WO2021244282A1 - 一种电子设备 - Google Patents
一种电子设备 Download PDFInfo
- Publication number
- WO2021244282A1 WO2021244282A1 PCT/CN2021/094443 CN2021094443W WO2021244282A1 WO 2021244282 A1 WO2021244282 A1 WO 2021244282A1 CN 2021094443 W CN2021094443 W CN 2021094443W WO 2021244282 A1 WO2021244282 A1 WO 2021244282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radiator
- point
- electronic device
- antenna structure
- ground point
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 230000005484 gravity Effects 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims description 2
- 230000005855 radiation Effects 0.000 abstract description 48
- 238000010586 diagram Methods 0.000 description 26
- 239000003990 capacitor Substances 0.000 description 18
- 238000004088 simulation Methods 0.000 description 11
- 238000004891 communication Methods 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- VTLYHLREPCPDKX-UHFFFAOYSA-N 1,2-dichloro-3-(2,3-dichlorophenyl)benzene Chemical compound ClC1=CC=CC(C=2C(=C(Cl)C=CC=2)Cl)=C1Cl VTLYHLREPCPDKX-UHFFFAOYSA-N 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- -1 copper Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/328—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/335—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/42—Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
Definitions
- This application relates to the field of wireless communication, and in particular to an electronic device.
- the second generation (2G) mobile communication system in the past mainly supported the call function.
- Electronic equipment is only a tool for people to send and receive text messages and voice communication.
- the wireless Internet function uses voice channels due to data transmission. To transmit, the speed is extremely slow.
- the embodiment of the present application provides an electronic device, and the electronic device may include an antenna structure.
- the horizontal mode and the vertical mode generated by the antenna structure can be adjusted. Using these two modes, the antenna radiation performance under the head-hand model can be effectively improved.
- an electronic device including: a first radiator, a feeding unit, a switch, and a matching network; wherein the first radiator is arranged along two adjacent sides of the electronic device; the first The radiator is provided with a feeding point, the feeding point is located in the central area of the first radiator, and the feeding unit is fed at the feeding point; the first radiator is provided with a first connection Location, the first ground point is located between the feeding point and the first end of the first radiator, and the first radiator is grounded at the first ground point; the first radiator A second ground point is provided, the second ground point is located between the feeding point and the second end of the first radiator; one end of the switch is electrically connected to the first radiator at the second ground point Connected, and the other end is electrically connected to the matching network.
- the first radiator is arranged along both sides of the electronic device, and in free space, resonance can be generated by the radiator between the feeding point and the second ground point.
- radiation can be generated through the radiator between the feeding point and the first end, which can reduce the impact of head and hand on the radiation performance of the antenna structure.
- the switch can be used to switch the matching in different matching networks when the antenna structure works in different frequency bands. Specifically, the switch changes the current mode on the first radiator by switching different matches in the matching network, and can change the operating frequency of the antenna structure. At the same time, it can also be used to balance the radiation performance of the antenna structure in free space and the drop in the head-hand model.
- the distance between the feeding point and the second ground point is four times the wavelength corresponding to the resonance point of the resonance generated by the first radiator.
- the radiator between the feeding point and the second ground point can work in a quarter-wavelength mode.
- the frequency band corresponding to the resonance generated by the first radiator covers 698 MHz to 960 MHz.
- the antenna structure when the feeding unit feeds power, the antenna structure can generate the first resonance, and the working frequency band of the corresponding antenna structure can cover 698MHz to 960MHz, which can include B5 (824MHz-849MHz) in the long-term evolution system. , B8 (890MHz-915MHz) and B28 (704MHz-747MHz).
- the length of the first radiator is greater than a quarter of the wavelength corresponding to the resonance point of the resonance and smaller than the wavelength corresponding to the resonance point of the resonance. Half.
- the radiator between the feeding point and the second end of the first radiator can be used to increase the radiation aperture of the antenna structure and increase the radiation efficiency.
- the hand holds the antenna structure to block the bottom seam, which changes the radiation characteristics of the antenna structure.
- the first resonance covering the low frequency band can be generated by the radiator between the feeding point and the second end of the first radiator, which can reduce the influence of head and hands on the radiation performance of the antenna structure and improve the overall radiation performance of the antenna structure.
- the first radiator is a metal frame of the electronic device.
- the antenna structure formed by the first radiator may be a flexible circuit board or a patterned decorative antenna, which may be arranged along any two adjacent sides of the electronic device, and may be arranged at the junction of the two sides.
- the antenna structure may be a metal frame antenna, and the first radiator may be a part of the metal frame of the electronic device.
- the feeding point is disposed in the boundary area of two adjacent sides of the metal frame.
- the antenna structure when the antenna structure works in the longitudinal mode, its maximum radiation direction is parallel to the bottom edge of the electronic device.
- the maximum radiation will be absorbed by the hand under the hand-held model, and the radiation performance loss will be greater.
- the antenna structure works in landscape mode, its maximum radiation direction is perpendicular to the bottom edge of the electronic device.
- the maximum radiation When the user uses a mobile phone, the maximum radiation will not be absorbed by the hand under the hand-held model, and its radiation performance loss is less, which can effectively improve the antenna radiation performance under the head-hand model.
- the ratio of the transverse mode generated by the antenna structure can be adjusted by adjusting the position of the first radiator or the position of the feeding point, and the transverse mode can be used to optimize the antenna radiation performance under the head-hand model and improve the performance of the free space.
- the first radiator is disposed on the sides and bottom of the metal frame of the electronic device, and the first end of the first radiator is disposed on the On the side, the second end of the first radiator is disposed on the bottom side.
- the first radiator can be arranged along two adjacent sides of the electronic device, and the circuit board near the bottom side of the electronic device can be used for the feed unit, switch and matching network in the antenna structure. set up.
- the feeding point is the center of gravity of the first radiator.
- the electrical length between the feed point and the first ground point and the electrical length between the feed point and the second ground point The length is the same.
- the electrical length between the feeding point and the first grounding point can be adjusted by grounding the electronic device at the first grounding point, and the feeding point and the first grounding point can be adjusted by adjusting the matching in the matching network.
- the electrical length between the second ground points can be adjusted by grounding the electronic device at the first grounding point, and the feeding point and the first grounding point can be adjusted by adjusting the matching in the matching network.
- the electronic device further includes: a second radiator; A gap is formed between the radiators.
- the second radiator can be arranged on any side of the first radiator.
- the second radiator can form a gap coupling feed with the first radiator to generate resonance, which can expand the working bandwidth of the antenna structure and improve the performance of free space.
- the second radiator is provided with a third ground point, and the third ground point is provided at the second radiator close to the first radiator One end of the second radiator is grounded at the third ground point.
- the length of the second radiator can be shortened to a quarter of the wavelength corresponding to the resonance point of the second resonance, which can effectively reduce the 2.
- the size of the radiator since the second radiator is grounded at the third grounding point, the length of the second radiator can be shortened to a quarter of the wavelength corresponding to the resonance point of the second resonance, which can effectively reduce the 2.
- the size of the radiator since the second radiator is grounded at the third grounding point, the length of the second radiator can be shortened to a quarter of the wavelength corresponding to the resonance point of the second resonance, which can effectively reduce the 2.
- the size of the radiator since the second radiator is grounded at the third grounding point, the length of the second radiator can be shortened to a quarter of the wavelength corresponding to the resonance point of the second resonance, which can effectively reduce the 2.
- the size of the radiator since the second radiator is grounded at the third grounding point, the length of the second radiator can be shortened to a quarter of the wavelength corresponding to the resonance point of the second resonance, which can effectively reduce the 2.
- Fig. 1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
- FIG. 2 is a schematic diagram of an antenna structure provided by an embodiment of the present application.
