WO2021244478A1 - 永磁电机转子及永磁电机 - Google Patents

永磁电机转子及永磁电机 Download PDF

Info

Publication number
WO2021244478A1
WO2021244478A1 PCT/CN2021/097305 CN2021097305W WO2021244478A1 WO 2021244478 A1 WO2021244478 A1 WO 2021244478A1 CN 2021097305 W CN2021097305 W CN 2021097305W WO 2021244478 A1 WO2021244478 A1 WO 2021244478A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
magnetic steel
shaped
magnet motor
Prior art date
Application number
PCT/CN2021/097305
Other languages
English (en)
French (fr)
Inventor
周文
薛勇
喻皓
王配
刘福雷
赖剑斌
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Publication of WO2021244478A1 publication Critical patent/WO2021244478A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures

Definitions

  • This application relates to the technical field of new energy vehicles, in particular to a permanent magnet motor rotor and a permanent magnet motor.
  • the rotor structure of the drive motor generally adopts a rotor structure with a single "V"-shaped magnetic steel arrangement.
  • the rotor structure with a single V-shaped magnetic steel arrangement includes 2 magnets arranged in a "V" shape under each magnetic pole.
  • the current rotor structure with a single V-shaped magnetic steel arrangement has the following problems :
  • the current rotor structure with a single "V"-shaped magnetic steel arrangement has the problem of large motor iron loss and low efficiency of driving the motor.
  • the embodiment of the present application provides a permanent magnet motor rotor, including: a rotor iron core, a V-shaped magnetic steel channel uniformly arranged on the rotor iron core, and a magnetic steel assembled on the V-shaped magnetic steel channel;
  • the rotor core is provided with magnetic bridge protrusions, and the magnetic bridge protrusions are arranged on the outside of the V-shaped magnetic steel groove near the rotor q axis.
  • the V-shaped magnetic steel channel includes a first V-shaped magnetic steel channel and a second V-shaped magnetic steel channel; the first distance from the first V-shaped magnetic steel channel to the edge of the rotor core is greater than The second distance from the second V-shaped magnetic steel groove to the edge of the rotor core.
  • the included angle of the first V-shaped magnetic steel groove ranges from 82° to 125°.
  • the included angle of the second V-shaped magnetic steel groove ranges from 140° to 160°.
  • the magnetic bridge protrusions are arc-shaped protrusions.
  • the rotor core is provided with a first circular arc recess extending from one end of the magnetic bridge protrusion and a second circular arc recess extending from the other end of the magnetic bridge protrusion.
  • the angle between the line connecting the center of the arc-shaped protrusion and the center of the rotor core and the d-axis of the rotor is in the range of 15°-17°.
  • the diameter range of the arc-shaped protrusion is 1/3-4/5 of the length of the air gap contour line of the V-shaped magnetic steel groove facing the air gap side.
  • the area of the arc-shaped protrusion occupies 2/3-1/5 of the area of the circle.
  • the permanent magnet motor rotor disclosed in the present application includes a rotor iron core, a V-shaped magnetic steel channel uniformly arranged on the rotor iron core, and a magnetic steel assembled on the V-shaped magnetic steel channel.
  • the magnetic bridge protrusions are arranged on the outside of the V-shaped magnetic steel groove near the rotor q axis to optimize the shape of the magnetic bridge, thereby optimizing the magnetic circuit of the motor and reducing various operating conditions
  • the iron loss thereby greatly improving the motor drive efficiency and motor speed, to meet the drive needs of new energy vehicles.
  • the embodiment of the application provides a permanent magnet motor, including a permanent magnet motor stator and a permanent magnet motor rotor;
  • the permanent magnet motor rotor includes a rotor iron core, V-shaped magnetic steel slots uniformly arranged on the rotor iron core, and The magnetic steel assembled on the V-shaped magnetic steel groove;
  • the rotor core is provided with magnetic bridge protrusions, and the magnetic bridge protrusions are arranged on the outside of the V-shaped magnetic steel groove near the q axis of the rotor .
  • the V-shaped magnetic steel channel includes a first V-shaped magnetic steel channel and a second V-shaped magnetic steel channel; the first distance from the first V-shaped magnetic steel channel to the edge of the rotor core is greater than The second distance from the second V-shaped magnetic steel groove to the edge of the rotor core.
  • the included angle of the first V-shaped magnetic steel groove ranges from 82° to 125°.
  • the included angle of the second V-shaped magnetic steel groove ranges from 140° to 160°.
  • the magnetic bridge protrusions are arc-shaped protrusions.
  • the rotor core is provided with a first circular arc recess extending from one end of the magnetic bridge protrusion and a second circular arc recess extending from the other end of the magnetic bridge protrusion.
  • the angle between the line connecting the center of the arc-shaped protrusion and the center of the rotor core and the d-axis of the rotor is in the range of 15°-17°.
  • the diameter range of the arc-shaped protrusion is 1/3-4/5 of the length of the air gap contour line of the V-shaped magnetic steel groove facing the air gap side.
  • the area of the arc-shaped protrusion occupies 2/3-1/5 of the area of the circle.
  • the permanent magnet motor disclosed in the present application includes a permanent magnet motor stator and the above-mentioned permanent magnet motor rotor.
  • the iron loss, torque fluctuation and motor noise of the permanent magnet motor under various working conditions can be effectively reduced, and the motor performance is improved, thereby It can meet the trend of high-speed drive motors for new energy vehicles.
  • Fig. 1 is a schematic diagram of a permanent magnet motor rotor in an embodiment of the present application
  • Fig. 2 is another schematic diagram of a permanent magnet motor rotor in an embodiment of the present application
