configure the coding mode corresponding to the first transmission block as the first coding mode through semi-static signaling.
  • the control device detects that the received power on one or several subcarriers is higher than the received power X2 of the subcarrier where the uplink reference signal is located, or the control device detects the reception on one or several subcarriers
  • the control device reconfigures the coding mode corresponding to the first transmission block to the second coding mode, where the first coding mode may be a polarization code, and the second coding mode may be an RS code .
  • the transmitting end uses the second encoding method to send the data channel, and the receiving end should receive and decode the downlink channel according to the second encoding method.
  • the encoding mode changed by dynamic signaling is only valid for the downlink transmission or uplink transmission indicated by the dynamic signaling.
  • both uplink and downlink transmission are used The coding mode indicated by semi-static signaling.
  • the configuration information is used to configure the channel coding mode corresponding to the first downlink control channel.
  • the configuration information is semi-static configuration information, or the configuration information is dynamic configuration information.
  • the configuration information is used to configure a coding method corresponding to the first downlink control channel, for example, only polarization coding is used.
  • RS coding, or LDPC coding is used.
  • the configuration information is dynamic configuration information
  • the configuration information is used to configure multiple channel coding methods corresponding to the first downlink control channel.
  • the first downlink control channel is coded by using one of the multiple channel coding modes; and/or
  • the multiple channel coding methods are used to blindly detect the first downlink control channel.
  • the control device instructs the first downlink control channel corresponding to the first downlink control channel through a system message Multiple channel coding methods, the transmission resources and transmission methods of the broadcast channel do not need to be indicated by the downlink control channel.
  • the control device may indicate the channel coding method corresponding to the first downlink control channel as a polarization code or RS code, or the control device may indicate the channel coding method corresponding to the first downlink control channel according to its geographic location.
  • the broadcast message is indicated as a polarization code or an RS code, and after the geographic location changes, the channel coding mode corresponding to the first downlink control channel is converted to the RS code or the polarization code.
  • the receiving end assumes a blind detection of the first downlink according to different channel coding methods.
  • Line control channel For example, the first downlink control channel can use polarization codes and RS codes, and the control device indicates to the controlled device the channel coding mode corresponding to the first downlink control channel through a system message. The transmission resource and transmission mode of the broadcast channel are not required. Instructed by the downlink control channel.
  • control device may indicate the channel coding mode corresponding to the first downlink control channel as a polarization code or an RS code, and the control device selects the polarization code or the RS code according to the channel interference condition to send the first downlink control channel, and the receiving end is based on Two different encodings, decoding the first downlink control channel.
  • the control device uses only one channel coding method to transmit the first downlink control channel, and when the control device detects one or several subcarriers When the received power is higher than the received power X3 of the subcarrier where the uplink reference signal is located, or when the control device detects that the received power on one or several subcarriers is higher than Y3, the control device uses the RS coding method to transmit The first downlink control channel, on the contrary, the polarization coding mode is adopted to transmit the first downlink control channel.
  • the controlled node first performs downlink control channel decoding based on coding mode A, and if at least one downlink control channel is successfully detected, the controlled terminal only detects other possibilities based on coding mode A On the contrary, the controlled terminal re-detects the downlink control channel based on coding method B.
  • Coding mode A and coding mode B can be configured by system messages or defined by standards. For example, the standard defines coding mode A as a polarization code and coding mode B as an RS code.
  • the control device may configure the channel coding mode corresponding to at least one semi-persistent scheduling configuration; or, the control device may configure the channel coding mode corresponding to the first transmission block, and the bit of the first transmission block The number is less than the first threshold and greater than the second threshold; or, the control device may configure a channel coding mode corresponding to the first downlink control channel.
  • channel coding in burst interference system can be realized. That is to say, for at least one semi-persistent scheduling configuration, or the first transmission block, or the first downlink control channel, the control device can dynamically or semi-statically according to one or more of the current time, geographic location, and channel interference conditions.
  • the channel coding mode is statically configured, so that the anti-interference ability of the short-range communication system can be improved by adjusting the channel coding mode.
  • Fig. 3 shows a schematic block diagram of a control device 300 according to an embodiment of the present application.
  • the control device 300 includes:
  • the communication unit 310 is configured to send configuration information to the controlled device, where the configuration information is used to configure one of the following:
  • Channel coding mode corresponding to at least one semi-persistent scheduling configuration
  • a channel coding manner corresponding to the first transmission block, and the number of bits of the first transmission block is less than a first threshold and greater than a second threshold;
  • the channel coding mode corresponding to the first downlink control channel is the channel coding mode corresponding to the first downlink control channel.
  • control device 300 further includes:
  • the processing unit 320 is configured to determine the configuration information according to the first information, where:
  • the first information includes at least one of the following:
  • the geographic location of the control device At the current time, the geographic location of the control device, the geographic location of the controlled device, and the channel interference situation.
  • the channel interference condition is obtained by detecting the received power on at least one subcarrier.
  • the at least one subcarrier is selected by the control device or the controlled device according to its own implementation mode, or is randomly selected by the control device or the controlled device.
  • processing unit 320 is specifically configured to:
  • the first correspondence relationship includes at least one of the following:
  • the first correspondence relationship is determined based on pre-configuration information.
  • the processing unit 320 is further configured to determine or update the first correspondence relationship according to channel interference conditions.
  • the communication unit 310 is further configured to send dynamic signaling to the controlled device, and the dynamic signaling is used to instruct the controlled device to change the configuration information configured by the controlled device.
  • Channel coding method when the first information changes, the communication unit 310 is further configured to send dynamic signaling to the controlled device, and the dynamic signaling is used to instruct the controlled device to change the configuration information configured by the controlled device.
  • the dynamic signaling is also used for scheduling downlink transmission or uplink transmission, and the changed channel coding mode indicated by the dynamic signaling is only valid for the downlink transmission or uplink transmission scheduled by the dynamic signaling.
  • the changed channel coding mode indicated by the dynamic signaling is only valid for the downlink control channel sent in one radio frame.
  • the dynamic signaling is carried in a downlink control channel, or the dynamic signaling is carried in a broadcast channel.
  • the first threshold and the second threshold are pre-configured or agreed upon by agreement, or the first threshold and the second threshold are determined by the control device.
  • the configuration information is used to configure a channel coding manner corresponding to the at least one semi-persistent scheduling configuration.
  • the configuration information is semi-static configuration information.
  • the semi-persistent scheduling configuration for which the channel coding mode is not configured corresponds to the default coding mode or the default coding mode.
  • the physical channel to be transmitted is encoded in a corresponding coding mode
  • a corresponding encoding method is adopted to decode the received physical channel.
  • the physical channel is an uplink data channel or a downlink data channel.
  • the configuration information is used to configure a channel coding manner corresponding to the first transmission block
  • the configuration information is semi-static configuration information, or the configuration information is dynamic configuration information.
  • the first transmission block is coded in an encoding manner corresponding to the first transmission block;
  • the first transmission block is decoded using an encoding manner corresponding to the first transmission block.
  • the configuration information is used to configure a channel coding manner corresponding to the first downlink control channel
  • the configuration information is semi-static configuration information, or the configuration information is dynamic configuration information.
  • the configuration information is dynamic configuration information
  • the configuration information is used to configure multiple channel coding methods corresponding to the first downlink control channel.
  • the first downlink control channel is coded using one of the multiple channel coding modes; and/or, for receiving the first downlink control channel;
  • the downlink control channel equipment uses the multiple channel coding methods to blindly detect the first downlink control channel.
  • the channel coding mode includes at least one of the following:
  • Polarization coding low-density parity-check code LDPC coding, Reed-Solomon RS coding.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • control device 300 may correspond to the control device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the control device 300 are used to implement the method shown in FIG. 2 respectively.
  • the corresponding process of the control equipment in 200 will not be repeated here.
  • Fig. 4 shows a schematic block diagram of a controlled device 400 according to an embodiment of the present application.
  • the controlled device 400 includes:
  • the communication unit 410 is configured to receive configuration information sent by the control device, where the configuration information is used to configure one of the following:
  • Channel coding mode corresponding to at least one semi-persistent scheduling configuration
  • a channel coding manner corresponding to the first transmission block, and the number of bits of the first transmission block is less than a first threshold and greater than a second threshold;
  • the channel coding mode corresponding to the first downlink control channel is the channel coding mode corresponding to the first downlink control channel.
  • the configuration information is determined according to the first information, where:
  • the first information includes at least one of the following:
  • the geographic location of the control device At the current time, the geographic location of the control device, the geographic location of the controlled device, and the channel interference situation.
  • the channel interference condition is obtained by detecting the received power on at least one subcarrier.
  • the at least one subcarrier is selected by the control device or the controlled device according to its own implementation mode, or is randomly selected by the control device or the controlled device.
