WO2021248329A1 - 信道估计方法、装置、设备及存储介质 - Google Patents

信道估计方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021248329A1
WO2021248329A1 PCT/CN2020/095178 CN2020095178W WO2021248329A1 WO 2021248329 A1 WO2021248329 A1 WO 2021248329A1 CN 2020095178 W CN2020095178 W CN 2020095178W WO 2021248329 A1 WO2021248329 A1 WO 2021248329A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
coreset
channel estimation
coresets
repeatedly transmitted
Prior art date
Application number
PCT/CN2020/095178
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/928,907 priority Critical patent/US20230231743A1/en
Priority to CN202080001252.XA priority patent/CN111837369B/zh
Priority to EP20939752.0A priority patent/EP4164186A4/en
Priority to PCT/CN2020/095178 priority patent/WO2021248329A1/zh
Publication of WO2021248329A1 publication Critical patent/WO2021248329A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a channel estimation method, device, device, and storage medium.
  • NR New Radio
  • Reduced Capability UE also called NR-lite for short.
  • the reduced capability terminal usually needs to meet the following requirements: low cost and low complexity; a certain degree of coverage enhancement; power saving.
  • the reduced capability terminal needs to support physical downlink control channel (Physical Downlink Control Channel, PDCCH) retransmission.
  • PDCCH Physical Downlink Control Channel
  • the embodiments of the present disclosure provide a channel estimation method, device, equipment, and storage medium.
  • Channel estimation is performed by using all the DM-RSs on the N repeatedly transmitted CORESETs to realize cross-CORESET channel estimation and improve the channel estimation performance. accuracy.
  • the technical solution is as follows:
  • a channel estimation method including:
  • N is a positive integer greater than 1;
  • the N repeatedly transmitted CORESETs correspond to the same frequency domain resource and/or precoding matrix.
  • a channel estimation method including:
  • N is a positive integer greater than 1
  • the N repeatedly transmitted CORESETs correspond to the same frequency domain resource and/or precoding matrix, and all DM-RSs on the N repeatedly transmitted CORESETs are used for the terminal device to perform channel estimation.
  • a channel estimation device comprising: a channel estimation module;
  • the channel estimation module is configured to perform channel estimation using all DM-RSs on consecutive N repeated transmissions of CORESET, where N is a positive integer greater than 1;
  • the N repeatedly transmitted CORESETs correspond to the same frequency domain resource and/or precoding matrix.
  • a channel estimation device comprising: a sending module;
  • the sending module is configured to send consecutive N repeated transmissions of CORESET, where N is a positive integer greater than 1;
  • the N repeatedly transmitted CORESETs correspond to the same frequency domain resource and/or precoding matrix, and all DM-RSs on the N repeatedly transmitted CORESETs are used for the terminal device to perform channel estimation.
  • a terminal device comprising: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; The processor is configured to load and execute the executable instructions to implement the channel estimation method as described in the above aspect.
  • a network device including: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; The processor is configured to load and execute the executable instructions to implement the channel estimation method as described in the above aspect.
  • a computer-readable storage medium having executable instructions stored in the computer-readable storage medium, and the executable instructions are loaded and executed by the processor to implement the aforementioned aspects.
  • the described channel estimation method is provided.
  • a computer program product configured to cause the device to execute the method of the above aspect when executed on a device including a processor and a memory.
  • the computer program product may be included in a tangible, non-transitory computer readable medium or provided on a tangible, non-transitory computer readable medium.
  • the terminal device performs channel estimation by using all the DM-RSs on the N repeatedly transmitted CORESETs to realize the cross-CORESET channel Estimation, compared to only performing channel estimation inside a CORESET, improves the accuracy of channel estimation.
  • Fig. 1 is a block diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a flowchart of a channel estimation method provided by an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of repeated transmission of CORESET provided by an exemplary embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of repeated transmission of CORESET provided by an exemplary embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of repeated transmission of CORESET provided by an exemplary embodiment of the present disclosure.
  • Fig. 6 is a block diagram of a channel estimation device provided by an exemplary embodiment of the present disclosure.
  • Fig. 7 is a block diagram of a channel estimation device provided by an exemplary embodiment of the present disclosure.
  • Fig. 8 is a block diagram of a communication device provided by an exemplary embodiment of the present disclosure.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: an access network 12 and a terminal device 14.
  • the access network 12 includes several network devices 120.
  • the network device 120 may be a base station, which is a device deployed in an access network to provide wireless communication functions for terminal devices.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different. For example, in LTE systems, they are called eNodeB or eNB; in 5G NR systems, they are called gNodeB or gNB.
  • the description of "base station” may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal device 14 are collectively referred to as network devices.
  • the terminal device 14 may include various handheld devices with wireless communication functions, in-vehicle devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of user equipment, and mobile stations (Mobile Station, MS). , Terminal (terminal device) and so on.
  • Terminal terminal device
  • the network device 120 and the terminal device 14 communicate with each other through a certain air interface technology, such as a Uu interface.
  • the terminal device 14 is a reduced-capability terminal (Reduced-capability UE).
  • the reduced capability terminal is a type of terminal equipment for scenarios with higher speed and lower delay.
  • the reduced capability terminal usually needs to meet the following requirements: low cost and low complexity; a certain degree of coverage enhancement; power saving.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NR Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle networking
  • Fig. 2 shows a flowchart of a channel estimation method provided by an exemplary embodiment of the present disclosure, which is applied to the terminal equipment and network equipment shown in Fig. 1.
  • the method includes:
  • Step 210 The network device sends N consecutive repeated transmissions of CORESET to the terminal device.
  • N repeatedly transmitted CORESETs correspond to the same frequency domain resource and/or precoding matrix, and N is an integer greater than 1.
  • the control resource set is a time and frequency related resource on which the terminal device attempts to use one or more search spaces to decode possible PDCCHs.
  • CORESET can be logically mapped to a group of continuous control channel elements (Control Channel Element, CCE), PDCCH can be transmitted on a CCE or a collection of several continuous CCEs, where CCEs can correspond to several resource element groups (Resource Element Groups). Group, REG).
  • the size and time-frequency position of CORESET are semi-statically configured by network equipment.
  • the network device sends N repeated transmissions of CORESET to the terminal device.
  • the foregoing N repeated transmissions of CORESET are continuous in the time domain and have the same frequency domain resource location, for example, they are all located in the frequency domains a to b.
  • the network device uses the same precoder to precode the N CORESETs, so that each CORESET corresponds to the same precoding matrix, so that the terminal device can use the N CORESETs to perform accurate channel estimation.
  • the consecutive N repeatedly transmitted CORESETs means that the N repeatedly transmitted CORESETs are all continuous in the time domain. In some embodiments of the present disclosure, the aforementioned N repeatedly transmitted CORESETs have the same frequency domain resource location.
  • the consecutive N repeatedly transmitted CORESETs means that the M CORESETs of the N repeatedly transmitted CORESETs are continuous in the time domain, and the other NM CORESETs are the same as the M CORESETs. It is discontinuous in the time domain; where 1 ⁇ M ⁇ N. In some embodiments of the present disclosure, the aforementioned N repeatedly transmitted CORESETs have the same frequency domain resource location.
  • step 220 the terminal device uses all the DM-RSs on consecutive N repeated transmissions of CORESET to perform channel estimation.
  • the terminal device is a reduced-capability terminal (Reduced-capability UE).
  • DM-RS Demodulation Reference Signals
  • PDSCH Physical Downlink Shared Channel
  • Channel estimation refers to the estimation of the transmission characteristics of the transmission channel in the frequency domain or the time domain by the terminal equipment.
  • the terminal equipment can learn the channel state information through channel estimation, which can effectively offset the distortion caused by the data via the wireless multipath channel, and correctly restore the data transmitted by the transmitting end, thereby improving the data transmission performance of the communication system.
  • each CORESET includes several Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain, and each OFDM symbol has a DM-RS, and the terminal device uses all of the multiple CORESET symbols.
  • the DM-RS or part of the DM-RS performs channel estimation.
  • the N repeatedly transmitted CORESETs are located at any position of a time slot in the time domain, such as: at the start position of a time slot; at the middle position of a time slot, etc. The embodiment of the present disclosure does not limit this.
  • the terminal equipment uses all DM-RSs on multiple CORESETs or some of the DM-RSs to perform channel estimation methods including but not limited to: pilot estimation methods, common estimation criteria include least squares criteria Sum minimum mean square error criterion; interpolation methods, including linear interpolation, constant interpolation, Gaussian interpolation, discrete Fourier transform (Discrete Fourier Transform, DFT)-based interpolation and sinc function interpolation, etc.
  • pilot estimation methods common estimation criteria include least squares criteria Sum minimum mean square error criterion
  • interpolation methods including linear interpolation, constant interpolation, Gaussian interpolation, discrete Fourier transform (Discrete Fourier Transform, DFT)-based interpolation and sinc function interpolation, etc.
  • the terminal device needs to determine the value of N before using all the DM-RSs on the N repeatedly transmitted CORESETs to perform channel estimation.
  • the terminal device determines the value of N through a predefined rule.
  • the terminal device receives at least one piece of configuration information from the network device; and determines the value of N according to the at least one piece of configuration information.
  • the network device sends at least one piece of configuration information through high-layer signaling.
  • the network device sends configuration information through high-level signaling, and the configuration information is used to indicate the value of the parameter N; or the configuration information is used to instruct the network device to calculate the value of the parameter N through the configuration information; or the configuration
  • the information is the identifier corresponding to the parameter N, so that the network device determines the value of the parameter N from the preset correspondence relationship between the identifier and the value according to the identifier.
  • the terminal device determines the value of N through a communication protocol.
  • the terminal device needs to determine the value of M before using all the DM-RSs on the M CORESETs of the N repeatedly transmitted CORESETs to perform channel estimation.
  • the value of M can also be determined in the same or similar manner as the aforementioned determination parameter N, which is not limited in the embodiment of the present disclosure.
  • the terminal device uses all the above N repeatedly transmitted CORESETs.
  • the DM-RS or part of the DM-RS performs channel estimation and realizes cross-CORESET channel estimation. Compared with only performing channel estimation within one CORESET, the accuracy of channel estimation is improved.
  • the embodiment of the present disclosure also proposes a DM-RS transmission method.
  • DM-RS transmission method can be used in conjunction with any embodiment of the present disclosure, or can be used independently of any embodiment of the present disclosure.
  • the distribution of DM-RS on N CORESETs is different.
  • the DM-RS patterns corresponding to the N repeatedly transmitted CORESETs are mutually independent; the DM-RS patterns corresponding to the N repeatedly transmitted CORESETs are related and not independent of each other.
  • the time domain length of each CORESET of the N repeatedly transmitted CORESETs includes any one of one OFDM symbol, two OFDM symbols, and three OFDM symbols.
  • the length of the time domain of the N repeatedly transmitted CORESETs is the same, all of which are one OFDM symbol; or, all are two OFDM symbols; or, all are three OFDM symbols. It should be noted that in future evolution, the time domain length of the N repeatedly transmitted CORESETs may also be other time lengths, which is not limited in the embodiment of the present disclosure.
  • the DM-RS pattern includes a first DM-RS pattern; wherein, the first DM-RS pattern includes: the second resource unit, the sixth resource unit, and the second resource unit of the OFDM symbol distributed in CORESET. 10 resource units.
  • a CORESET includes several OFDM symbols.
  • a Resource Block (RB) includes 12 Resource Elements (RE), and DM-RS is fixed in the second, sixth, and tenth ones.
  • the DM-RS pattern corresponding to the CORESET is the first DM-RS pattern.
  • the N repeatedly transmitted CORESET corresponding to the DM-RS pattern are all the first DM-RS pattern.
  • the same DM-RS pattern corresponding to the N repeatedly transmitted CORESETs may also be other DM-RS patterns other than the first DM-RS pattern, which is not limited in the embodiment of the present disclosure.
  • Fig. 3 shows a schematic diagram of repeated transmission of CORESET provided by an exemplary embodiment of the present disclosure.
  • N is 3, and N repeated transmissions of CORESET include: CORESET 301, CORESET 302, and CORESET 303.
  • the time domain length of CORESET 301, CORESET 302 and CORESET 303 are all three OFDM symbols.
  • the DM-RS is distributed on the second resource unit, the sixth resource unit, and the tenth resource unit of the 3 OFDM symbols of the CORESET.
  • the time domain length of each CORESET of the N repeatedly transmitted CORESETs includes any one of one OFDM symbol, two OFDM symbols, and three OFDM symbols.
  • the length of the time domain of the N repeatedly transmitted CORESETs is the same, all of which are one OFDM symbol; or, all are two OFDM symbols; or, all are three OFDM symbols. It should be noted that in future evolution, the time domain length of the N repeatedly transmitted CORESETs may also be other time lengths, which is not limited in the embodiment of the present disclosure.
  • the DM-RS pattern includes a second DM-RS pattern and a third DM-RS pattern; wherein, the distribution of the third DM-RS pattern in the frequency domain is the same as that of the second DM-RS pattern.
  • the distribution in the frequency domain is different and independent.
  • the second DM-RS pattern is the DM-RS pattern corresponding to one CORESET of the N repeated transmissions of CORESET
  • the third DM-RS pattern is the DM-RS pattern corresponding to another CORESET of the N repeated transmissions of CORESET.
  • the distribution of the second DM-RS pattern and the third DM-RS pattern are independent of each other. That is, the DM-RS patterns corresponding to any two CORESETs of the N repeated transmissions of CORESETs are different and independent.
  • the number of DM-RSs in the second DM-RS pattern and the third DM-RS pattern are the same or different. That is: the DM-RS in the second DM-RS pattern and the third DM-RS pattern are both distributed on a resource units, a is a positive integer; or, the DM-RS in the second DM-RS pattern is distributed on b In terms of resource units, the DM-RS in the third DM-RS pattern is distributed on c resource units, and b and c are unequal positive integers.
  • FIG. 4 shows a schematic diagram of repeated transmission of CORESET provided by an exemplary embodiment of the present disclosure.
  • N is 2, and N repeated transmissions of CORESET include: CORESET 401 and CORESET 402.
  • the time domain length of CORESET 401 and CORESET 402 are both three OFDM symbols.
  • CORESET401 corresponds to the second DM-RS pattern, and DM-RS is distributed on the second resource unit, the sixth resource unit, and the 10th resource unit of the 3 OFDM symbols of CORESET 401.
  • CORESET 402 corresponds to the third DM-RS pattern, and DM-RS is distributed on the first resource unit, the eighth resource unit, and the ninth resource unit of the 3 OFDM symbols of CORESET 402.
  • the distribution of the second DM-RS pattern and the third DM-RS pattern are independent of each other.
  • the DM-RS pattern includes a second DM-RS pattern and a third DM-RS pattern; wherein, the third DM-RS pattern is the second DM-RS pattern after the second DM-RS pattern is shifted in the frequency domain. The pattern formed.
  • the third DM-RS pattern includes : DM-RS is distributed on the a+mth resource unit, b+mth resource unit, and c+mth resource unit of the OFDM symbol in CORESET, or DM-RS is distributed on the OFDM symbol in CORESET On the anth resource unit, the bnth resource unit, and the cnth resource unit.
  • a resource block includes 12 resource units, it can be understood that the foregoing a, b, c, a+m, b+m, c+m, a-n, b-n, and c-n are all positive integers not greater than 12. If the second DM-RS pattern is shifted in the frequency domain, a certain resource unit after shifting is the dth resource unit, and d is an integer greater than 12 (or less than 1).
  • the third DM -The RS pattern does not include the resource unit, and the DM-RS on the resource unit does not exist in the CORESET corresponding to the third DM-RS pattern; in another implementation mode, d is modulo 12 to obtain e, the DM-RS on the e-th resource unit exists in the CORESET corresponding to the third DM-RS pattern.
  • the DM-RS is distributed on the 14th resource unit after the shift, and the 14 is modulo 2, then the CORESET corresponding to the third DM-RS pattern DM-RS is distributed on the second resource unit.
  • FIG. 5 shows a schematic diagram of repeated transmission of CORESET provided by an exemplary embodiment of the present disclosure.
  • N is 3, and N repeated transmissions of CORESET include: CORESET 501, CORESET 502, and CORESET 503.
  • the time domain length of CORESET 501, CORESET 502, and CORESET 503 are all three OFDM symbols.
  • CORESET 501 corresponds to the second DM-RS pattern, and the DM-RS is distributed on the second resource unit, the sixth resource unit, and the 10th resource unit of the 3 OFDM symbols of the CORESET.
  • CORESET 502 corresponds to a third DM-RS pattern.
  • DM-RS is distributed on the first resource unit, the fifth resource unit and the ninth resource unit of the 3 OFDM symbols of the CORESET. It is the second DM-RS.
  • the RS pattern is a pattern formed by shifting down 1 resource unit in the frequency domain.
  • CORESET 503 corresponds to another third DM-RS pattern.
  • DM-RS is distributed on the 4th resource unit, 8th resource unit and 12th resource unit of the 3 OFDM symbols of this CORESET, which is the second DM -RS pattern is a pattern formed by shifting up 2 resource units in the frequency domain.
  • the above-mentioned second DM-RS pattern includes: DM-RS is distributed on the second resource unit, the sixth resource unit, and the 10th resource unit of the OFDM symbol in the CORESET.
  • the different DM-RS patterns corresponding to the N repeatedly transmitted CORESETs are predetermined in the protocol, or the terminal device receives the second configuration information from the network device and is determined according to the second configuration information.
  • the network device sends the second configuration information through high-layer signaling.
  • the terminal device uses all the above N repeatedly transmitted CORESETs.
  • DM-RS or part of DM-RS performs channel estimation to realize cross-CORESET channel estimation, which improves the accuracy of channel estimation compared with channel estimation within only one CORESET.
  • the DM-RS patterns corresponding to the N repeatedly transmitted CORESETs may be the same or different, and can be configured according to the needs of the scene, which improves the flexibility of the channel estimation method.
  • the DM-RS patterns corresponding to the N repeated transmissions of CORESET are not the same, the DM-RS is located on more different frequency points, thereby further improving the accuracy of channel estimation.
  • the distribution of DM-RS on the CORESET is regarded as the DM-RS pattern of the CORESET.
  • case 1 and case 2 there are two cases as described above: case 1 and case 2; the embodiments of the present disclosure will not be repeated here.
  • the steps executed by the terminal device can be individually implemented as a channel estimation method on the terminal device side
  • the steps executed by the network device can be individually implemented as a channel estimation method on the network device side.
  • Fig. 6 shows a structural block diagram of a channel estimation device provided by an exemplary embodiment of the present disclosure.
  • the device can be implemented as a terminal device or as a part of a terminal device.
  • the device includes: a channel estimation module 601;
  • the channel estimation module 601 is configured to perform channel estimation using all DM-RSs on consecutive N repeated transmissions of CORESET, where N is a positive integer greater than 1;
  • the N repeatedly transmitted CORESETs correspond to the same frequency domain resource and/or precoding matrix.
  • the device further includes a receiving module 602 and a determining module 603.
  • the receiving module 602 is configured to receive the first configuration information; the determining module 603 is configured to determine the value of N according to the first configuration information; or the determining module 603 is configured to Determine the value of N according to the communication protocol.
  • the N repeatedly transmitted CORESETs correspond to the same DM-RS pattern.
  • the DM-RS pattern includes a first DM-RS pattern; wherein, the first DM-RS pattern includes: the DM-RS is distributed in the second resource unit and the sixth resource unit of the OFDM symbol in CORESET. Resource unit and the tenth resource unit.
  • the N repeatedly transmitted CORESETs correspond to different DM-RS patterns.
  • the DM-RS pattern includes a second DM-RS pattern and a third DM-RS pattern; wherein, the distribution of the third DM-RS pattern in the frequency domain is the same as that of the second DM-RS pattern.
  • the distribution in the frequency domain is different and independent.
  • the DM-RS pattern includes a second DM-RS pattern and a third DM-RS pattern; wherein, the second DM-RS pattern is formed after the second DM-RS pattern is translated in the frequency domain. Style.
  • the second DM-RS pattern includes: DM-RS is distributed on the second resource unit, the sixth resource unit, and the 10th resource unit of the OFDM symbol in the CORESET.
  • the receiving module 602 is configured to receive the second configuration information from the network device; the determining module 603 is configured to determine the different CORESET corresponding to the N repeated transmissions according to the second configuration information.
  • DM-RS style is configured to determine the different CORESET corresponding to the N repeated transmissions according to the second configuration information.
  • the time domain length of each CORESET of the N repeatedly transmitted CORESETs includes any one of one OFDM symbol, two OFDM symbols, and three OFDM symbols.
  • Fig. 7 shows a structural block diagram of a channel estimation device provided by an exemplary embodiment of the present disclosure.
  • the device can be implemented as a network device or as a part of a network device.
  • the device includes: a sending module 701;
  • the sending module 701 is configured to send consecutive N repeated transmissions of CORESET, where N is a positive integer greater than 1;
  • the N repeatedly transmitted CORESETs correspond to the same frequency domain resource and/or precoding matrix, and all the DM-RSs on the N repeatedly transmitted CORESETs are used for the terminal device to perform channel estimation.
  • the sending module 701 is configured to send first configuration information to the terminal device; where the first configuration information is used to configure the value of N.
  • the N repeatedly transmitted CORESETs correspond to the same DM-RS pattern.
  • the DM-RS pattern includes a first DM-RS pattern; wherein, the first DM-RS pattern includes: the DM-RS is distributed in the second resource unit and the sixth resource unit of the OFDM symbol in CORESET. Resource unit and the tenth resource unit.
  • the N repeatedly transmitted CORESETs correspond to different DM-RS patterns.
  • the DM-RS pattern includes a second DM-RS pattern and a third DM-RS pattern; wherein, the distribution of the third DM-RS pattern in the frequency domain is the same as that of the second DM-RS pattern.
  • the distribution in the frequency domain is different and independent.
  • the DM-RS pattern includes a second DM-RS pattern and a third DM-RS pattern; wherein, the second DM-RS pattern is formed after the second DM-RS pattern is translated in the frequency domain. Style.
  • the second DM-RS pattern includes: DM-RS is distributed on the second resource unit, the sixth resource unit, and the 10th resource unit of the OFDM symbol in the CORESET.
  • the sending module 701 is configured to send second configuration information to the terminal device; where the second configuration information is used to configure different DM-RS patterns corresponding to the N repeatedly transmitted CORESETs.
  • the time domain length of each CORESET of the N repeatedly transmitted CORESETs includes any one of one OFDM symbol, two OFDM symbols, and three OFDM symbols.
  • FIG. 8 shows a schematic structural diagram of a communication device (terminal device or network device) provided by an exemplary embodiment of the present disclosure.
  • the communication device includes: a processor 101, a receiver 102, a transmitter 103, a memory 104, and a bus 105.
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 104 is connected to the processor 101 through a bus 105.
  • the memory 104 may be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read Only Memory (Erasable Programmable Read Only Memory, EEPROM), Erasable Programmable Read Only Memory (EPROM), Static Random Access Memory (SRAM), Read Only Memory (Read -Only Memory, ROM), magnetic memory, flash memory, Programmable Read-Only Memory (PROM).
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the channel estimation method performed by the communication device provided by the foregoing method embodiments.
  • a computer program product is also provided, which is configured to cause the device to execute the method of the above aspect when executed on a device including a processor and a memory.
  • the computer program product may be included in a tangible, non-transitory computer readable medium or provided on a tangible, non-transitory computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种信道估计方法、装置、设备及存储介质,涉及通信技术领域。该方法应用于终端设备中,包括:使用连续的N个重复传输的CORESET上的所有DM-RS进行信道估计,所述N为大于1的正整数;其中,所述N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵。本实施例提供的方法,在N个重复传输的CORESET对应于相同的频域资源和预编码矩阵的情况下,终端设备通过使用上述N个重复传输的CORESET上的所有DM-RS进行信道估计,实现了跨CORESET信道估计,相比于只在一个CORESET内部进行信道估计,提高了信道估计的准确性。

Description

信道估计方法、装置、设备及存储介质 技术领域
本公开涉及通信技术领域,特别涉及一种信道估计方法、装置、设备及存储介质。
背景技术
在新空口(New Radio,NR)中,计划引入一种缩减能力终端(Reduced capability UE),又简称为NR-lite。
缩减能力终端通常需要满足如下要求:低造价、低复杂度;一定程度的覆盖增强;功率节省。为了实现覆盖增强,缩减能力终端需要支持物理下行控制信道(Physical Downlink Control Channel,PDCCH)重传。
PDCCH重传时如何进行信道估计,相关技术中尚未提供较好的解决方案。
发明内容
本公开实施例提供了一种信道估计方法、装置、设备及存储介质,通过使用上述N个重复传输的CORESET上的所有DM-RS进行信道估计,实现了跨CORESET信道估计,提高了信道估计的准确性。所述技术方案如下:
根据本公开的一个方面,提供了一种信道估计方法,所述方法包括:
使用连续的N个重复传输的CORESET上的所有解调参考信号DM-RS进行信道估计,所述N为大于1的正整数;
其中,所述N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵。
根据本公开的一个方面,提供了一种信道估计方法,所述方法包括:
发送连续的N个重复传输的CORESET,所述N为大于1的正整数;
其中,所述N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵,所述N个重复传输的CORESET上的所有DM-RS用于供终端设备进行信道估计。
根据本公开的一个方面,提供了一种信道估计装置,所述装置包括:信道 估计模块;
所述信道估计模块,被配置为使用连续的N个重复传输的CORESET上的所有DM-RS进行信道估计,所述N为大于1的正整数;
其中,所述N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵。
根据本公开的一个方面,提供了一种信道估计装置,所述装置包括:发送模块;
所述发送模块,被配置为发送连续的N个重复传输的CORESET,所述N为大于1的正整数;
其中,所述N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵,所述N个重复传输的CORESET上的所有DM-RS用于供终端设备进行信道估计。
根据本公开的一个方面,提供了一种终端设备,所述终端设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的信道估计方法。
根据本公开的一个方面,提供了一种网络设备,所述网络设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的信道估计方法。
根据本公开的一个方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行指令,所述可执行指令由所述处理器加载并执行以实现如上述方面所述的信道估计方法。
根据本公开的一个方面,提供了一种计算机程序产品,该计算机程序产品被配置为使得:在包括处理器和存储器的设备上执行时使设备执行上述方面的方法。该计算机程序产品可以被包括在有形的、非瞬时性的计算机可读介质中或在有形的、非瞬时性的计算机可读介质上提供。
本公开实施例提供的技术方案至少包括如下有益效果:
在N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵的情况下,终端设备通过使用上述N个重复传输的CORESET上的所有DM-RS进行 信道估计,实现了跨CORESET信道估计,相比于只在一个CORESET内部进行信道估计,提高了信道估计的准确性。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个示例性实施例提供的通信系统的框图;
图2是本公开一个示例性实施例提供的信道估计方法的流程图;
图3是本公开一个示例性实施例提供的重复传输的CORESET的示意图;
图4是本公开一个示例性实施例提供的重复传输的CORESET的示意图;
图5是本公开一个示例性实施例提供的重复传输的CORESET的示意图;
图6是本公开一个示例性实施例提供的信道估计装置的框图;
图7是本公开一个示例性实施例提供的信道估计装置的框图;
图8是本公开一个示例性实施例提供的通信设备的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1示出了本公开一个示例性实施例提供的通信系统的框图,该通信系统可以包括:接入网12和终端设备14。
接入网12中包括若干个网络设备120。网络设备120可以是基站,所述基站是一种部署在接入网中用以为终端设备提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE系统中,称为eNodeB或者eNB;在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一描述可能会变化。为方便本公开实施例中的描述,上述为终端设备14提供无线通信功能的装置统称为网络设备。
终端设备14可以包括各种具有无线通信功能的手持设备、车载设备、可穿 戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端(terminal device)等等。为方便描述,上面提到的设备统称为终端设备。网络设备120与终端设备14之间通过某种空口技术互相通信,例如Uu接口。
可选地,终端设备14是缩减能力终端(Reduced capability UE)。缩减能力终端是一种针对较高速率和较低时延的场景类型的终端设备。缩减能力终端通常需要满足如下要求:低造价、低复杂度;一定程度的覆盖增强;功率节省。
本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、先进的长期演进(Advanced Long Term Evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频段上的LTE(LTE-based access to Unlicensed spectrum,LTE-U)系统、NR-U系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信以及车联网(Vehicle to Everything,V2X)系统等。本公开实施例也可以应用于这些通信系统。
图2示出了本公开一个示例性实施例提供的信道估计方法的流程图,应用于如图1所示的终端设备和网络设备中。该方法包括:
步骤210,网络设备向终端设备发送连续的N个重复传输的CORESET。
其中,N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵, N为大于1的整数。
控制资源集(CORESET)是一个时间和频率的有关资源,在该资源上终端设备试图使用一个或者多个搜索空间解码可能的PDCCH。CORESET可以在逻辑上被映射到一组连续的控制信道单元(Control Channel Element,CCE),PDCCH可以在一个CCE或若干连续的CCE的集合上传输,其中CCE可以对应于若干资源单元组(Resource Element Group,REG)。CORESET的大小和时频位置是由网络设备半静态配置的。
为了通过PDCCH重传(repetition)以实现覆盖增强,网络设备向终端设备发送N个重复传输的CORESET。上述N个重复传输的CORESET在时域上是连续的,且具有相同的频域资源位置,如:都位于频域a到b。同时,网络设备使用相同的预编码器(precoder)对N个CORESET进行预编码,使得每个CORESET对应于同样的预编码矩阵,以便于终端设备采用这N个CORESET进行准确的信道估计。
在本公开的一些实施例中,连续的N个重复传输的CORESET是指,这N个重复传输的CORESET在时域上全部是连续的。在本公开的一些实施例中,上述N个重复传输的CORESET具有相同的频域资源位置。
在本公开的一些实施例中,连续的N个重复传输的CORESET是指,这N个重复传输的CORESET中的M个CORESET在时域上是连续的,且其他N-M个CORESET与这M个CORESET在时域是不连续的;其中1<M<N。在本公开的一些实施例中,上述N个重复传输的CORESET具有相同的频域资源位置。
步骤220,终端设备使用连续的N个重复传输的CORESET上的所有DM-RS进行信道估计。
可选地,终端设备是缩减能力终端(Reduced capability UE)。
解调参考信号(Demodulation Reference Signals,DM-RS)是物理层使用的不承载高层信息的下行物理信号。DM-RS用于终端设备进行信道估计并进行物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的相关解调和解码。
信道估计指的是终端设备对传输信道的频域或者时域的传输特性进行估计。终端设备通过信道估计能够获知信道的状态信息,从而能够有效抵消数据经由无线多径信道而产生的畸变,正确地恢复出发射端所发射的数据,从而提高通信系统的数据传输性能。
可选地,每个CORESET在时域上包括若干个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,每个OFDM符号上都存在DM-RS,终端设备使用多个CORESET上的所有DM-RS或其中的部分DM-RS进行信道估计。N个重复传输的CORESET在时域上位于一个时隙的任意位置,如:在一个时隙的起始位置;在一个时隙的中间位置等,本公开实施例对此不进行限制。
可选地,终端设备使用多个CORESET上的所有DM-RS或其中的部分DM-RS来进行信道估计的信道估计方法包括但不限于:导频估计方法,常见的估计准则包括最小二乘准则和最小均方差准则;插值法,包括线性插值、常值内插、高斯插值、基于离散傅里叶变换(Discrete Fourier Transform,DFT)的内插和sinc函数插值等。
可选地,终端设备在使用N个重复传输的CORESET上的所有DM-RS进行信道估计之前,需要确定N的取值。在一种可能的实现方式中,终端设备通过预定义的规则确定N的取值。在另一种可能的实现方式中,终端设备接收来自网络设备的至少一个配置信息;根据所述至少一个配置信息,确定N的取值。可选地,网络设备通过高层信令发送至少一个配置信息。可选地,网络设备通过高层信令发送配置信息,所述配置信息用于指示参数N的数值本身;或是该配置信息用于指示网络设备通过配置信息计算出参数N的数值;或该配置信息为参数N所对应的标识,以使网络设备根据该标识从预设的标识与数值的对应关系中确定参数N的数值。在另一种可能的实现方式中,终端设备通过通讯协议确定N的取值。
可选地,终端设备在使用N个重复传输的CORESET中的M个CORESET上的所有DM-RS进行信道估计之前,需要确定M的取值。该M的取值,也可以通过与前述确定参数N相同或相似的方式确定,本公开实施例并不对此做出限定。
综上所述,本实施例提供的方法,在N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵的情况下,终端设备通过使用上述N个重复传输的CORESET上的所有DM-RS或其中的部分DM-RS进行信道估计,实现了跨CORESET信道估计,相比于只在一个CORESET内部进行信道估计,提高了信道估计的准确性。
本公开实施例还提出了一种DM-RS的传输方法。本领域内技术人员可以理解,该DM-RS的传输方法可以与本公开的任何一个实施例配合使用,也可以完全独立于本公开的任何一个实施例单独使用。
情况1:N个重复传输的CORESET对应于相同的DM-RS样式。
DM-RS在N个CORESET上的分布情况相同。
情况2:N个重复传输的CORESET对应于不同的DM-RS样式。
DM-RS在N个CORESET上的分布情况不同。可选地,N个重复传输的CORESET对应的DM-RS样式是相互独立的;N个重复传输的CORESET对应的DM-RS样式存在关联,不相互独立。
下面,针对上述两种情况分别进行示例性的说明。
情况1:N个重复传输的CORESET对应于相同的DM-RS样式。
在一个可选的实施例中,N个重复传输的CORESET中的每个CORESET的时域长度包括:一个OFDM符号、两个OFDM符号、三个OFDM符号中的任意一种。
N个重复传输的CORESET的时域长度相同,都为一个OFDM符号;或,都为两个OFDM符号;或,都为三个OFDM符号。需要说明的是,在未来的演进中,N个重复传输的CORESET的时域长度也可以为其他的时间长度,本公开实施例对此不进行限制。
可选地,DM-RS样式包括第一DM-RS样式;其中,第一DM-RS样式包括:DM-RS分布在CORESET中的OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
一个CORESET包括若干个OFDM符号,在每个OFDM符号上,一个资源块(Resource Block,RB)包含12个资源单元(Resource Element,RE),DM-RS固定在其中的第2、6、10个RE上,该CORESET对应的DM-RS样式即为第一DM-RS样式。N个重复传输的CORESET对应于DM-RS样式均为第一DM-RS样式。
需要说明的是,N个重复传输的CORESET对应的相同的DM-RS样式也可以是除第一DM-RS样式以外的其他DM-RS样式,本公开实施例对此不进行限制。
示例性的,结合参考图3,图3示出了本公开一个示例性实施例提供的重复 传输的CORESET的示意图。
N为3,N个重复传输的CORESET包括:CORESET 301、CORESET 302和CORESET 303。CORESET 301、CORESET 302和CORESET 303的时域长度均为三个OFDM符号。在3个重复传输的CORESET中的任意一个CORESET中,DM-RS分布在该CORESET的3个OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
情况2:N个重复传输的CORESET对应于不同的DM-RS样式。
在一个可选的实施例中,N个重复传输的CORESET中的每个CORESET的时域长度包括:一个OFDM符号、两个OFDM符号、三个OFDM符号中的任意一种。
N个重复传输的CORESET的时域长度相同,都为一个OFDM符号;或,都为两个OFDM符号;或,都为三个OFDM符号。需要说明的是,在未来的演进中,N个重复传输的CORESET的时域长度也可以为其他的时间长度,本公开实施例对此不进行限制。
在一种可能的实现方式中,DM-RS样式包括第二DM-RS样式和第三DM-RS样式;其中,第三DM-RS样式在频域上的分布与第二DM-RS样式在频域上的分布不同且独立。
第二DM-RS样式是N个重复传输的CORESET中的一个CORESET对应的DM-RS样式,第三DM-RS样式是N个重复传输的CORESET中的另一个CORESET对应的DM-RS样式,第二DM-RS样式和第三DM-RS样式的分布是相互独立的。即:N个重复传输的CORESET中的任意两个CORESET所对应的DM-RS样式是不同且独立的。
可选地,第二DM-RS样式和第三DM-RS样式中的DM-RS的数量是相同或不同的。即:第二DM-RS样式和第三DM-RS样式中的DM-RS均分布在a个资源单元上,a为正整数;或者,第二DM-RS样式中的DM-RS分布在b个资源单位上,第三DM-RS样式中的DM-RS分布在c个资源单位上,b和c为不相等的正整数。
示例性的,结合参考图4,图4示出了本公开一个示例性实施例提供的重复传输的CORESET的示意图。
N为2,N个重复传输的CORESET包括:CORESET 401、CORESET 402。 CORESET 401和CORESET 402的时域长度均为三个OFDM符号。CORESET401对应于第二DM-RS样式,DM-RS分布在CORESET 401的3个OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。CORESET 402对应于第三DM-RS样式,DM-RS分布在CORESET 402的3个OFDM符号的第1个资源单元、第8个资源单元和第9个资源单元上。第二DM-RS样式和第三DM-RS样式的分布相互独立。
在另一种可能的实现方式中,DM-RS样式包括第二DM-RS样式和第三DM-RS样式;其中,第三DM-RS样式是第二DM-RS样式在频域上平移后形成的样式。
在第二DM-RS样式包括:DM-RS分布在CORESET中的OFDM符号的第a个资源单元、第b个资源单元和第c个资源单元上的情况下,则第三DM-RS样式包括:DM-RS分布在CORESET中的OFDM符号的第a+m个资源单元、第b+m个资源单元和第c+m个资源单元上,或者,DM-RS分布在CORESET中的OFDM符号的第a-n个资源单元、第b-n个资源单元和第c-n个资源单元上。
由于一个资源块包括12个资源单元,可以理解的是,上述a、b、c、a+m、b+m、c+m、a-n、b-n和c-n均为不大于12的正整数。若第二DM-RS样式在频域上平移后,平移后的某个资源单元为第d个资源单元,d是大于12(或小于1)的整数,在一种实现方式中,第三DM-RS样式不包括该资源单元,该资源单位上的DM-RS也不存在于第三DM-RS样式所对应的CORESET中;在另一种实现方式中,对d用12进行取模,得到e,第e个资源单元上的DM-RS存在于第三DM-RS样式所对应的CORESET中。如:对第二DM-RS样式在频域上平移后,平移后DM-RS分布在第14个资源单元上,对14进行取模得到2,则在第三DM-RS样式所对应的CORESET中,DM-RS分布在第2个资源单元上。
示例性的,结合参考图5,图5示出了本公开一个示例性实施例提供的重复传输的CORESET的示意图。
N为3,N个重复传输的CORESET包括:CORESET 501、CORESET 502和CORESET 503。CORESET 501、CORESET 502和CORESET 503的时域长度均为三个OFDM符号。CORESET 501对应于第二DM-RS样式,DM-RS分布在该CORESET的3个OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。CORESET 502对应于一种第三DM-RS样式,DM-RS分布在该CORESET的3个OFDM符号的第1个资源单元、第5个资源单元和第9个资 源单元上,是第二DM-RS样式在频域上向下平移1个资源单元后形成的样式。CORESET 503对应于另一种第三DM-RS样式,DM-RS分布在该CORESET的3个OFDM符号的第4个资源单元、第8个资源单元和第12个资源单元上,是第二DM-RS样式在频域上向上平移2个资源单元后形成的样式。
可选地,上述第二DM-RS样式包括:DM-RS分布在CORESET中的OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
可选地,N个重复传输的CORESET对应的不同的DM-RS样式是协议中预先约定的,或是终端设备接收来自网络设备的第二配置信息,根据第二配置信息所确定的。可选地,网络设备通过高层信令发送第二配置信息。
综上所述,本实施例提供的方法,在N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵的情况下,终端设备通过使用上述N个重复传输的CORESET上的所有DM-RS或部分DM-RS进行信道估计,实现了跨CORESET信道估计,相比于只在一个CORESET内部进行信道估计,提高了信道估计的准确性。
本实施例提供的方法,N个重复传输的CORESET对应的DM-RS样式可以相同也可以不相同,可以根据场景的需要进行配置,提高了信道估计方法的灵活性。同时,在N个重复传输的CORESET对应的DM-RS样式不相同的情况下,DM-RS位于更多不同的频点上,从而进一步提高了信道估计的准确性。
针对N个重复传输的CORESET中的任意一个CORESET,DM-RS在该CORESET上的分布情况被视为该CORESET的DM-RS样式。在基于图2的可选实施例中,包括如前所述的2种情况:情况1和情况2;本公开实施例在此不再赘述。
需要说明的是,上述方法实施例可以分别单独实施,也可以组合实施,本公开对此不进行限制。在上述各个实施例中,由终端设备执行的步骤可以单独实现成为终端设备一侧的信道估计方法,由网络设备执行的步骤可以单独实现成为网络设备一侧的信道估计方法。
图6示出了本公开一个示例性实施例提供的信道估计装置的结构框图,该装置可以实现成为终端设备,或者,实现成为终端设备中的一部分,该装置包 括:信道估计模块601;
信道估计模块601,被配置为使用连续的N个重复传输的CORESET上的所有DM-RS进行信道估计,N为大于1的正整数;
其中,N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵。
可选地,装置还包括接收模块602和确定模块603。
在一个可选的实施例中,接收模块602,被配置为接收第一配置信息;确定模块603,被配置为根据第一配置信息,确定N的取值;或,确定模块603,被配置为根据通讯协议确定N的取值。
在一个可选的实施例中,N个重复传输的CORESET对应于相同的DM-RS样式。
在一个可选的实施例中,DM-RS样式包括第一DM-RS样式;其中,第一DM-RS样式包括:DM-RS分布在CORESET中的OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
在一个可选的实施例中,N个重复传输的CORESET对应于不同的DM-RS样式。
在一个可选的实施例中,DM-RS样式包括第二DM-RS样式和第三DM-RS样式;其中,第三DM-RS样式在频域上的分布与第二DM-RS样式在频域上的分布不同且独立。
在一个可选的实施例中,DM-RS样式包括第二DM-RS样式和第三DM-RS样式;其中,第二DM-RS样式是第二DM-RS样式在频域上平移后形成的样式。
在一个可选的实施例中,第二DM-RS样式包括:DM-RS分布在CORESET中的OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
在一个可选的实施例中,接收模块602,被配置为接收来自网络设备的第二配置信息;确定模块603,被配置为根据第二配置信息,确定N个重复传输的CORESET对应的不同的DM-RS样式。
在一个可选的实施例中N个重复传输的CORESET中的每个CORESET的时域长度包括:一个OFDM符号、两个OFDM符号、三个OFDM符号中的任意一种。
图7示出了本公开一个示例性实施例提供的信道估计装置的结构框图,该装置可以实现成为网络设备,或者,实现成为网络设备中的一部分,该装置包 括:发送模块701;
发送模块701,被配置为发送连续的N个重复传输的CORESET,N为大于1的正整数;
其中,N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵,N个重复传输的CORESET上的所有DM-RS用于供终端设备进行信道估计。
在一个可选的实施例中,发送模块701,被配置为向终端设备发送第一配置信息;其中,第一配置信息用于配置N的取值。
在一个可选的实施例中,N个重复传输的CORESET对应于相同的DM-RS样式。
在一个可选的实施例中,DM-RS样式包括第一DM-RS样式;其中,第一DM-RS样式包括:DM-RS分布在CORESET中的OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
在一个可选的实施例中,N个重复传输的CORESET对应于不同的DM-RS样式。
在一个可选的实施例中,DM-RS样式包括第二DM-RS样式和第三DM-RS样式;其中,第三DM-RS样式在频域上的分布与第二DM-RS样式在频域上的分布不同且独立。
在一个可选的实施例中,DM-RS样式包括第二DM-RS样式和第三DM-RS样式;其中,第二DM-RS样式是第二DM-RS样式在频域上平移后形成的样式。
在一个可选的实施例中,第二DM-RS样式包括:DM-RS分布在CORESET中的OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
在一个可选的实施例中,发送模块701,被配置为向终端设备发送第二配置信息;其中,第二配置信息用于配置N个重复传输的CORESET对应的不同的DM-RS样式。
在一个可选的实施例中,N个重复传输的CORESET中的每个CORESET的时域长度包括:一个OFDM符号、两个OFDM符号、三个OFDM符号中的任意一种。
需要说明的是:上述实施例提供的装置在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同 一构思,其具体实现过程详见方法实施例,这里不再赘述。
图8示出了本公开一个示例性实施例提供的通信设备(终端设备或网络设备)的结构示意图,该通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM),可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM),静态随时存取存储器(Static Random Access Memory,SRAM),只读存储器(Read-Only Memory,ROM),磁存储器,快闪存储器,可编程只读存储器(Programmable Read-Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的信道估计方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品被配置为使得:在包括处理器和存储器的设备上执行时使设备执行上述方面的方法。该计算机程序产品可以被包括在有形的、非瞬时性的计算机可读介质中或在有形的、非瞬时性的计算机可读介质上提供。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (25)

  1. 一种信道估计方法,其特征在于,应用于终端设备中,所述方法包括:
    使用连续的N个重复传输的控制资源集CORESET上的所有解调参考信号DM-RS进行信道估计,所述N为大于1的正整数;
    其中,所述N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第一配置信息,以根据所述第一配置信息,确定所述N的取值;
    或,
    根据通讯协议确定所述N的取值。
  3. 根据权利要求1所述的方法,其特征在于,
    所述N个重复传输的CORESET对应于相同的DM-RS样式。
  4. 根据权利要求3所述的方法,其特征在于,
    所述DM-RS样式包括第一DM-RS样式;
    其中,所述第一DM-RS样式包括:DM-RS分布在CORESET中的正交频分复用OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
  5. 根据权利要求1所述的方法,其特征在于,
    所述N个重复传输的CORESET对应于不同的DM-RS样式。
  6. 根据权利要求5所述的方法,其特征在于,
    所述DM-RS样式包括第二DM-RS样式和第三DM-RS样式;
    其中,所述第三DM-RS样式在频域上的分布与所述第二DM-RS样式在频域上的分布不同且独立。
  7. 根据权利要求5所述的方法,其特征在于,
    所述DM-RS样式包括第二DM-RS样式和第三DM-RS样式;
    其中,所述第三DM-RS样式是所述第二DM-RS样式在频域上平移后形成的样式。
  8. 根据权利要求6或7所述的方法,其特征在于,
    所述第二DM-RS样式包括:DM-RS分布在CORESET中的OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
  9. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第二配置信息;
    根据所述第二配置信息,确定所述N个重复传输的CORESET对应的不同的DM-RS样式。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述N个重复传输的CORESET中的每个CORESET的时域长度包括:
    一个OFDM符号、两个OFDM符号、三个OFDM符号中的任意一种。
  11. 一种信道估计方法,其特征在于,应用于网络设备中,所述方法包括:
    发送连续的N个重复传输的控制资源集CORESET,所述N为大于1的正整数;
    其中,所述N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵,所述N个重复传输的CORESET上的所有解调参考信号DM-RS用于供终端设备进行信道估计。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    发送用于确定所述N的取值的第一配置信息。
  13. 根据权利要求11所述的方法,其特征在于,
    所述N个重复传输的CORESET对应于相同的DM-RS样式。
  14. 根据权利要求13所述的方法,其特征在于,
    所述DM-RS样式包括第一DM-RS样式;
    其中,所述第一DM-RS样式包括:DM-RS分布在CORESET中的正交频分复用OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
  15. 根据权利要求11所述的方法,其特征在于,
    所述N个重复传输的CORESET对应于不同的DM-RS样式。
  16. 根据权利要求15所述的方法,其特征在于,
    所述DM-RS样式包括第二DM-RS样式和第三DM-RS样式;
    其中,所述第三DM-RS样式在频域上的分布与所述第二DM-RS样式在频域上的分布不同且独立。
  17. 根据权利要求15所述的方法,其特征在于,
    所述DM-RS样式包括第二DM-RS样式和第三DM-RS样式;
    其中,所述第三DM-RS样式是所述第二DM-RS样式在频域上平移后形成的样式。
  18. 根据权利要求16或17所述的方法,其特征在于,
    所述第二DM-RS样式包括:DM-RS分布在CORESET中的OFDM符号的第2个资源单元、第6个资源单元和第10个资源单元上。
  19. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二配置信息;
    其中,所述第二配置信息用于配置所述N个重复传输的CORESET对应的不同的DM-RS样式。
  20. 根据权利要求11至19任一所述的方法,其特征在于,所述N个重复传输的CORESET中的每个CORESET的时域长度包括:
    一个OFDM符号、两个OFDM符号、三个OFDM符号中的任意一种。
  21. 一种信道估计装置,其特征在于,所述装置包括:信道估计模块;
    所述信道估计模块,被配置为使用连续的N个重复传输的控制资源集CORESET上的所有解调参考信号DM-RS进行信道估计,所述N为大于1的正整数;
    其中,所述N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵。
  22. 一种信道估计装置,其特征在于,所述装置包括:发送模块;
    所述发送模块,被配置为发送连续的N个重复传输的控制资源集CORESET,所述N为大于1的正整数;
    其中,所述N个重复传输的CORESET对应于相同的频域资源和/或预编码矩阵,所述N个重复传输的CORESET上的所有解调参考信号DM-RS用于供终端设备进行信道估计。
  23. 一种终端设备,其特征在于,所述终端设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至10任一所述的信道估计方法。
  24. 一种网络设备,其特征在于,所述网络设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求11至20任一所述的信道估计方法。
  25. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行指令,所述可执行指令由处理器加载并执行以实现如权利要求1至20任 一所述的信道估计方法。
PCT/CN2020/095178 2020-06-09 2020-06-09 信道估计方法、装置、设备及存储介质 WO2021248329A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/928,907 US20230231743A1 (en) 2020-06-09 2020-06-09 Method and device for channel estimation
CN202080001252.XA CN111837369B (zh) 2020-06-09 2020-06-09 信道估计方法、装置、设备及存储介质
EP20939752.0A EP4164186A4 (en) 2020-06-09 2020-06-09 CHANNEL ESTIMATION METHOD AND APPARATUS, APPARATUS AND STORAGE MEDIUM
PCT/CN2020/095178 WO2021248329A1 (zh) 2020-06-09 2020-06-09 信道估计方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/095178 WO2021248329A1 (zh) 2020-06-09 2020-06-09 信道估计方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021248329A1 true WO2021248329A1 (zh) 2021-12-16

Family

ID=72918749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095178 WO2021248329A1 (zh) 2020-06-09 2020-06-09 信道估计方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20230231743A1 (zh)
EP (1) EP4164186A4 (zh)
CN (1) CN111837369B (zh)
WO (1) WO2021248329A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115695094A (zh) * 2021-07-26 2023-02-03 中移物联网有限公司 信道估计方法、装置及通信设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660315A (zh) * 2017-10-10 2019-04-19 北京展讯高科通信技术有限公司 基于dmrs的pdcch盲检方法及装置、存储介质、用户设备
WO2019139368A1 (en) * 2018-01-12 2019-07-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data channel and control channel in wireless communication system
CN110741705A (zh) * 2017-06-08 2020-01-31 Lg电子株式会社 无线通信系统中由终端执行的下行链路控制信道接收方法以及使用该方法的终端

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012129798A1 (en) * 2011-03-30 2012-10-04 Huawei Technologies Co., Ltd. Method and apparatus for open loop transmission in a multiple antenna wireless communication system
CN103166734B (zh) * 2011-12-14 2017-08-25 华为技术有限公司 信道状态信息的获取方法及装置
CN103684674B (zh) * 2012-09-24 2018-05-15 中兴通讯股份有限公司 一种检测控制信令以及实现控制信令检测的方法和装置
WO2017069674A1 (en) * 2015-10-23 2017-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic precoding of shared reference signals
WO2018058590A1 (zh) * 2016-09-30 2018-04-05 华为技术有限公司 传输定位参考信号的方法和设备
WO2018133173A1 (zh) * 2017-01-23 2018-07-26 华为技术有限公司 数据传输方法及装置
CN108631969B (zh) * 2017-03-21 2021-01-15 中国移动通信有限公司研究院 一种指示信息的发送方法、接收方法、基站及终端
CN114696958A (zh) * 2017-04-24 2022-07-01 Lg 电子株式会社 在无线通信系统中发射或接收信号的方法及其装置
CN109474407B (zh) * 2017-09-08 2021-10-22 维沃移动通信有限公司 物理下行链路控制信道的处理方法、终端和网络侧设备
US11026257B2 (en) * 2018-06-29 2021-06-01 Qualcomm Incorporated PDCCH with repetition
CN110971322B (zh) * 2018-09-30 2022-02-15 维沃移动通信有限公司 一种信息传输方法、网络设备及终端
CN111148239B (zh) * 2018-11-02 2022-09-27 展讯通信(上海)有限公司 默认tci的配置方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741705A (zh) * 2017-06-08 2020-01-31 Lg电子株式会社 无线通信系统中由终端执行的下行链路控制信道接收方法以及使用该方法的终端
CN109660315A (zh) * 2017-10-10 2019-04-19 北京展讯高科通信技术有限公司 基于dmrs的pdcch盲检方法及装置、存储介质、用户设备
WO2019139368A1 (en) * 2018-01-12 2019-07-18 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data channel and control channel in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Necessity of PDCCH repetition", 3GPP DRAFT; R1-1805063, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051427324 *
See also references of EP4164186A4 *

Also Published As

Publication number Publication date
CN111837369B (zh) 2023-12-08
US20230231743A1 (en) 2023-07-20
CN111837369A (zh) 2020-10-27
EP4164186A4 (en) 2024-03-20
EP4164186A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
US20190260623A1 (en) Data Transmission Method and Apparatus
US11206054B2 (en) Communication method and device
WO2018082544A1 (zh) 无线通信的方法和装置
RU2722683C1 (ru) Способ передачи информации, оконечное устройство и сетевое устройство
CN109845147B (zh) 用于传输上行信号的方法和装置
CN111867038B (zh) 一种通信方法及装置
TW202008828A (zh) 資源配置的方法和終端設備
AU2020416372B2 (en) Physical channel transmission method, apparatus, and node, and storage medium
WO2021248329A1 (zh) 信道估计方法、装置、设备及存储介质
WO2022056849A1 (zh) 发送dmrs的方法、装置、终端和介质
US20230345465A1 (en) Repetition Indication for Physical Uplink Control Channel Enhancement
WO2021147112A1 (zh) 通信方法和通信装置
EP4228350A1 (en) Receiving method and apparatus, terminal device, and storage medium
WO2021159387A1 (zh) 信息确定方法、装置、设备及存储介质
WO2023164909A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
CN114362894B (zh) 反馈码本确定方法、接收方法、终端、网络设备
WO2023164853A1 (zh) 发送srs的方法、接收srs的方法、装置、设备、介质及产品
WO2022056678A1 (zh) 传输方法、装置、终端、网络设备
US12004166B2 (en) Information transmission method and apparatus, device, and storage medium
WO2022067735A1 (zh) 频域位置确定方法、装置、设备及存储介质
WO2022056866A1 (zh) 资源映射方法、装置、设备及可读存储介质
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2021207958A1 (zh) 参考信号处理方法、装置及可读存储介质
CN109474557B (zh) 一种通信方法及设备
CN117652169A (zh) 用于物理上行链路控制信道(pucch)传输的方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020939752

Country of ref document: EP

Effective date: 20230109