- FIG. 3 is a schematic diagram of the radiation performance simulation of the antenna structure shown in FIG. 2.
- FIG. 4 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
- Fig. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- Fig. 6 is a schematic diagram of a matching network provided by an embodiment of the present application.
- Figure 7 is the current distribution diagram of the antenna structure working in the B28 frequency band.
- Figure 8 is the current distribution diagram of the antenna structure working in the B5 frequency band.
- Figure 9 is a current distribution diagram of the antenna structure working in the B8 frequency band.
- FIG. 10 is a simulation schematic diagram of system efficiency and S-parameters under the head-hand model provided by an embodiment of the present application.
- FIG. 11 is a schematic diagram of system efficiency simulation under the head-and-hand model provided by an embodiment of the present application.
- Fig. 12 is a Smith chart under the head-hand model provided by an embodiment of the present application.
- the electronic devices in the embodiments of the present application may be mobile phones, tablet computers, notebook computers, smart bracelets, smart watches, smart helmets, smart glasses, and the like.
- the electronic device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, vehicle-mounted devices, terminal devices in 5G networks, or terminal devices in the public land mobile network (PLMN) that will evolve in the future, etc.
- PLMN public land mobile network
- FIG. 1 is a schematic diagram of an electronic device provided by an embodiment of the present application.
- the electronic device is used as a mobile phone for description.
- the electronic device has a cube-like shape and can include a frame 10 and a display screen 20. Both the frame 10 and the display screen 20 can be installed on the middle frame (not shown in the figure), and the frame 10 can be divided into upper frames.
- the frame, the bottom frame, the left frame, and the right frame are connected to each other, and a certain arc or chamfer can be formed at the joint.
- Electronic equipment also includes a printed circuit board (PCB) installed inside.
- PCB printed circuit board
- Electronic components can be installed on the PCB.
- Electronic components can include capacitors, inductors, resistors, processors, cameras, flashes, microphones, batteries, etc., but not Limited to this.
- the frame 10 may be a metal frame, such as metals such as copper, magnesium alloy, and stainless steel, or a plastic frame, a glass frame, a ceramic frame, etc., or a frame that combines metal and plastic.
- the low-frequency antenna of electronic equipment is one of the main problems in antenna design: how to achieve efficiency in free space with the smallest possible size, how to reduce the impact of head-to-hand models, and how to achieve a wider antenna Bandwidth to meet full frequency band coverage.
- the embodiment of the present application provides a design solution of an antenna structure, and the horizontal mode and the vertical mode generated by the antenna structure can be adjusted through the setting of the feeding point. Using these two modes, the antenna radiation performance under the head-hand model can be effectively improved.
- FIG. 2 is a schematic diagram of an antenna structure provided by an embodiment of the present application, which can be applied to the electronic device shown in FIG. 1.
- the electronic device may include a first radiator 110 and a feeding unit 120.
- the first radiator 110 may be arranged along two adjacent sides of the electronic device.
- the first radiator 110 is provided with a feeding point 111, a first ground point 112 and a second ground point 113 to form the antenna structure 100.
- the feeding point 111 is located in the central area 150 of the first radiator 110, and the feeding unit 120 feeds the antenna structure 100 at the feeding point 111.
- the first ground point 112 is located between the feeding point 111 and the first end 114 of the first radiator 110, and the first radiator 110 is grounded at the first ground point 112.
- the second ground point 113 is located between the feeding point 111 and the second end 115 of the first radiator 110.
- One end of the switch 130 is electrically connected to the first radiator 110 at the second ground point 113, and the other end is electrically connected to the matching network 140.
- the switch 130 may be used to switch the matching in different matching networks 140 corresponding to the antenna structure 100 working in different frequency bands. Specifically, the switch 130 changes the current mode on the first radiator by switching different matches in the matching network, and can change the operating frequency of the antenna structure 100. At the same time, it can also be used to balance the radiation performance of the antenna structure in free space and the drop in the beside head and hand (BHH) mode.
- BHH beside head and hand
- the central area 150 of the first radiator 110 may refer to an area around the geometric center of the first radiator 110.
- the first end 114 of the first radiator 110 may be an end distance of the first radiator 110 from the end point, rather than a point.
- the second end 112 of the first radiator 110 can also be understood as the aforementioned concept.
- the first radiator 110 may be arranged along the side 101 and the bottom 102 of the electronic device.
- the antenna structure 100 may be a flexible printed circuit (FPC) or a mode decoration antenna (MDA), and may be arranged along any two adjacent sides of the electronic device, or may be arranged at the junction of the two sides.
- the antenna structure 100 may be a metal frame antenna, and the first radiator 110 may be a part of the metal frame of the electronic device.
- the embodiment of the present application takes the antenna structure 100 as a metal frame antenna as an example for description, but does not limit the application mode of the antenna structure provided in the embodiment of the present application.
- a side slit 160 may be formed between the first radiator 110 and the side 101 of the frame, and a bottom slit 170 may be formed between the first radiator 110 and the bottom edge 102 of the frame.
- the side seam 160 and the bottom seam 170 can be filled with insulating materials to ensure the strength of the frame structure of the electronic device.
- the second ground point 113 can be located anywhere between the feeding point 111 and the second end 115 of the first radiator 110, and the feeding point 111 and the second connection point can be adjusted by adjusting the matching in the matching network 140.
- the electrical length can refer to the physical length (ie, mechanical length or geometric length) multiplied by the transmission time of the electrical or electromagnetic signal in the medium (time a) and the passage of this signal in free space is the same as the physical length of the medium.
- the distance is expressed as the ratio of the required time (time b).
- the electrical length can also refer to the ratio of the physical length (ie, the mechanical length or the geometric length) to the wavelength of the transmitted electromagnetic wave.
- the antenna structure 100 may generate the first resonance, and the working frequency band of the corresponding antenna structure 100 may cover 698MHz to 960MHz, and may include B5 in the long term evolution (LTE) system. (824MHz-849MHz), B8 (890MHz-915MHz) and B28 (704MHz-747MHz).
- LTE long term evolution
- the distance between the feeding point 111 and the second ground point 113 along the surface of the first radiator 110 may be a quarter of the wavelength corresponding to the resonance point of the first resonance.
- the resonance point of the first resonance generated by the first radiator may refer to the resonance point of the generated resonance, or may also be the center frequency point of the working frequency band.
- the first resonance is generated by the radiator between the feeding point 111 and the second ground point 113, and the switch 130 can be used to switch different matches to change The working frequency band corresponding to the first resonance generated by the antenna structure 100.
- the length of the first radiator 110 may be greater than one quarter of the wavelength corresponding to the resonance point of the first resonance and less than one half of the wavelength corresponding to the resonance point of the first resonance.
- the feeding point may be the center of gravity of the first radiator 110, and the length of the first radiator 110 may be equally divided, that is, the electrical lengths of the first radiator 110 on both sides of the feeding point 111 are the same.
- the same electrical length of the first radiator 110 on both sides of the feed point can be understood as the electrical length between the feed point 111 and the first ground point 112 and the electrical length between the feed point 111 and the second ground point 113 is the same. .
- the radiator between the feeding point 111 and the second end 114 can be used to increase the radiation aperture of the antenna structure 100 and increase the radiation efficiency.
- the hand holds the antenna structure 100 to block the bottom slit 170, which changes the radiation characteristics of the antenna structure 100.
- the first resonance can be generated by the radiator between the feeding point 111 and the second end 114, which can reduce the influence of the head and hand on the radiation performance of the antenna structure 100.
- the antenna structure provided by the embodiment of the present application can change the position of the radiator that generates radiation according to the different situations of the user's hand, thereby reducing the influence of the user's hand on the radiation performance of the antenna structure 100.
- FIG. 3 is a schematic diagram of the radiation performance simulation of the antenna structure shown in FIG. 2.
- the antenna structure can be switched through different matching, thereby changing the working frequency band of the antenna structure.
- the embodiment of the present application only introduces two types of matching, but does not limit the number and form of switch matching.
- the corresponding S-parameters when the switch switches two types of matching radiation efficiency (radiation efficiency) and system efficiency (total efficiency).
- the antenna structure can cover B28 (704MHz-747MHz), B5 (824MHz-849MHz) and B8 (890MHz-915MHz) in the LTE system when switching between different matchings.
- B28 704MHz-747MHz
- B5 824MHz-849MHz
- B8 890MHz-915MHz
- its radiation efficiency and system efficiency can also meet the needs.
- FIG. 4 is a schematic diagram of another antenna structure provided by an embodiment of the present application.
- the electronic device may further include a second radiator 210.
- the second radiator 210 may be disposed on one side of the first radiator 110, and a gap is formed between the second radiator 110 and the first radiator 110.
- the second radiator 210 may also be a metal frame.
- the second radiator 210 can be arranged on the side 101 of the electronic device frame to form a side seam with the first radiator 110, or can be arranged on the bottom 102 of the electronic device frame to form a bottom with the first radiator 110 Sew.
- the embodiment of the present application only assumes that the second radiator 210 is disposed on the bottom side 102 for description, but the position of the second radiator 210 is not limited.
- the second radiator 210 may also be included.
- the second radiator 210 may be provided with a third ground point 201, the third ground point 201 may be provided at an end of the second radiator close to the first radiator, and the second radiator 210 may be located at the third ground point 201. Grounding.
- the second radiator 210 may generate a second resonance. Since the second radiator 210 is grounded at the third ground point 201, the length of the second radiator 210 can be shortened to a quarter of the wavelength corresponding to the resonance point of the second resonance.
- the antenna structure includes the second radiator
- the second radiator is coupled and fed through the first radiator to generate resonance, which can expand the working bandwidth of the antenna structure and improve the performance of free space.
- Fig. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
- the electronic device may further include a battery 30 and a PCB 40.
- the battery 30 may be disposed close to the side 101, and the PCB 40 may be disposed close to the bottom 102.
- a speaker and a universal serial bus may be provided on the PCB 40.
- USB universal serial bus
- the feeding point may be set at the junction area of two adjacent frames, that is, the junction in the frame of the electronic device, which may be a chamfer or a circular arc.
- the feeding unit 120 may be provided on the PCB 40. According to actual design and production needs, the feeding unit 120 may be on the USB side, and the antenna structure 100 may be fed to the antenna structure 100 through the metal line 121 at the feeding point.
- the traditional low-frequency antenna is usually arranged on the side 101 close to the battery 30.
- an additional feeder wire is usually required, which requires a large space.
- the antenna structure 100 provided by the embodiment of the present application can be arranged along two adjacent sides of the electronic device, which is beneficial to realize the electrical connection between the feeding unit and the first radiator, as well as the setting of the switch and the matching network.
- Fig. 6 is a schematic diagram of a matching network provided by an embodiment of the present application.
- the matching network may include a first capacitor 301 and a second capacitor 302, and the switch 130 switches between the first capacitor 301 and the second capacitor 302, so that the antenna structure works in a corresponding frequency band.
- the capacitance value of the first capacitor 301 may be 1.5 pF, and the capacitance value of the second capacitor 302 may be 0.5 pF.
- the working frequency band of the antenna structure can cover B28 (704MHz-747MHz) and B5 (824MHz-849MHz) in the LTE system.
- the working frequency band of the antenna structure can cover B5 (824MHz-849MHz) and B8 (890MHz-915MHz) in the LTE system.
- a third capacitor 303 may be included between the third ground point 201 and the ground, and the capacitance value of the third capacitor 303 may be 1.6 pF.
- a matching network can be added between the feeding unit 120 and the feeding point 111 of the first radiator 110, and the electrical signal in the feeding unit can be matched with the characteristics of the radiator to make the electrical signal Transmission loss and distortion are reduced to a minimum.
- the embodiment of the present application only provides an exemplary matching network, and does not limit the specific form of the matching network.
- the matching network between the feeding unit 120 and the feeding point 111 may include a fourth capacitor 304 and a fifth capacitor 305 connected in series in sequence, and a first inductor 306 may be connected in parallel between the feeding point 111 and the fourth capacitor 304 .
- a switch 310 can be connected in parallel between the fourth capacitor 304 and the fifth capacitor 305, and the switch 310 can switch the second inductor 307 and the third inductor 308.
- the working frequency band of the antenna structure can cover B28 (704MHz-747MHz) and B5 (824MHz-849MHz) in the LTE system.
- the switch 130 is connected to the third inductor 308, the working frequency band of the antenna structure can cover B5 (824MHz-849MHz) and B8 (890MHz-915MHz) in the LTE system.
- the capacitance value of the fourth capacitor 304 may be 2pF
- the capacitance value of the fifth capacitor 305 may be 1.8pF
- the inductance value of the first inductor 306 may be 20nH
- the inductance value of the second inductor 307 may be 12nH.
- the inductance value of the three inductors 308 can be 9nH.
- FIG. 7 to 9 are current distribution diagrams when the power feeding unit of the antenna structure shown in FIG. 4 is fed.
- Figure 7 is the current distribution diagram of the antenna structure working in the B28 frequency band.
- Figure 8 is the current distribution diagram of the antenna structure working in the B5 frequency band.
- Figure 9 is the current distribution diagram of the antenna structure working in the B8 frequency band.
- the horizontal mode and the vertical mode generated by the antenna structure account for more of the horizontal mode.
- the longitudinal mode can be considered as the current perpendicular to the bottom edge of the electronic device.
- the lateral mode can be thought of as the current parallel to the bottom edge of the electronic device.
- the antenna structure works in the longitudinal mode, its maximum radiation direction is parallel to the bottom edge of the electronic device.
- the maximum radiation will be absorbed by the hand under the hand-held model, and the radiation performance loss will be greater.
- the antenna structure works in landscape mode, its maximum radiation direction is perpendicular to the bottom edge of the electronic device.
- the maximum radiation will not be absorbed by the hand under the hand-held model, and its radiation performance loss is less, which can effectively improve the antenna radiation performance under the head-hand model.
- the ratio of the transverse mode generated by the antenna structure can be adjusted by adjusting the position of the first radiator or the position of the feeding point, and the transverse mode can be used to optimize the antenna radiation performance under the head-hand model and improve the performance of the free space.
- FIG. 10 and 11 are schematic diagrams of system efficiency simulation under the head-to-hand model provided by an embodiment of the present application.
- the schematic diagrams of simulation results corresponding to Fig. 10 and Fig. 11 are the simulation schematic diagrams when the working frequency band of the antenna structure covers B5 (824MHz-849MHz) and B8 (890MHz-915MHz) in the low frequency band in the LTE system.
- Figure 10 shows the system efficiency of the antenna structure in free space, the system efficiency under the left head and hand left (BHHL) model, and the right head and hand (beside head and hand) model.
- right, BHHR BHHR
- Figure 11 adds to the system efficiency of Figure 10 when the side seam and bottom seam are blocked separately or at the same time under the head-hand model on the left, and the system efficiency is added under the head-hand model on the right. System efficiency when blocking side seams and bottom seams separately or at the same time.
- the radiation characteristics of the antenna structure are changed.
- the resonance corresponding to the antenna structure covering the LTE system is generated by the radiator between the feed point and the first ground point. This can effectively avoid the substantial decrease in the radiation performance of the antenna structure due to the blocking of the bottom seam.
- the drop rate of the left/right head-hand model is about 3-4dB.
- the system efficiency in free space is about -8dB
- the system efficiency under the left/right head-hand model is about -11dB
- the efficiency of the system blocking the side seams is about -11ddB/-13dB
- the system efficiency of blocking the bottom seam is about -16dB
- the system efficiency of blocking the side seam and bottom seam is about -16dB.
- Fig. 12 is a Smith chart under the head-and-hand model provided by an embodiment of the present application.
- the simulation result diagram corresponding to FIG. 12 is a simulation diagram when the working frequency band of the antenna structure covers B5 (824MHz-849MHz) and B8 (890MHz-915MHz) in the low frequency band in the LTE system.
- the working frequency band of the antenna structure is distributed along the center. Under the head-hand model, it shrinks to the center of the circle chart, and the frequency does not shift. It has good characteristics and meets the actual production needs.
- TRP total radiated power
- the antenna structure provided by the embodiment of the present application can control the ratio of the transverse mode generated by the antenna structure by adjusting the position of the feeding point. As shown in Table 1, under the head-hand model, its maximum radiation will not be absorbed, and its radiation performance loss is less, which can effectively improve the antenna radiation performance under the head-hand model.
- the antenna structure provided in this embodiment of the application blocks the gap between the antenna structure and the frame under the condition of the user's real hand TRP test results.
- the antenna structure provided by the embodiment of the present application can change the position of the radiator that generates radiation according to the different situations of the user's hand, thereby reducing the influence of the user's hand on the radiation performance of the antenna structure. As shown in Table 2, its performance is good.
- the disclosed system, device, and method can be implemented in other ways.
- the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Support Of Aerials (AREA)
- Telephone Set Structure (AREA)
Abstract
本申请实施例提供了一种电子设备,包括:第一辐射体,馈电单元,开关和匹配网络;其中,第一辐射体沿电子设备的相邻两边设置;第一辐射体设置有馈电点,馈电点位于第一辐射体的中心区域,馈电单元在馈电点处馈电;第一辐射体设置有第一接地点,第一接地点位于馈电点与第一辐射体的第一端之间,第一辐射体在第一接地点处接地;第一辐射体设置有第二接地点,第二接地点位于馈电点与第一辐射体的第二端;开关一端在第二接地点与第一辐射体电连接,另一端与匹配网络电连接。本申请实施例通过馈电点的设置,可以调节天线结构所产生的横向模式和纵向模式。利用这两种模式,可以有效地提升头手模型下的天线辐射性能。
Description
本申请要求于2020年6月4日提交中国专利局、申请号为202010498946.0、申请名称为“一种电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及无线通信领域,尤其涉及一种电子设备。
随着无线通信技术的快速发展,过去第二代(second generation,2G)移动通信系统主要支持通话功能,电子设备只是人们用来收发简讯以及语音沟通的工具,无线上网功能由于数据传输利用语音信道来传送,速度极为缓慢。
现今,随着第五代(fifth generation,5G)移动通信系统的到来,天线的数量和频段越来越多,数据传输的速度越来越快。但是,电子设备朝着大屏,多摄像头的方向发展,留给天线的空间越来越少。尤其是对于低频天线而言,由于需要的物理尺寸相对较大,难点随之而来,对天线的设计带来巨大的挑战。
发明内容
本申请实施例提供一种电子设备,电子设备中可以包括一种天线结构。天线结构中通过馈电点的设置,调节天线结构所产生的横向模式和纵向模式。利用这两种模式,可以有效地提升头手模型下的天线辐射性能。
第一方面,提供了一种电子设备,包括:第一辐射体,馈电单元,开关和匹配网络;其中,所述第一辐射体沿所述电子设备的相邻两边设置;所述第一辐射体设置有馈电点,所述馈电点位于所述第一辐射体的中心区域,所述馈电单元在所述馈电点处馈电;所述第一辐射体设置有第一接地点,所述第一接地点位于所述馈电点与所述第一辐射体的第一端之间,所述第一辐射体在所述第一接地点处接地;所述第一辐射体设置有第二接地点,所述第二接地点位于所述馈电点与所述第一辐射体的第二端;所述开关一端在所述第二接地点与所述第一辐射体电连接,另一端与所述匹配网络电连接。
根据本申请实施例的技术方案,第一辐射体沿电子设备的两边设置,在自由空间中,可以通过馈电点与第二接地点之间的辐射体产生谐振。在头手情况下,可以通过馈电点与第一端之间的辐射体产生辐射,可以减少头手对天线结构辐射性能的影响。同时,开关可以用于切换天线结构工作在不同频段时对应的不同匹配网络中的匹配。具体地,开关通过切换匹配网络中不同的匹配,从而更改第一辐射体上的电流模式,可以改变天线结构的工作频率。同时,也可以用来平衡自由空间中天线结构的辐射性能和头手模型下的降幅。
结合第一方面,在第一方面的某些实现方式中,所述馈电点与所述第二接地点之间的距离为所述第一辐射体产生的谐振的谐振点对应的波长的四分之一。
根据本申请实施例的技术方案,馈电点与第二接地点之间的辐射体可以工作在四分之 一波长模式。
结合第一方面,在第一方面的某些实现方式中,所述馈电单元馈电时,所述第一辐射体产生的谐振对应的频段覆盖698MHz至960MHz。
根据本申请实施例的技术方案,馈电单元馈电时,天线结构可以产生第一谐振,对应的天线结构的工作频段可以覆盖698MHz至960MHz,可以包括长期演进系统中的B5(824MHz–849MHz),B8(890MHz–915MHz)和B28(704MHz–747MHz)。
结合第一方面,在第一方面的某些实现方式中,所述第一辐射体的长度大于所述谐振的谐振点对应的波长的四分之一小于所述谐振的谐振点对应的波长的二分之一。
根据本申请实施例的技术方案,馈电点与第一辐射体的第二端之间的辐射体可以用于增加天线结构的辐射口径,增加辐射效率。同时,当天线结构设置于头手模型时,手握住天线结构,堵住底缝,改变了天线结构的辐射特性。覆盖低频段的第一谐振可以由馈电点与第一辐射体的第二端之间的辐射体产生,可以减少头手对天线结构辐射性能的影响,提升天线结构整体的辐射性能。
结合第一方面,在第一方面的某些实现方式中,所述第一辐射体为所述电子设备的金属边框。
根据本申请实施例的技术方案,第一辐射体形成的天线结构可以是柔性电路板或模式装饰天线,可以沿电子设备的任意相邻的两条边设置,可以设置于两边的交界处。或者,天线结构可以是金属边框天线,第一辐射体可以是电子设备的金属边框的一部分。
结合第一方面,在第一方面的某些实现方式中,所述馈电点设置于所述金属边框中相邻两边的交界区域。
根据本申请实施例的技术方案,天线结构工作在纵向模式时,其最大辐射方向平行于电子设备的底边。当用户使用手机时,手握模型下,其最大的辐射会被手吸收,其辐射性能损失较大。天线结构工作在横向模式时,其最大辐射方向垂直于电子设备的底边。当用户使用手机时,手握模型下,其最大的辐射并不会被手吸收,其辐射性能损失较少,可以有效地提升头手模型下的天线辐射性能。可选地,可以通过调整第一辐射体的位置或馈电点的位置,调整天线结构所产生横向模式的比例,可以利用横向模式优化头手模型下的天线辐射性能,提升自由空间的性能。
结合第一方面,在第一方面的某些实现方式中,所述第一辐射体设置于电子设备的金属边框的侧边和底边,所述第一辐射体的第一端设置于所述侧边,所述第一辐射体的第二端设置于所述底边。
根据本申请实施例的技术方案,第一辐射体可以沿电子设备相邻的两条边设置,可以利用电子设备内部靠近底边的电路板进行天线结构中的馈电单元,开关和匹配网络的设置。
结合第一方面,在第一方面的某些实现方式中,所述馈电点为所述第一辐射体的重心。结合第一方面,在第一方面的某些实现方式中,所述馈电点与所述第一接地点之间的电长度和所述馈电点与所述第二接地点之间的电长度相同。
根据本申请实施例的技术方案,可以在第一接地点处通过电子器件接地从而调节馈电点与第一接地点之间的电长度,可以通过调节匹配网络中的匹配调节述馈电点与第二接地点之间的电长度。
结合第一方面,在第一方面的某些实现方式中,所述电子设备还包括:第二辐射体; 所述第二辐射体设置于所述第一辐射体一侧,与所述第一辐射体之间形成缝隙。
根据本申请实施例的技术方案,由于天线结构包括第二辐射体,第二辐射体可以设置于第一辐射体的任意一侧。第二辐射体可以通过与第一辐射体之间形成缝隙耦合馈电从而产生谐振,可以拓展天线结构的工作带宽,并提升自由空间的性能。
结合第一方面,在第一方面的某些实现方式中,所述第二辐射体设置有第三接地点,所述第三接地点设置于所述第二辐射体靠近所述第一辐射体的一端;所述第二辐射体在所述第三接地点处接地。
根据本申请实施例的技术方案,由于第二辐射体在第三接地点接地,第二辐射体的长度可以缩短至第二谐振的谐振点对应的波长的四分之一,可以有效的减少第二辐射体的尺寸。
图1是本申请实施例提供的电子设备的示意图。
图2是本申请实施例提供的一种天线结构示意图。
图3是图2所示的天线结构的辐射性能仿真示意图。
图4是本申请实施例提供的另一种天线结构示意图。
图5是本申请实施例提供的一种电子设备的结构示意图。
图6是本申请实施例提供的一种匹配网络的示意图。
图7为天线结构工作在B28频段的电流分布图。
图8为天线结构工作在B5频段的电流分布图。
图9为天线结构工作在B8频段的电流分布图。
图10是本申请实施例提供的头手模型下的系统效率和S参数的仿真示意图。
图11是本申请实施例提供的头手模型下的系统效率的仿真示意图。
图12是本申请实施例提供的头手模型下的史密斯圆图。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例中的电子设备可以是手机、平板电脑、笔记本电脑、智能手环、智能手表、智能头盔、智能眼镜等。电子设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助手(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
图1是本申请实施例提供的电子设备的示意图,在此,以电子设备为手机进行说明。
如图1所示,电子设备具有类似立方体的形状,可以包括边框10和显示屏20,边框10和显示屏20均可以安装在中框上(图中未示出),边框10可以分为上边框、下边框、左边框、右边框,这些边框相互连接,在连接处可以形成一定的弧度或倒角。
电子设备还包括设置于内部的印刷电路板(printed circuit board,PCB),PCB上可以设置电子元件,电子元件可以包括电容、电感、电阻、处理器、摄像头、闪光灯、麦克风、 电池等,但不限于此。
边框10可以是为金属边框,比如铜、镁合金、不锈钢等金属,也可以是塑胶边框、玻璃边框、陶瓷边框等,也可以是金属与塑料结合的边框。
近年来,移动通信在人们生活中变得越来越重要了,尤其是第五代(five generation,5G)移动通信系统时代到来,对于天线的要求越来高。电子设备内留给天线的体积有限,尤其是对于低频天线而言,由于需要的物理尺寸相对较大,难点随之而来,对天线的设计带来巨大的挑战。
对于5G时代下,电子设备的低频天线是天线设计的主要面临难题之一:如何在尽可能小的尺寸下实现自由空间下的效率,如何减小头手模型的影响,如何实现更宽的天线带宽以满足全频段覆盖。
本申请实施例提供了一种天线结构的设计方案,通过馈电点的设置,可以调节天线结构所产生的横向模式和纵向模式。利用这两种模式,可以有效地提升头手模型下的天线辐射性能。
图2是本申请实施例提供的一种天线结构示意图,可以应用于如图1所示的电子设备中。
如图2所示,电子设备可以包括第一辐射体110和馈电单元120。
其中,第一辐射体110可以沿电子设备的相邻两边设置。第一辐射体110设置有馈电点111,第一接地点112和第二接地点113,以形成天线结构100。馈电点111位于第一辐射体110的中心区域150,馈电单元120在馈电点111处为天线结构100馈电。第一接地点112位于馈电点111与第一辐射体110的第一端114之间,第一辐射体110在第一接地点112处接地。第二接地点113位于馈电点111与第一辐射体110的第二端115之间。开关130一端在第二接地点113与第一辐射体110电连接,另一端与匹配网络140电连接。
开关130可以用于切换天线结构100工作在不同频段时对应的不同匹配网络140中的匹配。具体地,开关130通过切换匹配网络中不同的匹配,从而更改第一辐射体上的电流模式,可以改变天线结构100的工作频率。同时,也可以用来平衡自由空间中天线结构的辐射性能和头手(beside head and hand,BHH)模式下的降幅。
应理解,第一辐射体110的中心区域150可以是指第一辐射体110的几何中心周围的一块区域。同时,第一辐射体110的第一端114可以是第一辐射体110的距离端点的一端距离,并不是一个点。第一辐射体110的第二端112也可以相应理解为上述概念。
可选地,第一辐射体110可以沿电子设备的侧边101和底边102设置。天线结构100可以是柔性电路板(flexible printed circuit,FPC)或模式装饰天线(mode decoration antenna,MDA),可以沿电子设备的任意相邻的两条边设置,可以设置于两边的交界处。或者,天线结构100可以是金属边框天线,第一辐射体110可以是电子设备的金属边框的一部分。本申请实施例以天线结构100为金属边框天线为例进行说明,但并不限制本申请实施例提供的天线结构的应用方式。
可选地,为保证天线结构100的辐射性能,第一辐射体110可以与边框的侧边101之间形成侧缝160,与边框的底边102之间形成底缝170。可以在侧缝160和底缝170处填充绝缘材料,保证电子设备边框结构的强度。
可选地,第二接地点113可以位于馈电点111与第一辐射体110的第二端115之间的任意位置,可以通过调节匹配网络140中的匹配调整馈电点111与第二接地点之间的电长 度。
应理解,电长度可以是指,物理长度(即机械长度或几何长度)乘以电或电磁信号在媒介中的传输时间(时间为a)与这一信号在自由空间中通过跟媒介物理长度一样的距离时所需的时间(时间为b)的比来表示。或者,电长度也可以是指物理长度(即机械长度或几何长度)与所传输电磁波的波长之比。
可选地,馈电单元120馈电时,天线结构100可以产生第一谐振,对应的天线结构100的工作频段可以覆盖698MHz至960MHz,可以包括长期演进(long term evolution,LTE)系统中的B5(824MHz–849MHz),B8(890MHz–915MHz)和B28(704MHz–747MHz)。
可选地,馈电点111与第二接地点113之间沿第一辐射体110表面的距离可以是第一谐振的谐振点对应的波长的四分之一。应理解,第一辐射体产生的第一谐振的谐振点可以是指产生的谐振的谐振点,或者,也可以是工作频段的中心频点。
应理解,当天线结构100设置于自由空间(free space,FS)时,第一谐振由馈电点111与第二接地点113之间的辐射体产生,可以通过开关130切换不同的匹配以改变天线结构100产生的第一谐振对应的工作频段。
可选地,第一辐射体110的长度可以大于第一谐振的谐振点对应的波长的四分之一小于第一谐振的谐振点对应的波长的二分之一。