  • the configuration information is determined based on the first information and a first correspondence, where the first correspondence includes at least one of the following:
  • the first correspondence relationship is determined based on pre-configuration information.
  • the first correspondence is determined or updated based on channel interference conditions.
  • the communication unit 410 is further configured to receive dynamic signaling sent by the control device when the first information changes, and the dynamic signaling is used to instruct the controlled device to change the channel configured by the configuration information Encoding.
  • the dynamic signaling is also used for scheduling downlink transmission or uplink transmission, and the changed channel coding mode indicated by the dynamic signaling is only valid for the downlink transmission or uplink transmission scheduled by the dynamic signaling.
  • the changed channel coding mode indicated by the dynamic signaling is only valid for the downlink control channel sent in one radio frame.
  • the dynamic signaling is carried in a downlink control channel, or the dynamic signaling is carried in a broadcast channel.
  • the first threshold and the second threshold are pre-configured or agreed upon by agreement, or the first threshold and the second threshold are determined by the control device.
  • the configuration information is used to configure a channel coding manner corresponding to the at least one semi-persistent scheduling configuration.
  • the configuration information is semi-static configuration information.
  • the semi-persistent scheduling configuration for which the channel coding mode is not configured corresponds to the default coding mode or the default coding mode.
  • the physical channel to be transmitted is encoded in a corresponding coding mode
  • a corresponding encoding method is adopted to decode the received physical channel.
  • the physical channel is an uplink data channel or a downlink data channel.
  • the configuration information is used to configure a channel coding manner corresponding to the first transmission block
  • the configuration information is semi-static configuration information, or the configuration information is dynamic configuration information.
  • the first transmission block is encoded using an encoding method corresponding to the first transmission block; and/or, for the device that receives the first transmission block, the first transmission block is used.
  • An encoding method corresponding to a transmission block decodes the first transmission block.
  • the configuration information is used to configure a channel coding manner corresponding to the first downlink control channel
  • the configuration information is semi-static configuration information, or the configuration information is dynamic configuration information.
  • the configuration information is dynamic configuration information
  • the configuration information is used to configure multiple channel coding methods corresponding to the first downlink control channel.
  • the first downlink control channel is coded using one of the multiple channel coding modes; and/or, for receiving the first downlink control channel;
  • the downlink control channel equipment uses the multiple channel coding methods to blindly detect the first downlink control channel.
  • the channel coding mode includes at least one of the following:
  • Polarization coding low-density parity-check code LDPC coding, Reed-Solomon RS coding.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • controlled device 400 may correspond to the controlled device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the controlled device 400 are respectively intended to realize FIG. 2
  • the corresponding process of the controlled device in the method 200 shown is not repeated here.
  • FIG. 5 is a schematic structural diagram of a communication device 500 provided by an embodiment of the present application.
  • the communication device 500 shown in FIG. 5 includes a processor 510, and the processor 510 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 500 may further include a memory 520.
  • the processor 510 may call and run a computer program from the memory 520 to implement the method in the embodiment of the present application.
  • the memory 520 may be a separate device independent of the processor 510, or may be integrated in the processor 510.
  • the communication device 500 may further include a transceiver 530, and the processor 510 may control the transceiver 530 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 530 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 500 may specifically be the control device of the embodiment of the present application, and the communication device 500 may implement the corresponding procedures implemented by the control device in the various methods of the embodiments of the present application. For brevity, details are not repeated here. .
  • the communication device 500 may specifically be a controlled device in an embodiment of the present application, and the communication device 500 may implement the corresponding process implemented by the controlled device in each method of the embodiment of the present application. For the sake of brevity, it is not here. Repeat it again.
