WO2021244223A1 - 光学镜头、摄像模组及电子设备 - Google Patents

光学镜头、摄像模组及电子设备 Download PDF

Info

Publication number
WO2021244223A1
WO2021244223A1 PCT/CN2021/092556 CN2021092556W WO2021244223A1 WO 2021244223 A1 WO2021244223 A1 WO 2021244223A1 CN 2021092556 W CN2021092556 W CN 2021092556W WO 2021244223 A1 WO2021244223 A1 WO 2021244223A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
vertex
imaging
Prior art date
Application number
PCT/CN2021/092556
Other languages
English (en)
French (fr)
Inventor
江依达
于晓丹
王海燕
叶海水
李战涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/923,658 priority Critical patent/US20230185063A1/en
Priority to BR112022023965A priority patent/BR112022023965A2/pt
Priority to EP21817952.1A priority patent/EP4134723A4/en
Priority to CN202180002149.1A priority patent/CN113454512B/zh
Publication of WO2021244223A1 publication Critical patent/WO2021244223A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application relates to the field of lenses, and in particular to an optical lens, camera module and electronic equipment.
  • CMOS complementary metal oxide semiconductor
  • Major manufacturers are pursuing lighter, thinner and miniaturized lenses. Put forward more stringent requirements for imaging quality.
  • traditional mobile phones have obvious distortion problems in imaging.
  • the distortion is generally reduced by means of algorithm cropping or algorithm compensation.
  • the method of compensating for distortion through algorithms has the risk of losing resolution, and real-time correction in video application scenarios or camera preview mode requires system resources, which poses great challenges to device power consumption, heat dissipation, and processing speed.
  • This application provides an optical lens, a camera module and an electronic device, which are designed through the refractive power of the first lens to the sixth lens, and include at least one non-magnetic lens in the object side and the image side of the first lens to the sixth lens.
  • the rotationally symmetrical aspherical surface realizes the ultra-wide-angle setting of the optical lens while reducing imaging distortion to a large extent.
  • this application provides an optical lens.
  • the optical lens includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and a sixth lens arranged in order from the object side to the image side.
  • the first lens, the third lens, and the fifth lens all have positive refractive power.
  • Both the second lens and the fourth lens have negative refractive power.
  • the sixth lens has positive refractive power or negative refractive power.
  • the object side surface and the image side surface of the first lens to the sixth lens include at least one non-rotationally symmetrical aspheric surface.
  • the lens is used as the boundary, the side where the object is located is the object side, and the surface of the lens facing the object side can be called the object side; with the lens as the boundary, the image of the object is located One side is the image side, and the surface of the lens facing the image side can be called the image side.
  • the first lens, the third lens, and the fifth lens are set to positive refractive power
  • the second lens and the fourth lens are set to negative refractive power
  • the sixth lens is set to positive or negative refractive power, so that while ensuring that the optical lens achieves better imaging quality, the field of view of the optical lens can be increased to a greater extent, and the optical lens Ultra wide-angle setting.
  • the imaging distortion of the optical lens becomes more obvious.
  • the imaging distortion of the optical lens is already greater than 10%.
  • the imaging distortion is more obvious and the imaging quality is worse.
  • the design freedom of the optical system is improved, and the asymmetry of the free area can be used to optimize the The imaging quality of the optical lens corrects the distortion of the optical lens, thereby ensuring that the optical lens has a better imaging quality.
  • the optical lens in this implementation manner can not only realize ultra-wide-angle shooting, but also solve the distortion problem in ultra-wide-angle imaging to a large extent.
  • this implementation design designs an ultra-wide-angle optical lens with less imaging distortion.
  • the focal length f1 of the first lens and the focal length f2 of the second lens satisfy: -0.5 ⁇ f2/f1 ⁇ -0.01.
  • the first lens and the second lens can cooperate better, so as to a greater extent Collect light with a larger field of view to achieve the ultra-wide-angle setting of the optical lens.
  • the focal length f1 of the first lens and the focal length f2 of the second lens satisfy: -0.35 ⁇ f2/f1 ⁇ -0.03.
  • the focal length f3 of the third lens and the focal length f4 of the fourth lens satisfy: -4 ⁇ f4/f3 ⁇ 0.
  • the third lens and the fourth lens can be better matched, and thus better Correct the pupil aberration of the optical lens imaging.
  • the third lens and the fourth lens can compress the divergence angle of the light passing through the second lens.
  • the focal length f3 of the third lens and the focal length f4 of the fourth lens satisfy: -2.5 ⁇ f4/f3 ⁇ 0.
  • the focal length f5 of the fifth lens and the focal length f of the optical lens satisfy: 0.1 ⁇ f5/f ⁇ 1.5.
  • the focal length f5 of the fifth lens and the focal length f of the optical lens satisfy the above-mentioned relational expression, the optical power assumed by the fifth lens can be reasonably allocated, so that the fifth lens Better effect of correcting aberrations.
  • the focal length f5 of the fifth lens and the focal length f of the optical lens satisfy: 0.5 ⁇ f5/f ⁇ 1.
  • the radius of curvature R6 of the image side surface of the third lens and the radius of curvature R10 of the image side surface of the fifth lens satisfy: 0 ⁇ R6/R10 ⁇ 2.9.
  • the third lens and the fifth lens can be compressed as much as possible
  • the divergence angle of the light can correct the curvature and distortion of the system to achieve a better imaging effect.
  • the radius of curvature R6 of the image side surface of the third lens and the radius of curvature R10 of the image side surface of the fifth lens satisfy 0 ⁇ R6/R10 ⁇ 2.
  • the distance T45 between the fourth lens and the fifth lens and the focal length f of the optical lens satisfy: 0.05 ⁇ T45/f ⁇ 0.4.
  • the degree of curvature of the object side surface of the fifth lens can be better control. At this time, the processing difficulty of the fifth lens is relatively low, and the implementability is better.
  • the distance T45 between the fourth lens and the fifth lens and the focal length f of the optical lens satisfy: 0.1 ⁇ T45/f ⁇ 0.3.
  • the optical lens satisfies: 0 ⁇ (T23+T56)/TTL ⁇ 0.5;
  • T23 is the distance between the second lens and the third lens.
  • T56 is the distance between the fifth lens and the sixth lens.
  • TTL is the distance from the object side of the first lens to the imaging surface in the direction of the optical axis of the optical lens.
  • the total system length TTL of the optical lens can be better controlled, which is beneficial to the miniaturization of the optical lens.
  • the system height of the optical lens can also be better compressed, thereby facilitating the thinning of the optical lens.
  • the optical lens satisfies: 0 ⁇ (T23+T56)/TTL ⁇ 0.3.
  • At least one of the non-rotationally symmetric aspheric surfaces includes a first vertex and a second vertex.
  • the first vertex and the second vertex are located in the optical effective area of the non-rotationally symmetric aspheric surface, and both are located in the sagittal plane of the lens where the non-rotationally symmetric aspheric surface is located.
  • the first vertex and the second vertex are symmetrical with respect to the meridian plane of the lens where the non-rotationally symmetric aspheric surface is located.
  • the distance from the first vertex to the first reference surface is equal to the distance from the second vertex to the first reference surface.
  • the first reference surface is perpendicular to the optical axis of the optical lens, and the intersection of the optical axis of the optical lens and the non-rotationally symmetric aspheric surface is located on the first reference surface.
  • first vertex and the second vertex are symmetrical with respect to the meridian plane of the lens where the non-rotationally symmetrical aspheric surface is located, and the distance from the first vertex to the first reference plane is equal to The distance from the second vertex to the first reference plane enables the optical lens to achieve a better correction effect and obtain a higher quality image.
  • the non-rotationally symmetric aspheric surface further includes a third vertex and a fourth vertex.
  • the third vertex and the fourth vertex are both located in the optical effective area of the non-rotationally symmetric aspheric surface, and both are located in the meridian plane of the lens where the non-rotationally symmetric aspheric surface is located.
  • the third vertex and the fourth vertex are symmetrical with respect to the sagittal plane of the lens where the non-rotationally symmetrical aspheric surface is located.
  • the distance from the third vertex to the first reference surface is equal to the distance from the fourth vertex to the first reference surface.
  • the third vertex and the fourth vertex are symmetric with respect to the sagittal plane of the lens where the non-rotationally symmetrical aspheric surface is located, and the distance from the first vertex to the first reference plane is equal to the The distance from the third vertex to the first reference plane enables the optical lens to achieve a better correction effect and obtain higher-quality imaging.
  • the optical lens includes a diaphragm.
  • the diaphragm is located between the second lens and the third lens.
  • the diaphragm is used to limit the amount of light entering to change the brightness of the imaging.
  • the diaphragm can reasonably distribute the functions of the first lens to the sixth lens.
  • the first lens and the second lens can Used to receive light with a large field of view to a greater extent.
  • the third to sixth lenses can be used to correct aberrations.
  • the optical lens of this embodiment has a small number of lenses for expanding the angle of view, which is beneficial to simplify the structure of the optical lens.
  • the optical lens of this embodiment has a larger number of lenses for correcting aberrations, which is beneficial to obtain better imaging quality.
  • the optical lens satisfies:
  • the distortion of the optical lens is relatively small.
  • the imaging quality of the optical lens is better.
  • the optical lens satisfies: 100° ⁇ FOV ⁇ 140°; FOV is the field of view of the camera lens group.
  • the FOV of the optical lens satisfies: 100° ⁇ FOV ⁇ 140°
  • the field of view of the optical lens is relatively large, that is, the optical lens realizes an ultra-wide angle setting.
  • the optical lens satisfies: 135° ⁇ FOV ⁇ 140°.
  • the optical lens satisfies: 0 ⁇ ImagH/TTL ⁇ 1.
  • TTL is the distance from the object side of the first lens to the imaging surface in the direction of the optical axis of the optical lens
  • ImagH is the image height of the imaging surface.
  • the optical lens when the optical lens satisfies the above relationship, the image height of the imaging surface of the optical lens is higher, that is, the imaging quality of the optical lens is better. In addition, the total length of the optical lens is longer. It is small, which is beneficial to be used in thin electronic devices such as mobile phones and tablets.
  • this application provides a camera module.
  • the camera module includes a circuit board, a photosensitive chip, and an optical lens as described above, the photosensitive chip and the optical lens are both fixed on the circuit board, and the optical lens is used to project ambient light onto the photosensitive chip .
  • the camera module when the optical lens is applied to the camera module, the camera module can achieve ultra-wide-angle shooting while reducing imaging distortion to a greater extent.
  • the way the camera module reduces imaging distortion does not consume system resources.
  • this application provides an electronic device.
  • the electronic device can be a mobile phone, a tablet computer, etc.
  • the electronic device includes a housing and the above-mentioned camera module, and the camera module is installed in the housing.
  • the electronic device when the camera module is applied to the electronic device, the electronic device can achieve ultra-wide-angle shooting while reducing imaging distortion to a greater extent.
  • the way in which the electronic device reduces imaging distortion does not consume system resources.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a partial exploded schematic diagram of the electronic device shown in FIG. 1;
  • Fig. 3 is a schematic partial cross-sectional view of the electronic device shown in Fig. 1 at the line A-A;
  • FIG. 4 is an exploded schematic diagram of the camera module of the electronic device shown in FIG. 1;
  • FIG. 5 is a schematic diagram of the structure of the optical lens of the camera module shown in FIG. 4;
  • FIG. 6 is a schematic plan view of the object side of a sixth lens of the optical lens shown in FIG. 5;
  • FIG. 7 is a schematic cross-sectional view of the sixth lens shown in FIG. 6 on the sagittal plane;
  • FIG. 8 is a schematic cross-sectional view of the sixth lens shown in FIG. 6 on the meridian plane;
  • FIG. 9 is a schematic plan view of the image side surface of the sixth lens of the optical lens shown in FIG. 6;
  • FIG. 10 is a schematic structural diagram of an embodiment of the lens of the optical lens shown in FIG. 5;
  • FIG. 11 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 10;
  • FIG. 12 is a schematic structural diagram of another embodiment of the lens of the optical lens shown in FIG. 5;
  • FIG. 13 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 12;
  • FIG. 14 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5;
  • FIG. 15 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 14;
  • FIG. 16 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5;
  • FIG. 17 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 16;
  • FIG. 18 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5;
  • FIG. 19 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 18;
  • FIG. 20 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5;
  • FIG. 21 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 20;
  • FIG. 22 is a schematic structural view of still another embodiment of the lens of the optical lens shown in FIG. 5;
  • FIG. 23 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 22;
  • FIG. 24 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5;
  • FIG. 25 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 24;
  • FIG. 26 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5; FIG.
  • FIG. 27 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 26;
  • FIG. 28 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5; FIG.
  • FIG. 29 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 28.
  • the optical axis is an axis that passes through the center of each lens.
  • the side where the subject is located is the object side, and the surface of the lens close to the object side is called the object side.
  • the side where the image of the subject is located is the image side, and the surface of the lens close to the image side is called the image side.
  • Positive refractive power also called positive refractive power, means that the lens has a positive focal length.
  • Negative refractive power also called negative refractive power, means that the lens has a negative focal length.
  • Focal length also known as focal length, is a measure of the concentration or divergence of light in an optical system. It refers to the lens or lens group when a scene at infinity is formed into a clear image at the focal plane through a lens or lens group.
  • the vertical distance from the optical center to the focal plane From a practical point of view, it can be understood as the distance from the center of the lens to the imaging plane. For a fixed focus lens, the position of its optical center is fixed.
  • Field of view in optical instruments, the lens of the optical instrument is the vertex, and the angle formed by the two edges of the maximum range where the object image of the measured target can pass through the lens is called the field of view Horn.
  • the size of the field of view determines the field of view of the optical instrument. The larger the field of view, the larger the field of view and the smaller the optical magnification.
  • the aperture is a device used to control the amount of light passing through the lens. It is usually inside the lens.
  • the aperture size can be expressed by F number (symbol: Fno).
  • the aperture F number is the relative value (the inverse of the relative aperture) derived from the focal length of the lens/the lens diameter. The smaller the F-number of the aperture, the more light will enter in the same unit time. The larger the aperture F number, the smaller the depth of field, and the background content of the photo will be blurred, similar to the effect of a telephoto lens.
  • the total track length (TTL) refers to the distance from the object side to the image side from the object side to the image side of the first lens of the optical lens.
  • Entrance Pupil Diameter refers to the ratio of the focal length of the optical lens to the F value of the aperture.
  • Abbe number the dispersion coefficient, is the difference ratio of the refractive index of an optical material at different wavelengths, and represents the degree of dispersion of the material.
  • Distortion also known as distortion
  • distortion is the degree of distortion of the image formed by the optical system on the object relative to the object itself. Distortion is due to the influence of the spherical aberration of the diaphragm.
  • the height of the intersection point between the chief rays of different fields of view and the Gaussian image plane after passing through the optical system is not equal to the ideal image height, and the difference between the two is distortion. Therefore, distortion only changes the imaging position of the off-axis object point on the ideal surface, causing distortion of the shape of the image, but does not affect the sharpness of the image.
  • TV distortion is relative distortion, that is, the degree of distortion of the actual image.
  • TDT represents the maximum value of TV distortion in the imaging range of the optical lens.
  • ImagH (Imaging High) represents the half of the diagonal length of the effective pixel area on the photosensitive chip, that is, the image height of the imaging surface.
  • Chief ray main beam
  • the light beam exits from the edge of the object, passes through the center of the aperture diaphragm and finally reaches the edge of the image.
  • Meridian plane the plane formed by the chief ray (main beam) of the object point outside the optical axis and the optical axis is called the meridian plane.
  • the sagittal plane the principal ray (main beam) passing through the object point outside the optical axis, and the plane perpendicular to the meridian plane, is called the sagittal plane.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 100 can be a mobile phone, a tablet personal computer, a laptop computer, a personal digital assistant (PDA), a camera, a personal computer, a notebook computer, a vehicle-mounted device, a wearable device, Augmented reality (AR) glasses, AR helmets, virtual reality (VR) glasses or VR helmets, or other forms of equipment with camera and video functions.
  • PDA personal digital assistant
  • AR Augmented reality
  • VR virtual reality
  • FIG. 1 is described by taking a mobile phone as an example.
  • FIG. 2 is a partially exploded schematic diagram of the electronic device shown in FIG. 1.
  • the electronic device 100 includes a screen 10, a housing 20, a host circuit board 30 and a camera module 40. It can be understood that FIGS. 1 and 2 only schematically show some components included in the electronic device 100, and the actual shape, actual size, actual position, and actual structure of these components are not limited by FIGS. 1 and 2. In addition, when the electronic device 100 is another type of device, the electronic device 100 may not include the screen 20 and the host circuit board 30.
  • the screen 10 can be used to display images, text, and so on.
  • the screen 10 may be a flat screen or a curved screen.
  • the screen 10 includes a protective cover 11 and a display screen 12.
  • the protective cover 11 is stacked on the display screen 12.
  • the protective cover 11 can be arranged close to the display screen 12, and can be mainly used to protect the display screen 12 and prevent dust.
  • the material of the protective cover 11 can be, but is not limited to, glass.
  • the display 12 may adopt an organic light-emitting diode (OLED) display, an active matrix organic light-emitting diode or an active-matrix organic light-emitting diode (AMOLED) display , Quantum dot light emitting diode (QLED) display screen, etc.
  • OLED organic light-emitting diode
  • AMOLED active matrix organic light-emitting diode
  • QLED Quantum dot light emitting diode
  • the housing 20 can be used to support the screen 10.
  • the housing 20 includes a frame 21 and a back cover 22.
  • the back cover 22 and the screen 10 are respectively installed on opposite sides of the frame 21.
  • the back cover 22, the frame 21 and the screen 10 collectively enclose the inside of the electronic device 100.
  • the inside of the electronic device 100 can be used to place components of the electronic device 100, such as a battery, a receiver, and a microphone.
  • the back cover 22 is fixedly connected to the frame 21 by glue.
  • the back cover 22 and the frame 21 form an integral structure, that is, the back cover 22 and the frame 21 are an integral structure.
  • the back cover 22 has a light-transmitting portion 23.
  • the light-transmitting part 23 can allow ambient light to enter the inside of the electronic device 100.
  • the shape of the light-transmitting portion 23 is not limited to the circular shape shown in FIGS. 1 and 2.
  • the shape of the light-transmitting portion 23 may also be an ellipse or an irregular pattern.
  • FIG. 3 is a schematic partial cross-sectional view of the electronic device shown in FIG. 1 at the line A-A.
  • the light-transmitting portion 23 of the back cover 22 is a through hole.
  • the through hole connects the inside of the electronic device 100 to the outside of the electronic device 100.
  • the electronic device 100 further includes a camera decoration 51 and a cover 52.
  • Part of the camera decoration 51 may be fixed on the inner surface of the back cover 22.
  • Part of the camera decoration 51 is in contact with the hole wall of the through hole.
  • the cover 52 is fixedly connected to the inner surface of the camera decoration 51.
  • the cover 52 can prevent external water or dust from entering the inside of the electronic device 100.
  • the cover 52 can be made of glass or plastic.
  • the light-transmitting part 23 can also be arranged in other ways.
  • the material of the back cover 22 is a transparent material.
  • a part of the rear cover 22 forms a light-transmitting portion 23.
  • the host circuit board 30 is installed inside the electronic device 100.
  • the host circuit board 30 can be used to mount electronic components of the electronic device 100.
  • the electronic components may include a processor (central processing unit, CPU), a memory, a battery management unit, or an image processor.
  • the host circuit board 30 may be a rigid circuit board, a flexible circuit board, or a flexible and hard circuit board.
  • the host circuit board 30 can be a FR-4 dielectric board, a Rogers dielectric board, or a mixed media board of FR-4 and Rogers, and so on.
  • FR-4 is the code name of a flame-resistant material grade
  • the Rogers dielectric board is a high-frequency board.
  • the camera module 40 is fixed inside the electronic device 100.
  • FIG. 3 shows that the camera module 40 is fixed on the surface of the screen 10 facing the back cover 22.
  • the housing 20 may include a midplane.
  • the middle plate is connected to the inner surface of the frame 21, and the middle plate is located between the screen 10 and the back cover 22. At this time, the camera module 40 can be fixed on the surface of the middle plate facing the rear cover 22.
  • the number of camera modules 40 is not limited to the one shown in FIGS. 1 to 3.
  • the number of camera modules 40 can also be two or more than two.
  • two or more camera modules 40 may be integrated into one camera component.
  • the camera module 40 may be, but is not limited to, an auto focus (AF) camera module or a fixed focus (FF) camera module.
  • AF auto focus
  • FF fixed focus
  • the camera module 40 of this embodiment is described by taking a fixed-focus camera module as an example.
  • the camera module 40 is electrically connected to the host circuit board 30.
  • the electronic components for example, a processor
  • the camera module 40 can directly receive the signal, and take pictures according to the signal.
  • FIG. 4 is an exploded schematic diagram of the camera module of the electronic device shown in FIG.
  • the camera module 40 includes a module circuit board 41, a photosensitive chip 42, a bracket 43, a filter 44, an optical lens 45 and a housing 46.
  • the module circuit board 41 can be fixed on the surface of the screen 10 facing the back cover 22. In other embodiments, when the housing 20 includes a middle plate, the module circuit board 41 may also be fixed on the surface of the middle plate facing the rear cover 22.
  • the module circuit board 41 is electrically connected to the host circuit board 30. In this way, signals can be transmitted between the host circuit board 30 and the module circuit board 41.
  • the photosensitive chip 42 is fixed on the module circuit board 41 and is electrically connected to the module circuit board 41.
  • the photosensitive chip 42 may be mounted on the module circuit board 41 through chip-on-board (COB) technology. In other embodiments, the photosensitive chip 42 may also be packaged on the module circuit board 41 by ball grid array (BGA) technology or land grid array (LGA) technology.
  • BGA ball grid array
  • LGA land grid array
  • electronic components or chips may also be mounted on the module circuit board 41.
  • Electronic components or chips are fixed on the periphery of the photosensitive chip 42.
  • Electronic components or chips can be used to assist the photosensitive chip 42 in collecting ambient light.
  • the bracket 43 is fixed to the module circuit board 41 and is located on the same side of the module circuit board 41 as the photosensitive chip 42.
  • the bracket 43 is provided with a light-transmitting hole 431.
  • the photosensitive chip 42 may be located in the light-transmitting hole 431.
  • the photosensitive chip 42 can collect ambient light passing through the light-transmitting hole 431.
  • the filter 44 is fixed to the bracket 43, and the filter 44 may be located in the light-transmitting hole 431.
  • the filter 44 is used to filter the stray light in the ambient light and project the filtered ambient light to the photosensitive chip 42 to ensure that the image captured by the electronic device 100 has better clarity.
  • the filter 44 can be, but is not limited to, a blue glass filter.
  • the filter 44 can also be a reflective infrared filter, or a double-pass filter (a double-pass filter can transmit visible light and infrared light in ambient light at the same time, or make visible light in ambient light Transmit with other specific wavelengths of light (such as ultraviolet light) at the same time, or make infrared light and other specific wavelengths of light (such as ultraviolet light) transmit at the same time.).
  • a double-pass filter can transmit visible light and infrared light in ambient light at the same time, or make visible light in ambient light Transmit with other specific wavelengths of light (such as ultraviolet light) at the same time, or make infrared light and other specific wavelengths of light (such as ultraviolet light) transmit at the same time.).
  • the housing 46 is fixed on the surface of the bracket 43 facing away from the module circuit board 43.
  • the housing 46 can be used to fixly connect the optical lens 45 and can also be used to protect the optical lens 45.
  • the optical lens 45 is fixed to the inside of the housing 46.
  • FIG. 3 shows that the optical lens 45 is partially located in the area enclosed by the housing 46 and partially protrudes from the housing 46. In other embodiments, the optical lens 45 may also be all located in the area enclosed by the housing 46.
  • FIG. 5 is a schematic diagram of the structure of the optical lens of the camera module shown in FIG. 4.
  • the optical lens 45 includes a lens barrel 450 and a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, the fifth lens 455, and the sixth lens 456 are sequentially installed in the lens barrel 450.
  • the optical lens 45 may not include the lens barrel 450.
  • the first lens 451 to the sixth lens 456 may be installed in the housing 46 of the camera module 40.
  • the optical lens 45 of this embodiment further includes a diaphragm 457.
  • a stop 457 is located between every two lenses.
  • the diaphragm can be an aperture diaphragm, and the aperture diaphragm is used to limit the amount of light entering to change the brightness of the image.
  • the position of the diaphragm is not limited to that the diaphragm is located between the second lens 452 and the third lens 453 as shown in FIG. 5.
  • the diaphragm 457 when the diaphragm 457 is located between the second lens 452 and the third lens 453, the diaphragm 457 can reasonably distribute the functions of the first lens 451 to the sixth lens 456, for example, the first lens 451 and the second lens
  • the lens 452 can be used to receive light with a large angle of view to a greater extent.
  • the third lens 453 to the sixth lens 456 can be used to correct aberrations.
  • the optical lens 45 of this embodiment has a small number of lenses for expanding the angle of view, which is beneficial to simplify the structure of the optical lens 45.
  • the optical lens 45 of this embodiment has a larger number of lenses for correcting aberrations, which is beneficial to obtain better imaging quality.
  • the stop 457 when the stop 457 is located between the second lens 452 and the third lens 453, the correction of the aberration of the stop 457 is facilitated.
