WO2021245855A1 - Elevator car weighing device - Google Patents

Elevator car weighing device Download PDF

Info

Publication number
WO2021245855A1
WO2021245855A1 PCT/JP2020/022014 JP2020022014W WO2021245855A1 WO 2021245855 A1 WO2021245855 A1 WO 2021245855A1 JP 2020022014 W JP2020022014 W JP 2020022014W WO 2021245855 A1 WO2021245855 A1 WO 2021245855A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
coil
voltage
exciting coil
core
Prior art date
Application number
PCT/JP2020/022014
Other languages
French (fr)
Japanese (ja)
Inventor
将太郎 森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022529231A priority Critical patent/JP7276609B2/en
Priority to PCT/JP2020/022014 priority patent/WO2021245855A1/en
Publication of WO2021245855A1 publication Critical patent/WO2021245855A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/14Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions in case of excessive loads

Definitions

  • This disclosure relates to an elevator car weighing device.
  • Patent Document 1 discloses an elevator car weighing device.
  • the weighing device uses a differential transformer to measure the load weight inside the car.
  • An object of the present disclosure is to provide an elevator car weighing device capable of suppressing an error in a measured load due to a change in ambient temperature.
  • the elevator car weighing device is adjacent to a core that changes its position in conjunction with the elevator car floor, one exciting coil that forms a magnetic field by passing an electric current, and the one exciting coil.
  • the measuring coil is provided so as to surround a part of the core, and when the one exciting coil forms a magnetic field, the measurement coil in which the induced electromotive force is induced and the one adjacent to the exciting coil, the core is inside.
  • the temperature correction value is calculated using the reference coil in which the induced electromotive force is induced and the value of the reference voltage measured by the reference coil.
  • a first processing circuit is provided, wherein the sum of the value of the measured voltage measured by the measuring coil and the temperature corrected value is set as the value of the first corrected voltage.
  • the car weighing device of the elevator calculates the temperature correction value using the value of the reference voltage measured by the reference coil, and sets the value of the measured voltage measured by the measuring coil and the temperature correction value.
  • a first processing circuit having a sum as the value of the first correction voltage was provided. Therefore, it is possible to suppress an error in the measured load due to a change in the ambient temperature.
  • FIG. 3 is a block diagram of an elevator car weighing device according to the first embodiment.
  • FIG. 3 is a plan view of the elevator car weighing device according to the first embodiment. It is a flowchart for demonstrating the outline of operation at the time of maintenance
  • a hoistway penetrates each floor of a building (not shown).
  • the car 1 includes a car frame 2, a car room 3, a plurality of floor receiving frames 4, a plurality of weighing devices 10, and a control device 5.
  • the car 1 is provided inside the hoistway.
  • the basket 1 includes two floor receiving frames 4.
  • the basket 1 includes four weighing devices 10.
  • the car frame 2 includes a lower frame 2a, two vertical frames 2b, and an upper frame 2c.
  • the car frame 2 has the shape of a rectangular frame composed of a lower frame 2a, two vertical frames 2b, and an upper frame 2c.
  • the car room 3 includes a car floor 3a, four car side surfaces 3b, and a car ceiling 3c.
  • the car room 3 forms a space surrounded by a car floor 3a, four car side surfaces 3b, and a car ceiling 3c.
  • the car chamber 3 is provided inside the frame formed by the car frame 2.
  • the car floor 3a is the lower surface of the car room 3.
  • the car floor 3a is provided above the lower frame 2a.
  • each of the plurality of floor receiving frames 4 has a rod-shaped shape.
  • each cross section of the plurality of floor receiving frames 4 has a concave shape.
  • Each of the plurality of floor receiving frames 4 is provided below the car floor 3a. Each of the plurality of floor receiving frames 4 is provided above the lower frame 2a. Each of the plurality of floor receiving frames 4 is connected to the upper surface of the lower frame 2a.
  • Each of the plurality of weighing devices 10 includes a support spring 11 and a displacement measuring device 12.
  • Each of the plurality of weighing devices 10 is connected below the car floor 3a.
  • each of the plurality of weighing devices 10 is located at the four corners of the car floor 3a.
  • Each of the plurality of weighing devices 10 is connected to each of the plurality of floor receiving frames 4.
  • the support spring 11 has elasticity.
  • the support spring 11 has a horseshoe-shaped shape.
  • the support spring 11 is provided between the car floor 3a and the floor receiving frame 4.
  • the support spring 11 is provided so as to be elastically deformed in the vertical direction.
  • the support spring 11 is connected to the lower surface of the car floor 3a.
  • the support spring 11 is connected to the upper surface of the floor receiving frame 4.
  • control device 5 is provided on the upper surface of the car ceiling 3c.
  • the control device 5 is telecommunicationsally connected to each of the plurality of weighing devices 10.
  • the control device 5 calculates the vertical load applied to the entire car floor 3a by using the voltage values of the electromotive forces output by the plurality of weighing devices 10.
  • the car floor 3a is supported by a plurality of floor receiving frames 4 via a support spring 11.
  • the support spring 11 receives a force in the vertical direction from the car floor 3a.
  • the support spring 11 receives a normal force from the floor receiving frame 4.
  • the support spring 11 is elastically deformed in the vertical direction by a displacement amount corresponding to the load. The position of the car floor 3a moves downward with respect to the floor receiving frame 4 by the amount of the displacement.
  • the displacement measuring device 12 measures the relative position of the car floor 3a with respect to the floor receiving frame 4.
  • the displacement measuring instrument 12 outputs an electromotive force having a voltage corresponding to the relative position.
  • the control device 5 calculates the vertical load applied to the entire car floor 3a by using the voltage values of the electromotive forces output by the plurality of weighing devices 10.
  • FIG. 2 is a diagram showing a displacement measuring device of the elevator car weighing device according to the first embodiment.
  • FIG. 2 shows a simple equivalent circuit of the displacement measuring instrument 12.
  • the displacement measuring instrument 12 includes a differential transformer 20 and a base 30.
  • the differential transformer 20 includes a core 21, an exciting coil 22, a measuring coil 23, and a reference coil 24.
  • the core 21 has a cylindrical shape.
  • the material of the core 21 is a soft magnetic material.
  • the core 21 is an iron core.
  • the core 21 is connected to the car floor 3a.
  • the core 21 is provided perpendicular to the floor surface of the car floor 3a.
  • the core 21 is independent of the floor receiving frame 4.
  • the core 21 changes its position in conjunction with the car floor 3a.
  • the exciting coil 22 is made of copper wire.
  • the exciting coil 22 has a spiral shape.
  • the radius of the spiral portion of the exciting coil 22 is larger than the cylindrical radius of the core 21.
  • the upper portion of the exciting coil 22 is provided so as to surround a part of the core 21.
  • the central axis of the exciting coil 22 is coaxial with the central axis of the core 21.
  • the exciting coil 22 is provided so that the core 21 can move inside.
  • the exciting coil 22 forms a magnetic field when an electric current is applied.
  • the measuring coil 23 is made of copper wire.
  • the measuring coil 23 has a spiral shape.
  • the length of the spiral portion of the measuring coil 23 is shorter than the length of the spiral portion of the exciting coil 22.
  • the measuring coil 23 is provided adjacent to the exciting coil 22.
  • the measuring coil 23 is provided so as to surround a part of the core 21.
  • the measuring coil 23 is provided so that the core 21 moves inside.
  • the measuring coil 23 is provided so as to surround the upper portion of the exciting coil 22.
  • the central axis of the measuring coil 23 is coaxial with the central axis of the exciting coil 22. In the measuring coil 23, an induced electromotive force is induced when the exciting coil 22 forms a magnetic field.
  • the reference coil 24 is made of copper wire.
  • the reference coil 24 has a spiral shape.
  • the length of the spiral portion of the reference coil 24 is shorter than the length of the spiral portion of the exciting coil 22.
  • the number of turns and the shape of the reference coil 24 are equal to the number of turns and the shape of the measuring coil 23.
  • the reference coil 24 is provided adjacent to the exciting coil 22.
  • the reference coil 24 is provided so as to surround the lower portion of the exciting coil 22.
  • the central axis of the reference coil 24 is coaxial with the central axis of the exciting coil 22.
  • the reference coil 24 is provided at a position where the core 21 does not move inside. In the reference coil 24, an induced electromotive force is induced when the exciting coil 22 forms a magnetic field.
  • the board 30 includes an exciting power supply 31, an exciting voltage terminal 32, a measurement voltage terminal 33, a reference voltage terminal 34, a first processing circuit 35, a second processing circuit 36, and a storage unit (not shown).
  • the board 30 is telecommunications connected to a control device 5 (not shown).
  • the board 30 stores the calculated value in the storage unit.
  • the base 30 determines whether or not the installation of the elevator has been completed. When the board 30 is connected to the control device 5 by telecommunication, it is determined that the installation of the elevator is completed.
  • the base 30 determines whether or not the worker has started maintenance and inspection.
  • the board 30 receives maintenance information from a maintenance terminal (not shown) during maintenance and inspection of the elevator.
  • the board 30 stores maintenance information in a storage unit.
  • the maintenance information includes information on the number of maintenance inspections and information on the inspection load applied to the car floor 3a in the maintenance inspection.
  • the maintenance information includes information that "the inspection load in the nth maintenance inspection is X kg".
  • the inspection at the time of installing the elevator means the 0th maintenance inspection.
  • the exciting voltage terminal 32 is electrically connected to both ends of the exciting coil 22.
  • the exciting voltage terminal 32 measures the potential difference between both ends of the exciting coil 22.
  • the potential difference is described as excitation voltage V in '.
  • the measurement voltage terminal 33 is electrically connected to both ends of the measurement coil 23.
  • the measurement voltage terminal 33 measures the potential difference between both ends of the measurement coil 23. The potential difference is described as measuring voltage V 1.
  • the reference voltage terminal 34 is electrically connected to both ends of the reference coil 24.
  • the reference voltage terminal 34 measures the potential difference between both ends of the reference coil 24. The potential difference is described with the reference voltage V T.
  • the first processing circuit 35 sets the voltage value of the excitation power supply 31 to set the voltage V in.
  • the first processing circuit 35 performs feedback control of the exciting power supply 31.
  • the first processing circuit 35 determines whether or not the value of the set voltage V in and the excitation voltage V in 'matches. When the values of the set voltage V in and the exciting voltage V in ′ do not match, the first processing circuit 35 calculates the sum of the power supply correction value ⁇ V in and the value of the exciting voltage V in ′.
  • the power supply correction value ⁇ V in is the difference between the value of the set voltage V in and the value of the excitation voltage V in ′. After that, the first processing circuit 35 sets the value of the sum to the voltage value of the exciting power supply 31.
  • the first processing circuit 35 by using the value of the reference voltage V T with the value of the measured voltage V 1, and calculates the first correction voltage V 2.
  • the second processing circuit 36 obtains the information of the setting voltage V in from the control device 5.
  • the second processing circuit 36 outputs the information of the set voltage V in the first processing circuit 35.
  • the second processing circuit 36 calculates the machine error ⁇ .
  • the second processing circuit 36 by using the first correction voltage and mechanical error tau, calculates a second correction voltage V 3.
  • the mechanical error ⁇ is an error of the voltage value generated by a mechanical factor.
  • mechanical factors include changes in the elastic modulus of the support spring 11 (not shown), changes in the position of the core 21 due to vibration, and the like.
  • Displacement measuring device 12 outputs the second correction voltage V 3 corresponding to the position of the core 21 to the controller 5.
  • the exciting coil 22 generates a corresponding magnetic field in the excitation voltage V in 'of the alternating current.
  • the magnetic field causes electromagnetic induction in the measuring coil 23 and the reference coil 24.
  • Induced electromotive force generated in the measuring coil 23 by the electromagnetic induction is measured voltages V 1.
  • Induced electromotive force generated in the reference coil 24 by the electromagnetic induction is the reference voltage V T.
  • the first processing circuit 35 by using the value of the reference voltage V T with the value of the measured voltage V 1, and calculates the first correction voltage V 2.
  • the second processing circuit 36 calculates the second correction voltage V 3 by using the value of the first correction voltage V 2 and the mechanical error ⁇ .
  • the second processing circuit 36 outputs the second correction voltage V 3 to the control device 5.
  • the control device 5 acquires information on the second correction voltage V 3 from each of the plurality of weighing devices. Control unit 5, by using the information of the second correction voltage V 3, and calculates the load applied to each of the plurality of weighing device 10.
  • FIG. 3 is a block diagram of the elevator car weighing device according to the first embodiment.
  • the differential transformer 20 if the excitation voltage V in 'is input, and outputs the reference voltage V T and the measured voltage V 1.
  • the measured voltage V 1 is proportional to the exciting voltage V in ′ with a proportionality constant ⁇ 1 .
  • the proportionality constant ⁇ 1 changes depending on the volume of the core 21 existing in the internal region of the measuring coil 23 and the ambient temperature of the differential transformer 20. For example, when the volume of the core 21 existing in the internal region of the measuring coil 23 increases, the proportionality constant ⁇ 1 becomes large.
  • the reference voltage VT is proportional to the exciting voltage V in ′ with a proportionality constant ⁇ 2 .
  • the proportionality constant ⁇ 2 is the mutual inductance between the exciting coil 22 and the reference coil 24.
  • the proportionality constant ⁇ 2 changes depending on the ambient temperature of the differential transformer 20.
  • the first processing circuit 35 the ambient temperature of the differential transformer 20 to correct the influence of the measuring voltage V 1.
  • the first processing circuit 35 uses the reference voltage V T, calculates a temperature correction value alpha T. Temperature correction value alpha T is a function of the value of the reference voltage V T.
  • the first processing circuit 35 calculates the sum of the values of the measured voltage V 1 and the temperature correction value ⁇ T.
  • the first processing circuit 35 the value of the sum and the first correction voltage V 2.
  • the first processing circuit 35 outputs the first correction voltage V 2 to the second processing circuit 36.
  • V 2 V 1 + ⁇ T (1)
  • the first processing circuit 35 when the maintenance, and stores the information of the reference voltage V T corresponding to the check number in the storage unit. For example, the first processing circuit 35 stores the value of the reference voltage VT (n) in the storage unit.
  • the value of the reference voltage V T (n) is defined as the value of the reference voltage V T (n) in the n th maintenance.
  • the second processing circuit 36 calculates the sum of the value of the first correction voltage V 2 and the value of the mechanical error ⁇ .
  • the second processing circuit 36 calculates the sum of the value of the sum and the second correction voltage V 3.
  • the second processing circuit 36 stores the information of the first correction voltage V 2 corresponding to the inspection load in the storage unit.
  • the second processing circuit 36 stores the value of the first inspection voltage V 2 (n, X) in the storage unit.
  • the value of the first inspection voltage V 2 (n, X) is defined as the value of the first correction voltage V 2 when the inspection load X kg is applied in the nth maintenance inspection.
  • the second processing circuit 36 determines whether or not the value of V 2 (n, X) and the value of V 2 (n-1, X) are equal. For example, if the value of V 2 (n, X) and the value of V 2 (n-1, X) are not equal, the second processing circuit 36 sets the value of the first inspection voltage V 2 (n, X). Use to calculate the machine error ⁇ . The second processing circuit 36 calculates the difference between the values of the inspection voltages for the last two inspections having the same inspection load. The second processing circuit 36 uses the value of the difference as the mechanical error ⁇ .
  • the difference between the value of V 2 (n, X) measured in the past and the value of V 2 (n-1, X) is defined as the mechanical error ⁇ .
  • V 2 (n, X) -V 2 (n-1, X) (3)
  • the second processing circuit 36 calculates the sum of the value of the first correction voltage V 2 and the mechanical error ⁇ .
  • the second processing circuit 36 the sum and the second correction voltage V 3.
  • the second processing circuit 36 when the maintenance, and stores the information of the second correction voltage V 3 corresponding to the check load in the storage unit.
  • the second processing circuit 36 stores the value of the second inspection voltage V 3 (X) in the storage unit.
  • the second inspection voltage V 3 (X) is defined as the value of the second correction voltage V 3 when the inspection load X kg is applied.
  • FIG. 4 is a plan view of the elevator car weighing device according to the first embodiment.
  • the support spring 11 is connected to the lower surface of the car floor 3a.
  • the support spring 11 is connected to the upper surface of the floor receiving frame 4.
  • the core 21 is connected to the lower surface of the car floor 3a via a jig.
  • the displacement measuring instrument 12 is connected to the floor receiving frame 4.
  • the base 30 is provided on the side of the displacement measuring instrument 12.
  • a part of the core 21 exists inside the displacement measuring instrument 12.
  • the core 21 moves downward with respect to the displacement measuring instrument 12.
  • FIG. 5 is a flowchart for explaining an outline of the operation at the time of maintenance and inspection of the elevator car weighing device according to the first embodiment.
  • step S001 the base 30 determines whether or not the elevator installation work has been completed.
  • step S002 the operation of step S002 is performed.
  • step S002 the elevator installation work is performed.
  • step S003 the board 30 and the second processing circuit 36 store the signal in the no-load state in the storage unit.
  • Base 30 stores reference during installation voltage V T a (0) in the storage unit.
  • the second processing circuit 36 stores the value of the first correction voltage V 2 (0, 0) in the no-load state at the time of installation in the storage unit.
  • the board 30 stores the value of the second correction voltage V 3 (0) in the no-load state in the storage unit.
  • the base 30 ends the processing.
  • step S004 the weighing device 10 operates by normal operation.
  • step S005 the operation of step S005 is performed.
  • the first processing circuit 35 determines whether or not the value of the set voltage V in and the excitation voltage V in 'matches.
  • step S005 if the value of the set voltage V in and the excitation voltage V in 'do not match, the operation of step S006 is performed.
  • step S006 the first processing circuit 35 sets the sum of the value and the power correction value [Delta] V in the excitation voltage V in 'to the voltage value of the excitation power supply 31.
  • step S005 If the worker has not started maintenance and inspection in step 007, the operations after step S005 are performed.
  • step S008 the second processing circuit 36 receives maintenance information from a maintenance terminal (not shown).
  • the first processing circuit 35 determines whether or not the value of the maintenance time of the reference voltage V T (n) and the value of the installation time of the reference voltage V T (0) are equal.
  • step S008 if the value of the maintenance time of the reference voltage V T (n) and the value of the installation time of the reference voltage V T (0) is not equal, the operation of step S009 is performed.
  • step S009 the first processing circuit 35 calculates the temperature correction value alpha T using the value of V T (n). In the first processing circuit 35, the sum of the value of the measured voltage V 1 and the temperature correction value ⁇ T is defined as the first correction voltage V 2 .
  • step S010 the second processing circuit 36 determines whether or not the value of V 2 (n, 0) and the value of V 2 (n-1, 0) are equal to each other.
  • step S011 the second processing circuit 36 sets the difference between V 2 (n, 0) and V 2 (n-1, 0) as the mechanical error ⁇ .
  • the sum of the first correction voltage V 2 and the mechanical error ⁇ is defined as the second correction voltage V 3 .
  • step S012 the operation of step S012 is performed.
  • the second processing circuit 36 rewrites the value of the second correction voltage V 3 (0) in the no-load state stored in the storage unit to the value of the second correction voltage V 3.
  • the base 30 ends the processing.
  • step S008 if the value of the maintenance time of the reference voltage V T (n) and the value of the installation time of the reference voltage V T (0) are equal, the operation of step S013 is performed.
  • step S013 the first processing circuit 35 sets the value of the measured voltage V 1 as the first correction voltage V 2 .
  • step S010 After that, the processing after step S010 is performed.
  • step S010 If the value of V 2 (n, 0) and the value of V 2 (n-1, 0) are equal in step S010, the operation of step S014 is performed.
  • step S014 the second processing circuit 36 sets the value of the first correction voltage V 2 to the second correction voltage V 3 .
  • step S012 After that, the processing after step S012 is performed.
  • each of the plurality of weighing devices 10 includes a differential transformer 20 and a first processing circuit 35.
  • the differential transformer 20 includes a core 21, one exciting coil 22, a measuring coil 23, and a reference coil 24.
  • the measuring coil 23 and the reference coil 24 are provided side by side in the vertical direction. Therefore, the plurality of weighing devices 10 can reduce the horizontal dimension.
  • the first processing circuit 35 uses the value of the reference voltage V T, calculates a temperature correction value alpha T.
  • the sum of the value of the measured voltage V 1 and the temperature correction value ⁇ T is defined as the first correction voltage V 2 .
  • the weighing device 10 can suppress an error in the measured load due to a change in the ambient temperature.
  • each of the plurality of weighing devices 10 includes an exciting power supply 31 as a power supply device.
  • Each of the plurality of weighing devices 10 includes a second processing circuit 36.
  • the second processing circuit 36 as excitation voltage V in 'is a constant value, performs feedback control of the power supply. Therefore, the weighing device 10 can reduce the error of the measured load due to the fluctuation of the power supply voltage.
  • each of the plurality of weighing devices 10 includes a second processing circuit 36.
  • the second processing circuit 36 calculates the mechanical error ⁇ using the values of the plurality of first correction voltages V 2 measured in the past.
  • the sum of the value of the first correction voltage V 2 and the mechanical error ⁇ is taken as the second correction voltage V 3 . Therefore, the weighing device 10 can reduce the error of the measured load generated by the mechanical factor.
  • the second processing circuit 36 calculates the mechanical error ⁇ using the values of the plurality of first correction voltages V 2.
  • the first correction voltage V 2 is calculated from the measured voltage V 1. Accordingly, the second processing circuit 36, by using a plurality of measurement voltages V 1 measured in the past by the measuring coil 23, calculates the mechanical error tau. Therefore, the weighing device 10 can reduce the error of the measured load generated by the mechanical factor.
  • the material of the core 21 may be a non-magnetic metal.
  • the material of the core 21 is aluminum, copper, brass, or the like.
  • the elevator car weighing device can be used for the elevator system.

Abstract

Provided is an elevator car weighing device capable of suppressing an error of measurement load caused by a change in surrounding temperature. This elevator car weighing device is provided with: a core that changes a position thereof in conjunction with a car floor of an elevator; one excitation coil that forms a magnetic field by having current flowed therethrough; a measurement coil which is adjacent to the one excitation coil, which is disposed so as to surround a part of the core, and in which, when the one excitation coil forms a magnetic field, an induced electromotive force is generated; a reference coil which is adjacent to the one excitation coil, which is disposed so as not to make movement of the core inside, and in which, when the one excitation coil forms a magnetic field, an induced electromotive force is generated; and a first processing circuit that calculates a temperature correction value by using a value of the reference voltage measured by the reference coil and that obtains, as a first correction voltage, the sum of the temperature correction value and the value of a measurement voltage measured by the measurement coil.

Description

エレベーターのかごの秤装置Elevator basket weighing device
 本開示は、エレベーターのかごの秤装置に関する。 This disclosure relates to an elevator car weighing device.
 特許文献1は、エレベーターのかごの秤装置を開示する。秤装置は、差動トランスを用いて、かご内部の積載重量を測定する。 Patent Document 1 discloses an elevator car weighing device. The weighing device uses a differential transformer to measure the load weight inside the car.
日本特開平11-335027号公報Japanese Patent Application Laid-Open No. 11-335027
 しかしながら、特許文献1に記載のエレベーターのかごの秤装置は、周辺温度が変化した場合、計測荷重に誤差が発生する。 However, in the elevator car weighing device described in Patent Document 1, an error occurs in the measured load when the ambient temperature changes.
 本開示は、上述の課題を解決するためになされた。本開示の目的は、周辺温度の変化による計測荷重の誤差を抑制できるエレベーターのかごの秤装置を提供することである。 This disclosure was made to solve the above-mentioned problems. An object of the present disclosure is to provide an elevator car weighing device capable of suppressing an error in a measured load due to a change in ambient temperature.
 本開示に係るエレベーターのかごの秤装置は、エレベーターのかご床と連動して位置を変えるコアと、電流を流されることで磁場を形成する1つの励磁コイルと、前記1つの励磁コイルに隣接し、前記コアの一部を囲むように設けられ、前記1つの励磁コイルが磁場を形成した場合、誘導起電力が誘起される計測コイルと、前記1つの励磁コイルに隣接し、前記コアが内部を移動しないように設けられ、前記1つの励磁コイルが磁場を形成した場合、誘導起電力が誘起される参照コイルと、前記参照コイルで測定された参照電圧の値を用いて温度補正値を演算し、前記計測コイルで測定された計測電圧の値と前記温度補正値との和を第1補正電圧の値とする第1処理回路と、を備えた。 The elevator car weighing device according to the present disclosure is adjacent to a core that changes its position in conjunction with the elevator car floor, one exciting coil that forms a magnetic field by passing an electric current, and the one exciting coil. The measuring coil is provided so as to surround a part of the core, and when the one exciting coil forms a magnetic field, the measurement coil in which the induced electromotive force is induced and the one adjacent to the exciting coil, the core is inside. When the one exciting coil is provided so as not to move and forms a magnetic field, the temperature correction value is calculated using the reference coil in which the induced electromotive force is induced and the value of the reference voltage measured by the reference coil. A first processing circuit is provided, wherein the sum of the value of the measured voltage measured by the measuring coil and the temperature corrected value is set as the value of the first corrected voltage.
 本開示によれば、エレベーターのかごの秤装置は、参照コイルで測定された参照電圧の値を用いて温度補正値を演算し、計測コイルで測定された計測電圧の値と温度補正値との和を第1補正電圧の値とする第1処理回路を備えた。このため、周辺温度の変化による計測荷重の誤差を抑制できる。 According to the present disclosure, the car weighing device of the elevator calculates the temperature correction value using the value of the reference voltage measured by the reference coil, and sets the value of the measured voltage measured by the measuring coil and the temperature correction value. A first processing circuit having a sum as the value of the first correction voltage was provided. Therefore, it is possible to suppress an error in the measured load due to a change in the ambient temperature.
実施の形態1におけるエレベーターのかごを示す図である。It is a figure which shows the car of the elevator in Embodiment 1. FIG. 実施の形態1におけるエレベーターのかごの秤装置の変位測定器を示す図である。It is a figure which shows the displacement measuring instrument of the weighing device of the car of an elevator in Embodiment 1. FIG. 実施の形態1におけるエレベーターのかごの秤装置のブロック図である。FIG. 3 is a block diagram of an elevator car weighing device according to the first embodiment. 実施の形態1におけるエレベーターのかごの秤装置の平面図である。FIG. 3 is a plan view of the elevator car weighing device according to the first embodiment. 実施の形態1におけるエレベーターのかごの秤装置の保守点検時の動作の概要を説明するためのフローチャートである。It is a flowchart for demonstrating the outline of operation at the time of maintenance | maintenance | maintenance | inspection of the car of the elevator car according to Embodiment 1.
 本開示を実施するための形態について添付の図面に従って説明する。なお、各図中、同一または相当する部分には同一の符号が付される。当該部分の重複説明は適宜に簡略化ないし省略される。 The mode for carrying out this disclosure will be described according to the attached drawings. In each figure, the same or corresponding parts are designated by the same reference numerals. The duplicate description of the relevant part will be simplified or omitted as appropriate.
実施の形態1.
 図1は実施の形態1におけるエレベーターのかごを示す図である。
Embodiment 1.
FIG. 1 is a diagram showing an elevator car according to the first embodiment.
 図1のエレベーターにおいて、図示されない昇降路は、図示されない建築物の各階を貫く。かご1は、かご枠2とかご室3と複数の床受枠4と複数の秤装置10と制御装置5とを備える。かご1は、昇降路の内部に設けられる。例えば、かご1は、2つの床受枠4を備える。例えば、かご1は、4つの秤装置10を備える。 In the elevator of FIG. 1, a hoistway (not shown) penetrates each floor of a building (not shown). The car 1 includes a car frame 2, a car room 3, a plurality of floor receiving frames 4, a plurality of weighing devices 10, and a control device 5. The car 1 is provided inside the hoistway. For example, the basket 1 includes two floor receiving frames 4. For example, the basket 1 includes four weighing devices 10.
 かご枠2は、下枠2aと2つの縦枠2bと上枠2cとを備える。例えば、かご枠2は、下枠2aと2つの縦枠2bと上枠2cとで構成される長方形の枠の形状を備える。 The car frame 2 includes a lower frame 2a, two vertical frames 2b, and an upper frame 2c. For example, the car frame 2 has the shape of a rectangular frame composed of a lower frame 2a, two vertical frames 2b, and an upper frame 2c.
 かご室3は、かご床3aと4つのかご側面3bとかご天井3cとを備える。かご室3は、かご床3aと4つのかご側面3bとかご天井3cとで囲まれた空間を形成する。かご室3は、かご枠2が形成する枠の内側に設けられる。 The car room 3 includes a car floor 3a, four car side surfaces 3b, and a car ceiling 3c. The car room 3 forms a space surrounded by a car floor 3a, four car side surfaces 3b, and a car ceiling 3c. The car chamber 3 is provided inside the frame formed by the car frame 2.
 かご床3aは、かご室3の下面である。かご床3aは、下枠2aの上方に設けられる。 The car floor 3a is the lower surface of the car room 3. The car floor 3a is provided above the lower frame 2a.
 例えば、複数の床受枠4の各々は、棒状の形状を備える。例えば、複数の床受枠4の各々の断面は、凹字型の形状を備える。 For example, each of the plurality of floor receiving frames 4 has a rod-shaped shape. For example, each cross section of the plurality of floor receiving frames 4 has a concave shape.
 複数の床受枠4の各々は、かご床3aの下方に設けられる。複数の床受枠4の各々は、下枠2aの上方に設けられる。複数の床受枠4の各々は、下枠2aの上面に接続される。 Each of the plurality of floor receiving frames 4 is provided below the car floor 3a. Each of the plurality of floor receiving frames 4 is provided above the lower frame 2a. Each of the plurality of floor receiving frames 4 is connected to the upper surface of the lower frame 2a.
 複数の秤装置10の各々は、支持ばね11と変位測定器12とを備える。複数の秤装置10の各々は、かご床3aの下方に接続される。例えば、複数の秤装置10の各々は、かご床3aの四隅に位置する。複数の秤装置10の各々は、複数の床受枠4の各々に接続される。 Each of the plurality of weighing devices 10 includes a support spring 11 and a displacement measuring device 12. Each of the plurality of weighing devices 10 is connected below the car floor 3a. For example, each of the plurality of weighing devices 10 is located at the four corners of the car floor 3a. Each of the plurality of weighing devices 10 is connected to each of the plurality of floor receiving frames 4.
 例えば、複数の秤装置10の各々は、かご床3aに加わる鉛直方向の荷重を測定する。 For example, each of the plurality of weighing devices 10 measures the vertical load applied to the car floor 3a.
 支持ばね11は、弾性を有する。例えば、支持ばね11は、馬蹄型の形状を備える。 The support spring 11 has elasticity. For example, the support spring 11 has a horseshoe-shaped shape.
 支持ばね11は、かご床3aと床受枠4との間に設けられる。支持ばね11は、上下方向に弾性変形するよう設けられる。支持ばね11は、かご床3aの下面に接続される。支持ばね11は、床受枠4の上面に接続される。 The support spring 11 is provided between the car floor 3a and the floor receiving frame 4. The support spring 11 is provided so as to be elastically deformed in the vertical direction. The support spring 11 is connected to the lower surface of the car floor 3a. The support spring 11 is connected to the upper surface of the floor receiving frame 4.
 例えば、変位測定器12は、支持ばね11の近傍に設けられる。例えば、変位測定器12は、床受枠4に接続される。変位測定器12は、床受枠4に対するかご床3aの鉛直方向の相対位置を測定する。変位測定器12は、当該相対位置に対応した電圧を有する起電力を出力する。 For example, the displacement measuring instrument 12 is provided in the vicinity of the support spring 11. For example, the displacement measuring instrument 12 is connected to the floor receiving frame 4. The displacement measuring instrument 12 measures the vertical relative position of the car floor 3a with respect to the floor receiving frame 4. The displacement measuring instrument 12 outputs an electromotive force having a voltage corresponding to the relative position.
 例えば、制御装置5は、かご天井3cの上面に設けられる。制御装置5は、複数の秤装置10の各々と電気通信的に接続される。制御装置5は、複数の秤装置10が出力した起電力の電圧値を用いて、かご床3aの全体に加わる鉛直方向の荷重を演算する。 For example, the control device 5 is provided on the upper surface of the car ceiling 3c. The control device 5 is telecommunicationsally connected to each of the plurality of weighing devices 10. The control device 5 calculates the vertical load applied to the entire car floor 3a by using the voltage values of the electromotive forces output by the plurality of weighing devices 10.
 かご床3aは、支持ばね11を介して、複数の床受枠4に支持される。例えば、利用者がかご1に乗車した場合、利用者の荷重がかご床3aに加わる。支持ばね11は、かご床3aから鉛直方向に力を受ける。支持ばね11は、床受枠4から垂直抗力を受ける。支持ばね11は、当該荷重に相当する変位量だけ鉛直方向に弾性変形する。かご床3aの位置は、当該変位量だけ、床受枠4に対して下方に移動する。 The car floor 3a is supported by a plurality of floor receiving frames 4 via a support spring 11. For example, when the user gets in the car 1, the load of the user is applied to the car floor 3a. The support spring 11 receives a force in the vertical direction from the car floor 3a. The support spring 11 receives a normal force from the floor receiving frame 4. The support spring 11 is elastically deformed in the vertical direction by a displacement amount corresponding to the load. The position of the car floor 3a moves downward with respect to the floor receiving frame 4 by the amount of the displacement.
 変位測定器12は、床受枠4に対するかご床3aの相対位置を測定する。変位測定器12は、当該相対位置に対応した電圧を有する起電力を出力する。制御装置5は、複数の秤装置10が出力した起電力の電圧値を用いて、かご床3aの全体に加わる鉛直方向の荷重を演算する。 The displacement measuring device 12 measures the relative position of the car floor 3a with respect to the floor receiving frame 4. The displacement measuring instrument 12 outputs an electromotive force having a voltage corresponding to the relative position. The control device 5 calculates the vertical load applied to the entire car floor 3a by using the voltage values of the electromotive forces output by the plurality of weighing devices 10.
 次に、図2を用いて、変位測定器12の差動トランスについて説明する。
 図2は実施の形態1におけるエレベーターのかごの秤装置の変位測定器を示す図である。図2において、変位測定器12の簡易的な等価回路が示される。
Next, the differential transformer of the displacement measuring instrument 12 will be described with reference to FIG.
FIG. 2 is a diagram showing a displacement measuring device of the elevator car weighing device according to the first embodiment. FIG. 2 shows a simple equivalent circuit of the displacement measuring instrument 12.
 図2に示されるように、変位測定器12は、差動トランス20と基盤30とを備える。 As shown in FIG. 2, the displacement measuring instrument 12 includes a differential transformer 20 and a base 30.
 差動トランス20は、コア21と励磁コイル22と計測コイル23と参照コイル24とを備える。 The differential transformer 20 includes a core 21, an exciting coil 22, a measuring coil 23, and a reference coil 24.
 例えば、コア21は、円筒状の形状を備える。例えば、コア21の材質は、軟磁性体である。例えば、コア21は、鉄心である。 For example, the core 21 has a cylindrical shape. For example, the material of the core 21 is a soft magnetic material. For example, the core 21 is an iron core.
 コア21は、かご床3aに接続される。コア21は、かご床3aの床面に対して垂直に設けられる。コア21は、床受枠4に対して独立している。コア21は、かご床3aと連動して位置を変える。 The core 21 is connected to the car floor 3a. The core 21 is provided perpendicular to the floor surface of the car floor 3a. The core 21 is independent of the floor receiving frame 4. The core 21 changes its position in conjunction with the car floor 3a.
 例えば、励磁コイル22は、銅線からなる。励磁コイル22は、らせん形状を備える。励磁コイル22のらせん部分の半径は、コア21の円筒半径より大きい。励磁コイル22の上部は、コア21の一部を囲むよう設けられる。励磁コイル22の中心軸は、コア21の中心軸と同軸である。励磁コイル22は、コア21が内部を移動し得るよう設けられる。励磁コイル22は、電流を流された場合、磁場を形成する。 For example, the exciting coil 22 is made of copper wire. The exciting coil 22 has a spiral shape. The radius of the spiral portion of the exciting coil 22 is larger than the cylindrical radius of the core 21. The upper portion of the exciting coil 22 is provided so as to surround a part of the core 21. The central axis of the exciting coil 22 is coaxial with the central axis of the core 21. The exciting coil 22 is provided so that the core 21 can move inside. The exciting coil 22 forms a magnetic field when an electric current is applied.
 例えば、計測コイル23は、銅線からなる。計測コイル23は、らせん形状を備える。例えば、計測コイル23のらせん部分の長さは、励磁コイル22のらせん部分の長さよりも短い。計測コイル23は、励磁コイル22に隣接して設けられる。例えば、計測コイル23は、コア21の一部を囲むよう設けられる。例えば、計測コイル23は、コア21が内部を移動するように設けられる。例えば、計測コイル23は、励磁コイル22の上部を囲むよう設けられる。計測コイル23の中心軸は、励磁コイル22の中心軸と同軸である。計測コイル23は、励磁コイル22が磁場を形成した場合、誘導起電力が誘起される。 For example, the measuring coil 23 is made of copper wire. The measuring coil 23 has a spiral shape. For example, the length of the spiral portion of the measuring coil 23 is shorter than the length of the spiral portion of the exciting coil 22. The measuring coil 23 is provided adjacent to the exciting coil 22. For example, the measuring coil 23 is provided so as to surround a part of the core 21. For example, the measuring coil 23 is provided so that the core 21 moves inside. For example, the measuring coil 23 is provided so as to surround the upper portion of the exciting coil 22. The central axis of the measuring coil 23 is coaxial with the central axis of the exciting coil 22. In the measuring coil 23, an induced electromotive force is induced when the exciting coil 22 forms a magnetic field.
 例えば、参照コイル24は、銅線からなる。参照コイル24は、らせん形状を備える。参照コイル24のらせん部分の長さは、励磁コイル22のらせん部分の長さよりも短い。例えば、参照コイル24の巻き数と形状とは、計測コイル23の巻き数と形状と等しい。参照コイル24は、励磁コイル22に隣接して設けられる。例えば、参照コイル24は、励磁コイル22の下部を囲むよう設けられる。参照コイル24の中心軸は、励磁コイル22の中心軸と同軸である。参照コイル24は、コア21が内部を移動しない位置に設けられる。参照コイル24は、励磁コイル22が磁場を形成した場合、誘導起電力が誘起される。 For example, the reference coil 24 is made of copper wire. The reference coil 24 has a spiral shape. The length of the spiral portion of the reference coil 24 is shorter than the length of the spiral portion of the exciting coil 22. For example, the number of turns and the shape of the reference coil 24 are equal to the number of turns and the shape of the measuring coil 23. The reference coil 24 is provided adjacent to the exciting coil 22. For example, the reference coil 24 is provided so as to surround the lower portion of the exciting coil 22. The central axis of the reference coil 24 is coaxial with the central axis of the exciting coil 22. The reference coil 24 is provided at a position where the core 21 does not move inside. In the reference coil 24, an induced electromotive force is induced when the exciting coil 22 forms a magnetic field.
 基盤30は、励磁電源31と励磁電圧端子32と計測電圧端子33と参照電圧端子34と第1処理回路35と第2処理回路36と図示されない記憶部とを備える。基盤30は、図示されない制御装置5と電気通信的に接続される。 The board 30 includes an exciting power supply 31, an exciting voltage terminal 32, a measurement voltage terminal 33, a reference voltage terminal 34, a first processing circuit 35, a second processing circuit 36, and a storage unit (not shown). The board 30 is telecommunications connected to a control device 5 (not shown).
 基盤30は、演算した値を記憶部に記憶させる。基盤30は、エレベーターの据付が終了しているか否かを判定する。基盤30は、制御装置5と電気通信的に接続されている場合、エレベーターの据付が終了していると判定する。 The board 30 stores the calculated value in the storage unit. The base 30 determines whether or not the installation of the elevator has been completed. When the board 30 is connected to the control device 5 by telecommunication, it is determined that the installation of the elevator is completed.
 基盤30は、作業員が保守点検を開始したか否かを判定する。基盤30は、エレベーターの保守点検の際、図示されない保守端末から保守情報を受け取る。基盤30は、保守情報を記憶部に記憶させる。保守情報は、保守点検の回数の情報と保守点検においてかご床3aに加えられた点検荷重の情報とを備える。例えば、保守情報は、「n回目の保守点検における、点検荷重はXkgである」という情報を備える。例えば、エレベーター据付時の点検は、0回目の保守点検を意味する。 The base 30 determines whether or not the worker has started maintenance and inspection. The board 30 receives maintenance information from a maintenance terminal (not shown) during maintenance and inspection of the elevator. The board 30 stores maintenance information in a storage unit. The maintenance information includes information on the number of maintenance inspections and information on the inspection load applied to the car floor 3a in the maintenance inspection. For example, the maintenance information includes information that "the inspection load in the nth maintenance inspection is X kg". For example, the inspection at the time of installing the elevator means the 0th maintenance inspection.
 励磁電源31は、励磁コイル22の両端の各々と電気的に接続される。励磁電源31は、電源装置として、設定された電圧値の交流電流を励磁コイル22に流す。当該設定された電圧値は、設定電圧Vinと記述される。 The exciting power supply 31 is electrically connected to each of both ends of the exciting coil 22. As a power supply device, the exciting power supply 31 causes an alternating current having a set voltage value to flow through the exciting coil 22. The set voltage value is described as the set voltage V in.
 励磁電圧端子32は、励磁コイル22の両端と電気的に接続される。励磁電圧端子32は、励磁コイル22の両端の電位差を測定する。当該電位差は、励磁電圧Vin´と記述される。 The exciting voltage terminal 32 is electrically connected to both ends of the exciting coil 22. The exciting voltage terminal 32 measures the potential difference between both ends of the exciting coil 22. The potential difference is described as excitation voltage V in '.
 計測電圧端子33は、計測コイル23の両端と電気的に接続される。計測電圧端子33は、計測コイル23の両端の電位差を測定する。当該電位差は、計測電圧Vと記述される。 The measurement voltage terminal 33 is electrically connected to both ends of the measurement coil 23. The measurement voltage terminal 33 measures the potential difference between both ends of the measurement coil 23. The potential difference is described as measuring voltage V 1.
 参照電圧端子34は、参照コイル24の両端と電気的に接続される。参照電圧端子34は、参照コイル24の両端の電位差を測定する。当該電位差は、参照電圧Vと記述される。 The reference voltage terminal 34 is electrically connected to both ends of the reference coil 24. The reference voltage terminal 34 measures the potential difference between both ends of the reference coil 24. The potential difference is described with the reference voltage V T.
 第1処理回路35は、励磁電源31の電圧値を設定電圧Vinに設定する。第1処理回路35は、励磁電源31のフィードバック制御を行う。 The first processing circuit 35 sets the voltage value of the excitation power supply 31 to set the voltage V in. The first processing circuit 35 performs feedback control of the exciting power supply 31.
 第1処理回路35は、設定電圧Vinと励磁電圧Vin´との値が一致するか否かを判定する。第1処理回路35は、設定電圧Vinと励磁電圧Vin´との値が一致しない場合、電源補正値ΔVinと励磁電圧Vin´の値との和を演算する。電源補正値ΔVinは、設定電圧Vinの値と励磁電圧Vin´の値との差である。その後、第1処理回路35は、当該和の値を励磁電源31の電圧値に設定する。 The first processing circuit 35 determines whether or not the value of the set voltage V in and the excitation voltage V in 'matches. When the values of the set voltage V in and the exciting voltage V in ′ do not match, the first processing circuit 35 calculates the sum of the power supply correction value ΔV in and the value of the exciting voltage V in ′. The power supply correction value ΔV in is the difference between the value of the set voltage V in and the value of the excitation voltage V in ′. After that, the first processing circuit 35 sets the value of the sum to the voltage value of the exciting power supply 31.
 第1処理回路35は、計測電圧Vの値と参照電圧Vの値とを用いて、第1補正電圧Vを演算する。 The first processing circuit 35, by using the value of the reference voltage V T with the value of the measured voltage V 1, and calculates the first correction voltage V 2.
 第2処理回路36は、制御装置5から設定電圧Vinの情報を取得する。第2処理回路36は、第1処理回路35に設定電圧Vinの情報を出力する。 The second processing circuit 36 obtains the information of the setting voltage V in from the control device 5. The second processing circuit 36 outputs the information of the set voltage V in the first processing circuit 35.
 第2処理回路36は、機械誤差τを演算する。第2処理回路36は、第1補正電圧と機械誤差τを用いて、第2補正電圧Vを演算する。機械誤差τは、機械的な要因によって発生する電圧値の誤差である。例えば、機械的な要因は、図示されない支持ばね11の弾性率の変化、振動によるコア21の位置の変化、などである。 The second processing circuit 36 calculates the machine error τ. The second processing circuit 36, by using the first correction voltage and mechanical error tau, calculates a second correction voltage V 3. The mechanical error τ is an error of the voltage value generated by a mechanical factor. For example, mechanical factors include changes in the elastic modulus of the support spring 11 (not shown), changes in the position of the core 21 due to vibration, and the like.
 変位測定器12は、コア21の位置に対応する第2補正電圧Vを制御装置5へ出力する。 Displacement measuring device 12 outputs the second correction voltage V 3 corresponding to the position of the core 21 to the controller 5.
 励磁コイル22は、交流電流の励磁電圧Vin´に対応する磁場を発生させる。当該磁場は、計測コイル23と参照コイル24とに電磁誘導を発生させる。当該電磁誘導によって計測コイル23に発生する誘導起電力は、計測電圧Vである。当該電磁誘導によって参照コイル24に発生する誘導起電力は、参照電圧Vである。 The exciting coil 22 generates a corresponding magnetic field in the excitation voltage V in 'of the alternating current. The magnetic field causes electromagnetic induction in the measuring coil 23 and the reference coil 24. Induced electromotive force generated in the measuring coil 23 by the electromagnetic induction is measured voltages V 1. Induced electromotive force generated in the reference coil 24 by the electromagnetic induction is the reference voltage V T.
 第1処理回路35は、計測電圧Vの値と参照電圧Vの値とを用いて、第1補正電圧Vを演算する。第2処理回路36は、第1補正電圧Vの値と機械誤差τとを用いて、第2補正電圧Vを演算する。第2処理回路36は、第2補正電圧Vを制御装置5へ出力する。 The first processing circuit 35, by using the value of the reference voltage V T with the value of the measured voltage V 1, and calculates the first correction voltage V 2. The second processing circuit 36 calculates the second correction voltage V 3 by using the value of the first correction voltage V 2 and the mechanical error τ. The second processing circuit 36 outputs the second correction voltage V 3 to the control device 5.
 制御装置5は、複数の秤装置の各々から第2補正電圧Vの情報を取得する。制御装置5は、第2補正電圧Vの情報を用いて、複数の秤装置10の各々に加えられる荷重を演算する。 The control device 5 acquires information on the second correction voltage V 3 from each of the plurality of weighing devices. Control unit 5, by using the information of the second correction voltage V 3, and calculates the load applied to each of the plurality of weighing device 10.
 次に、図3を用いて、変位測定器12が行う演算処理を説明する。
 図3は実施の形態1におけるエレベーターのかごの秤装置のブロック図である。
Next, the arithmetic processing performed by the displacement measuring instrument 12 will be described with reference to FIG.
FIG. 3 is a block diagram of the elevator car weighing device according to the first embodiment.
 図3に示されるように、差動トランス20は、励磁電圧Vin´が入力された場合、計測電圧Vと参照電圧Vとを出力する。 As shown in FIG. 3, the differential transformer 20, if the excitation voltage V in 'is input, and outputs the reference voltage V T and the measured voltage V 1.
 例えば、計測電圧Vは、励磁電圧Vin´に比例定数βで比例する。比例定数βは、計測コイル23の内部領域に存在するコア21の体積と差動トランス20の周辺温度とによって変化する。例えば、計測コイル23の内部領域に存在するコア21の体積が増加する場合、比例定数βは、大きくなる。 For example, the measured voltage V 1 is proportional to the exciting voltage V in ′ with a proportionality constant β 1 . The proportionality constant β 1 changes depending on the volume of the core 21 existing in the internal region of the measuring coil 23 and the ambient temperature of the differential transformer 20. For example, when the volume of the core 21 existing in the internal region of the measuring coil 23 increases, the proportionality constant β 1 becomes large.
 参照電圧Vは、励磁電圧Vin´に比例定数βで比例する。比例定数βは、励磁コイル22と参照コイル24との相互インダクタンスである。比例定数βは、差動トランス20の周辺温度によって変化する。 The reference voltage VT is proportional to the exciting voltage V in ′ with a proportionality constant β 2 . The proportionality constant β 2 is the mutual inductance between the exciting coil 22 and the reference coil 24. The proportionality constant β 2 changes depending on the ambient temperature of the differential transformer 20.
 第1処理回路35は、差動トランス20の周辺温度が計測電圧Vに与える影響を補正する。第1処理回路35は、参照電圧Vを用いて、温度補正値αを演算する。温度補正値αは、参照電圧Vの値の関数である。第1処理回路35は、計測電圧Vの値と温度補正値αとの値の和を演算する。第1処理回路35は、当該和の値を第1補正電圧Vとする。第1処理回路35は、第1補正電圧Vを第2処理回路36へ出力する。
  V=V+α    (1)
The first processing circuit 35, the ambient temperature of the differential transformer 20 to correct the influence of the measuring voltage V 1. The first processing circuit 35 uses the reference voltage V T, calculates a temperature correction value alpha T. Temperature correction value alpha T is a function of the value of the reference voltage V T. The first processing circuit 35 calculates the sum of the values of the measured voltage V 1 and the temperature correction value α T. The first processing circuit 35, the value of the sum and the first correction voltage V 2. The first processing circuit 35 outputs the first correction voltage V 2 to the second processing circuit 36.
V 2 = V 1 + α T (1)
 第1処理回路35は、保守点検のとき、点検回数に対応する参照電圧Vの情報を記憶部に記憶させる。例えば、第1処理回路35は、参照電圧V(n)の値を記憶部に記憶させる。参照電圧V(n)の値は、n回目の保守点検における参照電圧V(n)の値と定義される。 The first processing circuit 35, when the maintenance, and stores the information of the reference voltage V T corresponding to the check number in the storage unit. For example, the first processing circuit 35 stores the value of the reference voltage VT (n) in the storage unit. The value of the reference voltage V T (n) is defined as the value of the reference voltage V T (n) in the n th maintenance.
 第2処理回路36は、第1補正電圧Vの値と機械誤差τの値との和を演算する。第2処理回路36は、当該和の値を第2補正電圧Vとする。
  V=V+τ
    =V+α+τ  (2)
The second processing circuit 36 calculates the sum of the value of the first correction voltage V 2 and the value of the mechanical error τ. The second processing circuit 36, the value of the sum and the second correction voltage V 3.
V 3 = V 2 + τ
= V 1 + α T + τ (2)
 第2処理回路36は、保守点検のとき、点検荷重に対応する第1補正電圧Vの情報を記憶部に記憶させる。例えば、第2処理回路36は、第1点検電圧V(n,X)の値を記憶部に記憶させる。第1点検電圧V(n,X)の値は、n回目の保守点検において点検荷重Xkgを加えた時の第1補正電圧Vの値と定義される。 At the time of maintenance and inspection, the second processing circuit 36 stores the information of the first correction voltage V 2 corresponding to the inspection load in the storage unit. For example, the second processing circuit 36 stores the value of the first inspection voltage V 2 (n, X) in the storage unit. The value of the first inspection voltage V 2 (n, X) is defined as the value of the first correction voltage V 2 when the inspection load X kg is applied in the nth maintenance inspection.
 例えば、第2処理回路36は、V(n,X)の値とV(n-1,X)の値とが等しいか否かを判定する。例えば、V(n,X)の値とV(n-1,X)の値とが等しくない場合、第2処理回路36は、第1点検電圧V(n,X)の値を用いて、機械誤差τを演算する。第2処理回路36は、点検荷重が等しい直近2回分の点検電圧の値の差を演算する。第2処理回路36は、当該差の値を機械誤差τとする。例えば、第2処理回路36は、過去に測定されたV(n,X)の値とV(n-1,X)の値との差を機械誤差τとする。
  τ=V(n,X)-V(n-1,X)   (3)
For example, the second processing circuit 36 determines whether or not the value of V 2 (n, X) and the value of V 2 (n-1, X) are equal. For example, if the value of V 2 (n, X) and the value of V 2 (n-1, X) are not equal, the second processing circuit 36 sets the value of the first inspection voltage V 2 (n, X). Use to calculate the machine error τ. The second processing circuit 36 calculates the difference between the values of the inspection voltages for the last two inspections having the same inspection load. The second processing circuit 36 uses the value of the difference as the mechanical error τ. For example, in the second processing circuit 36, the difference between the value of V 2 (n, X) measured in the past and the value of V 2 (n-1, X) is defined as the mechanical error τ.
τ = V 2 (n, X) -V 2 (n-1, X) (3)
 第2処理回路36は、第1補正電圧Vの値と機械誤差τとの和を演算する。第2処理回路36は、当該和を第2補正電圧Vとする。 The second processing circuit 36 calculates the sum of the value of the first correction voltage V 2 and the mechanical error τ. The second processing circuit 36 the sum and the second correction voltage V 3.
 第2処理回路36は、保守点検のとき、点検荷重に対応する第2補正電圧Vの情報を記憶部に記憶させる。例えば、第2処理回路36は、第2点検電圧V(X)の値を記憶部に記憶させる。第2点検電圧V(X)は、点検荷重Xkgを加えた時の第2補正電圧Vの値と定義される。 The second processing circuit 36, when the maintenance, and stores the information of the second correction voltage V 3 corresponding to the check load in the storage unit. For example, the second processing circuit 36 stores the value of the second inspection voltage V 3 (X) in the storage unit. The second inspection voltage V 3 (X) is defined as the value of the second correction voltage V 3 when the inspection load X kg is applied.
 次に、図4を用いて、複数の秤装置10の各々の構成を説明する。
 図4は実施の形態1におけるエレベーターのかごの秤装置の平面図である。
Next, the configuration of each of the plurality of weighing devices 10 will be described with reference to FIG.
FIG. 4 is a plan view of the elevator car weighing device according to the first embodiment.
 図4に示されるように、支持ばね11は、かご床3aの下面に接続される。支持ばね11は、床受枠4の上面に接続される。 As shown in FIG. 4, the support spring 11 is connected to the lower surface of the car floor 3a. The support spring 11 is connected to the upper surface of the floor receiving frame 4.
 コア21は、治具を介してかご床3aの下面に接続される。変位測定器12は、床受枠4に接続される。基盤30は、変位測定器12の側方に設けられる。 The core 21 is connected to the lower surface of the car floor 3a via a jig. The displacement measuring instrument 12 is connected to the floor receiving frame 4. The base 30 is provided on the side of the displacement measuring instrument 12.
 コア21は、一部が変位測定器12の内部に存在する。かご床3aが床受枠4に対して下方へ移動する場合、コア21は、変位測定器12に対して下方へ移動する。 A part of the core 21 exists inside the displacement measuring instrument 12. When the car floor 3a moves downward with respect to the floor receiving frame 4, the core 21 moves downward with respect to the displacement measuring instrument 12.
 次に、図5を用いて、基盤30の保守点検時の処理を説明する。例えば、保守点検は、かご床3aに負荷をかけずに実施される。
 図5は実施の形態1におけるエレベーターのかごの秤装置の保守点検時の動作の概要を説明するためのフローチャートである。
Next, the process at the time of maintenance and inspection of the board 30 will be described with reference to FIG. For example, the maintenance inspection is carried out without imposing a load on the car floor 3a.
FIG. 5 is a flowchart for explaining an outline of the operation at the time of maintenance and inspection of the elevator car weighing device according to the first embodiment.
 ステップS001において、基盤30は、エレベーターの据付作業が終了しているか否かを判定する。 In step S001, the base 30 determines whether or not the elevator installation work has been completed.
 ステップS001で、エレベーターの据付作業が終了していない場合、ステップS002の動作が行われる。ステップS002において、エレベーターの据付作業が行われる。 If the elevator installation work has not been completed in step S001, the operation of step S002 is performed. In step S002, the elevator installation work is performed.
 その後、ステップS003の動作が行われる。ステップS003において、基盤30と第2処理回路36とは、無負荷状態の信号を記憶部に記憶させる。基盤30は、据付時における参照電圧V(0)を記憶部に記憶させる。第2処理回路36は、据付時における無負荷状態の第1補正電圧V(0,0)の値を記憶部に記憶させる。基盤30は、無負荷状態の第2補正電圧V(0)の値を記憶部に記憶させる。 After that, the operation of step S003 is performed. In step S003, the board 30 and the second processing circuit 36 store the signal in the no-load state in the storage unit. Base 30 stores reference during installation voltage V T a (0) in the storage unit. The second processing circuit 36 stores the value of the first correction voltage V 2 (0, 0) in the no-load state at the time of installation in the storage unit. The board 30 stores the value of the second correction voltage V 3 (0) in the no-load state in the storage unit.
 その後、基盤30は、処理を終了する。 After that, the base 30 ends the processing.
 ステップS001で、エレベーターの据付作業が終了している場合、ステップS004の動作が行われる。ステップS004において、秤装置10は、通常運転による動作を行う。 If the elevator installation work has been completed in step S001, the operation of step S004 is performed. In step S004, the weighing device 10 operates by normal operation.
 その後、ステップS005の動作が行われる。ステップS005において、第1処理回路35は、設定電圧Vinと励磁電圧Vin´との値が一致するか否かを判定する。 After that, the operation of step S005 is performed. In step S005, the first processing circuit 35 determines whether or not the value of the set voltage V in and the excitation voltage V in 'matches.
 ステップS005で、設定電圧Vinと励磁電圧Vin´との値が一致しない場合、ステップS006の動作が行われる。ステップS006において、第1処理回路35は、励磁電圧Vin´の値と電源補正値ΔVinとの和を励磁電源31の電圧値に設定する。 In step S005, if the value of the set voltage V in and the excitation voltage V in 'do not match, the operation of step S006 is performed. In step S006, the first processing circuit 35 sets the sum of the value and the power correction value [Delta] V in the excitation voltage V in 'to the voltage value of the excitation power supply 31.
 ステップS005で設定電圧Vinと励磁電圧Vin´との値が一致する場合、またはステップS006の動作が行われた場合、ステップS007の動作が行われる。ステップS007において、基盤30は、作業員が保守点検を開始したか否かを判定する。 If the value of the set voltage V in and the excitation voltage V in 'at step S005 matches, or if the operation of step S006 is performed, the operation of step S007 is performed. In step S007, the board 30 determines whether or not the worker has started the maintenance inspection.
 ステップ007で作業員が保守点検を開始していない場合、ステップS005以降の動作が行われる。 If the worker has not started maintenance and inspection in step 007, the operations after step S005 are performed.
 ステップS007で作業員が保守点検を開始した場合、ステップS008の動作が行われる。ステップS008において、第2処理回路36は、図示されない保守端末から保守情報を受け取る。第1処理回路35は、保守点検時の参照電圧V(n)の値と据付時の参照電圧V(0)の値とが等しいか否かを判定する。 When the worker starts the maintenance and inspection in step S007, the operation of step S008 is performed. In step S008, the second processing circuit 36 receives maintenance information from a maintenance terminal (not shown). The first processing circuit 35 determines whether or not the value of the maintenance time of the reference voltage V T (n) and the value of the installation time of the reference voltage V T (0) are equal.
 ステップS008で、保守点検時の参照電圧V(n)の値と据付時の参照電圧V(0)の値とが等しくない場合、ステップS009の動作が行われる。ステップS009において、第1処理回路35は、V(n)の値を用いて温度補正値αを演算する。第1処理回路35は、計測電圧Vの値と温度補正値αとの和を第1補正電圧Vとする。 In step S008, if the value of the maintenance time of the reference voltage V T (n) and the value of the installation time of the reference voltage V T (0) is not equal, the operation of step S009 is performed. In step S009, the first processing circuit 35 calculates the temperature correction value alpha T using the value of V T (n). In the first processing circuit 35, the sum of the value of the measured voltage V 1 and the temperature correction value α T is defined as the first correction voltage V 2 .
 その後、ステップS010の動作が行われる。ステップS010において、第2処理回路36は、V(n,0)の値とV(n-1,0)の値とが等しいか否かを判定する。 After that, the operation of step S010 is performed. In step S010, the second processing circuit 36 determines whether or not the value of V 2 (n, 0) and the value of V 2 (n-1, 0) are equal to each other.
 ステップS010で、V(n,0)の値とV(n-1,0)の値とが等しくない場合、ステップS011の動作が行われる。ステップS011において、第2処理回路36は、V(n,0)とV(n-1,0)との差を機械誤差τとする。第2処理回路36は、第1補正電圧Vと機械誤差τとの和を第2補正電圧Vとする。 If the value of V 2 (n, 0) and the value of V 2 (n-1, 0) are not equal in step S010, the operation of step S011 is performed. In step S011, the second processing circuit 36 sets the difference between V 2 (n, 0) and V 2 (n-1, 0) as the mechanical error τ. In the second processing circuit 36, the sum of the first correction voltage V 2 and the mechanical error τ is defined as the second correction voltage V 3 .
 その後、ステップS012の動作が行われる。ステップS012において、第2処理回路36は、記憶部に記憶されている無負荷状態の第2補正電圧V(0)の値を第2補正電圧Vの値に書き換える。 After that, the operation of step S012 is performed. In step S012, the second processing circuit 36 rewrites the value of the second correction voltage V 3 (0) in the no-load state stored in the storage unit to the value of the second correction voltage V 3.
 その後、基盤30は処理を終了する。 After that, the base 30 ends the processing.
 ステップS008で、保守点検時の参照電圧V(n)の値と据付時の参照電圧V(0)の値とが等しい場合、ステップS013の動作が行われる。ステップS013において、第1処理回路35は、計測電圧Vの値を第1補正電圧Vとする。 In step S008, if the value of the maintenance time of the reference voltage V T (n) and the value of the installation time of the reference voltage V T (0) are equal, the operation of step S013 is performed. In step S013, the first processing circuit 35 sets the value of the measured voltage V 1 as the first correction voltage V 2 .
 その後、ステップS010以降の処理が行われる。 After that, the processing after step S010 is performed.
 ステップS010で、V(n,0)の値とV(n-1,0)の値とが等しい場合、ステップS014の動作が行われる。ステップS014において、第2処理回路36は、第1補正電圧Vの値を第2補正電圧Vとする。 If the value of V 2 (n, 0) and the value of V 2 (n-1, 0) are equal in step S010, the operation of step S014 is performed. In step S014, the second processing circuit 36 sets the value of the first correction voltage V 2 to the second correction voltage V 3 .
 その後、ステップS012以降の処理が行われる。 After that, the processing after step S012 is performed.
 以上で説明した実施の形態1によれば、複数の秤装置10の各々は、差動トランス20と第1処理回路35とを備える。差動トランス20は、コア21と1つの励磁コイル22と計測コイル23と参照コイル24とを備える。計測コイル23と参照コイル24とは、鉛直方向に並んで設けられる。このため、複数の秤装置10は、水平方向の寸法を小さくすることが出来る。第1処理回路35は、参照電圧Vの値を用いて、温度補正値αを演算する。第1処理回路35は、計測電圧Vの値と温度補正値αとの和を第1補正電圧Vとする。その結果、秤装置10は、周辺温度の変化による計測荷重の誤差を抑制できる。 According to the first embodiment described above, each of the plurality of weighing devices 10 includes a differential transformer 20 and a first processing circuit 35. The differential transformer 20 includes a core 21, one exciting coil 22, a measuring coil 23, and a reference coil 24. The measuring coil 23 and the reference coil 24 are provided side by side in the vertical direction. Therefore, the plurality of weighing devices 10 can reduce the horizontal dimension. The first processing circuit 35 uses the value of the reference voltage V T, calculates a temperature correction value alpha T. In the first processing circuit 35, the sum of the value of the measured voltage V 1 and the temperature correction value α T is defined as the first correction voltage V 2 . As a result, the weighing device 10 can suppress an error in the measured load due to a change in the ambient temperature.
 また、複数の秤装置10の各々は、電源装置として、励磁電源31を備える。複数の秤装置10の各々は、第2処理回路36を備える。第2処理回路36は、励磁電圧Vin´が一定の値になるように、電源装置のフィードバック制御を行う。このため、秤装置10は、電源電圧の変動による計測荷重の誤差を小さくすることができる。 Further, each of the plurality of weighing devices 10 includes an exciting power supply 31 as a power supply device. Each of the plurality of weighing devices 10 includes a second processing circuit 36. The second processing circuit 36, as excitation voltage V in 'is a constant value, performs feedback control of the power supply. Therefore, the weighing device 10 can reduce the error of the measured load due to the fluctuation of the power supply voltage.
 また、複数の秤装置10の各々は、第2処理回路36を備える。第2処理回路36は、過去に測定された複数の第1補正電圧Vの値を用いて、機械誤差τを演算する。第2処理回路36は、第1補正電圧Vの値と機械誤差τとの和を第2補正電圧Vとする。このため、秤装置10は、機械的な要因で発生する計測荷重の誤差を小さくすることができる。 Further, each of the plurality of weighing devices 10 includes a second processing circuit 36. The second processing circuit 36 calculates the mechanical error τ using the values of the plurality of first correction voltages V 2 measured in the past. In the second processing circuit 36, the sum of the value of the first correction voltage V 2 and the mechanical error τ is taken as the second correction voltage V 3 . Therefore, the weighing device 10 can reduce the error of the measured load generated by the mechanical factor.
 また、第2処理回路36は、複数の第1補正電圧Vの値を用いて、機械誤差τを演算する。第1補正電圧Vは、計測電圧Vから算出される。従って、第2処理回路36は、計測コイル23によって過去に測定された複数の計測電圧Vを用いて、機械誤差τを演算する。このため、秤装置10は、機械的な要因で発生する計測荷重の誤差を小さくすることができる。 Further, the second processing circuit 36 calculates the mechanical error τ using the values of the plurality of first correction voltages V 2. The first correction voltage V 2 is calculated from the measured voltage V 1. Accordingly, the second processing circuit 36, by using a plurality of measurement voltages V 1 measured in the past by the measuring coil 23, calculates the mechanical error tau. Therefore, the weighing device 10 can reduce the error of the measured load generated by the mechanical factor.
 なお、コア21の材質は、非磁性体の金属でもよい。例えば、コア21の材質は、アルミ、銅、真鍮などである。 The material of the core 21 may be a non-magnetic metal. For example, the material of the core 21 is aluminum, copper, brass, or the like.
 以上のように、本開示に係るエレベーターのかごの秤装置は、エレベーターシステムに利用できる。 As described above, the elevator car weighing device according to the present disclosure can be used for the elevator system.
 1 かご、 2 かご枠、 2a 下枠、 2b 縦枠、 2c 上枠、 3 かご室、 3a かご床、 3b かご側面、 3c かご天井、 4 床受枠、 5 制御装置、 10 秤装置、 11 支持ばね、 12 変位測定器、 20 差動トランス、 21 コア、 22 励磁コイル、 23 計測コイル、 24 参照コイル、 30 基盤、 31 励磁電源、 32 励磁電圧端子、 33 計測電圧端子、 34 参照電圧端子、 35 第1処理回路、 36 第2処理回路 1 car, 2 car frame, 2a lower frame, 2b vertical frame, 2c upper frame, 3 car room, 3a car floor, 3b car side, 3c car ceiling, 4 floor receiving frame, 5 control device, 10 weighing device, 11 support spring , 12 displacement measuring instrument, 20 differential transformer, 21 core, 22 exciting coil, 23 measuring coil, 24 reference coil, 30 board, 31 exciting power supply, 32 exciting voltage terminal, 33 measurement voltage terminal, 34 reference voltage terminal, 35th 1 processing circuit, 36 2nd processing circuit

Claims (5)

  1.  エレベーターのかご床と連動して位置を変えるコアと、
     電流を流されることで磁場を形成する1つの励磁コイルと、
     前記1つの励磁コイルに隣接し、前記コアの一部を囲むように設けられ、前記1つの励磁コイルが磁場を形成した場合、誘導起電力が誘起される計測コイルと、
     前記1つの励磁コイルに隣接し、前記コアが内部を移動しないように設けられ、前記1つの励磁コイルが磁場を形成した場合、誘導起電力が誘起される参照コイルと、
     前記参照コイルで測定された参照電圧の値を用いて温度補正値を演算し、前記計測コイルで測定された計測電圧の値と前記温度補正値との和を第1補正電圧の値とする第1処理回路と、
    を備えたエレベーターのかごの秤装置。
    A core that changes its position in conjunction with the elevator car floor,
    One exciting coil that forms a magnetic field by passing an electric current,
    A measuring coil that is adjacent to the one exciting coil and is provided so as to surround a part of the core, and in which an induced electromotive force is induced when the one exciting coil forms a magnetic field,
    A reference coil adjacent to the one exciting coil, the core of which is provided so as not to move inside, and a reference coil in which an induced electromotive force is induced when the one exciting coil forms a magnetic field.
    The temperature correction value is calculated using the value of the reference voltage measured by the reference coil, and the sum of the value of the measurement voltage measured by the measurement coil and the temperature correction value is set as the value of the first correction voltage. 1 processing circuit and
    Elevator basket weighing device equipped with.
  2.  前記1つの励磁コイルに電流を流す電源装置を備え、
     前記第1処理回路は、前記電源装置が前記1つの励磁コイルに与える励磁電圧の値を測定し、前記励磁電圧の値が一定の値になるよう前記電源装置のフィードバック制御を行う請求項1に記載のエレベーターのかごの秤装置。
    A power supply device for passing an electric current through the one exciting coil is provided.
    The first processing circuit measures the value of the exciting voltage given to the one exciting coil by the power supply device, and performs feedback control of the power supply device so that the value of the exciting voltage becomes a constant value according to claim 1. The described elevator car weighing device.
  3.  過去に測定された複数の前記第1補正電圧の値を用いて、機械的な要因で発生する電圧値の誤差である機械誤差を演算し、前記第1補正電圧の値と前記機械誤差との和を第2補正電圧とする第2処理回路を備えた請求項1または請求項2のいずれかに記載のエレベーターのかごの秤装置。 Using the plurality of values of the first correction voltage measured in the past, a mechanical error which is an error of the voltage value generated by a mechanical factor is calculated, and the value of the first correction voltage and the mechanical error are calculated. The weighing device for an elevator car according to claim 1 or 2, further comprising a second processing circuit having a sum as a second correction voltage.
  4.  エレベーターのかご床と連動して位置を変えるコアと、
     電流を流されることで磁場を形成する1つの励磁コイルと、
     前記1つの励磁コイルに隣接し、前記コアの一部を囲むよう設けられ、前記1つの励磁コイルが磁場を形成した場合、誘導起電力が誘起される計測コイルと、
     前記1つの励磁コイルに隣接し、前記コアが内部を移動しないように設けられ、前記1つの励磁コイルが磁場を形成した場合、誘導起電力が誘起される参照コイルと、
     前記1つの励磁コイルに電流を流す電源装置と、
     前記電源装置が前記1つの励磁コイルに与える励磁電圧の値を測定し、前記励磁電圧の値が一定の値になるよう前記電源装置のフィードバック制御を行う第1処理回路と、
    を備えたエレベーターのかごの秤装置。
    A core that changes its position in conjunction with the elevator car floor,
    One exciting coil that forms a magnetic field by passing an electric current,
    A measuring coil that is adjacent to the one exciting coil and is provided so as to surround a part of the core, and in which an induced electromotive force is induced when the one exciting coil forms a magnetic field,
    A reference coil adjacent to the one exciting coil, the core of which is provided so as not to move inside, and a reference coil in which an induced electromotive force is induced when the one exciting coil forms a magnetic field.
    A power supply device that allows current to flow through the one exciting coil,
    A first processing circuit that measures the value of the exciting voltage given to the one exciting coil by the power supply device and performs feedback control of the power supply device so that the value of the exciting voltage becomes a constant value.
    Elevator basket weighing device equipped with.
  5.  エレベーターのかご床と連動して位置を変えるコアと、
     電流を流されることで磁場を形成する1つの励磁コイルと、
     前記1つの励磁コイルに隣接し、前記コアの一部を囲むよう設けられ、前記1つの励磁コイルが磁場を形成した場合、誘導起電力が誘起される計測コイルと、
     前記1つの励磁コイルに隣接し、前記コアが内部を移動しないように設けられ、前記1つの励磁コイルが磁場を形成した場合、誘導起電力が誘起される参照コイルと、
     前記計測コイルによって過去に測定された複数の計測電圧の値を用いて、機械的な要因で発生する電圧値の誤差である機械誤差を演算し、前記計測電圧の値と前記機械誤差の値との和を第2補正電圧とする第2処理回路と、
    を備えたエレベーターのかごの秤装置。
    A core that changes its position in conjunction with the elevator car floor,
    One exciting coil that forms a magnetic field by passing an electric current,
    A measuring coil that is adjacent to the one exciting coil and is provided so as to surround a part of the core, and in which an induced electromotive force is induced when the one exciting coil forms a magnetic field,
    A reference coil adjacent to the one exciting coil, the core of which is provided so as not to move inside, and a reference coil in which an induced electromotive force is induced when the one exciting coil forms a magnetic field.
    Using the values of a plurality of measured voltages measured in the past by the measuring coil, a mechanical error, which is an error of the voltage value generated by a mechanical factor, is calculated, and the measured voltage value and the mechanical error value are calculated. A second processing circuit whose second correction voltage is the sum of
    Elevator basket weighing device equipped with.
PCT/JP2020/022014 2020-06-03 2020-06-03 Elevator car weighing device WO2021245855A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022529231A JP7276609B2 (en) 2020-06-03 2020-06-03 elevator car weighing device
PCT/JP2020/022014 WO2021245855A1 (en) 2020-06-03 2020-06-03 Elevator car weighing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022014 WO2021245855A1 (en) 2020-06-03 2020-06-03 Elevator car weighing device

Publications (1)

Publication Number Publication Date
WO2021245855A1 true WO2021245855A1 (en) 2021-12-09

Family

ID=78830185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022014 WO2021245855A1 (en) 2020-06-03 2020-06-03 Elevator car weighing device

Country Status (2)

Country Link
JP (1) JP7276609B2 (en)
WO (1) WO2021245855A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108960U (en) * 1976-02-16 1977-08-18
JPH01152316A (en) * 1987-12-09 1989-06-14 Mitsubishi Electric Corp Load detector for elevator
WO2002064478A1 (en) * 2001-02-09 2002-08-22 Mitsubishi Denki Kabushiki Kaisha Weight detector for elevator
JP2011051764A (en) * 2009-09-03 2011-03-17 Toshiba Elevator Co Ltd Elevator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108960U (en) * 1976-02-16 1977-08-18
JPH01152316A (en) * 1987-12-09 1989-06-14 Mitsubishi Electric Corp Load detector for elevator
WO2002064478A1 (en) * 2001-02-09 2002-08-22 Mitsubishi Denki Kabushiki Kaisha Weight detector for elevator
JP2011051764A (en) * 2009-09-03 2011-03-17 Toshiba Elevator Co Ltd Elevator

Also Published As

Publication number Publication date
JPWO2021245855A1 (en) 2021-12-09
JP7276609B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
KR101647315B1 (en) Arrangement and method for converting an input signal into an output signal and for generating a predefined transfer behavior between said input signal and said output signal
US7347097B2 (en) Servo compensating accelerometer
US6448772B1 (en) Magnetic field adjusting apparatus, magnetic field adjusting method and recording medium
US20130038781A1 (en) Movement control device, movement control method, and movement control circuit
JPH0314213B2 (en)
WO2021245855A1 (en) Elevator car weighing device
KR100425747B1 (en) Differential transformer and measuring device using it
CN112197793A (en) LVDT sensor
KR100724094B1 (en) Evalution method of linearity of ratio error and phase angle error of voltage transformer comparison measurement system using capacitor burden
US10641663B2 (en) Dynamic force contactor, providing a dynamic force, and calibrating a force sensor to be traceable to the international system of units
JP2005265804A (en) Electronic balance
US4541289A (en) Temperature-compensated magnetoelastic force measuring means
JP2015524616A (en) Equipment for testing wafers
JP7429164B2 (en) Current sensors and transformers
Keith Implicit flux feedback control for magnetic bearings
JPH0384469A (en) Acceleration sensor
US20220103045A1 (en) Voice coil motor
US20060076954A1 (en) Method for compensating for a magnetic field disturbance affecting a magnetic resonance device, and a magnetic resonance device
Marangoni Traceable multicomponent force and torque measurement
JPH11335027A (en) Weighing device for elevator
RU2797751C1 (en) Device for measuring the technical characteristics of mechanoelectric transducers with a capacitive output and a method for measuring the conversion coefficient by charge (options)
JP7020136B2 (en) Load measuring device
JP2000292303A (en) Electrodynamic vibration generator and vibration control method
JPH0743105A (en) Position transducer
Pumphrey et al. Force modeling of a reluctance motion system with multi-axial asymmetrical air gaps

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529231

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939170

Country of ref document: EP

Kind code of ref document: A1