  • Fig. 6 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the apparatus 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the device 600 may further include an input interface 630.
  • the processor 610 can control the input interface 630 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the device 600 may further include an output interface 640.
  • the processor 610 can control the output interface 640 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the device can be applied to the control device in the embodiment of the present application, and the device can implement the corresponding process implemented by the control device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the control device in each method of the embodiment of the present application.
  • the device can be applied to the controlled device in the embodiment of the present application, and the device can implement the corresponding process implemented by the controlled device in each method of the embodiment of the present application.
  • the device can implement the corresponding process implemented by the controlled device in each method of the embodiment of the present application.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it can be a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip.
  • FIG. 7 is a schematic block diagram of a communication system 700 provided by an embodiment of the present application. As shown in FIG. 7, the communication system 700 includes a controlled device 710 and a control device 720.
  • the controlled device 710 can be used to implement the corresponding function implemented by the controlled device in the foregoing method
  • the control device 720 can be used to implement the corresponding function implemented by the control device in the foregoing method. Repeat it again.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the control device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the control device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the control device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the controlled device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the controlled device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the controlled device in each method of the embodiment of the present application.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the control device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the control device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the control device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the control device in each method of the embodiment of the present application.
  • the computer program product can be applied to the controlled device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the controlled device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the controlled device in each method of the embodiment of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the control device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the control device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the controlled device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes the corresponding process implemented by the controlled device in each method of the embodiment of the present application.
  • I will not repeat them here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a control device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信道编码方法、控制设备和受控设备,能够实现突发干扰系统中的信道编码。该信道编码方法包括:控制设备向受控设备发送配置信息,其中,该配置信息用于配置以下中的一种:至少一个半静态调度配置对应的信道编码方式;第一传输块对应的信道编码方式,且该第一传输块的比特数小于第一阈值且大于第二阈值;第一下行控制信道对应的信道编码方式。

Description

信道编码方法、控制设备和受控设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种信道编码方法、控制设备和受控设备。
背景技术
在蜂窝通信中,控制信道和数据信道可以基于预配置方式采用不同的编码方式。在本申请的目标通信系统中,由于所在工作频段上可能存在大功率突发干扰源,其通信中受突发干扰源的影响较大。即目标通信系统与蜂窝通信存在很大的差异,如何实现本申请目标通信中的信道编码,是一个亟待解决的问题。为了描述方便,以下将这类通信系统简称为突发干扰系统。
发明内容
本申请实施例提供了一种信道编码方法、控制设备和受控设备,能够实现突发干扰系统中的信道编码。
第一方面,提供了一种信道编码方法,该方法包括:
控制设备向受控设备发送配置信息,其中,该配置信息用于配置以下中的一种:
至少一个半静态调度配置对应的信道编码方式;
第一传输块对应的信道编码方式,且该第一传输块的比特数小于第一阈值且大于第二阈值;
第一下行控制信道对应的信道编码方式。
第二方面,提供了一种信道编码方法,该方法包括:
受控设备接收控制设备发送的配置信息,其中,该配置信息用于配置以下中的一种:
至少一个半静态调度配置对应的信道编码方式;
第一传输块对应的信道编码方式,且该第一传输块的比特数小于第一阈值且大于第二阈值;
第一下行控制信道对应的信道编码方式。
第三方面,提供了一种控制设备,用于执行上述第一方面或其各实现方式中的方法。
具体地,该控制设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第四方面,提供了一种受控设备,用于执行上述第二方面或其各实现方式中的方法。
具体地,该受控设备包括用于执行上述第二方面或其各实现方式中的方法的功能模块。
第五方面,提供了一种控制设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种受控设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
通过上述技术方案,控制设备可以配置至少一个半静态调度配置对应的信道编码方式;或者,控制设备可以配置第一传输块对应的信道编码方式,且所述第一传输块的比特数小于第一阈值且大于第二阈值;或者,控制设备可以配置第一下行控制信道对应的信道编码方式。从而能够实现突发干扰系统中的信道编码。
附图说明
图1是本申请实施例提供的一种突发干扰系统架构的示意性图。
图2是根据本申请实施例提供的一种信道编码方法的示意性流程图。
图3是根据本申请实施例提供的一种控制设备的示意性框图。
图4是根据本申请实施例提供的一种受控设备的示意性框图。
图5是根据本申请实施例提供的一种通信设备的示意性框图。
图6是根据本申请实施例提供的一种装置的示意性框图。
图7是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于突发干扰系统。示例性的,本申请实施例应用的突发干扰系统100如图1所示。该突发干扰系统100可以包括控制设备110(或称为控制节点),控制设备110可以是与受控设备120(或称为受控终端)通信的设备。控制设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的受控设备进行通信。
图1示例性地示出了一个控制设备和两个受控设备,可选地,该突发干扰系统100可以包括多个控制设备并且每个控制设备的覆盖范围内可以包括其它数量的受控设备,本申请实施例对此不做限定。
可选地,该突发干扰系统100还可以包括其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的突发干扰系统100为例,通信设备可包括具有通信功能的控制设备110和受控设备120,控制设备110和受控设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括突发干扰系统100中的其他设备,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