  • Rotor core 1. Rotor q axis; 12. Rotor d axis; 2. Magnetic bridge protrusion; 21. The first arc recessed position; 22. The second arc recessed position; 23. Vertical short sideline; 31 , The first V-shaped magnetic steel channel; 32, the second V-shaped magnetic steel channel; A, the center of the rotor core; a, the center standard line; 41, the first magnetic steel; 42, the second magnetic steel; 5. air gap outline.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the present application provides a permanent magnet motor rotor.
  • the permanent magnet motor rotor includes a rotor core 1, a V-shaped magnetic steel groove uniformly arranged on the rotor core 1, and a V-shaped magnetic steel The magnetic steel on the groove; the rotor core 1 is provided with a magnetic bridge protrusion 2 which is arranged on the outside of the V-shaped magnetic steel groove near the rotor q axis 11.
  • the figure shows a specific schematic diagram of one magnetic pole in the rotor of the permanent magnet motor in this embodiment.
  • the permanent magnet motor rotor includes at least one magnetic pole, which is evenly distributed on the rotor core 1 along the circumference of the rotor.
  • Each magnetic pole includes a V-shaped magnetic steel groove and a magnet assembled on the V-shaped magnetic steel groove.
  • the rotor iron A magnetic bridge protrusion 2 is provided on the core 1 close to the rotor q-axis 11 to optimize the shape of the magnetic bridge, thereby optimizing the magnetic circuit of the motor and reducing the iron loss under various working conditions.
  • the magnet is a rectangular parallelepiped, and the edges are rounded.
  • the area where the magnet is assembled on the V-shaped magnetic steel channel is matched with the shape of the magnet to assemble the magnet on the V-shaped magnetic steel channel, thereby dispersing the stress and ensuring Die stamping life.
  • the internal magnetic field of the motor is weak, and the magnetic bridge bulge 2 widens the magnetic bridge, weakens the main magnetic field at this time, and then reduces the iron caused by the main magnetic field. damage.
  • the internal magnetic field of the motor is relatively strong. After the optimized shape of the magnetic bridge, the magnetic flux at the magnetic bridge is saturated to limit magnetic leakage, and the main magnetic field and the stator magnetic field can be fully interlinked, so the motor torque can be fully exerted and affected by magnetism. The influence of the bridge bulge 2 is small.
  • the internal magnetic field of the motor includes the main magnetic field and the stator magnetic field; the main magnetic field is the magnetic field generated by the rotor; and the stator magnetic field is the magnetic field generated by the stator.
  • the permanent magnet motor rotor includes a rotor iron core 1, a V-shaped magnetic steel channel uniformly arranged on the rotor iron core 1, and a magnetic steel assembled on the V-shaped magnetic steel channel.
  • the magnetic bridge protrusions 2 are arranged on the outside of the V-shaped magnetic steel groove near the rotor q-axis 11 to optimize the shape of the magnetic bridge, thereby optimizing the magnetic circuit of the motor and reducing
  • the iron loss under various working conditions greatly improves the motor drive efficiency and motor speed, and meets the drive demand of new energy vehicles.
  • the V-shaped magnetic steel channel includes a first V-shaped magnetic steel channel 31 and a second V-shaped magnetic steel channel 32; the first V-shaped magnetic steel channel 31 reaches the edge of the rotor core 1 The first distance is greater than the second distance from the second V-shaped magnetic steel groove 32 to the edge of the rotor core 1.
  • the V-shaped magnetic steel channel includes a first V-shaped magnetic steel channel 31 and a second V-shaped magnetic steel channel 32.
  • the first distance from the first V-shaped magnetic steel channel 31 to the edge of the rotor core 1 is greater than the second The second distance from the V-shaped magnetic steel channel 32 to the edge of the rotor core 1, and the first V-shaped magnetic steel channel 31 is equipped with a first magnet 41, and the second V-shaped magnetic steel channel 32 is equipped with a second magnet 42 ,
  • the double-layer V-shaped rotor structure can effectively reduce the weight of a single piece of magnetic steel, and the multi-layer magnetic steel can stabilize the magnetic field distribution under load, and can effectively enhance the anti-armature reaction ability and Anti-demagnetization ability.
  • the magnetic bridge protrusion 2 can be arranged at a position outside the first V-shaped magnetic steel groove 31 close to the rotor q-axis 11.
  • the double-layer V-shaped rotor structure is combined with the optimized shape of the magnetic bridge to effectively reduce the sinusoidal distortion rate of the magnetic field waveform and the harmonic components of the magnetic field, thereby reducing the iron loss, and at the same time, reducing the sinusoidal distortion of the magnetic field waveform.
  • the rate is to reduce the amplitude of the harmonic magnetic field of the rotor, thereby reducing the radial electromagnetic force of the motor, and then greatly weakening the noise of the motor.
  • the included angle of the first V-shaped magnetic steel groove 31 ranges from 82° to 125°.
  • the included angle range of the first V-shaped magnetic steel groove 31, as shown in FIG. 2, the included angle ⁇ is in the range of 82°-125°, so as to effectively reduce the sinusoidal distortion rate of the magnetic field waveform, that is, to reduce the rotor harmonics.
  • the amplitude of the magnetic field reduces the radial electromagnetic force of the motor, thereby greatly weakening the noise of the motor.
  • the included angle range of the first V-shaped magnetic steel groove 31 is preferably 90° to 118° to enhance the noise reduction effect of the motor.
  • the included angle of the second V-shaped magnetic steel groove 32 ranges from 140° to 160°.
  • the included angle range of the second V-shaped magnetic steel groove 32 as shown in the figure, the included angle ⁇ ranges from 82° to 125°, so as to effectively reduce the sinusoidal distortion rate of the magnetic field waveform, that is, to reduce the harmonic magnetic field of the rotor. Therefore, the radial electromagnetic force of the motor is reduced, and the noise of the motor is greatly weakened.
  • the included angle range of the second V-shaped magnetic steel groove 32 is preferably 90° to 118° to enhance the noise reduction effect of the motor.
  • the magnetic bridge protrusion 2 is a circular arc protrusion.
  • the magnetic bridge protrusion 2 is designed as an arc-shaped protrusion to optimize the shape of the magnetic bridge, reduce torque fluctuations of the motor, increase the resistance of the motor to armature reaction, and reduce the iron loss of the motor under high-speed operating conditions. Significantly improve motor efficiency.
  • the transition step stress can be effectively reduced, and the stamping life of the die can be ensured at the same time.
  • the rotor core 1 is provided with a first circular arc recess 21 extending from one end of the magnetic bridge protrusion 2 and the other end of the magnetic bridge protrusion 2 The extended second circular arc recess 22.
  • the optimized magnetic bridge shape further includes a first circular arc recess 21 extending from one end of the circular arc protrusion and a second circular arc recess extending from the other end of the magnetic bridge protrusion 2. 22.
  • the motor magnetic circuit can be optimized, the torque fluctuation of the motor can be reduced, and the radial electromagnetic force can be reduced, thereby greatly weakening the noise of the motor.
  • first circular arc recess 21 is connected with the rounded corner of the V-shaped magnetic steel groove
  • magnetic bridge protrusion 2 is respectively connected with the first circular arc recess 21 and the second circular arc recess 22 through a circular arc transition. Effectively disperse the stress while ensuring the stamping life of the die.
  • the angle between the line connecting the center of the arc-shaped protrusion and the center A of the rotor core and the d-axis 12 of the rotor is in the range of 15°-17°.
  • connection between the center of the arc-shaped protrusion and the center A of the rotor core (assumed to be point A in the figure) is taken as the center standard line a (shown by the dashed line a in the figure) and the axis 12 of the rotor d
  • the angle range ⁇ is between 15°-17° to optimize the motor magnetic circuit, which can effectively increase the motor torque, reduce torque fluctuations, reduce the radial electromagnetic force, weaken the noise of the motor, and optimize the performance of the motor.
  • the angle range between the connecting line of the arc-shaped convex center and the center A of the rotor core and the rotor d-axis 12 is preferably 16°, so as to better realize the improvement of the motor torque, the reduction of torque fluctuations, and the reduction of The radial electromagnetic force weakens the technical effect of the motor's noise.
  • the diameter range of the arc-shaped protrusion is 1/3-4/5 of the length of the air gap contour line 5 of the V-shaped magnetic steel groove facing the air gap side.
  • the air gap contour line 5 specifically refers to a side contour line of the V-shaped magnetic steel groove facing the air gap side.
  • the first V-shaped magnetic steel groove 31 as shown in FIG. 2 faces the side of the air gap side.
  • the air gap side specifically refers to the part outside the rotor core 1 in the figure where the opening of the V-shaped magnetic steel channel faces.
  • the diameter range of the circle corresponding to the arc-shaped protrusion is 1/3-4/5 of the length of the air gap contour line 5 of the V-shaped magnetic steel groove facing the air gap side, in order to optimize the motor magnetic circuit, which can effectively increase Motor torque, reduce motor torque fluctuations, and at the same time reduce the radial electromagnetic force, thereby weakening the noise of the motor.
  • the diameter range of the arc-shaped protrusion is preferably 2/5-4/5 of the length of the V-shaped magnetic steel groove facing the air gap contour line 5, so as to better realize the improvement of the motor torque, the reduction of torque fluctuations, and the reduction of The radial electromagnetic force weakens the technical effect of the motor's noise.
  • the area of the arc-shaped protrusion occupies 2/3-1/5 of the area of the circle.
  • the area of the arc-shaped protrusion occupies 2/3-1/5 of the area of the corresponding circle to optimize the motor magnetic circuit, which can effectively increase the motor torque, reduce the motor torque fluctuation, and reduce the diameter. To electromagnetic force, and then weaken the noise of the motor.
  • the area of the circle corresponding to the arc-shaped protrusion is ⁇ r 2
  • r is the radius of the circle corresponding to the arc-shaped protrusion, that is, 1/2 of the diameter of the circle corresponding to the arc-shaped protrusion.
  • the area of the arc-shaped protrusion is preferably 1/2-1/5 of the area of the corresponding circle, so as to better realize the increase of the motor torque, the reduction of the motor torque fluctuation, the reduction of the radial electromagnetic force, and the weakening The technical effect of motor noise.
  • the shape of the magnetic bridge and the V-shaped magnetic steel groove by optimizing the multiple parameter factors of the magnetic bridge protrusion 2 and the V-shaped magnetic steel groove, that is, the area of the magnetic bridge protrusion 2 and the corresponding circle
  • the diameter, center, and the included angle of the V-shaped magnetic steel groove greatly improve the motor's NVH performance, motor power, and motor speed, etc., and can effectively solve the existing rotor topology.
  • the optimization parameters are relatively single, and it is difficult to finely optimize the magnetic field according to the design requirements. Road design issues.
  • the present application provides a permanent magnet motor, including a permanent magnet motor stator and the above-mentioned permanent magnet motor rotor.
  • the permanent magnet motor includes a permanent magnet motor stator and the above permanent magnet motor rotor sleeved on the permanent magnet motor stator.
  • the permanent magnet motor has iron loss and torque fluctuations under various operating conditions. The noise of the motor can be effectively reduced, and the performance of the motor is improved, which can meet the trend of high-speed drive motors for new energy vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本申请公开了一种永磁电机转子及永磁电机。该永磁电机转子包括:转子铁芯、均匀设置在所述转子铁芯上的V型磁钢槽以及装配在所述V型磁钢槽上的磁钢;所述转子铁芯上设有磁桥凸起,所述磁桥凸起设置在所述V型磁钢槽外侧靠近转子q轴的位置上,该永磁电机转子通过优化磁桥形状,从而优化电机磁路,降低各个工况下的铁损,从而大幅提升电机驱动效率和电机转速,满足新能源汽车的驱动需求。

Description

永磁电机转子及永磁电机
本申请要求于2020年06月01日提交中国专利局、申请号为202010485619.1,发明名称为“永磁电机转子及永磁电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源汽车技术领域,尤其涉及一种永磁电机转子及永磁电机。
背景技术
随着新能源汽车的发展,新能源汽车对驱动电机的各方面性能(例如驱动电机的效率、转速以及NVH性能)提出了越来越高的要求。
目前,驱动电机转子结构一般采用单一“V”型磁钢布置的转子结构。其中,单一V”型磁钢布置的转子结构中的每一磁极下均包括2块成“V”型设置的磁钢。然而,目前采用单一“V”型磁钢布置的转子结构存在如下问题:
1)单块磁钢重量相对较高,难以解决高转速情况下的转子强度问题;
2)抵抗电枢反应的能力较弱,在深度弱磁工况下,磁场畸变大,谐波含量增多,导致电机铁损增多,降低驱动电机的效率。
申请内容
为解决上述技术问题,目前单一“V”型磁钢布置的转子结构,电机铁损量大,驱动电机的效率低的问题。
本申请实施例提供一种永磁电机转子,包括:转子铁芯、均匀设置在所述转子铁芯上的V型磁钢槽以及装配在所述V型磁钢槽上的磁钢;所述转子铁芯上设有磁桥凸起,所述磁桥凸起设置在所述V型磁钢槽外侧靠近转子q轴的位置上。
优选地,所述V型磁钢槽包括第一V型磁钢槽和第二V型磁钢槽;所述第一V型磁钢槽到所述转子铁芯边缘的第一距离,大于所述第二V型磁钢槽到所述转子铁芯边缘的第二距离。
优选地,所述第一V型磁钢槽的夹角范围为82°-125°。
优选地,所述第二V型磁钢槽的夹角范围为140°-160°。
优选地,所述磁桥凸起为圆弧形凸起。
优选地,所述转子铁芯上设有从所述磁桥凸起的一端延伸出的第一圆弧凹陷位和从所述磁桥凸起的另一端延伸出的第二圆弧凹陷位。
优选地,所述圆弧形凸起的圆心与所述转子铁芯中心的连线与转子d轴的夹角范围在15°-17°。
优选地,所述圆弧形凸起的直径范围为所述V型磁钢槽朝向气隙侧的气隙轮廓线长度的1/3-4/5。
优选地,所述圆弧形凸起的面积占圆面积的2/3-1/5。
本申请公开的永磁电机转子,包括转子铁芯、均匀设置在转子铁芯上的V型磁钢槽以及装配在V型磁钢槽上的磁钢。通过在转子铁芯上设有磁桥凸起,磁桥凸起设置在V型磁钢槽外侧靠近转子q轴的位置上,以优化磁桥形状,从而优化电机磁路,降低各个工况下的铁损,从而大幅提升电机驱动效率和电机转速,满足新能源汽车的驱动需求。
本申请实施例提供一种永磁电机,包括永磁电机定子和永磁电机转子;所述永磁电机转子,包括转子铁芯、均匀设置在所述转子铁芯上的V型磁钢槽以及装配在所述V型磁钢槽上的磁钢;所述转子铁芯上设有磁桥凸起,所述磁桥凸起设置在所述V型磁钢槽外侧靠近转子q轴的位置上。
优选地,所述V型磁钢槽包括第一V型磁钢槽和第二V型磁钢槽;所述第一V型磁钢槽到所述转子铁芯边缘的第一距离,大于所述第二V型磁钢槽到所述转子铁芯边缘的第二距离。
优选地,所述第一V型磁钢槽的夹角范围为82°-125°。
优选地,所述第二V型磁钢槽的夹角范围为140°-160°。
优选地,所述磁桥凸起为圆弧形凸起。
优选地,所述转子铁芯上设有从所述磁桥凸起的一端延伸出的第一圆弧凹陷位和从所述磁桥凸起的另一端延伸出的第二圆弧凹陷位。
优选地,所述圆弧形凸起的圆心与所述转子铁芯中心的连线与转子d轴的夹角范围在15°-17°。
优选地,所述圆弧形凸起的直径范围为所述V型磁钢槽朝向气隙侧的气隙轮廓线长度的1/3-4/5。
优选地,所述圆弧形凸起的面积占圆面积的2/3-1/5。
本申请公开的永磁电机,包括永磁电机定子和上述永磁电机转子,该永磁电机在各工况下的铁损量、扭矩波动且电机噪声均可有效降低,电机性能得到提升,从而可满足新能源汽车驱动电机高速化的趋势。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例中永磁电机转子的一示意图;
图2是本申请一实施例中永磁电机转子的另一示意图;
1、转子铁芯;11、转子q轴;12、转子d轴;2、磁桥凸起;21、第一圆弧凹陷位;22、第二圆弧凹陷位;23、垂直短边线;31、第一V型磁钢槽;32、第二V型磁钢槽;A、转子铁芯中心;a、圆心标准线;41、第一磁钢;42、第二磁钢;5、气隙轮廓线。
具体实施方式
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,需要理解的是,术语“纵向”、“径向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上 述术语在本申请中的具体含义。
本申请提供一种永磁电机转子,如图1所示,该永磁电机转子包括转子铁芯1、均匀设置在所述转子铁芯1上的V型磁钢槽以及装配在V型磁钢槽上的磁钢;转子铁芯1上设有磁桥凸起2,磁桥凸起2设置在V型磁钢槽外侧靠近转子q轴11的位置上。
具体地,图中所示为本实施例中永磁电机转子中的一个磁极的具体示意图。其中,永磁电机转子包括至少一个磁极,且沿转子圆周方向均匀分布在转子铁芯1上,每一个磁极均包括V型磁钢槽以及装配在V型磁钢槽上的磁钢,转子铁芯1上靠近转子q轴11的位置上设置一磁桥凸起2,以优化磁桥形状,从而优化电机磁路,降低各个工况下的铁损。
其中,磁钢为长方体,且棱边为圆角,同时V型磁钢槽装配磁钢的区域与磁钢形状配合,以将磁钢装配在V型磁钢槽上,进而分散应力,同时保证模具冲压寿命。
可以理解地,在高速弱磁工况或者空载工况下,电机内部磁场较弱,磁桥凸起2拓宽了磁桥,减弱了此时的主磁场,进而减小因主磁场引起的铁损。在高扭矩工况下,电机内部磁场较强,优化磁桥形状后的磁桥部位磁通饱和,限制漏磁,且主磁场与定子磁场可充分交链,故电机扭矩可充分发挥而受到磁桥凸起2的影响较小。其中,电机内部磁场包括主磁场和定子磁场;主磁场是由转子产生的磁场;定子磁场是由定子产生的磁场。
本实施例中,该永磁电机转子包括转子铁芯1、均匀设置在转子铁芯1上的V型磁钢槽以及装配在V型磁钢槽上的磁钢。通过在转子铁芯1上设有磁桥凸起2,磁桥凸起2设置在V型磁钢槽外侧靠近转子q轴11的位置上,以优化磁桥形状,从而优化电机磁路,降低各个工况下的铁损,从而大幅提升电机驱动效率和电机转速,满足新能源汽车的驱动需求。
在一实施例中,如图1所示,V型磁钢槽包括第一V型磁钢槽31和第二V型磁钢槽32;第一V型磁钢槽31到转子铁芯1边缘的第一距离,大于第二V型磁钢槽32到转子铁芯1边缘的第二距离。
具体地,该V型磁钢槽包括第一V型磁钢槽31和第二V型磁钢槽32,第一V型磁钢槽31到转子铁芯1边缘的第一距离,大于第二V型磁钢槽32到转子铁芯1边缘的第二距离,且第一V型磁钢槽31上装配有第一磁钢41,第二V型磁钢槽32装配有第二磁钢42,以形成双层V型转子结构,该双层V型转子结构可有效降低单块磁钢重量,并且多层磁钢可在负载情况下稳定磁场分布,同时可有效增强抗电枢反应能力以及抗去磁能力。
需要说明的是,由于第二V型磁钢槽32的设置空间有限,故该磁桥凸起2可设置在第一V型磁钢槽31外侧靠近转子q轴11的位置上。
本实施例中,通过双层V型转子结构结合优化形状后的磁桥,以有效降低磁场波形的正弦性畸变率以及磁场谐波分量,从而降低铁损,同时由于降低磁场波形的正弦性畸变率即降低转子谐波磁场的幅值,从而降低电机的径向电磁力,进而极大的削弱了电机的噪声。
在一实施例中,如图1和图2所示,第一V型磁钢槽31的夹角范围为82°-125°。
具体地,第一V型磁钢槽31的夹角范围,如图2中所示的夹角α的范围为82°-125°,以有效降低磁场波形的正弦性畸变率即降低转子谐波磁场的幅值,从而降低电机的径向电磁力,进而极大的削弱电机的噪声。
本实施例中,为进一步降低电机噪声,该第一V型磁钢槽31的夹角范围优选为90°~118°,以增强电机降噪效果。
在一实施例中,如图1和图2所示,第二V型磁钢槽32的夹角范围为140°-160°。
具体地,第二V型磁钢槽32的夹角范围,如图中所示的夹角β的范围为82°-125°,以有效降低磁场波形的正弦性畸变率即降低转子谐波磁场的幅值,从而降低电机的径向电磁力,进而极大的削弱电机的噪声。
本实施例中,为进一步降低电机噪声,该第二V型磁钢槽32的夹角范围优选为90°~118°,以增强电机降噪效果。
在一实施例中,如图1和图2所示,磁桥凸起2为圆弧形凸起。
本实施例中,通过将磁桥凸起2设计为圆弧形凸起,以优化磁桥形状,减小电机扭矩波动、增加电机抵抗电枢反应能力,降低电机高速工况下的铁损,大幅提升电机效率。
此外,通过将磁桥凸起2设计为圆弧形凸起还可有效减少过渡台阶应力,同时保证模具冲压寿命。
在一实施例中,如图1和图2所示,转子铁芯1上设有从磁桥凸起2的一端延伸出的第一圆弧凹陷位21和从磁桥凸起2的另一端延伸出的第二圆弧凹陷位22。
本实施例中,该优化后的磁桥形状还包括从圆弧形凸起的一端延伸的第一圆弧凹陷位21以及从磁桥凸起2的另一端延伸出的第二圆弧凹陷位22,以通过磁桥凸起2、第一圆弧凹陷位21、第二圆弧凹陷位22以及与第二圆弧凹陷位22相切的垂直短边线23结合形成优化形状后的磁桥,以约束磁桥部分磁力线的走向,从而优化电机磁路,减小电机扭矩波动,同时可减小径向电磁力,进而极大的削弱电机的噪声。
进一步地,第一圆弧凹陷位21与V型磁钢槽倒圆角连接,磁桥凸起2分别与第一圆弧凹陷位21与第二圆弧凹陷位22通过圆弧过渡连接,可有效分散应力,同时保证模具冲压寿命。
在一实施例中,如图1和图2所示,圆弧形凸起的圆心与转子铁芯中心A的连线与转子d轴12的夹角范围在15°-17°。
本实施例中,该圆弧形凸起的圆心与转子铁芯中心A(假设为图中A点)的连线作为圆心标准线a(即图中虚线a所示)与转子d轴12的夹角范围θ在15°-17°之间,以优化电机磁路,可有效提升电机扭矩、降低扭矩波动,减小径向电磁力,削弱电机的噪声,优化电机性能。
更进一步地,该圆弧形凸起的圆心与转子铁芯中心A的连线与转子d轴12的夹角范围优选为16°,以更好的实现提升电机扭矩、降低扭矩波动,减小径向电磁力,削弱电机的噪声的技术效果。
在一实施例中,如图1和图2所示,圆弧形凸起的直径范围为V型磁钢槽朝向气隙侧的气隙轮廓线5的长度的1/3-4/5。
其中,气隙轮廓线5具体指V型磁钢槽朝向气隙侧的一侧面轮廓线,示例性地,如图2所示的第一V型磁钢槽31朝向气隙侧的一侧边的直线长度。气隙侧具体指图中转子铁芯1外,V型磁钢槽的开口朝向的部分。本实施例中,圆弧形凸起对应圆的直径范围为V型磁钢槽朝向气隙侧的气隙轮廓线5长度的1/3-4/5,以优化电机磁路,可有效增加电机扭矩、减小电机扭矩波动,同时可减小径向电磁力,进而削弱电机的噪声。
更进一步地,圆弧形凸起的直径范围优选为V型磁钢槽朝向气隙轮廓线5长度的2/5-4/5,以更好的实现提升电机扭矩、降低扭矩波动,减小径向电磁力,削弱电机的噪声的技术效果。
在一实施例中,如图1和图2所示,圆弧形凸起的面积占圆面积的2/3-1/5。
本实施例中,圆弧形凸起的面积占其对应圆的面积的2/3-1/5,以优化电机磁路,可有效增加电机扭矩、减小电机扭矩波动,同时可减小径向电磁力,进而削弱电机的噪声。其中,圆弧形凸起对应圆的面积为πr 2,r为圆弧形凸起对应圆的半径,即圆弧形凸起对应圆的直径的1/2。
更进一步地,圆弧形凸起的面积优选为占其对应圆面积的1/2-1/5,以更好的实现增加电机扭矩、减小电机扭矩波动,减小径向电磁力,削弱电机的噪声的技术效果。
本实施例中,通过优化磁桥形状以及V型磁钢槽,以通过优化磁桥凸起2以及V型磁钢槽的多个参数因子,即磁桥凸起2的面积、其对应圆的直径、圆心以及V型磁钢槽的夹角,大幅提升电机的NVH性能、电机功率以及电机转速等且可有效解决现有转子拓扑结构中的优化参数较为单一,难以根据设计需求精细地优化磁路设计的问题。
本申请提供一种永磁电机,包括永磁电机定子和如上所述的永磁电机转子。
本实施例中,该永磁电机包括永磁电机定子以及套设在永磁电机定子上的如上所述的永磁电机转子,该永磁电机在各工况下的铁损量、扭矩波动且电机噪声均可有效降低,电机性能得到提升,从而可满足新能源汽车驱动电机高速化的趋势。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种永磁电机转子,其中,包括:转子铁芯、均匀设置在所述转子铁芯上的V型磁钢槽以及装配在所述V型磁钢槽上的磁钢;所述转子铁芯上设有磁桥凸起,所述磁桥凸起设置在所述V型磁钢槽外侧靠近转子q轴的位置上。
  2. 如权利要求1所述的永磁电机转子,其中,所述V型磁钢槽包括第一V型磁钢槽和第二V型磁钢槽;所述第一V型磁钢槽到所述转子铁芯边缘的第一距离,大于所述第二V型磁钢槽到所述转子铁芯边缘的第二距离。
  3. 如权利要求2所述的永磁电机转子,其中,所述第一V型磁钢槽的夹角范围为82°-125°。
  4. 如权利要求2所述的永磁电机转子,其中,所述第二V型磁钢槽的夹角范围为140°-160°。
  5. 如权利要求1所述的永磁电机转子,其中,所述磁桥凸起为圆弧形凸起。
  6. 如权利要求5所述的永磁电机转子,其中,所述转子铁芯上设有从所述磁桥凸起的一端延伸出的第一圆弧凹陷位和从所述磁桥凸起的另一端延伸出的第二圆弧凹陷位。
  7. 如权利要求5所述的永磁电机转子,其中,所述圆弧形凸起的圆心与所述转子铁芯中心的连线与转子d轴的夹角范围在15°-17°。
  8. 如权利要求5所述的永磁电机转子,其中,所述圆弧形凸起的直径范围为所述V型磁钢槽朝向气隙侧的气隙轮廓线长度的1/3-4/5。
  9. 如权利要求5所述的永磁电机转子,其中,所述圆弧形凸起的面积占圆面积的2/3-1/5。
  10. 一种永磁电机,其中,包括永磁电机定子和永磁电机转子;所述永磁电机转子,包括转子铁芯、均匀设置在所述转子铁芯上的V型磁钢槽以及装配在所述V型磁钢槽上的磁钢;所述转子铁芯上设有磁桥凸起,所述磁桥凸起设置在所述V型磁钢槽外侧靠近转子q轴的位置上。
  11. 如权利要求10所述的永磁电机,其中,所述V型磁钢槽包括第一V型磁钢槽和第二V型磁钢槽;所述第一V型磁钢槽到所述转子铁芯边缘的第一距离,大于所述第二V型磁钢槽到所述转子铁芯边缘的第二距离。
  12. 如权利要求11所述的永磁电机,其中,所述第一V型磁钢槽的夹角范围为82°-125°。
  13. 如权利要求11所述的永磁电机,其中,所述第二V型磁钢槽的夹角范围为140°-160°。
  14. 如权利要求10所述的永磁电机,其中,所述磁桥凸起为圆弧形凸起。
  15. 如权利要求14所述的永磁电机,其中,所述转子铁芯上设有从所述磁桥凸起的一端延伸出的第一圆弧凹陷位和从所述磁桥凸起的另一端延伸出的第二圆弧凹陷位。
  16. 如权利要求14所述的永磁电机,其中,所述圆弧形凸起的圆心与所述转子铁芯中心的连线与转子d轴的夹角范围在15°-17°。
  17. 如权利要求14所述的永磁电机,其中,所述圆弧形凸起的直径范围为所述V型磁钢槽朝向气隙侧的气隙轮廓线长度的1/3-4/5。
  18. 如权利要求14所述的永磁电机,其中,所述圆弧形凸起的面积占圆面积的2/3-1/5。
PCT/CN2021/097305 2020-06-01 2021-05-31 永磁电机转子及永磁电机 WO2021244478A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010485619.1A CN113765247A (zh) 2020-06-01 2020-06-01 永磁电机转子及永磁电机
CN202010485619.1 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021244478A1 true WO2021244478A1 (zh) 2021-12-09

Family

ID=78782624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097305 WO2021244478A1 (zh) 2020-06-01 2021-05-31 永磁电机转子及永磁电机

Country Status (2)

Country Link
CN (1) CN113765247A (zh)
WO (1) WO2021244478A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114513070A (zh) * 2022-01-19 2022-05-17 浙江零跑科技股份有限公司 一种新型电机转子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114189077B (zh) * 2021-12-13 2023-04-28 珠海格力电器股份有限公司 电机转子、电机
CN116652027B (zh) * 2023-08-01 2023-09-22 苏州范斯特机械科技有限公司 转子磁桥冲裁的优化方法、转子铁芯生产设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753214A (zh) * 2013-12-30 2015-07-01 现代自动车株式会社 内置式永磁电机的转子
CN208028677U (zh) * 2018-03-29 2018-10-30 广东美芝制冷设备有限公司 转子铁芯、电机、压缩机及制冷设备
US20180358851A1 (en) * 2017-06-12 2018-12-13 Borgwarner Inc. Electric machine with non-symmetrical magnet slots
CN110798039A (zh) * 2019-10-28 2020-02-14 上海大郡动力控制技术有限公司 应用于电动汽车永磁同步电机的双v型电机转子
WO2020057847A1 (de) * 2018-09-18 2020-03-26 Robert Bosch Gmbh Rotor mit eingebetteten magneten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753214A (zh) * 2013-12-30 2015-07-01 现代自动车株式会社 内置式永磁电机的转子
US20180358851A1 (en) * 2017-06-12 2018-12-13 Borgwarner Inc. Electric machine with non-symmetrical magnet slots
CN208028677U (zh) * 2018-03-29 2018-10-30 广东美芝制冷设备有限公司 转子铁芯、电机、压缩机及制冷设备
WO2020057847A1 (de) * 2018-09-18 2020-03-26 Robert Bosch Gmbh Rotor mit eingebetteten magneten
CN110798039A (zh) * 2019-10-28 2020-02-14 上海大郡动力控制技术有限公司 应用于电动汽车永磁同步电机的双v型电机转子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114513070A (zh) * 2022-01-19 2022-05-17 浙江零跑科技股份有限公司 一种新型电机转子
CN114513070B (zh) * 2022-01-19 2024-03-08 浙江零跑科技股份有限公司 一种新型电机转子

Also Published As

Publication number Publication date
CN113765247A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2021244478A1 (zh) 永磁电机转子及永磁电机
US11387695B2 (en) Tangential motor, tangential motor rotor and rotor iron core thereof
CN110798039A (zh) 应用于电动汽车永磁同步电机的双v型电机转子
CN211606216U (zh) 一种转子外表面开有辅助槽的内置式永磁同步电机
CN104882978A (zh) 一种低转矩脉动高效率永磁电机定转子结构
CN210246575U (zh) 电机、压缩机及制冷设备
CN211981603U (zh) 永磁电机转子及永磁电机
US20230283130A1 (en) Motor rotor, permanent magnet motor, and electric vehicle
CN113381542A (zh) 转子冲片、电机转子和永磁同步电机
CN113949184B (zh) 一种转子冲片、转子及其应用的电机
CN114640199B (zh) 一种低谐波高强度的永磁电机转子冲片结构
WO2022116533A1 (zh) 转子和电机
CN213305085U (zh) 一种永磁交流发电机转子冲片
CN112421826A (zh) 转子和永磁电机
CN114069918A (zh) 转子冲片、转子铁芯、转子、电机和车辆
CN217741408U (zh) 一种永磁同步电机转子冲片、转子和电机
CN215378596U (zh) 转子冲片、电机转子和永磁同步电机
CN210246430U (zh) 一种转子冲片及转子铁芯
CN218603254U (zh) 一种电机、转子、转子铁芯及其转子冲片
CN214069687U (zh) 一种永磁同步电机混合式转子磁路结构
CN217956805U (zh) 一种永磁同步电机转子冲片结构
WO2024021887A1 (zh) 转子冲片、转子铁芯、转子、电机和车辆
CN212462913U (zh) 铁芯结构、转子组件、电机及压缩机
CN219801998U (zh) 转子结构和电机
CN114123572B (zh) 一种变磁通永磁电机转子和变磁通永磁电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21818148

Country of ref document: EP

Kind code of ref document: A1