  • the optical lens 45 may not include a diaphragm. It is understandable that FIG. 5 only schematically shows some components of the optical lens 45, and the actual shape, actual size, and actual structure of these components are not limited by FIG. 5.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 may have positive refractive power or negative refractive power. In this way, through the setting of the optical power of the first lens 451 to the sixth lens 456, the optical lens 45 can achieve better imaging quality while the field of view angle of the optical lens 45 can be increased to a greater extent, thereby achieving The ultra-wide angle setting of the optical lens 45.
  • the first lens 451 can be used to expand the field of view of the optical lens 45, so that light with a larger field of view enters the optical lens 45.
  • the second lens 452 can cooperate with the first lens 451 to converge a large angle of light on the photosensitive chip 42, thereby increasing the field of view of the optical lens 45.
  • the third lens 453 and the fourth lens 454 can be used to compress the divergence angle of the light.
  • the third lens 453 and the fourth lens 454 can also be used to correct aberrations of the optical lens 45.
  • the fifth lens 455 can be used to expand the beam of light, thereby increasing the image height formed on the photosensitive chip 42.
  • the sixth lens 456 is used to correct the field curvature and astigmatism of the optical lens 45 to ensure that the optical lens 45 has a better imaging quality.
  • the object side surface and the image side surface of the first lens 451 to the sixth lens 456 include at least one non-rotationally symmetrical aspheric surface, that is, the object side surface of the first lens 451, the image side surface of the first lens 451, At least one of the object side surface of the second lens 452, the image side surface of the second lens 452,...,
  • the image side surface of the sixth lens 456 is a non-rotationally symmetrical aspheric surface.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are non-rotationally symmetrical aspheric surfaces as an example for description.
  • the side where the object is located is the object side, and the surface of the lens facing the object side may be referred to as the object side.
  • the side where the image of the subject is located is the image side, and the surface of the lens facing the image side can be called the image side.
  • the imaging distortion of the optical lens becomes more obvious. For example, when the field of view of the optical lens reaches 100°, the imaging distortion of the optical lens is already greater than 10%. For the ultra-wide-angle setting of the optical lens, the imaging distortion of the optical lens is more obvious, and the image quality is worse.
  • the degree of freedom in the design of the optical system is improved, and the asymmetry of the free area can be used to optimize the design.
  • the imaging quality of the optical lens corrects the distortion of the optical lens, thereby ensuring that the optical lens has a better imaging quality.
  • the optical lens 45 of this embodiment can not only realize ultra-wide-angle shooting, but also solve the distortion problem in ultra-wide-angle imaging to a large extent.
  • an ultra-wide-angle optical lens 45 with less imaging distortion is designed.
  • the sixth lens 456 can not only correct the curvature of field and astigmatism of the image formed by the optical lens 45, but also correct distortion. .
  • the sixth lens 456 has the function of "one object with multiple uses”.
  • the non-rotationally symmetric aspheric surface satisfies the following formula:
  • a coordinate system is established with the geometric center of the sixth lens 456 as the origin O, the optical axis direction of the sixth lens 456 is the Z axis, which is located in the sagittal plane of the sixth lens 456, and the direction perpendicular to the optical axis is the X axis. It is located in the meridian plane of the sixth lens 456, and the direction perpendicular to the optical axis is the Y axis.
  • z(x,y) is the vector height parallel to the Z axis.
  • N is the total number of polynomial coefficients in the series.
  • Ai is the coefficient of the i-th extended polynomial.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 of this embodiment are non-rotationally symmetrical aspheric surfaces.
  • the remaining lenses among the first lens 451 to the sixth lens 456 are rotationally symmetric lenses.
  • the first lens 451 to the fifth lens 455 are rotationally symmetric lenses as an example for description.
  • the object and image sides of the rotationally symmetric lens are both rotationally symmetric aspheric surfaces, or both the object and image sides are rotationally symmetric spherical surfaces, or one of the object and image sides is rotationally symmetrical aspheric surfaces, and the other One is a rotationally symmetric spherical surface.
  • description is made by taking a rotationally symmetric lens with a rotationally symmetric aspheric surface on both the object side and the image side as an example.
  • a rotationally symmetric aspheric surface has a high degree of freedom. Therefore, in this embodiment, the rotationally symmetric lens of the optical lens 45 can be designed according to actual needs, and the aberrations of different positions can be improved in a targeted manner, thereby improving the imaging quality.
  • the geometric center of the rotationally symmetric lens is used as the origin O to establish a coordinate system
  • the optical axis direction of the rotationally symmetric lens is the Z axis. It is located in the sagittal plane of the rotationally symmetric lens, and the direction perpendicular to the optical axis is the X axis, located in the meridian plane of the rotationally symmetric lens, and the direction perpendicular to the optical axis is the Y axis.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • the object side surface and the image side surface of the first lens 451 to the fifth lens 455 are rotationally symmetrical aspheric surfaces.
  • FIG. 6 is a schematic plan view of the object side 4561 of the sixth lens 456 of the optical lens shown in FIG. 5.
  • FIG. 7 is a schematic cross-sectional view of the sixth lens 456 shown in FIG. 6 on the sagittal plane.
  • a coordinate system is established with the geometric center of the sixth lens 456 as the origin O, where the optical axis direction of the sixth lens 456 is the Z axis, is located in the sagittal plane of the sixth lens 456, and the direction perpendicular to the optical axis is the X axis, It is located in the meridian plane of the sixth lens 456, and the direction perpendicular to the optical axis is the Y axis.
  • the meridian plane of the sixth lens 456 is the YOZ plane in the coordinate system.
  • the sagittal plane of the sixth lens 456 is the XOZ plane in the coordinate system.
  • the object side 4561 of the sixth lens 456 includes an optical effective area 4563 and a non-optical effective area 4564 connected to the optical effective area 4563.
  • FIGS. 6 and 7 both distinguish the optically effective area 4563 and the non-optically effective area 4564 by the dotted line.
  • FIG. 7 marks the non-optical effective area 4564 of the object side 4561 in both the positive and negative directions of the X-axis.
  • the optically effective area 4563 refers to the area on the object side 4561 through which light can pass.
  • the non-optical effective area 4564 is an area on the object side 4561 through which light cannot pass.
  • the non-optical effective area 4564 of the object side 4561 can be used to be fixed on the lens barrel 450.
  • the sixth lens 456 includes a first vertex M1 and a second vertex M2.
  • the apex refers to the highest point or the lowest point on the object side 4561 of the sixth lens 456.
  • both the first vertex M1 and the second vertex M2 are the lowest points on the object side surface 4561 of the sixth lens 456.
  • the first vertex M1 and the second vertex M2 may both be the highest points on the object side 4561 of the sixth lens 456.
  • FIG. 6 schematically shows the first vertex M1 and the second vertex M2 with bold circles.
  • the shape, size, and position of the first vertex M1 and the second vertex M2 are not limited to the shape, size, and position shown in FIG. 6.
  • first vertex M1 and the second vertex M2 are both located on the object side 4561 of the sixth lens 456, and both are located in the optical effective area 4563 of the object side 4561.
  • first vertex M1 and the second vertex M2 are both located in the XOZ plane (that is, in the sagittal plane of the sixth lens 456).
  • the first vertex M1 and the second vertex M2 are symmetrical about the YOZ plane (that is, the meridian plane of the sixth lens 456).
  • the distance d1 from the first vertex M1 to the first reference plane P1 is equal to the distance d2 from the second vertex M2 to the first reference plane P1.
  • the first reference plane P1 is perpendicular to the Z axis (that is, the optical axis of the optical lens 45), and the intersection of the Z axis and the object side surface 4561 is located on the first reference plane P1.
  • the optical lens 45 can achieve a better correction effect and obtain higher-quality imaging.
  • FIG. 8 is a schematic cross-sectional view of the sixth lens 456 shown in FIG. 6 on the meridian plane.
  • the sixth lens 456 includes a third vertex M3 and a fourth vertex M4.
  • the third vertex M3 and the fourth vertex M4 are both the highest points on the object side surface 4561 of the sixth lens 456.
  • the third vertex M3 and the fourth vertex M4 may both be the lowest points on the object side 4561 of the sixth lens 456.
  • FIG. 6 schematically shows the third vertex M3 and the fourth vertex M4 through bold dots, but the shape, position, and size of the third vertex M3 and the fourth vertex M4 are not limited to those shown in FIG. 6 Shape, location and size.
  • the third apex M3 and the fourth apex M4 and the first apex M1 and the second apex M2 are all located in the object side 4561 of the sixth lens 456 and are located in the optical effective area 4563 of the object side 4561.
  • the third vertex M3 and the fourth vertex M4 are located in the YOZ plane.
  • the third vertex M3 and the fourth vertex M4 are symmetrical in the XOZ plane.
  • the distance d3 from the third vertex M3 to the first reference plane P1 is equal to the distance d4 from the fourth vertex M4 to the first reference plane P1.
  • the third vertex M3 and the fourth vertex M4 are symmetric about the XOZ plane, and the distance d3 from the third vertex M3 to the first reference plane P1 is equal to the distance d4 from the fourth vertex M4 to the first reference plane P1. , So that the optical lens 45 can achieve a better correction effect and obtain a higher quality image.
  • FIG. 9 is a schematic plan view of the image side surface 4562 of the sixth lens 456 of the optical lens shown in FIG. 6.
  • the image side surface 4562 of the sixth lens 456 includes an optical effective area 4565 and a non-optical effective area 4566 connected to the optical effective area 4565.
  • Fig. 9 and Fig. 7 both distinguish the optically effective area 4565 of the image side surface 4562 from the non-optical effective area 4566 of the image side surface 4562 by a dotted line.
  • FIG. 7 is marked with a non-optical effective area 4566 of the image side 4562 in both the positive and negative directions of the X axis.
  • the optical effective area 4565 of the image side 4562 refers to the area on the image side 4562 through which light can pass.
  • the non-optical effective area 4566 of the image side 4562 is an area on the image side 4562 through which light cannot pass.
  • the non-optical effective area 4566 of the image side 4562 can be used to be fixed on the lens barrel 450.
  • the sixth lens 456 includes a fifth vertex N1 and a sixth vertex N2.
  • the vertex refers to the highest point or the lowest point on the image side 4562 of the sixth lens 456.
  • the fifth vertex N1 and the sixth vertex N2 are both the highest points on the image side surface 4562 of the sixth lens 456.
  • the fifth vertex N1 and the sixth vertex N2 may both be the lowest points on the image side surface 4562 of the sixth lens 456.
  • FIG. 9 schematically shows the fifth vertex N1 and the sixth vertex N2 with bold circles.
  • the shape, size, and position of the fifth vertex N1 and the sixth vertex N2 are not limited to the shape, size, and position shown in FIG. 9.
  • the fifth vertex N1 and the sixth vertex N2 are both located on the image side surface 4562 of the sixth lens 456, and both are located in the optical effective area 4565 of the image side surface 4562.
  • the fifth vertex N1 and the sixth vertex N2 are both located in the XOZ plane (that is, in the sagittal plane of the sixth lens 456).
  • the fifth vertex N1 and the sixth vertex N2 are symmetrical about the YOZ plane (that is, the meridian plane of the sixth lens 456).
  • the distance d5 from the fifth vertex N1 to the second reference plane P2 is equal to the distance d6 from the sixth vertex N2 to the second reference plane P2.
  • the second reference plane P2 is perpendicular to the Z axis (that is, the optical axis of the optical lens 45), and the intersection of the Z axis and the image side surface 4562 is located on the second reference plane P2.
  • the optical lens 45 can achieve a better correction effect and obtain higher-quality imaging.
  • the sixth lens 456 includes a seventh vertex N3 and an eighth vertex N4.
  • the seventh vertex N3 and the eighth vertex N4 are both the lowest points on the image side surface 4562 of the sixth lens 456.
  • the seventh vertex N3 and the eighth vertex N4 may both be the highest points on the image side surface 4562 of the sixth lens 456.
  • FIG. 9 schematically shows the seventh vertex N3 and the eighth vertex N4 through bold dots, but the shape, position, and size of the seventh vertex N3 and the eighth vertex N4 are not limited to those shown in FIG. 9 Shape, location and size.
  • the seventh vertex N3 and the eighth vertex N4, the fifth vertex N1 and the sixth vertex N2 are all located in the image side surface 4562 of the sixth lens 456, and are located in the optical effective area 4565 of the image side surface 4562.
  • the seventh vertex N3 and the eighth vertex N4 are located in the YOZ plane.
  • the seventh vertex N3 and the eighth vertex N4 are symmetrical in the XOZ plane.
  • the distance d7 from the seventh vertex N3 to the second reference plane P2 is equal to the distance d8 from the eighth vertex N4 to the second reference plane P2.
  • the seventh vertex N3 and the eighth vertex N4 are symmetric about the XOZ plane, and the distance d7 from the seventh vertex N3 to the second reference plane P2 is equal to the distance d8 from the eighth vertex N4 to the second reference plane P2. , So that the optical lens 45 can achieve a better correction effect and obtain a higher quality image.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are non-rotationally symmetrical aspheric surfaces.
  • the object side and image side of other lenses can also refer to the arrangement of the object side 4561 and the image side 4562 of the sixth lens 456. . The specific details are not repeated here.
  • the first lens 451 and the second lens 452 satisfy: -0.5 ⁇ f2/f1 ⁇ -0.01.
  • f1 is the focal length of the first lens 451.
  • f2 is the focal length of the second lens 452.
  • f2/f1 is equal to -0.4, -0.3, -0.28, -0.21, -0.1, -0.02, etc.
  • the first lens 451 and the focal length f2 of the second lens 452 satisfy the above-mentioned relational expression, the first lens 451 and the second lens 452 can be better matched, so as to achieve a larger collection.
  • the light of the field of view realizes the ultra-wide-angle setting of the optical lens 45.
  • the focal length f1 of the first lens 451 and the focal length f2 of the second lens 452 may not satisfy the above-mentioned relational expression.
  • the focal length f1 of the first lens 451 and the focal length f2 of the second lens 452 satisfy: -0.35 ⁇ f2/f1 ⁇ -0.03.
  • the third lens 453 and the fourth lens 454 satisfy: -4 ⁇ f4/f3 ⁇ 0.
  • f3 is the focal length of the third lens 453.
  • f4 is the focal length of the fourth lens 454.
  • f4/f3 is equal to -3.8, -3, -2.2, -2, -1.7, -1, -0.8, etc.
  • the third lens 453 and the fourth lens 454 can cooperate well, so as to better correct the optical lens 45.
  • the third lens 453 and the fourth lens 454 can compress the divergence angle of the light passing through the second lens 452.
  • the focal length f3 of the third lens 453 and the focal length f4 of the fourth lens 454 may not satisfy the foregoing relational expression.
  • the focal length f3 of the third lens 453 and the focal length f4 of the fourth lens 454 satisfy: ⁇ 2.5 ⁇ f4/f3 ⁇ 0.
  • the fifth lens 455 satisfies: 0.1 ⁇ f5/f ⁇ 1.5.
  • f5 is the focal length of the fifth lens 455.
  • f is the focal length of the optical lens 45.
  • f5/f is equal to 0.2, 0.22, 0.33, 0.37, 0.5, 0.7, 0.9, 1, 1.1, 1.3, 1.4, etc.
  • the focal length f5 of the fifth lens 455 and the focal length f of the optical lens 45 may not satisfy the above-mentioned relational expression.
  • the focal length f5 of the fifth lens 455 and the focal length f of the optical lens 45 satisfy: 0.5 ⁇ f5/f ⁇ 1.
  • the fifth lens 455 and the third lens 453 satisfy: 0 ⁇ R6/R10 ⁇ 2.9.
  • R6 is the radius of curvature of the image side surface of the third lens 453.
  • R10 is the radius of curvature of the image side surface of the fifth lens 455.
  • R6/R10 is equal to 0.22, 0.31, 0.5, 0.9, 1, 1.3, 2, 2.4, 2.6, 2.8, etc.
  • the third lens 453 and the fifth lens 455 can compress the light divergence angle as much as possible , Correcting system curvature and distortion, so as to achieve better imaging results.
  • the radius of curvature R6 of the image side surface of the third lens 453 and the radius of curvature R10 of the image side surface of the fifth lens 455 may not satisfy the above-mentioned relational expression.
  • the radius of curvature R6 of the image side surface of the third lens 453 and the radius of curvature R10 of the image side surface of the fifth lens 455 satisfy 0 ⁇ R6/R10 ⁇ 2.
  • the fourth lens 454 and the fifth lens 455 satisfy: 0.05 ⁇ T45/f ⁇ 0.4.
  • T45 is the distance between the fourth lens 454 and the fifth lens 455.
  • f is the focal length of the optical lens 45.
  • T45/f is equal to 0.06, 0.11, 0.25, 0.29, 0.3, 0.33, 0.35, 0.36, 0.39, etc.
  • the distance T45 between the fourth lens 454 and the fifth lens 455 and the focal length f of the optical lens 45 may not satisfy the foregoing relationship.
  • the distance T45 between the fourth lens 454 and the fifth lens 455 and the focal length f of the optical lens 45 satisfy: 0.1 ⁇ T45/f ⁇ 0.3.
  • the optical lens 45 satisfies: 0 ⁇ (T23+T56)/TTL ⁇ 0.5.
  • T23 is the distance between the second lens 452 and the third lens 453.
  • T56 is the distance between the fifth lens 455 and the sixth lens 456.
  • TTL is the distance from the object side surface of the first lens 451 to the imaging surface in the optical axis direction of the optical lens 45.
  • (T23+T56)/TTL is equal to 0.02, 0.13, 0.24, 0.27, 0.3, 0.32, 0.35, 0.4, 0.48, etc.
  • the total system length TTL of the optical lens 45 can be better controlled, which is beneficial to the miniaturization of the optical lens 45.
  • the system height of the optical lens 45 can also be better compressed, which facilitates the thinning of the optical lens 45.
  • the optical lens 45 may not satisfy the foregoing relationship.
  • the optical lens 45 satisfies: 0 ⁇ (T23+T56)/TTL ⁇ 0.3.
  • the optical lens 45 satisfies:
  • the distortion of the optical lens 45 is relatively small.
  • the imaging quality of the optical lens 45 is better.
  • the optical lens 45 satisfies: 100° ⁇ FOV ⁇ 140°; FOV is the field of view of the camera lens group.
  • FOV is equal to 100°, 103°, 112°, 126°, 135°, 136°, 137°, 138°, 139°, 140°.
  • the optical lens 45 realizes an ultra-wide angle setting.
  • the optical lens 45 satisfies: 135° ⁇ FOV ⁇ 140°.
  • FOV is equal to 136°, 137°, 138°, 139°, or 140°.
  • the optical lens 45 satisfies: 0 ⁇ ImagH/TTL ⁇ 1.
  • TTL is the distance from the object side surface of the first lens 451 to the imaging surface in the optical axis direction of the optical lens 45.
  • ImagH is half of the diagonal length of the effective pixel area on the photosensitive chip 42, that is, the image height of the imaging surface.
  • ImagH/TTL is equal to 0.1, 0.22, 0.34, 0.45, 0.52, 0.66, 0.81, 0.97, etc.
  • the optical lens 45 satisfies the above relationship, the image height of the imaging surface of the optical lens 45 is relatively high, that is, the imaging quality of the optical lens 45 is better.
  • the optical lens 45 The overall length of the device is small, which is beneficial to be used in thin electronic devices such as mobile phones and tablets.
  • each lens of the optical lens 45 may be made of plastic material, glass material or other composite materials.
  • plastic materials can easily produce various lens structures with complex shapes.
  • the refractive index n1 of the glass lens satisfies: 1.50 ⁇ n1 ⁇ 1.90.
  • the refractive index can be selected in a larger range, and it is easier to obtain thinner but better performance.
  • a good glass lens is beneficial to reduce the on-axis thickness of the multiple lenses of the optical lens 45, and it is not easy to produce a lens structure with a complicated shape. Therefore, in some embodiments of the present application, the production cost, efficiency, and optical effects are considered, and the specific application materials of different lenses are reasonably matched according to the needs.
  • FIG. 10 is a schematic structural diagram of an embodiment of the lens of the optical lens shown in FIG. 5.
  • the number of lenses of the optical lens 45 is six.
  • the optical lens 45 includes a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 has negative refractive power.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are both non-rotationally symmetrical aspheric surfaces.
  • the other lenses are all rotationally symmetric lenses (that is, the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 are all rotationally symmetric lenses), and the object side of the rotationally symmetric lens and the image The sides are all rotationally symmetrical aspherical surfaces.
  • FIG. 10 illustrates the direction of the optical axis of the optical lens 45 by a solid line with an arrow. In addition, the direction of the arrow represents from the object side to the image side.
  • the design parameters of the optical lens 45 in the first embodiment of the present application are shown in Table 1 below.
  • OBJ English full name object
  • S1 represents the object side surface of the first lens 451.
  • S2 represents the image side surface of the first lens 451.
  • S3 represents the object side of the second lens 452.
  • S4 represents the image side surface of the second lens 452.
  • S5 represents the object side of the third lens 453.
  • S6 denotes the image side surface of the third lens 453.
  • S7 represents the object side of the fourth lens 454.
  • S8 represents the image side surface of the fourth lens 454.
  • S9 represents the object side of the fifth lens 455.
  • S10 represents the image side surface of the fifth lens 455.
  • S11 represents the object side of the sixth lens 456.
  • AAS Anamorphic Aspherical Surface, non-rotationally symmetrical aspheric surface).
  • S11 indicates that the object side surface of the sixth lens 456 is a non-rotationally symmetrical aspheric surface.
  • S12 represents the image side surface of the sixth lens 456.
  • S12 (AAS) indicates that the image side surface of the sixth lens 456 is a non-rotationally symmetrical aspheric surface.
  • S13 represents the object side of the filter 44, and
  • S14 represents the image side of the filter 44.
  • STOP means stop 457. It should be noted that in this application, symbols such as OBJ, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, AAS and STOP have the same meaning. I won't repeat it when it reappears later.
  • the thickness of S1 refers to the distance between the object side surface of the first lens 451 and the image side surface of the first lens 451.
  • the thickness of S2 refers to the distance between the image side surface of the first lens 451 and the object side surface of the second lens 452.
  • the thickness of S3 refers to the distance between the object side surface of the second lens 452 and the image side surface of the second lens 452.
  • the thickness of S4 refers to the distance between the image side surface of the second lens 452 and the diaphragm.
  • the thickness of the diaphragm refers to the distance from the diaphragm to the third lens 453.
  • the thickness of S5 refers to the distance between the object side surface of the third lens 453 and the image side surface of the third lens 453.
  • the thickness of S6 refers to the distance between the image side surface of the third lens 453 and the object side surface of the fourth lens 454.
  • the thickness of S7 refers to the distance between the object side surface of the fourth lens 454 and the image side surface of the fourth lens 454.
  • the thickness of S8 refers to the distance between the image side surface of the fourth lens 451 and the object side surface of the fifth lens 455.
  • the thickness of S9 refers to the distance between the object side surface of the fifth lens 455 and the image side surface of the fifth lens 455.
  • the thickness of S10 refers to the distance between the image side surface of the fifth lens 455 and the object side surface of the sixth lens 456.
  • the thickness of S11 refers to the distance between the object side surface of the sixth lens 456 and the image side surface of the sixth lens 456.
  • the thickness of S12 refers to the distance between the image side surface of the sixth lens 456 and the object side surface of the filter 44.
  • the thickness of S13 refers to the distance between the object side surface of the filter 44 and the image side surface of the filter 44.
  • the thickness of S14 refers to the distance between the image side surface of the filter 44 and the image surface.
  • the design parameters of the optical lens 45 in the first embodiment of the present application can be obtained as shown in Table 2.
  • f1 represents the focal length of the first lens 451.
  • f2 represents the focal length of the second lens 452.
  • f3 represents the focal length of the third lens 453.
  • f4 represents the focal length of the fourth lens 454.
  • f5 represents the focal length of the fifth lens 455.
  • f6 represents the focal length of the sixth lens 456.
  • f represents the focal length of the optical lens 45.
  • FOV is the angle of view of the optical lens 45.
  • EPD represents the entrance pupil diameter of the optical lens 45.
  • T45 represents the distance between the fourth lens 454 and the fifth lens 455.
  • ImagH represents half of the diagonal length of the effective pixel area on the photosensitive chip 42, that is, the image height of the imaging surface.
  • TTL represents the total length of the optical lens 45.
  • T23 is the distance between the second lens 452 and the third lens 453.
  • T56 is the distance between the fifth lens 455 and the sixth lens 456.
  • R6 is the radius of curvature of the image side surface of the third lens 453.
  • R10 is the radius of curvature of the image side surface of the fifth lens 455.
  • Fno is the aperture number of the optical lens 45. It should be noted that in this application, f1, f2, f3, f4, f5, f6, f, EPD, T45, ImagH, TTL, T23, T56, R6, R10, Fno, FOV and other symbols have the same meaning. I won't repeat it when it reappears later.
  • the FOV of the optical lens 45 is 104°, and the aperture number Fno is 2.05, that is, the optical lens 45 of the present application can achieve a large viewing angle and a large aperture (it can be understood that the smaller the aperture number Fno, the smaller the aperture The larger), can better meet the needs of shooting.
  • TTL is 12.653mm
  • ImagH is 4.46mm
  • ImagH/TTL 0.352, that is, while the effective pixel area projected on the photosensitive chip 42 by the optical lens 45 of this embodiment is larger
  • the total optical length TTL of the optical lens 45 can be smaller Therefore, while obtaining a higher image quality, the length of the optical lens 45 can be smaller, which can be applied to thin electronic devices such as mobile phones and tablets.
  • symbols such as A0, A1, A2, A3, A4, A5, and A6 represent aspheric coefficients. It should be noted that the parameters in the table are expressed in scientific notation. For example, 2.4965E-03 refers to 2.4965 ⁇ 10 -3 ; -5.6139E-05 refers to -5.6139 ⁇ 10 -5 .
  • the object-side and image-side surface shapes of the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 can be obtained.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • the surface shape of the object side surface and the image side surface of the sixth lens 456 of this embodiment can be designed.
  • z is the vector height parallel to the z axis; N is the total number of polynomial coefficients in the series, Ai is the coefficient of the i-th extended polynomial, r is the radial coordinate of the aspheric surface, and c is the aspheric vertex The curvature of the sphere, K is the constant of the quadric surface.
  • the polynomial coefficients (such as A 1 , A 2, etc.) that do not exist in the table are all 0.
  • FIG. 11 is an imaging simulation diagram of each lens of the optical lens shown in FIG. A schematic diagram of the optical lens 45 after imaging. It can be seen from the figure that the imaging of the optical lens 45 of this embodiment is basically the same as the ideal imaging, and the TV distortion in the imaging range of the optical lens 45 is small. Specifically, in this embodiment, the maximum value TDT of TV distortion in the imaging range of the optical lens 45 satisfies
  • 1.6694%, and the TV distortion in the imaging range of the optical lens 4510 is relatively small.
  • the sixth lens 456 can not only correct the curvature of field and astigmatism of the image formed by the optical lens 45, but also correct distortion. effect.
  • the sixth lens 456 has the function of "one object with multiple uses”.
  • FIG. 12 is a schematic structural diagram of another embodiment of the lens of the optical lens shown in FIG. 5.
  • the number of lenses of the optical lens 45 is six.
  • the optical lens 45 includes a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 has negative refractive power.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are both non-rotationally symmetrical aspheric surfaces.
  • the other lenses are all rotationally symmetric lenses (that is, the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 are all rotationally symmetric lenses), and the object side of the rotationally symmetric lens and the image The sides are all rotationally symmetrical aspherical surfaces.
  • FIG. 12 illustrates the direction of the optical axis of the optical lens 45 by a solid line with an arrow. In addition, the direction of the arrow represents from the object side to the image side.
  • the design parameters of the optical lens 45 in the second embodiment of the present application are shown in Table 5 below.
  • the design parameters of the optical lens 45 of the second embodiment of the present application can be obtained as shown in Table 6.
  • the field of view FOV of the optical lens 45 is 101°, and the aperture number Fno is 2.05. That is, the optical lens 45 of the present application can achieve a large viewing angle and a large aperture, which can better meet the shooting requirements.
  • TTL is 12.042mm
  • ImagH is 4.38mm
  • ImagH/TTL 0.364, that is, while the effective pixel area projected on the photosensitive chip 42 by the optical lens 45 of this embodiment is larger, the total optical length TTL of the optical lens 45 can be smaller Therefore, while obtaining a higher image quality, the length of the optical lens 45 can be smaller, which can be applied to thin electronic devices such as mobile phones and tablets.
  • symbols such as A0, A1, A2, A3, A4, A5, and A6 represent aspheric coefficients.
  • the object-side and image-side surface shapes of the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 can be obtained.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • the surface shape of the object side surface and the image side surface of the sixth lens 456 of this embodiment can be designed.
  • z is the vector height parallel to the z axis; N is the total number of polynomial coefficients in the series, Ai is the coefficient of the i-th extended polynomial, r is the radial coordinate of the aspheric surface, and c is the aspheric vertex The curvature of the sphere, K is the constant of the quadric surface. Polynomial coefficients that do not exist in the table (such as A 1 , A 2, etc.) are 0.
  • FIG. 13 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 12.
  • the solid grid is an ideal imaging grid
  • the grid structure formed by the "X" is a schematic diagram of the optical lens 45 of this embodiment after imaging.
  • the imaging of the optical lens 45 of this embodiment is basically the same as the ideal imaging, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the maximum value TDT of TV distortion in the imaging range of the optical lens 45 satisfies
  • 2.3119%, and the TV distortion in the imaging range of the optical lens 45 is relatively small.
  • the sixth lens 456 can not only correct the curvature of field and astigmatism of the image formed by the optical lens 45, but also correct distortion. effect.
  • the sixth lens 456 has the function of "one object with multiple uses”.
  • the third embodiment please refer to FIG. 14, which is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5.
  • the number of lenses of the optical lens 45 is six.
  • the optical lens 45 includes a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 has negative refractive power.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are non-rotationally symmetrical aspheric surfaces.
  • the other lenses are all rotationally symmetric lenses (that is, the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 are all rotationally symmetric lenses), and the object side of the rotationally symmetric lens and the image The sides are all rotationally symmetrical aspherical surfaces.
  • FIG. 14 illustrates the direction of the optical axis of the optical lens 45 by a solid line with an arrow. In addition, the direction of the arrow represents from the object side to the image side.
  • the design parameters of the optical lens 45 in the third embodiment of the present application are shown in Table 9 below.
  • the field of view FOV of the optical lens 45 is 100°, and the aperture number Fno is 2.04, that is, the optical lens 45 of the present application can achieve a large viewing angle and a large aperture, which can better meet the shooting requirements.
  • TTL is 14.623mm
  • ImagH is 4.39mm
  • ImagH/TTL 0.3, that is, while the effective pixel area projected on the photosensitive chip 42 by the optical lens 45 of this embodiment is larger, the total optical length of the optical lens 45 can be longer. Small, so as to obtain a higher image quality, while the length of the optical lens 45 can be smaller, which can be applied to thin electronic devices such as mobile phones and tablets.
  • symbols such as A0, A1, A2, A3, A4, A5, and A6 represent aspheric coefficients.
  • the object-side and image-side surface shapes of the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 can be obtained.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • symbols such as A10, A12, A14, A21, A23, A25, and A27 represent polynomial coefficients.
  • the surface shape of the object side surface and the image side surface of the sixth lens 456 of this embodiment can be designed.
  • z is the vector height parallel to the z axis; N is the total number of polynomial coefficients in the series, Ai is the coefficient of the i-th extended polynomial, r is the radial coordinate of the aspheric surface, and c is the aspheric vertex The curvature of the sphere, K is the constant of the quadric surface. Polynomial coefficients that do not exist in the table (such as A 1 , A 2, etc.) are 0.
  • FIG. 15 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 14.
  • the solid grid is an ideal imaging grid
  • the grid structure formed by the "X" is a schematic diagram of the optical lens 45 of this embodiment after imaging.
  • the imaging of the optical lens 45 of this embodiment is basically the same as the ideal imaging, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the maximum value TDT of TV distortion in the imaging range of the optical lens 45 satisfies
  • 2.6506%, and the TV distortion in the imaging range of the optical lens 45 is relatively small.
  • the sixth lens 456 can not only correct the curvature of field and astigmatism of the image formed by the optical lens 45, but also correct distortion. effect.
  • the sixth lens 456 has the function of "one object with multiple uses”.
  • FIG. 16 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5.
  • the number of lenses of the optical lens 45 is six.
  • the optical lens 45 includes a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 has negative refractive power.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are non-rotationally symmetrical aspheric surfaces.
  • the other lenses are all rotationally symmetric lenses (that is, the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 are all rotationally symmetric lenses), and the object side of the rotationally symmetric lens and the image The sides are all rotationally symmetrical aspherical surfaces.
  • FIG. 16 illustrates the direction of the optical axis of the optical lens 45 by a solid line with an arrow. In addition, the direction of the arrow represents from the object side to the image side.
  • the design parameters of the optical lens 45 of the fourth embodiment of the present application are shown in Table 13 below.
  • the FOV of the optical lens 45 is 100°, and the aperture number Fno is 2.05. That is, the optical lens 45 of the present application can achieve a large viewing angle and a large aperture, which can better meet the shooting requirements.
  • TTL is 11.8684mm
  • ImagH is 3.94mm
  • ImagH/TTL 0.332, that is, while the effective pixel area projected on the photosensitive chip 42 by the optical lens 45 of this embodiment is larger, the total optical length of the optical lens 45 can be longer. Small, so as to obtain a higher image quality, while the length of the optical lens 45 can be smaller, which can be applied to thin electronic devices such as mobile phones and tablets.
  • symbols such as A0, A1, A2, A3, A4, A5, and A6 represent aspheric coefficients.
  • the object-side and image-side surface shapes of the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 can be obtained.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • symbols such as A10, A12, A14, A21, A23, A25, and A27 represent polynomial coefficients.
  • the surface shape of the object side surface and the image side surface of the sixth lens 456 of this embodiment can be designed.
  • z is the vector height parallel to the z axis; N is the total number of polynomial coefficients in the series, Ai is the coefficient of the i-th extended polynomial, r is the radial coordinate of the aspheric surface, and c is the aspheric vertex The curvature of the sphere, K is the constant of the quadric surface. Polynomial coefficients that do not exist in the table (such as A 1 , A 2, etc.) are 0.
  • FIG. 17 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 16.
  • the solid grid is an ideal imaging grid
  • the grid structure formed by the "X" is a schematic diagram of the optical lens 45 of this embodiment after imaging.
  • the imaging of the optical lens 45 of this embodiment is basically the same as the ideal imaging, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the maximum value TDT of TV distortion in the imaging range of the optical lens 45 satisfies
  • 2.8277%, and the TV distortion in the imaging range of the optical lens 45 is relatively small.
  • the sixth lens 456 can not only correct the curvature of field and astigmatism of the image formed by the optical lens 45, but also correct distortion. effect.
  • the sixth lens 456 has the function of "one object with multiple uses”.
  • FIG. 18 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5.
  • the number of lenses of the optical lens 45 is six.
  • the optical lens 45 includes a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 has negative refractive power.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are non-rotationally symmetrical aspheric surfaces.
  • the other lenses are all rotationally symmetric lenses (that is, the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 are all rotationally symmetric lenses), and the object side of the rotationally symmetric lens and the image The sides are all rotationally symmetrical aspherical surfaces.
  • FIG. 18 illustrates the direction of the optical axis of the optical lens 45 by a solid line with an arrow. In addition, the direction of the arrow represents from the object side to the image side.
  • the design parameters of the optical lens 45 in the fifth embodiment of the present application are shown in Table 17 below.
  • the FOV of the optical lens 45 is 101°.
  • the aperture number Fno is 2.05, that is, the optical lens 45 of the present application can achieve a large angle of view and a large aperture, which can better meet the shooting requirements.
  • TTL is 12.031mm
  • ImagH is 4.25mm
  • ImagH/TTL 0.354, that is, while the effective pixel area projected on the photosensitive chip 42 by the optical lens 45 of this embodiment is larger, the total optical length of the optical lens 45 can be longer. Small, so as to obtain a higher image quality, while the length of the optical lens 45 can be smaller, which can be applied to thin electronic devices such as mobile phones and tablets.
  • symbols such as A0, A1, A2, A3, A4, A5, and A6 represent aspheric coefficients.
  • the object-side and image-side surface shapes of the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 can be obtained.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • symbols such as A10, A12, A14, A21, A23, A25, and A27 represent polynomial coefficients.
  • the surface shape of the object side surface and the image side surface of the sixth lens 456 of this embodiment can be designed.
  • Polynomial coefficients that do not exist in the table are 0.
  • FIG. 19 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 18.
  • the solid grid is an ideal imaging grid
  • the grid structure formed by the "X" is a schematic diagram of the optical lens 45 of this embodiment after imaging.
  • the imaging of the optical lens 45 of this embodiment is basically the same as the ideal imaging, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the maximum value TDT of TV distortion in the imaging range of the optical lens 45 satisfies
  • 2.5481%, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the sixth lens 456 can not only correct the curvature of field and astigmatism of the image formed by the optical lens 45, but also correct distortion. effect.
  • the sixth lens 456 has the function of "one object with multiple uses”.
  • FIG. 20 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5.
  • the number of lenses of the optical lens 45 is six.
  • the optical lens 45 includes a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 has negative refractive power.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are non-rotationally symmetrical aspheric surfaces.
  • the other lenses are all rotationally symmetric lenses (that is, the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 are all rotationally symmetric lenses), and the object side of the rotationally symmetric lens and the image The sides are all rotationally symmetrical aspherical surfaces.
  • FIG. 20 illustrates the direction of the optical axis of the optical lens 45 by a solid line with an arrow. In addition, the direction of the arrow represents from the object side to the image side.
  • the design parameters of the optical lens 45 of the sixth embodiment of the present application are shown in Table 21 below.
  • the design parameters of the optical lens 45 of the sixth embodiment of the present application can be obtained as shown in Table 22.
  • the FOV of the optical lens 45 is 112°.
  • the aperture number Fno is 2.23, that is, the optical lens 45 of the present application can achieve a large viewing angle and a large aperture, which can better meet the requirements of shooting.
  • TTL is 11.2236mm
  • ImagH is 5.00mm
  • ImagH/TTL 0.445, that is, while the effective pixel area projected on the photosensitive chip 42 by the optical lens 45 of this embodiment is larger, the optical lens 45 has a larger effective pixel area.
  • the total length can be small, so as to obtain a higher image quality, the length of the optical lens 45 can be small, and it can be applied to thin electronic devices such as mobile phones and tablets.
  • symbols such as A0, A1, A2, A3, A4, A5, and A6 represent aspheric coefficients.
  • the object-side and image-side surface shapes of the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 can be obtained.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • symbols such as A10, A12, A14, A21, A23, A25, and A27 represent polynomial coefficients.
  • the surface shape of the object side surface and the image side surface of the sixth lens 456 of this embodiment can be designed.
  • z is the vector height parallel to the z axis; N is the total number of polynomial coefficients in the series, Ai is the coefficient of the i-th extended polynomial, r is the radial coordinate of the aspheric surface, and c is the aspheric vertex The curvature of the sphere, K is the constant of the quadric surface. Polynomial coefficients that do not exist in the table (such as A 1 , A 2, etc.) are 0.
  • FIG. 21 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 20.
  • the solid grid is an ideal imaging grid
  • the grid structure formed by the "X" is a schematic diagram of the optical lens 45 of this embodiment after imaging.
  • the imaging of the optical lens 45 of this embodiment is basically the same as the ideal imaging, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the maximum value TDT of the TV distortion in the imaging range of the optical lens 45 satisfies
  • 1.5569%, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the sixth lens 456 can not only correct the curvature of field and astigmatism of the image formed by the optical lens 45, but also correct distortion. effect.
  • the sixth lens 456 has the function of "one object with multiple uses”.
  • FIG. 22 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5.
  • the number of lenses of the optical lens 45 is six.
  • the optical lens 45 includes a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 has negative refractive power.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are non-rotationally symmetrical aspheric surfaces.
  • the other lenses are all rotationally symmetric lenses (that is, the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 are all rotationally symmetric lenses), and the object side of the rotationally symmetric lens and the image The sides are all rotationally symmetrical aspherical surfaces.
  • FIG. 22 illustrates the direction of the optical axis of the optical lens 45 by a solid line with an arrow. In addition, the direction of the arrow represents from the object side to the image side.
  • the design parameters of the optical lens 45 in the seventh embodiment of the present application are shown in Table 25 below.
  • the design parameters of the optical lens 45 of the seventh embodiment of the present application can be obtained as shown in Table 26.
  • the field of view FOV of the optical lens 45 is 113°, and the aperture number Fno is 2.23. That is, the optical lens 45 of the present application can achieve a large viewing angle and a large aperture, which can better meet the shooting requirements.
  • TTL is 12.2892mm
  • ImagH is -3.190mm
  • ImagH/TTL -0.260, that is, while the effective pixel area projected by the optical lens 45 of this embodiment onto the photosensitive chip 42 is larger, the optical lens 45
  • the total optical length of the lens can be smaller, so as to obtain higher imaging quality, while the length of the optical lens 45 can be smaller, which can be applied to thin electronic devices such as mobile phones and tablets.
  • symbols such as A0, A1, A2, A3, A4, A5, and A6 represent aspheric coefficients.
  • the object-side and image-side surface shapes of the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 can be obtained.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • symbols such as A10, A12, A14, A21, A23, A25, and A27 represent polynomial coefficients.
  • the surface shape of the object side surface and the image side surface of the sixth lens 456 of this embodiment can be designed.
  • z is the vector height parallel to the z axis; N is the total number of polynomial coefficients in the series, Ai is the coefficient of the i-th extended polynomial, r is the radial coordinate of the aspheric surface, and c is the aspheric vertex The curvature of the sphere, K is the constant of the quadric surface. Polynomial coefficients that do not exist in the table (such as A 1 , A 2, etc.) are 0.
  • FIG. 23 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 22.
  • the solid grid is an ideal imaging grid
  • the grid structure formed by the "X" is a schematic diagram of the optical lens 45 of this embodiment after imaging.
  • the imaging of the optical lens 45 of this embodiment is basically the same as the ideal imaging, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the maximum value TDT of TV distortion in the imaging range of the optical lens 45 satisfies
  • 4.8350%, and the TV distortion in the imaging range of the optical lens 45 is relatively small.
  • the sixth lens 456 can not only correct the curvature of field and astigmatism of the image formed by the optical lens 45, but also correct distortion. effect.
  • the sixth lens 456 has the function of "one object with multiple uses”.
  • FIG. 24 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5.
  • the number of lenses of the optical lens 45 is six.
  • the optical lens 45 includes a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 has positive refractive power.
  • the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are non-rotationally symmetrical aspheric surfaces.
  • the other lenses are all rotationally symmetric lenses (that is, the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 are all rotationally symmetric lenses), and the object side of the rotationally symmetric lens and the image The sides are all rotationally symmetrical aspherical surfaces.
  • FIG. 24 illustrates the direction of the optical axis of the optical lens 45 by a solid line with an arrow. In addition, the direction of the arrow represents from the object side to the image side.
  • the design parameters of the optical lens 45 of the eighth embodiment of the present application are shown in Table 29 below.
  • the field of view FOV of the optical lens 45 is 130°, and the aperture number Fno is 2.23. That is, the optical lens 45 of the present application can achieve a large viewing angle and a large aperture, which can better meet the shooting requirements.
  • TTL is 11.1277mm
  • ImagH is 4.995mm
  • ImagH/TTL 0.445, that is, while the effective pixel area projected by the optical lens 45 of this embodiment onto the photosensitive chip 42 is larger, the optical lens 45 has a larger effective pixel area.
  • the total length can be small, so as to obtain a higher image quality, the length of the optical lens 45 can be small, and it can be applied to thin electronic devices such as mobile phones and tablets.
  • symbols such as A0, A1, A2, A3, A4, A5, and A6 represent aspheric coefficients.
  • the object-side and image-side surface shapes of the first lens 451, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 can be obtained.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • symbols such as A10, A12, A14, A21, A23, A25, and A27 represent polynomial coefficients.
  • the surface shape of the object side surface and the image side surface of the sixth lens 456 of this embodiment can be designed.
  • z is the vector height parallel to the z axis; N is the total number of polynomial coefficients in the series, Ai is the coefficient of the i-th extended polynomial, r is the radial coordinate of the aspheric surface, and c is the aspheric vertex The curvature of the sphere, K is the constant of the quadric surface. Polynomial coefficients that do not exist in the table (such as A 1 , A 2, etc.) are 0.
  • FIG. 25 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 24.
  • the solid grid is an ideal imaging grid
  • the grid structure formed by the "X" is a schematic diagram of the optical lens 45 of this embodiment after imaging.
  • the imaging of the optical lens 45 of this embodiment is basically the same as the ideal imaging, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the maximum value TDT of TV distortion in the imaging range of the optical lens 45 satisfies
  • 3.4559%, and the TV distortion in the imaging range of the optical lens 45 is relatively small.
  • the sixth lens 456 can not only correct the curvature of field and astigmatism of the image formed by the optical lens 45, but also correct distortion. effect.
  • the sixth lens 456 has the function of "one object with multiple uses”.
  • FIG. 26 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5.
  • the number of lenses of the optical lens 45 is six.
  • the optical lens 45 includes a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 has negative refractive power.
  • the object side 4511 and the image side 4512 of the first lens 451 are both non-rotationally symmetrical aspheric surfaces.
  • the other lenses are all rotationally symmetric lenses (that is, the second lens 452, the third lens 453, the fourth lens 454, the fifth lens 455, and the sixth lens 456 are all rotationally symmetric lenses), and the object side of the rotationally symmetric lens and the image
  • the sides are all rotationally symmetrical aspherical surfaces.
  • FIG. 26 illustrates the direction of the optical axis of the optical lens 45 by a solid line with an arrow. In addition, the direction of the arrow represents from the object side to the image side.
  • the design parameters of the optical lens 45 of the ninth embodiment of the present application are shown in Table 33 below.
  • the design parameters of the optical lens 45 of the ninth embodiment of the present application can be obtained as shown in Table 34 below.
  • the field of view FOV of the optical lens 45 is 125°, and the aperture number Fno is 2.23. That is, the optical lens 45 of the present application can achieve a large viewing angle and a large aperture, which can better meet the shooting requirements.
  • TTL is 8.0mm
  • ImagH is 4.89mm
  • ImagH/TTL 0.63
  • the effective pixel area projected on the photosensitive chip 42 by the optical lens 45 of this embodiment is larger
  • the optical lens 45 has a larger effective pixel area.
  • the total length can be small, so as to obtain a higher image quality, the length of the optical lens 45 can be small, and it can be applied to thin electronic devices such as mobile phones and tablets.
  • symbols such as A0, A1, A2, A3, A4, A5, and A6 represent aspheric coefficients.
  • the surface shapes of the object side surface and the image side surface of the second lens 452, the third lens 453, the fourth lens 454, the fifth lens 455, and the sixth lens 456 can be designed.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • symbols such as A10, A12, A14, A21, A23, A25, and A27 represent polynomial coefficients.
  • the surface shape of the object side surface and the image side surface of the first lens 451 of this embodiment can be designed.
  • z is the vector height parallel to the z axis; N is the total number of polynomial coefficients in the series, Ai is the coefficient of the i-th extended polynomial, r is the radial coordinate of the aspheric surface, and c is the aspheric vertex The curvature of the sphere, K is the constant of the quadric surface. Polynomial coefficients that do not exist in the table (such as A 1 , A 2, etc.) are 0.
  • FIG. 27 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 26.
  • the solid grid is an ideal imaging grid
  • the grid structure formed by the "X" is a schematic diagram of the optical lens 45 in this embodiment after imaging.
  • the imaging of the optical lens 45 of this embodiment is basically the same as the ideal imaging, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the maximum value TDT of TV distortion in the imaging range of the optical lens 45 satisfies
  • 1.4771%, and the TV distortion in the imaging range of the optical lens 45 is relatively small.
  • the object side 4511 and the image side 4512 of the first lens 451 are non-rotationally symmetrical aspheric surfaces, the light reflected by the object to be imaged can be corrected for a large field of view when it enters from the lens close to the object side.
  • the obvious distortion caused by the problem can be corrected more easily.
  • FIG. 28 is a schematic structural diagram of still another embodiment of the lens of the optical lens shown in FIG. 5.
  • the number of lenses of the optical lens 45 is six.
  • the optical lens 45 includes a first lens 451, a second lens 452, a third lens 453, a fourth lens 454, a fifth lens 455, and a sixth lens 456 that are sequentially arranged from the object side to the image side.
  • the first lens 451, the third lens 453, and the fifth lens 455 all have positive refractive power.
  • Both the second lens 452 and the fourth lens 454 have negative refractive power.
  • the sixth lens 456 has negative refractive power.
  • the object side 4511 and the image side 4512 of the first lens 451 are both non-rotationally symmetrical aspheric surfaces.
  • Both the object side surface 4561 and the image side surface 4562 of the sixth lens 456 are non-rotationally symmetrical aspheric surfaces.
  • the other lenses are all rotationally symmetric lenses (that is, the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 are all rotationally symmetric lenses), and the object side and the image side of the rotationally symmetric lens are all rotationally symmetric The aspherical surface.
  • the field of view FOV of the optical lens 45 is 135°, and the aperture number Fno is 2.3. That is, the optical lens 45 of the present application can achieve a large viewing angle and a large aperture, which can better meet the shooting requirements.
  • TTL is 8.1mm
  • ImagH is 4.36mm
  • ImagH/TTL 0.538, that is, while the effective pixel area projected on the photosensitive chip 42 by the optical lens 45 of this embodiment is larger, the optical lens 45 has a larger effective pixel area.
  • the total length can be small, so as to obtain a higher image quality, the length of the optical lens 45 can be small, and it can be applied to thin electronic devices such as mobile phones and tablets.
  • symbols such as A0, A1, A2, A3, A4, A5, and A6 represent aspheric coefficients.
  • the surface shapes of the object side surface and the image side surface of the second lens 452, the third lens 453, the fourth lens 454, and the fifth lens 455 can be designed.
  • z is the vector height of the aspheric surface.
  • r is the radial coordinate of the aspheric surface.
  • c is the curvature of the aspheric apex.
  • K is the quadric constant.
  • a m is the aspheric coefficient.
  • symbols such as A10, A12, A14, A21, A23, A25, and A27 represent polynomial coefficients.
  • the object side 4511 and the image side 4512 of the first lens 451 and the object side 4561 and the image side 4562 of the sixth lens 456 of the present embodiment can be designed.
  • z is the vector height parallel to the z axis; N is the total number of polynomial coefficients in the series, Ai is the coefficient of the i-th extended polynomial, r is the radial coordinate of the aspheric surface, and c is the aspheric vertex The curvature of the sphere, K is the constant of the quadric surface. Polynomial coefficients that do not exist in the table (such as A 1 , A 2, etc.) are 0.
  • FIG. 29 is an imaging simulation diagram of each lens of the optical lens shown in FIG. 28.
  • the solid grid is an ideal imaging grid
  • the grid structure formed by the "X" is a schematic diagram of the optical lens 45 in this embodiment after imaging. It can be seen from the figure that the imaging of the optical lens 45 of this embodiment is basically the same as the ideal imaging, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the maximum value TDT of TV distortion in the imaging range of the optical lens 45 satisfies
  • 1.8%, and the TV distortion in the imaging range of the optical lens 45 is small.
  • the sixth lens 456 can not only correct the curvature of field and astigmatism of the image formed by the optical lens 45, but also correct distortion. effect.
  • the first lens 451, the third lens 453, and the fifth lens 455 are set to have positive refractive power
  • the second lens 452 and the fourth lens 454 are set to have negative refractive power
  • the sixth lens 456 is set to have positive or negative refractive power, so that while ensuring that the optical lens 45 can achieve better imaging quality, the field of view angle of the optical lens 45 can be increased to a large extent, realizing the ultra-wide angle of the optical lens 45 set up.
  • the imaging distortion of the optical lens becomes more obvious.
  • the imaging distortion of the optical lens is already greater than 10%.
  • the imaging distortion of the optical lens is more obvious, and the image quality is worse.
  • the design freedom of the optical system is improved, and the asymmetry of the free area can be used to optimize the The imaging quality of the optical lens corrects the distortion of the optical lens, thereby ensuring that the optical lens has a better imaging quality.
  • the optical lens 45 of this embodiment can not only realize ultra-wide-angle shooting, but also solve the distortion problem in ultra-wide-angle imaging to a large extent.
  • an ultra-wide-angle optical lens 45 with less imaging distortion is designed.

Abstract

一种光学镜头(45)、摄像模组(40)及电子设备(100)。光学镜头(45)包括自物侧至像侧依次排列的第一透镜(451)、第二透镜(452)、第三透镜(453)、第四透镜(454)、第五透镜(455)以及第六透镜(456)。第一透镜(451)、第三透镜(453)及第五透镜(455)均具有正光焦度,第二透镜(452)及第四透镜(454)均具有负光焦度,第六透镜(456)具有正光焦度或者负光焦度。第一透镜(451)至第六透镜(456)中的物侧面和像侧面包括至少一个非旋转对称的非球面。光学镜头(45)应用于摄像模组(40)和电子设备(100),摄像模组(40)和电子设备(100)能够在实现超广角拍摄的同时,又能够较大程度地解决超广角成像中的畸变问题。

Description

光学镜头、摄像模组及电子设备
本申请要求于2020年05月30日提交中国专利局、申请号为202010480875.1、申请名称为“光学镜头、摄像模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及镜头领域,尤其涉及到一种光学镜头、摄像模组及电子设备。
背景技术
近年来,手机拍照的需求越来越高,尤其是大尺寸、高像素CMOS(complementary metal oxide semiconductor,互补金属氧化物半导体)芯片的普及,各大厂商在追求镜头轻薄化和小型化的同时,对成像品质提出了更严苛的要求。然而,传统的手机在成像上存在着明显的畸变问题。目前,为了解决畸变的问题,一般通过算法裁切或算法补偿畸变的方式来减小畸变。但是,通过算法补偿畸变的方式有损失解析力的风险,且在视频应用场景或拍照预览模式实现实时矫正时需耗费系统资源,对设备功耗、散热、处理速度等都是极大的挑战。
发明内容
本申请提供了一种光学镜头、摄像模组及电子设备,通过第一透镜至第六透镜的光焦度设计,以及在第一透镜至第六透镜的物侧面和像侧面中包括至少一个非旋转对称的非球面,从而实现光学镜头的超广角设置的同时,又能够较大程度地降低成像畸变。
第一方面,本申请提供了一种光学镜头。光学镜头包括自物侧至像侧依次排列的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜。所述第一透镜、所述第三透镜及所述第五透镜均具有正光焦度。所述第二透镜及所述第四透镜均具有负光焦度。所述第六透镜具有正光焦度或者负光焦度。
所述第一透镜至所述第六透镜中的物侧面和像侧面包括至少一个非旋转对称的非球面。
需要说明的是,本申请实施例中以透镜为界,被摄物体所在的一侧为物侧,透镜朝向物侧的表面可以称为物侧面;以透镜为界,被摄物体的图像所在的一侧为像侧,透镜朝向像侧的表面可以称为像侧面。
在本实现方式中,通过将所述第一透镜、所述第三透镜及所述第五透镜设置为正光焦度,所述第二透镜及所述第四透镜设置为负光焦度,所述第六透镜设置为正光焦度或者负光焦度,从而在保证所述光学镜头实现较好的成像质量的同时,所述光学镜头的视场角能够较大程度地提高,实现光学镜头的超广角设置。
可以理解的是,随着光学镜头的视场角增大,光学镜头的成像畸变越加明显。例如,当光学镜头的视场角达到100°时,光学镜头的成像畸变已经大于10%。而对于能够实现超广角拍摄的光学镜头,成像畸变更加的明显,成像质量更差。在本实施方式中,通过在实现超广角设计的光学镜头的透镜中设置至少一个非旋转对称的非球面,从而提高光学系统的设计自由度,并且能够利用自由区域的非对称性,优化所述光学镜头的成像品质,矫正 光学镜头的畸变,进而保证所述光学镜头具有较好的成像质量。
故而,本实现方式的光学镜头既能够在实现超广角拍摄的同时,又能够较大程度地解决超广角成像中的畸变问题。换言之,本实现方式设计了一种成像畸变较小的超广角光学镜头。
一种实现方式中,所述第一透镜的焦距f1与所述第二透镜的焦距f2满足:-0.5<f2/f1<-0.01。
可以理解的是,当所述第一透镜的焦距f1与所述第二透镜的焦距f2满足上述关系式时,所述第一透镜与所述第二透镜能够较好地配合,从而较大程度地采集较大视场角的光线,进而实现光学镜头的超广角设置。
一种实现方式中,所述第一透镜的焦距f1与所述第二透镜的焦距f2满足:-0.35≤f2/f1≤-0.03。
一种实现方式中,所述第三透镜的焦距f3与所述第四透镜的焦距f4满足:-4<f4/f3<0。
可以理解的是,当所述第三透镜的焦距f3与所述第四透镜的焦距f4满足上述关系式时,所述第三透镜与所述第四透镜能够较好地配合,从而较好地校正所述光学镜头成像的光瞳像差。另外,所述第三透镜与所述第四透镜能够将穿过所述第二透镜的光线的发散角进行压缩。
一种实现方式中,所述第三透镜的焦距f3与所述第四透镜的焦距f4满足:-2.5≤f4/f3<0。
一种实现方式中,所述第五透镜的焦距f5与所述光学镜头的焦距f满足:0.1<f5/f<1.5。
可以理解的是,当所述第五透镜的焦距f5与所述光学镜头的焦距f满足上述关系式时,能够合理的分配所述第五透镜承担的光焦度,以使所述第五透镜较好的校正像差的效果。
一种实现方式中,所述第五透镜的焦距f5与所述光学镜头的焦距f满足:0.5≤f5/f≤1。
一种实现方式中,所述第三透镜的像侧面的曲率半径R6与所述第五透镜的像侧面的曲率半径R10满足:0<R6/R10<2.9。
可以理解的是,当所述第三透镜的像侧面的曲率半径R6与所述第五透镜的像侧面的曲率半径R10满足上述关系时,所述第三透镜和所述第五透镜能够尽量压缩光线发散角,校正系统场曲和畸变,从而实现更好的成像效果。
一种实现方式中,所述第三透镜的像侧面的曲率半径R6与所述第五透镜的像侧面的曲率半径R10满足0<R6/R10≤2。
一种实现方式中,所述第四透镜与所述第五透镜之间的距离T45与所述光学镜头的焦距f满足:0.05<T45/f<0.4。
可以理解的是,当所述第四透镜与所述第五透镜之间的距离T45与所述光学镜头的焦距f满足上述关系时,所述第五透镜的物侧面的弯曲程度能够较好地控制。此时,所述第五透镜的加工难度较低,可实施性较佳。
一种实现方式中,所述第四透镜与所述第五透镜之间的距离T45与所述光学镜头的焦 距f满足:0.1≤T45/f≤0.3。
一种实现方式中,所述光学镜头满足:0<(T23+T56)/TTL<0.5;
其中,T23为所述第二透镜与第三透镜之间的距离。T56为所述第五透镜与所述第六透镜之间的距离。TTL为在所述光学镜头的光轴方向上,所述第一透镜的物侧面至成像面的距离。
可以理解的是,当所述光学镜头满足上述关系时,所述光学镜头的系统总长TTL能够得到较好地控制,从而有利于所述光学镜头的小型化设置。此外,所述光学镜头的系统高度也能够得到较好地压缩,从而有利于所述光学镜头的薄型化设置。
一种实现方式中,所述光学镜头满足:0<(T23+T56)/TTL≤0.3。
一种实现方式中,至少一个所述非旋转对称的非球面包括第一顶点及第二顶点。所述第一顶点与所述第二顶点位于所述非旋转对称的非球面的光学有效区内,且均位于所述非旋转对称的非球面所在透镜的弧矢面内。所述第一顶点与所述第二顶点关于所述非旋转对称的非球面所在透镜的子午面对称。
所述第一顶点至第一基准面的距离等于所述第二顶点至所述第一基准面的距离。所述第一基准面垂直于所述光学镜头的光轴,且所述光学镜头的光轴与所述非旋转对称的非球面的交点位于所述第一基准面。
可以理解的是,通过设置所述第一顶点与所述第二顶点关于所述非旋转对称的非球面所在透镜的子午面对称,且所述第一顶点至第一基准面的距离等于所述第二顶点至所述第一基准面的距离,从而使得光学镜头能够实现更好的矫正效果,得到质量较高的成像。
一种实现方式中,所述非旋转对称的非球面还包括第三顶点及第四顶点。所述第三顶点及所述第四顶点均位于所述非旋转对称的非球面的光学有效区内,且均位于所述非旋转对称的非球面所在透镜的子午面内。所述第三顶点与所述第四顶点关于所述非旋转对称的非球面所在透镜的弧矢面对称。
所述第三顶点至所述第一基准面的距离等于所述第四顶点至所述第一基准面的距离。
可以理解的是,通过设置所述第三顶点与所述第四顶点关于所述非旋转对称的非球面所在透镜的弧矢面对称,且所述第一顶点至第一基准面的距离等于所述第三顶点至所述第一基准面的距离,从而使得光学镜头能够实现更好的矫正效果,得到质量较高的成像。
一种实现方式中,所述光学镜头包括光阑。所述光阑位于所述第二透镜与所述第三透镜之间。
可以理解的是,所述光阑用于限制进光量,以改变成像的亮度。另外,当所述光阑位于所述第二透镜与所述第三透镜之间时,所述光阑能够合理分配第一透镜至第六透镜的作用,例如,第一透镜与第二透镜能够用于较大程度地接收大视场角的光线。第三透镜至第六透镜能够用于校正像差的作用。此时,本实施方式的光学镜头用于扩大视场角的透镜的数量较少,有利于简化光学镜头的结构。另外,本实施方式的光学镜头用于校正像差的透镜的数量较多,有利于获得较佳的成像质量。此外,当所述光阑位于所述第二透镜与所述第三透镜之间时,便于光阑像差的校正。
一种实现方式中,所述光学镜头满足:|TDT|≤5.0%;其中,TDT为所述光学镜头的成像范围内的TV畸变的最大值。
可以理解的是,当所述光学镜头的|TDT|≤5.0%时,所述光学镜头的畸变较小。所述光学镜头的成像质量较佳。
一种实现方式中,所述光学镜头满足:100°≤FOV≤140°;FOV为所述摄像镜头组的视场角。
可以理解的是,当所述光学镜头的视场角FOV满足:100°≤FOV≤140°时,所述光学镜头的视场角较大,也即所述光学镜头实现超广角设置。
一种实现方式中,所述光学镜头满足:135°<FOV≤140°。
一种实现方式中,所述光学镜头满足:0<ImagH/TTL<1。其中,TTL为在所述光学镜头的光轴方向上,所述第一透镜的物侧面至成像面的距离,ImagH为成像面的像高。
可以理解的是,当所述光学镜头满足上述关系时,所述光学镜头的成像面的像高较高,也即所述光学镜头的成像质量较佳,此外,所述光学镜头的总长度较小,有利于应用于手机、平板等薄型电子设备中。
第二方面,本申请提供了一种摄像模组。该摄像模组包括电路板、感光芯片以及如上所述的光学镜头,所述感光芯片与所述光学镜头均固定于所述电路板,所述光学镜头用于将环境光线投射至所述感光芯片。
在本实施例中,当所述光学镜头应用于所述摄像模组时,所述摄像模组在实现超广角拍摄的同时,又能够较大程度地降低成像畸变。此外,摄像模组降低成像畸变的方式不会耗费系统资源。
第三方面,本申请提供了一种电子设备。该电子设备可以为手机和平板电脑等。该电子设备包括壳体以及如上述的摄像模组,所述摄像模组安装于所述壳体内。
在本实施例中,当所述摄像模组应用于所述电子设备时,所述电子设备在实现超广角拍摄的同时,又能够较大程度地降低成像畸变。此外,电子设备降低成像畸变的方式不会耗费系统资源。
附图说明
图1是本申请实施例提供的电子设备的结构示意图;
图2是图1所示的电子设备的部分分解示意图;
图3是图1所示的电子设备在A-A线处的部分剖面示意图;
图4是图1所示的电子设备的摄像模组的分解示意图;
图5是图4所示的摄像模组的光学镜头的结构示意图;
图6是图5所示的光学镜头的第六透镜的物侧面的平面示意图;
图7是图6所示的第六透镜在弧矢面的剖面示意图;
图8是图6所示的第六透镜在子午面的剖面示意图;
图9是图6所示的光学镜头的第六透镜的像侧面的平面示意图;
图10是图5所示的光学镜头的透镜的一种实施方式的结构示意图;
图11是图10所示的光学镜头的各个透镜的成像仿真图;
图12是图5所示的光学镜头的透镜的另一种实施方式的结构示意图;
图13是图12所示的光学镜头的各个透镜的成像仿真图;
图14是图5所示的光学镜头的透镜的再一种实施方式的结构示意图;
图15是图14所示的光学镜头的各个透镜的成像仿真图;
图16是图5所示的光学镜头的透镜的再一种实施方式的结构示意图;
图17是图16所示的光学镜头的各个透镜的成像仿真图;
图18是图5所示的光学镜头的透镜的再一种实施方式的结构示意图;
图19是图18所示的光学镜头的各个透镜的成像仿真图;
图20是图5所示的光学镜头的透镜的再一种实施方式的结构示意图;
图21是图20所示的光学镜头的各个透镜的成像仿真图;
图22是图5所示的光学镜头的透镜的再一种实施方式的结构示意图;
图23是图22所示的光学镜头的各个透镜的成像仿真图;
图24是图5所示的光学镜头的透镜的再一种实施方式的结构示意图;
图25是图24所示的光学镜头的各个透镜的成像仿真图;
图26是图5所示的光学镜头的透镜的再一种实施方式的结构示意图;
图27是图26所示的光学镜头的各个透镜的成像仿真图;
图28是图5所示的光学镜头的透镜的再一种实施方式的结构示意图;
图29是图28所示的光学镜头的各个透镜的成像仿真图。
具体实施方式
为方便理解本申请实施例提供的光学镜头,对本申请中涉及到的有关名词进行解释:
光轴,是一条经过各个透镜的中心的轴线。
以透镜为界,被摄物体所在一侧为物侧,透镜靠近物侧的表面称为物侧面。
以透镜为界,被摄物体的图像所在的一侧为像侧,透镜靠近像侧的表面称为像侧面。
正光焦度,也可以称为正折光力,表示透镜有正的焦距。
负光焦度,也可以称为负折光力,表示透镜有负的焦距。
焦距(focal length),也称为焦长,是光学系统中衡量光的聚集或发散的度量方式,指无限远的景物通过透镜或透镜组在焦平面结成清晰影像时,透镜或透镜组的光学中心至焦平面的垂直距离。从实用的角度可以理解为镜头中心至成像平面的距离。对于定焦镜头来说,其光学中心的位置是固定不变的。
视场角(field of view,FOV),在光学仪器中,以光学仪器的镜头为顶点,以被测目标的物像可通过镜头的最大范围的两条边缘构成的夹角,称为视场角。视场角的大小决定了光学仪器的视野范围,视场角越大,视野就越大,光学倍率就越小。
光圈,是用来控制光线透过镜头的光量的装置,它通常是在镜头内。表达光圈大小可以用F数(符号:Fno)表示。
光圈F数,是镜头的焦距/镜头通光直径得出的相对值(相对孔径的倒数)。光圈F数愈小,在同一单位时间内的进光量便愈多。光圈F数越大,景深越小,拍照的背景内容将会虚化,类似长焦镜头的效果。
光学总长(total track length,TTL),是指从物侧指向像侧的方向,光学镜头的第一透镜的物侧面至成像面的距离。
入瞳直径(Entrance Pupil Diameter,EPD),指光学镜头的焦距与光圈F值的比值。
阿贝数,即色散系数,是光学材料在不同波长下的折射率的差值比,代表材料色散程度大小。
畸变(distortion),也称为失真,光学系统对物体所成的像相对于物体本身而言的失真程度。畸变是由于光阑球差的影响,不同视场的主光线通过光学系统后与高斯像面的交点高度不等于理想像高,两者之差就是畸变。因此畸变只改变轴外物点在理想面上的成像位置,使像的形状产生失真,但不影响像的清晰度。
TV畸变(TV distortion)是相对畸变,即实际图像的变形程度。
TDT表示的是光学镜头的成像范围内的TV畸变的最大值。
ImagH(Imaging Hight)表示的是感光芯片上有效像素区域对角线长的一半,也即成像面的像高。
主光线(主光束),光线由物的边缘出射,通过孔径光阑的中心最后到达像的边缘的光束。
子午面,光轴外物点的主光线(主光束)与光轴所构成的平面,称为子午面。
弧矢面,过光轴外物点的主光线(主光束),并与子午面垂直的平面,称为弧矢面。
首先,下文将结合相关附图具体介绍电子设备、摄像模组以及光学镜头的具体结构。
请参阅图1,图1是本申请实施例提供的电子设备的结构示意图。电子设备100可以为手机、平板电脑(tablet personal computer)、膝上型电脑(laptop computer)、个人数码助理(personal digital assistant,PDA)、照相机、个人计算机、笔记本电脑、车载设备、可穿戴设备、增强现实(augmented reality,AR)眼镜、AR头盔、虚拟现实(virtual reality,VR)眼镜或者VR头盔、或者具有拍照及摄像功能的其他形态的设备。图1所示实施例的电子设备100以手机为例进行阐述。
如图2所示,并结合图1所示,图2是图1所示的电子设备的部分分解示意图。电子设备100包括屏幕10、壳体20、主机电路板30以及摄像模组40。可以理解的是,图1及图2仅示意性的示出了电子设备100包括的一些部件,这些部件的实际形状、实际大小、实际位置和实际构造不受图1及图2限定。另外,当电子设备100为其他形态的设备时,电子设备100也可以不包括屏幕20及主机电路板30。
其中,屏幕10可用于显示图像、文字等。屏幕10可以为平面屏,也可以为曲面屏。此外,屏幕10包括保护盖板11和显示屏12。保护盖板11层叠于显示屏12。保护盖板11可以紧贴显示屏12设置,可主要用于对显示屏12起到保护以及防尘作用。保护盖板11的材质可以为但不仅限于为玻璃。显示屏12可以采用有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏等。
其中,壳体20可用于支撑屏幕10。壳体20包括边框21以及后盖22。后盖22与屏幕10分别安装于边框21的相背两侧,此时,后盖22、边框21与屏幕10共同围出电子设备100的内部。电子设备100的内部可用于放置电子设备100的器件,例如电池、受话器以及麦克风等。
一种实施方式中,后盖22通过粘胶固定连接于边框21。在另一种实施方式中,后盖22与边框21形成一体结构,即后盖22与边框21为一个整体结构。
请再次参阅图2,并结合图1所示,后盖22具有透光部23。透光部23能够使环境光线进入电子设备100的内部。透光部23的形状不仅限于附图1及附图2所示意的圆形。例如,透光部23的形状也可以为椭圆形或者不规则图形。
请参阅图3,图3是图1所示的电子设备在A-A线处的部分剖面示意图。后盖22的透光部23为通孔。通孔将电子设备100的内部连通至电子设备100的外部。另外,电子设备100还包括摄像头装饰件51和盖板52。部分摄像头装饰件51可以固定于后盖22的内表面。部分摄像头装饰件51接触于通孔的孔壁。此外,盖板52固定连接在摄像头装饰件51的内表面。盖板52可以避免外界的水或者灰尘进入电子设备100的内部。盖板52可采用玻璃材料,也可以采用塑料。附图3示意了透光部23的一种设置方式。当然,透光部23也可以采用其他设置方式。例如,后盖22的材质为透明材料。后盖22的局部形成透光部23。
请再次参阅图3,并结合图2所示,主机电路板30安装于电子设备100的内部。主机电路板30可用于安装电子设备100的电子元器件。例如,电子元器件可以包括处理器(central processing unit,CPU)、存储器、电池管理单元或者图像处理器。
此外,主机电路板30可以为硬质电路板,也可以为柔性电路板,也可以为软硬结合电路板。此外,主机电路板30可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用FR-4和Rogers的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板为一种高频板。
请再次参阅图3,并结合图2所示,摄像模组40固定于电子设备100的内部。附图3示意了摄像模组40固定于屏幕10朝向后盖22的表面。在其他实施方式中,壳体20可以包括中板。中板连接于边框21的内表面,且中板位于屏幕10与后盖22之间。此时,摄像模组40可以固定于中板朝向后盖22的表面。
另外,摄像模组40的数量不局限于图1至图3所给出的一个。摄像模组40的数量也可以为两个,或大于两个。另外,当摄像模组40的数量为两个或者两个以上时,两个或者两个以上的摄像模组40可以集成为一个摄像组件。此外,摄像模组40可以为但不仅限于为自动对焦(Auto Focus,AF)摄像模组、定焦(Fix Focus,FF)摄像模组。本实施例的摄像模组40以定焦摄像模组为例进行描述。
在本实施例中,摄像模组40电连接于主机电路板30。此时,主机电路板30上的电子元器件(例如处理器)能够向摄像模组40发送信号,以控制摄像模组40拍摄图像或者录像。在其他实施例中,当电子设备100没有设置主机电路板30时,摄像模组40可以直接接收信号,并根据信号进行拍摄。
请参阅图4,并结合图3所示,图4是图1所示的电子设备的摄像模组的分解示意图。摄像模组40包括模组电路板41、感光芯片42、支架43、滤光片44、光学镜头45及外壳46。
其中,模组电路板41可以固定于屏幕10朝向后盖22的表面。在其他实施例中,当壳体20包括中板时,模组电路板41也可以固定于中板朝向后盖22的表面。
此外,模组电路板41电连接于主机电路板30。这样,信号能够在主机电路板30与模 组电路板41之间传输。
其中,感光芯片42固定于模组电路板41,且电连接于模组电路板41。
一种实施方式中,感光芯片42可以通过板上芯片封装(chifon board,COB)技术贴装在模组电路板41。在其他实施方式中,感光芯片42也可以通过焊球阵列封装(ballgrid array,BGA)技术或者栅格阵列封装(land grid array,LGA)技术封装在模组电路板41。
在其他实施方式中,模组电路板41上还可以安装有电子元器件或者芯片(例如驱动芯片)。电子元器件或者芯片固定于感光芯片42的周边。电子元器件或者芯片可用于辅助感光芯片42采集环境光线。
其中,支架43固定于模组电路板41,且与感光芯片42位于模组电路板41的同一侧。支架43开设有透光孔431。感光芯片42可以位于透光孔431内。感光芯片42可以采集穿过透光孔431的环境光线。
此外,滤光片44固定于支架43,且滤光片44可以位于透光孔431内。滤光片44用于过滤环境光线中的杂光,并使过滤后的环境光线投射至感光芯片42,从而保证电子设备100拍摄图像具有较佳的清晰度。滤光片44可以为但不仅限于为蓝色玻璃滤光片。例如,滤光片44还可以为反射式红外滤光片,或者是双通滤光片(双通滤光片可使环境光线中的可见光和红外光同时透过,或者使环境光线中的可见光和其他特定波长的光线(例如紫外光)同时透过,或者使红外光和其他特定波长的光线(例如紫外光)同时透过。)。
请参阅图4,并结合图3所示,外壳46固定于支架43背向模组电路板43的表面。外壳46可用于固定连接光学镜头45,还可以用于保护光学镜头45。
另外,光学镜头45固定于外壳46的内侧。附图3示意了光学镜头45部分位于外壳46所围的区域内,部分伸出外壳46。在其他实施例中,光学镜头45也可以全部位于外壳46所围的区域内。
上文具体介绍了摄像模组40的相关部件的结构。下文将结合附图具体介绍光学镜头46的结构以及相关光学参数的设置。
请参阅图5,图5是图4所示的摄像模组的光学镜头的结构示意图。光学镜头45包括镜筒450以及自物侧至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456依次安装于镜筒450内。在其他实施方式中,光学镜头45也可以不包括镜筒450。第一透镜451至第六透镜456可以安装于摄像模组40的外壳46内。
另外,本实施例的光学镜头45还包括光阑457。光阑457位于每两个透镜之间。光阑可以为孔径光阑,孔径光阑用于限制进光量,以改变成像的亮度。光阑的位置不仅限于附图5所示意的光阑位于第二透镜452与第三透镜453之间。可以理解的是,当光阑457位于第二透镜452与第三透镜453之间时,光阑457能够合理分配第一透镜451至第六透镜456的作用,例如,第一透镜451与第二透镜452能够用于较大程度地接收大视场角的光线。第三透镜453至第六透镜456能够用于校正像差的作用。此时,本实施方式的光学镜头45用于扩大视场角的透镜的数量较少,有利于简化光学镜头45的结构。另外,本实施方式的光学镜头45用于校正像差的透镜的数量较多,有利于获得较佳的成像质量。此外, 当光阑457位于第二透镜452与第三透镜453之间时,便于光阑457像差的校正。
在其他实施方式中,光学镜头45也可以不包括光阑。可以理解的是,图5仅示意性的示出了光学镜头45的一些部件,这些部件的实际形状、实际大小和实际构造不受图5限定。
在本实施例中,第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第四透镜454均具有负光焦度。第六透镜456可以具有正光焦度,也可以具有负光焦度。这样,通过第一透镜451至第六透镜456的光焦度设置,来使得光学镜头45能够在实现较好的成像质量的同时,光学镜头45的视场角能够较大程度地提高,从而实现光学镜头45的超广角设置。
在一种实施方式中,第一透镜451能够用于扩大光学镜头45的视场角,从而使得较大视场角的光线进入光学镜头45内。第二透镜452能够与第一透镜451配合,以使得大角度的光线汇聚到感光芯片42上,从而增大光学镜头45的视场角。另外,第三透镜453与第四透镜454能够用于压缩光线的发散角。此外,第三透镜453与第四透镜454还能够用于校正光学镜头45的像差。第五透镜455能够用于对光线进行扩束,从而增大形成于感光芯片42上的成像像高。第六透镜456用于校正光学镜头45成像的场曲和像散,从而保证光学镜头45具有较佳的成像质量。
在本实施方式中,第一透镜451至第六透镜456中的物侧面和像侧面包括至少一个非旋转对称的非球面,也即第一透镜451的物侧面、第一透镜451的像侧面、第二透镜452的物侧面、第二透镜452的像侧面、……、第六透镜456的像侧面中至少一个面为非旋转对称的非球面。本实施方式以第六透镜456的物侧面4561以及像侧面4562为非旋转对称的非球面为例进行说明。需要说明的是,本实施例中以透镜为界,被摄物体所在的一侧为物侧,透镜朝向物侧的表面可以称为物侧面。以透镜为界,被摄物体的图像所在的一侧为像侧,透镜朝向像侧的表面可以称为像侧面。
可以理解的是,随着光学镜头的视场角增大,光学镜头的成像畸变越加明显。例如,当光学镜头的视场角达到100°时,光学镜头的成像畸变已经大于10%。而对于光学镜头的超广角设置,光学镜头的成像畸变更加的明显,成像质量更差。在本实施方式中,通过在实现超广角设计的光学镜头45的透镜中设置至少一个非旋转对称的非球面,从而提高光学系统的设计自由度,并且能够利用自由区域的非对称性,优化所述光学镜头的成像品质,矫正光学镜头的畸变,进而保证所述光学镜头具有较好的成像质量。
故而,本实施方式的光学镜头45既能够在实现超广角拍摄的同时,又能够较大程度地解决超广角成像中的畸变问题。换言之,本实施方式设计了一种成像畸变较小的超广角光学镜头45。
另外,当第六透镜456的物侧面4561以及像侧面4562为非旋转对称的非球面时,第六透镜456不仅能校正光学镜头45成像的场曲和像散,还能够起到矫正畸变的作用。第六透镜456具有“一物多用”的功能。
其中,非旋转对称的非球面满足以下公式:
Figure PCTCN2021092556-appb-000001
Figure PCTCN2021092556-appb-000002
其中,以第六透镜456的几何中心为原点O建立坐标系,第六透镜456的光轴方向为Z轴,位于第六透镜456的弧矢面内,且垂直于光轴的方向为X轴,位于第六透镜456的子午方面内,且垂直于光轴的方向为Y轴。z(x,y)为平行于Z轴的矢高。N为级数中多项式系数的总数。Ai为第i项扩展多项式的系数。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。
可以理解的是,通过上述关系式,能够确定本实施例的第六透镜456的物侧面4561与像侧面4562为非旋转对称的非球面。
另外,除了第六透镜456之外,第一透镜451至第六透镜456中剩下的透镜为旋转对称透镜。本实施例以第一透镜451至第五透镜455为旋转对称透镜为例进行说明。其中,旋转对称透镜的物侧面及像侧面均为旋转对称的非球面,或者物侧面及像侧面均为旋转对称的球面,或者物侧面与像侧面中的一个面为旋转对称的非球面,另一个为旋转对称的球面。在本实施例中,以旋转对称透镜的物侧面及像侧面均为旋转对称的非球面为例进行说明。可以理解的是,旋转对称的非球面具有高的自由度。因而本实施例可以根据实际需要设计光学镜头45的旋转对称透镜,针对性改善不同位置像差,从而改善成像质量。
本实施例的旋转对称透镜的旋转对称的非球面满足以下公式:
Figure PCTCN2021092556-appb-000003
其中,以旋转对称透镜的几何中心为原点O建立坐标系,旋转对称透镜的光轴方向为Z轴。位于旋转对称透镜的弧矢面内,且垂直于光轴的方向为X轴,位于旋转对称透镜的子午方面内,且垂直于光轴的方向为Y轴。z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
可以理解的是,通过上述关系式,能够确定第一透镜451至第五透镜455的物侧面与像侧面为旋转对称的非球面。
在一种实施方式中,请参阅图6及图7,图6是图5所示的光学镜头的第六透镜456的物侧面4561的平面示意图。图7是图6所示的第六透镜456在弧矢面的剖面示意图。以第六透镜456的几何中心为原点O建立坐标系,其中,第六透镜456的光轴方向为Z轴,位于第六透镜456的弧矢面内,且垂直于光轴的方向为X轴,位于第六透镜456的子午面内,且垂直于光轴的方向为Y轴。这样,第六透镜456的子午面在坐标系中为YOZ平面。第六透镜456的弧矢面在坐标系中为XOZ平面。
第六透镜456的物侧面4561包括光学有效区4563及连接于光学有效区4563的非光学有效区4564。附图6及图7均通过虚线区分开光学有效区4563与非光学有效区4564。此外,附图7在X轴的正方向和负方向上均标有物侧面4561的非光学有效区4564。光学有效区4563指的是物侧面4561中光线能够穿过的区域。非光学有效区4564为物侧面4561 中光线不能够穿过的区域。物侧面4561的非光学有效区4564可用于固定在镜筒450上。
另外,第六透镜456包括第一顶点M1及第二顶点M2。顶点指的是第六透镜456的物侧面4561上的最高点或者最低点。在本实施方式中,第一顶点M1与第二顶点M2均为第六透镜456的物侧面4561上的最低点。在其他实施方式中,第一顶点M1与第二顶点M2也可以均为第六透镜456的物侧面4561上的最高点。另外,附图6通过加粗的圆点示意性地示出第一顶点M1及第二顶点M2。但第一顶点M1及第二顶点M2的形状、大小及位置不局限附图6所示意的形状、大小及位置。
另外,第一顶点M1及第二顶点M2均位于第六透镜456的物侧面4561上,且均位于物侧面4561的光学有效区4563内。此外,第一顶点M1与第二顶点M2均位于XOZ平面内(也即第六透镜456的弧矢面内)。第一顶点M1与第二顶点M2关于YOZ平面(也即第六透镜456的子午面)对称。
请参阅图7,第一顶点M1至第一基准面P1的距离d1等于第二顶点M2至第一基准面P1的距离d2。第一基准面P1垂直于Z轴(也即光学镜头45的光轴),且Z轴与物侧面4561的交点位于第一基准面P1。
可以理解的是,通过将第一顶点M1与第二顶点M2关于YOZ平面对称,且第一顶点M1至第一基准面P1的距离d1等于第二顶点M2至第一基准面P1的距离d2,从而使得光学镜头45能够实现更好的矫正效果,得到质量较高的成像。
请再次参阅图6,并结合图8所示,图8是图6所示的第六透镜456在子午面的剖面示意图。第六透镜456包括第三顶点M3及第四顶点M4。在本实施方式中,第三顶点M3及第四顶点M4均为第六透镜456的物侧面4561上的最高点。在其他实施方式中,第三顶点M3及第四顶点M4也可以均为第六透镜456的物侧面4561上的最低点。另外,附图6通过加粗的圆点示意性地示出第三顶点M3及第四顶点M4,但第三顶点M3及第四顶点M4的形状、位置及大小不局限附图6所示意的形状、位置及大小。
另外,第三顶点M3及第四顶点M4与第一顶点M1与第二顶点M2均位于第六透镜456的物侧面4561内,且位于物侧面4561的光学有效区4563内。第三顶点M3及第四顶点M4位于YOZ平面内。并且第三顶点M3及第四顶点M4关于XOZ平面内对称。
请再次参阅图8,第三顶点M3至第一基准面P1的距离d3等于第四顶点M4至第一基准面P1的距离d4。
可以理解的是,通过将第三顶点M3及第四顶点M4关于XOZ平面内对称,且第三顶点M3至第一基准面P1的距离d3等于第四顶点M4至第一基准面P1的距离d4,从而使得光学镜头45能够实现更好的矫正效果,得到质量较高的成像。
请参阅图9,并结合图7所示,图9是图6所示的光学镜头的第六透镜456的像侧面4562的平面示意图。第六透镜456的像侧面4562包括光学有效区4565及连接于光学有效区4565的非光学有效区4566。附图9及附图7均通过虚线区分开像侧面4562的光学有效区4565与像侧面4562的非光学有效区4566。此外,附图7在X轴的正方向和负方向上均标有像侧面4562的非光学有效区4566。像侧面4562的光学有效区4565指的是像侧面4562中光线能够穿过的区域。像侧面4562的非光学有效区4566为像侧面4562中光线不能够穿过的区域。像侧面4562的非光学有效区4566可用于固定在镜筒450上。
另外,第六透镜456包括第五顶点N1及第六顶点N2。顶点指的是第六透镜456的像侧面4562上的最高点或者最低点。在本实施方式中,第五顶点N1与第六顶点N2均为第六透镜456的像侧面4562上的最高点。在其他实施方式中,第五顶点N1与第六顶点N2也可以均为第六透镜456的像侧面4562上的最低点。另外,附图9通过加粗的圆点示意性地示出第五顶点N1及第六顶点N2。但第五顶点N1及第六顶点N2的形状、大小及位置不局限附图9所示意的形状、大小及位置。
另外,第五顶点N1及第六顶点N2均位于第六透镜456的像侧面4562上,且均位于像侧面4562的光学有效区4565内。第五顶点N1与第六顶点N2均位于XOZ平面内(也即第六透镜456的弧矢面内)。此外,第五顶点N1与第六顶点N2关于YOZ平面(也即第六透镜456的子午面)对称。
请参阅图7,第五顶点N1至第二基准面P2的距离d5等于第六顶点N2至第二基准面P2的距离d6。第二基准面P2垂直于Z轴(也即光学镜头45的光轴),且Z轴与像侧面4562的交点位于第二基准面P2。
可以理解的是,通过将第五顶点N1与第六顶点N2关于YOZ平面对称,且第五顶点N1至第二基准面P2的距离d5等于第六顶点N2至第二基准面P2的距离d6,从而使得光学镜头45能够实现更好的矫正效果,得到质量较高的成像。
请再次参阅图9,并结合图8所示,第六透镜456包括第七顶点N3及第八顶点N4。在本实施方式中,第七顶点N3及第八顶点N4均为第六透镜456的像侧面4562上的最低点。在其他实施方式中,第七顶点N3及第八顶点N4也可以均为第六透镜456的像侧面4562上的最高点。另外,附图9通过加粗的圆点示意性地示出第七顶点N3及第八顶点N4,但第七顶点N3及第八顶点N4的形状、位置及大小不局限附图9所示意的形状、位置及大小。
另外,第七顶点N3及第八顶点N4与第五顶点N1与第六顶点N2均位于第六透镜456的像侧面4562内,且位于像侧面4562的光学有效区4565内。第七顶点N3及第八顶点N4位于YOZ平面内。并且,第七顶点N3及第八顶点N4关于XOZ平面内对称。
请再次参阅图8,第七顶点N3至第二基准面P2的距离d7等于第八顶点N4至第二基准面P2的距离d8。
可以理解的是,通过将第七顶点N3及第八顶点N4关于XOZ平面内对称,且第七顶点N3至第二基准面P2的距离d7等于第八顶点N4至第二基准面P2的距离d8,从而使得光学镜头45能够实现更好的矫正效果,得到质量较高的成像。
上述实施方式中,以第六透镜456的物侧面4561及像侧面4562为非旋转对称的非球面为例进行说明。在其他实施例中,当其他透镜的物侧面与像侧面为非旋转对称的非球面时,其他透镜的物侧面与像侧面也可以参阅第六透镜456的物侧面4561与像侧面4562的设置方式。具体的这里不再赘述。
上文具体介绍了第六透镜456的物侧面4561与像侧面4562的几种设置方式。下文将具体介绍光学镜头45的光学参数的几种设置方式。
一种实施方式中,第一透镜451与第二透镜452满足:-0.5<f2/f1<-0.01。其中,f1为第一透镜451的焦距。f2为第二透镜452的焦距。例如,f2/f1等于-0.4、-0.3、-0.28、 -0.21、-0.1、-0.02等。
可以理解的是,当第一透镜451的焦距f1与第二透镜452的焦距f2满足上述关系式时,第一透镜451与第二透镜452能够较好地配合,从而较大程度地采集较大视场角的光线,进而实现光学镜头45的超广角设置。
当然,在其他实施方式中,第一透镜451的焦距f1与第二透镜452的焦距f2也可以不满足上述关系式。
一种实施方式中,第一透镜451的焦距f1与第二透镜452的焦距f2满足:-0.35≤f2/f1≤-0.03。
一种实施方式中,第三透镜453与第四透镜454满足:-4<f4/f3<0。其中,f3为第三透镜453的焦距。f4为第四透镜454的焦距。例如,f4/f3等于-3.8、-3、-2.2、-2、-1.7、-1、-0.8等。
可以理解的是,当第三透镜453的焦距f3与第四透镜454的焦距f4满足上述关系式时,第三透镜453与第四透镜454能够较好地配合,从而较好地校正光学镜头45成像的光瞳像差。另外,第三透镜453与第四透镜454能够将穿过第二透镜452的光线的发散角进行压缩。
当然,在其他实施方式中,第三透镜453的焦距f3与第四透镜454的焦距f4也可以不满足上述关系式。
一种实施方式中,第三透镜453的焦距f3与第四透镜454的焦距f4满足:-2.5≤f4/f3<0。
一种实施方式中,第五透镜455满足:0.1<f5/f<1.5。其中,f5为第五透镜455的焦距。f为光学镜头45的焦距。例如,f5/f等于0.2、0.22、0.33、0.37、0.5、0.7、0.9、1、1.1、1.3、1.4等。
可以理解的是,当第五透镜455的焦距f5与光学镜头45的焦距f满足上述关系式时,能够合理的分配第五透镜455承担的光焦度,以使第五透镜455较好的校正像差的效果。
当然,在其他实施方式中,第五透镜455的焦距f5与光学镜头45的焦距f也可以不满足上述关系式。
一种实施方式中,第五透镜455的焦距f5与光学镜头45的焦距f满足:0.5≤f5/f≤1。
一种实施方式中,第五透镜455与第三透镜453满足:0<R6/R10<2.9。其中,R6为第三透镜453的像侧面的曲率半径。R10为第五透镜455的像侧面的曲率半径。例如,R6/R10等于0.22、0.31、0.5、0.9、1、1.3、2、2.4、2.6、2.8等。
可以理解的是,当第三透镜453的像侧面的曲率半径R6与第五透镜455的像侧面的曲率半径R10满足上述关系式时,第三透镜453和第五透镜455能够尽量压缩光线发散角,校正系统场曲和畸变,从而实现更好的成像效果。
当然,在其他实施方式中,第三透镜453的像侧面的曲率半径R6与第五透镜455的像侧面的曲率半径R10也可以不满足上述关系式。
一种实施方式中,第三透镜453的像侧面的曲率半径R6与第五透镜455的像侧面的曲率半径R10满足0<R6/R10≤2。
一种实施方式中,第四透镜454与第五透镜455满足:0.05<T45/f<0.4。其中,T45为第四透镜454与第五透镜455之间的距离。f为光学镜头45的焦距。例如,T45/f等于0.06、0.11、0.25、0.29、0.3、0.33、0.35、0.36、0.39等。
可以理解的是,当第四透镜454与第五透镜455之间的距离T45与光学镜头45的焦距f满足上述关系时,第五透镜455的物侧面的弯曲程度能够较好地控制。此时,第五透镜455的加工难度较低,可实施性较佳。
当然,在其他实施方式中,第四透镜454与第五透镜455之间的距离T45与光学镜头45的焦距f也可以不满足上述关系。
一种实施方式中,第四透镜454与第五透镜455之间的距离T45与光学镜头45的焦距f满足:0.1≤T45/f≤0.3。
一种实施方式中,光学镜头45满足:0<(T23+T56)/TTL<0.5。其中,T23为第二透镜452与第三透镜453之间的距离。T56为第五透镜455与第六透镜456之间的距离。TTL为在光学镜头45的光轴方向上,第一透镜451的物侧面至成像面的距离。例如,(T23+T56)/TTL等于0.02、0.13、0.24、0.27、0.3、0.32、0.35、0.4、0.48等。
可以理解的是,当光学镜头45满足上述关系时,光学镜头45的系统总长TTL能够得到较好地控制,从而有利于光学镜头45的小型化设置。此外,光学镜头45的系统高度也能够得到较好地压缩,从而有利于光学镜头45的薄型化设置。
当然,在其他实施方式中,光学镜头45也可以不满足上述关系。
一种实施方式中,光学镜头45满足:0<(T23+T56)/TTL≤0.3。
一种实施方式中,光学镜头45满足:|TDT|≤5.0%;其中,TDT为光学镜头45的成像范围内的TV畸变的最大值。
可以理解的是,当光学镜头45的|TDT|≤5.0%时,光学镜头45的畸变较小。光学镜头45的成像质量较佳。
一种实施方式中,光学镜头45满足:100°≤FOV≤140°;FOV为摄像镜头组的视场角。例如FOV等于100°、103°、112°、126°、135°、136°、137°、138°、139°、140°。
可以理解的是,当光学镜头45的视场角FOV满足:100°≤FOV≤140°时,光学镜头45的视场角较大,也即光学镜头45实现超广角设置。
一种实施方式中,光学镜头45满足:135°<FOV≤140°。例如FOV等于136°、137°、138°、139°或140°。
一种实施方式中,光学镜头45满足:0<ImagH/TTL<1。其中,TTL为在光学镜头45的光轴方向上,第一透镜451的物侧面至成像面的距离。ImagH为感光芯片42上有效像素区域对角线长的一半,也即成像面的像高。例如,ImagH/TTL等于0.1、0.22、0.34、0.45、0.52、0.66、0.81、0.97等。
可以理解的是,当所述光学镜头45满足上述关系时,所述光学镜头45的成像面的像高较高,也即所述光学镜头45的成像质量较佳,此外,所述光学镜头45的总长度较小,有利于应用于手机、平板等薄型电子设备中。
一种实施方式中,光学镜头45的各透镜可以为塑料材质、玻璃材质或者其它的复合材 料。其中,塑料材质能够容易的制得各种形状复杂的透镜结构。玻璃材质的透镜的折射率n1满足:1.50≤n1≤1.90,其相对于塑料透镜的折射率范围(1.55-1.65)来说,折射率可选择的范围较大,更容易得到较薄但性能较好的玻璃透镜,有利于减小光学镜头45的多片透镜的轴上厚度,不容易制得形状复杂的透镜结构。因此,本申请的一些实施方式中,考虑制作成本、效率以及光学效果,根据需要合理的搭配不同透镜的具体应用材质。
下面将结合相关附图更加详细地描述本申请实施方式的一些具体的而非限制性的例子。
第一种实施方式:请参阅图10,图10是图5所示的光学镜头的透镜的一种实施方式的结构示意图。在本实施方式中,光学镜头45的透镜为六片。光学镜头45包括自物侧至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第四透镜454均具有负光焦度。第六透镜456具有负光焦度。
在本实施方式中,第六透镜456的物侧面4561与像侧面4562均为非旋转对称的非球面。其它透镜均为旋转对称透镜(也即第一透镜451、第二透镜452、第三透镜453、第四透镜454及第五透镜455均为旋转对称透镜),且旋转对称透镜的物侧面与像侧面均为旋转对称的非球面。附图10通过带有箭头的实线示意了光学镜头45的光轴方向。此外,箭头的方向代表自物侧指向像侧。
本申请第一种实施方式的光学镜头45的设计参数如下表1。
表1第一种实施方式的光学镜头45的设计参数
Figure PCTCN2021092556-appb-000004
其中,OBJ(英文全称object)表示的是物面。S1表示第一透镜451的物侧面。S2表 示第一透镜451的像侧面。S3表示第二透镜452的物侧面。S4表示第二透镜452的像侧面。S5表示第三透镜453的物侧面。S6表示第三透镜453的像侧面。S7表示第四透镜454的物侧面。S8表示第四透镜454的像侧面。S9表示第五透镜455的物侧面。S10表示第五透镜455的像侧面。S11表示第六透镜456的物侧面。AAS(Anamorphic Aspherical Surface,非旋转对称的非球面)。故而,S11(AAS)表示的是第六透镜456的物侧面为非旋转对称的非球面。S12表示第六透镜456的像侧面。S12(AAS)表示的是第六透镜456的像侧面为非旋转对称的非球面。S13表示滤光片44的物侧面,S14表示滤光片44的像侧面。STOP表示光阑457。需要说明的是,本申请中,OBJ、S1、S2、S3、S4、S5、S6、S7、S8、S9、S10、S11、S12、S13、S14、AAS以及STOP等符号表示的意义均相同,在后续再次出现时不再进行赘述。
另外,S1的厚度指的是第一透镜451的物侧面与第一透镜451的像侧面之间的距离。S2的厚度指的是第一透镜451的像侧面与第二透镜452的物侧面之间的距离。S3的厚度指的是第二透镜452的物侧面与第二透镜452的像侧面之间的距离。S4的厚度指的是第二透镜452的像侧面与光阑之间的距离。光阑的厚度指的是光阑到第三透镜453之间的距离。S5的厚度指的是第三透镜453的物侧面与第三透镜453的像侧面之间的距离。S6的厚度指的是第三透镜453的像侧面与第四透镜454的物侧面之间的距离。S7的厚度指的是第四透镜454的物侧面与第四透镜454的像侧面之间的距离。S8的厚度指的是第四透镜451的像侧面与第五透镜455的物侧面之间的距离。S9的厚度指的是第五透镜455的物侧面与第五透镜455的像侧面之间的距离。S10的厚度指的是第五透镜455的像侧面与第六透镜456的物侧面之间的距离。S11的厚度指的是第六透镜456的物侧面与第六透镜456的像侧面之间的距离。S12的厚度指的是第六透镜456的像侧面与滤光片44的物侧面之间的距离。S13的厚度指的是滤光片44的物侧面与滤光片44的像侧面之间的距离。S14的厚度指的是滤光片44的像侧面与成像面之间的距离。需要说明的是,本申请中,在后续的表格中再次出现时,其代表的含义相同将不再进行赘述。
依据表1的数据,可以得到本申请第一种实施方式的光学镜头45的设计参数如表2。
表2第一种实施方式的光学镜头45设计参数
f1(mm) 50.491 f4(mm) -8.241
f2(mm) -11.143 f5(mm) 3.345
f3(mm) 4.053 f6(mm) -8.868
f(mm) 4.18 |f1/f| 12.078
|f2/f| 2.665 |f3/f| 0.969
|f4/f| 1.971 |f5/f| 0.8
|f6/f| 2.121 f2/f1 -0.221
f4/f3 -2.033 FOV(°) 104
f/EPD 2.05 T45/f 0.243
ImagH(mm) 4.46 TTL(mm) 12.653
ImagH/TTL 0.352 (T23+T56)/TTL 0.019
R6/R10 1.583 Fno 2.05
其中,f1表示第一透镜451的焦距。f2表示第二透镜452的焦距。f3表示第三透镜453的焦距。f4表示第四透镜454的焦距。f5表示第五透镜455的焦距。f6表示第六透镜456的焦距。f表示光学镜头45的焦距。FOV为光学镜头45的视场角。EPD表示的是光学镜头45的入瞳直径。T45表示的是第四透镜454与第五透镜455之间的距离。ImagH表示感光芯片42上有效像素区域对角线长的一半,也即成像面的像高。TTL表示的是光学镜头45的总长度。T23为第二透镜452与第三透镜453之间的距离。T56为第五透镜455与第六透镜456之间的距离。R6为第三透镜453的像侧面的曲率半径。R10为第五透镜455的像侧面的曲率半径。Fno为光学镜头45的光圈数。需要说明的是,本申请中,f1、f2、f3、f4、f5、f6、f、EPD、T45、ImagH、TTL、T23、T56、R6、R10、Fno以及FOV等符号表示的意义均相同,在后续再次出现时不再进行赘述。
根据表2可知,光学镜头45的视场角FOV为104°,光圈数Fno为2.05,即本申请的光学镜头45能够实现大视角、大光圈(可以理解的是,光圈数Fno越小,光圈越大),能够更好的满足拍摄的需求。另外。TTL为12.653mm,ImagH为4.46mm,ImagH/TTL=0.352,即经本实施方式的光学镜头45投射至感光芯片42上的有效像素区域较大的同时,光学镜头45的光学总长TTL能够较小,从而得到较高的成像质量的同时,能够将光学镜头45的长度可以较小,能够应用于手机、平板等薄型电子设备中。
本申请第一种实施方式的各旋转对称镜片(即第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455)的非球面系数的设计参数如下表3。
表3第一实施方式的光学镜头45的旋转对称镜片的设计参数
面号 A0 A1 A2 A3 A4 A5 A6
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 2.4965E-03 -5.6139E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 7.9848E-03 -1.5913E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 3.3387E+00 -1.2819E+00 2.9002E-01 -1.2724E-01 -1.7361E-03 3.7577E-02 -5.1035E-02
S6 3.5319E+00 -3.5425E+00 -4.4467E-01 4.1033E-01 1.6697E-01 -1.5267E-01 -1.1400E-01
S7 2.6616E+00 -1.7635E+00 3.7925E-01 -1.8843E-02 -2.6318E-03 -6.9181E-03 2.2100E-03
S8 3.5006E+00 -1.3561E+00 3.6278E-01 -1.4376E-01 -4.0291E-02 -2.5340E-02 -1.8542E-03
S9 4.7024E+00 2.2063E+00 -1.9711E-01 -1.4412E-01 2.5364E-01 -1.6378E-02 9.2933E-03
S10 4.3924E+00 1.2783E+00 2.8222E+00 -1.1204E-01 -1.8356E-01 -2.9911E-01 -1.8144E-01
其中,A0、A1、A2、A3、A4、A5以及A6等符号表示非球面系数。需要说明的是,表格中的各参数为科学计数法表示。例如,2.4965E-03是指2.4965×10 -3;-5.6139E-05是指-5.6139×10 -5
通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000005
能够得到第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455的物侧面和像侧面的面型。
在本实施方式中,z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
另外,本申请第一种实施方式的第六透镜456的非旋转对称的非球面系数的设计参数如下表4。
表4第一种实施方式的光学镜头45的非旋转对称的非球面的设计参数
面序号 A10 A12 A14 A21 A23 A25 A27 A36
S11 6.961E-03 1.418E-02 7.016E-03 -5.885E-04 -1.760E-03 -1.661E-03 -5.957E-04 1.332E-05
S12 -3.081E-03 -5.802E-03 -2.852E-03 2.080E-04 6.429E-04 6.514E-04 2.136E-04 -5.019E-06
面序号 A38 A40 A42 A44 A55 A57 A59 A61
S11 5.613E-05 7.766E-05 4.953E-05 1.606E-05 1.156E-07 5.566E-07 1.377E-06 1.181E-06
S12 -1.943E-05 -3.324E-05 -1.622E-05 -3.815E-06 7.750E-08 5.050E-07 7.744E-07 7.767E-07
面序号 A63 A65 A78 A80 A82 A84 A86 A88
S11 1.114E-06 1.436E-07 -7.782E-09 -3.441E-08 -9.585E-08 -1.429E-07 -1.704E-07 -7.028E-08
S12 -2.012E-07 4.490E-08 8.907E-10 2.782E-08 -5.212E-09 4.679E-08 7.789E-08 9.297E-09
面序号 A90 A105 A107 A109 A111 A113 A115 A117
S11 -9.456E-09 1.867E-10 1.447E-09 2.898E-09 5.206E-10 -8.234E-09 9.248E-09 1.020E-10
S12 6.456E-10 1.108E-10 8.786E-10 -1.279E-09 -3.189E-09 -2.776E-12 -3.636E-10 -1.112E-08
面序号 A119 A136 A138 A140 A142 A144 A146 A148
S11 1.135E-10 1.726E-11 1.321E-11 1.971E-11 -1.884E-10 -9.634E-10 -2.433E-09 1.499E-09
S12 -8.632E-11 -3.929E-12 6.581E-11 -1.365E-10 -4.042E-10 -5.594E-10 -1.174E-10 -3.156E-10
面序号 A150 A152            
S11 -3.730E-10 -5.362E-12            
S12 -9.850E-11 -6.269E-12            
其中,A10、A12、A14、A21、A23、A25、A27、……、A144、A146、A150、A152等符号表示多项式系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000006
Figure PCTCN2021092556-appb-000007
能够设计得到本实施方式的第六透镜456的物侧面与像侧面的面型。
其中,本实施方式中,z为平行于z轴的矢高;N为级数中多项式系数的总数,Ai为第i项扩展多项式的系数,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面 常数。表格中不存在的多项式系数(如A 1、A 2等)均为0。
请参阅图11,图11是图10所示的光学镜头的各个透镜的成像仿真图,其中,实线网格为理想成像网格图,“X”号形成的网格结构为本实施方式的光学镜头45成像后的示意图。从图中可知,本实施方式的光学镜头45成像与理想成像基本相同,光学镜头45的成像范围内的TV畸变较小。具体的,本实施方式中,光学镜头45的成像范围内的TV畸变的最大值TDT满足|TDT|=1.6694%,光学镜头4510的成像范围内的TV畸变较小。此外,通过将第六透镜456的物侧面4561与像侧面4562设置为非旋转对称的非球面,第六透镜456不仅能校正光学镜头45成像的场曲和像散,还能够起到矫正畸变的作用。第六透镜456具有“一物多用”的功能。
第二种实施方式:请参阅图12,图12是图5所示的光学镜头的透镜的另一种实施方式的结构示意图。在本实施方式中,光学镜头45的透镜为六片。光学镜头45包括自物侧至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第四透镜454均具有负光焦度。第六透镜456具有负光焦度。
在本实施方式中,第六透镜456的物侧面4561与像侧面4562均为非旋转对称的非球面。其它透镜均为旋转对称透镜(也即第一透镜451、第二透镜452、第三透镜453、第四透镜454及第五透镜455均为旋转对称透镜),且旋转对称透镜的物侧面与像侧面均为旋转对称的非球面。附图12通过带有箭头的实线示意了光学镜头45的光轴方向。此外,箭头的方向代表自物侧指向像侧。
本申请第二种实施方式的光学镜头45的设计参数如下表5。
表5第二种实施方式的光学镜头45的设计参数
Figure PCTCN2021092556-appb-000008
Figure PCTCN2021092556-appb-000009
依据表5的数据,可以得到本申请第二种实施方式的光学镜头45的设计参数如表6。
表6第二种实施方式的光学镜头45设计参数
f1(mm) 40.980 f4(mm) -7.619
f2(mm) -3.387 f5(mm) 3.639
f3(mm) 3.468 f6(mm) -10.446
f(mm) 4.141 |f1/f| 9.897
|f2/f| 0.818 |f3/f| 0.837
|f4/f| 1.84 |f5/f| 0.879
|f6/f| 2.522 f2/f1 -0.0826
f4/f3 -2.197 FOV(°) 101
f/EPD 2.05 T45/f 0.244
ImagH(mm) 4.38 TTL(mm) 12.042
ImagH/TTL 0.364 (T23+T56)/TTL 0.075
R6/R10 1.623 Fno 2.05
根据表6可知,光学镜头45的视场角FOV为101°,光圈数Fno为2.05,即本申请的光学镜头45能够实现大视角、大光圈,能够更好的满足拍摄的需求。另外。TTL为12.042mm,ImagH为4.38mm,ImagH/TTL=0.364,即经本实施方式的光学镜头45投射至感光芯片42上的有效像素区域较大的同时,光学镜头45的光学总长TTL能够较小,从而得到较高的成像质量的同时,能够将光学镜头45的长度可以较小,能够应用于手机、平板等薄型电子设备中。
本申请第二种实施方式的各旋转对称镜片(即第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455)的非球面系数的设计参数如下表7。
表7第二种实施方式的光学镜头45的旋转对称镜片的设计参数
面号 A0 A1 A2 A3 A4 A5 A6
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 1.1577E-03 -2.4902E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 8.1578E-03 1.6693E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 3.6777E+00 -1.1523E+00 2.3687E-01 -1.1198E-01 1.9730E-03 2.8580E-02 -4.4142E-02
S6 3.4502E+00 -3.5990E+00 -4.4512E-01 4.2115E-01 1.6085E-01 -1.5000E-01 -1.1190E-01
S7 2.6508E+00 -1.7955E+00 3.8154E-01 -1.6180E-02 5.0310E-04 -6.1123E-03 2.1212E-03
S8 3.5078E+00 -1.3153E+00 3.4338E-01 -1.4396E-01 -3.6263E-02 -2.6597E-02 -2.7090E-03
S9 4.7247E+00 2.0221E+00 -1.8966E-01 -7.8227E-02 2.2936E-01 -5.6007E-03 8.2865E-03
S10 4.3497E+00 1.8621E+00 2.7926E+00 -1.4598E-01 -1.6696E-01 -3.0213E-01 -1.7885E-01
其中,A0、A1、A2、A3、A4、A5、A6等符号表示非球面系数。通过将上述参数代入至 公式:
Figure PCTCN2021092556-appb-000010
能够得到第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455的物侧面和像侧面的面型。
在本实施方式中,z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
另外,本申请第二种实施方式的第六透镜456的非旋转对称的非球面系数的设计参数如下表8。
表8第二种实施方式的光学镜头45的非旋转对称的非球面的设计参数
面序号 A10 A12 A14 A21 A23 A25 A27 A36
S11 6.525E-03 1.147E-02 6.464E-03 -6.689E-04 -1.968E-03 -1.849E-03 -6.720E-04 8.521E-06
S12 -3.495E-03 -7.210E-03 -2.938E-03 2.204E-04 5.722E-04 5.863E-04 2.813E-04 -3.646E-06
面序号 A38 A40 A42 A44 A55 A57 A59 A61
S11 4.902E-05 6.281E-05 5.181E-05 1.490E-05 -1.588E-07 5.990E-08 5.538E-07 -2.992E-07
S12 -2.252E-05 -3.668E-05 -1.763E-05 -6.184E-06 1.520E-07 3.390E-07 3.248E-07 5.834E-07
面序号 A63 A65 A78 A80 A82 A84 A86 A88
S11 -7.648E-08 5.918E-08 -1.639E-08 -6.353E-08 -1.728E-07 -3.377E-07 -7.119E-07 -6.650E-08
S12 -6.569E-07 -2.548E-08 -5.743E-09 2.580E-08 -9.782E-09 -2.418E-08 1.708E-07 -4.263E-08
面序号 A90 A105 A107 A109 A111 A113 A115 A117
S11 7.265E-09 1.792E-09 3.672E-09 -5.627E-09 -4.867E-09 -3.145E-08 -4.606E-08 -1.307E-09
S12 -6.176E-09 6.666E-12 7.938E-10 -2.804E-10 -4.515E-09 3.340E-09 -7.152E-09 -2.388E-08
面序号 A119 A136 A138 A140 A142 A144 A146 A148
S11 3.606E-10 1.754E-10 1.243E-09 5.021E-10 -1.617E-09 -1.513E-09 -8.188E-09 1.065E-08
S12 -1.050E-10 -2.789E-11 6.994E-11 -7.317E-11 -5.146E-10 -8.071E-10 7.099E-11 4.583E-10
面序号 A150 A152            
S11 -1.682E-09 -6.675E-11            
S12 4.301E-10 -3.844E-14            
其中,A10、A12、A14、A21、A23、A25、A27、……、A144、A146、A150、A152等符号表示多项式系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000011
Figure PCTCN2021092556-appb-000012
能够设计得到本实施方式的第六透镜456的物侧面与像侧面的面型。
其中,本实施方式中,z为平行于z轴的矢高;N为级数中多项式系数的总数,Ai为第i项扩展多项式的系数,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数。表格中不存在的多项式系数(如A 1、A 2等)为0。
请参阅图13,图13是图12所示的光学镜头的各个透镜的成像仿真图。其中,实线网格为理想成像网格图,“X”号形成的网格结构为本实施方式的光学镜头45成像后的示意图。从图中可知,本实施方式的光学镜头45成像与理想成像基本相同,光学镜头45的成像范围内的TV畸变较小。具体的,本实施方式中,光学镜头45的成像范围内的TV畸变的最大值TDT满足|TDT|=2.3119%,光学镜头45的成像范围内的TV畸变较小。此外,通过将第六透镜456的物侧面4561与像侧面4562设置为非旋转对称的非球面,第六透镜456不仅能校正光学镜头45成像的场曲和像散,还能够起到矫正畸变的作用。第六透镜456具有“一物多用”的功能。
第三种实施方式:请参阅图14,图14是图5所示的光学镜头的透镜的再一种实施方式的结构示意图。在本实施方式中,光学镜头45的透镜为六片。光学镜头45包括自物侧至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第四透镜454均具有负光焦度。第六透镜456具有负光焦度。
在本实施方式中,第六透镜456的物侧面4561与像侧面4562为非旋转对称的非球面。其它透镜均为旋转对称透镜(也即第一透镜451、第二透镜452、第三透镜453、第四透镜454及第五透镜455均为旋转对称透镜),且旋转对称透镜的物侧面与像侧面均为旋转对称的非球面。附图14通过带有箭头的实线示意了光学镜头45的光轴方向。此外,箭头的方向代表自物侧指向像侧。
本申请第三种实施方式的光学镜头45的设计参数如下表9。
表9第三种实施方式的光学镜头45的设计参数
Figure PCTCN2021092556-appb-000013
Figure PCTCN2021092556-appb-000014
依据表9的数据,可以得到本申请第三种实施方式的光学镜头45的设计参数如下表10。
表10第三种实施方式的光学镜头45设计参数
f1(mm) 52.743 f4(mm) -8.359
f2(mm) -3.478 f5(mm) 3.287
f3(mm) 3.817 f6(mm) -6.731
f(mm) 4.21 |f1/f| 12.533
|f2/f| 0.826 |f3/f| 0.907
|f4/f| 1.986 |f5/f| 0.781
|f6/f| 1.599 f2/f1 -0.066
f4/f3 -2.190 FOV(°) 100
f/EPD 2.04 T45/f 0.191
ImagH(mm) 4.39 TTL(mm) 14.623
ImagH/TTL 0.3 (T23+T56)/TTL 0.014
R6/R10 1.519 Fno 2.04
根据表10可知,光学镜头45的视场角FOV为100°,光圈数Fno为2.04,即本申请的光学镜头45能够实现大视角、大光圈,能够更好的满足拍摄的需求。另外,TTL为14.623mm,ImagH为4.39mm,ImagH/TTL=0.3,即经本实施方式的光学镜头45投射至感光芯片42上的有效像素区域较大的同时,光学镜头45的光学总长能够较小,从而得到较高的成像质量的同时,能够将光学镜头45的长度可以较小,能够应用于手机、平板等薄型电子设备中。
本申请第三种实施方式的各旋转对称镜片(即第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455)的非球面系数的设计参数如下表11。
表11第三种实施方式的光学镜头45的旋转对称镜片的设计参数
面号 A0 A1 A2 A3 A4 A5 A6
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 2.6177E-03 -7.1695E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 6.2457E-03 -1.6474E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 3.2414E+00 -1.0821E+00 3.2488E-01 -1.0098E-01 1.2073E-02 3.3096E-02 -3.8390E-02
S6 3.4756E+00 -3.4977E+00 -4.5751E-01 4.2179E-01 1.5905E-01 -1.4458E-01 -1.1653E-01
S7 2.6625E+00 -1.7365E+00 3.8310E-01 -1.6967E-02 -1.9119E-03 -8.0984E-03 4.4516E-03
S8 3.4896E+00 -1.3727E+00 3.6406E-01 -1.4937E-01 -4.0489E-02 -2.6909E-02 -3.0597E-03
S9 4.6950E+00 2.2273E+00 -2.0976E-01 -1.2943E-01 2.3726E-01 -8.2719E-03 1.0964E-02
S10 4.3941E+00 1.3309E+00 2.8230E+00 -1.1652E-01 -1.9823E-01 -2.9619E-01 -1.7306E-01
其中,A0、A1、A2、A3、A4、A5、A6等符号表示非球面系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000015
能够得到第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455的物侧面和像侧面的面型。
本实施方式中,z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
另外,本申请第三种实施方式的第六透镜456的非旋转对称的非球面系数的设计参数如下表12。
表12第三种实施方式的光学镜头45的非旋转对称的非球面的设计参数
面序号 A10 A12 A14 A21 A23 A25 A27 A36
S11 6.795E-03 1.247E-02 6.503E-03 -6.325E-04 -1.873E-03 -1.691E-03 -6.457E-04 1.215E-05
S12 -2.434E-03 -6.007E-03 -2.630E-03 1.765E-04 5.598E-04 6.458E-04 2.607E-04 -4.606E-06
面序号 A38 A40 A42 A44 A55 A57 A59 A61
S11 5.634E-05 6.102E-05 5.037E-05 1.805E-05 3.073E-08 1.517E-06 1.759E-06 1.192E-06
S12 -2.064E-05 -3.989E-05 -2.038E-05 -3.837E-06 6.927E-08 6.103E-07 8.443E-07 2.213E-06
面序号 A63 A65 A78 A80 A82 A84 A86 A88
S11 2.025E-06 1.934E-07 -1.238E-08 4.396E-08 -5.843E-08 -1.212E-07 -4.131E-07 -3.086E-08
S12 -1.078E-06 -1.569E-07 -7.652E-10 -3.024E-08 -2.202E-08 -2.786E-08 6.549E-08 2.639E-07
面序号 A90 A105 A107 A109 A111 A113 A115 A117
S11 -1.574E-08 1.840E-10 -3.620E-09 -8.794E-10 7.125E-09 -1.500E-08 3.294E-09 -1.064E-08
S12 -3.663E-09 1.260E-10 1.678E-09 -2.082E-09 -8.195E-09 1.526E-08 -2.190E-08 -4.079E-08
面序号 A119 A136 A138 A140 A142 A144 A146 A148
S11 1.209E-10 1.020E-10 2.313E-10 -1.615E-09 -2.280E-09 -4.519E-09 -1.162E-08 8.950E-09
S12 -4.196E-11 -4.262E-12 2.656E-10 6.308E-11 -5.435E-10 -8.834E-10 4.989E-10 -1.659E-09
面序号 A150 A152            
S11 -3.307E-10 -1.327E-11            
S12 1.028E-09 1.712E-12            
其中,A10、A12、A14、A21、A23、A25、A27等符号表示多项式系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000016
Figure PCTCN2021092556-appb-000017
能够设计得到本实施方式的第六透镜456的物侧面与像侧面的面型。
其中,本实施方式中,z为平行于z轴的矢高;N为级数中多项式系数的总数,Ai为第i项扩展多项式的系数,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数。表格中不存在的多项式系数(如A 1、A 2等)为0。
请参阅图15,图15是图14所示的光学镜头的各个透镜的成像仿真图。其中,实线网格为理想成像网格图,“X”号形成的网格结构为本实施方式的光学镜头45成像后的示意图。从图中可知,本实施方式的光学镜头45成像与理想成像基本相同,光学镜头45的成像范围内的TV畸变较小。具体的,本实施方式中,光学镜头45的成像范围内的TV畸变的最大值TDT满足|TDT|=2.6506%,光学镜头45的成像范围内的TV畸变较小。此外,通过将第六透镜456的物侧面4561与像侧面4562设置为非旋转对称的非球面,第六透镜456不仅能校正光学镜头45成像的场曲和像散,还能够起到矫正畸变的作用。第六透镜456具有“一物多用”的功能。
第四种实施方式:请参阅图16,图16是图5所示的光学镜头的透镜的再一种实施方式的结构示意图。在本实施方式中,光学镜头45的透镜为六片。光学镜头45包括自物侧至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第四透镜454均具有负光焦度。第六透镜456具有负光焦度。
在本实施方式中,第六透镜456的物侧面4561与像侧面4562为非旋转对称的非球面。其它透镜均为旋转对称透镜(也即第一透镜451、第二透镜452、第三透镜453、第四透镜454及第五透镜455均为旋转对称透镜),且旋转对称透镜的物侧面与像侧面均为旋转对称的非球面。附图16通过带有箭头的实线示意了光学镜头45的光轴方向。此外,箭头的方向代表自物侧指向像侧。
本申请第四种实施方式的光学镜头45的设计参数如下表13。
表13第四种实施方式的光学镜头45的设计参数
Figure PCTCN2021092556-appb-000018
Figure PCTCN2021092556-appb-000019
依据表13的数据,可以得到本申请第四种实施方式的光学镜头45的设计参数如下表14。
表14第四种实施方式的光学镜头45设计参数
f1(mm) 8.635 f4(mm) -7.871
f2(mm) -2.611 f5(mm) 3.593
f3(mm) 3.357 f6(mm) -12.052
f(mm) 4.253 |f1/f| 2.03
|f2/f| 0.614 |f3/f| 0.790
|f4/f| 1.853 |f5/f| 0.846
|f6/f| 2.837 f2/f1 -0.302
f4/f3 -2.345 FOV(°) 100
f/EPD 2.05 T45/f 0.217
ImagH(mm) 3.94 TTL(mm) 11.8684
ImagH/TTL 0.332 (T23+T56)/TTL 0.036
R6/R10 1.657 Fno 2.05
根据表14可知,光学镜头45的视场角FOV为100°,光圈数Fno为2.05,即本申请的光学镜头45能够实现大视角、大光圈,能够更好的满足拍摄的需求。另外,TTL为11.8684mm,ImagH为3.94mm,ImagH/TTL=0.332,即经本实施方式的光学镜头45投射至感光芯片42上的有效像素区域较大的同时,光学镜头45的光学总长能够较小,从而得到较高的成像质量的同时,能够将光学镜头45的长度可以较小,能够应用于手机、平板等薄型电子设备中。
本申请第四种实施方式的各旋转对称镜片(即第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455)的非球面系数的设计参数如下表15。
表15第四种实施方式的光学镜头45的旋转对称镜片的设计参数
面号 A0 A1 A2 A3 A4 A5 A6
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 -1.4285E+00 2.0901E-01 -4.9205E-02 2.2758E-02 4.6089E-02 -3.5650E-02 -3.2758E-02
S4 -3.3642E+00 -5.2680E-01 4.3980E-01 1.5015E-01 -1.4959E-01 -8.5065E-02 -1.5040E-02
S5 -1.8300E+00 3.9127E-01 6.0647E-03 1.8752E-03 -2.6337E-03 6.2850E-03 1.5888E-03
S6 -1.1820E+00 3.1251E-01 -1.5220E-01 -4.7590E-02 -2.2504E-02 -6.7780E-04 -4.1749E-04
S7 2.2171E+00 -2.9100E-01 -5.4245E-04 1.8737E-01 1.4373E-02 1.0547E-02 -1.6012E-02
S8 1.8892E+00 2.7806E+00 -1.3519E-01 -1.7452E-01 -2.8777E-01 -1.7306E-01 -8.3124E-02
S9 -1.4285E+00 2.0901E-01 -4.9205E-02 2.2758E-02 4.6089E-02 -3.5650E-02 -3.2758E-02
S10 -3.3642E+00 -5.2680E-01 4.3980E-01 1.5015E-01 -1.4959E-01 -8.5065E-02 -1.5040E-02
其中,A0、A1、A2、A3、A4、A5、A6等符号表示非球面系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000020
能够得到第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455的物侧面和像侧面的面型。
本实施方式中,z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
另外,本申请第四种实施方式的第六透镜456的非旋转对称的非球面系数的设计参数如下表16。
表16第四种实施方式的光学镜头45的非旋转对称的非球面的设计参数
面序号 A10 A12 A14 A21 A23 A25 A27 A36
S11 6.219E-03 1.103E-02 5.476E-03 -8.654E-04 -2.194E-03 -2.085E-03 -8.524E-04 1.063E-05
S12 -3.862E-03 -9.936E-03 -3.680E-03 1.887E-04 5.392E-04 3.472E-04 2.101E-04 -3.883E-06
面序号 A38 A40 A42 A44 A55 A57 A59 A61
S11 -1.261E-05 -4.330E-05 -3.504E-05 2.095E-05 -1.558E-07 9.369E-07 1.821E-06 -9.500E-06
S12 -2.545E-05 -3.298E-05 -2.044E-05 -4.979E-06 1.523E-07 8.506E-07 3.874E-07 1.887E-06
面序号 A63 A65 A78 A80 A82 A84 A86 A88
S11 1.205E-06 1.148E-07 -5.020E-08 -5.210E-08 -5.677E-08 8.061E-07 -1.642E-06 5.914E-07
S12 -8.046E-07 -3.798E-10 -1.091E-08 2.128E-08 -1.256E-08 -5.110E-08 4.262E-07 1.518E-07
面序号 A90 A105 A107 A109 A111 A113 A115 A117
S11 2.990E-08 -4.684E-10 -6.861E-09 7.587E-09 6.878E-08 -8.035E-08 -1.041E-07 4.128E-08
S12 -8.082E-09 -3.077E-10 -1.761E-09 1.056E-09 -3.812E-09 6.110E-10 -5.880E-09 -5.891E-08
面序号 A119 A136 A138 A140 A142 A144 A146 A148
S11 3.238E-09 1.362E-10 4.453E-10 -3.254E-09 1.455E-09 7.965E-09 -1.004E-08 3.055E-08
S12 -4.918E-10 -6.174E-11 1.533E-11 1.424E-10 -5.692E-11 -1.353E-09 3.695E-11 -5.059E-10
面序号 A150 A152            
S11 -1.268E-08 -2.400E-10            
S12 -1.190E-09 2.102E-11            
其中,A10、A12、A14、A21、A23、A25、A27等符号表示多项式系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000021
Figure PCTCN2021092556-appb-000022
能够设计得到本实施方式的第六透镜456的物侧面与像侧面的面型。
其中,本实施方式中,z为平行于z轴的矢高;N为级数中多项式系数的总数,Ai为第i项扩展多项式的系数,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数。表格中不存在的多项式系数(如A 1、A 2等)为0。
请参阅图17,图17是图16所示的光学镜头的各个透镜的成像仿真图。其中,实线网格为理想成像网格图,“X”号形成的网格结构为本实施方式的光学镜头45成像后的示意图。从图中可知,本实施方式的光学镜头45成像与理想成像基本相同,光学镜头45的成像范围内的TV畸变较小。具体的,本实施方式中,光学镜头45的成像范围内的TV畸变的最大值TDT满足|TDT|=2.8277%,光学镜头45的成像范围内的TV畸变较小。此外,通过将第六透镜456的物侧面4561与像侧面4562设置为非旋转对称的非球面,第六透镜456不仅能校正光学镜头45成像的场曲和像散,还能够起到矫正畸变的作用。第六透镜456具有“一物多用”的功能。
第五种实施方式:请参阅图18,图18是图5所示的光学镜头的透镜的再一种实施方式的结构示意图。在本实施方式中,光学镜头45的透镜为六片。光学镜头45包括自物侧至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第四透镜454均具有负光焦度。第六透镜456具有负光焦度。
在本实施方式中,第六透镜456的物侧面4561与像侧面4562为非旋转对称的非球面。其它透镜均为旋转对称透镜(也即第一透镜451、第二透镜452、第三透镜453、第四透镜454及第五透镜455均为旋转对称透镜),且旋转对称透镜的物侧面与像侧面均为旋转对称的非球面。附图18通过带有箭头的实线示意了光学镜头45的光轴方向。此外,箭头的方向代表自物侧指向像侧。
本申请第五种实施方式的光学镜头45的设计参数如下表17。
表17第五种实施方式的光学镜头45的设计参数
Figure PCTCN2021092556-appb-000023
Figure PCTCN2021092556-appb-000024
依据表17的数据,可以得到本申请第五种实施方式的光学镜头45的设计参数如下表18。
表18第五种实施方式的光学镜头45设计参数
f1(mm) 55.415 f4(mm) -5.943
f2(mm) -3.767 f5(mm) 3.767
f3(mm) 3.123 f6(mm) -12.283
f(mm) 4.175 |f1/f| 13.272
|f2/f| 0.902 |f3/f| 0.748
|f4/f| 1.423 |f5/f| 0.902
|f6/f| 2.942 f2/f1 -0.068
f4/f3 -1.903 FOV(°) 101
f/EPD 2.05 T45/f 0.241
ImagH(mm) 4.25 TTL(mm) 12.031
ImagH/TTL 0.354 (T23+T56)/TTL 0.084
R6/R10 1.605 Fno 2.05
根据表18可知,光学镜头45的视场角FOV为101°。光圈数Fno为2.05,即本申请的光学镜头45能够实现大视角、大光圈,能够更好的满足拍摄的需求。另外,TTL为12.031mm,ImagH为4.25mm,ImagH/TTL=0.354,即经本实施方式的光学镜头45投射至感光芯片42上的有效像素区域较大的同时,光学镜头45的光学总长能够较小,从而得到较高的成像质量的同时,能够将光学镜头45的长度可以较小,能够应用于手机、平板等薄型电子设备中。
本申请第五种实施方式的各旋转对称镜片(即第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455)的非球面系数的设计参数如下表19。
表19第五种实施方式的光学镜头45的旋转对称镜片的设计参数
面号 A0 A1 A2 A3 A4 A5 A6
S1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 -4.7136E-05 -4.6581E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 1.0699E-02 -3.3017E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.5734E+00 2.4840E-01 -9.3049E-02 -7.3303E-03 2.5035E-02 -3.1238E-02 -2.8120E-02
S6 -3.3124E+00 -4.9982E-01 4.4351E-01 1.4851E-01 -1.4865E-01 -9.9596E-02 -2.3765E-02
S7 -1.8541E+00 3.9796E-01 2.6770E-03 5.7753E-04 -2.0272E-03 3.9776E-03 2.3068E-03
S8 -1.1514E+00 2.9622E-01 -1.5178E-01 -4.5098E-02 -2.3692E-02 -1.8388E-03 5.7623E-04
S9 2.1431E+00 -2.8161E-01 -1.8436E-02 1.8813E-01 9.9322E-03 8.9805E-03 -1.9777E-02
S10 1.9797E+00 2.7760E+00 -1.2827E-01 -1.7749E-01 -2.9102E-01 -1.7835E-01 -7.0347E-02
其中,A0、A1、A2、A3、A4、A5、A6等符号表示非球面系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000025
能够得到第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455的物侧面和像侧面的面型。
本实施方式中,z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
另外,本申请第五种实施方式的第六透镜456的非旋转对称的非球面系数的设计参数如下表20。
表20第五种实施方式的光学镜头45的非旋转对称的非球面的设计参数
面序号 A10 A12 A14 A21 A23 A25 A27 A36
S11 5.611E-03 8.326E-03 4.830E-03 -7.988E-04 -2.243E-03 -2.191E-03 -9.090E-04 9.428E-06
S12 -2.052E-03 -7.944E-03 -2.246E-03 1.733E-04 4.778E-04 4.860E-04 2.248E-04 -4.908E-06
面序号 A38 A40 A42 A44 A55 A57 A59 A61
S11 3.661E-05 -5.982E-07 3.888E-05 1.963E-05 -2.189E-07 3.288E-07 1.675E-06 -6.355E-06
S12 -2.297E-05 -4.367E-05 -2.488E-05 -1.129E-05 4.971E-08 7.768E-07 5.202E-07 8.046E-07
面序号 A63 A65 A78 A80 A82 A84 A86 A88
S11 2.666E-07 1.085E-07 -9.463E-08 -2.187E-07 -2.626E-07 -5.631E-07 -9.633E-07 3.622E-07
S12 -1.237E-06 4.530E-09 -7.228E-09 1.628E-08 3.347E-08 -4.159E-08 2.756E-07 -1.847E-07
面序号 A90 A105 A107 A109 A111 A113 A115 A117
S11 1.884E-08 3.721E-11 -6.512E-09 6.857E-08 -1.190E-07 -8.687E-08 -8.202E-08 8.537E-09
S12 -1.177E-08 -1.656E-10 8.878E-10 1.583E-09 -3.704E-09 -6.559E-11 -7.922E-09 -4.147E-08
面序号 A119 A136 A138 A140 A142 A144 A146 A148
S11 2.551E-09 1.729E-10 2.023E-09 -2.865E-09 -8.300E-09 -1.286E-08 -3.110E-08 2.044E-08
S12 -2.645E-10 -1.000E-10 7.745E-12 -7.976E-12 -2.271E-10 -1.361E-09 7.617E-10 1.593E-09
面序号 A150 A152            
S11 -1.581E-08 -3.038E-10            
S12 1.631E-09 3.553E-11            
其中,A10、A12、A14、A21、A23、A25、A27等符号表示多项式系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000026
Figure PCTCN2021092556-appb-000027
能够设计得到本实施方式的第六透镜456的物侧面与像侧面的面型。
在本实施方式中,z为平行于z轴的矢高;N为级数中多项式系数的总数,Ai为第i项扩展多项式的系数,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数。表格中不存在的多项式系数(如A 1、A 2等)为0。
请参阅图19,图19是图18所示的光学镜头的各个透镜的成像仿真图。其中,实线网格为理想成像网格图,“X”号形成的网格结构为本实施方式的光学镜头45成像后的示意图。从图中可知,本实施方式的光学镜头45成像与理想成像基本相同,光学镜头45的成像范围内的TV畸变较小。具体的,本实施方式中,光学镜头45的成像范围内的TV畸变的最大值TDT满足|TDT|=2.5481%,光学镜头45的成像范围内的TV畸变较小。此外,通过将第六透镜456的物侧面4561与像侧面4562设置为非旋转对称的非球面,第六透镜456不仅能校正光学镜头45成像的场曲和像散,还能够起到矫正畸变的作用。第六透镜456具有“一物多用”的功能。
第六种实施方式:请参阅图20,图20是图5所示的光学镜头的透镜的再一种实施方式的结构示意图。在本实施方式中,光学镜头45的透镜为六片。光学镜头45包括自物侧至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第四透镜454均具有负光焦度。第六透镜456具有负光焦度。
在本实施方式中,第六透镜456的物侧面4561与像侧面4562为非旋转对称的非球面。其它透镜均为旋转对称透镜(也即第一透镜451、第二透镜452、第三透镜453、第四透镜454及第五透镜455均为旋转对称透镜),且旋转对称透镜的物侧面与像侧面均为旋转对称的非球面。附图20通过带有箭头的实线示意了光学镜头45的光轴方向。此外,箭头的方向代表自物侧指向像侧。
本申请第六种实施方式的光学镜头45的设计参数如下表21。
表21第六种实施方式的光学镜头45的设计参数
Figure PCTCN2021092556-appb-000028
Figure PCTCN2021092556-appb-000029
依据表21的数据,可以得到本申请第六种实施方式的光学镜头45的设计参数如表22。
表22第六种实施方式的光学镜头45设计参数
f1(mm) 46.254 f4(mm) -4.222
f2(mm) -16.111 f5(mm) 3.066
f3(mm) 3.527 f6(mm) -10.494
f(mm) 3.646 |f1/f| 12.685
|f2/f| 4.419 |f3/f| 0.967
|f4/f| 1.158 |f5/f| 0.840
|f6/f| 2.878 f2/f1 -0.348
f4/f3 -1.254 FOV(°) 112
f/EPD 2.23 T45/f 0.136
ImagH(mm) 5.00 TTL(mm) 11.2236
ImagH/TTL 0.445 (T23+T56)/TTL 0.026
R6/R10 1.441 Fno 2.23
根据表22可知,光学镜头45的视场角FOV为112°。光圈数Fno为2.23,即本申请的光学镜头45能够实现大视角、大光圈,能够更好的满足拍摄的需求。本实施方式中,TTL为11.2236mm,ImagH为5.00mm,ImagH/TTL=0.445,即经本实施方式的光学镜头45投射至感光芯片42上的有效像素区域较大的同时,光学镜头45的光学总长能够较小,从而得到较高的成像质量的同时,能够将光学镜头45的长度可以较小,能够应用于手机、平板等薄型电子设备中。
本申请第六种实施方式的各旋转对称镜片(即第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455)的非球面系数的设计参数如下表23。
表23第六种实施方式的光学镜头45的旋转对称镜片的设计参数
面号 A0 A1 A2 A3 A4 A5 A6
S1 1.48E-03 1.75E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
S2 -7.23E-03 -5.09E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
S3 3.10E+00 2.95E-02 1.74E-01 -3.88E-02 -1.67E-02 -1.64E-02 -7.39E-04
S4 4.91E+01 9.61E+00 -3.26E+00 -2.53E+00 -4.85E-01 -1.57E-02 1.95E-02
S5 7.03E-03 -3.31E-02 7.80E-03 3.08E-03 5.62E-04 -7.63E-04 -5.00E-04
S6 -5.93E-01 2.00E-02 -2.83E-02 -5.89E-03 -5.27E-03 -1.15E-03 -3.86E-04
S7 -7.55E-01 1.57E-01 -1.25E-02 -7.72E-04 -2.30E-03 -3.92E-05 5.85E-04
S8 -6.02E-01 1.63E-01 -1.84E-02 3.80E-03 -2.96E-03 -2.58E-06 1.67E-04
S9 3.69E-01 1.25E-01 -2.22E-02 -4.52E-04 -1.58E-03 1.21E-03 -2.26E-04
S10 -4.50E-01 3.08E-01 -4.72E-03 -9.14E-03 -3.34E-03 1.87E-03 5.44E-04
其中,A0、A1、A2、A3、A4、A5、A6等符号表示非球面系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000030
能够得到第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455的物侧面和像侧面的面型。
本实施方式中,z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
另外,本申请第六种实施方式的第六透镜456的非旋转对称的非球面系数的设计参数如下表24。
表24第六种实施方式的光学镜头45的非旋转对称的非球面的设计参数
面序号 A10 A12 A14 A21 A23 A25 A27 A36
S11 1.58E-02 2.89E-02 1.53E-02 -3.84E-03 -9.99E-03 -1.01E-02 -3.75E-03 4.44E-04
S12 -2.98E-02 -5.12E-02 -2.87E-02 7.51E-03 2.11E-02 2.22E-02 7.14E-03 -1.21E-03
面序号 A38 A40 A42 A44 A55 A57 A59 A61
S11 1.52E-03 2.47E-03 1.60E-03 4.08E-04 -4.06E-05 -2.14E-04 -4.43E-04 -4.31E-04
S12 -4.91E-03 -7.48E-03 -4.84E-03 -1.24E-03 1.28E-04 6.47E-04 1.28E-03 1.29E-03
面序号 A63 A65 A78 A80 A82 A84 A86 A88
S11 -2.23E-04 -4.38E-05 3.07E-06 1.98E-05 4.94E-05 6.59E-05 5.02E-05 2.03E-05
S12 6.50E-04 1.28E-04 -7.88E-06 -4.72E-05 -1.18E-04 -1.58E-04 -1.16E-04 -4.78E-05
面序号 A90 A105 A107 A109 A111 A113 A115 A117
S11 3.07E-06 -1.38E-07 -8.22E-07 -2.09E-06 -4.90E-06 -4.06E-06 -2.88E-06 -5.68E-07
S12 -7.87E-06 2.55E-07 1.80E-06 5.42E-06 8.83E-06 9.10E-06 5.50E-06 1.62E-06
面序号 A119 A136 A138 A140 A142 A144 A146 A148
S11 -1.08E-07 1.03E-09 3.79E-09 -2.68E-09 8.46E-08 1.23E-07 -9.95E-10 7.46E-08
S12 2.59E-07 -3.62E-09 -3.09E-08 -8.90E-08 -1.97E-07 -2.48E-07 -1.73E-07 -1.27E-07
面序号 A150 A152            
S11 -4.51E-08 1.76E-09            
S12 -2.96E-08 -3.17E-09            
其中,A10、A12、A14、A21、A23、A25、A27等符号表示多项式系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000031
Figure PCTCN2021092556-appb-000032
能够设计得到本实施方式的第六透镜456的物侧面与像侧面的面型。
其中,本实施方式中,z为平行于z轴的矢高;N为级数中多项式系数的总数,Ai为第i项扩展多项式的系数,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数。表格中不存在的多项式系数(如A 1、A 2等)为0。
请参阅图21,图21是图20所示的光学镜头的各个透镜的成像仿真图。其中,实线网格为理想成像网格图,“X”号形成的网格结构为本实施方式的光学镜头45成像后的示意图。从图中可知,本实施方式的光学镜头45成像与理想成像基本相同,光学镜头45的成像范围内的TV畸变较小。具体的,本实施方式中,光学镜头45的成像范围内的TV畸变的最大值TDT满足|TDT|=1.5569%,光学镜头45的成像范围内的TV畸变较小。此外,通过将第六透镜456的物侧面4561与像侧面4562设置为非旋转对称的非球面,第六透镜456不仅能校正光学镜头45成像的场曲和像散,还能够起到矫正畸变的作用。第六透镜456具有“一物多用”的功能。
第七种实施方式:请参阅图22,图22是图5所示的光学镜头的透镜的再一种实施方式的结构示意图。在本实施方式中,光学镜头45的透镜为六片。光学镜头45包括自物侧至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第四透镜454均具有负光焦度。第六透镜456具有负光焦度。
在本实施方式中,第六透镜456的物侧面4561与像侧面4562为非旋转对称的非球面。其它透镜均为旋转对称透镜(也即第一透镜451、第二透镜452、第三透镜453、第四透镜454及第五透镜455均为旋转对称透镜),且旋转对称透镜的物侧面与像侧面均为旋转对称的非球面。附图22通过带有箭头的实线示意了光学镜头45的光轴方向。此外,箭头的方向代表自物侧指向像侧。
本申请第七种实施方式的光学镜头45的设计参数如下表25。
表25第七种实施方式的光学镜头45的设计参数
Figure PCTCN2021092556-appb-000033
依据表25的数据,可以得到本申请第七种实施方式的光学镜头45的设计参数如表26。
表26第七种实施方式的光学镜头45设计参数
f1(mm) 38.003 f4(mm) -7.614
f2(mm) -3.126 f5(mm) 3.332
f3(mm) 4.043 f6(mm) -7.362
f(mm) 4.092 |f1/f| 9.287
|f2/f| 0.763 |f3/f| 0.988
|f4/f| 1.860 |f5/f| 0.814
|f6/f| 1.799 f2/f1 -0.082
f4/f3 -1.883 FOV(°) 113
f/EPD 2.05 T45/f 0.164
ImagH(mm) -3.190 TTL(mm) 12.2892
ImagH/TTL -0.260 (T23+T56)/TTL 0.104
R6/R10 1.582 Fno 2.05
根据表26可知,光学镜头45的视场角FOV为113°,光圈数Fno为2.23,即本申请的光学镜头45能够实现大视角、大光圈,能够更好的满足拍摄的需求。本实施方式中,TTL为12.2892mm,ImagH为-3.190mm,ImagH/TTL=-0.260,即经本实施方式的光学镜头45投射至感光芯片42上的有效像素区域较大的同时,光学镜头45的光学总长能够较小,从而 得到较高的成像质量的同时,能够将光学镜头45的长度可以较小,能够应用于手机、平板等薄型电子设备中。
本申请第七种实施方式的各旋转对称镜片(即第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455)的非球面系数的设计参数如下表27。
表27第七种实施方式的光学镜头45的旋转对称镜片的设计参数
面号 A0 A1 A2 A3 A4 A5 A6
S1 4.5851E-05 -1.1944E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 5.0823E-04 1.4852E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 2.3829E-03 -5.9726E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 7.6679E-03 -1.6866E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.3144E+00 2.7732E-01 -1.3261E-01 -3.6522E-03 3.3210E-02 -5.0816E-02 -3.2074E-02
S6 -3.5654E+00 -4.4067E-01 4.0940E-01 1.6636E-01 -1.5404E-01 -1.1443E-01 -3.2480E-02
S7 -1.7736E+00 3.8152E-01 -1.9297E-02 -2.4216E-03 -6.0501E-03 2.5367E-03 1.6128E-03
S8 -1.3978E+00 3.3036E-01 -1.3787E-01 -3.9654E-02 -2.3089E-02 -1.2913E-03 3.7844E-04
S9 2.0355E+00 -8.8988E-02 -1.5832E-01 2.3324E-01 -7.0980E-03 1.1812E-02 -1.6392E-02
S10 1.4289E+00 2.8523E+00 -1.1320E-01 -1.9060E-01 -2.9395E-01 -1.8131E-01 -7.2198E-02
其中,A0、A1、A2、A3、A4、A5、A6等符号表示非球面系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000034
能够得到第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455的物侧面和像侧面的面型。
本实施方式中,z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
另外,本申请第七种实施方式的第六透镜456的非旋转对称的非球面系数的设计参数如下表28。
表28第七种实施方式的光学镜头45的非旋转对称的非球面的设计参数
面序号 A10 A12 A14 A21 A23 A25 A27 A36
S11 6.668E-03 1.175E-02 6.311E-03 -6.180E-04 -1.804E-03 -1.676E-03 -5.758E-04 1.069E-05
S12 -4.483E-03 -8.941E-03 -3.364E-03 2.009E-04 6.978E-04 4.358E-04 2.009E-04 -3.719E-06
面序号 A38 A40 A42 A44 A55 A57 A59 A61
S11 5.853E-05 7.592E-05 3.975E-05 1.891E-05 -2.511E-08 6.845E-07 1.918E-06 2.172E-06
S12 -2.829E-05 -3.398E-05 -2.620E-05 -3.295E-06 8.833E-08 4.089E-07 6.957E-07 1.611E-06
面序号 A63 A65 A78 A80 A82 A84 A86 A88
S11 5.062E-07 8.016E-08 -1.636E-08 -1.660E-08 -8.334E-08 -2.178E-07 -2.625E-07 5.546E-10
S12 -1.131E-06 1.002E-08 -4.116E-09 2.446E-08 -2.125E-08 2.865E-08 1.008E-07 -1.885E-07
面序号 A90 A105 A107 A109 A111 A113 A115 A117
S11 -1.661E-08 8.853E-10 1.714E-09 -1.488E-09 -1.370E-08 -9.986E-09 -5.636E-08 9.597E-10
S12 -1.175E-10 4.486E-11 1.526E-09 -1.464E-09 -2.204E-09 3.765E-09 -1.963E-09 -1.855E-08
面序号 A119 A136 A138 A140 A142 A144 A146 A148
S11 2.655E-10 1.914E-11 1.235E-10 1.708E-10 -6.540E-10 -8.277E-10 -4.475E-09 -9.490E-09
S12 3.343E-11 -4.311E-12 1.422E-10 -2.174E-10 -3.579E-10 -1.593E-10 -4.155E-11 4.528E-10
面序号 A150 A152            
S11 -7.283E-10 -1.660E-12            
S12 8.721E-10 -3.908E-12            
其中,A10、A12、A14、A21、A23、A25、A27等符号表示多项式系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000035
Figure PCTCN2021092556-appb-000036
能够设计得到本实施方式的第六透镜456的物侧面与像侧面的面型。
其中,本实施方式中,z为平行于z轴的矢高;N为级数中多项式系数的总数,Ai为第i项扩展多项式的系数,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数。表格中不存在的多项式系数(如A 1、A 2等)为0。
请参阅图23,图23是图22所示的光学镜头的各个透镜的成像仿真图。其中,实线网格为理想成像网格图,“X”号形成的网格结构为本实施方式的光学镜头45成像后的示意图。从图中可知,本实施方式的光学镜头45成像与理想成像基本相同,光学镜头45的成像范围内的TV畸变较小。具体的,本实施方式中,光学镜头45的成像范围内的TV畸变的最大值TDT满足|TDT|=4.8350%,光学镜头45的成像范围内的TV畸变较小。此外,通过将第六透镜456的物侧面4561与像侧面4562设置为非旋转对称的非球面,第六透镜456不仅能校正光学镜头45成像的场曲和像散,还能够起到矫正畸变的作用。第六透镜456具有“一物多用”的功能。
第八种实施方式:请参阅图24,图24是图5所示的光学镜头的透镜的再一种实施方式的结构示意图。在本实施方式中,光学镜头45的透镜为六片。光学镜头45包括自物侧至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第四透镜454均具有负光焦度。第六透镜456具有正光焦度。
在本实施方式中,第六透镜456的物侧面4561与像侧面4562为非旋转对称的非球面。其它透镜均为旋转对称透镜(也即第一透镜451、第二透镜452、第三透镜453、第四透镜454及第五透镜455均为旋转对称透镜),且旋转对称透镜的物侧面与像侧面均为旋转对称的非 球面。附图24通过带有箭头的实线示意了光学镜头45的光轴方向。此外,箭头的方向代表自物侧指向像侧。
本申请第八种实施方式的光学镜头45的设计参数如下表29。
表29第八种实施方式的光学镜头45的设计参数
Figure PCTCN2021092556-appb-000037
依据表29的数据,可以得到本申请第八种实施方式的光学镜头45的设计参数如下表30。
表30第八种实施方式的光学镜头45设计参数
f1(mm) 450.799 f4(mm) -3.831
f2(mm) -14.904 f5(mm) 3.126
f3(mm) 3.365 f6(mm) 90.409
f(mm) 3.234 |f1/f| 139.386
|f2/f| 4.608 |f3/f| 1.041
|f4/f| 1.185 |f5/f| 0.967
|f6/f| 27.954 f2/f1 -0.033
f4/f3 -1.138 FOV(°) 130
f/EPD 2.24 T45/f 0.156
ImagH(mm) 4.995 TTL(mm) 11.1277
ImagH/TTL 0.445 (T23+T56)/TTL 0.031
R6/R10 1.359 Fno 2.24
根据表30可知,光学镜头45的视场角FOV为130°,光圈数Fno为2.23,即本申请的光学镜头45能够实现大视角、大光圈,能够更好的满足拍摄的需求。本实施方式中,TTL为11.1277mm,ImagH为4.995mm,ImagH/TTL=0.445,即经本实施方式的光学镜头45投射至感光芯片42上的有效像素区域较大的同时,光学镜头45的光学总长能够较小,从而得到较高的成像质量的同时,能够将光学镜头45的长度可以较小,能够应用于手机、平板等薄型电子设备中。
本申请第八种实施方式的各旋转对称镜片(即第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455)的非球面系数的设计参数如下表31。
表31第八种实施方式的光学镜头45的旋转对称镜片的设计参数
面号 A0 A1 A2 A3 A4 A5 A6
S1 1.4762E-03 1.7478E-05 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S2 -7.2268E-03 -5.0910E-04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S3 3.0997E+00 2.9531E-02 1.7439E-01 -3.8770E-02 -1.6703E-02 -1.6440E-02 -7.3926E-04
S4 4.9057E+01 9.6124E+00 -3.2636E+00 -2.5320E+0 -4.8540E-01 -1.5692E-02 1.9548E-02
S5 1.2486E-02 -3.2960E-02 8.6854E-03 2.8498E-03 1.5030E-03 -6.6726E-04 -3.4940E-04
S6 -5.9267E-01 2.7938E-02 -2.7908E-02 -6.2007E-03 -6.4321E-03 -1.9555E-03 -5.7225E-04
S7 -7.5223E-01 1.5932E-01 -8.9152E-03 9.3672E-04 -6.8548E-04 -4.4212E-04 1.4436E-03
S8 -6.0014E-01 1.6298E-01 -1.8353E-02 4.4839E-03 -1.9129E-03 -1.1461E-03 2.2716E-04
S9 3.7758E-01 1.2345E-01 -2.2225E-02 2.8058E-04 -1.5228E-04 2.2063E-04 -1.5353E-04
S10 -4.5841E-01 3.2003E-01 -2.1905E-03 -1.7138E-03 8.7588E-05 9.4878E-04 4.7193E-03
其中,A0、A1、A2、A3、A4、A5、A6等符号表示非球面系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000038
能够得到第一透镜451、第二透镜452、第三透镜453、第四透镜454以及第五透镜455的物侧面和像侧面的面型。
本实施方式中,z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
另外,本申请第八种实施方式的第六透镜456的非旋转对称的非球面系数的设计参数如下表32。
表32第八种实施方式的光学镜头45的非旋转对称的非球面的设计参数
面序号 A10 A12 A14 A21 A23 A25 A27 A36
S11 2.682E-02 3.993E-02 2.540E-02 -4.674E-03 -9.383E-03 -9.888E-03 -4.116E-03 4.235E-04
S12 -3.024E-02 -5.097E-02 -2.806E-02 7.551E-03 2.109E-02 2.199E-02 7.350E-03 -1.216E-03
面序号 A38 A40 A42 A44 A55 A57 A59 A61
S11 0.000E+00 1.409E-03 2.397E-03 1.170E-03 4.005E-04 -3.713E-05 -2.216E-04 -4.414E-04
S12 0.000E+00 -4.917E-03 -7.495E-03 -4.840E-03 -1.223E-03 1.283E-04 6.486E-04 1.282E-03
面序号 A63 A65 A78 A80 A82 A84 A86 A88
S11 -4.218E-04 -2.316E-04 -4.316E-05 3.168E-06 1.923E-05 5.004E-05 6.872E-05 4.909E-05
S12 1.286E-03 6.524E-04 1.279E-04 -7.854E-06 -4.721E-05 -1.180E-04 -1.584E-04 -1.153E-04
面序号 A90 A105 A107 A109 A111 A113 A115 A117
S11 2.359E-05 3.129E-06 -1.355E-07 -8.047E-07 -2.100E-06 -4.761E-06 -3.869E-06 -2.884E-06
S12 -4.589E-05 -8.014E-06 2.568E-07 1.797E-06 5.426E-06 8.817E-06 9.076E-06 5.497E-06
面序号 A119 A136 A138 A140 A142 A144 A146 A148
S11 5.609E-07 -1.162E-07 5.605E-10 1.221E-08 9.482E-09 8.463E-08 6.482E-08 7.536E-08
S12 1.551E-06 2.551E-07 -3.746E-09 -3.127E-08 -8.672E-08 -1.967E-07 -2.493E-07 -1.759E-07
面序号 A150 A152            
S11 3.248E-08 -1.236E-07            
S12 -1.279E-07 -3.314E-08            
其中,A10、A12、A14、A21、A23、A25、A27等符号表示多项式系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000039
Figure PCTCN2021092556-appb-000040
能够设计得到本实施方式的第六透镜456的物侧面与像侧面的面型。
其中,本实施方式中,z为平行于z轴的矢高;N为级数中多项式系数的总数,Ai为第i项扩展多项式的系数,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数。表格中不存在的多项式系数(如A 1、A 2等)为0。
请参阅图25,图25是图24所示的光学镜头的各个透镜的成像仿真图。其中,实线网格为理想成像网格图,“X”号形成的网格结构为本实施方式的光学镜头45成像后的示意图。从图中可知,本实施方式的光学镜头45成像与理想成像基本相同,光学镜头45的成像范围内的TV畸变较小。具体的,本实施方式中,光学镜头45的成像范围内的TV畸变的最大值TDT满足|TDT|=3.4559%,光学镜头45的成像范围内的TV畸变较小。此外,通过将第六透镜456的物侧面4561与像侧面4562设置为非旋转对称的非球面,第六透镜456不仅能校正光学镜头45成像的场曲和像散,还能够起到矫正畸变的作用。第六透镜456具有“一物多用”的功能。
第九种实施方式:请参阅图26,图26是图5所示的光学镜头的透镜的再一种实施方式的结构示意图。在本实施方式中,光学镜头45的透镜为六片。光学镜头45包括自物侧至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第 四透镜454均具有负光焦度。第六透镜456具有负光焦度。
在本实施方式中,第一透镜451的物侧面4511与像侧面4512均为非旋转对称的非球面。其它透镜均为旋转对称透镜(也即第二透镜452、第三透镜453、第四透镜454、第五透镜455及第六透镜456均为旋转对称透镜),且旋转对称透镜的物侧面与像侧面均为旋转对称的非球面。附图26通过带有箭头的实线示意了光学镜头45的光轴方向。此外,箭头的方向代表自物侧指向像侧。
本申请第九种实施方式的光学镜头45的设计参数如下表33。
表33第九种实施方式的光学镜头45的设计参数
Figure PCTCN2021092556-appb-000041
依据表33的数据,可以得到本申请第九种实施方式的光学镜头45的设计参数如下表34。
表34第九种实施方式的光学镜头45设计参数
f1(mm) 239.029 f4(mm) -4.375
f2(mm) -13.708 f5(mm) 2.051
f3(mm) 3.144 f6(mm) -7.588
f(mm) 2.615 |f1/f| 91.421
|f2/f| 5.242 |f3/f| 1.203
|f4/f| 1.673 |f5/f| 0.784
|f6/f| 2.901 f2/f1 -0.057
f4/f3 -1.391 FOV(°) 125
f/EPD 2.23 T45/f 0.2
ImagH(mm) 4.89 TTL(mm) 8.0
ImagH/TTL 0.63 (T23+T56)/TTL 0.048
R6/R10 1.928 Fno 2.23
根据表34可知,光学镜头45的视场角FOV为125°,光圈数Fno为2.23,即本申请的光学镜头45能够实现大视角、大光圈,能够更好的满足拍摄的需求。本实施方式中,TTL为8.0mm,ImagH为4.89mm,ImagH/TTL=0.63,即经本实施方式的光学镜头45投射至感光芯片42上的有效像素区域较大的同时,光学镜头45的光学总长能够较小,从而得到较高的成像质量的同时,能够将光学镜头45的长度可以较小,能够应用于手机、平板等薄型电子设备中。
本申请第九种实施方式的各旋转对称镜片(即第二透镜452、第三透镜453、第四透镜454、第五透镜455及第六透镜456)的非球面系数的设计参数如下表35所示。
表35第九种实施方式的光学镜头45的旋转对称镜片的设计参数
面号 A0 A1 A2 A3 A4 A5 A6
S3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
S5 -1.6177E+00 1.0453E+00 2.6887E-01 3.5938E-02 6.3268E-02 -2.1583E-02 -2.2346E-02
S6 -2.8137E+00 -1.6619E-01 2.1352E-01 7.9381E-02 -9.4571E-02 -5.4848E-02 -1.3948E-02
S7 -1.1177E+00 2.7400E-01 -3.6477E-02 -2.7589E-03 -2.5818E-03 -1.3641E-03 1.7403E-05
S8 -9.6010E-01 2.2340E-01 -8.7433E-02 -1.8932E-02 -2.1134E-02 -5.1406E-03 -1.7481E-03
S9 2.8866E-01 -1.3119E-01 -1.0555E-01 2.5540E-01 -6.2301E-02 -1.0146E-01 -4.9388E-02
S10 8.9235E-01 2.0611E+00 -1.8778E-01 -1.5534E-01 -2.0511E-01 -1.7145E-01 -7.3918E-02
S11 1.3487E-02 -5.7844E-04 9.6591E-06 -2.5138E-08 -1.3582E-09 2.3184E-11 -2.5945E-13
S12 -2.9340E-02 5.0352E-04 -4.5837E-06 -3.0960E-10 6.1511E-10 5.4947E-12 -2.2045E-13
其中,A0、A1、A2、A3、A4、A5、A6等符号表示非球面系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000042
能够设计得到第二透镜452、第三透镜453、第四透镜454、第五透镜455及第六透镜456的物侧面和像侧面的面型。
本实施方式中,z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
另外,本申请第九种实施方式的第一透镜451的非旋转对称的非球面系数的设计参数如下表36。
表36第九种实施方式的光学镜头45的非旋转对称的非球面的设计参数
面序号 A10 A12 A14 A21 A23 A25 A27 A36
S1 1.639E-02 4.155E-02 1.904E-02 -2.331E-03 8.124E-03 2.045E-02 7.081E-03 7.159E-03
S2 3.662E-03 3.053E-02 1.182E-02 1.952E-02 4.634E-02 6.675E-02 1.869E-02 3.643E-03
面序号 A38 A40 A42 A44 A55 A57 A59 A61
S1 7.968E-03 2.355E-02 -2.004E-03 -8.995E-03 4.926E-04 1.077E-02 -6.689E-04 6.517E-03
S2 1.759E-02 2.558E-02 3.977E-03 -5.645E-05 1.481E-03 4.425E-03 3.646E-02 -2.376E-03
面序号 A63 A65 A78 A80 A82 A84 A86 A88
S1 1.333E-02 1.619E-02 -1.777E-04 -6.860E-03 5.177E-03 1.091E-02 -2.038E-02 6.196E-03
S2 1.836E-02 -9.104E-04 1.702E-03 -4.239E-03 -5.167E-03 -1.852E-02 8.694E-03 8.496E-03
面序号 A90 A105 A107 A109 A111 A113 A115 A117
S1 -1.409E-02 -6.783E-05 -4.739E-04 4.578E-04 4.629E-03 4.982E-03 5.177E-03 1.091E-02
S2 -1.470E-03 -1.837E-06 -1.648E-03 -8.654E-03 1.636E-02 -3.205E-02 -5.167E-03 -1.852E-02
面序号 A119 A136 A138 A140 A142 A144 A146 A148
S1 -2.038E-02 6.196E-03 -1.409E-02 -6.783E-05 -4.739E-04 4.578E-04 4.629E-03 4.982E-03
S2 8.694E-03 8.496E-03 -1.470E-03 -1.837E-06 -1.648E-03 -8.654E-03 1.636E-02 -3.205E-02
面序号 A150 A152            
S1 -2.070E-03 -8.568E-04            
S2 -8.405E-03 2.722E-04            
其中,A10、A12、A14、A21、A23、A25、A27等符号表示多项式系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000043
Figure PCTCN2021092556-appb-000044
能够设计得到本实施方式的第一透镜451的物侧面与像侧面的面型。
其中,本实施方式中,z为平行于z轴的矢高;N为级数中多项式系数的总数,Ai为第i项扩展多项式的系数,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数。表格中不存在的多项式系数(如A 1、A 2等)为0。
请参阅图27,图27是图26所示的光学镜头的各个透镜的成像仿真图。其中,实线网格为理想成像网格图,“X”号形成的网格结构为本实施方式的光学镜头45成像后的示意图。从图中可知,本实施方式的光学镜头45成像与理想成像基本相同,光学镜头45的成像范围内的TV畸变较小。具体的,本实施方式中,光学镜头45的成像范围内的TV畸变的最大值TDT满足|TDT|=1.4771%,光学镜头45的成像范围内的TV畸变较小。可以理解的是,通过将第一透镜451的物侧面4511与像侧面4512设置为非旋转对称的非球面,从而使得待成像景物反射的光线从靠近物侧的透镜入射时就能够矫正大视场带来的畸变明显的问题,能够更容易的起到矫正效果。
第十种实施方式:请参阅图28,图28是图5所示的光学镜头的透镜的再一种实施方式的结构示意图。在本实施方式中,光学镜头45的透镜为六片。光学镜头45包括自物侧 至像侧依次排列的第一透镜451、第二透镜452、第三透镜453、第四透镜454、第五透镜455以及第六透镜456。第一透镜451、第三透镜453及第五透镜455均具有正光焦度。第二透镜452及第四透镜454均具有负光焦度。第六透镜456具有负光焦度。
在本实施方式中,第一透镜451的物侧面4511与像侧面4512均为非旋转对称的非球面。第六透镜456的物侧面4561与像侧面4562均为非旋转对称的非球面。其它透镜均为旋转对称透镜(也即第二透镜452、第三透镜453、第四透镜454及第五透镜455均为旋转对称透镜),且旋转对称透镜的物侧面与像侧面均为旋转对称的非球面。
本申请第十种实施方式的光学镜头45的设计参数如下表37。
表37第十种实施方式的光学镜头45的设计参数
Figure PCTCN2021092556-appb-000045
依据表38的数据,可以得到本申请第十种实施方式的光学镜头45的设计参数如下表38。
表38第十种实施方式的光学镜头45设计参数
f1(mm) 307.23 f4(mm) -4.44
f2(mm) -13.5 f5(mm) 2.04
f3(mm) 3.14 f6(mm) -7.96
f(mm) 2.54 |f1/f| 120.967
|f2/f| 5.314 |f3/f| 1.236
|f4/f| 1.748 |f5/f| 0.804
|f6/f| 3.134 f2/f1 -0.044
f4/f3 -1.414 FOV(°) 135
f/EPD 2.3 T45/f 0.199
ImagH(mm) 4.36 TTL(mm) 8.1
ImagH/TTL 0.538 (T23+T56)/TTL 0.059
R6/R10 1.929 Fno 2.3
根据表38可知,光学镜头45的视场角FOV为135°,光圈数Fno为2.3,即本申请的光学镜头45能够实现大视角、大光圈,能够更好的满足拍摄的需求。本实施方式中,TTL为8.1mm,ImagH为4.36mm,ImagH/TTL=0.538,即经本实施方式的光学镜头45投射至感光芯片42上的有效像素区域较大的同时,光学镜头45的光学总长能够较小,从而得到较高的成像质量的同时,能够将光学镜头45的长度可以较小,能够应用于手机、平板等薄型电子设备中。
本申请第十种实施方式的各旋转对称镜片(即第二透镜452、第三透镜453、第四透镜454及第五透镜455)的非球面系数的设计参数如下表39所示。
表39第十种实施方式的光学镜头45的旋转对称镜片的设计参数
面号 A0 A1 A2 A3 A4 A5 A6
S3 -1.00E-04 7.83E-04 -6.92E-05 3.80E-05 1.04E-06 4.63E-06 -3.31E-05
S4 -1.78E-06 -2.68E-04 7.41E-04 -1.10E-04 -2.31E-06 -3.78E-05 1.35E-05
S5 -1.64E+00 1.05E+00 2.67E-01 3.65E-02 6.31E-02 -2.17E-02 -2.20E-02
S6 -2.82E+00 -1.60E-01 2.09E-01 8.10E-02 -9.52E-02 -5.50E-02 -1.33E-02
S7 -1.12E+00 2.74E-01 -3.60E-02 -2.73E-03 -2.53E-03 -1.49E-03 5.66E-05
S8 -9.60E-01 2.23E-01 -8.79E-02 -1.84E-02 -2.14E-02 -5.30E-03 -1.59E-03
S9 2.90E-01 -1.32E-01 -1.04E-01 2.55E-01 -6.16E-02 -1.03E-01 -4.89E-02
S10 8.90E-01 2.06E+00 -1.90E-01 -1.55E-01 -2.05E-01 -1.73E-01 -7.09E-02
其中,A0、A1、A2、A3、A4、A5、A6等符号表示非球面系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000046
能够设计得到第二透镜452、第三透镜453、第四透镜454及第五透镜455的物侧面和像侧面的面型。
本实施方式中,z为非球面的矢高。r为非球面的径向坐标。c为非球面顶点球曲率。K为二次曲面常数。A m为非球面系数。r max为径向半径坐标最大值。u=r/r max
另外,本申请第十种实施方式的第一透镜451及第六透镜456的非旋转对称的非球面系数的设计参数如下表40。
表40第十种实施方式的光学镜头45的非旋转对称的非球面的设计参数
面序号 A10 A12 A14 A21 A23 A25 A27 A36 A38
S1 1.57E-02 4.11E-02 1.82E-02 -2.18E-03 8.58E-03 2.12E-02 7.25E-03 7.17E-03 8.52E-03
S2 4.91E-03 3.35E-02 1.32E-02 1.94E-02 4.62E-02 6.63E-02 1.86E-02 3.56E-03 1.72E-02
S11 -2.12E+03 3.31E-02 1.65E-02 -2.44E+06 -1.77E+08 -1.95E+08 -2.90E+07 -3.75E+08 -4.76E+10
S12 -3.14E-02 -6.38E-02 -3.20E-02 3.24E-03 9.61E-03 9.70E-03 3.23E-03 -1.26E-04 -5.14E-04
面序号 A40 A42 A44 A55 A57 A59 A61 A63 A65
S1 2.43E-02 -1.28E-03 -8.79E-03 5.32E-04 1.09E-02 -3.88E-04 6.84E-03 1.37E-02 1.62E-02
S2 2.49E-02 3.28E-03 -1.84E-04 1.44E-03 4.21E-03 3.60E-02 -2.88E-03 1.82E-02 -9.88E-04
S11 -2.43E+10 -7.16E+10 -1.05E+10 -2.83E+12 -4.50E+12 2.39E+13 1.48E+13 9.29E+12 -2.97E+11
S12 -7.76E-04 -5.03E-04 -1.26E-04 -7.08E-07 -3.73E-06 -8.48E-06 -7.35E-06 -3.15E-06 -6.32E-07
面序号 A78 A80 A82 A84 A86 A88 A90 A105 A107
S1 -1.66E-04 -6.81E-03 5.18E-03 1.07E-02 -2.04E-02 6.41E-03 -1.41E-02 -6.40E-05 -4.86E-04
S2 1.69E-03 -4.19E-03 -5.36E-03 -1.87E-02 8.55E-03 8.49E-03 -1.41E-03 5.64E-06 -1.46E-03
S11 2.83E+14 2.26E+15 5.20E+16 -1.77E+16 9.17E+16 6.89E+16 5.33E+15 1.65E+18 4.68E+18
S12 2.65E-07 1.61E-06 3.98E-06 5.41E-06 3.98E-06 1.65E-06 2.71E-07 1.79E-08 1.29E-07
面序号 A109 A111 A113 A115 A117 A119 A136 A138 A140
S1 3.85E-04 4.29E-03 4.55E-03 -8.79E-03 -2.35E-03 5.86E-03 1.15E-05 1.37E-03 -1.70E-03
S2 -8.40E-03 1.61E-02 -3.20E-02 -2.12E-05 -5.10E-03 1.25E-03 -6.05E-04 2.27E-03 4.10E-03
S11 1.41E+19 -1.77E+19 -7.12E+19 2.47E+20 1.17E+20 6.80E+18 2.26E+21 8.95E+21 -2.58E+22
S12 3.88E-07 6.53E-07 6.54E-07 3.77E-07 1.35E-07 1.81E-08 -1.75E-09 -1.36E-08 -4.74E-08
面序号 A142 A144 A146 A148 A150 A152      
S1 -9.27E-03 -1.02E-02 1.77E-02 2.24E-03 -2.04E-03 -8.66E-04      
S2 -8.35E-02 7.71E-02 7.91E-03 -1.37E-02 -7.51E-03 2.74E-04      
S11 -7.49E+22 -1.18E+23 -1.48E+23 5.94E+23 9.67E+22 6.28E+21      
S12 -9.40E-08 -1.18E-07 -9.33E-08 -5.04E-08 -1.22E-08 -1.75E-09      
其中,A10、A12、A14、A21、A23、A25、A27等符号表示多项式系数。通过将上述参数代入至公式:
Figure PCTCN2021092556-appb-000047
Figure PCTCN2021092556-appb-000048
能够设计得到本实施方式的第一透镜451的物侧面4511与像侧面4512以及第六透镜456的物侧面4561与像侧面4562。
其中,本实施方式中,z为平行于z轴的矢高;N为级数中多项式系数的总数,Ai为第i项扩展多项式的系数,r为非球面的径向坐标,c为非球面顶点球曲率,K为二次曲面常数。表格中不存在的多项式系数(如A 1、A 2等)为0。
请参阅图29,图29是图28所示的光学镜头的各个透镜的成像仿真图。其中,实线网格为理想成像网格图,“X”号形成的网格结构为本实施方式的光学镜头45成像后的示意图。从图中可知,本实施方式的光学镜头45成像与理想成像基本相同,光学镜头45的成像范围内的TV畸变较小。光学镜头45的成像范围内的TV畸变的最大值TDT满足|TDT|=1.8%,光学镜头45的成像范围内的TV畸变较小。可以理解的是,通过将第一透镜451的物侧面4511与像侧面4512设置为非旋转对称的非球面,从而使得待成像景物反射的光线从靠近物侧的透镜入射时就能够矫正大视场带来的畸变明显的问题,能够更容易的起到矫正效果。此外,通过将第六透镜456的物侧面4561与像侧面4562设置为非旋转对称的非球面,第六透镜456不仅能校正光学镜头45成像的场曲和像散,还能够起到矫正畸变的作用。
在上述各个实施方式中,通过将第一透镜451、第三透镜453及第五透镜455设置为具有正光焦度,第二透镜452及第四透镜454设置为具有负光焦度,第六透镜456设置为具有正光焦度或者负光焦度,从而在保证光学镜头45能够实现较好的成像质量的同时,光学镜头45的视场角能够较大程度地提高,实现光学镜头45的超广角设置。
另外,随着光学镜头的视场角增大,光学镜头的成像畸变越加明显。例如,当光学镜头的视场角达到100°时,光学镜头的成像畸变已经大于10%。而对于光学镜头的超广角设置,光学镜头的成像畸变更加的明显,成像质量更差。在本申请中,通过在实现超广角设计的光学镜头45的透镜中设置至少一个非旋转对称的非球面,从而提高光学系统的设计自由度,并且能够利用自由区域的非对称性,优化所述光学镜头的成像品质,矫正光学镜头的畸变,进而保证所述光学镜头具有较好的成像质量。
故而,本实施方式的光学镜头45既能够在实现超广角拍摄的同时,又能够较大程度地解决超广角成像中的畸变问题。换言之,本实施方式设计了一种成像畸变较小的超广角光学镜头45。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种光学镜头,其特征在于,包括自物侧至像侧依次排列的第一透镜、第二透镜、第三透镜、第四透镜、第五透镜以及第六透镜,所述第一透镜、所述第三透镜及所述第五透镜均具有正光焦度,所述第二透镜及所述第四透镜均具有负光焦度,所述第六透镜具有正光焦度或者负光焦度;
    所述第一透镜至所述第六透镜中的物侧面和像侧面包括至少一个非旋转对称的非球面。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜的焦距f1与所述第二透镜的焦距f2满足:-0.5<f2/f1<-0.01。
  3. 根据权利要求2所述的光学镜头,其特征在于,所述第三透镜的焦距f3与所述第四透镜的焦距f4满足:-4<f4/f3<0。
  4. 根据权利要求3所述的光学镜头,其特征在于,所述第五透镜的焦距f5与所述光学镜头的焦距f满足:0.1<f5/f<1.5。
  5. 根据权利要求1至4中任一项所述的光学镜头,其特征在于,所述第三透镜的像侧面的曲率半径R6与所述第五透镜的像侧面的曲率半径R10满足:0<R6/R10<2.9。
  6. 根据权利要求1至4中任一项所述的光学镜头,其特征在于,所述第四透镜与所述第五透镜之间的距离T45与所述光学镜头的焦距f满足:0.05<T45/f<0.4。
  7. 根据权利要求6所述的光学镜头,其特征在于,所述光学镜头满足:
    0<(T23+T56)/TTL<0.5;
    其中,T23为所述第二透镜与第三透镜之间的距离,T56为所述第五透镜与所述第六透镜之间的距离,TTL为在所述光学镜头的光轴方向上,所述第一透镜的物侧面至成像面的距离。
  8. 根据权利要求1至7中任一项所述的光学镜头,其特征在于,至少一个所述非旋转对称的非球面包括第一顶点及第二顶点,所述第一顶点与所述第二顶点位于所述非旋转对称的非球面的光学有效区内,且均位于所述非旋转对称的非球面所在透镜的弧矢面内,所述第一顶点与所述第二顶点关于所述非旋转对称的非球面所在透镜的子午面对称;
    所述第一顶点至第一基准面的距离等于所述第二顶点至所述第一基准面的距离,所述第一基准面垂直于所述光学镜头的光轴,且所述光学镜头的光轴与所述非旋转对称的非球面的交点位于所述第一基准面。
  9. 根据权利要求8所述的光学镜头,其特征在于,所述非旋转对称的非球面还包括第三顶点及第四顶点,所述第三顶点及所述第四顶点均位于所述非旋转对称的非球面的光学 有效区内,且均位于所述非旋转对称的非球面所在透镜的子午面内,所述第三顶点与所述第四顶点关于所述非旋转对称的非球面所在透镜的弧矢面对称;
    所述第三顶点至所述第一基准面的距离等于所述第四顶点至所述第一基准面的距离。
  10. 根据权利要求1至9中任一项所述的光学镜头,其特征在于,所述光学镜头包括光阑,所述光阑位于所述第二透镜与所述第三透镜之间。
  11. 根据权利要求1至10中任一项所述的光学镜头,其特征在于,所述光学镜头满足:|TDT|≤5.0%;其中,TDT为所述光学镜头的成像范围内的TV畸变的最大值。
  12. 根据权利要求1至11中任一项所述的光学镜头,其特征在于,所述光学镜头满足:100°≤FOV≤140°;FOV为所述摄像镜头组的视场角。
  13. 根据权利要求1至12中任一项所述的光学镜头,其特征在于,所述光学镜头满足:0<ImagH/TTL<1;其中,TTL为在所述光学镜头的光轴方向上,所述第一透镜的物侧面至成像面的距离,ImagH为成像面的像高。
  14. 一种摄像模组,其特征在于,包括电路板、感光芯片及如权利要求1至13中任一项所述的光学镜头,所述感光芯片与所述光学镜头均固定于所述电路板,所述光学镜头用于将环境光线投射至所述感光芯片。
  15. 一种电子设备,其特征在于,包括壳体以及如权利要求14所述的摄像模组,所述摄像模组安装于所述壳体内。
PCT/CN2021/092556 2020-05-30 2021-05-10 光学镜头、摄像模组及电子设备 WO2021244223A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/923,658 US20230185063A1 (en) 2020-05-30 2021-05-10 Optical lens, camera module, and electronic device
BR112022023965A BR112022023965A2 (pt) 2020-05-30 2021-05-10 Lente óptica, módulo de câmera e dispositivo eletrônico
EP21817952.1A EP4134723A4 (en) 2020-05-30 2021-05-10 OPTICAL LENS, CAMERA MODULE AND ELECTRONIC DEVICE
CN202180002149.1A CN113454512B (zh) 2020-05-30 2021-05-10 光学镜头、摄像模组及电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010480875.1A CN113740998B (zh) 2020-05-30 2020-05-30 光学镜头、摄像模组及电子设备
CN202010480875.1 2020-05-30

Publications (1)

Publication Number Publication Date
WO2021244223A1 true WO2021244223A1 (zh) 2021-12-09

Family

ID=78727792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092556 WO2021244223A1 (zh) 2020-05-30 2021-05-10 光学镜头、摄像模组及电子设备

Country Status (2)

Country Link
CN (1) CN113740998B (zh)
WO (1) WO2021244223A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100854A (zh) * 2018-09-05 2018-12-28 浙江舜宇光学有限公司 摄像镜头
CN110596864A (zh) * 2019-10-25 2019-12-20 浙江舜宇光学有限公司 光学成像系统
CN111045193A (zh) * 2019-12-30 2020-04-21 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111679410A (zh) * 2020-07-29 2020-09-18 浙江舜宇光学有限公司 光学成像镜头
CN111722371A (zh) * 2020-07-29 2020-09-29 浙江舜宇光学有限公司 光学成像镜头

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI664439B (zh) * 2014-07-08 2019-07-01 佳能企業股份有限公司 光學鏡頭
CN204556941U (zh) * 2015-05-06 2015-08-12 佳能企业股份有限公司 光学镜头
CN110531502A (zh) * 2019-10-09 2019-12-03 浙江舜宇光学有限公司 光学成像镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109100854A (zh) * 2018-09-05 2018-12-28 浙江舜宇光学有限公司 摄像镜头
CN110596864A (zh) * 2019-10-25 2019-12-20 浙江舜宇光学有限公司 光学成像系统
CN111045193A (zh) * 2019-12-30 2020-04-21 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111679410A (zh) * 2020-07-29 2020-09-18 浙江舜宇光学有限公司 光学成像镜头
CN111722371A (zh) * 2020-07-29 2020-09-29 浙江舜宇光学有限公司 光学成像镜头

Also Published As

Publication number Publication date
CN113740998B (zh) 2022-11-22
CN113740998A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
TWI616679B (zh) Camera lens, camera module and camera
CN109669255B (zh) 摄像用光学系统、取像装置及电子装置
TWI485463B (zh) 成像透鏡組、取像裝置以及可攜式裝置
US20220337727A1 (en) Camera Module and Terminal Device
CN111999859A (zh) 光学成像系统、取像模组和电子装置
CN210323542U (zh) 广角镜头、图像拾取装置及电子装置
CN212540863U (zh) 光学成像系统、取像模组和电子装置
CN111045190A (zh) 光学摄像镜头组、取像模组及电子装置
CN110967805B (zh) 光学摄像镜头组、取像模组及电子装置
CN110673300B (zh) 光学摄像镜头、取像装置及电子装置
CN110716282B (zh) 成像光学系统、取像装置及电子装置
CN212111955U (zh) 光学系统、镜头模组和电子设备
CN111983786A (zh) 光学成像系统、取像模组和电子装置
WO2021244223A1 (zh) 光学镜头、摄像模组及电子设备
CN114167582B (zh) 光学镜头、摄像模组及电子设备
CN113454512B (zh) 光学镜头、摄像模组及电子设备
CN113703132B (zh) 光学系统、镜头模组和电子设备
CN110927939A (zh) 光学成像系统、取像模组和电子装置
WO2022056934A1 (zh) 光学成像系统、取像模组和电子装置
WO2021217663A1 (zh) 光学系统、镜头模组和电子设备
CN107422456B (zh) 一种光学镜头组、光学模组及电子设备
CN216485755U (zh) 一种广角光学成像镜头
CN219978613U (zh) 光学系统、摄像模组和电子设备
US20230176260A1 (en) Lens assembly and electronic device including the same
EP4318070A1 (en) Lens assembly and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021817952

Country of ref document: EP

Effective date: 20221109

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022023965

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022023965

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221124

NENP Non-entry into the national phase

Ref country code: DE