可选地,在本申请实施例中的指示信息包括物理层信令例如下行控制信息(Downlink Control Information,DCI)、无线资源控制(Radio Resource Control,RRC)信令和媒体接入控制单元(Media Access Control Control Element,MAC CE)中的至少一种。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中的受控设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该受控设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在突发干扰系统中,类似于目前的蜂窝网络通信系统,控制设备的功能类似于蜂窝网络中的基站,负责发送同步信号,发送广播信息,接入控制,数据发送与接收,发送高层信息等功能;而受控设备负责检测同步信号,接收广播消息,根据控制设备的调度收发数据,接收高层信息等。
在本申请实施例中,为了叙述方便,将控制设备到受控设备的发送称为下行,将受控设备到控制设备的发送称为上行。
在传统的蜂窝通信系统中,控制信道和数据信道可以基于预配置信息采用不同的编码方式,例如,在新空口(New Radio,NR)系统中,当控制信道发送的信息比特数小于11时,采用分组编码,否则,控制信道采用极化编码(Polar Code),而数据信道采用低密度奇偶校验码(Low Density Parity-check  codes,LDPC)编码。而对于接收端,可以根据信道类型和信道发送的比特数(对接收端已知)进行接收和解码。
而在本申请涉及的突发干扰系统中,由于某些突发干扰源的存在,存在根据干扰情况采用不同编码方式的需求,而这种编码选择方式在传统的蜂窝通信系统中并不支持。此外,传统的蜂窝通信系统并不支持根据不同的信道环境选择不同的编码方式,这里所说的信道环境可以是真实的信道干扰环境,或预测的可能发生的干扰环境。
通过以上分析可以看到,在本申请提供的方案中,对于某一特定的半静态调度配置,某一特定大小范围内的传输块,或对于特定的信道,受控节点可以根据当前时间、地理位置、信道干扰情况等信息中一项或多项动态或半静态的选择编码方式,从而可以通过调整编码方式来提高系统的抗干扰能力。
以下通过具体实施例详述本申请的技术方案。
图2是根据本申请实施例的信道编码方法200的示意性流程图,如图2所示,该信道编码方法200可以包括但不限于如下内容:
S210,控制设备向受控设备发送配置信息,
其中,该配置信息用于配置以下中的一种:
至少一个半静态调度配置对应的信道编码方式;
第一传输块对应的信道编码方式,且该第一传输块的比特数小于第一阈值且大于第二阈值;
第一下行控制信道对应的信道编码方式;
S220,该受控设备接收该控制设备发送的该配置信息。
本申请实施例可以应用于如图1所示的突发干扰系统100。
在本申请实施例中,上行是指:受控设备作为发端且控制设备作为收端的链路;下行是指:受控设备作为收端且控制设备作为发端的链路。
在本申请实施例中,进一步的,该受控设备可以基于该配置信息确定对应的信道编码方式。
可选地,在本申请实施例中,该信道编码方式包括以下中的至少一种:
极化编码、LDPC编码、里德-所罗门(RS)编码。
可选地,在本申请实施例中,该第一阈值和该第二阈值为预配置的或者协议约定的,或者,该第一阈值和该第二阈值为该控制设备确定的。
例如,该第一传输块的比特数为32。
在本申请实施例中,该至少一个半静态调度配置可以是控制设备配置给受控设备的半静态调度配置中的部分或者全部。该第一传输块可以是上行数据信道上的传输块,或者,该第一传输块可以是下行数据信道上的传输块。
在本申请实施例中,半静态调度配置用于配置半静态调度资源,发端设备可以基于半静态调度配置对应的信道编码方式对半静态调度资源上发送的物理信道进行编码,收端设备可以可以基于半静态调度配置对应的信道编码方式对半静态调度资源上接收的物理信道进行解码。
例如,控制设备配置第一个半静态调度配置对应第一编码方式,且配置第二个半静态调度配置对应第二种编码方式。如果半静态配置信令中未包含编码方式配置,则意味着当前半静态调度配置对应默认编码方式或者缺省编码方式。
可选地,在本申请实施例中,该控制设备根据第一信息确定该配置信息,或者,该配置信息为根据第一信息确定的。
可选地,在本申请实施例中,该控制设备进一步的可以根据第一信息和第一对应关系确定该配置信息,或者,进一步的,该配置信息可以是根据第一信息和第一对应关系确定的。
其中,该第一信息包括以下中的至少一种:
当前时间,该控制设备所处的地理位置、该受控设备所处的地理位置、信道干扰情况。
需要说明的是,该当前时间可以为该控制设备确定该配置信息时的时间。
可选地,该信道干扰情况为通过检测至少一个子载波上的接收功率获取的。
例如,控制设备通过检测至少一个子载波上的接收功率获取信道干扰情况。
又例如,受控设备通过检测至少一个子载波上的接收功率获取信道干扰情况。
可选地,该至少一个子载波由控制设备或受控设备根据自身实现方式选取,或者由控制设备或受控设备随机选取。
其中,该第一对应关系包括以下中的至少一种:
时间信息与信道编码方式之间的对应关系,该控制设备所处的地理位置与信道编码方式之间的对应关系,时间信息和该控制设备所处的地理位置与信道编码方式之间的关系,该受控设备所处的地理 位置与信道编码方式之间的对应关系,信道干扰情况与信道编码方式之间的对应关系。
可选地,该第一对应关系为基于预配置信息确定的。例如,控制设备根据预配置信息确定该第一对应关系。
可选地,该控制设备根据信道干扰情况,确定或者更新该第一对应关系。或者,该第一对应关系为基于信道干扰情况确定或者更新的。
例如,控制设备根据预配置信息确定控制设备所处的所有的地理区域均采用极化编码,如果控制设备在某个地理区域检测到某个或某几个子载波上的接收功率高于上行参考信号所在子载波的接收功率X1,或控制设备在某个地理区域检测到某个或某几个子载波上的接收功率高于Y1,则控制设备将该地理区域对应的编码方式更新为RS编码。
可选地,在本申请实施例中,在该第一信息发生改变的情况下,该控制设备向该受控设备发送动态信令,该动态信令用于指示该受控设备变更该配置信息所配置的信道编码方式。
相应的,该受控设备接收该控制设备在该第一信息发生改变的情况下发送的动态信令,该动态信令用于指示该受控设备变更该配置信息所配置的信道编码方式。
可选地,该动态信令还用于调度下行发送或者上行发送,且该动态信令所指示变更的信道编码方式仅对该动态信令所调度的下行发送或者上行发送有效。
可选地,该动态信令所指示变更的信道编码方式仅对一个无线帧内发送的下行控制信道有效。
可选地,该动态信令承载于下行控制信道中,或者,该动态信令承载于广播信道中。
需要说明的是,在本申请实施例中,上行数据信道类似于蜂窝网络中的物理上行共享信道(Physical Uplink Shared Channel,PUSCH),上行控制信道类似于蜂窝网络中的物理上行控制信道(Physical Uplink Control Channel,PUCCH),下行数据信道类似于蜂窝网络中的物理下行共享信道(Physical Downlink Shared Channel,PDSCH),下行控制信道类似于蜂窝网络中的物理下行控制信道(Physical Downlink Control Channel,PDCCH),广播信道类似于蜂窝网络中的物理层广播信道(Physical Broadcast Channel,PBCH)。
以下通过实施例1至实施例3详述本申请信道编码方案。
实施例1,该配置信息用于配置该至少一个半静态调度配置对应的信道编码方式。
在实施例1中,该配置信息为半静态配置信息。例如,控制设备通过无线资源控制(Radio Resource Control,RRC)信令,为受控节点配置一个或多个半静态调度配置,对于其中的一个或多个半静态调度配置所配置的半静态调度资源,控制设备可以配置其采用的编码方式。
在实施例1中,未配置信道编码方式的半静态调度配置对应默认编码方式或者缺省编码方式。
可选地,在实施例1中,
对于根据该至少一个半静态调度配置中的半静态调度配置进行发送的设备,采用对应的编码方式对待发送的物理信道进行编码;和/或,
对于根据该至少一个半静态调度配置中的半静态调度配置进行接收的设备,采用对应的编码方式对接收的物理信道进行解码。
可选地,该物理信道为上行数据信道或者下行数据信道。
可选地,在实施例1中,控制设备可以根据其当前所处的地理位置确定采用的编码方式,并随着地理位置的改变而调整编码方式。例如,如果控制设备当前所处的位置为第一地理区域,则控制设备将某一半静态调度配置对应的编码方式配置为第一编码方式,而当控制设备进入第二地理区域后,将该半静态调度配置对应的编码方式通过RRC信令配置为第二编码方式。
可选的,在实施例1中,控制设备可以根据其当前时间确定采用的编码方式,并随着时间的推移而调整编码方式。例如,如果当前时间为第一时间段,则控制设备将某一半静态调度配置对应的编码方式配置为第一编码方式,而超过第一时间段后,将该半静态调度配置对应的编码方式通过RRC信令配置为第二编码方式。
可选的,在实施例1中,控制设备可以根据其当前时间和当前所处的位置确定采用的编码方式,并随着时间的推移或位置的改变而调整编码方式。例如,如果当前时间为第一时间段且当前位置为第一地理区域,则控制设备将某一半静态调度配置对应的编码方式配置为第一编码方式,反之,将该半静态调度配置对应的编码方式通过RRC信令配置为第二编码方式。
可选地,在实施例1中,控制设备可以通过动态信令,例如通过下行控制信道承载的动态信令,改变该半静态调度配置采用的编码方式。例如,控制设备可以将某一半静态调度配置对应的编码方式配置为第一编码方式,并在满足一定条件时,通过下行控制信道将其对应的编码方式指示为第二编码方式。在这种情况下,如果该半静态调度配置所配置的半静态资源用于下行数据发送,则控制设备采用第二编码方式发送下行数据信道,而对于受控设备,则应根据第二编码方式接收所述下行信道并进 行解码;如果该半静态调度配置所配置的半静态调度配置用于上行数据发送,则受控设备应采用第二编码方式发送上行数据信道,控制设备根据第二编码方式接收所述上行信道并进行解码。
可选地,在实施例1中,通过动态信令改变后的编码方式仅对该动态信令指示的下行发送或上行发送有效,在没有动态信令指示的情况下,上行或下行发送均采用该半静态调度配置对应的编码方式。
可选地,在实施例1中,控制设备也可以根据当前测量的信道干扰情况选择采用的编码方式,例如,当控制设备检测到某个或某几个子载波上的接收功率高于上行参考信号所在子载波的接收功率X1的情况下,或某一某个或某几个子载波上的接收功率高于Y1时,控制设备将某一采用第一编码方式的半静态调度配置对应的编码方式重新配置为第二编码方式,所述第一编码方式可以为极化码,第二编码方式可以为RS码。
实施例2,所述配置信息用于配置所述第一传输块对应的信道编码方式。
在实施例2中,所述配置信息为半静态配置信息,或者,所述配置信息为动态配置信息。
可选地,在实施例2中,对于发送该第一传输块的设备,采用该第一传输块对应的编码方式对该第一传输块进行编码;和/或,对于接收该第一传输块的设备,采用该第一传输块对应的编码方式对该第一传输块进行解码。
可选地,在实施例2中,对于动态调度的下行或上行传输,即第一传输块,如果第一传输块的比特数小于第一阈值且大于第二阈值,则动态调度信令中携带特定信息域指示第一传输块对应的编码方式。或者,控制设备通过半静态信令,例如RRC信令,指示第一传输块对应的编码方式。较优的,在实施例2中,控制设备根据当前测量的信道干扰情况选择或者确定第一传输块对应的编码方式,例如,在控制设备检测到某个或某几个子载波上的接收功率高于上行参考信号所在子载波的接收功率X2的情况下,或者,在控制设备检测到某一个或某几个子载波上的接收功率高于Y2的情况下,控制设备将第一传输块对应的编码方式通过动态信令或半静态信令指示为第一编码方式(例如RS码),否则,控制设备将第一传输块对应的编码方式通过动态信令或半静态半静态信令指示为第二编码方式(例如极化码)。控制设备也可以根据其当前所处的地理位置确定采用的编码方式,并随着地理位置的改变而调整编码方式。例如,如果控制设备当前所处的位置为第一地理区域,则控制设备将第一传输块对应的编码方式指示为第一编码方式,而当控制设备进入第二地理区域后,将第一传输块对应的编码方式指示为第二编码方式。控制设备还可以根据其当前时间确定采用的编码方式,并随着时间的推移而调整编码方式。控制设备也可以根据其当前时间和当前所处的位置确定采用的编码方式,并随着时间的推移或位置的改变而调整编码方式。
可选地,在实施例2中,控制设备通过半静态信令,例如RRC信令,指示第一传输块对应的编码方式,并在满足一定条件的情况下,可以利用动态信令改变第一传输块对应的编码方式。例如,控制设备可以通过半静态信令将第一传输块对应的编码方式配置为第一编码方式,并在满足一定条件时,通过下行控制信道将第一传输块对应的编码方式指示为第二编码方式。较优的,控制设备根据当前测量的信道干扰情况选择或者确定第一传输块对应的编码方式,例如,控制设备可以通过半静态信令将第一传输块对应的编码方式配置为第一编码方式,在控制设备检测到某个或某几个子载波上的接收功率高于上行参考信号所在子载波的接收功率X2的情况下,或控制设备检测到某一某个或某几个子载波上的接收功率高于Y2的情况下,控制设备将第一传输块对应的编码方式重新配置为第二编码方式,其中,所述第一编码方式可以为极化码,该第二编码方式可以为RS码。在这种情况下,发送端采用第二编码方式发送数据信道,而接收端应根据第二编码方式接收所述下行信道并进行解码。
可选地,在实施例2中,通过动态信令改变后的编码方式仅对该动态信令指示的下行发送或上行发送有效,在没有动态信令指示的情况下,上行或下行发送均采用半静态信令指示的编码方式。
实施例3,该配置信息用于配置该第一下行控制信道对应的信道编码方式。
在实施例3中,该配置信息为半静态配置信息,或者,该配置信息为动态配置信息。
可选地,在实施例3中,在该配置信息为半静态配置信息的情况下,该配置信息用于配置该第一下行控制信道对应的一种编码方式,例如只采用极化编码,RS编码,或LDPC编码。
可选地,在实施例3中,在该配置信息为动态配置信息的情况下,该配置信息用于配置该第一下行控制信道对应的多种信道编码方式。
可选地,在实施例3中,对于发送该第一下行控制信道的设备,采用该多种信道编码方式中的一种信道编码方式对该第一下行控制信道进行编码;和/或,对于接收该第一下行控制信道的设备,采用该多种信道编码方式盲检测该第一下行控制信道。
可选地,在实施例3中,在该配置信息用于配置该第一下行控制信道对应的多种信道编码方式的情况下,控制设备通过系统消息指示该第一下行控制信道对应的多种信道编码方式,该广播信道的发送资源和发送方式不需要通过下行控制信道指示。例如,控制设备可以将该第一下行控制信道对应的 信道编码方式指示为极化码或RS码,或者控制设备根据其所处的地理位置将该第一下行控制信道对应的信道编码方式通过该广播消息指示为极化码或RS码,并在地理位置发生改变后,该第一下行控制信道对应的信道编码方式转换为RS码或极化码。
可选地,在实施例3中,在该配置信息用于配置该第一下行控制信道对应的多种信道编码方式的情况下,接收端根据不同的信道编码方式假设盲检该第一下行控制信道。例如,第一下行控制信道可以采用极化码和RS码,控制设备通过系统消息向受控设备指示第一下行控制信道对应的信道编码方式,该广播信道的发送资源和发送方式不需要通过下行控制信道指示。例如,控制设备可以将第一下行控制信道对应的信道编码方式指示为极化码或RS码,控制设备根据信道干扰情况选择极化码或RS码发送第一下行控制信道,接收端基于两种不同的编码,解码第一下行控制信道。
可选地,在实施例3中,较优的,在一个无线帧内,控制设备仅采用一种信道编码方式发送第一下行控制信道,在控制设备检测到某个或某几个子载波上的接收功率高于上行参考信号所在子载波的接收功率X3的情况下,或在控制设备检测到某一个或某几个子载波上的接收功率高于Y3的情况下,控制设备采用RS编码方式发送第一下行控制信道,反之采用极化编码方式发送第一下行控制信道。
可选地,在实施例3中,较优的,受控节点首先基于编码方式A进行下行控制信道解码,如果至少成功检测到一个下行控制信道,则受控终端仅基于编码方式A检测其它可能的下行控制信道,反之,受控终端基于编码方式B重新检测下行控制信道。编码方式A和编码方式B可以由系统消息配置,或者由标准定义,例如标准将编码方式A定义为极化码,而将编码方式B定义为RS码。
因此,在本申请实施例中,控制设备可以配置至少一个半静态调度配置对应的信道编码方式;或者,控制设备可以配置第一传输块对应的信道编码方式,且所述第一传输块的比特数小于第一阈值且大于第二阈值;或者,控制设备可以配置第一下行控制信道对应的信道编码方式。从而能够实现突发干扰系统中的信道编码。也就是说,对于至少一个半静态调度配置,或第一传输块,或第一下行控制信道,控制设备可以根据当前时间、地理位置、信道干扰情况中的一项或多项,动态或半静态的配置信道编码方式,从而可以通过调整信道编码方式来提高近距离通信系统的抗干扰能力。
上文结合图2,详细描述了本申请的方法实施例,下文结合图3至图7,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图3示出了根据本申请实施例的控制设备300的示意性框图。如图3所示,该控制设备300包括:
通信单元310,用于向受控设备发送配置信息,其中,该配置信息用于配置以下中的一种:
至少一个半静态调度配置对应的信道编码方式;
第一传输块对应的信道编码方式,且该第一传输块的比特数小于第一阈值且大于第二阈值;
第一下行控制信道对应的信道编码方式。
可选地,该控制设备300还包括:
处理单元320,用于根据第一信息确定该配置信息,其中,
该第一信息包括以下中的至少一种:
当前时间,该控制设备所处的地理位置、该受控设备所处的地理位置、信道干扰情况。
可选地,该信道干扰情况为通过检测至少一个子载波上的接收功率获取的。
可选地,该至少一个子载波由该控制设备或该受控设备根据自身实现方式选取,或者由该控制设备或该受控设备随机选取。
可选地,该处理单元320具体用于:
根据该第一信息和第一对应关系确定该配置信息,
其中,该第一对应关系包括以下中的至少一种:
时间信息与信道编码方式之间的对应关系,该控制设备所处的地理位置与信道编码方式之间的对应关系,时间信息和该控制设备所处的地理位置与信道编码方式之间的关系,该受控设备所处的地理位置与信道编码方式之间的对应关系,信道干扰情况与信道编码方式之间的对应关系。
可选地,该第一对应关系为基于预配置信息确定的。
可选地,该处理单元320还用于根据信道干扰情况,确定或者更新该第一对应关系。
可选地,在该第一信息发生改变的情况下,该通信单元310还用于向该受控设备发送动态信令,该动态信令用于指示该受控设备变更该配置信息所配置的信道编码方式。
可选地,该动态信令还用于调度下行发送或者上行发送,且该动态信令所指示变更的信道编码方式仅对该动态信令所调度的下行发送或者上行发送有效。
可选地,该动态信令所指示变更的信道编码方式仅对一个无线帧内发送的下行控制信道有效。
可选地,该动态信令承载于下行控制信道中,或者,该动态信令承载于广播信道中。
可选地,该第一阈值和该第二阈值为预配置的或者协议约定的,或者,该第一阈值和该第二阈值 为该控制设备确定的。
可选地,在该配置信息用于配置该至少一个半静态调度配置对应的信道编码方式的情况下,该配置信息为半静态配置信息。
可选地,未配置信道编码方式的半静态调度配置对应默认编码方式或者缺省编码方式。
可选地,对于根据该至少一个半静态调度配置中的半静态调度配置进行发送的设备,采用对应的编码方式对待发送的物理信道进行编码;和/或,
对于根据该至少一个半静态调度配置中的半静态调度配置进行接收的设备,采用对应的编码方式对接收的物理信道进行解码。
可选地,该物理信道为上行数据信道或者下行数据信道。
可选地,在该配置信息用于配置该第一传输块对应的信道编码方式的情况下,该配置信息为半静态配置信息,或者,该配置信息为动态配置信息。
可选地,对于发送该第一传输块的设备,采用该第一传输块对应的编码方式对该第一传输块进行编码;和/或,
对于接收该第一传输块的设备,采用该第一传输块对应的编码方式对该第一传输块进行解码。
可选地,在该配置信息用于配置该第一下行控制信道对应的信道编码方式的情况下,该配置信息为半静态配置信息,或者,该配置信息为动态配置信息。
可选地,在该配置信息为动态配置信息的情况下,该配置信息用于配置该第一下行控制信道对应的多种信道编码方式。
可选地,对于发送该第一下行控制信道的设备,采用该多种信道编码方式中的一种信道编码方式对该第一下行控制信道进行编码;和/或,对于接收该第一下行控制信道的设备,采用该多种信道编码方式盲检测该第一下行控制信道。
可选地,该信道编码方式包括以下中的至少一种:
极化编码、低密度奇偶校验码LDPC编码、里德-所罗门RS编码。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的控制设备300可对应于本申请方法实施例中的控制设备,并且控制设备300中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中控制设备的相应流程,为了简洁,在此不再赘述。
图4示出了根据本申请实施例的受控设备400的示意性框图。如图4所示,该受控设备400包括:
通信单元410,用于接收控制设备发送的配置信息,其中,该配置信息用于配置以下中的一种:
至少一个半静态调度配置对应的信道编码方式;
第一传输块对应的信道编码方式,且该第一传输块的比特数小于第一阈值且大于第二阈值;
第一下行控制信道对应的信道编码方式。
可选地,该配置信息为根据第一信息确定的,其中,
该第一信息包括以下中的至少一种:
当前时间,该控制设备所处的地理位置、该受控设备所处的地理位置、信道干扰情况。
可选地,该信道干扰情况为通过检测至少一个子载波上的接收功率获取的。
可选地,该至少一个子载波由该控制设备或该受控设备根据自身实现方式选取,或者由该控制设备或该受控设备随机选取。
可选地,该配置信息为根据该第一信息和第一对应关系确定的,其中,该第一对应关系包括以下中的至少一种:
时间信息与信道编码方式之间的对应关系,该控制设备所处的地理位置与信道编码方式之间的对应关系,时间信息和该控制设备所处的地理位置与信道编码方式之间的关系,该受控设备所处的地理位置与信道编码方式之间的对应关系,信道干扰情况与信道编码方式之间的对应关系。
可选地,该第一对应关系为基于预配置信息确定的。
可选地,该第一对应关系为基于信道干扰情况确定或者更新的。
可选地,该通信单元410还用于接收该控制设备在该第一信息发生改变的情况下发送的动态信令,该动态信令用于指示该受控设备变更该配置信息所配置的信道编码方式。
可选地,该动态信令还用于调度下行发送或者上行发送,且该动态信令所指示变更的信道编码方式仅对该动态信令所调度的下行发送或者上行发送有效。
可选地,该动态信令所指示变更的信道编码方式仅对一个无线帧内发送的下行控制信道有效。
可选地,该动态信令承载于下行控制信道中,或者,该动态信令承载于广播信道中。
可选地,该第一阈值和该第二阈值为预配置的或者协议约定的,或者,该第一阈值和该第二阈值为该控制设备确定的。
可选地,在该配置信息用于配置该至少一个半静态调度配置对应的信道编码方式的情况下,该配置信息为半静态配置信息。
可选地,未配置信道编码方式的半静态调度配置对应默认编码方式或者缺省编码方式。
可选地,对于根据该至少一个半静态调度配置中的半静态调度配置进行发送的设备,采用对应的编码方式对待发送的物理信道进行编码;和/或,
对于根据该至少一个半静态调度配置中的半静态调度配置进行接收的设备,采用对应的编码方式对接收的物理信道进行解码。
可选地,该物理信道为上行数据信道或者下行数据信道。
可选地,在该配置信息用于配置该第一传输块对应的信道编码方式的情况下,该配置信息为半静态配置信息,或者,该配置信息为动态配置信息。
可选地,对于发送该第一传输块的设备,采用该第一传输块对应的编码方式对该第一传输块进行编码;和/或,对于接收该第一传输块的设备,采用该第一传输块对应的编码方式对该第一传输块进行解码。
可选地,在该配置信息用于配置该第一下行控制信道对应的信道编码方式的情况下,该配置信息为半静态配置信息,或者,该配置信息为动态配置信息。
可选地,在该配置信息为动态配置信息的情况下,该配置信息用于配置该第一下行控制信道对应的多种信道编码方式。
可选地,对于发送该第一下行控制信道的设备,采用该多种信道编码方式中的一种信道编码方式对该第一下行控制信道进行编码;和/或,对于接收该第一下行控制信道的设备,采用该多种信道编码方式盲检测该第一下行控制信道。
可选地,该信道编码方式包括以下中的至少一种:
极化编码、低密度奇偶校验码LDPC编码、里德-所罗门RS编码。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的受控设备400可对应于本申请方法实施例中的受控设备,并且受控设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中受控设备的相应流程,为了简洁,在此不再赘述。
图5是本申请实施例提供的一种通信设备500示意性结构图。图5所示的通信设备500包括处理器510,处理器510可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图5所示,通信设备500还可以包括存储器520。其中,处理器510可以从存储器520中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器520可以是独立于处理器510的一个单独的器件,也可以集成在处理器510中。
可选地,如图5所示,通信设备500还可以包括收发器530,处理器510可以控制该收发器530与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器530可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备500具体可为本申请实施例的控制设备,并且该通信设备500可以实现本申请实施例的各个方法中由控制设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备500具体可为本申请实施例的受控设备,并且该通信设备500可以实现本申请实施例的各个方法中由受控设备实现的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例的装置的示意性结构图。图6所示的装置600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,装置600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,该装置600还可以包括输入接口630。其中,处理器610可以控制该输入接口630与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置600还可以包括输出接口640。其中,处理器610可以控制该输出接口640与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该装置可应用于本申请实施例中的控制设备,并且该装置可以实现本申请实施例的各个 方法中由控制设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该装置可应用于本申请实施例中的受控设备,并且该装置可以实现本申请实施例的各个方法中由受控设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图7是本申请实施例提供的一种通信系统700的示意性框图。如图7所示,该通信系统700包括受控设备710和控制设备720。
其中,该受控设备710可以用于实现上述方法中由受控设备实现的相应的功能,以及该控制设备720可以用于实现上述方法中由控制设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的控制设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由控制设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的受控设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由受控设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的控制设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由控制设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的受控设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由受控设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的控制设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由控制设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的受控设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由受控设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者控制设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (98)

  1. 一种信道编码方法,其特征在于,包括:
    控制设备向受控设备发送配置信息,其中,所述配置信息用于配置以下中的一种:
    至少一个半静态调度配置对应的信道编码方式;
    第一传输块对应的信道编码方式,且所述第一传输块的比特数小于第一阈值且大于第二阈值;
    第一下行控制信道对应的信道编码方式。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述控制设备根据第一信息确定所述配置信息,其中,
    所述第一信息包括以下中的至少一种:
    当前时间、所述控制设备所处的地理位置、所述受控设备所处的地理位置、信道干扰情况。
  3. 根据权利要求2所述的方法,其特征在于,所述信道干扰情况为通过检测至少一个子载波上的接收功率获取的。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个子载波由所述控制设备或所述受控设备根据自身实现方式选取,或者由所述控制设备或所述受控设备随机选取。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述控制设备根据第一信息确定所述配置信息,包括:
    所述控制设备根据所述第一信息和第一对应关系确定所述配置信息,
    其中,所述第一对应关系包括以下中的至少一种:
    时间信息与信道编码方式之间的对应关系,所述控制设备所处的地理位置与信道编码方式之间的对应关系,时间信息和所述控制设备所处的地理位置与信道编码方式之间的关系,所述受控设备所处的地理位置与信道编码方式之间的对应关系,信道干扰情况与信道编码方式之间的对应关系。
  6. 根据权利要求5所述的方法,其特征在于,所述第一对应关系为基于预配置信息确定的。
  7. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述控制设备根据信道干扰情况,确定或者更新所述第一对应关系。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一信息发生改变的情况下,所述控制设备向所述受控设备发送动态信令,所述动态信令用于指示所述受控设备变更所述配置信息所配置的信道编码方式。
  9. 根据权利要求8所述的方法,其特征在于,所述动态信令还用于调度下行发送或者上行发送,且所述动态信令所指示变更的信道编码方式仅对所述动态信令所调度的下行发送或者上行发送有效。
  10. 根据权利要求8所述的方法,其特征在于,所述动态信令所指示变更的信道编码方式仅对一个无线帧内发送的下行控制信道有效。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述动态信令承载于下行控制信道中,或者,所述动态信令承载于广播信道中。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第一阈值和所述第二阈值为预配置的或者协议约定的,或者,所述第一阈值和所述第二阈值为所述控制设备确定的。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,在所述配置信息用于配置所述至少一个半静态调度配置对应的信道编码方式的情况下,所述配置信息为半静态配置信息。
  14. 根据权利要求13所述的方法,其特征在于,
    未配置信道编码方式的半静态调度配置对应默认编码方式或者缺省编码方式。
  15. 根据权利要求13或14所述的方法,其特征在于,
    对于根据所述至少一个半静态调度配置中的半静态调度配置进行发送的设备,采用对应的编码方式对待发送的物理信道进行编码;和/或,
    对于根据所述至少一个半静态调度配置中的半静态调度配置进行接收的设备,采用对应的编码方式对接收的物理信道进行解码。
  16. 根据权利要求15所述的方法,其特征在于,所述物理信道为上行数据信道或者下行数据信道。
  17. 根据权利要求1至12中任一项所述的方法,其特征在于,在所述配置信息用于配置所述第一传输块对应的信道编码方式的情况下,所述配置信息为半静态配置信息,或者,所述配置信息为动态配置信息。
  18. 根据权利要求17所述的方法,其特征在于,
    对于发送所述第一传输块的设备,采用所述第一传输块对应的编码方式对所述第一传输块进行编码;和/或,
    对于接收所述第一传输块的设备,采用所述第一传输块对应的编码方式对所述第一传输块进行解码。
  19. 根据权利要求1至12中任一项所述的方法,其特征在于,在所述配置信息用于配置所述第一下行控制信道对应的信道编码方式的情况下,所述配置信息为半静态配置信息,或者,所述配置信息为动态配置信息。
  20. 根据权利要求19所述的方法,其特征在于,
    在所述配置信息为动态配置信息的情况下,所述配置信息用于配置所述第一下行控制信道对应的多种信道编码方式。
  21. 根据权利要求20所述的方法,其特征在于,
    对于发送所述第一下行控制信道的设备,采用所述多种信道编码方式中的一种信道编码方式对所述第一下行控制信道进行编码;和/或,
    对于接收所述第一下行控制信道的设备,采用所述多种信道编码方式盲检测所述第一下行控制信道。
  22. 根据权利要求1至21中任一项所述的方法,其特征在于,所述信道编码方式包括以下中的至少一种:
    极化编码、低密度奇偶校验码LDPC编码、里德-所罗门RS编码。
  23. 一种信道编码方法,其特征在于,包括:
    受控设备接收控制设备发送的配置信息,其中,所述配置信息用于配置以下中的一种:
    至少一个半静态调度配置对应的信道编码方式;
    第一传输块对应的信道编码方式,且所述第一传输块的比特数小于第一阈值且大于第二阈值;
    第一下行控制信道对应的信道编码方式。
  24. 根据权利要求23所述的方法,其特征在于,所述配置信息为根据第一信息确定的,其中,所述第一信息包括以下中的至少一种:
    当前时间,所述控制设备所处的地理位置、所述受控设备所处的地理位置、信道干扰情况。
  25. 根据权利要求24所述的方法,其特征在于,所述信道干扰情况为通过检测至少一个子载波上的接收功率获取的。
  26. 根据权利要求25所述的方法,其特征在于,所述至少一个子载波由所述控制设备或所述受控设备根据自身实现方式选取,或者由所述控制设备或所述受控设备随机选取。
  27. 根据权利要求24至26中任一项所述的方法,其特征在于,所述配置信息为根据所述第一信息和第一对应关系确定的,其中,所述第一对应关系包括以下中的至少一种:
    时间信息与信道编码方式之间的对应关系,所述控制设备所处的地理位置与信道编码方式之间的对应关系,时间信息和所述控制设备所处的地理位置与信道编码方式之间的关系,所述受控设备所处的地理位置与信道编码方式之间的对应关系,信道干扰情况与信道编码方式之间的对应关系。
  28. 根据权利要求27所述的方法,其特征在于,所述第一对应关系为基于预配置信息确定的。
  29. 根据权利要求27所述的方法,其特征在于,所述第一对应关系为基于信道干扰情况确定或者更新的。
  30. 根据权利要求24至29中任一项所述的方法,其特征在于,所述方法还包括:
    所述受控设备接收所述控制设备在所述第一信息发生改变的情况下发送的动态信令,所述动态信令用于指示所述受控设备变更所述配置信息所配置的信道编码方式。