可选地,馈电点可以为第一辐射体110的重心,可以将第一辐射体110的长度均分,即馈电点111两侧的第一辐射体110的电长度相同。馈电点两侧的第一辐射体110的电长度相同可以理解为馈电点111与第一接地点112之间的电长度和馈电点111与第二接地点113之间的电长度相同。
应理解,馈电点111与第二端114之间的辐射体可以用于增加天线结构100的辐射口径,增加辐射效率。同时,当天线结构100设置于头手模型时,手握住天线结构100,堵住底缝170,改变了天线结构100的辐射特性。第一谐振可以由馈电点111与第二端114之间的辐射体产生,可以减少头手对天线结构100辐射性能的影响。
本申请实施例提供的天线结构,可以根据用户手握的不同情况,改变产生辐射的辐射体的位置,从而减少由于用户手握对天线结构100辐射性能的影响。
图3是图2所示的天线结构的辐射性能仿真示意图。
应理解,天线结构可以通过开关切换不同的匹配,从而改变天线结构的工作频段。为介绍的简洁,本申请实施例仅以两种匹配进行介绍,但并不限制开关切换匹配的数量及形式。
如图3所示,开关切换两种匹配时对应的S参数,辐射效率(radiation efficiency)和系统效率(total efficiency)。其中,如图3中的S1和S2所示,天线结构在切换不同匹配时,可以覆盖LTE系统中的B28(704MHz–747MHz),B5(824MHz–849MHz)和B8(890MHz–915MHz)。同时,对应的工作频段内,其辐射效率和系统效率也可以满足需要。
图4是本申请实施例提供的另一种天线结构示意图。
如图4所示,电子设备还可以包括第二辐射体210。
其中,第二辐射体210可以设置于第一辐射体110一侧,与第一辐射体110之间形成缝隙。
可选地,当第一辐射体110为金属边框时,第二辐射体210也可以是金属边框。第二 辐射体210可以设置于电子设备边框的侧边101,与第一辐射体110之间形成侧缝,也可以设置于电子设备边框的底边102,与第一辐射体110之间形成底缝。为了介绍的简洁,本申请实施例仅以第二辐射体210设置于底边102进行说明,但并不限制第二辐射体210的位置。
可选地,当天线结构为FPC天线时,也可以包括第二辐射体210。
可选地,第二辐射体210可以设置有第三接地点201,第三接地点201可以设置于第二辐射体靠近第一辐射体的一端,第二辐射体210可以在第三接地点201处接地。
可选地,当馈电单元120馈电时,第二辐射体210可以产生第二谐振。由于第二辐射体210在第三接地点201接地,第二辐射体210的长度可以缩短至第二谐振的谐振点对应的波长的四分之一。
应理解,由于天线结构包括第二辐射体,第二辐射体通过第一辐射体耦合馈电从而产生谐振,可以拓展天线结构的工作带宽,并提升自由空间的性能。
图5是本申请实施例提供的一种电子设备的结构示意图。
如图5所示,电子设备还可以包括电池30和PCB40。电池30可以靠近侧边101设置,PCB40可以靠近底边102设置。
可选地,PCB40上可以设置有喇叭和通用串行总线(universal serial bus,USB)。
可选地,馈电点可以设置于相邻两条边框的交界区域,即电子设备的边框中的连接处,可以是倒角或圆弧处。
可选地,馈电单元120可以设置在PCB40。根据实际的设计及生产需要,可以将馈电单元120在USB侧,通过金属线段121在馈电点处为天线结构100馈电。
应理解,传统的低频天线通常会设置在靠近电池30的侧边101上。但由于电池30与侧边101之间并没有设置PCB,因此,通常需要额外的馈电走线,空间需求大。本申请实施例提供的天线结构100可以沿电子设备相邻的两条边设置,有利于实现馈电单元与第一辐射体之间的电连接以及开关和匹配网络的设置。
图6是本申请实施例提供的一种匹配网络的示意图。
如图6所示,匹配网络中可以包括第一电容301和第二电容302,开关130在第一电容301与第二电容302之间进行切换,使天线结构工作在对应的频段中。
可选地,第一电容301的电容值可以是1.5pF,第二电容302的电容值可以是0.5pF。
可选地,当开关130连通第一电容301时,天线结构的工作频段可以覆盖LTE系统中的B28(704MHz–747MHz)和B5(824MHz–849MHz)。当开关130连通第二电容302时,天线结构的工作频段可以覆盖LTE系统中的B5(824MHz–849MHz)和B8(890MHz–915MHz)。
可选地,第三接地点201与地之间还可以包括第三电容303,其电容值可以是1.6pF。
可选地,在馈电单元120与第一辐射体110的馈电点111之间可以增加匹配网络,可以将馈电单元中的电信号与辐射体的特性之间相互匹配,使电信号的传输损耗和失真减少到最小。本申请实施例仅给出了示例性的一种匹配网络,并不限制匹配网络的具体形式。
可选地,馈电单元120与馈电点111之间的匹配网络可以包括依次串联的第四电容304和第五电容305,馈电点111与第四电容304之间可以并联第一电感306。由于LTE系统中的低频段较宽,因此,为了保证天线结构良好的辐射特性,可以在第四电容304和第五电容305之间并联开关310,开关310可以切换第二电感307和第三电感308。
可选地,当开关310连通第二电感307时,天线结构的工作频段可以覆盖LTE系统中的B28(704MHz–747MHz)和B5(824MHz–849MHz)。当开关130连通第三电感308时,天线结构的工作频段可以覆盖LTE系统中的B5(824MHz–849MHz)和B8(890MHz–915MHz)。
可选地,第四电容304的电容值可以为2pF,第五电容305的电容值可以为1.8pF,第一电感306的电感值可以为20nH,第二电感307的电感值可以为12nH,第三电感308的电感值可以为9nH。
图7至图9是图4所示的天线结构的馈电单元馈电时的电流分布图。其中,图7为天线结构工作在B28频段的电流分布图。图8为天线结构工作在B5频段的电流分布图。图9为天线结构工作在B8频段的电流分布图。
如图7至图9所示,随着频率由低到高的变化,天线结构所产生的横向模式和纵向模式中,横向模式所占的比例变多。应理解,纵向模式可以认为是其电流垂直于电子设备的底边。横向模式可以认为是其电流平行于电子设备的底边。
天线结构工作在纵向模式时,其最大辐射方向平行于电子设备的底边。当用户使用手机时,手握模型下,其最大的辐射会被手吸收,其辐射性能损失较大。
天线结构工作在横向模式时,其最大辐射方向垂直于电子设备的底边。当用户使用手机时,手握模型下,其最大的辐射并不会被手吸收,其辐射性能损失较少,可以有效地提升头手模型下的天线辐射性能。
可选地,可以通过调整第一辐射体的位置或馈电点的位置,调整天线结构所产生横向模式的比例,可以利用横向模式优化头手模型下的天线辐射性能,提升自由空间的性能。
图10和图11是本申请实施例提供的头手模型下的系统效率的仿真示意图。图10和图11对应的仿真结果示意图是天线结构的工作频段覆盖LTE系统中的低频段中的B5(824MHz–849MHz)和B8(890MHz–915MHz)时的仿真示意图。
应理解,图10中分别示出了天线结构在自由空间中的系统效率,在左侧头手(beside head and hand left,BHHL)模型下的系统效率,和右侧头手(beside head and hand right,BHHR)模型下的系统效率和对应的S参数。图11在图10的系统效率的基础上增加了在左侧头手模型下分别堵住侧缝和底缝或者同时堵住侧缝和底缝时的系统效率,在右侧头手模型下和分别堵住侧缝和底缝或者同时堵住侧缝和底缝时的系统效率。
同时,当头手模型堵住了底缝时,改变了天线结构的辐射特性。天线结构覆盖LTE系统对应的谐振由馈电点与第一接地点之间的辐射体产生。这样可以有效避免由于堵住底缝带来的天线结构的辐射性能的大幅减弱。
如图10所示,在仿真结果中,在头手模型下,左/右侧头手模型降幅约为3-4dB。
如图11所示,在头手模型下,仿真结果中,在自由空间下系统效率约为-8dB,左/右侧头手模型下系统效率约为-11dB,堵住侧缝系统效率约为-11ddB/-13dB,堵住底缝系统效率约为-16dB,同时堵住侧缝和底缝的系统效率约为-16dB。
图12是本申请实施例提供的头手模型下的史密斯(smith)圆图。图12对应的仿真结果示意图是天线结构的工作频段覆盖LTE系统中的低频段中的B5(824MHz–849MHz)和B8(890MHz–915MHz)时的仿真示意图。
如图12所示,自由空间中,天线结构的工作频段沿着中心分布。在头手模型下,其收缩至圆图的中心,频率并没有发生偏移,具有良好的特性,满足实际生产需要。
如下表1所示,为本申请实施例提供的天线结构在头手模型下的辐射总功率(total radiated power,TRP)测试结果。
表1
本申请实施例提供的天线结构,可以通过调节馈电点的位置,从而控制天线结构产生的横向模式的比例。如表1所示,在头手模型下,其最大的辐射并不会被吸收,其辐射性能损失较少,可以有效地提升头手模型下的天线辐射性能。
如下表2所示,为本申请实施例提供的天线结构在用户的真手的情况下将天线结构与边框之间的缝隙堵住的TRP测试结果。
表2
本申请实施例提供的天线结构可以根据用户手握的不同情况,改变产生辐射的辐射体的位置,从而减少由于用户手握对天线结构辐射性能的影响。如表2所示,其性能表现良好。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (11)
- 一种电子设备,其特征在于,包括:第一辐射体,馈电单元,开关和匹配网络;其中,所述第一辐射体沿所述电子设备的相邻两边设置;所述第一辐射体设置有馈电点,所述馈电点位于所述第一辐射体的中心区域,所述馈电单元在所述馈电点处馈电;所述第一辐射体设置有第一接地点,所述第一接地点位于所述馈电点与所述第一辐射体的第一端之间,所述第一辐射体在所述第一接地点处接地;所述第一辐射体设置有第二接地点,所述第二接地点位于所述馈电点与所述第一辐射体的第二端;所述开关一端在所述第二接地点与所述第一辐射体电连接,另一端与所述匹配网络电连接。
- 根据权利要求1所述的电子设备,其特征在于,所述馈电点与所述第二接地点之间的距离为所述第一辐射体产生的谐振的谐振点对应的波长的四分之一。
- 根据权利要求1所述的电子设备,其特征在于,所述馈电单元馈电时,所述第一辐射体产生的谐振对应的频段覆盖698MHz至960MHz。
- 根据权利要求3所述的电子设备,其特征在于,所述第一辐射体的长度大于所述谐振的谐振点对应的波长的四分之一小于所述谐振的谐振点对应的波长的二分之一。
- 根据权利要求1所述的电子设备,其特征在于,所述第一辐射体为所述电子设备的金属边框。
- 根据权利要求5所述的电子设备,其特征在于,所述馈电点设置于所述金属边框中相邻两边的交界区域。
- 根据权利要求5所述的电子设备,其特征在于,所述第一辐射体设置于电子设备的金属边框的侧边和底边,所述第一辐射体的第一端设置于所述侧边,所述第一辐射体的第二端设置于所述底边。
- 根据权利要求1所述的电子设备,其特征在于,所述馈电点为所述第一辐射体的重心。
- 根据权利要求8所述的电子设备,其特征在于,所述馈电点与所述第一接地点之间的电长度和所述馈电点与所述第二接地点之间的电长度相同。
- 根据权利要求1所述的电子设备,其特征在于,所述电子设备还包括:第二辐射体;所述第二辐射体设置于所述第一辐射体一侧,与所述第一辐射体之间形成缝隙。
- 根据权利要求10所述的电子设备,其特征在于,所述第二辐射体设置有第三接地点,所述第三接地点设置于所述第二辐射体靠近所述第一辐射体的一端;所述第二辐射体在所述第三接地点处接地。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21817687.3A EP4148905A4 (en) | 2020-06-04 | 2021-05-18 | ELECTRONIC DEVICE |
US18/007,953 US20230275345A1 (en) | 2020-06-04 | 2021-05-18 | Electronic Device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010498946.0 | 2020-06-04 | ||
CN202010498946.0A CN113764884B (zh) | 2020-06-04 | 2020-06-04 | 一种电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021244282A1 true WO2021244282A1 (zh) | 2021-12-09 |
Family
ID=78783567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/094443 WO2021244282A1 (zh) | 2020-06-04 | 2021-05-18 | 一种电子设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230275345A1 (zh) |
EP (1) | EP4148905A4 (zh) |
CN (3) | CN113764884B (zh) |
WO (1) | WO2021244282A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114122710A (zh) * | 2020-08-28 | 2022-03-01 | 深圳富泰宏精密工业有限公司 | 天线结构及具有该天线结构的电子设备 |
CN114300840B (zh) * | 2022-01-21 | 2024-05-28 | 维沃移动通信有限公司 | 电子设备 |
CN116937115A (zh) * | 2022-04-01 | 2023-10-24 | 荣耀终端有限公司 | 一种终端天线及电子设备 |
CN117293518A (zh) * | 2022-06-16 | 2023-12-26 | Oppo广东移动通信有限公司 | 天线组件及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014203018A1 (en) * | 2013-06-20 | 2014-12-24 | Sony Corporation | Antenna arrangement and device |
CN108270082A (zh) * | 2018-01-19 | 2018-07-10 | 广东欧珀移动通信有限公司 | 天线组件及电子设备 |
CN108461907A (zh) * | 2018-03-23 | 2018-08-28 | 北京小米移动软件有限公司 | 终端设备 |
CN110165373A (zh) * | 2019-05-14 | 2019-08-23 | 华为技术有限公司 | 天线装置及电子设备 |
CN111029749A (zh) * | 2019-12-27 | 2020-04-17 | 维沃移动通信有限公司 | 一种天线组件及电子设备 |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI120427B (fi) * | 2007-08-30 | 2009-10-15 | Pulse Finland Oy | Säädettävä monikaista-antenni |
TWI378599B (en) * | 2009-04-27 | 2012-12-01 | Htc Corp | Multi-loop antenna structure and hand-held electronic device using the same |
FI20096134A0 (fi) * | 2009-11-03 | 2009-11-03 | Pulse Finland Oy | Säädettävä antenni |
TWI505560B (zh) * | 2012-11-14 | 2015-10-21 | Compal Electronics Inc | 多頻天線 |
US9331397B2 (en) * | 2013-03-18 | 2016-05-03 | Apple Inc. | Tunable antenna with slot-based parasitic element |
KR102226173B1 (ko) * | 2014-09-02 | 2021-03-10 | 삼성전자주식회사 | 외부 금속 프레임을 이용한 안테나 및 이를 구비한 전자 장치 |
WO2016101871A1 (en) * | 2014-12-26 | 2016-06-30 | Byd Company Limited | Mobile terminal and antenna of mobile terminal |
KR102306080B1 (ko) * | 2015-08-13 | 2021-09-30 | 삼성전자주식회사 | 안테나 장치 및 안테나 장치를 포함하는 전자 장치 |
TWI599093B (zh) * | 2016-03-11 | 2017-09-11 | 宏碁股份有限公司 | 具有窄接地面淨空區之天線元件的通訊裝置 |
CN105977614B (zh) * | 2016-05-30 | 2020-02-07 | 北京小米移动软件有限公司 | 通信天线、通信天线的控制方法、装置及终端 |
TWI640127B (zh) * | 2016-07-19 | 2018-11-01 | 群邁通訊股份有限公司 | 天線結構及具有該天線結構之無線通訊裝置 |
KR102332117B1 (ko) * | 2016-07-21 | 2021-11-30 | 삼성전자주식회사 | 무선 통신을 위한 안테나 및 이를 포함하는 전자 장치 |
CN108232412B (zh) * | 2016-12-09 | 2020-04-03 | 深圳富泰宏精密工业有限公司 | 天线结构及具有该天线结构的无线通信装置 |
EP3591759B1 (en) * | 2017-03-20 | 2022-08-17 | Huawei Technologies Co., Ltd. | Antenna of mobile terminal and mobile terminal |
WO2019068331A1 (en) * | 2017-10-05 | 2019-04-11 | Huawei Technologies Co., Ltd. | ANTENNA SYSTEM FOR A WIRELESS COMMUNICATION DEVICE |
US11128047B2 (en) * | 2017-11-10 | 2021-09-21 | Huawei Technologies Co., Ltd. | Mobile terminal and antenna of mobile terminal |
JP7000864B2 (ja) * | 2018-01-05 | 2022-02-04 | 富士通株式会社 | アンテナ装置、及び、無線通信装置 |
CN208157633U (zh) * | 2018-04-17 | 2018-11-27 | Oppo广东移动通信有限公司 | 天线组件和电子设备 |
CN110718761B (zh) * | 2018-07-11 | 2021-11-09 | 华为技术有限公司 | 天线装置及移动终端 |
CN208522084U (zh) * | 2018-07-24 | 2019-02-19 | Oppo广东移动通信有限公司 | 天线组件以及电子设备 |
CN109546311A (zh) * | 2018-12-12 | 2019-03-29 | 维沃移动通信有限公司 | 一种天线结构及通信终端 |
CN109659693B (zh) * | 2018-12-12 | 2021-08-24 | 维沃移动通信有限公司 | 一种天线结构及通信终端 |
CN209072551U (zh) * | 2019-01-21 | 2019-07-05 | Oppo广东移动通信有限公司 | 中框组件及电子装置 |
CN111613873B (zh) * | 2019-02-22 | 2022-11-25 | 华为技术有限公司 | 天线装置及电子设备 |
CN109888461A (zh) * | 2019-03-04 | 2019-06-14 | 维沃移动通信有限公司 | 一种天线结构及通信终端 |
CN110165382A (zh) * | 2019-06-19 | 2019-08-23 | Oppo(重庆)智能科技有限公司 | 一种天线组件及其电子设备 |
CN110247162B (zh) * | 2019-06-30 | 2021-03-02 | RealMe重庆移动通信有限公司 | 装饰件及电子设备 |
CN113764885B (zh) * | 2020-06-05 | 2022-12-30 | 华为技术有限公司 | 一种电子设备 |
CN114069223A (zh) * | 2020-07-30 | 2022-02-18 | 深圳富泰宏精密工业有限公司 | 天线结构及具有该天线结构的电子设备 |
CN112821031B (zh) * | 2020-12-29 | 2024-01-02 | Oppo广东移动通信有限公司 | 电子设备 |
CN114696087A (zh) * | 2020-12-30 | 2022-07-01 | 华为技术有限公司 | 一种电子设备 |
CN115084854A (zh) * | 2021-03-16 | 2022-09-20 | 华为技术有限公司 | 天线及通讯设备 |
CN115347371A (zh) * | 2021-05-12 | 2022-11-15 | Oppo广东移动通信有限公司 | 天线组件及电子设备 |
CN114976631B (zh) * | 2021-06-25 | 2023-11-14 | 荣耀终端有限公司 | 一种终端天线及电子设备 |
CN115548638A (zh) * | 2021-06-30 | 2022-12-30 | Oppo广东移动通信有限公司 | 天线模组及电子设备 |
-
2020
- 2020-06-04 CN CN202010498946.0A patent/CN113764884B/zh active Active
- 2020-06-04 CN CN202310775416.XA patent/CN116722341B/zh active Active
- 2020-06-04 CN CN202310772872.9A patent/CN116742318A/zh active Pending
-
2021
- 2021-05-18 US US18/007,953 patent/US20230275345A1/en active Pending
- 2021-05-18 WO PCT/CN2021/094443 patent/WO2021244282A1/zh unknown
- 2021-05-18 EP EP21817687.3A patent/EP4148905A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014203018A1 (en) * | 2013-06-20 | 2014-12-24 | Sony Corporation | Antenna arrangement and device |
CN108270082A (zh) * | 2018-01-19 | 2018-07-10 | 广东欧珀移动通信有限公司 | 天线组件及电子设备 |
CN108461907A (zh) * | 2018-03-23 | 2018-08-28 | 北京小米移动软件有限公司 | 终端设备 |
CN110165373A (zh) * | 2019-05-14 | 2019-08-23 | 华为技术有限公司 | 天线装置及电子设备 |
CN111029749A (zh) * | 2019-12-27 | 2020-04-17 | 维沃移动通信有限公司 | 一种天线组件及电子设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4148905A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4148905A1 (en) | 2023-03-15 |
US20230275345A1 (en) | 2023-08-31 |
CN113764884A (zh) | 2021-12-07 |
EP4148905A4 (en) | 2023-10-25 |
CN116742318A (zh) | 2023-09-12 |
CN116722341A (zh) | 2023-09-08 |
CN113764884B (zh) | 2023-06-27 |
CN116722341B (zh) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021244282A1 (zh) | 一种电子设备 | |
WO2021052158A1 (zh) | 一种天线及终端设备 | |
CN113451741B (zh) | 一种天线及终端设备 | |
CN104022350B (zh) | 具有金属边框的智能机天线 | |
CN203800164U (zh) | 轴承天线及具有轴承天线之摺叠式电子装置 | |
WO2021203942A1 (zh) | 一种电子设备 | |
CN114122712B (zh) | 一种天线结构及电子设备 | |
CN102368575A (zh) | 一种内置二次辐射天线 | |
CN202797257U (zh) | 一种移动通信终端天线装置 | |
CN103904417A (zh) | 移动装置 | |
WO2021213126A1 (zh) | 一种电子设备 | |
CN103327139B (zh) | 电子设备及其构成方法 | |
WO2022012384A1 (zh) | 一种电子设备 | |
WO2017036050A1 (zh) | 一种移动终端的天线装置及移动终端 | |
TW201914093A (zh) | 行動裝置 | |
US12095158B2 (en) | Electronic device | |
CN103929513A (zh) | 一种基于触摸屏天线的手机 | |
CN206471479U (zh) | 一种m型蓝牙耳机天线 | |
CN203367465U (zh) | 一种超宽带的新型lte金属框天线 | |
CN106067599B (zh) | 一种应用于平板电脑的lte全频段天线 | |
WO2019033311A1 (zh) | 终端设备 | |
CN207800901U (zh) | 一种全金属平板耦合式天线 | |
CN106356648A (zh) | 具有与外廓导体形成电容耦合的天线的电子设备 | |
US20230387609A1 (en) | Electronic Device | |
CN109066082A (zh) | 一种天线及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21817687 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021817687 Country of ref document: EP Effective date: 20221206 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |