WO2021244227A1 - 一种高压气体压燃式发动机 - Google Patents

一种高压气体压燃式发动机 Download PDF

Info

Publication number
WO2021244227A1
WO2021244227A1 PCT/CN2021/092671 CN2021092671W WO2021244227A1 WO 2021244227 A1 WO2021244227 A1 WO 2021244227A1 CN 2021092671 W CN2021092671 W CN 2021092671W WO 2021244227 A1 WO2021244227 A1 WO 2021244227A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
compression ignition
combustion chamber
compression
fuel
Prior art date
Application number
PCT/CN2021/092671
Other languages
English (en)
French (fr)
Inventor
涂业初
Original Assignee
涂业初
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010502578.2A external-priority patent/CN111636962A/zh
Priority claimed from CN202021011573.1U external-priority patent/CN212202219U/zh
Application filed by 涂业初 filed Critical 涂业初
Priority to EP21817678.2A priority Critical patent/EP4163478A4/en
Priority to KR1020227046388A priority patent/KR20230017323A/ko
Priority to US18/008,189 priority patent/US12071917B2/en
Priority to JP2022570274A priority patent/JP2023529568A/ja
Priority to GB2217263.9A priority patent/GB2609374A/en
Priority to BR112022024672A priority patent/BR112022024672A2/pt
Publication of WO2021244227A1 publication Critical patent/WO2021244227A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • F02B1/14Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/37Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with temporary storage of recirculated exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/02Engines characterised by precombustion chambers the chamber being periodically isolated from its cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/02Engines characterised by means for increasing operating efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to internal combustion engine technology, in particular to a high-pressure gas compression ignition engine.
  • an electric low-pressure fuel pump draws fuel from a fuel tank and raises the pressure of the fuel to a predetermined low pressure
  • the high-pressure fuel pump raises the pressure of the low-pressure fuel to provide high-pressure fuel
  • the high-pressure fuel is stored in the delivery pipeline, and a plurality of fuel injection valves (injectors) installed on the delivery pipeline inject the fuel into the corresponding combustion chamber in the form of particles.
  • Existing direct injection or in-cylinder injection internal combustion engines use pistons to compress air and fuel mixtures and then use spark plugs for ignition to generate kinetic energy. That is, the existing engines use high compression ratios for ignition, and the air and fuel mixtures may be The ignition is successful when the compression ratio has not reached the maximum. During the compression work, it is affected by the anti-knock performance of the fuel. The general compression ratio is controlled between 8.5 and 9.5. The larger the compression ratio, the combustion of the air and fuel mixture will continue.
  • the compression ratio is a very important structural parameter of the engine. It represents the ratio of the gas volume at the beginning of the piston compression at the bottom dead center to the gas volume at the end of the piston compression at the top dead center. From the perspective of power and economy, the larger the compression ratio, the better; the compression ratio is high, the power is good, and the thermal efficiency is high. The acceleration and maximum speed of the vehicle will be improved accordingly.
  • the compression ratio of the engine cannot be too large due to the constraints of cylinder material properties and fuel combustion knocking. In summary, high compression ratio vehicles have good dynamics and high thermal efficiency, and vehicle acceleration and maximum speed will be correspondingly improved; on the contrary, low compression ratio vehicles have lower engine compression, high fuel consumption, and slow acceleration and weakness of vehicles.
  • the invention aims at the problem that the compression stroke is limited by the anti-knock performance of the fuel, and the compression ratio cannot be designed to be higher than the anti-knock performance of the fuel, and provides an energy recovery that removes the work stroke without being restricted by the anti-knock performance of the fuel , By pressurizing the recovered gas to high-pressure gas, it is used for automatic compression ignition and ignition, reducing fuel consumption, reducing pollutant emissions, and effectively improving compression ratio, thermal efficiency, power and economy of high-pressure gas compression ignition engine.
  • a high-pressure gas compression ignition engine includes a cylinder block, a piston, and a cylinder head.
  • the piston is installed on the cylinder block and sealed by the cylinder head to form a combustion chamber for fuel work.
  • the intake valve connected with the air passage and the exhaust valve connected with the exhaust passage also include:
  • Fuel supply system the fuel in the fuel tank is supplied to the combustion chamber of the cylinder block after being pressurized by the pump body through the fuel channel;
  • a fuel injection device which is arranged in the combustion chamber and is used to inject the fuel into the combustion chamber;
  • a compression ignition ignition system which is connected to the exhaust duct or an external gas source and recovers part of the exhaust gas energy discharged from the power stroke of the combustion chamber or sucks it into an external gas source, compresses it under high pressure, and stores it in a compression ignition gas storage tank,
  • the corresponding cylinder head is provided with a compression gas valve that communicates with the compression ignition gas storage tank through a compression ignition pipeline and injects pre-stored high pressure gas into the combustion chamber and is used to inject fuel into the compression combustion chamber during the power stroke.
  • Components; the external gas source is external air, oxygen, carbon dioxide, hydrogen, nitrogen and other flammable gases.
  • the compression ignition system includes at least one exhaust gas turbine, a compression ignition gas storage tank, and a compression gas valve assembly.
  • the exhaust gas turbine, the compression ignition gas storage tank, and the compression gas valve assembly are connected in series by a pipeline.
  • the exhaust gas turbine is connected to the exhaust passage of the exhaust valve on the cylinder head through a pipeline.
  • the exhaust gas turbine recovers part of the exhaust gas energy discharged from the power stroke of the combustion chamber or sucks in an external gas source and discharges it after being turbocharged.
  • the compression ignition gas storage tank performs a power stroke in the combustion chamber through a pipeline and a compression gas valve assembly, and the compression gas valve assembly opens and provides a high-pressure gas source when the piston starts downward from the top dead center of the cylinder block. Compresses the combustible mixture in the combustion chamber.
  • the compression ignition system includes two exhaust gas turbines, a compression ignition gas storage tank, and a compression gas valve assembly.
  • the two exhaust gas turbines, a compression ignition gas storage tank, and a compression gas valve assembly are connected in series by a pipeline.
  • the cylinder head The exhaust gas turbine on the side is connected to the exhaust passage of the exhaust valve on the cylinder head through a pipeline.
  • the exhaust gas turbine on the cylinder head side recovers part of the exhaust gas energy discharged from the power stroke of the combustion chamber or sucks in an external gas source and increases it by the turbine.