  31. 根据权利要求30所述的方法,其特征在于,所述动态信令还用于调度下行发送或者上行发送,且所述动态信令所指示变更的信道编码方式仅对所述动态信令所调度的下行发送或者上行发送有效。
  32. 根据权利要求30所述的方法,其特征在于,所述动态信令所指示变更的信道编码方式仅对一个无线帧内发送的下行控制信道有效。
  33. 根据权利要求30至32中任一项所述的方法,其特征在于,所述动态信令承载于下行控制信道中,或者,所述动态信令承载于广播信道中。
  34. 根据权利要求23至33中任一项所述的方法,其特征在于,所述第一阈值和所述第二阈值为预配置的或者协议约定的,或者,所述第一阈值和所述第二阈值为所述控制设备确定的。
  35. 根据权利要求23至34中任一项所述的方法,其特征在于,在所述配置信息用于配置所述至少一个半静态调度配置对应的信道编码方式的情况下,所述配置信息为半静态配置信息。
  36. 根据权利要求35所述的方法,其特征在于,
    未配置信道编码方式的半静态调度配置对应默认编码方式或者缺省编码方式。
  37. 根据权利要求35或36所述的方法,其特征在于,
    对于根据所述至少一个半静态调度配置中的半静态调度配置进行发送的设备,采用对应的编码方式对待发送的物理信道进行编码;和/或,
    对于根据所述至少一个半静态调度配置中的半静态调度配置进行接收的设备,采用对应的编码方式对接收的物理信道进行解码。
  38. 根据权利要求37所述的方法,其特征在于,所述物理信道为上行数据信道或者下行数据信道。
  39. 根据权利要求23至34中任一项所述的方法,其特征在于,在所述配置信息用于配置所述第一传输块对应的信道编码方式的情况下,所述配置信息为半静态配置信息,或者,所述配置信息为动态配置信息。
  40. 根据权利要求39所述的方法,其特征在于,
    对于发送所述第一传输块的设备,采用所述第一传输块对应的编码方式对所述第一传输块进行编码;和/或,
    对于接收所述第一传输块的设备,采用所述第一传输块对应的编码方式对所述第一传输块进行解码。
  41. 根据权利要求23至34中任一项所述的方法,其特征在于,在所述配置信息用于配置所述第一下行控制信道对应的信道编码方式的情况下,所述配置信息为半静态配置信息,或者,所述配置信息为动态配置信息。
  42. 根据权利要求41所述的方法,其特征在于,在所述配置信息为动态配置信息的情况下,所述配置信息用于配置所述第一下行控制信道对应的多种信道编码方式。
  43. 根据权利要求42所述的方法,其特征在于,
    对于发送所述第一下行控制信道的设备,采用所述多种信道编码方式中的一种信道编码方式对所述第一下行控制信道进行编码;和/或,
    对于接收所述第一下行控制信道的设备,采用所述多种信道编码方式盲检测所述第一下行控制信道。
  44. 根据权利要求23至43中任一项所述的方法,其特征在于,所述信道编码方式包括以下中的至少一种:
    极化编码、低密度奇偶校验码LDPC编码、里德-所罗门RS编码。
  45. 一种控制设备,其特征在于,包括:
    通信单元,用于向受控设备发送配置信息,其中,所述配置信息用于配置以下中的一种:
    至少一个半静态调度配置对应的信道编码方式;
    第一传输块对应的信道编码方式,且所述第一传输块的比特数小于第一阈值且大于第二阈值;
    第一下行控制信道对应的信道编码方式。
  46. 根据权利要求45所述的控制设备,其特征在于,所述控制设备还包括:
    处理单元,用于根据第一信息确定所述配置信息,其中,
    所述第一信息包括以下中的至少一种:
    当前时间,所述控制设备所处的地理位置、所述受控设备所处的地理位置、信道干扰情况。
  47. 根据权利要求46所述的控制设备,其特征在于,所述信道干扰情况为通过检测至少一个子载波上的接收功率获取的。
  48. 根据权利要求47所述的控制设备,其特征在于,所述至少一个子载波由所述控制设备或所述受控设备根据自身实现方式选取,或者由所述控制设备或所述受控设备随机选取。
  49. 根据权利要求46至48中任一项所述的控制设备,其特征在于,所述处理单元具体用于:
    根据所述第一信息和第一对应关系确定所述配置信息,
    其中,所述第一对应关系包括以下中的至少一种:
    时间信息与信道编码方式之间的对应关系,所述控制设备所处的地理位置与信道编码方式之间的对应关系,时间信息和所述控制设备所处的地理位置与信道编码方式之间的关系,所述受控设备所处的地理位置与信道编码方式之间的对应关系,信道干扰情况与信道编码方式之间的对应关系。
  50. 根据权利要求49所述的控制设备,其特征在于,所述第一对应关系为基于预配置信息确定的。
  51. 根据权利要求49所述的控制设备,其特征在于,所述处理单元还用于根据信道干扰情况,确定或者更新所述第一对应关系。
  52. 根据权利要求46至51中任一项所述的控制设备,其特征在于,
    在所述第一信息发生改变的情况下,所述通信单元还用于向所述受控设备发送动态信令,所述动态信令用于指示所述受控设备变更所述配置信息所配置的信道编码方式。
  53. 根据权利要求52所述的控制设备,其特征在于,所述动态信令还用于调度下行发送或者上行发送,且所述动态信令所指示变更的信道编码方式仅对所述动态信令所调度的下行发送或者上行发送有效。
  54. 根据权利要求52所述的控制设备,其特征在于,所述动态信令所指示变更的信道编码方式仅对一个无线帧内发送的下行控制信道有效。
  55. 根据权利要求52至54中任一项所述的控制设备,其特征在于,所述动态信令承载于下行控制信道中,或者,所述动态信令承载于广播信道中。
  56. 根据权利要求45至55中任一项所述的控制设备,其特征在于,所述第一阈值和所述第二阈值为预配置的或者协议约定的,或者,所述第一阈值和所述第二阈值为所述控制设备确定的。
  57. 根据权利要求45至56中任一项所述的控制设备,其特征在于,在所述配置信息用于配置所述至少一个半静态调度配置对应的信道编码方式的情况下,所述配置信息为半静态配置信息。
  58. 根据权利要求57所述的控制设备,其特征在于,
    未配置信道编码方式的半静态调度配置对应默认编码方式或者缺省编码方式。
  59. 根据权利要求57或58所述的控制设备,其特征在于,
    对于根据所述至少一个半静态调度配置中的半静态调度配置进行发送的设备,采用对应的编码方式对待发送的物理信道进行编码;和/或,
    对于根据所述至少一个半静态调度配置中的半静态调度配置进行接收的设备,采用对应的编码方式对接收的物理信道进行解码。
  60. 根据权利要求59所述的控制设备,其特征在于,所述物理信道为上行数据信道或者下行数据信道。
  61. 根据权利要求45至56中任一项所述的控制设备,其特征在于,在所述配置信息用于配置所述第一传输块对应的信道编码方式的情况下,所述配置信息为半静态配置信息,或者,所述配置信息为动态配置信息。
  62. 根据权利要求61所述的控制设备,其特征在于,
    对于发送所述第一传输块的设备,采用所述第一传输块对应的编码方式对所述第一传输块进行编码;和/或,
    对于接收所述第一传输块的设备,采用所述第一传输块对应的编码方式对所述第一传输块进行解码。
  63. 根据权利要求45至56中任一项所述的控制设备,其特征在于,在所述配置信息用于配置所述第一下行控制信道对应的信道编码方式的情况下,所述配置信息为半静态配置信息,或者,所述配置信息为动态配置信息。
  64. 根据权利要求63所述的控制设备,其特征在于,
    在所述配置信息为动态配置信息的情况下,所述配置信息用于配置所述第一下行控制信道对应的多种信道编码方式。
  65. 根据权利要求64所述的控制设备,其特征在于,
    对于发送所述第一下行控制信道的设备,采用所述多种信道编码方式中的一种信道编码方式对所述第一下行控制信道进行编码;和/或,
    对于接收所述第一下行控制信道的设备,采用所述多种信道编码方式盲检测所述第一下行控制信道。
  66. 根据权利要求45至65中任一项所述的控制设备,其特征在于,所述信道编码方式包括以下中的至少一种:
    极化编码、低密度奇偶校验码LDPC编码、里德-所罗门RS编码。
  67. 一种受控设备,其特征在于,包括:
    通信单元,用于接收控制设备发送的配置信息,其中,所述配置信息用于配置以下中的一种:
    至少一个半静态调度配置对应的信道编码方式;
    第一传输块对应的信道编码方式,且所述第一传输块的比特数小于第一阈值且大于第二阈值;
    第一下行控制信道对应的信道编码方式。
  68. 根据权利要求67所述的受控设备,其特征在于,所述配置信息为根据第一信息确定的,其中,
    所述第一信息包括以下中的至少一种:
    当前时间,所述控制设备所处的地理位置、所述受控设备所处的地理位置、信道干扰情况。
  69. 根据权利要求68所述的受控设备,其特征在于,所述信道干扰情况为通过检测至少一个子载波上的接收功率获取的。
  70. 根据权利要求69所述的受控设备,其特征在于,所述至少一个子载波由所述控制设备或所述受控设备根据自身实现方式选取,或者由所述控制设备或所述受控设备随机选取。
  71. 根据权利要求68至70中任一项所述的受控设备,其特征在于,所述配置信息为根据所述第一信息和第一对应关系确定的,其中,所述第一对应关系包括以下中的至少一种:
    时间信息与信道编码方式之间的对应关系,所述控制设备所处的地理位置与信道编码方式之间的对应关系,时间信息和所述受控设备所处的地理位置与信道编码方式之间的关系,所述受控设备所处的地理位置与信道编码方式之间的对应关系,信道干扰情况与信道编码方式之间的对应关系。
  72. 根据权利要求71所述的受控设备,其特征在于,所述第一对应关系为基于预配置信息确定的。
  73. 根据权利要求71所述的受控设备,其特征在于,所述第一对应关系为基于信道干扰情况确定或者更新的。
  74. 根据权利要求68至73中任一项所述的受控设备,其特征在于,所述通信单元还用于接收所述控制设备在所述第一信息发生改变的情况下发送的动态信令,所述动态信令用于指示所述受控设备变更所述配置信息所配置的信道编码方式。
  75. 根据权利要求74所述的受控设备,其特征在于,所述动态信令还用于调度下行发送或者上行发送,且所述动态信令所指示变更的信道编码方式仅对所述动态信令所调度的下行发送或者上行发送有效。
  76. 根据权利要求74所述的受控设备,其特征在于,所述动态信令所指示变更的信道编码方式仅对一个无线帧内发送的下行控制信道有效。
  77. 根据权利要求74至76中任一项所述的受控设备,其特征在于,所述动态信令承载于下行控制信道中,或者,所述动态信令承载于广播信道中。
  78. 根据权利要求67至77中任一项所述的受控设备,其特征在于,所述第一阈值和所述第二阈值为预配置的或者协议约定的,或者,所述第一阈值和所述第二阈值为所述控制设备确定的。
  79. 根据权利要求67至78中任一项所述的受控设备,其特征在于,在所述配置信息用于配置所述至少一个半静态调度配置对应的信道编码方式的情况下,所述配置信息为半静态配置信息。
  80. 根据权利要求79所述的受控设备,其特征在于,
    未配置信道编码方式的半静态调度配置对应默认编码方式或者缺省编码方式。
  81. 根据权利要求79或80所述的受控设备,其特征在于,
    对于根据所述至少一个半静态调度配置中的半静态调度配置进行发送的设备,采用对应的编码方式对待发送的物理信道进行编码;和/或,
    对于根据所述至少一个半静态调度配置中的半静态调度配置进行接收的设备,采用对应的编码方式对接收的物理信道进行解码。
  82. 根据权利要求81所述的受控设备,其特征在于,所述物理信道为上行数据信道或者下行数据信道。
  83. 根据权利要求67至77中任一项所述的受控设备,其特征在于,在所述配置信息用于配置所述第一传输块对应的信道编码方式的情况下,所述配置信息为半静态配置信息,或者,所述配置信息为动态配置信息。
  84. 根据权利要求83所述的受控设备,其特征在于,
    对于发送所述第一传输块的设备,采用所述第一传输块对应的编码方式对所述第一传输块进行编码;和/或,
    对于接收所述第一传输块的设备,采用所述第一传输块对应的编码方式对所述第一传输块进行解码。
  85. 根据权利要求67至77中任一项所述的受控设备,其特征在于,在所述配置信息用于配置所述第一下行控制信道对应的信道编码方式的情况下,所述配置信息为半静态配置信息,或者,所述配置信息为动态配置信息。
  86. 根据权利要求85所述的受控设备,其特征在于,在所述配置信息为动态配置信息的情况下,所述配置信息用于配置所述第一下行控制信道对应的多种信道编码方式。
  87. 根据权利要求86所述的受控设备,其特征在于,
    对于发送所述第一下行控制信道的设备,采用所述多种信道编码方式中的一种信道编码方式对所 述第一下行控制信道进行编码;和/或,
    对于接收所述第一下行控制信道的设备,采用所述多种信道编码方式盲检测所述第一下行控制信道。
  88. 根据权利要求67至87中任一项所述的受控设备,其特征在于,所述信道编码方式包括以下中的至少一种:
    极化编码、低密度奇偶校验码LDPC编码、里德-所罗门RS编码。
  89. 一种控制设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至22中任一项所述的方法。
  90. 一种受控设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求23至44中任一项所述的方法。
  91. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至22中任一项所述的方法。
  92. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求23至44中任一项所述的方法。
  93. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  94. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求23至44中任一项所述的方法。
  95. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至22中任一项所述的方法。
  96. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求23至44中任一项所述的方法。
  97. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至22中任一项所述的方法。
  98. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求23至44中任一项所述的方法。
PCT/CN2020/095821 2020-06-12 2020-06-12 信道编码方法、控制设备和受控设备 WO2021248455A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/095821 WO2021248455A1 (zh) 2020-06-12 2020-06-12 信道编码方法、控制设备和受控设备
CN202310162301.3A CN116192335A (zh) 2020-06-12 2020-06-12 信道编码方法、控制设备和受控设备
EP20939676.1A EP4156566A4 (en) 2020-06-12 2020-06-12 CHANNEL CODING METHOD, CONTROL DEVICE AND CONTROLLED DEVICE
CN202080098803.9A CN115298981A (zh) 2020-06-12 2020-06-12 信道编码方法、控制设备和受控设备
US18/075,572 US20230097206A1 (en) 2020-06-12 2022-12-06 Channel encoding method and control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095821 WO2021248455A1 (zh) 2020-06-12 2020-06-12 信道编码方法、控制设备和受控设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/075,572 Continuation US20230097206A1 (en) 2020-06-12 2022-12-06 Channel encoding method and control device

Publications (1)

Publication Number Publication Date
WO2021248455A1 true WO2021248455A1 (zh) 2021-12-16

Family

ID=78846784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095821 WO2021248455A1 (zh) 2020-06-12 2020-06-12 信道编码方法、控制设备和受控设备

Country Status (4)

Country Link
US (1) US20230097206A1 (zh)
EP (1) EP4156566A4 (zh)
CN (2) CN116192335A (zh)
WO (1) WO2021248455A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060233280A1 (en) * 2005-04-19 2006-10-19 Telefonaktiebolaget L M Ericsson Selection of channel coding and multidimensional interleaving schemes for improved performance
CN107800508A (zh) * 2016-08-31 2018-03-13 中兴通讯股份有限公司 一种信道编码指示方法、装置及系统
CN109873687A (zh) * 2019-03-29 2019-06-11 深圳职业技术学院 一种物联网中基于信噪比的信息处理方法、系统及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8566676B2 (en) * 2007-01-05 2013-10-22 Qualcomm Incorporated FEC code and code rate selection based on packet size
GB2448897A (en) * 2007-05-01 2008-11-05 Nec Corp Control channel communications in a cellular communications network
WO2014070049A1 (en) * 2012-10-29 2014-05-08 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for semi-persistent scheduling
US20170026976A1 (en) * 2015-07-20 2017-01-26 Qualcomm Incorporated Flexible coding schemes
CA3000200C (en) * 2015-10-06 2020-10-20 Kodiak Networks, Inc. Ptt network with radio condition aware media packet aggregation scheme
US10243638B2 (en) * 2016-10-04 2019-03-26 At&T Intellectual Property I, L.P. Forward error correction code selection in wireless systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060233280A1 (en) * 2005-04-19 2006-10-19 Telefonaktiebolaget L M Ericsson Selection of channel coding and multidimensional interleaving schemes for improved performance
CN107800508A (zh) * 2016-08-31 2018-03-13 中兴通讯股份有限公司 一种信道编码指示方法、装置及系统
CN109873687A (zh) * 2019-03-29 2019-06-11 深圳职业技术学院 一种物联网中基于信噪比的信息处理方法、系统及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "PDCCH design principles", 3GPP DRAFT; R1-071548 - DL PDCCH DESIGN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. St. Julian; 20070403, 3 April 2007 (2007-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050105479 *

Also Published As

Publication number Publication date
EP4156566A4 (en) 2023-07-05
EP4156566A1 (en) 2023-03-29
CN115298981A (zh) 2022-11-04
US20230097206A1 (en) 2023-03-30
CN116192335A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
CN110912656B (zh) 一种通信方法及装置
US20170230977A1 (en) Base station, user equipment and associated methods
WO2018127241A1 (zh) Dci传输方法、用户终端和网络侧设备
WO2020135117A1 (zh) 通信方法、通信装置及存储介质
US20230056664A1 (en) Communication method and apparatus
CN111130727B (zh) 一种数据传输方法及终端设备
WO2016161656A1 (zh) 一种信道状态信息的上报方法、用户设备和基站
WO2018201962A1 (zh) 一种信息处理方法以及设备
US20210105745A1 (en) Data transmission method, network device and terminal device
US20210168793A1 (en) Channel Resource Set Indication Method and Device, and Computer Storage Medium
WO2019191880A1 (zh) 一种资源配置的方法、设备及计算机存储介质
WO2021248455A1 (zh) 信道编码方法、控制设备和受控设备
WO2021134717A1 (zh) 数据传输方法及装置
WO2020020316A1 (zh) 通信方法及装置
CN111757470A (zh) 一种资源配置方法及通信装置
CN112740826A (zh) 一种能力上报方法及终端设备
EP4221391A1 (en) Communication method and apparatus
WO2022082511A1 (zh) 无线通信的方法及设备
WO2021226850A1 (zh) Harq-ack码本的反馈方法、终端设备和网络设备
CN113170440B (zh) 一种通信方法及装置
WO2021031026A1 (zh) 一种下行控制信息dci的传输方法及装置
WO2021088063A1 (zh) 一种通信方法及装置
CN114846884A (zh) 一种通信方法及装置
WO2019192002A1 (zh) 信息传输方法、终端设备和网络设备
CN113810949A (zh) 数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020939676

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE