WO2021244495A1 - 用于雷达卫星和gnss卫星的高精度定标定位装置 - Google Patents

用于雷达卫星和gnss卫星的高精度定标定位装置 Download PDF

Info

Publication number
WO2021244495A1
WO2021244495A1 PCT/CN2021/097464 CN2021097464W WO2021244495A1 WO 2021244495 A1 WO2021244495 A1 WO 2021244495A1 CN 2021097464 W CN2021097464 W CN 2021097464W WO 2021244495 A1 WO2021244495 A1 WO 2021244495A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
angle
calibration
installation
satellite
Prior art date
Application number
PCT/CN2021/097464
Other languages
English (en)
French (fr)
Inventor
李陶
张妍岩
Original Assignee
武汉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010507999.4A external-priority patent/CN111624637A/zh
Priority claimed from CN202021019638.7U external-priority patent/CN212364597U/zh
Application filed by 武汉大学 filed Critical 武汉大学
Priority to DE112021002732.8T priority Critical patent/DE112021002732T5/de
Publication of WO2021244495A1 publication Critical patent/WO2021244495A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Definitions

  • the invention belongs to the fields of radiation calibration and geometric calibration of radar satellite remote sensing images, radar interferometry and time series analysis and monitoring of surface deformation monitoring technology, etc. It also relates to the field of GNSS high-precision deformation monitoring, and specifically relates to a radar satellite and High-precision calibration and positioning device for GNSS satellites.
  • the artificial triangular reflector can perform accurate radiation calibration for space-borne SAR images.
  • the main reflection structure of the commonly used metal artificial triangular reflector is a regular triangular pyramid, which is relatively stable and large
  • the radar cross-sectional area is generally electrically large, and exhibits a 3dB beam width independent of wavelength and size.
  • the maximum scattering intensity area of the corner reflector has strong directivity.
  • the scattering intensity value is a function of the incident angle of the radar signal.
  • the difference between the central axis of the artificial corner reflector and the local incident angle of the radar satellite needs to be accurately measured, which is used as a reference basis for high-precision radiation calibration of SAR images. It can be seen that the installation elevation angle of the artificial corner reflector needs to be adjusted accurately with the change of the local incident angle of the radar satellite side-view imaging.
  • Another angle that needs attention when using artificial corner reflectors for SAR image calibration is the angle between the flying direction of the radar satellite and the opening direction perpendicular to the axis of the artificial corner reflector.
  • a triangular reflector with a regular triangular pyramid it means which The direction of one side should be parallel to the flight direction of the satellite.
  • a dihedral corner reflector the intersection of its two vertical reflecting surfaces should be parallel to the flying direction of the radar satellite. In this case, the radar scattering RCS can be guaranteed to reach the maximum value. Therefore, the horizontal azimuth orientation of the artificial dihedral corner reflector also has higher requirements.
  • GNSS deformation monitoring device on the landslide body, because it does not require power supply and network communication, the batch cost is low, and it is expected to become a general-purpose slope deformation monitoring method in the future.
  • High-precision measurement type GNSS deformation monitoring equipment can obtain high-precision (1 ⁇ 3mm) horizontal displacement, but the deformation monitoring ability in the elevation direction is affected by the atmospheric troposphere, which has been difficult to improve, and the accuracy is about 3 ⁇ 5mm. Therefore, the fusion of GNSS and artificial corner reflector positioning devices has good application potential in the fields of slope monitoring and large-scale infrastructure deformation monitoring.
  • the corner reflector provides higher vertical direction monitoring capability, and GNSS provides high-precision horizontal direction monitoring capability, which has good complementarity.
  • At least one embodiment of the present invention provides a high-precision calibration positioning device for radar satellites and GNSS satellites. It can conveniently realize the high-precision alignment of the flying direction of the radar satellite's lifting orbit, and accurately adapt to the local incident angle of the radar side-view imaging, so as to achieve the theoretical maximum value of the RCS of the dihedral reflection of the radar signal. It can be used for high-precision on the one hand Radar radiation calibration and geometric calibration, on the other hand, are used for high-precision deformation monitoring, and high-precision GNSS deformation monitoring capabilities and high-precision InSAR deformation monitoring capabilities are realized on the same device.
  • At least one embodiment of the present invention provides a calibration positioning device, including:
  • a base which is detachably fixed on the bottom plate
  • the installation table is detachably fixed on the base and can rotate horizontally with the base.
  • the installation table has a trapezoidal structure.
  • the first and second sides of the installation table are aligned with the horizontal plane.
  • the tangent line that is, the two waists of the trapezoid on the top of the mounting platform, are respectively consistent with the flying direction of the orbiting radar satellite.
  • the angle between the first side and the second side and the horizontal plane is the two sides of the mounting platform and
  • the inclination angle of the horizontal plane can be adapted to the local incident angle of the side-view imaging of the Elevating orbiting radar satellite respectively;
  • a dihedral corner reflector for reflecting radar satellite signals is detachably fixed on the first side surface and/or the second side surface of the mounting platform so that they are respectively parallel to The direction of the radar lifting rail and the local incident angle of side-view imaging that can be adapted to the lifting rail radar respectively;
  • the GNSS antenna installation structure which is set on the top of the installation platform, is used for installing the GNSS antenna, and realizes the functions of GNSS and InSAR synchronous high-precision positioning and deformation monitoring.
  • the bottom plate is a flat plate structure.
  • the base includes: a sleeve that is detachably fixed on the bottom plate; a rotating shaft, the rotating shaft is movably arranged in the sleeve, and one end of the rotating shaft is connected to the mounting platform
  • the bottom is detachably connected; a fastener is used to fasten the connection between the sleeve and the rotating shaft, and the rotating shaft can rotate relative to the sleeve after the fastener is loosened.
  • the installation platform is a hollow structure.
  • the top of the installation platform is provided with a reflective prism installation structure for the total station.
  • the trapezoidal central axis of the top surface of the mounting platform is the north line.
  • the angle between the waists of the trapezoid at the top and the bottom of the mounting platform is ⁇ 1+ ⁇ 2, where ⁇ 1 is the angle between the flight orbit of the ascending radar satellite and the true north direction, and ⁇ 2 is the flight of the descending radar satellite.
  • the angle between the track and the true north direction; when the first side surface of the mounting platform is adapted to the local incident angle of the ascending radar side-view imaging, its inclination angle with respect to the horizontal plane is ⁇ 45+ ⁇ 1, and the second side surface is suitable
  • the northing line of the installation platform is aligned with the true north direction under the condition of deducting the influence of the local magnetic declination.
  • the long side of the trapezoid on the top of the installation platform faces north and the short side faces south; if the radar satellite shooting mode is left-view imaging, then The long side of the trapezoid on the top of the installation platform faces the south, and the short side faces the north.
  • the dihedral corner reflector includes two metal plates perpendicular to each other, and the shape of the metal plates is a semicircle, a rectangle, a trapezoid, or a convex polygon.
  • the size and shape of the dihedral corner reflector can be changed according to the background signal strength index requirements of the specific application scene.
  • the material of the metal plate includes aluminum alloy and weakly magnetic stainless steel.
  • the angle design of the inclination angle of the first side surface and the second side surface of the mounting platform with the horizontal plane can accurately adapt to the local incident angle of the radar satellite side-view imaging, and support the center axis of the dihedral corner reflector to accurately align with the radar
  • the signal transmitting antenna has an accuracy of about 1 degree. This structure greatly improves the radar backscattering energy of the dihedral corner reflector, which is of great value for high-precision radar calibration and geometric positioning.
  • the angle design of the trapezoidal plane on the top and bottom of the installation platform can realize that the intersection of the vertical planes of the two dihedral corner reflectors and the radar flight direction of the lifting rail remain parallel, and the orientation accuracy can reach about 1 degree, and at the same time
  • the horizontal orientation installation and debugging work of the calibration positioning device can be conveniently realized through the north line arranged on the top of the installation platform.
  • the GNSS antenna can be installed, and the simultaneous high-precision observation of GNSS deformation monitoring and InSAR monitoring at one point is realized.
  • the artificial dihedral corner reflector can overcome the decoherence caused by more vegetation on the surface of the landslide body, and realize high-precision InSAR deformation monitoring. It can also be used for large-scale infrastructure such as dams, highways or high-speed railway foundations, river banks, etc.
  • the region and the GNSS deformation monitoring are at the same point to realize the fusion of the original observation values of the deformation monitoring.
  • the rotatable base facilitates the installation and debugging of the accurate northing of the calibration positioning device.
  • the northing accuracy of about 1 degree can be achieved under the conditions of high-precision geological compass and accurate correction of local magnetic declination.
  • the calibration and positioning device of the present invention has a split structure. By replacing the installation platforms with different side inclination angles and trapezoidal included angles, the precise alignment of the local incident angles of the side-view imaging of different radar satellites at the same site and different radars are realized. Accurate alignment of the flight direction to achieve high-precision radiation calibration and high-precision positioning of multi-source radar images at the same site. For example, under the condition of a steep slope, only one satellite orbit can be visible by radar side-view imaging, you can install only one dihedral reflector visible to the satellite, ignoring the installation of the dihedral angle invisible to the satellite signal The reflector does not affect the performance indicators and accuracy of this equipment, and it will save costs. When the corner reflector is located on a slope in the east-west direction, the reflector is not installed in the line of sight of the radar satellite orbit with the radar overlap effect, and the reflector is installed in the line of sight of the radar satellite orbit without the overlap effect.
  • the two dihedral corner reflectors are of a split structure, and by replacing dihedral corner reflectors of different sizes and shapes, the adjustment of the RCS value can be accurately realized to meet the signal-to-noise ratio requirements under different background conditions.
  • Small-size dihedral reflector panels are selected at locations with weak background intensity, and large-size dihedral reflector panels are selected at locations with high background intensity, so that the present invention is suitable for installation and debugging in a variety of background environments.
  • the size and shape of the dihedral corner reflector can be changed according to the background signal strength of its specific application scene.
  • Dihedral corner reflectors can choose to install two reflectors at the same time or only one reflector according to actual application scenarios.
  • the installation standard is: when the background noise signal scattering intensity of the radar satellite lifting orbit data at the position of the corner reflector is less than the reflector scattering signal intensity by more than 10dB, it is suitable to install two reflectors.
  • the base and the bottom plate are common components, which are convenient for mass production. They can be installed on the cement observation pier in advance by the construction personnel who make the cement pier, reducing the time for professionals to install on site.
  • Radar satellite imaging shooting modes are applicable to both the northern hemisphere and the southern hemisphere.
  • the known planned route of the UAV or fixed-wing aircraft refer to the configuration of the satellite orbital flight direction and the local incidence angle of the radar side-view imaging in advance to accurately adjust the reflector's north direction and the inclination angle of the installation platform. , It can also achieve high-precision radiation calibration and geometric positioning for UAV-borne SAR and aerial SAR platform radar images.
  • the side inclination angle and the trapezoidal side angle of the mounting platform are not unique. They can be replaced with different angles to realize the precise alignment of the same site to the incident angles of different radar satellites and the precise alignment of the different radar flight directions, so as to achieve the same site-to-many High-precision radiation calibration and high-precision positioning of source radar images.
  • the support rod or centering rod connected to the measuring instrument can be used to support the GNSS antenna, which can realize the synchronization and high-precision monitoring and positioning function of GNSS and InSAR, and can also be used to support the traditional surveying and mapping reflecting prism to realize the functions of total station surveying and mapping.
  • Fig. 1 is a schematic diagram of a calibration and positioning device provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the calibration and positioning device shown in FIG. 1 from another perspective.
  • Fig. 3 is a schematic diagram of a dihedral corner reflector provided by an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a right-angled connector provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of an installation stand provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the principle of setting the azimuth angle of the orbit of the adaptive radar satellite under the condition of the right-view radar of the installation platform provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the principle of setting the azimuth angle of the orbit of the adaptive radar satellite under the left-view condition of the radar provided by an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the inclination angles ⁇ and ⁇ between the two quadrilateral sides of the mounting platform and the horizontal plane according to an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the parameter setting of the local incident angle of the installation platform provided by an embodiment of the present invention under the condition of adapting to the right-view ascending orbit of the radar.
  • Fig. 10 is a schematic diagram of a method for setting the local incident angle of the installation platform under the condition of adapting the radar right-view falling track according to an embodiment of the present invention.
  • Fig. 11 is a schematic diagram of a bottom plate, a base, a mounting platform, and a GNSS antenna connector provided by an embodiment of the present invention.
  • Fig. 12 is a schematic diagram of a GNSS antenna connector provided by an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a rotatable base provided by an embodiment of the present invention.
  • Fig. 14 is a schematic diagram of a bottom plate provided by an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a calibration and positioning device provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the calibration and positioning device shown in FIG. 1 from another perspective.
  • the calibration and positioning device includes two dihedral corner reflectors for reflecting radar satellite signals.
  • One of the two dihedral corner reflectors includes a first panel 1 and a second panel that are perpendicular to each other.
  • Panel 2 the other of the two dihedral corner reflectors includes a third panel 3 and a fourth panel 4 perpendicular to each other.
  • the vertical connection between the first panel 1 and the second panel 2, as well as the third panel 3 and the fourth panel 4 can be realized by the right-angled connector 6 shown in Figure 4, the connector 6 and the panels 1, 2 , 3, 4 have screw holes for installing fastening bolts at the corresponding positions.
  • Panels 1, 2, 3, 4 are made of metal, and the specific materials can include aluminum alloy and weakly magnetic stainless steel to avoid rust and magnetic field interference.
  • the shape of the panels 1, 2, 3, 4 can be semicircular or rectangular or any convex polygon, and the size and shape of the panel will correspond to different RCS values to meet the requirements of radiation calibration in different scenarios.
  • Figure 5 shows the mounting platform 5 for installing the two dihedral corner reflectors.
  • the mounting platform 5 can be a trapezoidal platform.
  • the first panel 1 and the third panel 3 of the two dihedral corner reflectors can be screwed. Or bolts are respectively fixed on the first side surface (parallelogram side surface) and the second side surface (the other parallelogram side surface) of the mounting platform 5.
  • the two tangential directions ( ⁇ 1 , ⁇ 2 ) formed by the intersection of the first side surface and the second side surface of the installation platform 5 with the horizontal plane are adapted to the orbit direction of the elevating orbiting radar satellite,
  • the two included angles ( ⁇ , ⁇ ) formed by the first side surface and the second side surface and the horizontal plane have a matching relationship with the local incident angle ( ⁇ 1 , ⁇ 2 ) of the elevating orbiting radar satellite.
  • the method for determining the size and angle of the double trapezoidal cross section (top trapezoidal cross section and side trapezoidal cross section) of the installation platform 5 is as follows: Radar satellite image data parameter file, accurately calculate the azimuth of the flying direction of the ascending orbit satellite, and derive the angle ⁇ 1 between the flying orbit 10 of the ascending radar satellite and the true north direction (that is, the line of intersection between the first panel 2 and the horizontal plane) The included angle with the true north direction), and the included angle ⁇ 2 between the orbit 11 of the descending radar satellite and the true north direction (that is, the included angle between the line of intersection of the third panel 3 and the horizontal plane and the true north direction).
  • the figure angles of the top trapezoidal surface and the bottom trapezoidal surface of the mounting platform 5 are determined, refer to Figs. 6 and 7.
  • the local incident angle ( ⁇ 1, ⁇ 2) of the orbiting satellite for the corner reflector position is determined according to the satellite image parameter file to calculate the distance between the two quadrilateral sides (the first side and the second side) of the mounting platform 5 and the horizontal plane.
  • Inclination angle ⁇ , ⁇ is shown in Fig. 9 and Fig.
  • This configuration of the mounting table 5 enables the dihedral corner reflector to achieve the largest radar RCS scattering cross-sectional area. That is to say, it is ensured that the azimuth angles of the two dihedral corner reflectors are completely consistent with the flying directions 10 and 11 of the orbiting radar, and the dihedral angle axis is completely consistent with the local incident angle of the radar, so as to realize the alignment of the orbiting radar satellite The maximum reflectivity of the signal.
  • the projection of the vertical intersection of the second panel 2 and the first panel 1 on the horizontal plane is consistent with the flying direction 10 of the ascending radar satellite, and the projection and descending of the vertical intersection of the third panel 3 and the fourth panel 4 on the horizontal plane
  • the orbiting radar satellites have the same flight direction 11.
  • the trapezoid structure on the top surface and the trapezoid structure on the bottom surface of the installation platform 5 can be adjusted according to the orbit of the radar satellite to meet the precise adjustment of the azimuth angle of the satellite lift orbit under the conditions of different latitude regions and different radar satellites, and has strong versatility.
  • a north-pointing line is set on the top surface of the mounting platform 5.
  • the radar satellite shooting mode is right-viewing, as shown in Fig. 6, the trapezoidal bottom side (long side) of the top surface of the mounting platform 5 faces north, and the top side (Short side) To the south, the radar up-and-down mode can be supported (because most of the current radar satellites adopt the right-view shooting mode, the other parts of this article default to this mode for related theories and methods); when the radar satellite shooting mode is left-view shooting mode
  • the bottom side (long side) of the trapezoid on the top surface of the installation platform 5 faces south
  • the top side (short side) faces north, which can support the radar lifting rail mode.
  • the top surface of the mounting platform 5 is provided with a screw hole for connecting with the GNSS antenna connector 7, and the trapezoidal center line is marked as the north line.
  • the bottom surface of the mounting table 5 is provided with a screw hole for connecting the rotatable base 8.
  • the mounting table 5 is composed of a U-shaped groove structure and a supporting plate that are detachably fixed together by screws. This hollow structure reduces the weight of the equipment.
  • the trapezoidal cross-sections of the two sides of the mounting table 5 show the hollow structure.
  • a GNSS antenna connector 7 is installed on the top of the mounting table 5, and the bottom of the mounting table 5 is fixedly connected to a rotatable base 8, and the base 8 is fixed on the bottom plate 9.
  • the mounting stand 5 and the GNSS antenna connector 7 can be connected by threads.
  • the mounting table 5 and the base 8 can be detachably connected by bolts or screws, and the base 8 and the bottom plate 9 can also be detachably connected by bolts or screws.
  • Figure 12 shows the GNSS antenna connector 7, which has screws at both ends, one end is suitable for the installation of surveying and mapping instruments such as reflecting prisms, GNSS antennas and other equipment, and the other end is fixedly connected to the screw holes on the top of the mounting platform 5.
  • Fig. 13 shows that the rotatable base 8 includes a sleeve, a rotating shaft and a fastener, the sleeve is fixedly connected to the bottom plate 9, and the rotating shaft is fixedly connected to the bottom of the mounting table 5 and placed in the sleeve,
  • the fastener is used to fasten the sleeve and the rotating shaft together, and the rotating shaft is rotatable relative to the sleeve after the fastener is loosened.
  • the rotatable base 8 enables the two dihedral corner reflectors to rotate horizontally with the installation platform 5, which is used to accurately find the north direction and is suitable for radar left-view and right-view conditions.
  • Figure 14 shows the bottom plate 9.
  • the center of the bottom plate 9 is provided with a screw hole for fixed connection with the sleeve.
  • the four sides of the bottom plate 9 are designed with larger mounting holes for installing expansion bolts to fix it on the cement observation pier. Or the ground.
  • the sleeve of the rotatable base 8 is fastened to the bottom plate 9 by screws, and the bottom plate 9 is fixed on the cement observation pier with bolts.
  • the surface of the cement observation pier should be made level with an error of 1 degree.
  • fix the GNSS antenna connector 7 in the screw hole on the top of the mounting table 5 use bolts to fix the mounting table 5 and the rotating shaft of the base 8, and place the rotating shaft in the sleeve;
  • a right-angled connector 6 and screws are used to realize the vertical connection of the first panel 1 and the second panel 2, and the third panel 3 and the fourth panel 4.
  • the above method is also applicable to the same satellite orbit radar imaging mode in the southern hemisphere, except that the north-south direction of the above installation process needs to be reversed.
  • the actual installation accuracy of the horizontal orientation of the invention can reach about plus or minus 1 degree, which meets the requirements of high-precision deformation observation and the requirements of high-precision radar satellite radiation calibration and geometric calibration.
  • the dihedral corner reflector panel can be removed and replaced with a larger size panel to meet the requirements of InSAR. Monitoring needs.
  • the azimuth and inclination angle of the dihedral corner reflector cannot match the azimuth and local incident angle of other radar satellites with high accuracy, the local incident angle and the sub-satellite point of the flight orbit can be accurately calculated.
  • Orientation make a high-precision installation table that adapts to this angle. By removing the old installation table and replacing it with a new one, the high-precision radiation calibration and positioning of the dihedral corner reflector that adapts to different radar satellite shooting modes in the same position can be realized. .
  • the flying direction of the radar satellite of the present invention is defined as the same as the flying direction of the radar sensor carried by aviation and unmanned aerial vehicle SAR platform.
  • the definition of the lateral inclination angle of the radar sensor carried by the UAV-borne SAR platform has an adaptation relationship.
  • the precise orientation and inclination angle adaptation of the corner reflector is completed by calculating the known planned route direction of the airborne SAR and the SAR sensor radar lateral inclination angle.
  • the invention can realize high-precision positioning and calibration of remote sensing images of aviation and UAV SAR platforms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种用于雷达卫星和GNSS卫星的高精度定标定位装置。该装置包括:底板(9);基座(8),可拆卸地固定在底板(9)上;安装台(5),可拆卸地固定在基座(8)上,且能够水平旋转,安装台(5)的第一侧面和第二侧面与水平面的切线分别与升降轨雷达卫星飞行方向(10,11)一致,与水平面的夹角分别适配升降轨雷达卫星本地入射角;二面角反射器,可拆卸地固定在安装台(5)的第一侧面和/或第二侧面上,使其平行于升降轨雷达卫星飞行方向(10,11)以及适应升降轨雷达信号本地入射角;以及GNSS天线连接件(7),设置在安装台(5)顶部。该装置通过更换不同倾角及夹角的安装台(5)和不同形状及尺寸的反射面板(1,2,3,4),实现对雷达卫星信号二面直角反射的RCS理论最大值,通过顶部的GNSS天线,同步实现GNSS高精度定位。

Description

用于雷达卫星和GNSS卫星的高精度定标定位装置 技术领域
本发明属于雷达卫星遥感影像的辐射定标和几何定标、雷达干涉测量及时间序列分析监测地表变形监测技术等领域,同时也涉及GNSS高精度变形监测领域,具体涉及一种用于雷达卫星和GNSS卫星的高精度定标定位装置。
背景技术
人工三角反射器作为良好的无源雷达定标设备,可为星载SAR影像进行准确的辐射定标,目前常用的金属人工三角反射器的反射结构主体为正三棱锥,具有相对稳定的、较大的雷达截面积,一般为电大尺寸,并且表现出与波长和尺寸无关的3dB波束宽度。有时为了获取更大的雷达后向散射能量,也将其做成三个正方形平面相互垂直。从已知的雷达散射理论公式及相关推论可知,人工三角反射器能在较大范围(<40°)入射角的条件下,保持强散射特性的稳定性。角反射器的散射强度最大值区域具有很强的方向性,散射强度值是雷达信号入射角的函数,实际应用时应尽量将人工角反射器的中心轴线对准雷达卫星侧视成像的本地入射角。当不能达到这个要求时,需要精确测量人工角反射器中心轴线相对于雷达卫星的本地入射角的差异,用于SAR图像高精度辐射定标的参考依据。由此可知人工角反射器的安置仰角需要随雷达卫星侧视成像本地入射角的变化而精确调整。
利用人工角反射器进行SAR影像定标时另一个需要关注的角度是雷达卫星飞行方向与人工角反射器轴线垂直的开口方向的夹角,对于正三棱锥形的三角反射器而言,是指其中一条边的方向应该与卫星飞行方向保持平行。对于二面角反射器而言,其两个垂直反射面的交线应与雷达卫星的飞行方向保持平行。在这种情况下,雷达散射RCS才能保证达到最大值,因此,人工二面角反射器的水平方位定向也有较高的要求。
基于人工三角反射器的变形监测技术自从1992年欧空局雷达卫星ERS1/2发射后就在地震板块运动、火山监测、地面沉降、山体滑坡等领域得到了应用。国内外众多学者也持续的在角反射器形变监测领域开展着研究工作。布置在滑坡体、人工边坡以及大型人工基础设施上的人工角反射器能够克服自然地物目标雷达散射相位信号失相干的问题,从而可以提取长时序的雷达视线向变形结果,精度最高可达1~3mm。相比于滑坡体上的GNSS变形监测装置,由于它不需要电源和网络通信,批量造价成本低廉,未来有望成为通用型的坡体形变监测手段。高精度测量型GNSS变形监测设备可以获取高精度(1~3mm)的水平位移,但是在高程方向的变形监测能力受大气对流层的影响,一直难以提高,精度约为3~5mm。因此,GNSS与人工角反射器定位装置的融合在边坡监测、大型基础设施变形监测领域有很好的应用潜力。 角反射器提供更高的垂直方向监测能力,GNSS提供高精度的水平方向监测能力,具有很好的互补性。
发明内容
本发明的至少一个实施例提供一种用于雷达卫星和GNSS卫星的高精度定标定位装置。可便利的实现对雷达卫星升降轨飞行方向的高精度对准,以及精确适应雷达侧视成像本地入射角,从而实现对雷达信号二面角反射的RCS理论最大值,可一方面用于高精度的雷达辐射定标和几何定标,另一方面用于高精度的变形监测,并在同一个装置上实现高精度的GNSS变形监测能力和高精度的InSAR变形监测能力。
本发明的至少一个实施例提供一种定标定位装置,包括:
底板;
基座,所述基座可拆卸地固定在所述底板上;
安装台,所述安装台可拆卸地固定在所述基座上,且能够随所述基座水平旋转,所述安装台为梯形结构,所述安装台第一侧面和第二侧面与水平面的切线,即所述安装台顶部梯形的两个腰,分别与升降轨雷达卫星飞行方向一致,所述第一侧面和所述第二侧面与水平面的夹角,即所述安装台两个侧面与水平面的倾角,可分别适配升降轨雷达卫星侧视成像本地入射角;
用于反射雷达卫星信号的二面角反射器,所述二面角反射器可拆卸地固定在所述安装台的所述第一侧面和/或所述第二侧面上,使其分别平行于雷达升降轨方向以及可分别适配升降轨雷达侧视成像本地入射角;以及
GNSS天线安装结构,其设置在所述安装台顶部,用于安装GNSS天线,实现GNSS与InSAR同步高精度定位与变形监测的功能。
在一些示例中,所述底板为平板结构。
在一些示例中,所述基座包括:套筒,所述套筒可拆卸地固定在所述底板上;转轴,所述转轴活动设置在所述套筒内,且其一端与所述安装台底部可拆卸连接;紧固件,紧固连接所述套筒和所述转轴,且所述紧固件松开后所述转轴相对所述套筒可转动。
在一些示例中,所述安装台为中空结构。
在一些示例中,所述安装台顶部设有全站仪用反射棱镜安装结构。
在一些示例中,所述安装台的顶面梯形中轴线为指北线。
在一些示例中,所述安装台顶部梯形和底部梯形两腰之间的夹角为α1+α2,α1为升轨雷达卫星的飞行轨道与真北方向的夹角,α2为降轨雷达卫星飞行轨道与真北方向的夹角;所述安装台的所述第一侧面适配升轨雷达侧视成像本地入射角时,其相对于水平面的倾角 α=45+η1,所述第二侧面适配降轨雷达侧视成像本地入射角时,其相对于水平面的倾角β=45+η2,η1为所述二面角反射器位置的升轨卫星本地入射角,η2为所述二面角反射器位置的降轨卫星本地入射角。
在一些示例中,如果用罗盘等磁性指北工具进行指北时,在扣除本地磁偏角影响的情况下将所述安装台的所述指北线与真北方向对准。
在一些示例中,当安装地点位于北半球时,若雷达卫星拍摄模式为右视成像,则所述安装台顶部梯形长边朝向北方,短边朝向南方;若雷达卫星拍摄模式为左视成像,则所述安装台顶部梯形长边朝向南方,短边朝向北方。
在一些示例中,所述二面角反射器包括相互垂直的两块金属板,所述金属板的形状为半圆形、矩形、梯形或者凸多边形。所述二面角反射器的尺寸和形状可以根据其具体应用场景的背景信号强度指标需求进行更换。
在一些示例中,所述金属板的材料包括铝合金和弱磁性不锈钢。
所述安装台的所述第一侧面和所述第二侧面的与水平面倾角的角度设计,可精确适配雷达卫星侧视成像本地入射角,支持二面角反射器的中心轴线精确对准雷达信号发射天线,精度可达1度左右,该结构大大提高了二面角反射器的雷达后向散射能量,对雷达高精度定标和几何定位具有重要的价值。
所述安装台的顶部和底部梯形平面的角度设计,可实现所述两个二面角反射器的垂直面交线与升降轨的雷达飞行方向保持平行,其定向精度可达1度左右,同时通过设置在所述安装台顶部的指北线,方便的实现定标定位装置水平方位的安装和调试工作。
通过所述安装台顶部的GNSS天线安装结构,可进行GNSS天线的安装,实现了GNSS变形监测和InSAR监测在一个点位上的同步高精度观测。人工二面角反射器可克服滑坡体表面植被覆盖较多导致的失相干困扰,实现高精度的InSAR变形监测,也可用于大型基础设施如大坝,高速公路或者高铁路基,河堤江堤等区域与GNSS变形监测在同一点位实现变形监测原始观测值的融合。
所述可旋转的基座便利了定标定位装置精确指北的安装与调试工作,通常在高精度地质罗盘加本地磁偏角精确纠正的条件下可实现1度左右的指北精度。
本发明的定标定位装置为分体式结构,通过更换不同侧面倾角和梯形夹角的所述安装台,实现在同一个站点对不同雷达卫星侧视成像本地入射角的精确对准,以及不同雷达飞行方向的精确对准,从而实现同一站点对多源雷达影像的高精度辐射定标和高精度定位。如在陡峭的边坡条件下,只能有一个卫星轨道存在雷达侧视成像可视的条件下,则可以只安装一个卫星可见的二面角反射器,忽略安装卫星信号不可见的二面角反射器,并不影响本设备的性能 指标和精度,且会节省成本。当角反射器位于东西向的坡体时,其中存在雷达叠掩效应的雷达卫星轨道视线方向不安装反射器,不存在叠掩效应的雷达卫星轨道视线方向安装反射器。
所述两个二面角反射器为分体式结构,通过更换不同尺寸和形状的二面角反射器,精确实现RCS值的调整,满足不同背景条件下的信杂比要求。在背景强度弱的地点选取小尺寸二面角反射面板,在背景强度大的地点选取大尺寸的二面角反射面板,从而使本发明适应多种背景环境下的安装调试。二面角反射器的尺寸和形状可以根据其具体应用场景的背景信号强度更换。二面角反射器可以根据实际应用场景,选择同时安装两个反射器,或者只安装一个反射器。安装标准为:当角反射器所处位置雷达卫星升降轨数据的背景噪声信号散射强度都小于反射器散射信号强度10dB以上时,适合安装两个反射器。
基座和底板为通用部件,方便批量生产,可由制作水泥墩的建设人员先期安装在水泥观测墩上,减少专业人员现场安装的时间。
雷达卫星成像拍摄模式北半球和南半球都适用。
在一些情况下,根据无人机或者固定翼飞机的已知规划航线,预先参考卫星轨道飞行方向和雷达侧视成像本地入射角的配置,来精确调整反射器的指北方向和安装台倾角设计,也可实现对无人机载SAR和航空SAR平台雷达影像进行高精度的辐射定标和几何定位工作。
安装台的侧面倾角和梯形边夹角不唯一,可以更换成不同角度,实现同一个站点对不同雷达卫星入射角的精确对准,以及不同雷达飞行方向的精确对准,从而实现同一站点对多源雷达影像的高精度辐射定标和高精度定位。
连接测量仪器的支撑杆或对中杆可用于支撑GNSS天线,可以实现GNSS与InSAR同步高精度监测与定位功能,还可以用于支撑传统测绘的反射棱镜,实现全站仪测绘等功能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍。
图1为本发明一实施例提供的定标定位装置示意图。
图2为图1所示的定标定位装置另一视角示意图。
图3为本发明一实施例提供的二面角反射器示意图。
图4为本发明一实施例提供的直角状的连接件示意图。
图5为本发明一实施例提供的安装台示意图。
图6为本发明一实施例提供的安装台在雷达右视条件下的适配雷达卫星升降轨方位角度设置原则示意图。
图7为本发明一实施例提供的安装台在雷达左视条件下的适配雷达卫星升降轨方位角度设置原则示意图。
图8为本发明一实施例提供的安装台两个四边形侧面与水平面的倾角α,β示意图。
图9为本发明一实施例提供的安装台在适配雷达右视升轨条件下本地入射角的参数设置示意图。
图10为本发明一实施例提供的安装台在适配雷达右视降轨条件下本地入射角的设置方法示意图。
图11为本发明一实施例提供的底板、基座、安装台和GNSS天线连接件示意图。
图12为本发明一实施例提供的GNSS天线连接件示意图。
图13为本发明一实施例提供的可旋转的基座示意图。
图14为本发明一实施例提供的底板示意图。
附图标记说明:
1-第一面板;
2-第二面板;
3-第三面板;
4-第四面板;
5-安装台;
6-连接件;
7-GNSS天线连接件;
8-基座;
9-底板;
10-升轨雷达卫星飞行方向;
11-降轨雷达卫星飞行方向。
具体实施方式
图1为本发明一实施例提供的定标定位装置的示意图;图2为图1所示的定标定位装置另一视角的示意图。如图1和图2,定标定位装置包括用于反射雷达卫星信号的两个二面角反射器,所述两个二面角反射器中的一个包括相互垂直的第一面板1和第二面板2,所述两个二面角反射器中的另一个包括相互垂直的第三面板3和第四面板4。如图3,可通过图4所示的直角状的连接件6实现第一面板1和第二面板2,以及第三面板3和第四面板4的垂直连接,连接件6及面板1,2,3,4对应位置上具有用于安装紧固螺栓的螺孔。面板1,2,3,4为金属材质,具体材料可包括铝合金和弱磁性不锈钢,避免生锈及产生磁场干扰。此外,面板1,2,3,4的形状可以是半圆形或矩形或者任意凸多边形,尺寸及面板形状的变化,对应不同的RCS取值,实现不同场景下辐射定标需求。
图5展示了安装所述两个二面角反射器的安装台5,该安装台5可采用梯形台,所述两个二面角反射器的第一面板1和第三面板3可通过螺钉或螺栓分别固定在安装台5的第一侧面(平行四边形侧面)和第二侧面(另一平行四边形侧面)。如图6-图10,安装台5的所述第一侧面和所述第二侧面与水平面相交构成的两条切线方向(α 1,α 2)与升降轨雷达卫星的轨道方向相适配,所述第一侧面和所述第二侧面与水平面构成的两个夹角(α,β)与升降轨雷达卫星的本地入射角(η 1,η 2)存在适配关系,具体计算方向详见以下说明。
当雷达卫星右视成像且安装地点位于北半球时,安装台5的双梯形截面(顶面梯形截面与侧面梯形截面)的尺寸及角度的确定方法如下:通过雷达卫星拍摄的角反射器安装区域的雷达卫星影像数据参数文件,精确计算升降轨卫星飞行方向方位角,并推导出升轨雷达卫星的飞行轨道10与真北方向的夹角α 1(也即第一面板2与水平面相交的交线与真北方向的夹角),及降轨雷达卫星飞行轨道11与真北方向的夹角α 2(也即第三面板3与水平面相交的交线与真北方向的夹角)。根据夹角α 1,α 2确定安装台5顶部梯形面和底部梯形面的图形角度,参考图6和图7。同理,根据卫星影像参数文件确定升降轨卫星针对角反射器位置的本地入射角(η1,η2)计算安装台5两个四边形侧面(所述第一侧面和所述第二侧面)与水平面的倾角α,β。图8所示的倾角α,β的具体计算公式见图9、图10,其中α=45+η1,β=45+η2,依据倾角α,β进行安装台5侧面梯形截面尺寸和角度的精确定制加工。需要指出的是,如图9,图10中的公式所示,当η 1和η 2等于45度时,倾角α,β为直角,安装台5的顶部梯形面与底部梯形面完全相等;当η 1和η 2大于45度时,倾角α,β为钝角,安装台5的顶部梯形面的尺寸大于底部梯形面。
安装台5的这种构造使二面角反射器能够实现最大的雷达RCS散射截面积。即确保了所述两个二面角反射器安装的方位角与升降轨雷达飞行方向10,11保持完全一致,且使二面角轴线与雷达本地入射角保持完全一致,实现对升降轨雷达卫星信号的最大反射能力。第二面板2和第一面板1垂直相交的交线在水平面上的投影与升轨雷达卫星飞行方向10一致,第三面板3和第四面板4垂直相交的交线在水平面上的投影与降轨雷达卫星飞行方向11一致。安装台5的顶面梯形结构和底面梯形结构可以根据雷达卫星轨道进行调整,以满足不同纬度地区和不同雷达卫星的条件下卫星升降轨方位角的精确调整,通用性强。
此外,安装台5顶面设置了一条指北线,当雷达卫星拍摄模式为右视的情况下,如图6所示,安装台5顶面的梯形底边(长边)朝向北方,顶边(短边)朝向南方可支持雷达升降轨模式(由于当前大部分雷达卫星采用右视拍摄模式,因此本文其他部分默认以此模式进行相关的理论和方法论述);当雷达卫星拍摄模式为左视的情况下,安装台5顶面的梯形底边(长边)朝向南方,顶边(短边)朝向北方,可支持雷达升降轨模式。
继续参考图5,安装台5顶面设置了用于与GNSS天线连接件7连接的螺孔,并标识了梯形中心线为指北线。安装台5底面设置了用于连接可旋转基座8的螺孔。此外,安装台5由通过螺钉可拆卸地固定在一起的U型槽结构和支撑板组成,这种中空构造减轻了设备的重量,安装台5两个侧面梯形截面显示了中空构造。
如图11,安装台5的顶部安装有GNSS天线连接件7,安装台5的底部与可旋转的基座8固定连接,基座8则固定在底板9上。安装台5与GNSS天线连接件7可通过螺纹连接。安装台5与基座8可通过螺栓或螺钉实现可拆卸连接,基座8与底板9也可通过螺栓或螺钉实现可拆卸连接。
图12展示了GNSS天线连接件7,其两端为螺杆,一端适应测绘仪器如反射棱镜、GNSS天线等设备的安装,另一端与安装台5顶部的螺孔固定连接。
图13展示了可旋转的基座8包括套筒、转轴和紧固件,所述套筒与底板9固定连接,所述转轴与安装台5的底部固定连接并置于所述套筒内,所述紧固件用于将所述套筒和所述转轴紧固在一起,且在所述紧固件松开后所述转轴相对所述套筒可转动。可旋转的基座8使得所述两个二面角反射器能随安装台5水平旋转,用于精确找寻北方向以及适合雷达左视和右视条件。
图14展示了底板9,底板9的中心设置了用于与所述套筒固定连接的螺孔,底板9的四边设计了较大的安装孔,用于安装膨胀螺栓将其固定于水泥观测墩或者地面。
下面介绍本发明定标定位装置的组装方法:
首先,通过螺丝将可旋转基座8的所述套筒紧固在底板9上,使用螺栓将底板9固定在水泥观测墩上,水泥观测墩的表面在制作时应保证水平,误差在1度以内;
其次,将GNSS天线连接件7固定在安装台5顶部的螺孔中,使用螺栓将安装台5与基座8的所述转轴固定连接,将所述转轴置于所述套筒内;
再次,使用直角状的连接件6及螺钉实现第一面板1和第二面板2,以及第三面板3和第四面板4的垂直连接。
最后,使用螺钉或螺栓将第一面板1和第三面板3分别固定在安装台5的所述第一侧面(平行四边形侧面)和所述第二侧面(另一平行四边形侧面),水平转动安装台5,在使用地质罗盘确定安装台5上面的指北线加上本地磁偏角改正数,对准到真实北方向后,利用所述紧固件将基座8的所述套筒和所述转轴紧固在一起,完成安装。
当利用地质罗盘精确将指北线瞄准真北方向时,注意查找出本地磁偏角精确到0.1度,安装时注意扣除磁偏角的影响。上述方法同样适用于南半球相同的卫星轨道雷达成像模式,只是上述安装过程的南北方向要做个对调。
本发明水平方位的实际安装精度可达正负1度左右,满足高精度形变观测的需求,以及高精度雷达卫星辐射定标和几何定标的要求。
如果实际应用中,发现二面角反射器的水平方位角不准确,可携带地质罗盘等定向工具,现场重新测量安装台指北线是否准确指北,解开基座紧固件,重新准确指北后,再固定。
如果实际应用中,发现所安装的二面角反射器反射强度太弱,达不到InSAR高精度相位监测的需求,可拆卸下该二面角反射器面板,更换更大尺寸的面板,以满足监测需求。
如果实际应用中,发现二面角反射器的方位角和倾角与其它雷达卫星飞行方位角和本地入射角不能高精度匹配时,可通过精确计算的该雷达卫星本地入射角和飞行轨道星下点方向,制作高精度适配该角度的安装台,通过拆卸旧安装台,替换上新的安装台,实现同一位置上适应不同雷达卫星拍摄模式的二面角反射器的高精度辐射定标与定位。
对应于航空或者无人机SAR平台,本发明所述雷达卫星飞行方向与航空及无人机载SAR平台所携带的雷达传感器飞行方向定义相同,所述卫星雷达侧视成像本地入射角与航空及无人机载SAR平台所携带的雷达传感器的侧视倾角定义具有适配关系,通过机载SAR已知规划航线方向和SAR传感器雷达侧视倾角的计算完成角反射器的精确定向和倾角适配,本发明可实现对航空及无人机SAR平台遥感影像的高精度定位和定标。
上述结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (10)

  1. 一种定标定位装置,其特征在于,包括:
    底板;
    基座,所述基座可拆卸地固定在所述底板上;
    安装台,所述安装台可拆卸地固定在所述基座上,且能够随所述基座水平旋转,所述安装台为梯形结构,其第一侧面和第二侧面与水平面的切线分别与升降轨雷达卫星飞行方向一致,所述第一侧面和所述第二侧面与水平面的夹角可分别适配升降轨雷达卫星本地入射角;
    用于反射雷达卫星信号的二面角反射器,所述二面角反射器可拆卸地固定在所述安装台的所述第一侧面和/或所述第二侧面上,使其适配升降轨雷达侧视成像本地入射角;以及
    GNSS天线安装结构,其设置在所述安装台顶部。
  2. 根据权利要求1所述的定标定位装置,其特征在于,所述底板为平板结构。
  3. 根据权利要求1或2所述的定标定位装置,其特征在于,所述基座包括:
    套筒,所述套筒可拆卸地固定在所述底板上;
    转轴,所述转轴活动设置在所述套筒内,且其一端与所述安装台底部可拆卸连接;
    紧固件,紧固连接所述套筒和所述转轴,且所述紧固件松开后所述转轴相对所述套筒可转动。
  4. 根据权利要求1所述的定标定位装置,其特征在于,所述安装台为中空结构。
  5. 根据权利要求1所述的定标定位装置,其特征在于,所述安装台顶部设有全站仪用反射棱镜安装结构。
  6. 根据权利要求1所述定标定位装置,其特征在于,所述安装台的顶面梯形中轴线为指北线。
  7. 根据权利要求1或4或5或6所述的定标定位装置,其特征在于,所述安装台顶部梯形和底部梯形两腰之间的夹角为α1+α2,α1为升轨雷达卫星的飞行轨道与真北方向的夹角,α2为降轨雷达卫星飞行轨道与真北方向的夹角;所述安装台的所述第一侧面适配升轨雷达卫星本地入射角的配置方法为,其相对于水平面的倾角α=45+η1,所述第二侧面适配降轨雷达卫星本地入射角的配置方法为,相对于水平面的倾角β=45+η2,η1为所述二面角反射器位置的升轨卫星本地入射角,η2为所述二面角反射器位置的降轨卫星本地入射角。
  8. 根据权利要求1所述的定标定位装置,其特征在于,如果用罗盘等磁性指北工具进行指北时,在扣除本地磁偏角影响的情况下将所述安装台的所述指北线与真北方向对准。
  9. 根据权利要求1或7所述的定标定位装置,其特征在于,当安装地点位于北半球时,若雷达卫星拍摄模式为右视成像,则所述安装台顶部梯形长边朝向北方,短边朝向南方;若雷达卫星拍摄模式为左视成像,则所述安装台顶部梯形长边朝向南方,短边朝向北方。
  10. 根据权利要求1所述的定标定位装置,其特征在于,所述二面角反射器包括相互垂直的两块金属板,所述金属板的形状为半圆形、矩形、梯形或者凸多边形。
PCT/CN2021/097464 2020-06-05 2021-05-31 用于雷达卫星和gnss卫星的高精度定标定位装置 WO2021244495A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021002732.8T DE112021002732T5 (de) 2020-06-05 2021-05-31 Hochpräzises Kalibrier- und Positionierungsgerät für Radarsatelliten und GNSS-Satelliten

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021019638.7 2020-06-05
CN202010507999.4A CN111624637A (zh) 2020-06-05 2020-06-05 用于雷达卫星和gnss卫星的高精度定标定位装置
CN202010507999.4 2020-06-05
CN202021019638.7U CN212364597U (zh) 2020-06-05 2020-06-05 用于雷达卫星和gnss卫星的高精度定标定位装置

Publications (1)

Publication Number Publication Date
WO2021244495A1 true WO2021244495A1 (zh) 2021-12-09

Family

ID=78830652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097464 WO2021244495A1 (zh) 2020-06-05 2021-05-31 用于雷达卫星和gnss卫星的高精度定标定位装置

Country Status (2)

Country Link
DE (1) DE112021002732T5 (zh)
WO (1) WO2021244495A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115014294A (zh) * 2022-05-18 2022-09-06 河海大学 一种东西向卫星的河道敏捷成像方法
CN115494502A (zh) * 2022-10-10 2022-12-20 武汉大学 一种公路边坡InSAR形变测量方法及装置
CN117117465A (zh) * 2023-10-23 2023-11-24 成都智芯雷通微系统技术有限公司 一种雷达天线相控阵及其使用方法
CN117665818A (zh) * 2024-02-02 2024-03-08 北京东方至远科技股份有限公司 一种针对合成孔径雷达卫星的平面位置修正方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2535661C1 (ru) * 2013-07-11 2014-12-20 Открытое акционерное общество "Корпорация космических систем специального назначения "Комета" Способ калибровки радиолокационной станции по миниспутнику с эталонным значением эффективной поверхности рассеяния
RU2594667C1 (ru) * 2015-06-19 2016-08-20 Открытое акционерное общество "Корпорация космических систем специального назначения "Комета" Радиолокационный уголковый отражатель
CN106443606A (zh) * 2016-11-01 2017-02-22 首都师范大学 地表形变监测检校平台
CN109209507A (zh) * 2018-11-13 2019-01-15 安徽理工大学 一种基于北斗卫星的矿区安全状态监控及数据处理方法
CN110531356A (zh) * 2019-09-25 2019-12-03 武汉大学 一种支持升降轨雷达卫星的组装式金属二面角反射器
CN111624637A (zh) * 2020-06-05 2020-09-04 武汉大学 用于雷达卫星和gnss卫星的高精度定标定位装置
CN212364597U (zh) * 2020-06-05 2021-01-15 武汉大学 用于雷达卫星和gnss卫星的高精度定标定位装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2535661C1 (ru) * 2013-07-11 2014-12-20 Открытое акционерное общество "Корпорация космических систем специального назначения "Комета" Способ калибровки радиолокационной станции по миниспутнику с эталонным значением эффективной поверхности рассеяния
RU2594667C1 (ru) * 2015-06-19 2016-08-20 Открытое акционерное общество "Корпорация космических систем специального назначения "Комета" Радиолокационный уголковый отражатель
CN106443606A (zh) * 2016-11-01 2017-02-22 首都师范大学 地表形变监测检校平台
CN109209507A (zh) * 2018-11-13 2019-01-15 安徽理工大学 一种基于北斗卫星的矿区安全状态监控及数据处理方法
CN110531356A (zh) * 2019-09-25 2019-12-03 武汉大学 一种支持升降轨雷达卫星的组装式金属二面角反射器
CN111624637A (zh) * 2020-06-05 2020-09-04 武汉大学 用于雷达卫星和gnss卫星的高精度定标定位装置
CN212364597U (zh) * 2020-06-05 2021-01-15 武汉大学 用于雷达卫星和gnss卫星的高精度定标定位装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG MEI: "Investigations on Millimeter-Wave Reflectarray and Lens Antennas", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 June 2016 (2016-06-01), pages 1 - 139, XP009527283 *
ZHAO JUNJUAN: "RCS Analysis of Artificial Corner Reflectors in Tectonic Deformation Monitoring", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 April 2012 (2012-04-01), pages 1 - 99, XP055877053 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115014294A (zh) * 2022-05-18 2022-09-06 河海大学 一种东西向卫星的河道敏捷成像方法
CN115494502A (zh) * 2022-10-10 2022-12-20 武汉大学 一种公路边坡InSAR形变测量方法及装置
CN115494502B (zh) * 2022-10-10 2024-05-14 武汉大学 一种公路边坡InSAR形变测量方法及装置
CN117117465A (zh) * 2023-10-23 2023-11-24 成都智芯雷通微系统技术有限公司 一种雷达天线相控阵及其使用方法
CN117117465B (zh) * 2023-10-23 2024-01-02 成都智芯雷通微系统技术有限公司 一种雷达天线相控阵及其使用方法
CN117665818A (zh) * 2024-02-02 2024-03-08 北京东方至远科技股份有限公司 一种针对合成孔径雷达卫星的平面位置修正方法及系统
CN117665818B (zh) * 2024-02-02 2024-04-12 北京东方至远科技股份有限公司 一种针对合成孔径雷达卫星的平面位置修正方法及系统

Also Published As

Publication number Publication date
DE112021002732T5 (de) 2023-03-16

Similar Documents

Publication Publication Date Title
WO2021244495A1 (zh) 用于雷达卫星和gnss卫星的高精度定标定位装置
Baars et al. The synthesis radio telescope at Westerbork. General lay-out and mechanical aspects
Blacknell et al. Geometric accuracy in airborne SAR images
CN110108984B (zh) 电力巡线激光雷达系统多传感器的空间关系同步方法
CN110531356A (zh) 一种支持升降轨雷达卫星的组装式金属二面角反射器
CN103245935B (zh) 高精度sar有源定标器外校准系统
CN111624637A (zh) 用于雷达卫星和gnss卫星的高精度定标定位装置
CN104048620B (zh) 一种射电望远镜天线面形绝对定标装置和方法
CN110133626B (zh) 一种激光测距系统收发光轴平行性检校方法及系统
CN105607650A (zh) 一种指向性天线的角度标校装置及方法
CN212364597U (zh) 用于雷达卫星和gnss卫星的高精度定标定位装置
CN102866393A (zh) 一种基于pos与dem数据的sar多普勒参数估计方法
CN109579876A (zh) 一种陆态动基座下的高动态多目标方位角校准方法
CN103926548A (zh) 一种快速测量射电望远镜反射面精度的方法
CN111190204A (zh) 基于北斗双天线和激光测距仪的实时定位装置及定位方法
CN212723311U (zh) 一种用于CR-InSAR的三角锥形角反射装置
CN212723318U (zh) 一种用于CR-InSAR角反射器的角度测量装置
Muth et al. A sun-tracking method to improve the pointing accuracy of weather radar
CN103185566A (zh) 一种反射面天线波束指向的测试装置及其测试方法
CN210803712U (zh) 一种支持升降轨雷达卫星的组装式金属二面角反射器
Guan et al. A method for rapid measurement of the deformation and spatial attitude of large radar antennas inside radomes
Leon-Huerta et al. Alignment of a large outdoor antenna surface using a laser tracker
Saeed et al. Design, deployment, and localization of bidirectional corner reflectors for TerraSAR-X
Linnes et al. Ground antenna for space communication system
Johnston et al. The 2002 Mount Pleasant (Hobart) radio telescope local tie survey

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21816775

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21816775

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21816775

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21816775

Country of ref document: EP

Kind code of ref document: A1