  • the second exhaust gas turbocharger is discharged into a compression ignition gas storage tank.
  • the compression ignition gas storage tank performs a power stroke in the combustion chamber through a pipeline and a compression gas valve assembly, and the piston moves from the cylinder block.
  • the pressure gas valve assembly opens and provides a high-pressure gas source to compress the combustible mixture in the combustion chamber.
  • the compressed gas valve assembly includes a pre-stored gas valve, a pre-stored ram cylinder and a compression ignition ignition gas valve used to pre-store a certain amount of high-pressure gas diverted from the compression-ignition gas storage tank to compress the combustion chamber, and the pre-stored gas valve passes through a pipe
  • the circuit is connected with the compression ignition gas storage tank, the working pressure in the pre-stored ram cylinder is greater than the working pressure of the combustion chamber in the cylinder block, and the high-pressure gas pressure stored in the compression ignition gas storage tank is greater than that in the pre-stored ram cylinder Working air pressure, the compression ignition ignition gas valve is arranged in the pre-stored ram cylinder and by opening the pre-stored ram cylinder, the pre-stored high-pressure gas is injected into the combustion chamber and used to compress the fuel injected in the combustion chamber during the power stroke;
  • the high-pressure gas distributed by the compression ignition gas storage tank to the pre-stored ram cylinder keeps the engine in an idling state,
  • the compression ratio of the compressed gas valve assembly relative to the high-pressure gas supplied from the combustion chamber is not less than 9.5; wherein the compression ratio of the compressed gas valve assembly relative to the combustion chamber is adjusted according to the size of the working chamber of the combustion chamber and different combustion fuels.
  • the compression ratio of high-pressure gas to provide the greatest energy efficiency ratio is not less than 9.5; wherein the compression ratio of the compressed gas valve assembly relative to the combustion chamber is adjusted according to the size of the working chamber of the combustion chamber and different combustion fuels.
  • the exhaust gas turbine is also connected in parallel through a pipeline with a mechanical supercharger or a motor supercharger that is arranged to assist in boosting the compression-ignition gas storage tank to a set value when the air pressure generated by the exhaust gas turbine is insufficient.
  • a mechanical supercharger or a motor supercharger that is arranged to assist in boosting the compression-ignition gas storage tank to a set value when the air pressure generated by the exhaust gas turbine is insufficient.
  • the pipeline between the exhaust gas turbine and the compression ignition gas storage tank is also provided with a first one-way valve for preventing the high pressure gas source in the compression ignition gas storage tank from flowing back to the outlet of the exhaust gas turbine.
  • the pipeline between the compression ignition gas storage tank and the compression gas valve assembly is also provided with a second one-way valve for preventing the high pressure gas source in the compression ignition storage tank from flowing backward.
  • the pipeline between the mechanical supercharger or ⁇ and the electric motor supercharger and the compression ignition gas storage tank is also provided to prevent the high-pressure gas source in the compression ignition gas storage tank from flowing back to the mechanical supercharger or ⁇ And the third one-way valve at the outlet of the electric supercharger.
  • the compression ignition system further includes at least one pulsation reducing device, which sets the length of the pipeline passage from the outlet of the exhaust gas turbine to the compression ignition gas storage tank so that the The gas source pulsation generated by the operation of the exhaust gas turbine is not transmitted to the compression ignition gas storage tank.
  • the exhaust gas turbine, mechanical supercharger or electric motor supercharger is used to recover the energy discharged from the power stroke in the exhaust stroke as much as possible, and through the compression ignition of the gas storage tank and the compressed gas
  • the valve assembly injects the stored high-pressure gas into the power stroke of the combustion chamber to compress the combustible mixture in the combustion chamber; that is, under the condition of lower than the deflagration, after the compression stroke is completed to before the power stroke, the high-pressure gas is used to compress Combine the mixed gas to complete the compression ignition of the mixed gas in the power stroke and drive the piston to do work; in this way, the pre-stored compressed gas in the pre-stored ram cylinder of the compressed gas valve assembly is the exhaust gas with a relatively high air content, and there will be no deflagration and damage to the engine.
  • the engine is not restricted by the anti-knock performance of the fuel during the compression stroke, effectively improving the compression ratio, thermal efficiency, power and economy of the engine, while reducing fuel consumption, reducing pollutant emissions, and effectively achieving energy saving and emission reduction;
  • the compression ignition method is adopted, which is much higher than the fuel utilization rate of about 40% in the existing engine, which effectively improves the combustion efficiency of the engine.
  • the present invention replaces the existing spark plugs, uses ram compression ignition method to ignite, and improves thermal efficiency through high compression ratio. Under any working conditions, such as heavy load, small load Loads can be ignited with a high compression ratio.
  • the ignition method is always ram compression ignition, which will not cause engine damage due to cylinder explosion. It is suitable for the sharing of a variety of grade gasoline and diesel, and the injection method of the mixture adopts electronic injection. It can be used with direct injection, wide applicability, safety and stability, long service life, high work efficiency, more fuel saving, and lower use cost.
  • Fig. 1 is a schematic diagram of the working principle of the first embodiment of the present invention
  • Fig. 2 is a schematic diagram of the working principle of the second embodiment of the present invention.
  • a high-pressure gas compression ignition engine as shown in Figure 1, includes a cylinder block 1, a piston 2 and a cylinder head 3.
  • the piston 2 is installed in the cylinder block 1 and sealed by the cylinder head 3 to form a fuel working Combustion chamber 4, the compression ratio in the combustion chamber 4 is 10-25;
  • the cylinder head 3 is respectively provided with an intake valve 5 communicating with the intake port and an exhaust valve 6 communicating with the exhaust port; the high-pressure gas compression ignition type
  • the engine also includes a fuel supply system 7, a fuel injection device 8, and a compression ignition system 9.
  • the fuel in the fuel tank 70 is supplied to the combustion of the cylinder block 1 through the fuel passage and pressurized by the pump body 71 In the chamber 4; the fuel injection device 8 is arranged on the combustion chamber 4 for injecting the fuel in the fuel tank 70 into the combustion chamber 4; the compression ignition system 9 is connected to the exhaust duct and the combustion chamber 4 is used for power stroke exhaust Part of the exhaust gas energy is recovered and compressed under high pressure and stored in a compression ignition gas storage tank.
  • the corresponding cylinder head 3 is provided with a compression ignition pipeline 10 that communicates with the compression ignition gas storage tank and injects high-pressure gas into the combustion chamber. 4
  • the compressed gas valve assembly 92 used to compress-ignite the fuel injected into the combustion chamber 4 during the internal power stroke.
  • the compression ignition ignition system 9 includes an exhaust gas turbine 90, a compression ignition gas storage tank 91 and a compression gas valve assembly 92.
  • the exhaust gas turbine 90, compression ignition storage tank 91 and a compression gas valve assembly 92 pass through the pipeline Connected in series, the exhaust gas turbine is connected to the exhaust passage of the exhaust valve 6 on the cylinder head 3 through a pipeline.
  • the compression ignition gas storage tank 91 when working, the compression ignition gas storage tank 91 performs a power stroke in the combustion chamber 4 through the pipeline and the gas pressure valve assembly 92, and the piston 2 starts to press the gas valve assembly downward from the top dead center of the cylinder block 1.
  • 92 opens and provides a high-pressure gas source to compress the combustible mixture in the combustion chamber 4.
  • the cylinder compression ratio of the engine in the prior art is controlled between 8.5 and 9.5.
  • the compression gas valve assembly 92 is opposite to the combustion chamber.
  • the compression ratio of the supplied high-pressure gas is far greater than 9.5.
  • the compressed gas valve assembly 92 includes a pre-stored gas valve 920, a pre-stored ram 921 and a compression ignition gas valve used to pre-store a certain amount of high-pressure gas diverted from the compression-ignition gas storage tank 91 to compress the combustion chamber 4 922, the pre-storage gas valve 920 is connected to the compression ignition gas storage tank 91 through a pipeline, the working pressure in the pre-storage ram 921 is greater than the working pressure of the combustion chamber 4 in the cylinder block 1, and the high pressure gas stored in the compression ignition gas storage tank 91 The air pressure is greater than the working air pressure in the pre-stored ram cylinder 921.
  • the compression ignition gas valve 922 is set in the pre-stored ram cylinder 921 and by opening the pre-stored ram cylinder 921, the pre-stored high-pressure gas is injected into the combustion chamber 4 and used in the power stroke.
  • the exhaust gas turbine 90 is also connected in parallel through a pipeline with a mechanical booster that assists in boosting the compression ignition gas storage tank 91 to a set value when the air pressure generated by the exhaust gas turbine 90 is insufficient.
  • the mechanical supercharger 93 can also be replaced by an electric motor supercharger.
  • the pipeline between the exhaust gas turbine 90 and the compression ignition gas storage tank 91 is also provided to prevent the high pressure gas source in the compression ignition gas storage tank 91 from flowing backward.
  • the first check valve 94 to the exhaust gas turbine 90 is provided with a second check valve for preventing the backflow of the high-pressure gas source in the compression ignition gas storage tank 91 on the pipeline between the compression ignition gas storage tank 91 and the compression gas valve assembly 92.
  • the return valve 95 is provided with a third check valve on the pipeline between the supercharger 93 and the compression ignition gas storage tank 91 to prevent the high pressure gas source in the compression ignition storage tank 91 from flowing back to the supercharger 93 96.
  • the compression ignition ignition system includes two exhaust gas turbines 90, a compression ignition gas storage tank 91 and a compression gas valve assembly 92, two exhaust gas turbines 90,
  • the compression ignition gas storage tank 91 and the compression gas valve assembly 92 are connected in series by pipelines.
  • the exhaust gas turbine 90 on the cylinder head 3 side is connected to the exhaust passage of the exhaust valve 6 on the cylinder head 3 through the pipeline.
  • the exhaust gas turbine 90 recovers part of the exhaust gas energy discharged from the power stroke of the combustion chamber, is turbocharged, and then is turbocharged by the second exhaust gas turbine 90' and discharged into the compression ignition gas storage tank 91 for compression ignition storage.
  • the tank 91 passes through the pipeline and the gas pressure valve assembly 92 to perform a power stroke in the combustion chamber.
  • the pressure gas valve assembly 92 opens and provides a high-pressure gas source to compress the combustible in the combustion chamber 4 mixed gas.
  • a first check valve 94' for preventing the backflow of the high-pressure gas source is also provided on the pipeline of the exhaust gas turbine 90 on the side of the cylinder head 3, and the pipeline between the two exhaust gas turbines is also provided to prevent a second exhaust gas turbine.
  • 90'Fourth one-way valve 97 for counterflow.
  • the compression ignition system further includes at least one pulsation reduction device (not shown in the figure), the pulsation reduction device will be from the outlet of the exhaust gas turbine to the compression ignition gas storage tank. It is set so that the gas source pulsation generated by the operation of the exhaust gas turbine will not be transmitted to the compression ignition gas storage tank; of course, the pulsation reduction device can also be a pipeline installed at the outlet of the exhaust gas turbine to the compression ignition gas storage tank A restrictor (not shown in the figure) used in the channel to reduce the area of the pipeline channel.
  • the engine When in use, the engine operates according to four strokes of intake, compression, work, and exhaust.
  • the work stroke When the work stroke is reached, when the piston 2 starts downward from the top dead center of the cylinder block 1, the compression ignition gas storage tank 91 and the engine cylinder The compressed gas valve assembly 92 is opened, and the high-pressure gas source enters the engine cylinder block 1 and compresses the combustible mixture in the combustion chamber 4.
  • the mixture When the mixture is burned, a large amount of heat is released, so that the pressure in the combustion chamber 4 of the cylinder block 1
  • the sudden increase pushes the piston 2 to move downward, and the piston 2 moves to the bottom dead center under the push of the high-pressure gas, causing the crankshaft to rotate and perform work.
  • the exhaust stroke exhausts the exhaust gas generated after the combustible mixture is combusted, completing the entire cycle.
  • the present invention replaces the existing spark plugs, uses ram compression ignition method to ignite, and improves thermal efficiency through a high compression ratio. Under any working conditions, such as large load and small load It can be ignited with a high compression ratio.
  • the ignition method is always ram compression ignition, which will not cause engine damage due to cylinder explosion. It is suitable for the sharing of a variety of grade gasoline and diesel, and the injection method of the mixture adopts electronic injection and direct injection. Spray can be used, wide applicability, safety and stability, long service life, high work efficiency, more fuel-efficient, and lower use cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

一种高压气体压燃式发动机,包括气缸缸体(1)、活塞(2)和缸盖(3),活塞(2)安装于气缸缸体(1)由缸盖(3)封闭密封后形成用于燃料工作的燃烧室(4),缸盖(3)上分别设有进气门(5)和排气门(6);还包括燃料供给系统(7),其燃料箱(70)中的燃料经燃料通道并由泵体(71)加压后供给至气缸缸体(1)的燃烧室(4)内;燃料喷射装置(8),用于将燃料喷射至进气门(5);压燃点火系统(9),其连接于排气道上或外部气源处并将燃烧室(4)做功冲程排掉的部分尾气能量回收或吸入外部气源、并压缩后存储于压燃储气罐(91)中,在缸盖(3)上设有用来压燃燃烧室(4)内喷入燃料的压燃气阀组件(92)。该高压气体压燃式发动机将排掉的气体能量或外部气源增压成高压气体,不受燃料的抗爆震性能限制,用于燃烧室自动压燃点火,降低油耗和减少污染,有效提高压缩比和动力性。

Description

一种高压气体压燃式发动机 【技术领域】
本发明涉及内燃发动机技术,尤其涉及一种高压气体压燃式发动机。
【背景技术】
目前,作为安装在诸如轿车或卡车等车辆上的诸如汽油发动机或柴油发动机的内燃发动机,大多采用直接喷射式或缸内喷射式内燃发动机,在这种内燃发动机中,燃料直接喷射至燃烧室(气缸)中而不是喷射至进气口中。在所述直接喷射式内燃发动机中,当进气门开启时,从相应的进气口将空气吸入燃烧室中,并且,在进气行程期间或在活塞上升以便压缩进气的压缩行程期间,燃料喷射阀(喷射器)直接将燃料喷射至燃烧室中。因而,高压空气和雾状燃料彼此混合,且所得到的燃料~空气混合气被火花塞点燃以在燃烧室中燃烧做功。然后,当排气门开启时,废气经排气口排出。在直接喷射式内燃发动机的燃料系统中,电动低压燃料泵汲取燃料箱中的燃料并将所述燃料的压力升高至既定低压,并且高压燃料泵升高所述低压燃料的压力以提供高压燃料。随后,将高压燃料储存于输送管路中,且安装于所述输送管路上的多个燃料喷射阀(喷射器)以微粒形式将燃料喷射至相应的燃烧室中。
现有的直接喷射式或缸内喷射式内燃发动机,通过活塞压缩空气燃油混合气、再借助火花塞进行点火产生动能,即现有的发动机使用高压缩比来进行点火,空气燃油混合气有可能在压缩比还没达到最大时就点火成功,在压缩做工时受燃料的抗爆震的性能影响,一般的压缩比控制在8.5~9.5之间,压缩比再大,燃烧的空气燃油混合气再继续压缩,气缸工作时就容易产生爆震,进而出现爆缸,损坏整个发动机;因此,发动机在压缩行程时受燃料的抗爆震性能限制,压缩比不能设计高于燃料的抗爆震性能,造成汽车发动机在设计阶段,会根据压缩比设定所用燃油的标号,导致发动机存在动能损失过大的缺陷。
所以,压缩比是发动机的一个非常重要的结构参数,它表示活塞在下止点压缩开始时的气体体积与活塞在上止点压缩终了时的气体体积之比。从动力性和经济性方面来说,压缩比应该越大越好;压缩比高,动力性好、热效率高,车辆加速性、最高车速等会相应提高。但是,受气缸材料性能以及燃料燃烧爆震的制约,发动机的压缩比又不能太大。综上情况,高压缩比车动力性好、热效率高,车辆加速性、最高车速等会相应提高;反之,低压缩比车发动机压缩比较低,油耗大,车辆加速慢、无力。
【发明内容】
本发明针对压缩行程时受燃料的抗爆震性能限制,压缩比不能设计高于燃料的抗爆震性能问题,提供一种将做功行程排掉的能量回收,不受燃料的抗爆震性能限制,通过对回收气体增压至高压气体、用于自动压燃点火,降低油耗、减少污染物的排放量,有效提高压缩比、热效率、动力性和经济性的高压气体压燃式发动机。
本发明解决其技术问题所采用的技术方案是:
一种高压气体压燃式发动机,包括气缸缸体、活塞和缸盖,所述活塞安装于气缸缸体由缸盖封闭密封后形成用于燃料工作的燃烧室,缸盖上分别设有与进气道连通的进气门 和与排气道连通的排气门;还包括:
燃料供给系统,其燃料箱中的燃料经燃料通道并由泵体加压后供给至气缸缸体的燃烧室内;
燃料喷射装置,其设置于所述燃烧室,用于将所述燃料喷射至燃烧室内;
压燃点火系统,其连接于排气道上或外部气源处并将所述燃烧室做功冲程排掉的部分尾气能量回收或吸入外部气源、并高压压缩后存储于压燃储气罐中,对应的缸盖上设有通过压燃管路与所述压燃储气罐连通、并将预存的高压气体喷射入燃烧室内并在做功冲程中用来压燃燃烧室内喷入燃料的压燃气阀组件;所述外部气源为外部空气、氧气、二氧化碳、氢气、氮气等可燃性气体。
进一步地,所述压燃点火系统包括至少一个废气涡轮、压燃储气罐和压燃气阀组件,所述废气涡轮、压燃储气罐和压燃气阀组件通过管路依次串联连接,所述废气涡轮通过管路连接于缸盖上排气门的排气道上,所述废气涡轮将所述燃烧室做功冲程排掉的部分尾气能量回收或吸入外部气源后、经涡轮增压后排入压燃储气罐中,所述压燃储气罐通过管路及压燃气阀组件在燃烧室做功冲程、活塞从气缸缸体上止点开始向下时压燃气阀组件打开并提供高压气源来压燃燃烧室内的可燃混合气。
进一步地,所述压燃点火系统包括两个废气涡轮、压燃储气罐和压燃气阀组件,两个废气涡轮、压燃储气罐和压燃气阀组件通过管路依次串联连接,缸盖侧的废气涡轮通过管路连接于缸盖上排气门的排气道上,缸盖侧的废气涡轮将所述燃烧室做功冲程排掉的部分尾气能量回收或吸入外部气源后、经涡轮增压后,再经过第二个废气涡轮涡轮增压后排入压燃储气罐中,所述压燃储气罐通过管路及压燃气阀组件在燃烧室做功冲程、活塞从气缸缸体上止点开始向下时压燃气阀组件打开并提供高压气源来压燃燃烧室内的可燃混合气。
进一步地,所述压燃气阀组件包括预存气阀、用于预存一定量压燃储气罐分流的高压气体来压燃燃烧室的预存冲压缸和压燃点火气阀,所述预存气阀通过管路与所述压燃储气罐连通,所述预存冲压缸内的工作气压大于气缸缸体内燃烧室的工作气压,所述压燃储气罐内存储的高压气体气压大于预存冲压缸内的工作气压,所述压燃点火气阀设置于所述预存冲压缸内并且通过开启预存冲压缸、将预存的高压气体喷射入燃烧室内并在做功冲程中用来压燃燃烧室内喷入的燃料;所述压燃储气罐分配至所述预存冲压缸的高压气体保持发动机在怠速状态下、所述预存冲压缸也可连续对所述燃烧室压燃点火。
进一步地,所述压燃气阀组件相对燃烧室供给的高压气体的压缩比不小于9.5;其中,根据燃烧室工作腔的大小、以及不同的燃烧燃料来适应调整压燃气阀组件相对燃烧室供给的高压气体的压缩比,以提供最大的能效比。
进一步地,所述废气涡轮还通过管路并联连接有当废气涡轮产生的气压不足时备用设置有对压燃储气罐进行辅助增压至设定值的机械增压器或\和电动机增压器。
进一步地,所述废气涡轮与所述压燃储气罐之间的管路上还设置有用于防止压燃储气罐内高压气源逆流至废气涡轮出口处的第一单向阀。
进一步地,所述压燃储气罐与所述压燃气阀组件之间的管路上还设置有用于防止压燃储气罐内高压气源逆流的第二单向阀。
进一步地,所述机械增压器或\和电动机增压器与所述压燃储气罐之间的管路上 还设置有用于防止压燃储气罐内高压气源逆流至机械增压器或\和电动机增压器出口处的第三单向阀。
进一步地,所述压燃点火系统还包括至少一个脉动减小装置,该脉动减小装置将从所述废气涡轮的出口至所述压燃储气罐的管路通道长度设定为使得因所述废气涡轮运转而发生的气源脉动不会被传递至所述压燃储气罐。
本发明的有益效果是:
与现有技术相比,采用废气涡轮、机械增压器或电动机增压器,将做功冲程在排气行程排掉的能量,尽可能的最大地回收,并通过压燃储气罐和压燃气阀组件将存储的高压气体喷射入燃烧室内做功冲程中,用来压燃燃烧室内的可燃混合气;即在低于爆燃的条件下,在压缩行程完成后到做功冲程前,通过高压气体来压燃混合气体,来完成做功冲程中混合气体的压燃及带动活塞做功;这样,压燃气阀组件的预存冲压缸中预存压缩的是空气含量比较高的废气,不会出现爆燃而导致发动机损坏,使发动机在压缩行程时不受燃料的抗爆震性能限制,有效提高发动机的压缩比、热效率、动力性和经济性,同时降低油耗、减少污染物的排放量,有效的实现节能减排;其中,相比现有的往复活塞式发动机,采用压燃的方式,远高于现有发动机中40%左右的燃料利用率,有效的提高了发动机的燃烧效率。
因此,相较于现有的往复活塞式发动机,本发明采用替换现有的掉火花塞,采用冲压压燃的方式点火,通过高压缩比来提高热效率,在任何工况下,如大负荷、小负荷都可以用高压缩比进行点火,点火方式始终为冲压压燃,不会出现爆缸而导致发动机损坏,适用于多种标号汽油和柴油的共用,且对混合气的喷入方式采用电喷和直喷都可以用,适用性广,安全稳定,使用寿命长,工作效率高,更加省油,降低使用成本。
【附图说明】
图1是本发明实施例一的工作原理示意图;
图2是本发明实施例二的工作原理示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
一种高压气体压燃式发动机,如图1所示,包括气缸缸体1、活塞2和缸盖3,该活塞2安装于气缸缸体1由缸盖3封闭密封后形成用于燃料工作的燃烧室4,燃烧室4内的压缩比10~25;缸盖3上分别设有与进气道连通的进气门5和与排气道连通的排气门6;该高压气体压燃式发动机还包括燃料供给系统7、燃料喷射装置8和压燃点火系统9,燃料供给系统7中将燃料箱70中的燃料经燃料通道并由泵体71加压后供给至气缸缸体1的燃烧室4内;该燃料喷射装置8设置于燃烧室4上用于将燃料箱70中的燃料喷射至燃烧室4内;该压燃点火系统9连接于排气道上并将燃烧室4做功冲程排掉的部分尾气能量回收、并高压压缩后存储于压燃储气罐中,对应的缸盖3上设有通过压燃管路10与压燃储气罐连通、并将高压气体喷射入燃 烧室4内做功冲程中用来压燃燃烧室4内喷入燃料的压燃气阀组件92。
继续如图1所示,该压燃点火系统9包括废气涡轮90、压燃储气罐91和压燃气阀组件92,废气涡轮90、压燃储气罐91和压燃气阀组件92通过管路依次串联连接,废气涡轮通过管路连接于缸盖3上排气门6的排气道上,废气涡轮90将燃烧室4做功冲程排掉的部分尾气能量回收后、经涡轮增压后排入压燃储气罐91中,工作时,压燃储气罐91通过管路及压燃气阀组件92在燃烧室4做功冲程、活塞2从气缸缸体1上止点开始向下时压燃气阀组件92打开并提供高压气源来压燃燃烧室4内的可燃混合气。其中,由于受燃料的抗爆震的性能影响,现有技术中发动机的气缸压缩比控制在8.5~9.5之间,本发明中,由于采用压燃的点火方式,压燃气阀组件92相对燃烧室供给的高压气体的压缩比远大于9.5,当然,实际情况中,需要根据燃烧室工作腔的大小、以及不同的燃烧燃料来适应调整压燃气阀组件相对燃烧室供给的高压气体的压缩比,以提供最大的能效比。
继续如图1所示,该压燃气阀组件92包括预存气阀920、用于预存一定量压燃储气罐91分流的高压气体来压燃燃烧室4的预存冲压缸921和压燃点火气阀922,预存气阀920通过管路与压燃储气罐91连通,预存冲压缸921内的工作气压大于气缸缸体1内燃烧室4的工作气压,压燃储气罐91内存储的高压气体气压大于预存冲压缸921内的工作气压,该压燃点火气阀922设置于预存冲压缸921内并且通过开启预存冲压缸921、将预存的高压气体喷射入燃烧室4内并在做功冲程中用来压燃燃烧室4内喷入的燃料;而且,在工作过程中,该压燃储气罐91分配至预存冲压缸921的高压气体保持发动机在怠速状态下、预存冲压缸921也可连续对燃烧室4压燃点火。
同时,如图1所示,该废气涡轮90还通过管路并联连接有当废气涡轮90产生的气压不足时备用设置有对压燃储气罐91进行辅助增压至设定值的机械增压器93,当然机械增压器93也可以采用电动机增压器替换,在废气涡轮90与压燃储气罐91之间的管路上还设置有用于防止压燃储气罐91内高压气源逆流至废气涡轮90的第一单向阀94,在压燃储气罐91与压燃气阀组件92之间的管路上还设置有用于防止压燃储气罐91内高压气源逆流的第二单向阀95,在机械增压器93与压燃储气罐91之间的管路上还设置有用于防止压燃储气罐91内高压气源逆流至机械增压器93的第三单向阀96。
实施例二
如图2所示,该实施例与实施例一的不同之处在于,该压燃点火系统包括两个废气涡轮90、压燃储气罐91和压燃气阀组件92,两个废气涡轮90、压燃储气罐91和压燃气阀组件92通过管路依次串联连接,缸盖3侧的废气涡轮90通过管路连接于缸盖3上排气门6的排气道上,缸盖3侧的废气涡轮90将燃烧室做功冲程排掉的部分尾气能量回收后、经涡轮增压后,再经过第二个废气涡轮90’涡轮增压后排入压燃储气罐91中,压燃储气罐91通过管路及压燃气阀组件92在燃烧室做功冲程、活塞从气缸缸体1上止点开始向下时压燃气阀组件92打开并提供高压气源来压燃燃烧室4内的可燃混合气。同时,在缸盖3侧废气涡轮90出口的管路上还设置有用于防止高压气源逆流的第一单向阀94’,两个废气涡轮之间的管路上还设有防止第二个废气涡轮90’逆流的第四单向阀97。
另外,以上两个实施例中,压燃点火系统还包括至少一个脉动减小装置(图中未示),该脉动减小装置将从废气涡轮的出口至压燃储气罐的管路通道长度设定为使得因废气涡轮运转而发生的气源脉动不会被传递至压燃储气罐;当然,该脉动减小装置还可为设 置于废气涡轮的出口至压燃储气罐的管路通道中用于减小管路通道面积的节流器(图中未示)。
使用时,发动机按吸气、压缩、做功、排气四个冲程运行,到做功冲程时,当活塞2从气缸缸体1上止点开始向下时,压燃储气罐91和发动机气缸之间的压燃气阀组件92打开,高压气源进入发动机气缸缸体1内并压燃燃烧室4内的可燃混合气,混合气燃烧时放出大量热量,使气缸缸体1燃烧室4内的压力骤增,推动活塞2向下运动,在高压气体推动下活塞2向下止点移动,使曲轴旋转做功。最后排气冲程将可燃混合气燃烧后生成的废气排出,完成整个循环。
相较于现有的往复活塞式发动机,本发明采用替换现有的掉火花塞,采用冲压压燃的方式点火,通过高压缩比来提高热效率,在任何工况下,如大负荷、小负荷都可以用高压缩比进行点火,点火方式始终为冲压压燃,不会出现爆缸而导致发动机损坏,适用于多种标号汽油和柴油的共用,且对混合气的喷入方式采用电喷和直喷都可以用,适用性广,安全稳定,使用寿命长,工作效率高,更加省油,降低使用成本。
以上所述实施例只是为本发明的较佳实施例,并非以此限制本发明的实施范围,凡依本发明之形状、构造及原理所作的等效变化,均应涵盖于本发明的保护范围内。

Claims (10)

  1. 一种高压气体压燃式发动机,包括气缸缸体、活塞和缸盖,所述活塞安装于气缸缸体由缸盖封闭密封后形成用于燃料工作的燃烧室,缸盖上分别设有与进气道连通的进气门和与排气道连通的排气门;其特征在于,还包括:
    燃料供给系统,其燃料箱中的燃料经燃料通道并由泵体加压后供给至气缸缸体的燃烧室内;
    燃料喷射装置,其设置于所述燃烧室,用于将所述燃料喷射至燃烧室内;
    压燃点火系统,其连接于排气道上或外部气源处并将所述燃烧室做功冲程排掉的部分尾气能量回收或吸入外部气源、并高压压缩后存储于压燃储气罐中,对应的缸盖上设有通过压燃管路与所述压燃储气罐连通、并将预存的高压气体喷射入燃烧室内并在做功冲程中用来压燃燃烧室内喷入燃料的压燃气阀组件。
  2. 根据权利要求1所述的一种高压气体压燃式发动机,其特征在于:所述压燃点火系统包括至少一个废气涡轮、压燃储气罐和压燃气阀组件,所述废气涡轮、压燃储气罐和压燃气阀组件通过管路依次串联连接,所述废气涡轮通过管路连接于缸盖上排气门的排气道上,所述废气涡轮将所述燃烧室做功冲程排掉的部分尾气能量回收或吸入外部气源后、经涡轮增压后排入压燃储气罐中,所述压燃储气罐通过管路及压燃气阀组件在燃烧室做功冲程、活塞从气缸缸体上止点开始向下时压燃气阀组件打开并提供高压气源来压燃燃烧室内的可燃混合气。
  3. 根据权利要求1所述的一种高压气体压燃式发动机,其特征在于:所述压燃点火系统包括两个废气涡轮、压燃储气罐和压燃气阀组件,两个废气涡轮、压燃储气罐和压燃气阀组件通过管路依次串联连接,缸盖侧的废气涡轮通过管路连接于缸盖上排气门的排气道上,缸盖侧的废气涡轮将所述燃烧室做功冲程排掉的部分尾气能量回收或吸入外部气源后、经涡轮增压后,再经过第二个废气涡轮涡轮增压后排入压燃储气罐中,所述压燃储气罐通过管路及压燃气阀组件在燃烧室做功冲程、活塞从气缸缸体上止点开始向下时压燃气阀组件打开并提供高压气源来压燃燃烧室内的可燃混合气。
  4. 根据权利要求1至3任意一项权利要求所述的一种高压气体压燃式发动机,其特征在于:所述压燃气阀组件包括预存气阀、用于预存一定量压燃储气罐分流的高压气体来压燃燃烧室的预存冲压缸和压燃点火气阀,所述预存气阀通过管路与所述压燃储气罐连通,所述预存冲压缸内的工作气压大于气缸缸体内燃烧室的工作气压,所述压燃储气罐内存储的高压气体气压大于预存冲压缸内的工作气压,所述压燃点火气阀设置于所述预存冲压缸内并且通过开启预存冲压缸、将预存的高压气体喷射入燃烧室内并在做功冲程中用来压燃燃烧室内喷入的燃料;所述压燃储气罐分配至所述预存冲压缸的高压气体保持发动机在怠速状态下、所述预存冲压缸也可连续对所述燃烧室压燃点火。
  5. 根据权利要求1至3任意一项权利要求所述的一种高压气体压燃式发动机,其特征在于:所述压燃气阀组件相对燃烧室供给的高压气体的压缩比不小于9.5。
  6. 根据权利要求2所述的一种高压气体压燃式发动机,其特征在于:所述废气涡轮还通过管路并联连接有当废气涡轮产生的气压不足时备用设置有对压燃储气罐进行辅助增压至设定值的机械增压器或\和电动机增压器。
  7. 根据权利要求2所述的一种高压气体压燃式发动机,其特征在于:所述废气涡轮与所述压燃储气罐之间的管路上还设置有用于防止压燃储气罐内高压气源逆流至废气涡轮出 口处的第一单向阀。
  8. 根据权利要求1或2所述的一种高压气体压燃式发动机,其特征在于:所述压燃储气罐与所述压燃气阀组件之间的管路上还设置有用于防止压燃储气罐内高压气源逆流的第二单向阀。
  9. 根据权利要求6所述的一种高压气体压燃式发动机,其特征在于:所述机械增压器或\和电动机增压器与所述压燃储气罐之间的管路上还设置有用于防止压燃储气罐内高压气源逆流至机械增压器或\和电动机增压器出口处的第三单向阀。
  10. 根据权利要求2所述的一种高压气体压燃式发动机,其特征在于:所述压燃点火系统还包括至少一个脉动减小装置,该脉动减小装置将从所述废气涡轮的出口至所述压燃储气罐的管路通道长度设定为使得因所述废气涡轮运转而发生的气源脉动不会被传递至所述压燃储气罐。
PCT/CN2021/092671 2020-06-04 2021-05-10 一种高压气体压燃式发动机 WO2021244227A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21817678.2A EP4163478A4 (en) 2020-06-04 2021-05-10 HIGH PRESSURE GAS COMPRESSION IGNITION ENGINE
KR1020227046388A KR20230017323A (ko) 2020-06-04 2021-05-10 고압 가스 압축 연소 엔진
US18/008,189 US12071917B2 (en) 2020-06-04 2021-05-10 High-pressure gas compression-ignition engine
JP2022570274A JP2023529568A (ja) 2020-06-04 2021-05-10 高圧ガス圧縮点火エンジン
GB2217263.9A GB2609374A (en) 2020-06-04 2021-05-10 High-pressure gas compression ignition engine
BR112022024672A BR112022024672A2 (pt) 2020-06-04 2021-05-10 Motor de ignição por compressão de gás de alta pressão

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010502578.2A CN111636962A (zh) 2020-06-04 2020-06-04 一种高压气体压燃式发动机
CN202021011573.1 2020-06-04
CN202010502578.2 2020-06-04
CN202021011573.1U CN212202219U (zh) 2020-06-04 2020-06-04 一种高压气体压燃式发动机

Publications (1)

Publication Number Publication Date
WO2021244227A1 true WO2021244227A1 (zh) 2021-12-09

Family

ID=78831660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092671 WO2021244227A1 (zh) 2020-06-04 2021-05-10 一种高压气体压燃式发动机

Country Status (7)

Country Link
US (1) US12071917B2 (zh)
EP (1) EP4163478A4 (zh)
JP (1) JP2023529568A (zh)
KR (1) KR20230017323A (zh)
BR (1) BR112022024672A2 (zh)
GB (1) GB2609374A (zh)
WO (1) WO2021244227A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090249783A1 (en) * 2008-04-04 2009-10-08 General Electric Company Locomotive Engine Exhaust Gas Recirculation System and Method
CN201925010U (zh) * 2010-10-08 2011-08-10 王洪泽 一种专用hcci发动机
CN107939517A (zh) * 2017-11-01 2018-04-20 北京理工大学 基于射流点火的发动机超高压缩比燃烧控制装置和方法
US20190145337A1 (en) * 2017-11-10 2019-05-16 Mazda Motor Corporation Control device for compression-ignition engine
CN110914525A (zh) * 2017-04-07 2020-03-24 那提勒斯工程有限责任公司 压缩点火发动机的改进系统和方法
CN111188704A (zh) * 2020-01-06 2020-05-22 天津大学 可实现高热效率低排放的汽油均质压燃发动机系统及方法
CN111636962A (zh) * 2020-06-04 2020-09-08 涂业初 一种高压气体压燃式发动机
CN212202219U (zh) * 2020-06-04 2020-12-22 涂业初 一种高压气体压燃式发动机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341613A (en) * 1976-09-29 1978-04-15 Mitsubishi Heavy Ind Ltd Internal combustion engine
CA1329780C (en) * 1988-05-07 1994-05-24 Dan Merritt Internal combustion engine
JPH0777073A (ja) * 1993-09-09 1995-03-20 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
US5520594A (en) * 1994-02-07 1996-05-28 Nippondenso Co., Ltd. Control system for automotive vehicle equipped with automatic transmission
FR2784419B1 (fr) * 1998-10-13 2000-12-15 Axel Leona Georges M Thienpont Procede et installation de recuperation de l'energie d'un moteur a combustion interne fonctionnant en mode de frein-moteur
FR2831609B1 (fr) * 2001-10-31 2004-12-10 Peugeot Citroen Automobiles Sa Systeme de motorisation pour vehicule automobile
JP2008202520A (ja) * 2007-02-21 2008-09-04 Toyota Industries Corp 予混合圧縮着火機関及びその吸排気装置
US20140373531A1 (en) * 2013-06-19 2014-12-25 Jim Wong Natural gas fueled internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090249783A1 (en) * 2008-04-04 2009-10-08 General Electric Company Locomotive Engine Exhaust Gas Recirculation System and Method
CN201925010U (zh) * 2010-10-08 2011-08-10 王洪泽 一种专用hcci发动机
CN110914525A (zh) * 2017-04-07 2020-03-24 那提勒斯工程有限责任公司 压缩点火发动机的改进系统和方法
CN107939517A (zh) * 2017-11-01 2018-04-20 北京理工大学 基于射流点火的发动机超高压缩比燃烧控制装置和方法
US20190145337A1 (en) * 2017-11-10 2019-05-16 Mazda Motor Corporation Control device for compression-ignition engine
CN111188704A (zh) * 2020-01-06 2020-05-22 天津大学 可实现高热效率低排放的汽油均质压燃发动机系统及方法
CN111636962A (zh) * 2020-06-04 2020-09-08 涂业初 一种高压气体压燃式发动机
CN212202219U (zh) * 2020-06-04 2020-12-22 涂业初 一种高压气体压燃式发动机

Also Published As

Publication number Publication date
GB2609374A (en) 2023-02-01
GB202217263D0 (en) 2023-01-04
US12071917B2 (en) 2024-08-27
KR20230017323A (ko) 2023-02-03
EP4163478A1 (en) 2023-04-12
EP4163478A4 (en) 2023-06-14
BR112022024672A2 (pt) 2023-11-28
JP2023529568A (ja) 2023-07-11
US20230279829A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
US5067467A (en) Intensifier-injector for gaseous fuel for positive displacement engines
CN101571069B (zh) 内燃机双燃料燃烧系统
Ikegami et al. A study of hydrogen fuelled compression ignition engines
US5315973A (en) Intensifier-injector for gaseous fuel for positive displacement engines
CN101907025A (zh) 内燃机多燃料燃烧系统
CN104454190B (zh) 一种缸内直喷双气体燃料点燃式燃烧及控制装置
CN109098865B (zh) 一种基于反应活性控制的均匀预混天然气-柴油双燃料发动机燃烧控制方法
CN109931188B (zh) 一种压燃式双燃料的内燃机系统
CN111305977A (zh) 一种氢气天然气全比例可变双燃料发动机
CN107939517B (zh) 基于射流点火的发动机超高压缩比燃烧控制装置和方法
CN111636962A (zh) 一种高压气体压燃式发动机
CN102226426A (zh) 基于活化热氛围的双燃料复合均质压燃燃烧系统
CN111219269A (zh) 基于液氢燃料活塞发动机的部分预混燃烧系统及发动机
CN212202219U (zh) 一种高压气体压燃式发动机
CN102536451A (zh) 超微排放高节能巨动力发动机主件装置
CN210068342U (zh) 一种气体燃料喷射系统
CN101672226A (zh) 一种清洁多燃料内燃机
WO2021244227A1 (zh) 一种高压气体压燃式发动机
CN107701299B (zh) 一种驱动车辆发动机启动或/和运行的方法及发动机
CN110552795A (zh) 一种柴油微喷引燃天然气发动机的喷射方法
US20220112834A1 (en) Device for fuel injection for internal combustion engines
CN110552794A (zh) 一种柴油微喷引燃天然气发动机的多段喷射方法
CN114017178B (zh) 一种稀薄燃烧控制方法、控制装置及氢气发动机系统
CN208564747U (zh) 适用于中重型车的汽油发动机
CN205559064U (zh) 一种灵活燃料发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817678

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570274

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202217263

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210510

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022024672

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227046388

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022134013

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2021817678

Country of ref document: EP

Effective date: 20230104

ENP Entry into the national phase

Ref document number: 112022024672

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221201