JPH01152316A - Load detector for elevator - Google Patents

Load detector for elevator

Info

Publication number
JPH01152316A
JPH01152316A JP31136087A JP31136087A JPH01152316A JP H01152316 A JPH01152316 A JP H01152316A JP 31136087 A JP31136087 A JP 31136087A JP 31136087 A JP31136087 A JP 31136087A JP H01152316 A JPH01152316 A JP H01152316A
Authority
JP
Japan
Prior art keywords
load
car
elevator
superconducting coil
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31136087A
Other languages
Japanese (ja)
Inventor
Hidenori Watanabe
渡辺 英紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31136087A priority Critical patent/JPH01152316A/en
Publication of JPH01152316A publication Critical patent/JPH01152316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

PURPOSE:To enable refined torque control with accurate detection of a load within a cage, by arranging a load detector of an elevator made up of a detector using a high temperature superconductive material to detect a load working on a support device for supporting the cage. CONSTITUTION:When a first superconductive coil 26a is placed at a position of detection to make a detection magnetic flux phi1 of a magnetostrictive material 23 interlink it, as a connection section 26c, a second superconductive coil 26b and a Hall element 27 are magnetically shielded separately, an opposite magnetic flux phi2 interlinking the first superconductive coil 26b comes to interlink the second superconductive coil 26b. This holds a formula of L1.phi1=L2.phi2. When a flux density within the second superconductive coil 26b is represented by B2, the B2 is expressed by the following formula: B2=L1.B1/L2. As L1>L2, the flux density B2 in the second superconductive coil 26b is larger than the B1. That is, the magnetic flux is amplified to be applied to the Hall element 27 thereby enabling a highly sensitive measurement.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明はエレベータのかご側荷重を測定することによ
りかご側と釣り合い錘側との不平衡荷重を検出するエレ
ベータの荷重検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an elevator load detection device that detects an unbalanced load between a car side and a counterweight side by measuring the car side load of an elevator.

[従来の技術] エレベータではかご内の乗客数によって、巻き上げ電動
機に作用する負荷トルクが変化し、このトルクの変動の
ためにかご起動時及び減速時に急激な加・減速度が生じ
て乗り心地を害したり、また目標の速度に達する時間が
長くなるという問題があった。このような問題に対処す
゛るために、従来例えば、かご上あるいはかと床下には
かり装置を設ける方法がとられていた。
[Prior Art] In an elevator, the load torque acting on the hoisting motor changes depending on the number of passengers in the car, and due to the fluctuation of this torque, sudden acceleration and deceleration occur when the car is started and decelerated, resulting in poor ride comfort. There were problems in that the time required to reach the target speed was increased. In order to deal with such problems, conventional methods have been used, for example, to provide a weighing device on the top of the car or under the floor of the car.

即ち、従来の装置ではかごを吊っているローブ端部に設
けられたシャックルばねのたわみをマイクロスイッチ等
で検知してかご内荷重を検出し、この検出結果を用いて
巻き上げ電動機を制御し、円滑な加・減速を行なうか、
あるいはかと床をゴム等の弾性体で支持し、この弾性体
のたわみを差動トランス等で検知してかご内荷重を検出
し、この検出結果を用いて巻き上げ電動機を制御し、円
滑な加・減速を行なうようにしていた。
In other words, with conventional equipment, the load inside the car is detected by using a microswitch or the like to detect the deflection of a shackle spring installed at the end of the lobe that suspends the car, and this detection result is used to control the hoisting motor to ensure smooth operation. Do you want to accelerate or decelerate?
Alternatively, the heel floor is supported by an elastic body such as rubber, and the deflection of this elastic body is detected by a differential transformer, etc. to detect the load inside the car, and this detection result is used to control the hoisting motor to ensure smooth application. I was trying to slow down.

第8図は従来の荷重検出装置を用いたエレベータを示し
、第9図、第1O図(a) 、 (b)はそれぞれエレ
ベータの荷重検出装置を示すもので、図中、(1)は昇
降路、(2)は昇降路(1)の直上に設けられた機械室
、(2a)は機械室(2)の床、(2b)はこの床(2
a)を貫通する穴、(3)は床(2a)に立設されて昇
降路(1)の周壁対応位置に配置された受梁、(4)は
両端がそれぞれ受梁(3)に支持固定された機械台、(
5) はこの機械台(4)に防振ゴム(6)を介して配
置された基台、(7) はこの基台(5)の幅方向に回
転軸が配置され、基台(5)のほぼ中心に配置された駆
動綱車、(8)は基台(5)から下垂したそらせ梁(9
)に取り付けられたそらせ車で、駆動綱車(7)に対応
して配置されている。(10)は基台(5)に固定され
駆動綱車(7)の軸の一端を支持した軸受台、(11)
は平行軸歯車を主体として構成され、基台(5)に固定
され、駆動綱車(7) を駆動する減速機、(12)は
この減速機(11)を駆動する電動機、(13)は床(
2a)上に敷設されたシンダーコンクリート、(17)
は駆動綱車(7) およびそらせ車(8)に巻き掛けら
れて穴(2b)から昇降路(1)へ垂下された主索、(
15)は主索(14)の一端に連結されたかご、(15
a)はかご枠、(15b)はかご室、(tsc)はかご
枠(15a)に載置され、かご床(15d)を支持する
弾性体、(15e)はこの弾性体(15c)のたわみ量
を検出する差動トランスで、この検出結果はケーブル(
図示せず)を介して機械室(2)に伝達される。(16
)は釣り合い錘である。
Figure 8 shows an elevator using a conventional load detection device, and Figures 9 and 10 (a) and (b) respectively show load detection devices for elevators. (2) is the machine room located directly above the hoistway (1), (2a) is the floor of the machine room (2), and (2b) is this floor (2).
(3) is a support beam that is erected on the floor (2a) and placed in a position corresponding to the peripheral wall of the hoistway (1); (4) is supported at both ends by the support beam (3). Fixed machine stand, (
5) is a base placed on this machine table (4) via vibration isolating rubber (6), and (7) is a base placed in the width direction of this base (5), and The drive sheave (8) is placed almost in the center of the deflection beam (9) hanging down from the base (5).
) is a deflection sheave attached to the drive sheave (7) and is arranged in correspondence with the driving sheave (7). (10) is a bearing stand fixed to the base (5) and supporting one end of the shaft of the drive sheave (7); (11)
is mainly composed of parallel shaft gears, is fixed to the base (5), and is a speed reducer that drives the drive sheave (7), (12) is the electric motor that drives this speed reducer (11), and (13) is the reducer that drives the drive sheave (7). floor(
2a) cinder concrete laid on top, (17)
is the main rope that is wrapped around the driving sheave (7) and the deflection sheave (8) and is suspended from the hole (2b) to the hoistway (1);
15) is a cage connected to one end of the main rope (14);
a) is the car frame, (15b) is the car room, (tsc) is an elastic body placed on the car frame (15a) and supports the car floor (15d), and (15e) is the deflection of this elastic body (15c). A differential transformer detects the amount, and this detection result is transmitted through the cable (
(not shown) to the machine room (2). (16
) is a counterweight.

上記構成のエレベータにおいて、かご室(15b)の荷
重が差動トランス(tse)で検出されるとかご側の荷
重と釣り合い錘側の荷重の不平衡荷重が算出される。こ
の算出結果に基づいて綱車(7)ひいては起動時に電動
機(12)に加わる不平衡トルクを検知することができ
る。
In the elevator configured as described above, when the load in the car (15b) is detected by the differential transformer (tse), the unbalanced load between the load on the car side and the load on the counterweight side is calculated. Based on this calculation result, it is possible to detect the unbalanced torque applied to the sheave (7) and ultimately to the electric motor (12) at the time of startup.

さらに(15f)はかご枠(15a)の上梁、(17a
)は主索(17)の端部に取り付けられ、かご枠(15
a)を吊るロープシャックル、(18)はシャックルば
ね、(19)は複数のシャックルを連結する繋ぎ板、(
20)はマイクロスイッチ、(21)はマイクロスイッ
チ(20)を作動操作させる作動棒、(22)は作動ば
ねであ゛る。マイクロスイッチ(20)の検出結果はケ
ーブル(図示せず)を介して機械室(2)の制御盤(図
示せず)に伝達される。
Furthermore, (15f) is the upper beam of the car frame (15a), (17a
) is attached to the end of the main rope (17), and the car frame (15
(18) is a shackle spring, (19) is a connecting plate that connects multiple shackles, (
20) is a microswitch, (21) is an operating rod for operating the microswitch (20), and (22) is an operating spring. The detection results of the microswitch (20) are transmitted to a control panel (not shown) in the machine room (2) via a cable (not shown).

上記構成のエレベータにおいて、かご室の荷重がマイク
ロスイッチ(20)で検出されるとかご側の荷重と釣り
合い錘側の荷重の不平衡荷重が算出される。この算出結
果に基づいて綱車に、ひいては起動時に電動機に加わる
不平衡トルクを検知することができる。
In the elevator configured as described above, when the load in the car is detected by the microswitch (20), the unbalanced load between the load on the car side and the load on the counterweight side is calculated. Based on this calculation result, it is possible to detect the unbalanced torque applied to the sheave and, by extension, to the electric motor at the time of startup.

[発明が解決しようとする問題点] 従来のエレベータの荷重検出装置は上記の如く、かご室
の荷重が弾性体により負荷を伝える作動棒とマイクロス
イッチとで構成されるため、検出装置の設置数が限定さ
れてしまい、かご内乗客の乗置な正確に検出してきめ細
かいトルク制御を行うことが出来ないという問題点があ
った。
[Problems to be Solved by the Invention] As described above, the conventional elevator load detection device is composed of an operating rod and a microswitch that transmit the load of the car chamber through an elastic body, and therefore the number of installed detection devices is limited. However, there is a problem in that it is not possible to accurately detect the presence of passengers in the car and to perform fine torque control.

さらに、従来の荷重検出装置において、上記の如くかご
室のかご床とかご枠との間に介在させた弾性体によりか
ご室の荷重を検出する場合、ゴム等の弾性体のたわみを
作動トランスで検出するが、ゴムはいわゆるドリフトと
いう経年変化があり、また周囲の温度によってもたわみ
量が変わるので、精度良く負荷を検出することが出来な
かった。この問題を解決するために経年変化の無い、か
つ温度によっても変化しない金属ばねを用いる方法もあ
るが、金属ばねはたわみ量が小さいので、差動トランス
でたわみを検出しても、これまた精度良く検出ができな
かった。金属ばねのばね定数の小さいいわゆる柔らかい
ばねを用いるとたわみ量は大きくなるが、乗客が乗り込
んだときふわふわするという欠点が有るので、ばね定数
もあまり小さくは出来なかった。
Furthermore, in conventional load detection devices, when detecting the load in the car compartment using an elastic body interposed between the car floor and the car frame as described above, the deflection of the elastic body such as rubber is detected by an actuating transformer. However, the load cannot be detected accurately because the rubber undergoes aging, known as drift, and the amount of deflection changes depending on the ambient temperature. To solve this problem, there is a method of using metal springs that do not change over time or change with temperature, but metal springs have a small amount of deflection, so even if the deflection is detected with a differential transformer, the accuracy is still low. It could not be detected well. If a soft metal spring with a small spring constant is used, the amount of deflection will increase, but it has the disadvantage that it becomes fluffy when a passenger gets on board, so the spring constant cannot be made very small.

この発明はこれら上記問題点を解決するためになされた
もので、かご内乗客の荷重を正確に検出できるエレベー
タの荷重検出装置を得ることを目的とするものである。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide an elevator load detection device that can accurately detect the loads of passengers in the car.

[問題点を解決するための手段] この発明に係わるエレベータの荷重検出装置は、かご室
を支える支持具の歪みを、高温超電導体を用いたセンサ
によって検出するものである。
[Means for Solving the Problems] The elevator load detection device according to the present invention detects the distortion of a support that supports a car using a sensor using a high-temperature superconductor.

[作用] この発明におけるエレベータの荷重検出装置は、かご内
の乗客数によってかご室を支える支持具の荷重が変わる
ので、この荷重を検出することにより、かご内の負荷を
検出するようにしたものである。
[Function] The elevator load detection device according to the present invention detects the load inside the car by detecting the load of the support that supports the car compartment, which changes depending on the number of passengers in the car. It is.

[実施例] 以下、本発明の一実施例を図について説明する。第1図
は本発明にかかるエレベータの荷重検出装置の要部拡大
図、第2図は本発明装置の平面図である。同図において
、(23)は磁性層で、かご(15)を吊持する主索(
14)の一端に取り付けられかご上梓(15f)に固定
されたシャックル(17)の中心軸線に対して傾斜角が
45度となるように表面に沿って螺旋状に添着された複
数の磁性材(例えばパーマロイ)からなる磁歪材で、こ
れら磁歪材(23)は所定の間隔を隔ててシャックル(
17)の周方向に配列されている。(24) 、 (2
5)はそれぞれ電磁石およびコイルで、これら電磁石(
24)、コイル(25)は励磁コイルを構成し、シャッ
クル(17)をそのかと荷重による張力発生方向に励磁
するとともに磁歪材(23)を励磁する。(26)は荷
重検出装置である。(28a)は磁歪材(23)の回り
で磁歪材(23)の磁束と鎖交する磁束検出位置に配置
された第1の超電導コイル、(26b)はこの第1の超
電導コイル(2[ia)と超電導線からなる接続部(2
ftc)を介して電気的に接続されるとともに第1の超
電導コイル(26b)より小さいインダクタンスを有す
る第2の超電導コイル、(27)はこの第2の超電導コ
イル(26b)に取り囲まれ第2の超電導コイル(26
b)の磁束と鎖交する位置に設けられるとともにホール
効果を利用して磁束密度を測定するホール素子、(28
)は磁気シールドで、この磁気シールド(28)は接続
部(26C)とともに第2の超電導コイル(26b)と
ホール素子(27)とを被い外部から侵入する磁束を遮
蔽している。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is an enlarged view of essential parts of an elevator load detection device according to the present invention, and FIG. 2 is a plan view of the device according to the present invention. In the figure, (23) is a magnetic layer, and the main rope (23) that suspends the car (15) is
14) A plurality of magnetic materials ( For example, magnetostrictive materials (23) are made of shackles (permalloy) at predetermined intervals.
17) are arranged in the circumferential direction. (24), (2
5) are an electromagnet and a coil, respectively, and these electromagnets (
24), the coil (25) constitutes an excitation coil, which excites the shackle (17) in the direction in which tension is generated due to the heel load, and also excites the magnetostrictive material (23). (26) is a load detection device. (28a) is a first superconducting coil arranged around the magnetostrictive material (23) at a magnetic flux detection position interlinking with the magnetic flux of the magnetostrictive material (23), and (26b) is this first superconducting coil (2 [ia ) and a connection part (2) consisting of a superconducting wire
ftc) and having a smaller inductance than the first superconducting coil (26b), a second superconducting coil (27) is surrounded by this second superconducting coil (26b) and a second Superconducting coil (26
a Hall element (28
) is a magnetic shield, and this magnetic shield (28) covers the second superconducting coil (26b) and the Hall element (27) together with the connecting portion (26C) to shield magnetic flux entering from the outside.

荷重検出装置(2B)はこれら第1の超電導コイル(2
6a) 、接続部(26c) 、第2の超電導コイル(
26b) 、ホール素子(27)、および磁気シールド
(28)とから構成されている。
The load detection device (2B) connects these first superconducting coils (2
6a), connection part (26c), second superconducting coil (
26b), a Hall element (27), and a magnetic shield (28).

この荷重検出装置(26)において、第1超電導コイル
(28a)のインダクタンスを(Ll)、第2超電導コ
イル(26b)のインダクタンスを(L2]とする。
In this load detection device (26), the inductance of the first superconducting coil (28a) is (Ll), and the inductance of the second superconducting coil (26b) is (L2).

第1、第2超電導コイル(26a) (26b)をそれ
ぞれ超電導状態になるような温度で作動させる。第1超
電導コイル(2fia)を磁束検出位置、即ち測定すべ
き外部磁界に入れる。その磁束密度を(B1)とする。
The first and second superconducting coils (26a) and (26b) are each operated at a temperature that brings them into a superconducting state. The first superconducting coil (2fia) is placed in the magnetic flux detection position, that is, in the external magnetic field to be measured. Let the magnetic flux density be (B1).

第1超電導コイル(26a)を磁歪材(23)の検出磁
束 (Φ1)の中に置くと、超電導体内部での磁束密度
がゼロとなるように、超電導体に永久表面電流が流れる
。これはマイスナー効果と呼ばれるものである。この永
久電流は第2超電導コイル(26b)に流れ、第2超電
導コイル(26b)に磁束(Φ2)を発生せしめる。
When the first superconducting coil (26a) is placed in the detected magnetic flux (Φ1) of the magnetostrictive material (23), a permanent surface current flows through the superconductor so that the magnetic flux density inside the superconductor becomes zero. This is called the Meissner effect. This persistent current flows through the second superconducting coil (26b) and causes the second superconducting coil (26b) to generate magnetic flux (Φ2).

従フて、第1超電導コイル(28a)を検出位置に置い
て磁歪材(23)の検出磁束 (Φ1)を鎖交させると
、接続部(2fic) 、第2超電導コイル(26b)
およびホール素子(27)をそれぞれ磁気遮蔽させてい
るために、第1超電導コイル(26a)に鎖交した逆向
きの磁束 (Φ2)が第2超電導コイル(26b) と
鎖交することになる。すなわち、Ll・Φ1=L2・Φ
2の式が成立する。また第2超電導コイル(26b)の
中での磁束密度を(B2)とすると、(B2)はほぼ次
式%式% この発明の実施例では、Ll>L2としであるので、第
2超電導コイル(26b)の中での磁束密度(B2)は
(B1)よりも大きくなる。即ち磁束が増幅されてホー
ル素子(27)に加わり、高感度の測定が出来る。
Therefore, when the first superconducting coil (28a) is placed at the detection position and the detection magnetic flux (Φ1) of the magnetostrictive material (23) is interlinked, the connection part (2fic), the second superconducting coil (26b)
and the Hall element (27) are magnetically shielded, so that the magnetic flux (Φ2) in the opposite direction interlinked with the first superconducting coil (26a) interlinks with the second superconducting coil (26b). That is, Ll・Φ1=L2・Φ
Equation 2 holds true. Further, if the magnetic flux density in the second superconducting coil (26b) is (B2), (B2) is approximately the following formula % Formula % In the embodiment of this invention, since Ll>L2, the second superconducting coil The magnetic flux density (B2) in (26b) is larger than (B1). That is, the magnetic flux is amplified and applied to the Hall element (27), allowing highly sensitive measurement.

尚、第1超電導コイル(26a) と第2超電導コイル
(26b)を結ぶ超電導体の接続部(26c)は、平行
密接しているので磁束は打ち消し合って外部には発生し
ないが、外部からの磁束の影響を受けないためにはこの
部分も磁気シールドすることが望ましい。
Note that the superconductor connecting portion (26c) connecting the first superconducting coil (26a) and the second superconducting coil (26b) is parallel and close to each other, so magnetic flux cancels each other out and is not generated outside, but magnetic flux from the outside is generated. In order to avoid being affected by magnetic flux, it is desirable that this part also be magnetically shielded.

次ぎにホール効果を利用した荷重検出装置の測定原理を
第3図に示す。(29) (30)はそれぞれホール素
子(27)に電流(1)を流す端子、(31) (32
)はそれぞれホール素子(27)の電圧(V)を測定す
る端子である。ホール素子(27)を第2超電導コイル
(26b)の磁界中に置き、両端子(29) (30)
間に電流(1)を流し、第2超電導コイル(28b)に
発生する磁界をそのホール素子(27)に加えると、電
流及び磁界の双方に垂直な方向に電圧が発生する。これ
をホール効果と呼び、磁界を加えることによりホール素
子(27)の中の電子は曲がりながら8動する。このよ
うにして電場と磁場に垂直方向に電位差(v)が発生す
る。この電位差は次式で表される。
Next, FIG. 3 shows the measurement principle of a load detection device using the Hall effect. (29) and (30) are terminals that flow current (1) to the Hall element (27), (31) and (32), respectively.
) are terminals for measuring the voltage (V) of the Hall element (27). The Hall element (27) is placed in the magnetic field of the second superconducting coil (26b), and both terminals (29) (30)
When a current (1) is passed between them and the magnetic field generated in the second superconducting coil (28b) is applied to the Hall element (27), a voltage is generated in a direction perpendicular to both the current and the magnetic field. This is called the Hall effect, and by applying a magnetic field, the electrons in the Hall element (27) move while bending. In this way, a potential difference (v) is generated in a direction perpendicular to the electric field and the magnetic field. This potential difference is expressed by the following equation.

V=R,h −B −1/d ここでdはホール素子の厚さ、Bは磁場の強さ、■はホ
ール素子に流す電流、Rhはホール係数である。
V=R, h −B −1/d where d is the thickness of the Hall element, B is the strength of the magnetic field, ■ is the current flowing through the Hall element, and Rh is the Hall coefficient.

そこで、この電圧(V)を測定することにより、磁場B
を測定出来る。
Therefore, by measuring this voltage (V), the magnetic field B
can be measured.

次ぎに動作について述べる。Next, the operation will be described.

磁性層(23)は第4図に示す特性を有している。The magnetic layer (23) has the characteristics shown in FIG.

即ち、力が作用していないときの18曲線は符号doで
示す如くとなり、張力が働くと符号duで示すとおりそ
の張力の大きさに応じて傾きが大となる。B/Hは透磁
率μであるから、励磁コイル(25)によってシャック
ル(17)に誘起される漏れ磁束は透磁率μによって変
わり、μの大きいほど漏れ磁束も大きい。従ってホール
素子(27)に発生する電圧(V)は張力が大きい程大
きくなるので、かご内荷重を検出できる。
That is, when no force is applied, the curve 18 becomes as shown by the symbol do, and when tension is applied, the slope becomes larger according to the magnitude of the tension, as shown by the symbol du. Since B/H is the magnetic permeability μ, the leakage magnetic flux induced in the shackle (17) by the exciting coil (25) changes depending on the magnetic permeability μ, and the larger μ is, the larger the leakage magnetic flux is. Therefore, the voltage (V) generated in the Hall element (27) increases as the tension increases, so that the load inside the car can be detected.

本発明の他の実施例を第5図(a) 、 (b)ないし
第、  6図について説明する。
Other embodiments of the present invention will be described with reference to FIGS. 5(a), 5(b) to 6.

図中、(15g)はかご床(15d)の下部に設けられ
たかご床枠で、このかご床枠(15g)のかご床(15
d)  とかご床枠(15g)との重合部下部にエレベ
ータかと(15)の振動を減衰させる振動減衰特性を持
つ防振ゴム等からなる第1の弾性体(33)が配設され
ている。(34)は第1の弾性体(33)とかご枠(1
5a)との間に配設された第2の弾性体で、この第2の
弾性体(34)は断面略U字状の板ばね等からなり、上
記第1の弾性体(33)と直列に接続されかご(15)
を支持している。このため、第1の弾性体(33)によ
って振動を減衰させられたかと(15)の正確な荷重が
この第2の弾性体(34)に懸かることになる。(24
) 、 (25)はそれぞれ電磁石およびコイルで、こ
れら電磁石(24)、コイル(25)は励磁コイルを構
成している。第2の弾性体(34)の背部外周面には、
この第2の弾性体(34)の長手方向中心線に対して傾
斜角が45度となるように表面に沿って添着された複数
の磁歪材(23) (例えばパーマロイ)が所定の間隔
を隔てて、第2の弾性体(34)の周方向に配列されて
いる。
In the figure, (15g) is a car floor frame provided at the bottom of the car floor (15d), and this car floor frame (15g) is
d) A first elastic body (33) made of anti-vibration rubber or the like having a vibration damping property that damps vibrations of the elevator heel (15) is arranged at the lower part of the overlap between the car floor frame (15 g) and the elevator car floor frame (15 g). . (34) is the first elastic body (33) and the car frame (1
5a), this second elastic body (34) is made of a plate spring or the like having a substantially U-shaped cross section, and is arranged in series with the first elastic body (33). Connected to the basket (15)
is supported. Therefore, the exact load of the heel (15) whose vibrations are damped by the first elastic body (33) is applied to the second elastic body (34). (24
) and (25) are an electromagnet and a coil, respectively, and these electromagnet (24) and coil (25) constitute an excitation coil. On the outer peripheral surface of the back of the second elastic body (34),
A plurality of magnetostrictive materials (23) (for example, permalloy) are attached along the surface of the second elastic body (34) at a predetermined interval so that the inclination angle is 45 degrees with respect to the longitudinal center line. They are arranged in the circumferential direction of the second elastic body (34).

従って、上記第1の実施例と同一の構成を備えた荷重検
出装置(26)は、かご床(15d)に負荷が加わり、
第2の弾性体(34)に荷重が懸けられると、この第2
の弾性体(34)の歪みを磁歪材(23)の磁束の変化
として検出する。
Therefore, the load detection device (26) having the same configuration as the first embodiment is configured such that when a load is applied to the car floor (15d),
When a load is applied to the second elastic body (34), this second elastic body (34)
The strain of the elastic body (34) is detected as a change in the magnetic flux of the magnetostrictive material (23).

次ぎにこの実施例にかかる装置の動作について述べる。Next, the operation of the apparatus according to this embodiment will be described.

磁性層(23)は第7図に示す特性を有している。The magnetic layer (23) has the characteristics shown in FIG.

即ち、力が作用していないときのB−8曲線は符号do
で示す如くとなり、圧縮力が働くと符号dαで示すとお
りその圧縮力の大きさに応じて傾きが小となる。B/)
lは透磁率μであるから、励磁コイル(25)によって
板バネ(34)に誘起される漏れ磁束は透磁率μによフ
て変わり、μの小さいほど漏れ磁束も小さい。従ってホ
ール素子(27)に発生する電圧(V)は圧縮力が大き
い程小さくなるので、かご内荷重を検出できる。なお、
この発明に係わる超電導材としては、例えばNbTi系
の超電導合金、Nb3Sn系の金属間化合物及び臨界温
度の高いBa−Y−Cu−0系、5c−5r−CuO系
等の高温酸化物超電導体などの各種超電導体が用いられ
る。
That is, the B-8 curve when no force is acting has the sign do
When a compressive force is applied, the slope becomes smaller according to the magnitude of the compressive force, as indicated by the symbol dα. B/)
Since l is the magnetic permeability μ, the leakage magnetic flux induced in the leaf spring (34) by the excitation coil (25) changes depending on the magnetic permeability μ, and the smaller μ is, the smaller the leakage magnetic flux is. Therefore, the voltage (V) generated in the Hall element (27) becomes smaller as the compressive force becomes larger, so that the load inside the car can be detected. In addition,
Examples of the superconducting materials according to the present invention include NbTi-based superconducting alloys, Nb3Sn-based intermetallic compounds, and high-temperature oxide superconductors with high critical temperatures such as Ba-Y-Cu-0 and 5c-5r-CuO systems. Various types of superconductors are used.

また、上記実施例では、磁気センサとしてホール素子を
利用したが、他の磁気センサに適用しても、測定磁束密
度の増幅が行え測定感度を大幅に向上出来る。
Further, in the above embodiment, a Hall element was used as the magnetic sensor, but even if it is applied to other magnetic sensors, the measured magnetic flux density can be amplified and the measurement sensitivity can be greatly improved.

[発明の効果] 以上のように、本発明によれば、エレベータの荷重検出
装置を高温超電導材を用いた検出装置により構成し、か
ごを支持する支持具に働く荷重を検出するようにしたの
で、かご内の負荷を正確に検出でき、きめ細かいトルク
制御を行うことのできる効果が得られる。
[Effects of the Invention] As described above, according to the present invention, the load detection device for the elevator is configured with a detection device using a high-temperature superconducting material, and the load acting on the support that supports the car is detected. , the load inside the car can be accurately detected and the effect of fine-grained torque control can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるエレベータの荷重検出
装置の要部を示す断面図、第2図は同装置の概略平面図
、第3図はホール効果を利用したホール素子の測定原理
を示す接続態様図、第4図はシャックルに添着された磁
歪材の特性を示す特性図、第5図a、bはそれぞれ本発
明の他の実施例によるエレベータの荷重検出装置の要部
を示す側断面図および正面縦断面図、第6図は同装置の
概略平面図、第7図は板ばねに添着された磁歪材の特性
を示す特性図、第8図は従来のエレベータを示す断面図
、第9図、第10図a、bはそれぞれ従来のエレベータ
の荷重検出装置を示す正面図、正面縦断面図および側断
面図である。 (15) :かご、(15a):かご枠、(15b):
かご室、(15d):かご床、(15f):かご枠上梁
、(15g) :かご床枠、(17) :主索、(17
a):シャックル、(23) : l+n歪材、(24
) 、 (25) :励磁コイル、(26):荷重検出
装置、(26a):第1の超電導コイル、 (26b):第2の超電導コイル、(26c):接続部
、(27):ホール素子、(28) :磁気シールド、
(33) :第1の弾性体(防振ゴム)、(34):第
2の弾性体(板ばね)。 なお、図中、同一符号は同一または相当部分を示す。
Fig. 1 is a sectional view showing the main parts of an elevator load detection device according to an embodiment of the present invention, Fig. 2 is a schematic plan view of the device, and Fig. 3 shows the measurement principle of a Hall element using the Hall effect. FIG. 4 is a characteristic diagram showing the characteristics of the magnetostrictive material attached to the shackle, and FIGS. 6 is a schematic plan view of the device, FIG. 7 is a characteristic diagram showing the characteristics of the magnetostrictive material attached to the leaf spring, and FIG. 8 is a sectional view showing a conventional elevator. FIGS. 9 and 10a and 10b are a front view, a front vertical cross-sectional view, and a side cross-sectional view, respectively, showing a conventional elevator load detection device. (15): Basket, (15a): Basket frame, (15b):
Car room, (15d): Car floor, (15f): Car frame upper beam, (15g): Car floor frame, (17): Main rope, (17
a): Shackle, (23): l+n strained material, (24
), (25): Excitation coil, (26): Load detection device, (26a): First superconducting coil, (26b): Second superconducting coil, (26c): Connection section, (27): Hall element , (28): magnetic shield,
(33): First elastic body (vibration-proof rubber), (34): Second elastic body (plate spring). In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (6)

【特許請求の範囲】[Claims] (1)支持具によりかごを支持し、かごの荷重を検出す
るエレベータの荷重検出装置において、上記支持具をそ
の荷重発生方向に励磁する励磁コイルと、上記支持具表
面に添着され、互いに所定間隔を隔てて上記荷重発生方
向に対し所定角度で並列に配設されるとともに上記励磁
コイルにより励磁される磁歪材と、上記支持具を遊貫し
、この磁歪材回りに磁歪材の磁束と鎖交する位置に配設
された第1の超電導コイルと、この第1の超電導コイル
と超電導材から成る接続部にて電気的に接続される第2
の超電導コイルと、この第2の超電導コイルの磁束と鎖
交する位置に配設され、支持具の荷重発生時第1の超電
導コイルに加わる磁歪材の被検出磁束を第2の超電導コ
イルに生じる磁束として検知し、支持具に懸かる荷重の
大小を電気的に検出するホール素子とを備え、このホー
ル素子の検出結果に基づいてエレベータかごの荷重を検
出する構成としたことを特徴とするエレベータの荷重検
出装置。
(1) In an elevator load detection device that supports a car with a support and detects the load of the car, an excitation coil that excites the support in the direction of load generation, and an excitation coil that is attached to the surface of the support and are spaced apart from each other at a predetermined distance. A magnetostrictive material is arranged in parallel at a predetermined angle with respect to the load generation direction and is excited by the excitation coil, and a magnetostrictive material that freely passes through the support and interlinks with the magnetic flux of the magnetostrictive material around the magnetostrictive material. a first superconducting coil disposed at a position to
The superconducting coil is arranged at a position interlinking with the magnetic flux of the second superconducting coil, and when the load of the support is generated, the detected magnetic flux of the magnetostrictive material that is applied to the first superconducting coil is generated in the second superconducting coil. An elevator characterized in that it is equipped with a Hall element that detects magnetic flux and electrically detects the magnitude of a load applied to a support, and is configured to detect the load of an elevator car based on the detection result of the Hall element. Load detection device.
(2)第2の超電導コイルは第1の超電導コイルより小
さいインダクタンスを有し、支持具の荷重発生時第1の
超電導コイルに加わる磁歪材の被検出磁束を増幅させる
ことを特徴とする特許請求の範囲第1項記載のエレベー
タの荷重検出装置。
(2) A patent claim characterized in that the second superconducting coil has a smaller inductance than the first superconducting coil, and amplifies the detected magnetic flux of the magnetostrictive material that is applied to the first superconducting coil when a load is generated on the support. The load detection device for an elevator according to item 1.
(3)第2の超電導コイルとホール素子とが上記接続部
とともに外部からの磁気を遮蔽する磁気シールドにより
被包されていることを特徴とする特許請求の範囲第1項
または第2項記載のエレベータの荷重検出装置。
(3) The second superconducting coil and the Hall element are covered together with the connecting portion by a magnetic shield that shields magnetism from the outside. Elevator load detection device.
(4)上記磁歪材をかごを吊持する主索端部に設けられ
たシャックルに添着したことを特徴とする特許請求の範
囲第1項ないし第3項のいずれかに記載のエレベータの
荷重検出装置。
(4) Load detection in an elevator according to any one of claims 1 to 3, characterized in that the magnetostrictive material is attached to a shackle provided at the end of the main rope that suspends the car. Device.
(5)上記磁歪材をかご室のかご床とかご室を支持する
かご枠との間に介在させた弾性体に添着したことを特徴
とする特許請求の範囲第1項ないし第3項のいずれかに
記載のエレベータの荷重検出装置。
(5) Any one of claims 1 to 3, characterized in that the magnetostrictive material is attached to an elastic body interposed between the car floor of the car room and the car frame that supports the car room. The elevator load detection device described in .
(6)上記弾性体をエレベータかごの振動を減衰させる
第1の弾性体と、この第1の弾性体と直列に接続される
とともに荷重に対応する変位のばね特性を具えた第2の
弾性体とで構成したことを特徴とする特許請求の範囲第
5項記載のエレベータの荷重検出装置。
(6) a first elastic body that dampens the vibrations of the elevator car, and a second elastic body that is connected in series with the first elastic body and has a spring characteristic of displacement corresponding to the load; An elevator load detection device according to claim 5, characterized in that the elevator load detection device comprises:
JP31136087A 1987-12-09 1987-12-09 Load detector for elevator Pending JPH01152316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31136087A JPH01152316A (en) 1987-12-09 1987-12-09 Load detector for elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31136087A JPH01152316A (en) 1987-12-09 1987-12-09 Load detector for elevator

Publications (1)

Publication Number Publication Date
JPH01152316A true JPH01152316A (en) 1989-06-14

Family

ID=18016225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31136087A Pending JPH01152316A (en) 1987-12-09 1987-12-09 Load detector for elevator

Country Status (1)

Country Link
JP (1) JPH01152316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123176A (en) * 1996-05-28 2000-09-26 Otis Elevator Company Rope tension monitoring assembly and method
JP2013252963A (en) * 2012-06-08 2013-12-19 Hitachi Ltd Elevator system and elevator car
JPWO2021245855A1 (en) * 2020-06-03 2021-12-09

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123176A (en) * 1996-05-28 2000-09-26 Otis Elevator Company Rope tension monitoring assembly and method
JP2013252963A (en) * 2012-06-08 2013-12-19 Hitachi Ltd Elevator system and elevator car
JPWO2021245855A1 (en) * 2020-06-03 2021-12-09
WO2021245855A1 (en) * 2020-06-03 2021-12-09 三菱電機株式会社 Elevator car weighing device

Similar Documents

Publication Publication Date Title
US5183980A (en) Linear motor elevator device with a null-flux position adjustment
TW200526506A (en) Flaw detection apparatus for wire rope of elevator
KR20070007962A (en) Magnet unit and elevator guiding apparatus
JPH09145504A (en) Rope tension measuring apparatus for elevator
US20050205309A1 (en) Electronic balance
JP6605495B2 (en) Device for holding, positioning and / or moving objects
JP2017511682A5 (en)
US12049385B2 (en) Vibration damping system and elevator apparatus
JPH01152316A (en) Load detector for elevator
JP2596610B2 (en) Column vibration detector for elevator system driven by linear motor
JPH05105349A (en) Elevator rope tension measuring device
JP2009256056A (en) Elevator vibration control device
WO2004089802A1 (en) Weighing device of elevator
JPH0742065B2 (en) Elevator car support equipment
US5459399A (en) Trap for preventing mixing of flux between adjacent indicia and being disposed adjacent first and second sensors
CN114667263A (en) Vibration damper for elevator rope body
JPH0791003B2 (en) Elevator load detection device
KR100923174B1 (en) Elevator having load measuring device
JPH0717673A (en) Basket load detector-installing structure for elevator
JPH0266087A (en) Device for detecting load of elevator
CN219929327U (en) Stress sensor of elevator wire rope
CN108689274A (en) The weighing device of elevator
CN107311006A (en) A kind of rope head fixing device of the elevator weighing apparatus with double damping
JPS54107038A (en) Elevator cage rope flaw detector
RU2431850C1 (en) Accelerometre integral sensitive element