WO2021246291A1 - Octデータ処理装置およびoctデータ処理プログラム - Google Patents

Octデータ処理装置およびoctデータ処理プログラム Download PDF

Info

Publication number
WO2021246291A1
WO2021246291A1 PCT/JP2021/020265 JP2021020265W WO2021246291A1 WO 2021246291 A1 WO2021246291 A1 WO 2021246291A1 JP 2021020265 W JP2021020265 W JP 2021020265W WO 2021246291 A1 WO2021246291 A1 WO 2021246291A1
Authority
WO
WIPO (PCT)
Prior art keywords
oct
image
data processing
focus
focus position
Prior art date
Application number
PCT/JP2021/020265
Other languages
English (en)
French (fr)
Inventor
佳紀 熊谷
涼介 柴
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2022528783A priority Critical patent/JPWO2021246291A1/ja
Publication of WO2021246291A1 publication Critical patent/WO2021246291A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • the present disclosure relates to an OCT data processing apparatus that processes data of an OCT image taken based on the principle of optical coherence tomography (OCT), and an OCT data processing program executed in the OCT data processing apparatus.
  • OCT optical coherence tomography
  • an OCT device that captures an OCT image, which is a tomographic image of a tissue, by using reflected light of measurement light and reference light is known.
  • the quality of the image to be photographed is improved by taking a picture in a state where the focus position of the OCT optical system is adjusted to an appropriate position.
  • the apparatus described in Patent Document 1 acquires an optical power of refraction based on the axial length of the eye to be inspected, and adjusts the focus position to a position corresponding to the power of refraction of the eye.
  • the focus position is adjusted along the optical axis direction of the measurement light (that is, the depth direction of the tissue for which the tomographic image is to be taken).
  • the brightness decreases as the position in the depth direction moves away from the focus position. Further, if the depth of focus is increased in order to suppress the difference in brightness depending on the distance from the focus position, the brightness of the entire image is lowered.
  • most of the tissues of the eye to be imaged by the OCT device for example, the fundus, the cornea, the crystalline lens, etc.
  • the imaging range in the direction intersecting the optical axis direction hereinafter, also referred to as “transverse direction” becomes wider, the curvature of the tissue causes each position in the transverse direction (for example, the central portion and the peripheral portion). It becomes difficult to focus on all at the same time. Therefore, it has been difficult to obtain an OCT image with good image quality in a wide range in the transverse direction by the conventional technique.
  • a typical object of the present disclosure is to provide an OCT data processing apparatus and an OCT data processing program for acquiring an OCT image having better image quality in a wide range in the transverse direction.
  • the OCT data processing apparatus is an OCT data processing apparatus that processes data of an OCT image of a tissue of an eye to be inspected taken by the OCT apparatus, and the OCT apparatus is an OCT light source.
  • An OCT optical system that obtains an OCT signal by branching the light emitted from the measurement light into a measurement light and a reference light and receiving the interference light of the measurement light reflected by the tissue and the reference light, and the OCT optical system.
  • the control unit of the OCT data processing device includes a focus adjustment unit that adjusts the focus position of the OCT optical system in the optical axis direction of the OCT optical system, and the control unit of the OCT data processing device targets the same tissue of the eye to be imaged and the focus position is ,
  • the OCT data processing program provided by the typical embodiment in the present disclosure is an OCT data processing program executed by an OCT data processing apparatus that processes data of an OCT image of a tissue of an eye to be examined taken by the OCT apparatus.
  • the OCT device splits the light emitted from the OCT light source into measurement light and reference light, and acquires an OCT signal by receiving the measurement light reflected by the tissue and the interference light of the reference light.
  • the OCT data processing program is executed by the control unit of the OCT data processing apparatus, comprising an optical system and a focus adjusting unit for adjusting the focus position of the OCT optical system in the optical axis direction of the OCT optical system.
  • the OCT data processing apparatus is made to execute a synthesizing step of aligning and synthesizing a plurality of OCT images.
  • an OCT image having better image quality is acquired in a wide range in the transverse direction.
  • the OCT data processing apparatus processes the data of the OCT image of the tissue of the eye to be inspected taken by the OCT apparatus.
  • the OCT apparatus includes an OCT optical system and a focus adjusting unit.
  • the OCT optical system divides the light emitted from the OCT light source into the measurement light and the reference light, and receives the measurement light reflected by the tissue and the interference light of the reference light to acquire the OCT signal.
  • the focus adjustment unit adjusts the focus position of the OCT optical system in the optical axis direction of the OCT optical system.
  • the control unit of the OCT data processing device executes the synthesis step.
  • the same tissue of the eye to be inspected is targeted for imaging, and the focus position is adjusted to a position corresponding to each of a plurality of positions separated from each other in the direction intersecting the optical axis (transverse direction) on the tissue.
  • a plurality of OCT images taken in 1 are aligned and combined. That is, a composite image obtained by synthesizing a plurality of OCT images is generated.
  • the OCT data processing apparatus According to the OCT data processing apparatus according to the present disclosure, a plurality of OCT images taken by matching the focus positions with the same shooting target and different positions in the transverse direction are combined. Therefore, a composite image with good image quality is generated in a wide range in the transverse direction.
  • the synthesis step may be performed when processing OCT data of the curved tissue of the eye to be inspected (eg, fundus, cornea, lens, etc.).
  • OCT data of the curved tissue of the eye to be inspected eg, fundus, cornea, lens, etc.
  • a composite image of the curved structure having good image quality is appropriately acquired.
  • the number of OCT images combined in the composition step may be two or three or more.
  • the control unit may further perform processing on the data of the composite image. For example, the control unit may display the composite image on the display unit. Further, the control unit may perform an analysis process (for example, a process of analyzing the thickness of a specific layer) on the composite image and generate data of the analysis result. The control unit may store the data of the composite image in the storage device.
  • the OCT apparatus itself may function as the OCT data processing apparatus in the present disclosure.
  • the OCT apparatus can appropriately combine the plurality of captured OCT images while capturing the plurality of OCT images.
  • a device capable of exchanging data with the OCT device for example, a personal computer (PC) or the like
  • PC personal computer
  • a plurality of control units for example, a control unit of an OCT device and a control unit of a PC may cooperate to perform processing.
  • the control unit may further execute the first image acquisition step and the focus setting step.
  • the control unit acquires the first OCT image captured by the OCT device.
  • the focus setting step the control unit sets the first OCT image based on the position in the optical axis direction of the image to be captured in the first OCT image and the first focus position which is the focus position when the first OCT image is captured.
  • the second focus position which is the focus position when the second OCT image to be combined is taken, is set.
  • the control unit synthesizes the second OCT image captured with the focus position adjusted to the second focus position with respect to the same imaging target as the first OCT image with the first OCT image.
  • the second focus position of the second OCT image taken thereafter is appropriately set to a position where the sensitivity is low in the first OCT image. Therefore, by synthesizing the first OCT image and the second OCT image, a composite image having better image quality is appropriately generated.
  • the specific setting method of the second focus position in the focus setting step can be appropriately selected.
  • the control unit is set at a position different from the first focus position in the range in the optical axis direction (tissue depth direction) of the imaging target (for example, the tissue such as the fundus or the cornea) shown in the first OCT image.
  • the second focus position may be set.
  • the control unit may set the second focus position according to the number of OCT images to be combined and the range in the depth direction of the image pickup target reflected in the first OCT image.
  • the control unit may further execute the first determination step.
  • the control unit determines whether or not to execute the synthesis step based on the OCT image captured by the OCT apparatus. If the quality of the OCT image already taken is good, the need to generate a composite image is low. Therefore, the control unit can determine whether or not to execute the compositing step based on the already captured OCT image, so that the compositing step can be appropriately executed when there is a high need to generate the compositing image. can.
  • the specific method for executing the first decision step can be appropriately selected.
  • the control unit may execute the compositing step when the image capture target in the already captured OCT image is not within a predetermined range extending in the optical axis direction around the focus position at the time of image capture. good. Further, the control unit may decide whether or not to execute the synthesis step according to the brightness of the image capture target in the already captured OCT image.
  • the control unit may execute the second determination step.
  • the control unit determines whether or not to execute the synthesis step according to the shooting angle of view when the OCT image is captured by the OCT device.
  • the tissue to be imaged is curved, the larger the angle of view to be photographed, the more difficult it is to focus on each position of the tissue in the transverse direction at the same time.
  • it is desirable to generate a composite image because there are many portions where the sensitivity decreases in the direction of the optical axis away from the focus position.
  • the smaller the shooting angle of view the lower the need to generate a composite image in many cases. Therefore, the control unit can appropriately execute the compositing step when it is highly necessary to generate the compositing image by determining whether or not to execute the compositing step according to the shooting angle of view.
  • the specific method of executing the second decision step can also be selected as appropriate. For example, whether or not to execute the compositing step may be determined depending on whether or not the shooting angle of view is larger than the threshold value.
  • the threshold value may be predetermined according to the type of tissue to be imaged and the like.
  • the control unit may set the appropriateness of the focus that changes in the image along the optical axis direction (depth direction) for each of the plurality of OCT images.
  • the control unit may weight each of the plurality of pixels constituting the OCT image according to the appropriateness of the set focus.
  • the control unit may synthesize the weighted OCT image. In this case, the pixel value of each pixel is appropriately reflected in the pixel value of the composite image according to the appropriateness of the focus. Therefore, the image quality of the composite image becomes better. Further, even if the number of OCT images used for the composite image is reduced (for example, even if two images are used), it becomes easy to generate a composite image with good image quality.
  • the control unit may set the appropriateness of the focus of the OCT image based on the focus position when the OCT image is taken. That is, the appropriateness of the focus may be set so as to decrease as the distance from the focus position increases in the optical axis direction. In this case, the appropriateness of focus is appropriately set based on the positional relationship of each pixel with respect to the focus position.
  • the control unit may set the appropriateness of the focus of the OCT image based on the brightness of a plurality of pixels constituting the captured OCT image. The closer the pixel position is to the focus position, the higher the brightness of the pixel. Therefore, the appropriateness of focus is appropriately set by using the brightness of the actually captured OCT image.
  • the specific method for generating a composite image is not limited to the method using weighting according to the appropriateness of focus.
  • the control unit may generate a composite image by extracting a portion close to the focus position from each of the plurality of OCT images, aligning the extracted plurality of portions, and pasting them together. Further, the control unit may generate a composite image by aligning a plurality of OCT images and adding (or adding and averaging) the pixel values of the pixels at the same position. Further, the control unit may align a plurality of OCT images and generate a set of pixels having the maximum luminance value among the pixels at the same position as a composite image.
  • the fundus which is one of the curved tissues of the eye E to be inspected
  • an OCT image which is a tomographic image of the fundus tissue
  • the shape of the curved tissue (cornea, crystalline lens, etc.) of the anterior segment of the eye E to be inspected is always curved and the width in the depth direction is wide, the OCT image of the anterior segment is taken by the conventional method. Then, the proportion of the portion far from the focus position increases, and it is difficult to improve the image quality. Therefore, it is particularly useful to apply at least a portion of the techniques exemplified in the present disclosure when processing an OCT image of the anterior segment of the eye E to be inspected. Further, in OCT angiography for detecting motion contrast data of the eye to be inspected, it is necessary to capture delicate changes in the tissue, so that the focus position has a great influence.
  • the OCT image in the present embodiment is a tomographic image acquired based on the principle of optical coherence tomography (OCT).
  • the schematic configuration of the OCT system 100 of the present embodiment will be described with reference to FIG.
  • the OCT system 100 of the present embodiment includes an OCT device 1 and a personal computer (hereinafter referred to as "PC") 40.
  • the OCT device 1 captures an OCT image of the eye E to be inspected.
  • the PC 40 executes processing of the OCT image captured by the OCT device 1.
  • the OCT device 1 includes an OCT optical system 10 and a control unit 30.
  • the OCT optical system 10 includes an OCT light source 11, a coupler (optical divider) 12, a measurement optical system 13, a reference optical system 20, a light receiving element 22, and a front observation optical system 23.
  • the OCT light source 11 emits light (OCT light) for capturing an OCT image.
  • the coupler 12 divides the OCT light emitted from the OCT light source 11 into measurement light and reference light. Further, the coupler 12 of the present embodiment combines and interferes with the measurement light reflected by the subject (in the present embodiment, the fundus of the eye E to be inspected) and the reference light generated by the reference optical system 20. That is, the coupler 12 of the present embodiment also serves as a branched optical element that branches the OCT light into the measurement light and the reference light, and a combined wave optical element that combines the reflected light of the measurement light and the reference light. It is also possible to change the configuration of at least one of the branched optical element and the combined wave optical element. For example, elements other than couplers (eg, circulators, beam splitters, etc.) may be used.
  • the measurement optical system 13 guides the measurement light divided by the coupler 12 to the subject, and returns the measurement light reflected by the subject to the coupler 12.
  • the measurement optical system 13 includes a scanning unit 14, an irradiation optical system 16, and a focus adjusting unit 17.
  • the scanning unit 14 can scan (deflect) the measurement light in a two-dimensional direction intersecting the optical axis of the measurement light.
  • two galvanometer mirrors capable of deflecting the measurement light in different directions are used as the scanning unit 14.
  • another device that deflects light eg, at least one of a polygon mirror, a resonant scanner, an acoustic optical element, and the like
  • the scanning unit 14 may be used as the scanning unit 14.
  • the irradiation optical system 16 is provided on the downstream side (that is, the subject side) of the optical path from the scanning unit 14, and irradiates the tissue of the subject with the measurement light.
  • the focus adjusting unit 17 adjusts the focus position of the OCT optical system 10 (the focus position of the irradiation optical system 16) in the optical axis direction (that is, the depth direction of the tissue) of the measurement light of the OCT optical system 10.
  • the focus adjusting unit 17 of the present embodiment adjusts the focus of the measurement light by moving an optical member (for example, a lens) included in the irradiation optical system 16 in a direction along the optical axis of the measurement light.
  • the reference optical system 20 generates reference light and returns it to the coupler 12.
  • the reference optical system 20 of the present embodiment generates reference light by reflecting the reference light divided by the coupler 12 by a reflected optical system (for example, a reference mirror).
  • a reflected optical system for example, a reference mirror
  • the configuration of the reference optical system 20 can also be changed.
  • the reference optical system 20 may transmit the light incident from the coupler 12 without reflecting it and return it to the coupler 12.
  • the reference optical system 20 includes an optical path length difference adjusting unit 21 that changes the optical path length difference between the measurement light and the reference light.
  • the optical path length difference is changed by moving the reference mirror in the optical axis direction.
  • the configuration for changing the optical path length difference may be provided in the optical path of the measurement optical system 13.
  • the light receiving element 22 detects the interference signal by receiving the interference light between the measurement light and the reference light generated by the coupler 12.
  • the principle of Fourier domain OCT is adopted.
  • the spectral intensity (spectral interference signal) of the interference light is detected by the light receiving element 22, and the complex OCT signal is acquired by the Fourier transform with respect to the spectral intensity data.
  • the Fourier domain OCT Spectral-domain-OCT (SD-OCT), Swept-source-OCT (SS-OCT) and the like can be adopted.
  • TD-OCT Time-domine-OCT
  • SD-OCT is adopted.
  • a low coherent light source (broadband light source) is used as the OCT light source 11, and interference light is dispersed into each frequency component (each wavelength component) in the vicinity of the light receiving element 22 in the optical path of the interference light.
  • a spectroscopic optical system (spectrometer) is provided.
  • SS-OCT for example, as the OCT light source 11, a wavelength scanning light source (wavelength variable light source) that changes the emission wavelength at high speed in time is used.
  • the OCT light source 11 may include a light source, a fiber ring resonator, and a wavelength selection filter. Examples of the wavelength selection filter include a filter that combines a diffraction grating and a polygon mirror, a filter that uses a Fabry-Perot Etalon, and the like.
  • an OCT image may be taken according to the principle of line field OCT (hereinafter referred to as "LF-OCT").
  • LF-OCT the measurement light is simultaneously irradiated on the irradiation line extending in the one-dimensional direction in the tissue, and the interference light between the reflected light of the measurement light and the reference light is a one-dimensional light receiving element (for example, a line sensor) or a two-dimensional light receiving element. Is received by.
  • the measurement light is scanned in the direction intersecting the irradiation line, so that a three-dimensional OCT image is taken. Further, a three-dimensional OCT image may be taken according to the principle of full-field OCT (hereinafter referred to as "FF-OCT").
  • FF-OCT full-field OCT
  • the measurement light is irradiated to the two-dimensional measurement area on the tissue, and the interference light between the reflected light of the measurement light and the reference light is received by the two-dimensional light receiving element.
  • the OCT device 1 does not have to include the scanning unit 14.
  • the OCT device 1 of the present embodiment can change the shooting angle of view when photographing the tissue of the eye E to be inspected.
  • the larger the shooting angle of view the wider the shooting range (shooting range in the transverse direction) when the tissue is viewed from the direction along the optical axis of the measurement light.
  • the shooting angle of view may be changed by attaching and detaching an attachment (not shown) provided with an optical member for changing the shooting angle of view to the OCT optical system 10.
  • the front observation optical system 23 is provided to acquire a two-dimensional front image of the tissue of the subject (in the present embodiment, the fundus of the eye E to be inspected).
  • the two-dimensional front image in the present embodiment is a two-dimensional image when the structure is viewed from the direction (front direction) along the optical axis of the measurement light of the OCT.
  • the front observation optical system 23 includes, for example, a scanning laser ophthalmoscope (SLO), a fundus camera, and an infrared camera that collectively irradiates a two-dimensional imaging range with infrared light to capture a front image. At least one of the configurations can be adopted.
  • the OCT device 1 acquires three-dimensional OCT data of the tissue, and obtains an image (so-called “Enface image”) when the tissue is viewed from a direction (front direction) along the optical axis of the measurement light as a two-dimensional front image. May be obtained as.
  • the front observation optical system 23 may be omitted.
  • the control unit 30 controls various controls of the OCT device 1.
  • the control unit 30 includes a CPU 31, a RAM 32, a ROM 33, and a non-volatile memory (NVM) 34.
  • the CPU 31 is a controller that performs various controls.
  • the RAM 32 temporarily stores various types of information.
  • the ROM 33 stores a program executed by the CPU 31 and various initial values.
  • the NVM 34 is a non-transient storage medium capable of retaining the storage contents even when the power supply is cut off.
  • a microphone 36, a monitor 37, and an operation unit 38 are connected to the control unit 30.
  • the microphone 36 inputs sound.
  • the monitor 37 is an example of a display unit that displays various images.
  • the operation unit 38 is operated by the user in order for the user to input various operation instructions to the OCT device 1.
  • various devices such as a mouse, a keyboard, a touch panel, and a foot switch can be used.
  • various operation instructions may be input to the OCT device 1 by inputting sound to the microphone 36.
  • the CPU 31 may determine the type of operation instruction by performing voice recognition processing on the input sound.
  • an integrated OCT device 1 in which the OCT optical system 10 and the control unit 30 are built in one housing is illustrated.
  • the OCT device 1 may include a plurality of devices having different housings.
  • the OCT device 1 may include an optical device incorporating the OCT optical system 10 and a PC connected to the optical device by wire or wirelessly.
  • the control unit included in the optical device and the control unit of the PC may both function as the control unit 30 of the OCT device 1.
  • the outline configuration of the PC 40 will be described.
  • the PC 40 includes a CPU 41, a RAM 42, a ROM 43, and an NVM 44.
  • the OCT data processing program for executing the OCT data processing (see FIG. 2) described later may be stored in the NVM 44.
  • a microphone 46, a monitor 47, and an operation unit 48 are connected to the PC 40.
  • the microphone 46 inputs sound.
  • the monitor 47 is an example of a display unit that displays various images.
  • the operation unit 48 is operated by the user in order for the user to input various operation instructions to the PC 40.
  • various devices such as a mouse, a keyboard, and a touch panel can be used as in the operation unit 38 of the OCT device 1.
  • various operation instructions may be input to the PC 40 by inputting sound to the microphone 46.
  • the PC 40 can acquire various data (for example, OCT image data obtained by the OCT device 1) from the OCT device 1.
  • the various data may be acquired by at least one of, for example, wired communication, wireless communication, and a detachable storage device (for example, a USB memory).
  • the PC 40 acquires the data of the OCT image 50 (sometimes simply referred to as “OCT image 50”) from the OCT device 1 and processes the acquired data of the OCT image 50. That is, in this embodiment, the PC 40 functions as an OCT data processing device. However, as described above, other devices may function as OCT data processing devices. For example, the OCT apparatus 1 itself may execute the OCT data processing. Further, a plurality of control units (for example, the CPU 31 of the OCT device 1 and the CPU 41 of the PC 40) may cooperate to execute the OCT data processing. In the present embodiment, the CPU 41 of the PC 40 executes the OCT data processing shown in FIG. 2 according to the OCT data processing program stored in the NVM 44.
  • OCT image 50 sometimes simply referred to as “OCT image 50”
  • the CPU 41 acquires the first OCT image 50A (see FIGS. 3 to 5) taken by the OCT device 1 (S1).
  • the first OCT image 50A targets the curved tissue of the eye to be inspected (for example, the fundus in the present embodiment), and the focus position is the first focus position FA (FIGS. 3 to 5) by the focus adjustment unit 17 (see FIG. 1). This is an image taken in a state adjusted to (see).
  • the focus position is adjusted in the optical axis direction (that is, the depth direction of the tissue) of the OCT measurement light.
  • the vertical direction of the paper surface is the optical axis direction (tissue depth direction).
  • the direction intersecting the optical axis direction is defined as the transverse direction.
  • the brightness of the pixel increases as the position in the optical axis direction (depth direction) becomes farther from the focus position (first focus position FA in FIGS. 3 to 5). The value tends to decrease. That is, in the image area of the OCT image 50, the shorter the distance from the focus position in the depth direction, the higher the sensitivity, and the farther the distance from the focus position, the lower the sensitivity.
  • the CPU 41 acquires information on the shooting angle of view when the first OCT image 50A is shot by the OCT device 1.
  • the CPU 41 determines whether or not the shooting angle of view of the first OCT image 50A at the time of shooting is larger than the threshold value (S2).
  • S2 the threshold value
  • the larger the shooting angle of view the wider the shooting range when the tissue is viewed from the direction along the optical axis of the measurement light.
  • the wider the imaging range the more difficult it is to focus on each position of the tissue in the transverse direction at the same time.
  • the wider the shooting range the larger the width in the depth direction (hereinafter, referred to as “shooting target width TL”) of the shooting target (in the present embodiment, the vicinity of the surface layer of the fundus) included in the shooting range.
  • shooting target width TL the width in the depth direction
  • the shooting angle of view the larger the shooting target width TL included in the shooting range.
  • the synthesis process S8 to S10 described later is performed. It is desirable to execute it to obtain a high-quality image.
  • the threshold value used in the determination of S2 may be appropriately set.
  • the threshold value may be predetermined according to the type of tissue to be imaged. Further, the threshold value may be set according to the instruction input by the user via the operation unit 48 or the like.
  • the CPU 41 determines whether or not to execute the compositing process (S8 to S10) based on the first OCT image 50A (S3). If the quality of the first OCT image 50A already taken is good, the need to perform the compositing process is low. Therefore, when the quality of the first OCT image 50A is good (S3: YES), the CPU 41 determines that the synthesis process is not executed, and ends the process as it is.
  • the imaging target width TL shown in the first OCT image 50A is in the optical axis direction (depth of the tissue) centered on the focus position at the time of imaging (first focus position FA in FIGS. 3 and 4). It is determined whether or not it is within the allowable range GL that extends in the vertical direction. For example, in the first OCT image 50A illustrated in FIG. 3, since the degree of curvature of the imaged object is small, the imaged object width TL is within the permissible range GL.
  • the CPU 41 decides not to execute the synthesis process.
  • the imaging target width TL does not fall within the permissible range GL and protrudes above the figure.
  • the process shifts to S5.
  • the composition process is executed depending on whether or not the luminance value of the imaging target in the first OCT image 50A (for example, the average value or the maximum value of all the luminance values in the imaging target) is larger than the threshold value. It may be decided whether or not to do so.
  • the luminance value of the imaging target in the first OCT image 50A for example, the average value or the maximum value of all the luminance values in the imaging target. It may be decided whether or not to do so.
  • the CPU 41 performs a second OCT based on a position in the optical axis direction (tissue depth direction) of the object to be imaged captured in the first OCT image 50A and a first focus position FA when the first OCT image 50A is imaged.
  • the second focus position FB when shooting the image 50B is set (S5).
  • the second OCT image 50B is an image that is combined with the first OCT image 50A in the synthesis processing (S8 to S10) described later.
  • the second focus position FB of the second OCT image 50B captured thereafter is a position where the sensitivity is low (that is, the position where the pixel value tends to be low) in the first OCT image 50A already captured. ) Is set appropriately.
  • the CPU 41 is located at a position different from the first focus position FA in the range of the optical axis direction (tissue depth direction) of the imaging target shown in the first OCT image 50A, in the second focus position FB.
  • the CPU 41 refers to the center of the imaging target width TL (the center in the vertical direction in FIG. 5).
  • the second focus position FB may be set so that the first focus position FA and the second focus position FB are symmetrical (up and down in FIG. 5).
  • the CPU 41 may set the second focus position FB at the center of the first focus position FA and the end portion of the shooting target width TL (the upper end portion of the image in FIG. 5).
  • the CPU 41 acquires the second OCT image 50B taken with the focus position adjusted to the second focus position FB (S6).
  • the CPU 41 of the PC 40 notifies the OCT device 1 of the second focus position FB set in S5, and gives an instruction to shoot the second OCT image 50B.
  • the OCT device 1 adjusts the focus position to the second focus position FB, and captures the second OCT image 50B with the same tissue of the eye to be inspected as the first OCT image 50A as the imaging target.
  • the portion where the sensitivity is high (that is, the portion where the brightness is high) in the second OCT image 50B to be imaged is a portion different from the portion where the sensitivity is high in the first OCT image 50A.
  • the focus position FA of the first OCT image 50A is adjusted to a position corresponding to the central portion of the fundus (that is, a position where the brightness of the central portion of the fundus becomes high).
  • the focus position FB of the second OCT image 50B is adjusted to a position corresponding to the peripheral portion of the fundus (that is, a position where the brightness of the peripheral portion of the fundus is higher than the brightness of the central portion).
  • each of the first OCT image 50A and the second OCT image 50B is photographed with the focus position adjusted to a position corresponding to each of the plurality of positions separated in the transverse direction on the tissue.
  • the number of the second OCT images 50B captured in S6 may be one or a plurality. ..
  • the same number of second focus position FBs as the number of second OCT images 50B captured in S6 may be set at different positions.
  • the CPU 41 sets the focus appropriateness for each of the plurality of OCT images 50 (that is, the first OCT image 50A and the second OCT image 50B) (S8).
  • the focus appropriateness is information indicating the goodness (high sensitivity) of the focus state in the image area of the OCT image 50. As described above, in the OCT image 50, the closer the distance from the focus position in the optical axis direction (tissue depth direction), the better the focus state (sensitivity).
  • the CPU 41 sets the focus appropriateness based on the focus positions FA and FB when the OCT image 50 is captured. Specifically, the CPU 41 sets the focus appropriateness of the pixel lower as the position of the pixel moves away from the focus positions FA and FB in the optical axis direction. As a result, the focus appropriateness of each pixel is appropriately set based on the positional relationship of each pixel with respect to the focus positions FA and FB.
  • the CPU 41 may set the focus appropriateness of the OCT image 50 based on the luminance of a plurality of pixels constituting the actually captured OCT image 50. As described above, the closer the pixel position is to the focus positions FA and FB, the higher the brightness of the pixel. Therefore, the focus appropriateness is appropriately set by using the brightness of the actually captured OCT image 50.
  • FIG. 7 schematically shows a method of weighting the first OCT image 50A shown in FIG. 5 according to the focus appropriateness set in S8.
  • a weight 60A configured so that the pixel value becomes lower as the focus suitability is lower is multiplied by the pixel value of each pixel of the first OCT image 50A.
  • the first OCT image 50AX in which the weighting is reflected in the first OCT image 50A is generated. Similar processing is performed on one or more second OCT images 50B.
  • the CPU 41 aligns and synthesizes a plurality of OCT images (in this embodiment, the first OCT image 50AX and the second OCT image subjected to the processing of S9) to obtain the composite image 50C (see FIG. 8).
  • Generate (S10) For example, the CPU 41 aligns each of the plurality of OCT images 50 by using various methods (for example, known image processing using edge detection or the like).
  • the CPU 41 generates a composite image 50C by adding the pixel values of the pixels at the same position. As shown in FIG. 8, in the composite image 50C, the unevenness of the brightness of the pixels due to the quality of the focus state is reduced as compared with the first OCT image 50A (see FIG. 5) and the second OCT image 50B (see FIG. 6). The image quality is improved.
  • the generated composite image 50C may be stored in a storage device such as NVM44, or may be displayed on a display device such as a monitor 47.
  • the technology disclosed in the above embodiment is only an example. Therefore, it is possible to modify the techniques exemplified in the above embodiments.
  • the second focus position FB when the second OCT image 50B is taken is set based on the first OCT image 50A taken earlier (S5). After that, the second OCT image 50B is taken with the focus position set to the second focus position FB.
  • the focus position when capturing each of the plurality of OCT images 50 may be set by different methods. For example, the focus position when capturing each of the plurality of OCT images 50 may be set in advance. Further, each focus position may be set according to various measurement results regarding the eye to be inspected (for example, diopter of the eye to be inspected, axial length, etc.).
  • the CPU 41 may generate a composite image by extracting a portion close to the focus position from each of the plurality of OCT images 50 and aligning and pasting the extracted plurality of portions. Further, the CPU 41 may generate a composite image by aligning a plurality of OCT images 50 and adding (or adding and averaging) the pixel values of the pixels at the same position. Further, the CPU 41 may align a plurality of OCT images 50 and generate a set of pixels having the maximum luminance value among the pixels at the same position as a composite image.
  • the process of generating the composite image 50C in S8 to S10 of FIG. 2 is an example of the “composite step”.
  • the process of acquiring the first OCT image 50A in S1 of FIG. 2 is an example of the “first image acquisition step”.
  • the process of setting the second focus position FB in S5 of FIG. 2 is an example of the “focus setting step”.
  • the process of determining whether or not to execute the synthesis process in S3 of FIG. 2 is an example of the “first determination step”.
  • the process of determining whether or not to execute the synthesis process in S2 of FIG. 2 is an example of the “second determination step”.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

OCT装置は、OCT光学系とフォーカス調整部を備える。OCT光学系は、OCT光源から出射された光を測定光と参照光に分岐し、組織によって反射された測定光と、参照光の干渉光を受光することで、OCT信号を取得する。フォーカス調整部は、OCT光学系のフォーカス位置を、OCT光学系の光軸方向に調整する。OCTデータ処理装置の制御部は、合成ステップ(S8~S10)を実行する。合成ステップでは、同一の被検眼の組織を撮影対象とし、且つ、フォーカス位置が、組織上において光軸に交差する横断方向に離間した複数位置の各々に対応する位置に調整された状態で撮影された複数のOCT画像が、位置合わせされて合成される。

Description

OCTデータ処理装置およびOCTデータ処理プログラム
 本開示は、光コヒーレンストモグラフィ(OCT)の原理に基づいて撮影されたOCT画像のデータを処理するOCTデータ処理装置、および、OCTデータ処理装置において実行されるOCTデータ処理プログラムに関する。
 従来、測定光の反射光と参照光によって、組織の断層画像であるOCT画像を撮影するOCT装置が知られている。OCT装置では、OCT光学系のフォーカス位置が適切な位置に調整された状態で撮影が行われることで、撮影される画像の品質が向上する。例えば、特許文献1に記載の装置は、被検眼の眼軸長に基づいて眼屈折力を取得し、フォーカス位置を眼屈折力に対応する位置に調整する。フォーカス位置は、測定光の光軸方向(つまり、断層画像の撮影対象となる組織の深さ方向)に沿って調整される。
特開2020-36717号公報
 OCT画像では、深さ方向における位置がフォーカス位置から遠ざかる程、輝度が低下してしまう。また、フォーカス位置からの距離に応じた輝度の差を抑制するために、焦点深度を深くすると、画像全体の輝度が低下してしまう。ここで、OCT装置による撮影対象となる被検眼の組織(例えば、眼底、角膜、および水晶体等)の多くは湾曲している。よって、光軸方向に交差する方向(以下、「横断方向」という場合もある)に関する撮影範囲が広くなる程、組織の湾曲によって、横断方向における各位置(例えば、中心部と周辺部等)の全てに同時にフォーカスを合わせることが困難となる。従って、横断方向の広い範囲で画質が良好なOCT画像を得ることは、従来の技術では困難であった。
 本開示の典型的な目的は、横断方向の広い範囲で画質がより良好なOCT画像を取得するためのOCTデータ処理装置およびOCTデータ処理プログラムを提供することである。
 本開示における典型的な実施形態が提供するOCTデータ処理装置は、OCT装置によって撮影された被検眼の組織のOCT画像のデータを処理するOCTデータ処理装置であって、前記OCT装置は、OCT光源から出射された光を測定光と参照光に分岐し、組織によって反射された前記測定光と、前記参照光の干渉光を受光することでOCT信号を取得するOCT光学系と、前記OCT光学系のフォーカス位置を、前記OCT光学系の光軸方向に調整するフォーカス調整部と、を備え、前記OCTデータ処理装置の制御部は、同一の被検眼の組織を撮影対象とし、且つ、フォーカス位置が、前記組織上において前記光軸に交差する方向に離間した複数位置の各々に対応する位置に調整された状態で撮影された複数のOCT画像を、位置合わせして合成する合成ステップ、を実行する。
 本開示における典型的な実施形態が提供するOCTデータ処理プログラムは、OCT装置によって撮影された被検眼の組織のOCT画像のデータを処理するOCTデータ処理装置によって実行されるOCTデータ処理プログラムであって、前記OCT装置は、OCT光源から出射された光を測定光と参照光に分岐し、組織によって反射された前記測定光と、前記参照光の干渉光を受光することでOCT信号を取得するOCT光学系と、前記OCT光学系のフォーカス位置を、前記OCT光学系の光軸方向に調整するフォーカス調整部と、を備え、前記OCTデータ処理プログラムが前記OCTデータ処理装置の制御部によって実行されることで、同一の被検眼の組織を撮影対象とし、且つ、フォーカス位置が、前記組織上において前記光軸に交差する方向に離間した複数位置の各々に対応する位置に調整された状態で撮影された複数のOCT画像を、位置合わせして合成する合成ステップ、を前記OCTデータ処理装置に実行させる。
 本開示に係るOCTデータ処理装置およびOCTデータ処理プログラムによると、横断方向の広い範囲で画質がより良好なOCT画像が取得される。
 本開示で例示するOCTデータ処理装置は、OCT装置によって撮影された被検眼の組織のOCT画像のデータを処理する。OCT装置は、OCT光学系とフォーカス調整部を備える。OCT光学系は、OCT光源から出射された光を測定光と参照光に分岐し、組織によって反射された測定光と、参照光の干渉光を受光することで、OCT信号を取得する。フォーカス調整部は、OCT光学系のフォーカス位置を、OCT光学系の光軸方向に調整する。OCTデータ処理装置の制御部は、合成ステップを実行する。合成ステップでは、同一の被検眼の組織を撮影対象とし、且つ、フォーカス位置が、組織上において光軸に交差する方向(横断方向)に離間した複数位置の各々に対応する位置に調整された状態で撮影された複数のOCT画像が、位置合わせされて合成される。つまり、複数のOCT画像を合成した合成画像が生成される。
 本開示に係るOCTデータ処理装置によると、撮影対象が同一であり、且つ、横断方向において異なる位置にフォーカス位置を対応させることで撮影された複数のOCT画像が合成される。従って、横断方向の広い範囲で画質が良好な合成画像が生成される。
 合成ステップは、被検眼の湾曲組織(例えば、眼底、角膜、および水晶体等)のOCTデータを処理する際に実行されてもよい。前述のように、湾曲組織のOCT画像を撮影する場合には、横断方向における各位置の全てに同時にフォーカスを合わせることが困難である。これに対し、湾曲組織のOCT画像に対して合成ステップが実行されることで、画質が良好な湾曲組織の合成画像が適切に取得される。
 なお、合成ステップにおいて合成されるOCT画像の数は、2つであってもよいし、3つ以上であってもよい。また、制御部は、合成画像のデータに対してさらに処理を行ってもよい。例えば、制御部は、合成画像を表示部に表示させてもよい。また、制御部は、合成画像に対して解析処理(例えば、特定の層の厚みを解析する処理等)を行い、解析結果のデータを生成してもよい。制御部は、合成画像のデータを記憶装置に記憶させてもよい。
 なお、種々のデバイスがOCTデータ処理装置として機能することができる。例えば、OCT装置自身が、本開示におけるOCTデータ処理装置として機能してもよい。この場合、OCT装置は、複数のOCT画像を撮影しつつ、撮影した複数のOCT画像を適切に合成することができる。また、OCT装置との間でデータをやり取りすることが可能なデバイス(例えばパーソナルコンピュータ(PC)等)が、OCTデータ処理装置として機能してもよい。複数の制御部(例えば、OCT装置の制御部とPCの制御部等)が、協働して処理を行ってもよい。
 制御部は、第1画像取得ステップ、およびフォーカス設定ステップをさらに実行してもよい。第1画像取得ステップでは、制御部は、OCT装置によって撮影された第1OCT画像を取得する。フォーカス設定ステップでは、制御部は、第1OCT画像に写る撮影対象の光軸方向における位置と、第1OCT画像が撮影された際のフォーカス位置である第1フォーカス位置とに基づいて、第1OCT画像と合成する第2OCT画像を撮影する際のフォーカス位置である第2フォーカス位置を設定する。制御部は、第1OCT画像と同一の撮影対象について、フォーカス位置が第2フォーカス位置に調整された状態で撮影された第2OCT画像を、第1OCT画像と合成する。
 この場合、実際に撮影された第1OCT画像に基づいて、その後に撮影される第2OCT画像の第2フォーカス位置が、第1OCT画像において感度が低い位置に適切に設定される。よって、第1OCT画像と第2OCT画像が合成されることで、画質がより良好な合成画像が適切に生成される。
 なお、フォーカス設定ステップにおける第2フォーカス位置の具体的な設定方法は、適宜選択できる。例えば、制御部は、第1OCT画像に写っている撮影対象(例えば、眼底または角膜等の組織)の光軸方向(組織の深さ方向)の範囲のうち、第1フォーカス位置とは異なる位置に、第2フォーカス位置を設定してもよい。制御部は、合成する予定のOCT画像の数と、第1OCT画像に写っている撮影対象の深さ方向の範囲に応じて、第2フォーカス位置を設定してもよい。
 制御部は、第1決定ステップをさらに実行してもよい。第1決定ステップでは、制御部は、OCT装置によって撮影されたOCT画像に基づいて、合成ステップを実行するか否かを決定する。既に撮影されたOCT画像の品質が良好な場合には、合成画像を生成する必要性は低い。従って、制御部は、合成ステップを実行するか否かを、既に撮影されたOCT画像に基づいて決定することで、合成画像を生成する必要性が高い場合に適切に合成ステップを実行することができる。
 第1決定ステップを実行する具体的な方法は、適宜選択できる。例えば、制御部は、既に撮影されたOCT画像に写っている撮影対象が、撮影時のフォーカス位置を中心として光軸方向に広がる所定範囲内に収まっていない場合に、合成ステップを実行してもよい。また、制御部は、既に撮影されたOCT画像における撮影対象の輝度に応じて、合成ステップを実行するか否かを決定してもよい。
 制御部は、第2決定ステップを実行してもよい。第2決定ステップでは、制御部は、OCT装置によってOCT画像が撮影される際の撮影画角に応じて、合成ステップを実行するか否かを決定する。撮影対象の組織が湾曲している場合、撮影画角が大きくなる程、横断方向における組織の各位置に同時にフォーカスを合わせることが困難となる。その結果、フォーカス位置から光軸方向に離間して感度が低下する部分が多くなるので、合成画像を生成することが望ましい。一方で、撮影画角が小さい程、合成画像を生成する必要性が低い場合が多い。従って、制御部は、合成ステップを実行するか否かを撮影画角に応じて決定することで、合成画像を生成する必要性が高い場合に適切に合成ステップを実行することができる。
 第2決定ステップを実行する具体的な方法も、適宜選択できる。例えば、撮影画角が閾値よりも大きいか否かによって、合成ステップを実行するか否かが決定されてもよい。この場合、閾値は、撮影対象となる組織の種類等に応じて予め定められていてもよい。
 合成ステップにおいて、制御部は、複数のOCT画像の各々に対し、光軸方向(深さ方向)に沿って画像内で変化するフォーカスの適正度を設定してもよい。制御部は、OCT画像を構成する複数の画素の各々に、設定したフォーカスの適正度に応じた重み付けを行ってもよい。制御部は、重み付けが行われたOCT画像を合成してもよい。この場合、フォーカスの適正度に応じて、各画素の画素値が合成画像の画素値に適切に反映される。従って、合成画像の画質がより良好となる。さらに、合成画像に使用するOCT画像の数を少なくしても(例えば2枚にしても)、画質が良好な合成画像が生成され易くなる。
 制御部は、OCT画像が撮影された際のフォーカス位置に基づいて、OCT画像のフォーカスの適正度を設定してもよい。つまり、フォーカスの適正度は、光軸方向において、フォーカス位置から遠ざかる程低くなるように設定されてもよい。この場合、フォーカス位置に対する各画素の位置関係に基づいて、フォーカスの適正度が適切に設定される。
 制御部は、撮影されたOCT画像を構成する複数の画素の輝度に基づいて、OCT画像のフォーカスの適正度を設定してもよい。画素の位置がフォーカス位置に近い程、画素の輝度は高くなる。従って、実際に撮影されたOCT画像の輝度を用いることで、適切にフォーカスの適正度が設定される。
 ただし、合成画像を生成する具体的な方法は、フォーカスの適正度に応じた重み付けを利用する方法に限定されない。例えば、制御部は、複数のOCT画像の各々から、フォーカス位置に近い部分を抽出し、抽出した複数の部分を位置合わせして貼り合わせることで、合成画像を生成してもよい。また、制御部は、複数のOCT画像を位置合わせし、同じ位置の画素の画素値を加算(加算平均でもよい)することで、合成画像を生成してもよい。また、制御部は、複数のOCT画像を位置合わせし、同じ位置の画素のうち輝度値が最大の画素の集合を、合成画像として生成してもよい。
OCTシステム100の概略構成を示すブロック図である。 OCTデータ処理の一例を示すフローチャートである。 撮影対象幅TLが許容範囲GLに収まっている場合の第1OCT画像50Aの一例を示す図である。 撮影対象幅TLが許容範囲GLに収まっていない場合の第1OCT画像50Aの一例を示す図である。 第2フォーカス位置FBの設定方法の一例を説明するための説明図である。 フォーカス位置が第2フォーカス位置FBに調整された状態で撮影された第2OCT画像50Bの一例を示す図である。 OCT画像の各画素にフォーカス適正度に応じた重み付けを行う方法の一例を説明するための説明図である。 第1OCT画像50A(図5参照)と第2OCT画像50B(図6参照)を合成した合成画像50Cの一例を示す図である。
 以下、本開示に係る典型的な実施形態の1つについて説明する。一例として、本実施形態のOCTシステム100は、被検眼Eの湾曲組織の1つである眼底を撮影対象(被検体)とし、眼底組織の断層画像であるOCT画像を撮影して処理することができる。ただし、被検眼Eにおける眼底以外の組織のOCT画像を処理する場合でも、本開示で例示する技術の少なくとも一部を適用できる。特に、被検眼Eの前眼部の湾曲組織(角膜または水晶体等)の形状は必ず湾曲しており、且つ、深さ方向の幅も広いので、前眼部のOCT画像を従来の方法で撮影すると、フォーカス位置から遠い部位の割合が多くなり、画質が向上し難い。従って、被検眼Eの前眼部のOCT画像を処理する場合に、本開示で例示する技術の少なくとも一部を適用することは、特に有用である。また、被検眼のモーションコントラストデータを検出するためのOCTアンジオグラフィーでは、組織の繊細な変化を捉える必要があるため、フォーカス位置が大きく影響する。従って、OCTアンジオグラフィーのデータを処理する場合にも、本開示で例示する技術の少なくとも一部を適用することは有用である。また、被検眼E以外の被検体(例えば、皮膚、消化器、脳等)のOCT画像を処理する場合でも、本開示で例示する技術の少なくとも一部を適用できる。また、本実施形態におけるOCT画像とは、光コヒーレンストモグラフィ(OCT)の原理に基づいて取得される断層画像である。
 図1を参照して、本実施形態のOCTシステム100の概略構成について説明する。本実施形態のOCTシステム100は、OCT装置1とパーソナルコンピュータ(以下、「PC」という)40を備える。OCT装置1は、被検眼EのOCT画像を撮影する。PC40は、OCT装置1によって撮影されたOCT画像の処理を実行する。
 OCT装置1は、OCT光学系10と制御ユニット30を備える。OCT光学系10は、OCT光源11、カップラー(光分割器)12、測定光学系13、参照光学系20、受光素子22、および正面観察光学系23を備える。
 OCT光源11は、OCT画像を撮影するための光(OCT光)を出射する。カップラー12は、OCT光源11から出射されたOCT光を、測定光と参照光に分割する。また、本実施形態のカップラー12は、被検体(本実施形態では被検眼Eの眼底)によって反射された測定光と、参照光学系20によって生成された参照光を合波して干渉させる。つまり、本実施形態のカップラー12は、OCT光を測定光と参照光に分岐する分岐光学素子と、測定光の反射光と参照光を合波する合波光学素子を兼ねる。なお、分岐光学素子および合波光学素子の少なくともいずれかの構成を変更することも可能である。例えば、カップラー以外の素子(例えば、サーキュレータ、ビームスプリッタ等)が使用されてもよい。
 測定光学系13は、カップラー12によって分割された測定光を被検体に導くと共に、被検体によって反射された測定光をカップラー12に戻す。測定光学系13は、走査部14、照射光学系16、およびフォーカス調整部17を備える。走査部14は、駆動部15によって駆動されることで、測定光の光軸に交差する二次元方向に測定光を走査(偏向)させることができる。本実施形態では、互いに異なる方向に測定光を偏向させることが可能な2つのガルバノミラーが、走査部14として用いられている。しかし、光を偏向させる別のデバイス(例えば、ポリゴンミラー、レゾナントスキャナ、音響光学素子等の少なくともいずれか)が走査部14として用いられてもよい。照射光学系16は、走査部14よりも光路の下流側(つまり被検体側)に設けられており、測定光を被検体の組織に照射する。フォーカス調整部17は、OCT光学系10のフォーカス位置(照射光学系16のフォーカス位置)を、OCT光学系10の測定光の光軸方向(つまり、組織の深さ方向)に調整する。一例として、本実施形態のフォーカス調整部17は、照射光学系16が備える光学部材(例えばレンズ)を測定光の光軸に沿う方向に移動させることで、測定光のフォーカスを調整する。
 参照光学系20は、参照光を生成してカップラー12に戻す。本実施形態の参照光学系20は、カップラー12によって分割された参照光を反射光学系(例えば、参照ミラー)によって反射させることで、参照光を生成する。しかし、参照光学系20の構成も変更できる。例えば、参照光学系20は、カップラー12から入射した光を反射させずに透過させて、カップラー12に戻してもよい。参照光学系20は、測定光と参照光の光路長差を変更する光路長差調整部21を備える。本実施形態では、参照ミラーが光軸方向に移動されることで、光路長差が変更される。なお、光路長差を変更するための構成は、測定光学系13の光路中に設けられていてもよい。
 受光素子22は、カップラー12によって生成された測定光と参照光の干渉光を受光することで、干渉信号を検出する。本実施形態では、フーリエドメインOCTの原理が採用されている。フーリエドメインOCTでは、干渉光のスペクトル強度(スペクトル干渉信号)が受光素子22によって検出され、スペクトル強度データに対するフーリエ変換によって複素OCT信号が取得される。フーリエドメインOCTの一例として、Spectral-domain-OCT(SD-OCT)、Swept-source-OCT(SS-OCT)等を採用できる。また、例えば、Time-domain-OCT(TD-OCT)等を採用することも可能である。
 本実施形態では、SD-OCTが採用されている。SD-OCTの場合、例えば、OCT光源11として低コヒーレント光源(広帯域光源)が用いられると共に、干渉光の光路における受光素子22の近傍には、干渉光を各周波数成分(各波長成分)に分光する分光光学系(スペクトロメータ)が設けられる。SS-OCTの場合、例えば、OCT光源11として、出射波長を時間的に高速で変化させる波長走査型光源(波長可変光源)が用いられる。この場合、OCT光源11は、光源、ファイバーリング共振器、および波長選択フィルタを備えていてもよい。波長選択フィルタには、例えば、回折格子とポリゴンミラーを組み合わせたフィルタ、および、ファブリー・ペローエタロンを用いたフィルタ等がある。
 また、本実施形態では、測定光のスポットが、走査部14によって二次元の測定領域内で走査されることで、三次元のOCT画像を取得することも可能である。ここで、OCT画像を撮影する原理を変更することも可能である。例えば、ラインフィールドOCT(以下、「LF-OCT」という)の原理によってOCT画像が撮影されてもよい。LF-OCTでは、組織において一次元方向に延びる照射ライン上に測定光が同時に照射され、測定光の反射光と参照光の干渉光が、一次元受光素子(例えばラインセンサ)または二次元受光素子によって受光される。二次元の測定領域内において、照射ラインに交差する方向に測定光が走査されることで、三次元のOCT画像が撮影される。また、フルフィールドOCT(以下、「FF-OCT」という)の原理によって三次元OCT画像が撮影されてもよい。FF-OCTでは、組織上の二次元の測定領域に測定光が照射されると共に、測定光の反射光と参照光の干渉光が、二次元受光素子によって受光される。この場合、OCT装置1は、走査部14を備えていなくてもよい。
 なお、本実施形態のOCT装置1は、被検眼Eの組織を撮影する際の撮影画角を変更することができる。撮影画角が大きくなる程、測定光の光軸に沿う方向から組織を見た場合の撮影範囲(横断方向における撮影範囲)が広くなる。例えば、撮影画角変更用の光学部材を備えたアタッチメント(図示せず)が、OCT光学系10に着脱されることで、撮影画角が変更されてもよい。
 正面観察光学系23は、被検体の組織(本実施形態では被検眼Eの眼底)の二次元正面画像を取得するために設けられている。本実施形態における二次元正面画像とは、OCTの測定光の光軸に沿う方向(正面方向)から組織を見た場合の二次元の画像である。正面観察光学系23の構成には、例えば、走査型レーザ検眼鏡(SLO)、眼底カメラ、および、二次元の撮影範囲に赤外光を一括照射して正面画像を撮影する赤外カメラ等の少なくともいずれかの構成を採用できる。また、OCT装置1は、組織の三次元OCTデータを取得し、測定光の光軸に沿う方向(正面方向)から組織を見た場合の画像(所謂「Enface画像」)を、二次元正面画像として取得してもよい。Enface画像が取得される場合、正面観察光学系23は省略されてもよい。
 制御ユニット30は、OCT装置1の各種制御を司る。制御ユニット30は、CPU31、RAM32、ROM33、および不揮発性メモリ(NVM)34を備える。CPU31は各種制御を行うコントローラである。RAM32は各種情報を一時的に記憶する。ROM33には、CPU31が実行するプログラム、および各種初期値等が記憶されている。NVM34は、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。後述するOCTデータ処理(図2参照)をOCT装置1が実行する場合、OCTデータ処理を実行するためのOCTデータ処理プログラムは、NVM34に記憶されていてもよい。
 制御ユニット30には、マイク36、モニタ37、および操作部38が接続されている。マイク36は音を入力する。モニタ37は、各種画像を表示する表示部の一例である。操作部38は、ユーザが各種操作指示をOCT装置1に入力するために、ユーザによって操作される。操作部38には、例えば、マウス、キーボード、タッチパネル、フットスイッチ等の種々のデバイスを用いることができる。なお、マイク36に音が入力されることで各種操作指示がOCT装置1に入力されてもよい。この場合、CPU31は、入力された音に対して音声認識処理を行うことで、操作指示の種類を判別してもよい。
 本実施形態では、OCT光学系10および制御ユニット30が1つの筐体に内蔵された一体型のOCT装置1を例示する。しかし、OCT装置1は、筐体が異なる複数の装置を備えていてもよいことは言うまでもない。例えば、OCT装置1は、OCT光学系10を内蔵する光学装置と、光学装置に有線または無線で接続されるPCとを備えていてもよい。この場合、光学装置が備える制御部とPCの制御部が、共にOCT装置1の制御ユニット30として機能してもよい。
 PC40の概略構成について説明する。PC40は、CPU41、RAM42、ROM43、およびNVM44を備える。後述するOCTデータ処理(図2参照)を実行するためのOCTデータ処理プログラムは、NVM44に記憶されていてもよい。また、PC40には、マイク46、モニタ47、および操作部48が接続されている。マイク46は音を入力する。モニタ47は、各種画像を表示する表示部の一例である。操作部48は、ユーザが各種操作指示をPC40に入力するために、ユーザによって操作される。操作部48には、OCT装置1の操作部38と同様に、マウス、キーボード、タッチパネル等の種々のデバイスを用いることができる。また、マイク46に音が入力されることで、各種操作指示がPC40に入力されてもよい。
 PC40は、OCT装置1から各種データ(例えば、OCT装置1によって得られたOCT画像のデータ等)を取得することができる。各種データは、例えば、有線通信、無線通信、および着脱可能な記憶装置(例えばUSBメモリ)等の少なくともいずれかによって取得されればよい。
 図2から図8を参照して、本実施形態におけるOCTデータ処理について説明する。本実施形態では、PC40がOCT装置1からOCT画像50のデータ(単に「OCT画像50」という場合もある)を取得し、取得したOCT画像50のデータを処理する。つまり、本実施形態では、PC40がOCTデータ処理装置として機能する。しかし、前述したように、他のデバイスがOCTデータ処理装置として機能してもよい。例えば、OCT装置1自身がOCTデータ処理を実行してもよい。また、複数の制御部(例えば、OCT装置1のCPU31と、PC40のCPU41)が協働してOCTデータ処理を実行してもよい。本実施形態では、PC40のCPU41は、NVM44に記憶されたOCTデータ処理プログラムに従って、図2に示すOCTデータ処理を実行する。
 まず、CPU41は、OCT装置1によって撮影された第1OCT画像50A(図3~図5参照)を取得する(S1)。第1OCT画像50Aは、被検眼の湾曲組織(一例として、本実施形態では眼底)を撮影対象とし、フォーカス位置がフォーカス調整部17(図1参照)によって第1フォーカス位置FA(図3~図5参照)に調整された状態で撮影された画像である。
 前述したように、OCT装置1では、OCT測定光の光軸方向(つまり、組織の深さ方向)にフォーカス位置が調整される。図3~図8では、紙面上下方向が、光軸方向(組織の深さ方向)となる。光軸方向に交差する方向(図3~図8における紙面左右方向)を、横断方向とする。OCT画像50(図3~図5では第1OCT画像50A)では、光軸方向(深さ方向)における位置がフォーカス位置(図3~図5では第1フォーカス位置FA)から遠ざかる程、画素の輝度値が低下する傾向がある。つまり、OCT画像50の画像領域内では、深さ方向におけるフォーカス位置からの距離が近い程感度が高くなり、フォーカス位置からの距離が遠い程感度が低くなる。
 次いで、CPU41は、第1OCT画像50AがOCT装置1によって撮影された際の撮影画角の情報を取得する。CPU41は、第1OCT画像50Aの撮影時の撮影画角が閾値よりも大きいか否かを判断する(S2)。前述したように、撮影画角が大きくなる程、測定光の光軸に沿う方向から組織を見た場合の撮影範囲が広くなる。撮影対象の組織が湾曲している場合、撮影範囲が広くなる程、横断方向における組織の各位置に同時にフォーカスを合わせることが困難となる。換言すると、撮影範囲が広くなる程、撮影範囲に含まれる撮影対象(本実施形態では、眼底の表層近傍)の深さ方向の幅(以下、「撮影対象幅TL」という)が大きくなり易い。例えば、被検眼の眼底、角膜、および水晶体等は湾曲しているので、撮影画角が大きくなる程、撮影範囲に含まれる撮影対象幅TLが大きくなる。図3および図4に例示するように、撮影対象幅TLが大きい程、フォーカス位置FAから深さ方向に離間して感度が低下する部分が多くなるので、後述する合成処理(S8~S10)を実行して高画質の画像を取得することが望ましい。一方で、撮影対象幅TLが小さい程、合成処理を実行する必要性が低い場合が多い。従って、撮影画角が閾値以下である場合には(S2:NO)、合成処理(S8~S10)を実行しない旨が決定されて、処理はそのまま終了する。なお、S2の判断で用いられる閾値は適宜設定されればよい。例えば、撮影対象となる組織の種類等に応じて、閾値の値が予め定められていてもよい。また、操作部48等を介してユーザによって入力された指示に応じて、閾値の値が設定されてもよい。
 撮影画角が閾値よりも大きい場合には(S2:YES)、CPU41は、合成処理(S8~S10)を実行するか否かを、第1OCT画像50Aに基づいて決定する(S3)。既に撮影された第1OCT画像50Aの品質が良好な場合には、合成処理を実行する必要性は低い。従って、CPU41は、第1OCT画像50Aの品質が良好な場合には(S3:YES)、合成処理を実行しない旨を決定し、そのまま処理を終了する。
 S3において、合成処理を実行するか否かを第1OCT画像50Aに基づいて決定するための具体的な方法は、適宜選択できる。図3および図4を参照して、S3における決定方法の一例について説明する。本実施形態では、CPU41は、第1OCT画像50Aに写っている撮影対象幅TLが、撮影時のフォーカス位置(図3および図4では第1フォーカス位置FA)を中心として光軸方向(組織の深さ方向)に広がる許容範囲GL内に収まっているか否かを判断する。例えば、図3に例示する第1OCT画像50Aでは、撮影対象の湾曲の程度が小さいので、撮影対象幅TLが許容範囲GL内に収まっている。この場合、第1OCT画像50Aに写っている撮影対象のうち、フォーカス位置FAから離間した部分は少なくなり、画質は良好となり易い。よって、CPU41は、合成処理を実行しない旨を決定する。一方で、図4に例示する第1OCT画像50Aでは、撮影対象幅TLが許容範囲GL内に収まっておらず、図の上方にはみ出している。この場合、第1OCT画像50Aに写っている撮影対象のうち、フォーカス位置FAから離間した部分が多くなる。よって、処理はS5へ移行する。
 なお、S3では、第1OCT画像50Aにおける撮影対象の輝度値(例えば、撮影対象における全ての輝度値の平均値、または最大値等)が閾値よりも大きいか否かに応じて、合成処理を実行するか否かが決定されてもよい。
 次いで、CPU41は、第1OCT画像50Aに写る撮影対象の光軸方向(組織の深さ方向)における位置と、第1OCT画像50Aが撮影された際の第1フォーカス位置FAとに基づいて、第2OCT画像50Bを撮影する際の第2フォーカス位置FBを設定する(S5)。第2OCT画像50Bは、後述する合成処理(S8~S10)において第1OCT画像50Aと合成される画像である。S5の処理が実行されることで、その後に撮影される第2OCT画像50Bの第2フォーカス位置FBが、既に撮影された第1OCT画像50Aにおいて感度が低い位置(つまり、画素値が低くなり易い位置)に適切に設定される。
 図5を参照して、第2フォーカス位置FBを設定するための方法の一例について説明する。本実施形態では、CPU41は、第1OCT画像50Aに写っている撮影対象の光軸方向(組織の深さ方向)の範囲のうち、第1フォーカス位置FAとは異なる位置に、第2フォーカス位置FBを設定する。例えば、CPU41は、第2フォーカス位置FBを1つ設定する場合(つまり、第2OCT画像50Bを1つ撮影する場合)には、撮影対象幅TLの中心(図5では上下方向の中心)を基準として、第1フォーカス位置FAと第2フォーカス位置FBが対称(図5では上下対象)となるように、第2フォーカス位置FBを設定してもよい。また、CPU41は、第1フォーカス位置FAと、撮影対象幅TLの端部(図5では画像の上端部)の中心に、第2フォーカス位置FBを設定してもよい。
 次いで、CPU41は、フォーカス位置が第2フォーカス位置FBに調整された状態で撮影された第2OCT画像50Bを取得する(S6)。本実施形態では、PC40のCPU41は、S5で設定した第2フォーカス位置FBをOCT装置1に通知し、第2OCT画像50Bの撮影指示を行う。OCT装置1は、フォーカス位置を第2フォーカス位置FBに調整し、第1OCT画像50Aと同一の被検眼の組織を撮影対象として第2OCT画像50Bを撮影する。図6に例示するように、撮影される第2OCT画像50Bにおいて感度が高くなる部位(つまり、輝度が高くなる部位)は、第1OCT画像50Aにおいて感度が高くなる部位とは異なる部位となる。また、図5に示すように、第1OCT画像50Aのフォーカス位置FAは、眼底の中心部に対応する位置(つまり、眼底の中心部の輝度が高くなる位置)に調整されている。一方で、図6に示すように、第2OCT画像50Bのフォーカス位置FBは、眼底の周辺部に対応する位置(つまり、眼底の周辺部の輝度が中心部の輝度よりも高くなる位置)に調整されている。換言すると、フォーカス位置が、組織上において横断方向に離間した複数位置の各々に対応する位置に調整された状態で、第1OCT画像50Aと第2OCT画像50Bの各々が撮影される。
 なお、S6で撮影される第2OCT画像50Bの数(つまり、後述する合成処理において第1OCT画像50Aと合成される画像の数)は、1つであってもよいし、複数であってもよい。S6で複数の第2OCT画像50Bが撮影される場合、S5では、S6で撮影される第2OCT画像50Bの数と同じ数の第2フォーカス位置FBが、互いに異なる位置に設定されてもよい。
 次いで、CPU41は、複数のOCT画像50(つまり、第1OCT画像50Aおよび第2OCT画像50B)の各々に対し、フォーカス適正度を設定する(S8)。フォーカス適正度とは、OCT画像50の画像領域内におけるフォーカス状態の良好さ(感度の高さ)を示す情報である。前述したように、OCT画像50内では、光軸方向(組織の深さ方向)におけるフォーカス位置からの距離が近くなる程、フォーカス状態(感度)が良好となる。
 本実施形態では、CPU41は、OCT画像50が撮影された際のフォーカス位置FA,FBに基づいて、フォーカス適正度を設定する。詳細には、CPU41は、光軸方向において画素の位置がフォーカス位置FA,FBから遠ざかる程、その画素のフォーカス適正度を低く設定する。その結果、フォーカス位置FA,FBに対する各画素の位置関係に基づいて、各画素のフォーカス適正度が適切に設定される。
 また、CPU41は、実際に撮影されたOCT画像50を構成する複数の画素の輝度に基づいて、OCT画像50のフォーカス適正度を設定してもよい。前述したように、画素の位置がフォーカス位置FA,FBに近い程、画素の輝度は高くなる。従って、実際に撮影されたOCT画像50の輝度を用いることで、適切にフォーカス適正度が設定される。
 次いで、CPU41は、OCT画像50を構成する複数の画素の各々の画素値に対し、S8で設定したフォーカス適正度に応じた重み付けを行う(S9)。図7は、図5に示す第1OCT画像50Aに対し、S8で設定したフォーカス適正度に応じた重み付けを行う方法を模式的に表している。図7に示す例では、フォーカス適正度が低い画素程、画素値が低くなるように構成された重み60Aが、第1OCT画像50Aの各画素の画素値に掛け合わされている。その結果、第1OCT画像50Aに重み付けが反映された第1OCT画像50AXが生成されている。同様の処理が、1つまたは複数の第2OCT画像50Bにも実行される。
 次いで、CPU41は、複数のOCT画像(本実施形態では、S9の処理が行われた第1OCT画像50AXおよび第2OCT画像)を位置合わせして合成することで、合成画像50C(図8参照)を生成する(S10)。例えば、CPU41は、複数のOCT画像50の各々を、種々の方法(例えば、エッジ検出等を利用した公知の画像処理等)を利用して位置合わせする。CPU41は、同じ位置の画素の画素値を加算することで、合成画像50Cを生成する。図8に示すように、合成画像50Cでは、第1OCT画像50A(図5参照)および第2OCT画像50B(図6参照)に比べて、フォーカス状態の良否に起因する画素の輝度のむらが低下し、画質が向上している。生成された合成画像50Cは、NVM44等の記憶装置に保存される場合、または、モニタ47等の表示装置に表示される場合等がある。
 上記実施形態で開示された技術は一例に過ぎない。従って、上記実施形態で例示された技術を変更することも可能である。まず、上記実施形態で例示した複数の技術の一部のみを採用することも可能である。例えば、合成処理を実行するか否かを撮影画角に応じて決定する処理(S2)、および、合成処理を実行するか否かをOCT画像50に基づいて設定する処理(S3)のうち、少なくとも一方を省略することも可能である。
 上記実施形態では、先に撮影された第1OCT画像50Aに基づいて、第2OCT画像50Bを撮影する際の第2フォーカス位置FBが設定される(S5)。その後、フォーカス位置が第2フォーカス位置FBに設定された状態で、第2OCT画像50Bが撮影される。しかし、複数のOCT画像50の各々を撮影する際のフォーカス位置は、異なる方法で設定されてもよい。例えば、複数のOCT画像50の各々を撮影する際のフォーカス位置が、予め設定されていてもよい。また、被検眼に関する各種測定結果(例えば、被検眼の視度または眼軸長等)に応じて、各々のフォーカス位置が設定されてもよい。
 上記実施形態では、複数のOCT画像50を合成する際に、フォーカス適正度に応じた重み付けが利用される(S8~S10)。しかし、合成処理の具体的な方法を変更することも可能である。例えば、CPU41は、複数のOCT画像50の各々から、フォーカス位置に近い部分を抽出し、抽出した複数の部分を位置合わせして貼り合わせることで、合成画像を生成してもよい。また、CPU41は、複数のOCT画像50を位置合わせし、同じ位置の画素の画素値を加算(加算平均でもよい)することで、合成画像を生成してもよい。また、CPU41は、複数のOCT画像50を位置合わせし、同じ位置の画素のうち輝度値が最大の画素の集合を、合成画像として生成してもよい。
 なお、図2のS8~S10で合成画像50Cを生成する処理は、「合成ステップ」の一例である。図2のS1で第1OCT画像50Aを取得する処理は、「第1画像取得ステップ」の一例である。図2のS5で第2フォーカス位置FBを設定する処理は、「フォーカス設定ステップ」の一例である。図2のS3で合成処理を実行するか否かを決定する処理は、「第1決定ステップ」の一例である。図2のS2で合成処理を実行するか否かを決定する処理は、「第2決定ステップ」の一例である。

 

Claims (8)

  1.  OCT装置によって撮影された被検眼の組織のOCT画像のデータを処理するOCTデータ処理装置であって、
     前記OCT装置は、
     OCT光源から出射された光を測定光と参照光に分岐し、組織によって反射された前記測定光と、前記参照光の干渉光を受光することでOCT信号を取得するOCT光学系と、
     前記OCT光学系のフォーカス位置を、前記OCT光学系の光軸方向に調整するフォーカス調整部と、
     を備え、
     前記OCTデータ処理装置の制御部は、
     同一の被検眼の組織を撮影対象とし、且つ、フォーカス位置が、前記組織上において前記光軸に交差する方向に離間した複数位置の各々に対応する位置に調整された状態で撮影された複数のOCT画像を、位置合わせして合成する合成ステップ、
     を実行することを特徴とするOCTデータ処理装置。
  2.  請求項1に記載のOCTデータ処理装置であって、
     前記制御部は、
     前記OCT装置によって撮影された第1OCT画像を取得する第1画像取得ステップと、
     前記第1OCT画像に写る撮影対象の前記光軸方向における位置と、前記第1OCT画像が撮影された際のフォーカス位置である第1フォーカス位置とに基づいて、前記第1OCT画像と合成する第2OCT画像を撮影する際のフォーカス位置である第2フォーカス位置を設定するフォーカス設定ステップと、
     をさらに実行することを特徴とするOCTデータ処理装置。
  3.  請求項1または2に記載のOCTデータ処理装置であって、
     前記制御部は、
     前記OCT装置によって撮影された前記OCT画像に基づいて、前記合成ステップを実行するか否かを決定する第1決定ステップ、
     をさらに実行することを特徴とするOCTデータ処理装置。
  4.  請求項1から3のいずれかに記載のOCTデータ処理装置であって、
     前記制御部は、
     前記OCT装置によって前記OCT画像が撮影される際の撮影画角に応じて、前記合成ステップを実行するか否かを決定する第2決定ステップ、
     をさらに実行することを特徴とするOCTデータ処理装置。
  5.  請求項1から4のいずれかに記載のOCTデータ処理装置であって、
     前記制御部は、前記合成ステップにおいて、
     前記複数のOCT画像の各々に対し、前記光軸方向に沿って画像内で変化するフォーカスの適正度を設定し、
     前記OCT画像を構成する複数の画素の各々に、設定した前記フォーカスの適正度に応じた重み付けを行い、
     重み付けが行われた前記OCT画像を合成することを特徴とするOCTデータ処理装置。
  6.  請求項5に記載のOCTデータ処理装置であって、
     前記制御部は、前記合成ステップにおいて、
     前記OCT画像が撮影された際のフォーカス位置に基づいて、前記OCT画像の前記フォーカスの適正度を設定することを特徴とするOCTデータ処理装置。
  7.  請求項5に記載のOCTデータ処理装置であって、
     前記制御部は、前記合成ステップにおいて、
     撮影された前記OCT画像を構成する複数の画素の輝度に基づいて、前記OCT画像の前記フォーカスの適正度を設定することを特徴とするOCTデータ処理装置。
  8.  OCT装置によって撮影された被検眼の組織のOCT画像のデータを処理するOCTデータ処理装置によって実行されるOCTデータ処理プログラムであって、
     前記OCT装置は、
     OCT光源から出射された光を測定光と参照光に分岐し、組織によって反射された前記測定光と、前記参照光の干渉光を受光することでOCT信号を取得するOCT光学系と、
     前記OCT光学系のフォーカス位置を、前記OCT光学系の光軸方向に調整するフォーカス調整部と、
     を備え、
     前記OCTデータ処理プログラムが前記OCTデータ処理装置の制御部によって実行されることで、
     同一の被検眼の組織を撮影対象とし、且つ、フォーカス位置が、前記組織上において前記光軸に交差する方向に離間した複数位置の各々に対応する位置に調整された状態で撮影された複数のOCT画像を、位置合わせして合成する合成ステップ、
     を前記OCTデータ処理装置に実行させることを特徴とするOCTデータ処理プログラム。

     
PCT/JP2021/020265 2020-06-03 2021-05-27 Octデータ処理装置およびoctデータ処理プログラム WO2021246291A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022528783A JPWO2021246291A1 (ja) 2020-06-03 2021-05-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020097237 2020-06-03
JP2020-097237 2020-06-03

Publications (1)

Publication Number Publication Date
WO2021246291A1 true WO2021246291A1 (ja) 2021-12-09

Family

ID=78831063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020265 WO2021246291A1 (ja) 2020-06-03 2021-05-27 Octデータ処理装置およびoctデータ処理プログラム

Country Status (2)

Country Link
JP (1) JPWO2021246291A1 (ja)
WO (1) WO2021246291A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016290A (ja) * 2013-07-12 2015-01-29 株式会社トプコン ダイナミックフォーカススイープおよび窓平均化を用いた光コヒーレンストモグラフィ
JP2017169671A (ja) * 2016-03-22 2017-09-28 株式会社トプコン 眼科撮影装置
JP2017217076A (ja) * 2016-06-03 2017-12-14 株式会社ニデック 眼科撮影装置および画像処理プログム
JP2019080804A (ja) * 2017-10-31 2019-05-30 株式会社ニデック Oct装置
JP2020022723A (ja) * 2018-08-02 2020-02-13 株式会社ニデック Oct装置及びoct画像処理プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016290A (ja) * 2013-07-12 2015-01-29 株式会社トプコン ダイナミックフォーカススイープおよび窓平均化を用いた光コヒーレンストモグラフィ
JP2017169671A (ja) * 2016-03-22 2017-09-28 株式会社トプコン 眼科撮影装置
JP2017217076A (ja) * 2016-06-03 2017-12-14 株式会社ニデック 眼科撮影装置および画像処理プログム
JP2019080804A (ja) * 2017-10-31 2019-05-30 株式会社ニデック Oct装置
JP2020022723A (ja) * 2018-08-02 2020-02-13 株式会社ニデック Oct装置及びoct画像処理プログラム

Also Published As

Publication number Publication date
JPWO2021246291A1 (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
JP6057567B2 (ja) 撮像制御装置、眼科撮像装置、撮像制御方法及びプログラム
KR101450110B1 (ko) 화상처리장치, 제어 방법 및 광간섭 단층촬영 시스템
US8534835B2 (en) Optical tomographic image photographing apparatus
JP6551081B2 (ja) 眼科撮影装置および眼科撮影プログラム
JP6909109B2 (ja) 情報処理装置、情報処理方法、及びプログラム
CN110786821B (zh) Oct装置及记录介质
JP2019150409A (ja) Oct装置
JP6516746B2 (ja) 断層像撮影装置
JP6503665B2 (ja) 光コヒーレンストモグラフィー装置及びプログラム
JP6375760B2 (ja) 光コヒーレンストモグラフィー装置、および眼底画像処理プログラム
CN110226915B (zh) Oct数据处理装置及方法、存储介质
JP6918581B2 (ja) 制御装置、断層像撮影システム、制御方法、及びプログラム
JP5987355B2 (ja) 眼光断層画像撮像装置
JP7279379B2 (ja) Oct装置及びoct画像処理プログラム
US20220386864A1 (en) Oct apparatus and non-transitory computer-readable storage medium
WO2021246291A1 (ja) Octデータ処理装置およびoctデータ処理プログラム
JP2013179971A (ja) 眼光断層画像撮像装置
JP6888643B2 (ja) Oct解析処理装置、及びoctデータ処理プログラム
JP7123606B2 (ja) 画像処理装置、画像処理方法およびプログラム
EP3375349B1 (en) Information processing apparatus, image generation method, and computer-readable medium
JP7119287B2 (ja) 断層画像撮影装置、および断層画像撮影プログラム
JP7091778B2 (ja) 眼底画像処理装置および眼底画像処理プログラム
JP6833455B2 (ja) 眼科撮影装置及びその制御方法、眼科撮影システム、並びに、プログラム
JP2024052026A (ja) Oct装置およびoctデータ処理プログラム
JP2022129243A (ja) 眼科装置、眼科装置の制御方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818057

Country of ref document: EP

Kind code of ref document: A1