WO2021243697A1 - 智慧车窗及其控制器、功率检测方法和存储介质 - Google Patents

智慧车窗及其控制器、功率检测方法和存储介质 Download PDF

Info

Publication number
WO2021243697A1
WO2021243697A1 PCT/CN2020/094640 CN2020094640W WO2021243697A1 WO 2021243697 A1 WO2021243697 A1 WO 2021243697A1 CN 2020094640 W CN2020094640 W CN 2020094640W WO 2021243697 A1 WO2021243697 A1 WO 2021243697A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
sampling
microcontroller
power
voltage
Prior art date
Application number
PCT/CN2020/094640
Other languages
English (en)
French (fr)
Inventor
王永波
孟晨
胡大海
徐思珩
钟文杰
刘彬彬
Original Assignee
京东方科技集团股份有限公司
北京京东方传感技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方传感技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/274,855 priority Critical patent/US20220200270A1/en
Priority to PCT/CN2020/094640 priority patent/WO2021243697A1/zh
Priority to CN202080000922.6A priority patent/CN114270009B/zh
Publication of WO2021243697A1 publication Critical patent/WO2021243697A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/08Windows; Windscreens; Accessories therefor arranged at vehicle sides
    • B60J1/12Windows; Windscreens; Accessories therefor arranged at vehicle sides adjustable
    • B60J1/16Windows; Windscreens; Accessories therefor arranged at vehicle sides adjustable slidable
    • B60J1/17Windows; Windscreens; Accessories therefor arranged at vehicle sides adjustable slidable vertically
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/42Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to product of voltage and current

Definitions

  • the present disclosure belongs to the technical field of smart car windows, and in particular relates to a smart car window and a controller thereof, a power detection method and a storage medium.
  • the output of the system may be short-circuited in a charged state due to misoperation, or the output short-circuited due to the production of the liquid crystal molecules of the smart window or other external factors, causing the controller
  • the transistor in the output circuit is turned on abnormally, which will burn the device, cause malfunction or cause abnormal control.
  • a current-limiting resistor can be added, or a BUCK circuit can be used to limit the current of the output circuit.
  • a smart car window controller including: a microcontroller; an output circuit connected to the microcontroller and configured to output a driving signal under the control of the microcontroller; A first power source, which is connected to a load through the output circuit, and is used to provide working power to the load; a sampling resistor is located between the output circuit and the first power source, and its first end is connected to the first power source , The second end is connected to the output circuit; and a power acquisition circuit, which is connected to the microcontroller, and is connected to the first end and the second end of the sampling resistor respectively, so as to respond to the output of the microcontroller
  • the power detection instruction collects the voltage across the sampling resistor and sends it to the microcontroller to obtain load current and power.
  • the power acquisition circuit includes: a channel interface, which is connected to the first end and the second end of the sampling resistor, respectively; a sampling path, which is connected to the channel interface and the microcontroller, So as to transmit the sampling signal of the sampling resistor to the microcontroller.
  • the channel interface includes: a first interface, which is connected to the first end of the sampling resistor and configured to receive a first sampling signal; and a second interface, which is connected to the first end of the sampling resistor. Two-terminal connection and configured to receive a second sampling signal; a multiplexer, which is connected to the first interface and the second interface, and is configured to select and transmit to the sampling path according to the power detection instruction The first sampling signal or the second sampling signal.
  • the power acquisition circuit further includes a channel selector, which is connected to the multiplexer and the microcontroller, and is configured to generate a multiplexed selection signal according to the power detection instruction to control Whether the first interface is connected to the sampling path or the second interface is connected to the sampling path.
  • a channel selector which is connected to the multiplexer and the microcontroller, and is configured to generate a multiplexed selection signal according to the power detection instruction to control Whether the first interface is connected to the sampling path or the second interface is connected to the sampling path.
  • the sampling path includes: an amplifier connected to the multiplexer and configured to amplify the received first sampling signal and the second sampling signal; a signal conditioning circuit, It is connected to the amplifier and is configured to condition the amplified first sampling signal and the second sampling signal to a desired level; the analog-to-digital conversion circuit is connected to the signal conditioning circuit and is configured to convert the analog signal The first sampling signal and the second sampling signal are converted into digital signals.
  • the sampling path further includes a protocol conversion circuit, which is connected to the analog-to-digital conversion circuit, the channel selector, and the microcontroller, and is used to connect the analog-to-digital conversion circuit and the The communication data between the microcontrollers and the communication data between the channel selector and the microcontroller undergo protocol conversion.
  • a protocol conversion circuit which is connected to the analog-to-digital conversion circuit, the channel selector, and the microcontroller, and is used to connect the analog-to-digital conversion circuit and the The communication data between the microcontrollers and the communication data between the channel selector and the microcontroller undergo protocol conversion.
  • the smart car window controller further includes a filter circuit, which is respectively connected to the first end and the second end of the sampling resistor, and the first interface and the second interface to match The first sampling signal and the second sampling signal are filtered and output to the corresponding first interface and the second interface.
  • the microcontroller is configured to: automatically generate the power detection instruction and send it to the power acquisition circuit; calculate the load power value according to the first sampling signal and the second sampling signal, respectively Comparing the load power value with a predetermined power value; judging whether the load circuit is faulty according to the comparison result of the load power value and the predetermined power value.
  • the smart car window controller further includes a data memory connected to the microcontroller to store the first sampling signal, the second sampling signal, the predetermined power value, Load working voltage, load working current and load power.
  • the output circuit is an H-bridge output circuit
  • the smart window controller further includes a voltage conversion circuit connected between the first power source and the first end of the sampling resistor.
  • the H-bridge output circuit includes a first transistor, a second transistor, a third transistor, and a fourth transistor.
  • the gate of the first transistor is connected to the microcontroller, and the first electrode is connected to the microcontroller.
  • the second end of the sampling resistor is connected, the second electrode is connected to the first voltage output end; the gate of the second transistor is connected to the microcontroller, the first electrode is connected to the second end of the sampling resistor, and the second electrode is connected to the second end of the sampling resistor.
  • a pole is connected to the second voltage output terminal;
  • the gate of the third transistor is connected to the microcontroller, the first pole is connected to the first voltage terminal, and the second pole is connected to the first voltage output terminal;
  • the gate of the fourth transistor is connected to the microcontroller, the first electrode is connected to the first voltage terminal, and the second electrode is connected to the second voltage output terminal.
  • the output circuit is an operational amplifier circuit
  • the smart window controller further includes a voltage conversion circuit and a digital-to-analog conversion circuit or a signal generating circuit
  • the voltage conversion circuit is located at the second of the sampling resistor.
  • the digital-to-analog conversion circuit or the signal generating circuit is located between the output circuit and the microcontroller.
  • a smart car window which includes the above-mentioned smart car window controller and a load circuit.
  • a method for power detection using the above-mentioned smart car window controller which includes: a microcontroller automatically sends a power detection command to a power collection circuit; the power collection circuit detects power according to the power Instruct to sample the voltage across the sampling resistor connected to the first power supply and the output circuit; the power acquisition circuit sends the sampling signal to the microcontroller; the microcontroller performs the sampling on the load according to the sampling signal Power detection.
  • sampling the voltage across the sampling resistor further includes: sampling the first end of the sampling resistor connected to the first power source to obtain the first sampling signal; and the sum of the sampling resistor The second end connected to the output circuit performs sampling to obtain a second sampling signal.
  • the microcontroller performing power detection on the load according to the sampling signal further includes: calculating the load power value according to the first sampling signal and the second sampling signal; and calculating the load power value Compare with a predetermined power value; determine whether the load has a fault according to the comparison result of the load power value and the predetermined power value, if the load power value is not within the range of the corresponding predetermined power value, it is determined that the load is faulty, Turn off the output current or voltage and alarm.
  • a storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the above-mentioned method.
  • FIG. 1 is a schematic circuit diagram of a smart car window controller according to an embodiment of the present disclosure
  • Fig. 2 is a schematic circuit diagram of a power harvesting circuit according to an embodiment of the present disclosure
  • FIG. 3 is a schematic circuit diagram of a smart car window according to an embodiment of the present disclosure.
  • FIG. 4 is a circuit diagram of a specific implementation example of a smart car window according to an embodiment of the present disclosure
  • Fig. 5 is a schematic circuit diagram of a smart car window according to an embodiment of the present disclosure.
  • FIG. 6 is a circuit diagram of a specific implementation example of a smart car window according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of a power detection method according to an embodiment of the present disclosure
  • FIG. 8 is a working flowchart of a smart car window controller according to an embodiment of the present disclosure.
  • Fig. 9 is a schematic diagram of the circuit connection of a power acquisition circuit, a filter circuit, and a sampling resistor according to an embodiment of the present disclosure.
  • the related technology increases current-limiting resistance or uses a BUCK circuit to perform current-limiting control on the output circuit.
  • the increase of the current-limiting resistance will cause the output power to drop, and the control flexibility will become worse; the BUCK circuit implementation method cannot flexibly realize the current-limiting threshold setting and accurate current-limiting control.
  • the present disclosure provides a smart car window controller with a power measurement circuit, which can detect the output current in real time, and solves the problem that the output current cannot be detected in the related technology, or the output cannot be protected when the output connector is short-circuited Problems with some devices.
  • Fig. 1 is a schematic circuit diagram of a smart car window controller according to an embodiment of the present disclosure.
  • the smart window controller includes: a microcontroller 11; an output circuit 12, which is connected to the microcontroller 11, and is used to output a driving signal to the load smart window under the control of the microcontroller 11;
  • the first power source 13 is used as a system power source and is connected to the smart car window through the output circuit 12 to provide working power to it;
  • the sampling resistor 14 is located between the output circuit 12 and the first power source 13, and its first end is connected The first power source 13, the second end is connected to the output circuit 12; and the power acquisition circuit 10, which is connected to the microcontroller 11 and the system power source 13, and is respectively connected to the first end and the second end of the sampling resistor 14 (that is, in parallel) ,
  • the power detection instruction issued by the microcontroller 11 collect the voltage across the sampling resistor 14 and send it to the microcontroller 11 to obtain the current and power of the smart car window.
  • the first power source 13 is the power inlet at the front end of the smart window controller, and the power access point there is reserved for use in measuring the total power consumption of the system.
  • the sampling circuit at the sampling resistor 14 obtains the voltage across the sampling resistor 14, and the microcontroller 11 calculates the current value of the smart car window according to the voltage value. Because there will be fast sampling at this place, and the power input will also cause interference and noise at this place, an RC filter circuit 15 is set at the circuit connection to perform low-pass filtering on the collected voltage signal to filter out the power frequency Noise and power ripple interference.
  • the power collection circuit 10 By setting the power collection circuit 10 in the smart car window controller, it collects the voltage across the sampling resistor 14 and sends it to the microcontroller under the control of the power detection command issued by the microcontroller 10 to obtain the current of the smart car window And power.
  • the microcontroller 11 can issue a control command to turn off the output current or voltage and give an alarm. This solves the problem that the smart car window controller cannot detect the output current or short-circuit the output terminal. Can not protect the problem of the output part of the device.
  • the power acquisition circuit 10 includes a channel interface 101, which is connected to the first end and the second end of the sampling resistor 14, respectively; a sampling path 102, which is connected to the channel interface 101 and the microcontroller 11 is connected to transmit the sampling signal of the sampling resistor 14 to the microcontroller 11.
  • the channel interface 101 includes: a first interface 1011, which is connected to the first end of the sampling resistor 14 and configured to receive a first sampling signal; and a second interface 1012, It is connected to the second end of the sampling resistor 14 and is configured to receive the second sampling signal; the multiplexer 1013, which is connected to the first interface 1011 and the second interface 1012, is configured to select the sampling direction according to the power detection instruction
  • the path 102 transmits the first sampling signal or the second sampling signal.
  • One of the first sampling signal and the second sampling signal is the voltage of the first end of the sampling resistor 14 close to the system power supply, and the other is the voltage of the second end of the sampling resistor 14 close to the output circuit 12.
  • the first sampling signal is acquired through the first interface 1011
  • the second sampling signal is acquired through the second interface 1012.
  • the multiplexer 1013 selects whether to output the first sampling signal obtained by the first interface 1011 or the second sampling signal obtained by the second interface 1012 to the microcontroller 11 according to the power detection instruction.
  • the power acquisition circuit 10 further includes a channel selector 103, which is connected to the multiplexer 1013 and the microcontroller 11, and is configured to generate a multiplex selection signal according to the power detection instruction to control the first interface 1011 and Whether the sampling path 102 is connected or the second interface 102 is connected to the sampling path 102.
  • a channel selector 103 which is connected to the multiplexer 1013 and the microcontroller 11, and is configured to generate a multiplex selection signal according to the power detection instruction to control the first interface 1011 and Whether the sampling path 102 is connected or the second interface 102 is connected to the sampling path 102.
  • the sampling path 102 includes an amplifier 1021, which is connected to the multiplexer 1013 and is configured to amplify the received first sampling signal and the second sampling signal; a signal conditioning circuit 1022 , Which is connected to the amplifier 1021, and is configured to condition and amplify the amplified first sampling signal and the second sample signal to a desired level; the analog-to-digital conversion circuit 1023, which is connected to the signal conditioning circuit 1022, is configured to adjust the analog signal The first sampling signal and the second sampling signal are converted into digital signals. In this way, it is conducive to the processing of the digital microcontroller MCU.
  • the sampling path 102 further includes a protocol conversion circuit 1024, which is connected to the analog-to-digital conversion circuit 1023, the channel selector 103 and the microcontroller 11, and is used to compare the analog-to-digital conversion circuit 1023 and The communication data between the microcontroller 11 and the communication data between the channel selector 103 and the microcontroller 11 undergo protocol conversion.
  • the protocol conversion circuit 1024 may include an I2C ((Inter-Integrated Circuit)) bus interface circuit and a serial peripheral interface (SPI) circuit to implement the communication between the microcontroller 11 and the power acquisition circuit 10.
  • the power acquisition circuit can be built with discrete components, or can be designed with integrated chips.
  • the microcontroller 11 is configured to: automatically generate a power detection instruction and send it to the power acquisition circuit 10; calculate the power value of the smart car window according to the first sampling signal and the second sampling signal; The value is compared with the predetermined power value; according to the comparison result of the power value of the smart window and the predetermined power value, it is judged whether the smart window is malfunctioning.
  • the microcontroller 11 is configured to realize the above-mentioned functions, which can realize accurate current detection for the smart car window. For different smart windows, by flexibly setting a predetermined power value (power threshold) or current value (current threshold), and comparing the predetermined value with the actual smart window power and current, it can be judged whether the smart window is malfunctioning.
  • the smart car window controller further includes a data memory 16, which is connected to the microcontroller 11 to store the first sampled signal, the second sampled signal, the predetermined power value, and the smart car Window working voltage, smart car window working current, and smart car window power. In this way, it can provide a reference basis for judging whether the system has a fault, which can be set by the user in advance, or the system can automatically obtain the current working smart window, calculate, obtain, and update the storage.
  • the smart window controller uses a power acquisition circuit to obtain the current, power and other parameters of the smart window, the smart window controller can automatically identify the impedance of the smart window and automatically match the output power, thereby achieving Failure analysis. In the event of an output short circuit, the circuit can be automatically protected.
  • the smart car window controller may also include other control circuits 17, branch other circuits 18, and system ground 19.
  • the other control circuit 17 is used to perform other control besides power collection on the smart window controller, such as clock control.
  • the branch other circuit 18 includes a power conversion circuit and the like.
  • FIG. 9 is a schematic diagram of the circuit connection of the power acquisition circuit, the filter circuit, and the sampling resistor according to an embodiment of the present disclosure.
  • the functions of the power acquisition circuit can be implemented in the power detection chip.
  • the chip U2 can realize the above-mentioned functions of the power acquisition circuit.
  • the capacitor C11, the resistor R15, and the resistor R17 constitute the RC filter circuit 15, and the resistor R16 serves as the sampling resistor 14.
  • the sampling resistor R16 is connected to the smart car window circuit through the port TP1, and the chip U2 obtains the current, voltage and power of the smart car window circuit and the overall system by detecting the voltage of the VCC_24V0_C terminal and the TP1 terminal of the sampling resistor R16.
  • a smart car window which includes the above smart car window controller and a load circuit.
  • FIG. 3 is a schematic circuit diagram of a smart car window according to an embodiment of the present disclosure.
  • the circuit of the smart car window not only includes the circuit structure shown in Figures 1 and 2, but also includes a voltage conversion circuit 21. Under the action of the power conversion control signal output by the microcontroller 11, the 27V The system power is converted to 0-24V output voltage.
  • the circuit of the smart car window also includes an H-bridge output circuit 12, which, under the control of the H-bridge control signal output by the microcontroller 11, outputs two electrode signals to the smart car window 20 through the electrode 1 and the electrode 2 to control the smart car window 20.
  • the liquid crystal molecules in the car window are controlled.
  • the power acquisition circuit 10 connects the two ends of the sampling resistor 14 through the sampling resistor sampling line to sample the voltage across the sampling resistor.
  • the power acquisition circuit 10 is also connected to the output terminal of the first power source 13 through the source terminal sampling line, and connected to the ground terminal, so as to obtain the total current and the total power of the system, and thus the total power consumption of the system.
  • the microcontroller 11 performs calculations based on the voltage across the sampling resistor 14 and the system power terminal voltage, and judges whether the smart car window circuit is faulty.
  • FIG. 4 is a circuit diagram of a specific implementation example of a smart car window provided by some embodiments of the present disclosure.
  • the circuit diagram of this specific example further includes a driving sub-circuit 120 and a second power supply 140.
  • the voltage input terminal (not shown in the figure) of the driving sub-circuit 120 is connected to the output terminal (not shown in the figure) of the microcontroller 11 to receive the driving control signal S2, and the power input terminal of the driving sub-circuit 120 (not shown in the figure) (Shown) is connected to the second power supply 140 and is configured to amplify the driving control signal and output it at its voltage output terminal (not shown in the figure).
  • the drive control signal S2 output from the output terminal of the microcontroller 11 is not sufficient to reach the drive output circuit 12. Therefore, the drive sub-circuit 120 can output the drive control signal S2 of the microcontroller 11
  • the drive control signal is subjected to, for example, amplification processing, so that the output voltage thereof can make the output circuit 12 work normally.
  • the driving sub-circuit can be realized by adopting a circuit structure in the field, for example, it can be realized by adopting two H-bridge circuits, etc., which will not be repeated here.
  • an independent power supply may be used, for example, the second power supply 140 may be used to supply power to the driving sub-circuit 120.
  • the voltage provided by the second power supply 140 is less than the voltage provided by the first power supply 13, so that the driving sub-circuit 120 can achieve a lower voltage output under the driving of the second power supply 140.
  • the voltage output terminal of the driving sub-circuit 120 includes a first output terminal OUT11, a second output terminal OUT12, a third output terminal OUT13, and a fourth output terminal OUT14.
  • the voltage output terminal of the output circuit 12 includes a first voltage output terminal OUT21 and a second voltage output terminal OUT22.
  • the first voltage output terminal OUT21 of the output circuit 12 is connected to the first driving electrode of the smart car window 20, and the second voltage output terminal OUT22 of the output circuit 12 is connected to the second driving electrode of the smart car window 20.
  • the present disclosure does not limit this.
  • the H-bridge output circuit 12 includes a first transistor T1 to a fourth transistor T4. It should be noted that, in the following description, each transistor is an N-type transistor as an example, but this does not constitute a limitation to the embodiment of the present disclosure.
  • the gate of the first transistor T1 is connected to the first output terminal OUT11 of the driving sub-circuit 120 to receive the amplified driving control signal, and the first terminal of the first transistor T1 is connected to the voltage output terminal of the voltage conversion circuit 21 (in the figure Not shown) is connected to receive the second voltage signal V2, the second pole of the first transistor T1 is connected to the first voltage output terminal OUT21, so that when the first transistor T1 responds to the output of the first output terminal OUT11 of the driving sub-circuit 120 When the amplified drive control signal is turned on, the first voltage output terminal OUT21 is connected to the voltage output terminal (not shown in the figure) of the voltage conversion circuit 21 to transmit the second voltage signal V2 from the first voltage output terminal OUT21 Output.
  • the gate of the second transistor T2 is connected to the second output terminal OUT12 of the driving sub-circuit 120 to receive the amplified driving control signal.
  • the first electrode of the second transistor T2 is connected to the voltage output terminal of the voltage conversion circuit 21 (not shown in the figure).
  • OUT is connected to receive the second voltage signal V2
  • the second pole of the second transistor T2 is connected to the second voltage output terminal OUT22, so that when the second transistor T2 responds to the amplified drive control signal output from the second output terminal OUT12,
  • the second voltage output terminal OUT22 is connected to the voltage output terminal (not shown in the figure) of the voltage conversion circuit 21 to output the second voltage signal V2 from the second voltage output terminal OUT22.
  • the gate of the third transistor T3 is connected to the third output terminal OUT13 of the driving sub-circuit 120 to receive the amplified driving control signal
  • the first electrode of the third transistor T3 is connected to the first voltage terminal VSS (for example, the ground terminal, Provide a low-level DC signal) connection to receive a third voltage signal (for example, a DC low-level signal, which is lower than the first voltage signal applied to the voltage conversion circuit 21 by the driving power source 13, for example, 0V)
  • the third transistor T3 The second pole of the voltage output terminal OUT21 is connected to the first voltage output terminal OUT21, so that when the third transistor T3 is turned on in response to the amplified drive control signal output from the third output terminal OUT13, the first voltage output terminal OUT21 is connected to the first voltage ⁇ End connection.
  • the gate of the fourth transistor T4 is connected to the fourth output terminal OUT14 of the driving sub-circuit 120 to receive the amplified drive control signal, and the first electrode of the fourth transistor T4 is connected to the first voltage terminal VSS to receive the third voltage.
  • the second electrode of the fourth transistor T4 is connected to the second voltage output terminal OUT22, so that when the fourth transistor T4 is turned on in response to the amplified drive control signal output from the fourth output terminal OUT14, the second voltage output The terminal OUT22 is connected to the first voltage terminal.
  • the connection line between the first voltage terminal VSS and the first voltage terminal VSS is omitted in the figure.
  • the microcontroller 10 can also be directly connected to the gates of the first to fourth transistors.
  • the output circuit 12 of some embodiments of the present disclosure may further include a bootstrap circuit (not shown in the figure).
  • the voltage input terminal of the bootstrap circuit is connected to the voltage output terminal of the output circuit 12 to receive the output voltage signal, and is configured to control the voltage of the voltage input terminal of the output circuit 12 according to the output voltage signal.
  • the first transistor T1 or the second transistor T2 when the voltage of the second electrode of the first transistor T1 or the second transistor T2 becomes the voltage of the first electrode (when the transistor is turned on, it is equal to the voltage of the first electrode), the first transistor T1 or the second transistor The voltage at the gate of T2 bootstraps the voltage at the second pole of the first transistor T1 or the second transistor T2 to the gate of the first transistor T1 or the second transistor T2 (that is, keeping the first transistor T1 or the second transistor T2 The voltage difference between the gate voltage of T2 and the second electrode Vgs remains unchanged), so that the voltage of the gate of the first transistor T1 or the second transistor T2 is greater than the voltage of the first electrode, and the first transistor T1 and the second The phenomenon that the transistor T2 is turned off when it should be turned on improves the reliability and stability of the circuit.
  • the bootstrap circuit can be implemented as a first capacitor C1, a first diode L1, a second capacitor C2, and a second diode L2.
  • the first capacitor C1 and the first diode L1 are used for the bootstrap of the first transistor T1
  • the second capacitor C2 and the second diode L2 are used for the bootstrap of the second transistor T2.
  • the first terminal of the first capacitor C1 is connected to the second terminal of the first transistor T1, and the second terminal of the first capacitor C1 is connected to the gate of the first transistor T1.
  • the first pole of the first diode L1 is connected to the second power source 140, and the second pole of the first diode L1 is connected to the gate of the first transistor T1.
  • the first end of the second capacitor C2 is connected to the second electrode of the second transistor T2, and the second end of the second capacitor C2 is connected to the gate of the second transistor T2.
  • the first pole of the second diode L2 is connected to the second power supply 140, and the second pole of the second diode L2 is connected to the gate of the second transistor T2.
  • Fig. 5 is a schematic circuit diagram of a smart car window according to an embodiment of the present disclosure. As shown in FIG. 5, in addition to the circuit structure shown in FIG. 1 and FIG. 2, the circuit of the smart car window also includes a voltage conversion circuit 21, a DAC/DDS circuit 23, an OPA circuit 22 and a control system voltage domain circuit 24.
  • the voltage conversion circuit 21 converts the system power supply voltage into the positive and negative 24V voltage required by the OPA (operational amplifier) circuit 22.
  • the DAC/DDS (digital-to-analog converter/signal generator) circuit sends out a control signal under the control of the microcontroller 11 and sends it to the OPA circuit 22, and then outputs the electrode signal to the smart window circuit 20 through the OPA circuit 22 .
  • the power acquisition circuit 10 is also connected to the output end of the system power supply 13 through the source end sampling line, and connected to the ground end, so as to obtain the total current and total power of the system, and then obtain the total power consumption of the system.
  • the microcontroller 11 performs calculations based on the voltage across the sampling resistor 14 and the source terminal voltage of the system, and determines whether the smart car window circuit is faulty.
  • the control system voltage domain circuit 24 is used to control the power supply voltage required by each part of the smart window controller.
  • FIG. 6 is a circuit diagram of a specific implementation example of a smart car window provided by an embodiment of the present invention.
  • the circuit diagram of the specific example of the smart car window not only includes the above structure, but also includes a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, and a first capacitor C1.
  • the input terminal of the DAC/DDS circuit 23 is connected to the microcontroller 11, the first output terminal is connected to the reference voltage terminal Vref and the first terminal of the first resistor R1, and the second output terminal is connected to the first terminal of the fourth resistor R4.
  • the second end of the first resistor R1 is connected to the first end of the second resistor R2, and the second end of the second resistor R2 is connected to the low power supply voltage terminal VSS.
  • the first end of the third resistor R3 is connected to the second end of the first resistor R1, the first end of the second resistor R2 is connected to the reverse input end of the OPA circuit 22, and the forward input end of the OPA circuit 22 is connected to the fourth resistor R4
  • the second terminal of the first capacitor C1 is connected to the low power supply voltage terminal VSS
  • the output terminal of the OPA circuit 22 is connected to the smart car window
  • the power terminal of the OPA circuit 22 is connected to the voltage conversion circuit 21.
  • the smart window controller is also provided with a control system voltage domain circuit 24 for supplying power to the microcontroller 11.
  • the power supply includes the first power supply 13 and the voltage conversion circuit 21 as the system power supply as an example.
  • the voltage conversion circuit 21 is used to convert the 27V voltage input from the first power source 13 into 24V and -24V voltages.
  • the reference voltage Vref, the first resistor R1, the second resistor R2, the third resistor R3, and the output voltage VOUT of the OPA circuit 22 constitute an operational amplifier feedback system.
  • This design needs to output a sinusoidal signal with a voltage of ⁇ 24V, so .
  • formula 1 is obtained according to the current relationship:
  • VOUT [(1/R1+1/R2+1/R3) ⁇ Vdac-Vref/R1] ⁇ R3; formula (3);
  • Vref 2.5V
  • Vdac the range of Vdac output is 0-2.5V, in order to output ⁇ 24V
  • R3 takes 240K
  • R2 takes 28K
  • Vref is set to 2.5V
  • Vref is set to 2.5V
  • VOUT -(R3/R1) ⁇ Vref; formula (5);
  • the amplitude requirement of the ⁇ 24V output of the OPA circuit 22 can be achieved.
  • the output waveform of the DAC/DDS circuit 23 is the frequency signal time.
  • the fourth resistor R4, the first capacitor C1 and the operational amplifier are used together to form an active low-pass filter circuit.
  • the frequency calculation of is as follows, for the positive input V+ of the high-voltage operational amplifier unit, the Laplace change is used to obtain:
  • V+(s) [1/(1+sR4C1)] ⁇ Vdac(s); formula (6);
  • VOUT(s) ⁇ (1/R1+1/R2+1/R3) ⁇ [1/(1+sR4C1)] ⁇ Vdac(s)-Vref/R1 ⁇ R3; formula (7);
  • VOUT(s) A ⁇ 1/[1+(s/ ⁇ )] ⁇ Vdac(s)-B; formula (8);
  • the amplitude-frequency characteristic curve of the input signal and the output signal can be obtained to achieve the best amplification effect of the output frequency signal.
  • the function of the microcontroller 11 is to read the data in the waveform data control circuit according to an external control command, and then output it to the DAC/DDS circuit 23 for conversion.
  • the input of the DAC/DDS circuit 23 passes through the OPA circuit 22.
  • the required power waveform signal can be obtained.
  • the microcontroller 11 may also be connected to the OPA circuit 22 through the shutdown circuit 25 to send the OPA shutdown signal to the shutdown circuit 25, and then turn off the OPA circuit 22 by controlling the enable terminal EN of the OPA circuit 22.
  • the shut-off circuit 25 may be an optocoupler circuit, which outputs a corresponding shut-off voltage under the control of the OPA shut-off signal signal sent by the microcontroller 11 to turn off the OPA circuit 22.
  • the sampling resistor 14 is connected in series between the first power source 13 and the voltage conversion circuit 21, and the power detection circuit 10 is respectively connected to both ends of the sampling resistor 14 to obtain the voltage across the sampling resistor 14, thereby obtaining wisdom.
  • the current, voltage and power of the window In addition, the power detection circuit 10 also obtains the current output by the system power supply 13 for obtaining the total current and total power of the system.
  • the flow chart of the power detection method according to the embodiment of the present disclosure includes the following steps.
  • the microcontroller automatically sends a power detection command to the power acquisition circuit.
  • the microcontroller can automatically send a power detection command to the power acquisition circuit according to a fixed cycle, so as to automatically detect the power of the smart car window.
  • sampling the voltage across the sampling resistor further includes: sampling the end of the sampling resistor connected to the system power supply to obtain the first sampling signal; sampling the end of the sampling resistor connected to the output circuit to obtain the second sampling Signal.
  • S130 The power acquisition circuit sends the sampling signal to the microcontroller.
  • the microcontroller performs power detection on the smart car window according to the sampled signal. Specifically, the microcontroller performing power detection on the smart car window according to the sampling signal further includes: calculating the power value of the smart car window according to the first sampling signal and the second sampling signal; comparing the power value of the smart car window with a predetermined power value; The comparison result of the power value of the smart car window and the predetermined power value determines whether the smart car window is malfunctioning. If the power value of the smart car window is not within the range of the corresponding predetermined power value, it is determined that the smart car window is malfunctioning, and the output current or voltage is turned off And call the police.
  • FIG. 8 shows a working flow chart of the smart car window controller according to an embodiment of the present disclosure.
  • S201 initialize the various parts of the smart car window controller.
  • S202 determine whether the system is automatically processed. If automatic processing is performed, the voltage on the source terminal and the sampling resistor is collected in S203 to determine the smart window power threshold; otherwise, in S204, the user sets the smart window power threshold, and then Then enter S203.
  • S205 the voltage of the smart car window, as well as the current and power of the smart car window and the system are obtained according to the resistance value of the sampling resistor. Specifically, the smart car window current can be calculated according to the sampling resistor voltage and its resistance value, and then the smart car window power can be calculated according to the smart car window resistance.
  • the system power can be calculated from the system voltage and system current.
  • the calculated current, voltage and power of the smart car window are stored, and stored in S207.
  • S208 displays whether to automatically compare. If so, compare the calculated actual current, voltage, and power of the smart window with the pre-stored current, voltage, and power of the corresponding smart window in S209.
  • the voltage, current and power of the smart car window can be automatically obtained in advance and used as a comparison reference, or the power threshold set by the user in S204 can be used as a comparison reference.
  • the collected value is displayed in S212, and the user determines whether the smart car window is working normally. If it is determined in S210 that the smart car window is not working properly, the output current or voltage is turned off in S211, an alarm is issued, and the fault is reported at the same time, and then the work ends.
  • S210 judges that the smart car window is working normally, repeat the relevant steps: in S213, collect the voltage on the source terminal and the sampling resistor to determine the power threshold of the smart car window; in S214, obtain the smart car window voltage according to the resistance value of the sampling resistor, And timely smart car window and system power; in S215, compare with the stored current, voltage and power of smart car window; in S216, judge whether the smart car window is working normally, if not working properly, turn off the output current Or voltage, and alarm, and report the fault at the same time, and then end the work. Otherwise, in S217, it is judged whether it is operated by the user, if yes, it enters the user program interface in S218; otherwise, it returns to S213.
  • the smart car window controller When the smart car window controller works according to the process shown in Figure 8, it can collect the voltage on the sampling resistor in real time to obtain the real-time current, voltage and power of the smart car window. In the event of a short circuit at the output terminal causing a large current, immediately shut off the output current or lower the output voltage and give an alarm, which is beneficial to protect the output circuit.
  • the smart car window controller of the present disclosure can also automatically collect the current during normal operation, can intelligently adjust the output current threshold according to different smart car windows, calculate the impedance of the external smart car window, and store it. Once a mismatch occurs Reporting faults under circumstances, especially in multiple car window controllers integrated control places in high-speed trains or building applications, provides an effective way to facilitate maintenance and management.
  • a storage medium on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned smart window controller performs the smart window power detection function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Power-Operated Mechanisms For Wings (AREA)
  • Amplifiers (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

一种智慧车窗及其控制器、功率检测方法和存储介质,该控制器包括:微控制器(11);输出电路(12),其与微控制器(11)连接,用于在微控制器(11)的控制下输出驱动信号;第一电源(13),其通过输出电路(12)与负载连接,用于向负载提供工作电源;采样电阻(14),其位于输出电路(12)与第一电源(13)之间,其第一端连接第一电源(13),第二端连接输出电路(12);以及功率采集电路(10),其与微控制器(11)连接,并与采样电阻(14)的第一端和第二端分别连接,以根据微控制器(11)发出的功率检测指令,采集采样电阻(14)两端的电压并发送给微控制器(11),进而获取负载电流和功率。在该智慧车窗控制器控制车窗过程中,避免由于误操作导致系统在带电状态下输出短接从而引起的故障。

Description

智慧车窗及其控制器、功率检测方法和存储介质 技术领域
本公开属于智慧车窗技术领域,尤其涉及一种智慧车窗及其控制器、功率检测方法和存储介质。
背景技术
在智慧车窗控制器控制车窗过程中,由于误操作可能会导致系统在带电状态下输出短接,或由于智慧车窗的液晶分子的制作原因或其他外部因素导致输出短接,引起控制器输出电路中的晶体管异常导通,烧毁器件,引起故障或导致控制异常。
为了解决上述问题,可以增加限流电阻,或者利用BUCK电路对输出电路进行限流控制。
发明内容
根据本公开的一个方面,提供了一种智慧车窗控制器,包括:微控制器;输出电路,其与所述微控制器连接,用于在所述微控制器的控制下输出驱动信号;第一电源,其通过所述输出电路与负载连接,用于向负载提供工作电源;采样电阻,其位于所述输出电路与所述第一电源之间,其第一端连接所述第一电源,第二端连接所述输出电路;以及功率采集电路,其与所述微控制器连接,并与所述采样电阻的第一端和第二端分别连接,以根据所述微控制器发出的功率检测指令,采集所述采样电阻两端的电压并发送给所述微控制器,进而获取负载电流和功率。
在一些实施例中,所述功率采集电路包括:通道接口,其与所述采样电阻的第一端和第二端分别连接;采样通路,其与所述通道接口和所述微控制器连接,以将对所述采样电阻的采样信号传递给所述微控制器。
在一些实施例中,所述通道接口包括:第一接口,其与所述采样电阻的第一端连接,并被配置为接收第一采样信号;第二接口,其 与所述采样电阻的第二端连接,并被配置为接收第二采样信号;多路选择器,其与所述第一接口和所述第二接口连接,被配置为根据所述功率检测指令选择向所述采样通路传递所述第一采样信号或所述第二采样信号。
在一些实施例中,所述功率采集电路还包括通道选择器,其与所述多路选择器和所述微控制器连接,被配置为根据所述功率检测指令产生多路选择信号,以控制所述第一接口与所述采样通路连接还是所述第二接口与所述采样通路连接。
在一些实施例中,所述采样通路包括:放大器,其与所述多路选择器连接,被配置为对接收的所述第一采样信号和所述第二采样信号进行放大;信号调理电路,其与所述放大器连接,被配置为将放大的第一采样信号和第二采样信号调理到所需电平;模数转换电路,其与所述信号调理电路连接,被配置为将模拟信号的第一采样信号和第二采样信号转换为数字信号。
在一些实施例中,所述采样通路还包括协议转换电路,其与所述模数转换电路、所述通道选择器和所述微控制器连接,用于对所述模数转换电路和所述微控制器之间的通信数据、以及所述通道选择器和所述微控制器之间的通信数据进行协议转换。
在一些实施例中,所述智慧车窗控制器还包括滤波电路,其与所述采样电阻的第一端和第二端、以及所述第一接口和所述第二接口分别连接,以对所述第一采样信号和所述第二采样信号进行滤波后输出给相应的所述第一接口和所述第二接口。
在一些实施例中,所述微控制器被配置为:自动产生所述功率检测指令并发送给所述功率采集电路;根据所述第一采样信号和所述第二采样信号分别计算负载功率值;将所述负载功率值与预定功率值进行比较;根据所述负载功率值与预定功率值的比较结果判断负载电路是否发生故障。
在一些实施例中,所述的智慧车窗控制器还包括数据存储器,其与所述微控制器连接,以存储所述第一采样信号、所述第二采样信号、所述预定功率值、负载工作电压、负载工作电流以及负载功率。
在一些实施例中,所述输出电路为H桥输出电路,所述智慧车窗控制器还包括电压转换电路,其连接在所述第一电源与所述采样电阻的第一端之间。
在一些实施例中,所述H桥输出电路包括第一晶体管、第二晶体管、第三晶体管和第四晶体管,所述第一晶体管的栅极与所述微控制器连接,第一极与所述取样电阻的第二端连接,第二极与第一电压输出端连接;所述第二晶体管的栅极与微控制器连接,第一极与所述取样电阻的第二端连接,第二极与第二电压输出端连接;所述第三晶体管的栅极与所述微控制器连接,第一极与所述第一电压端连接,第二极与所述第一电压输出端连接;所述第四晶体管的栅极与微控制器连接,第一极与所述第一电压端连接,第二极与所述第二电压输出端连接。
在一些实施例中,所述输出电路为运算放大电路,所述智慧车窗控制器还包括电压转换电路和数模转换电路或信号发生电路,所述电压转换电路位于所述取样电阻的第二端与所述运算放大电路之间,所述数模转换电路或信号发生电路位于所述输出电路与所述微控制器之间。
根据本公开的另一方面,提供了一种智慧车窗,包括以上所述的智慧车窗控制器和负载电路。
根据本公开的另一方面,提供了一种利用上述智慧车窗控制器进行功率检测的方法,包括:微控制器自动向功率采集电路发送功率检测指令;所述功率采集电路根据所述功率检测指令对与第一电源和输出电路连接的采样电阻两端的电压进行采样;所述功率采集电路将采样信号发送至所述微控制器;所述微控制器根据所述采样信号对所述负载进行功率检测。
在一些实施例中,对采样电阻两端的电压进行采样进一步包括:对所述采样电阻的与所述第一电源连接的第一端进行采样以获得第一采样信号;对所述采样电阻的与所述输出电路连接的第二端进行采样以获得第二采样信号。
在一些实施例中,所述微控制器根据所述采样信号对所述负载 进行功率检测进一步包括:根据所述第一采样信号和第二采样信号分别计算负载功率值;将所述负载功率值与预定功率值进行比较;根据所述负载功率值和所述预定功率值的比较结果判断负载是否发生故障,如所述负载功率值不在对应的预定功率值的范围内,则确定负载发生故障,关断输出电流或电压并报警。
根据本公开的一个方面,提供了一种存储介质,其上存储有计算机程序,所述计算机程序由处理器执行时实现上述的方法。
附图说明
图1为根据本公开的实施例的智慧车窗控制器的电路示意图;
图2为根据本公开的实施例的功率采集电路的电路示意图;
图3为根据本公开的实施例的智慧车窗的电路示意图;
图4为根据本公开的实施例的智慧车窗的一个具体实现示例的电路图;
图5为根据本公开的实施例的智慧车窗的电路示意图;
图6为根据本公开的实施例的智慧车窗的一个具体实现示例的电路图;图7为根据本公开的实施例的功率检测方法流程图;
图8为根据本公开的实施例的智慧车窗控制器的工作流程图;以及
图9为根据本公开实施例的功率采集电路、滤波电路和取样电阻的电路连接示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
针对由于各种原因导致的输出电路中的晶体管异常导通,烧毁器件,引起故障或导致控制异常等问题,相关技术中通过增加限流电阻,或者利用BUCK电路来对输出电路进行限流控制。但是,限流电阻的增加会引起输出功率下降,并且控制灵活性变差;BUCK电路实现方式不能灵活实现限流的门限设置和准确的限流控制。
因此,本公开提供了一种智慧车窗控制器,其上设置有功率测量电路,可以实时检测输出电流大小,解决了相关技术中不能检测输出电流大小,或在输出接头短接时无法保护输出部分器件的问题。
如图1所示为根据本公开的实施例的智慧车窗控制器的电路示意图。如图1所示,该智慧车窗控制器包括:微控制器11;输出电路12,其与微控制器11连接,用于在微控制器11的控制下向负载智慧车窗输出驱动信号;第一电源13,其作为系统电源而通过输出电路12与智慧车窗连接,用于向其提供工作电源;采样电阻14,其位于输出电路12与第一电源13之间,其第一端连接第一电源13,第二端连接输出电路12;以及功率采集电路10,其与微控制器11和系统电源13连接,并与采样电阻14的第一端和第二端分别连接(即并联),以根据微控制器11发出的功率检测指令,采集采样电阻14两端的电压并发送给微控制器11,进而获取智慧车窗的电流和功率。
在本公开中,第一电源13是智慧车窗控制器最前端的电源入口,保留该处的电源接入点,为测量系统总功耗使用。采样电阻14处的取样线路获取采样电阻14两端的电压,并根据该电压值由微控制器11进行计算来获取智慧车窗的电流大小。由于该处会存在快速采样的情况,并且电源输入也会引起该处的干扰噪声,因此在该电路连接处设置有RC滤波电路15,以对采集的电压信号进行低通滤波,滤除工频噪声及电源纹波干扰。
通过在智慧车窗控制器中设置功率采集电路10,其在微控制器10发出的功率检测指令的控制下,采集采样电阻14两端的电压并发送给微控制器,进而获取智慧车窗的电流和功率。在检测到智慧车窗电流和功率异常时,微控制器11可以发出控制指令以关断输出电流或电压并报警,从而解决了智慧车窗控制器不能检测输出电流大小,或在输出端短接时无法保护输出部分器件的问题。
在一些实施例中,如图2所示,功率采集电路10包括通道接口101,其与采样电阻14的第一端和第二端分别连接;采样通路102,其与通道接口101和微控制器11连接,以将对采样电阻14的采样信号传递给微控制器11。
在一些实施例中,如图2所示,所述通道接口101包括:第一接口1011,其与采样电阻14的第一端连接,并被配置为接收第一采样信号;第二接口1012,其与采样电阻14的第二端连接,并被配置为接收第二采样信号;多路选择器1013,其与第一接口1011和第二接口1012连接,被配置为根据功率检测指令选择向采样通路102传递第一采样信号或第二采样信号。第一采样信号和第二采样信号中的一者为采样电阻14的靠近系统电源的第一端的电压,另一者为采样电阻14的靠近输出电路12的第二端的电压。通过第一接口1011获取第一采样信号,通过第二接口1012获取第二采样信号。多路选择器1013根据功率检测指令,选择将第一接口1011获取的第一采样信号,还是第二接口1012获取得第二采样信号输出给微控制器11。
进一步可选地,功率采集电路10还包括通道选择器103,其与多路选择器1013和微控制器11连接,被配置为根据功率检测指令产生多路选择信号,以控制第一接口1011与采样通路102连接还是第二接口102与采样通路102连接。
在一些实施例中,如图2所示,采样通路102包括放大器1021,其与多路选择器1013连接,被配置为对接收的第一采样信号和第二采样信号进行放大;信号调理电路1022,其与放大器1021连接,被配置为将放大的第一采样信号和第二采样信号调理放大到所需电平;模数转换电路1023,其与信号调理电路1022连接,被配置为将模拟信号的第一采样信号和第二采样信号转换为数字信号。这样,有利于数字微控制器MCU进行处理。
在一些实施例中,如图2所示,采样通路102还包括协议转换电路1024,其与模数转换电路1023、通道选择器103和微控制器11连接,用于对模数转换电路1023和微控制器11之间的通信数据、以及通道选择器103和微控制器11之间的通信数据进行协议转换。例如,协议转换电路1024可以包括I2C((Inter-Integrated Circuit))总线接口电路、串行外设接口SPI(Serial Peripheral Interface)电路以实现微控制器11与功率采集电路10之间的通信。
该功率采集电路可以采用分立元件进行搭建,也可以采用集成芯片设计。
在一些实施例中,该微控制器11被配置为:自动产生功率检测指令并发送给功率采集电路10;根据第一采样信号和第二采样信号计算智慧车窗功率值;将智慧车窗功率值与预定功率值进行比较;根据智慧车窗功率值与预定功率值的比较结果判断智慧车窗是否发生故障。将该微控制器11配置为实现上述功能,可以对智慧车窗实现准确的电流检测。针对不同智慧车窗,通过灵活设置预定功率值(功率门限)或电流值(电流门限),并将该预定值与实际智慧车窗功率和电流进行比较,可以判断智慧车窗是否发生故障。
在一些实施例中,如图1所示,该智慧车窗控制器还包括数据存储器16,其与微控制器11连接,以存储第一采样信号、第二采样信号、预定功率值、智慧车窗工作电压、智慧车窗工作电流以及智慧车窗功率。这样,可以为判断系统是否出现故障提供参考依据,其可由用户提前设置完成,也可以由系统自动获取目前的工作智慧车窗、计算获取并更新存储。
在本公开中,由于智慧车窗控制器采用功率采集电路,从而获取智慧车窗的电流、功率等参数,所以该智慧车窗控制器可以自动识别智慧车窗阻抗和自动匹配输出功率,进而实现故障分析。在发生输出短路时,可以自动进行电路保护。
另外,该智慧车窗控制器还可以包括其它控制电路17、支路其它电路18和系统地19。其它控制电路17用于对智慧车窗控制器进行功率采集之外的其它控制,如时钟控制等。支路其它电路18包括电源转换电路等。
如图9所示为根据本公开实施例的功率采集电路、滤波电路和取样电阻的电路连接示意图,功率采集电路对应的功能可在功率检测芯片中实现。如图7所示,芯片U2可实现功率采集电路的上述功能,电容C11、电阻R15和电阻R17构成RC滤波电路15,电阻R16作为采样电阻14。采样电阻R16通过端口TP1与智慧车窗电路连接,芯片U2通过检测采样电阻R16的VCC_24V0_C端和TP1端的电压进而 获得智慧车窗电路以及总系统的电流、电压和功率。
根据本公开的一个方面,还提供了一种智慧车窗,其包括上述智慧车窗控制器和负载电路。
如图3所示为根据本公开的实施例的智慧车窗的电路示意图。如图3所示,该智慧车窗的电路除了包括图1和图2所示的电路结构外,还包括电压转换电路21,其在微控制器11输出的电源转换控制信号作用下,将27V系统电源转换为0-24V输出电压。该智慧车窗的电路还包括H桥输出电路12,其在微控制器11输出的H桥控制信号的控制下,通过电极1和电极2输出两路电极信号至智慧车窗20,以对智慧车窗中的液晶分子进行控制。功率采集电路10通过采样电阻采样线连接采样电阻14的两端对采样电阻两端电压进行取样。功率采集电路10还通过源端采样线连接第一电源13输出端,以及连接接地端,从而获取系统总电流和总功率,进而获得系统的总功耗。微控制器11通过采样电阻14两端电压和系统电源端电压来进行计算,并判断智慧车窗电路是否发生故障。
图4为本公开一些实施例提供的一种智慧车窗的一个具体实现示例的电路图。例如,如图4所示,该具体示例的电路图还包括驱动子电路120和第二电源140。驱动子电路120的电压输入端(图中未示出)与微控制器11的输出端(图中未示出)连接以接收驱动控制信号S2,驱动子电路120的电源输入端(图中未示出)与第二电源140连接,且被配置为放大驱动控制信号并在其电压输出端(图中未示出)输出。例如,由于受限于微控制器11的驱动能力,微控制器11的输出端输出的驱动控制信号S2不足以达到驱动输出电路12,因此,可以通过驱动子电路120将微控制器11输出的驱动控制信号进行例如放大处理等,以使其输出的电压可以使得输出电路12正常工作。
需要注意的是,该驱动子电路可以采用本领域内的电路结构实现,例如,可以采用两个H桥电路实现等,在此不再赘述。
例如,为了使得驱动子电路可以实现较低电压(例如,5V以下电压)的输出,可以采用独立的电源供电,例如采用第二电源140 为驱动子电路120供电。例如,第二电源140提供的电压小于第一电源13提供的电压,从而驱动子电路120在该第二电源140的驱动下可以实现较低电压的输出。
在该示例中,驱动子电路120的电压输出端包括第一输出端OUT11、第二输出端OUT12、第三输出端OUT13和第四输出端OUT14。输出电路12的电压输出端包括第一电压输出端OUT21和第二电压输出端OUT22。例如,该输出电路12的第一电压输出端OUT21与智慧车窗20的第一驱动电极连接,该输出电路12的第二电压输出端OUT22与智慧车窗20的第二驱动电极连接,本公开的实施例对此不作限制。
如图4所示,在一些示例中,该H桥输出电路12包括第一晶体管T1至第四晶体管T4。需要注意的是,在下面的说明中以各晶体管为N型晶体管为例进行说明,但这并不构成对本公开实施例的限制。
例如,第一晶体管T1的栅极与驱动子电路120的第一输出端OUT11连接以接收放大后的驱动控制信号,第一晶体管T1的第一极与电压转换电路21的电压输出端(图中未示出)连接以接收第二电压信号V2,第一晶体管T1的第二极与第一电压输出端OUT21连接,从而当第一晶体管T1响应于驱动子电路120的第一输出端OUT11输出的放大后的驱动控制信号而导通时,使得第一电压输出端OUT21与电压转换电路21的电压输出端(图中未示出)连接,以将第二电压信号V2从第一电压输出端OUT21输出。第二晶体管T2的栅极与驱动子电路120的第二输出端OUT12连接以接收放大后的驱动控制信号,第二晶体管T2的第一极与电压转换电路21的电压输出端(图中未示出)连接以接收第二电压信号V2,第二晶体管T2的第二极与第二电压输出端OUT22连接,从而当第二晶体管T2响应于第二输出端OUT12输出的放大后的驱动控制信号导通时,使得第二电压输出端OUT22与电压转换电路21的电压输出端(图中未示出)连接,以将第二电压信号V2从第二电压输出端OUT22输出。例如,第三晶体管T3的栅极与驱动子电路120的第三输出端OUT13连接以接收放大后的驱动控制信号,第三晶体管T3的第一极与第一电压端VSS(例如,接地端, 提供低电平直流信号)连接以接收第三电压信号(例如,为直流低电平信号,低于驱动电源13施加至电压转换电路21的第一电压信号,例如为0V),第三晶体管T3的第二极与第一电压输出端OUT21连接,从而当第三晶体管T3响应于第三输出端OUT13输出的放大后的驱动控制信号而导通时,使得第一电压输出端OUT21与第一电压端连接。例如,第四晶体管T4的栅极与驱动子电路120的第四输出端OUT14连接以接收放大后的驱动控制信号,第四晶体管T4的第一极与第一电压端VSS连接以接收第三电压信号,第四晶体管T4的第二极与第二电压输出端OUT22连接,从而当第四晶体管T4响应于第四输出端OUT14输出的放大后的驱动控制信号而导通时,使得第二电压输出端OUT22与第一电压端连接。为了表示清楚、简洁,图中省略了第一电压端VSS与第一电压端VSS之间的连接线。并且,在微控制器10输出的驱动信号满足要求时,也可以将微控制器10直接与第一至第四晶体管的栅极连接。
为了提高电路的可靠性和稳定性,本公开一些实施例的输出电路12还可以包括自举电路(图中未示出)。例如,该自举电路的电压输入端与输出电路12的电压输出端连接以接收输出电压信号,且配置为根据输出电压信号控制输出电路12的电压输入端的电压。即,通过第一晶体管T1或第二晶体管T2的第二极的电压变为第一极的电压时(在晶体管导通时,与第一极的电压相等),第一晶体管T1或第二晶体管T2的栅极的电压会将在第一晶体管T1或第二晶体管T2的第二极的电压自举至第一晶体管T1或第二晶体管T2的栅极(即保持第一晶体管T1或第二晶体管T2的栅极电压和第二极的电压差Vgs不变),从而使得第一晶体管T1或第二晶体管T2的栅极的电压大于第一极的电压,不会出现第一晶体管T1和第二晶体管T2在应该导通的阶段截止的现象,提高了电路的可靠性和稳定性。
例如,如图4所示,该自举电路可以实现为第一电容C1、第一二极管L1、第二电容C2和第二二极管L2。例如,第一电容C1和第一二极管L1用于第一晶体管T1的自举,第二电容C2和第二二极管L2用于第二晶体管T2的自举。
例如,第一电容C1的第一端与第一晶体管T1的第二极连接,第一电容C1的第二端与第一晶体管T1的栅极连接。第一二极管L1的第一极与第二电源140连接,第一二极管L1的第二极与第一晶体管T1的栅极连接。第二电容C2的第一端与第二晶体管T2的第二极连接,第二电容C2的第二端与第二晶体管T2的栅极连接。第二二极管L2的第一极与第二电源140连接,第二二极管L2的第二极与第二晶体管T2的栅极连接。
如图4所示,采样电阻14串联在输出电路12与电压转换电路21之间,功率检测电路10分别与采样电阻14的两端连接,用于获取采样电阻14两端的电压,进而获取智慧车窗的电流、电压和功率。另外,功率检测电路10还获取系统电源13输出的电流,用于获得系统的总电流和总功率。如图5所示为根据本公开的实施例的智慧车窗的电路示意图。如图5所示,该智慧车窗的电路除了包括图1和图2所示的电路结构外,还包括电压转换电路21、DAC/DDS电路23、OPA电路22和控制系统电压域电路24。电压转换电路21将系统电源电压转换为OPA(运算放大器)电路22所需的正负24V电压。DAC/DDS(数模转换器/信号发生器)电路在微控制器11的控制下发出控制信号,并发送给OPA电路22,进而通过OPA电路22输出电极信号至智慧车窗智慧车窗电路20。功率采集电路10还通过源端采样线连接系统电源13输出端,以及连接接地端,从而获取系统总电流和总功率,进而获得系统的总功耗。微控制器11通过采样电阻14两端电压和系统源端电压来进行计算,并判断智慧车窗电路是否发生故障。控制系统电压域电路24用于控制智慧车窗控制器各部分所需的电源电压。
图6为本发明实施例提供的一种智慧车窗的一个具体实现示例的电路图。参照图6,该智慧车窗具体示例的电路图不仅包括上述结构,而且还包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4和第一电容C1。DAC/DDS电路23的输入端连接微控制器11,第一输出端连接参考电压端Vref和第一电阻R1的第一端,第二输出端连接第四电阻R4的第一端。第一电阻R1的第二端连接第二电阻R2的第一端,第二电阻R2的第二端连接低电源电压端VSS。第三电阻R3 的第一端连接第一电阻R1的第二端,第二电阻R2的第一端和OPA电路22的反向输入端连接,OPA电路22的正向输入端连接第四电阻R4的第二端和第一电容C1的第一端。第一电容C1的第二端连接低电源电压端VSS,OPA电路22的输出端连接智慧车窗,OPA电路22的电源端连接电压转换电路21。当然,该智慧车窗控制器中还设置有为为微控制器11供电的控制系统电压域电路24。在下述具体工作的描述中以电源包括作为系统电源的第一电源13和电压转换电路21为例进行说明。电压转换电路21用于将第一电源13输入的27V电压转换成24V和-24V的电压。
如图6所示,参考电压Vref,第一电阻R1、第二电阻R2、第三电阻R3及OPA电路22的输出电压VOUT构成运放反馈系统,本设计需要输出±24V电压的正弦信号,因此,根据运放的虚断概念,对于OPA电路22的反向输入端处,根据电流关系得到公式1:
(Vref–V-)/R1+(VOUT-V-)/R3=V-/R2;公式(1);
再根据运放的虚短概念,有公式(2):V-=V+=Vdac;
结合这公式(1)和公式(2)得到输出与DAC/DDS电路23输出直流状态下,OPA电路22的反向输入端处电压Vdac的关系式为:
VOUT=[(1/R1+1/R2+1/R3)×Vdac-Vref/R1]×R3;公式(3);
在这里,假若Vref=2.5V,Vdac输出的范围为0-2.5V,为了输出达到±24V;
当Vdac=2.5V=Vref时,OPA电路22要满足输出最大值,此时表达式为:VOUT=(R3/R2+1)×Vref;公式(4)。
在此,R3取240K,R2取28K,Vref设置2.5V,代入公式(4)得到VOUT=23.9V。
当Vdac=0V时,OPA电路22要满足输出最小输出,此时表达式为:
VOUT=-(R3/R1)×Vref;公式(5);
在此,R1取25KΩ代入公式5得到VOUT=-24V;
综上的理论计算,按照这样的参数设置,可以实现OPA电路22的±24V输出的幅度要求。另外,在DAC/DDS电路23输出波型为频 率信号时间,在图6中,使用第四电阻R4、第一电容C1和运放一起构成了有源低通滤波电路,有源低通滤波电路的频率计算如下所示,对高压运放单元的正向输入端V+处,采用拉氏变化得到:
V+(s)=[1/(1+sR4C1)]×Vdac(s);公式(6);
根据公式(1)、(2)、(6)得到输出:
VOUT(s)={(1/R1+1/R2+1/R3)×[1/(1+sR4C1)]×Vdac(s)-Vref/R1}×R3;公式(7);
取A=(1/R1+1/R2+1/R3)×R3,B=(R3/R1)×Vref,τ=1/R4C1,则公式(7)可简化为:
VOUT(s)=A×{1/[1+(s/τ)]}×Vdac(s)-B;公式(8);
根据公式(8),可得到输入信号与输出信号的幅频特征曲线,以达到输出频率信号最佳放大效果。根据系统需要f可取200Hz,其中,s=j2Пf,代入公式8中,就可以根据第四电阻R4的值确定第一电容C1的值。
在图6中,微控制器11的作用是根据外部控制命令进行读取波形数据控制电路中的数据,然后输出给DAC/DDS电路23进行转换,DAC/DDS电路23的输入经过OPA电路22就可以得到所需要的功率波形信号。另外,微控制器11还可以通过关断电路25与OPA电路22连接,以将OPA关断信号发送至关断电路25,进而通过控制OPA电路22的使能端EN来关断OPA电路22。关断电路25可以为光耦电路,其在微控制器11发出的OPA关断信号信号控制下,输出相应的关断电压以使得OPA电路22关断。
如图6所示,采样电阻14串联在第一电源13与电压转换电路21之间,功率检测电路10分别与采样电阻14的两端连接,用于获取采样电阻14两端的电压,进而获取智慧车窗的电流、电压和功率。另外,功率检测电路10还获取系统电源13输出的电流,用于获得系统的总电流和总功率。
根据本公开的一个方面,还提供了一种利用上述智慧车窗控制器对智慧车窗电路进行功率检测的方法。如图7所示根据本公开的实施例的功率检测方法流程图,包括如下几个步骤。
S110,微控制器自动向功率采集电路发送功率检测指令。微控制器可以依据固定周期自动向功率采集电路发送功率检测指令,以实现自动检测智慧车窗功率。
S120,功率采集电路根据功率检测指令对与系统电源和输出电路连接的采样电阻两端的电压进行采样。具体地,对采样电阻两端的电压进行采样进一步包括:对采样电阻的与系统电源连接的一端进行采样以获得第一采样信号;对采样电阻的与输出电路连接的一端进行采样以获得第二采样信号。
S130,功率采集电路将采样信号发送至微控制器。
S140,微控制器根据采样信号对智慧车窗进行功率检测。具体地,微控制器根据采样信号对智慧车窗进行功率检测进一步包括:根据第一采样信号和第二采样信号计算智慧车窗功率值;将智慧车窗功率值与预定功率值进行比较;根据智慧车窗功率值和预定功率值的比较结果判断智慧车窗是否发生故障,如智慧车窗功率值不在对应的预定功率值的范围内,则确定智慧车窗发生故障,关断输出电流或电压并报警。
如图8所示为根据本公开的实施例的智慧车窗控制器的工作流程图。在开始工作后,在S201中,对智慧车窗控制器的各部分进行初始化设置。在S202中,确定系统是否自动处理,如自动处理则在S203中采集源端和采样电阻上的电压进而确定智慧车窗功率门限;否则,在S204中,由用户设置智慧车窗功率门限,然后再进入S203。在S205中,根据采样电阻阻值得到智慧车窗电压,以及智慧车窗和系统的电流和功率。具体地,可以根据采样电阻电压及其阻值计算智慧车窗电流,进而根据智慧车窗电阻计算智慧车窗功率。系统功率可以通过系统电压和系统电流计算得到。在S205,存储计算得到的智慧车窗的电流、电压和功率,并在S207中进行存储。存储完成后在S208显示是否自动进行比较。如是,则在S209中将计算得到的智慧车窗实际的电流、电压和功率与预先存储的相应智慧车窗的电流、电压和功率进行比较。在智慧车窗正常工作时,可以预先自动获得智慧车窗的电压、电流和功率,并作为比较基准,或者将S204中用户设置的 功率门限等作为比较基准。然后在S210判断智慧车窗是否正常工作。在S208显示不自动进行比较时,则在S212显示采集数值,由用户判断智慧车窗是否正常工作。如在S210判断智慧车窗不正常工作,则在S211关断输出电流或电压,并报警,同时上报故障,之后结束工作。在S210判断智慧车窗正常工作时,重复相关步骤:在S213中,采集源端和采样电阻上的电压进而确定智慧车窗功率门限;在S214中,根据采样电阻阻值得到智慧车窗电压,并及时智慧车窗和系统功率;在S215中,与存储的智慧车窗的电流、电压和功率进行比较;在S216中,判断智慧车窗是否正常工作,如不正常工作,则关断输出电流或电压,并报警,同时上报故障,之后结束工作,否则,在S217中,判断是否由用户操作,如是,则在S218进入用户程序接口;否则返回S213。
该智慧车窗控制器在按如图8所示的流程工作时,可以实时采集采样电阻上的电压,以获得智慧车窗的实时电流、电压和功率。一旦发生输出端短路造成大电流,立即将输出电流关断或将输出电压降低并进行报警,有利于保护输出电路。并且,本公开的智慧车窗控制器还可以自动采集正常工作时的电流,能够根据不同智慧车窗智能调整输出电流的门限,计算出外部智慧车窗的阻抗,并进行存储,一旦发生不匹配情况下进行上报故障,特别在动车或建筑应用中多个车窗控制器集成控制场所,为方便维护和管理提供有效途径。
根据本公开的一个方面,还提供了一种存储介质,其上存储有计算机程序,所述计算机程序由处理器执行时实现上述智慧车窗控制器进行智慧车窗功率检测的功能。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (17)

  1. 一种智慧车窗控制器,包括:
    微控制器;
    输出电路,其与所述微控制器连接,用于在所述微控制器的控制下输出驱动信号;
    第一电源,其通过所述输出电路与负载连接,用于向负载提供工作电源;
    采样电阻,其位于所述输出电路与所述第一电源之间,其第一端连接所述第一电源,第二端连接所述输出电路;以及
    功率采集电路,其与所述微控制器连接,并与所述采样电阻的第一端和第二端分别连接,以根据所述微控制器发出的功率检测指令,采集所述采样电阻两端的电压并发送给所述微控制器,进而获取负载电流和功率。
  2. 根据权利要求1所述的智慧车窗控制器,其中,所述功率采集电路包括:
    通道接口,其与所述采样电阻的第一端和第二端分别连接;
    采样通路,其与所述通道接口和所述微控制器连接,以将对所述采样电阻的采样信号传递给所述微控制器。
  3. 根据权利要求2所述的智慧车窗控制器,其中,所述通道接口包括:
    第一接口,其与所述采样电阻的第一端连接,并被配置为接收第一采样信号;
    第二接口,其与所述采样电阻的第二端连接,并被配置为接收第二采样信号;
    多路选择器,其与所述第一接口和所述第二接口连接,被配置为根据所述功率检测指令选择向所述采样通路传递所述第一采样信号或所述第二采样信号。
  4. 根据权利要求3所述的智慧车窗控制器,其中,所述功率采集电路还包括通道选择器,其与所述多路选择器和所述微控制器连接,被配置为根据所述功率检测指令产生多路选择信号,以控制所述第一接口与所述采样通路连接还是所述第二接口与所述采样通路连接。
  5. 根据权利要求3或4所述的智慧车窗控制器,其中,所述采样通路包括:
    放大器,其与所述多路选择器连接,被配置为对接收的所述第一采样信号和所述第二采样信号进行放大;
    信号调理电路,其与所述放大器连接,被配置为将放大的第一采样信号和第二采样信号调理到所需电平;
    模数转换电路,其与所述信号调理电路连接,被配置为将模拟信号的第一采样信号和第二采样信号转换为数字信号。
  6. 根据权利要求5所述的智慧车窗控制器,其中,所述采样通路还包括协议转换电路,其与所述模数转换电路、所述通道选择器和所述微控制器连接,用于对所述模数转换电路和所述微控制器之间的通信数据、以及所述通道选择器和所述微控制器之间的通信数据进行协议转换。
  7. 根据权利要求3-6中任一项所述的智慧车窗控制器,还包括滤波电路,其与所述采样电阻的第一端和第二端、以及所述第一接口和所述第二接口分别连接,以对所述第一采样信号和所述第二采样信号进行滤波后输出给相应的第一接口和第二接口。
  8. 根据权利要求7所述的智慧车窗控制器,其中,所述微控制器被配置为:
    自动产生所述功率检测指令并发送给所述功率采集电路;
    根据所述第一采样信号和所述第二采样信号分别计算负载功率 值;
    将所述负载功率值与预定功率值进行比较;
    根据所述负载功率值与预定功率值的比较结果判断负载电路是否发生故障。
  9. 根据权利要求8所述的智慧车窗控制器,还包括数据存储器,其与所述微控制器连接,以存储所述第一采样信号、所述第二采样信号、所述预定功率值、负载工作电压、负载工作电流以及负载功率。
  10. 根据权利要求1所述的智慧车窗控制器,其中,所述输出电路为H桥输出电路,
    所述智慧车窗控制器还包括电压转换电路,其连接在所述第一电源与所述采样电阻的第一端之间。
  11. 根据权利要求10所述的智慧车窗控制器,其中,所述H桥输出电路包括第一晶体管、第二晶体管、第三晶体管和第四晶体管,
    所述第一晶体管的栅极与所述微控制器连接,第一极与所述取样电阻的第二端连接,第二极与第一电压输出端连接;
    所述第二晶体管的栅极与微控制器连接,第一极与所述取样电阻的第二端连接,第二极与第二电压输出端连接;
    所述第三晶体管的栅极与所述微控制器连接,第一极与第一电压端连接,第二极与所述第一电压输出端连接;
    所述第四晶体管的栅极与所述微控制器连接,第一极与所述第一电压端连接,第二极与所述第二电压输出端连接。
  12. 根据权利要求1所述的智慧车窗控制器,其中,所述输出电路为运算放大电路,
    所述智慧车窗控制器还包括电压转换电路和数模转换电路或信号发生电路,所述电压转换电路位于所述取样电阻的第二端与所述运算放大电路之间,所述数模转换电路或信号发生电路位于所述输出电 路与所述微控制器之间。
  13. 一种智慧车窗,包括权利要求1-12中任一项所述的智慧车窗控制器和负载电路。
  14. 一种利用权利要求1-12中任一项所述智慧车窗控制器进行功率检测的方法,包括:
    微控制器自动向功率采集电路发送功率检测指令;
    所述功率采集电路根据所述功率检测指令对与第一电源和输出电路连接的采样电阻两端的电压进行采样;
    所述功率采集电路将采样信号发送至所述微控制器;
    所述微控制器根据所述采样信号对负载进行功率检测。
  15. 根据权利要求14所述的方法,其中,对采样电阻两端的电压进行采样进一步包括:
    对所述采样电阻的与所述第一电源连接的第一端进行采样以获得第一采样信号;
    对所述采样电阻的与所述输出电路连接的第二端进行采样以获得第二采样信号。
  16. 根据权利要求15所述的方法,其中,所述微控制器根据所述采样信号对所述负载进行功率检测进一步包括:
    根据所述第一采样信号和所述第二采样信号计算负载功率值;
    将所述负载功率值与预定功率值进行比较;
    根据所述负载功率值和所述预定功率值的比较结果判断负载是否发生故障,如所述负载功率值不在所述预定功率值的范围内,则确定负载发生故障,关断输出电流或电压并报警。
  17. 一种存储介质,其上存储有计算机程序,所述计算机程序由处理器执行时实现权利要求14-16中任一项所述的方法。
PCT/CN2020/094640 2020-06-05 2020-06-05 智慧车窗及其控制器、功率检测方法和存储介质 WO2021243697A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/274,855 US20220200270A1 (en) 2020-06-05 2020-06-05 Smart window and controller thereof, power detection method and storage medium
PCT/CN2020/094640 WO2021243697A1 (zh) 2020-06-05 2020-06-05 智慧车窗及其控制器、功率检测方法和存储介质
CN202080000922.6A CN114270009B (zh) 2020-06-05 2020-06-05 智慧车窗及其控制器、功率检测方法和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094640 WO2021243697A1 (zh) 2020-06-05 2020-06-05 智慧车窗及其控制器、功率检测方法和存储介质

Publications (1)

Publication Number Publication Date
WO2021243697A1 true WO2021243697A1 (zh) 2021-12-09

Family

ID=78830031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094640 WO2021243697A1 (zh) 2020-06-05 2020-06-05 智慧车窗及其控制器、功率检测方法和存储介质

Country Status (3)

Country Link
US (1) US20220200270A1 (zh)
CN (1) CN114270009B (zh)
WO (1) WO2021243697A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442355A (zh) 2020-10-30 2022-05-06 北京京东方传感技术有限公司 视窗装置及视窗系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251982A (ja) * 1995-03-08 1996-09-27 Tokai Rika Co Ltd モータ制御装置
CN2931719Y (zh) * 2006-04-21 2007-08-08 盈佳科技(长春)有限公司 一种电动窗马达驱动装置
JP2008017611A (ja) * 2006-07-05 2008-01-24 Denso Corp 車載用モータ駆動装置
CN201945832U (zh) * 2010-08-27 2011-08-24 上海汽车集团股份有限公司 汽车车窗电动升降驱动控制电路
CN202899882U (zh) * 2012-11-23 2013-04-24 同济大学 车窗防夹控制器
CN105971436A (zh) * 2016-07-26 2016-09-28 深圳市金证卡尔电子有限公司 一种车窗纹波多路防夹的控制模块及方法
CN207304418U (zh) * 2017-10-09 2018-05-01 恩坦华汽车零部件(镇江)有限公司 一种玻璃升降器电机的控制电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457364A (en) * 1994-01-18 1995-10-10 Allegro Microsystems, Inc. Bridge motor driver with short-circuit protection and motor-current limiting feature
CN2905993Y (zh) * 2006-06-02 2007-05-30 屠岳明 汽车电动玻璃窗防夹自动关闭器
US20100316725A1 (en) * 2009-05-27 2010-12-16 Elan Pharma International Ltd. Reduction of flake-like aggregation in nanoparticulate active agent compositions
CN102287113B (zh) * 2011-07-18 2013-10-16 哈尔滨工业大学 一种汽车电动车窗软停止控制装置
CN202483338U (zh) * 2012-03-06 2012-10-10 重庆长安跨越车辆有限公司 基于bcm模块控制的电动车窗系统
WO2017141513A1 (ja) * 2016-02-17 2017-08-24 三菱電機株式会社 電力変換装置
CN209838066U (zh) * 2019-03-22 2019-12-24 江苏金致新能源车业有限公司 一种新能源电动汽车车窗智能防夹系统
US11984723B2 (en) * 2019-06-05 2024-05-14 Mitsubishi Electric Corporation Multi-mode power supply system
US11171481B1 (en) * 2020-11-23 2021-11-09 Ford Global Technologies, Llc Dual-supply automotive electrical system with protection of motion control components

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08251982A (ja) * 1995-03-08 1996-09-27 Tokai Rika Co Ltd モータ制御装置
CN2931719Y (zh) * 2006-04-21 2007-08-08 盈佳科技(长春)有限公司 一种电动窗马达驱动装置
JP2008017611A (ja) * 2006-07-05 2008-01-24 Denso Corp 車載用モータ駆動装置
CN201945832U (zh) * 2010-08-27 2011-08-24 上海汽车集团股份有限公司 汽车车窗电动升降驱动控制电路
CN202899882U (zh) * 2012-11-23 2013-04-24 同济大学 车窗防夹控制器
CN105971436A (zh) * 2016-07-26 2016-09-28 深圳市金证卡尔电子有限公司 一种车窗纹波多路防夹的控制模块及方法
CN207304418U (zh) * 2017-10-09 2018-05-01 恩坦华汽车零部件(镇江)有限公司 一种玻璃升降器电机的控制电路

Also Published As

Publication number Publication date
CN114270009A (zh) 2022-04-01
US20220200270A1 (en) 2022-06-23
CN114270009B (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
CN107306043B (zh) 充电唤醒装置及充电唤醒装置的控制方法
JP2013508704A (ja) 電子スイッチを備える光起電力デバイス
CN110794234B (zh) 一种pwm变流器直流支撑电容剩余寿命在线监测方法
CN203396920U (zh) 手持式交流串入直流回路监测报警装置
WO2021243697A1 (zh) 智慧车窗及其控制器、功率检测方法和存储介质
CN103414332A (zh) 一种电源芯片故障检测和控制电路、方法及系统
CN111707862A (zh) 一种掉电检测电路
CN111198553B (zh) 负载故障检测方法及装置
CN103701183B (zh) 多支路反馈充电器电路及充电方法
CN205383099U (zh) 散热风扇的故障检测装置及散热装置
CN107464411B (zh) 一种用于集中抄表系统中的mbus电路
CN113900030A (zh) 一种具有高适应性的电池检测系统及方法
CN210101380U (zh) Bms掉电延时电路及其bms掉电延时系统
CN106949938A (zh) 一种谷物在线监测装置
CN208904658U (zh) 一种具有温度环境监控功能的有源电力滤波器
CN115714356A (zh) 短路保护电路和电池管理系统
CN105953842A (zh) 一种对局部放电及温度监测装置监测的二次设备
CN209117756U (zh) 风扇监控仪
CN103543322B (zh) 一种光伏并网逆变器漏电流检测装置
CN103197260B (zh) 开关电源中光电耦合器退化监测方法和装置
CN210373383U (zh) 电加热蒸汽锅炉模拟量测量通道过压保护装置
CN213402554U (zh) 一种带有ups功能的工控机
CN111257673A (zh) 一种电容故障检测电路、检测方法和伺服驱动电路
CN219840640U (zh) 随钻地层测试器的泵抽测试仪
CN209992559U (zh) 一种电源自动转换系统用电流及频率采样电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939411

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20939411

Country of ref document: EP

Kind code of ref document: A1