WO2021243681A1 - 氢气供应装置和燃料电池 - Google Patents

氢气供应装置和燃料电池 Download PDF

Info

Publication number
WO2021243681A1
WO2021243681A1 PCT/CN2020/094571 CN2020094571W WO2021243681A1 WO 2021243681 A1 WO2021243681 A1 WO 2021243681A1 CN 2020094571 W CN2020094571 W CN 2020094571W WO 2021243681 A1 WO2021243681 A1 WO 2021243681A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply device
hydrogen supply
hydrogen
main housing
stack
Prior art date
Application number
PCT/CN2020/094571
Other languages
English (en)
French (fr)
Inventor
王飞
徐楠
廖至钢
赵猛
孔丽超
Original Assignee
罗伯特·博世有限公司
王飞
徐楠
廖至钢
赵猛
孔丽超
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗伯特·博世有限公司, 王飞, 徐楠, 廖至钢, 赵猛, 孔丽超 filed Critical 罗伯特·博世有限公司
Priority to PCT/CN2020/094571 priority Critical patent/WO2021243681A1/zh
Priority to CN202090001177.2U priority patent/CN220491924U/zh
Publication of WO2021243681A1 publication Critical patent/WO2021243681A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This application relates to the field of fuel cells, and in particular to a hydrogen supply device for fuel cells and a fuel cell including the hydrogen supply device.
  • a fuel cell includes an electric stack, a hydrogen supply device, an oxygen supply device, a power output device, and so on.
  • hydrogen is supplied to the stack through the hydrogen supply device
  • oxygen is supplied to the stack through the oxygen supply device.
  • the hydrogen and oxygen undergo a chemical reaction in the stack to release electrons, which can then be used to the outside.
  • Output power (for example, drive a motor).
  • Hydrogen is usually stored in a high-pressure storage tank and supplied to the stack through hydrogen nozzles, jet pumps, pressure relief valves, etc.
  • the hydrogen supplied to the stack cannot fully participate in the reaction, and the excess hydrogen is discharged through the gas outlet pipe, and is transported back to the stack through a water separator, a circulating pump, etc., and the separated water can be discharged through a drain valve.
  • a drain valve After a period of operation, if there are too many impurities in the gas discharged through the outlet pipe, it needs to be discharged through the exhaust valve.
  • many pipes and connectors are needed to realize the connection with each other.
  • the purpose of the present application is to provide an integrated hydrogen supply device and fuel cell in order to overcome at least one of the above technical problems.
  • a hydrogen supply device for a fuel cell comprising: an injection pump for supplying hydrogen into the stack of the fuel cell; and a circulation pump , Which is used to circulate the gas discharged from the electric stack into the electric stack; wherein the hydrogen supply device further includes a main casing, and the jet pump and the circulation pump are installed in the main casing , And is in fluid communication with the stack at least through an internal channel formed in the body of the main casing.
  • a fuel cell including: an electric stack; an oxygen supply device for supplying oxygen to the electric stack; wherein the fuel cell further includes the above-mentioned hydrogen supply device.
  • the integrated hydrogen supply device and fuel cell of the present application can simplify installation, reduce size, and improve the safety and reliability of the equipment.
  • Fig. 1 schematically shows a structural block diagram of a fuel cell according to an embodiment of the present application, in which the hydrogen supply device of the present application is shown;
  • Fig. 2 schematically shows a structural block diagram of the hydrogen supply device shown in Fig. 1.
  • the hydrogen supply device for a fuel cell of the present application will be described below with reference to FIG. 1, which schematically shows a structural block diagram of a fuel cell according to an embodiment of the present application.
  • the fuel cell shown in FIG. 1 may be, for example, a proton exchange membrane fuel cell, which includes an electric stack 40, and also includes a hydrogen supply device 60, an oxygen supply device 70, a cooling device 80, and a power output device 90.
  • the hydrogen supplied to the anode 41 of the stack 40 via the hydrogen supply device 60 reacts with the oxygen supplied to the cathode 42 of the stack 40 via the oxygen supply device 70 through the proton exchange membrane, and releases electrons to be supplied to the power output device 90.
  • the heat generated is dissipated by the cooling device 80.
  • FIG. 1 only the exemplary configuration and pipe connection of the hydrogen supply device 60 are shown, but the specific configuration and connection of the oxygen supply device 70, the cooling device 80 and the power output device 90 are not shown.
  • the oxygen supply device 70, the cooling device 80 and the power output device 90 are not shown.
  • a variety of existing oxygen supply devices, cooling devices, and power output devices can be used, which will not be repeated here.
  • the hydrogen supply device for a fuel cell of the present application includes an injection pump 22 and a circulation pump 25.
  • the injection pump 22 is used to supply hydrogen into the stack 40 of the fuel cell, for example, into the air inlet 46 of the stack 40.
  • the injection pump 30 can adjust the amount of hydrogen supplied to the stack 40 under the control of the electronic control unit ECU of the fuel cell.
  • the hydrogen comes from a storage tank 10, and the storage tank 10 is usually a high-pressure vessel capable of withstanding tens of megapascals for storing hydrogen.
  • the circulating pump 50 is used to circulate the gas discharged from the stack 40 (mainly hydrogen that has not participated in the reaction, but of course also impurity gases, such as nitrogen) into the stack 40, for example, the gas discharged from the gas outlet 47 of the stack 40
  • the circulating pump 25 flows into the air inlet 46 of the stack 40 again. In this way, the excess hydrogen that is not involved in the reaction in the stack 40 can be reused, thereby improving the utilization efficiency of hydrogen.
  • the hydrogen supply device 60 further includes a main housing 50.
  • the jet pump 22 and the circulation pump 25 are installed in the main housing 50, and at least pass through an internal channel formed in the body of the main housing 50.
  • the stack 40 is in fluid communication.
  • FIG. 2 schematically shows the arrangement structure and connection of the jet pump 22 and the circulation pump 25 relative to the main housing 50.
  • the jet pump 22 and the circulation pump 25 are installed in the main housing 50 and are in fluid communication with the stack 40 through internal passages 33 and 34 formed in the body of the main housing 50, respectively.
  • the internal passage formed in the body of the main housing 50 is shown by arrows. It should be noted that in the embodiment shown in FIGS.
  • the circulation pump 25 and the jet pump 22 are in fluid communication through the internal passage 38 formed in the body of the main housing 50, that is, connected in series.
  • the circulating pump 25 circulates the gas discharged from the cell stack 40 into the cell stack 40 through the jet pump 25.
  • the circulating pump 25 can also bypass the jet pump 22 in fluid communication with the stack 40 through other internal passages formed in the body of the main housing 50, so that the gas discharged from the stack 40 is circulated into the electricity without passing through the jet pump 22.
  • the stack 40 is connected in parallel (not shown).
  • the hydrogen supply device 60 further includes a hydrogen nozzle 21 for controlling the discharge of hydrogen from the storage tank 10 and a pressure relief valve 23 for releasing the pressure of the hydrogen, the hydrogen nozzle 21 and
  • the pressure relief valve 23 is installed in the main housing 50, and the hydrogen nozzle 21 and the jet pump 22, and the jet pump 22 and the pressure relief valve 23 are in fluid communication at least through an internal passage formed in the body of the main housing 50.
  • the hydrogen nozzle 21 and the jet pump 22 are in fluid communication through an internal channel 31 formed in the body of the main housing 50
  • the jet pump 22 and the pressure relief valve 23 are in fluid communication through an internal channel 32 formed in the body of the main housing 50.
  • the pressure relief valve 23 is in fluid communication with the stack 40 through the internal passage 33 formed in the body of the main housing 50 . It should be noted that the hydrogen nozzle 21 can be in fluid communication with the outlet 11 of the storage tank 10, or can be directly installed on the storage tank 10, and the pressure relief valve 23 is optional.
  • the hydrogen supply device 60 further includes a water separator 24 for separating moisture in the gas discharged from the stack 40, and for discharging the separated water
  • the drain valve 26 and the exhaust valve 27 for discharging the separated gas
  • the water separator 24, the drain valve 26 and the exhaust valve 27 are installed in the main housing 50, and the water separator 24 and the drain valve 26
  • the exhaust valve 27 and the circulation pump 25 are in fluid communication at least through an internal passage formed in the body of the main housing 50.
  • the water separator 24 and the stack 40 are in fluid communication through an internal channel 34 formed in the body of the main housing 50
  • the water separator 24 and the drain valve 26 are in fluid communication through an internal channel 35 formed in the body of the main housing 50.
  • the water separator 24 and the circulating pump 25 are in fluid communication through the internal passage 36 formed in the body of the main housing 50, and the water separator 24 and the exhaust valve 27 are in fluid communication through the internal passage formed in the body of the main housing 50 37 fluid communication.
  • the water separator 24 may be a two-stage water separator, in which the first stage is a centrifuge and the second stage is a foamed metal, both of which can be directly installed in the main housing 50.
  • the gas discharged from the gas outlet 47 of the stack 40 enters the internal channel 34, and then enters the water separator 24; the separated water enters the drain valve 26, and is discharged through the drain pipe 28 connected to the drain valve 26; after the water separation
  • the gas enters the circulating pump 25 and the jet pump 23 through the internal passage 36 to circulate, or when the content of impurities in the discharged gas is too high, the gas enters the exhaust valve 27 and passes through the exhaust pipe connected to the exhaust valve 27 29 and intermittently discharged into the atmosphere or further processing.
  • the drain pipe 28 and the exhaust pipe 29 are configured to be formed by two internal passages formed in the body of the main housing 50, of course, the drain pipe 28 and the exhaust pipe 29 may also be configured to be formed by one internal channel formed in the body of the main housing 50, that is, the two share one internal channel.
  • the above-mentioned hydrogen nozzle 21, jet pump 22, pressure relief valve 23, water separator 24, circulating pump 25, drain valve 26, and exhaust valve 27 can be installed in the main housing as independent components. 50, and the internal channel formed in the body of the main housing 50 is used to replace the pipe connecting the components, which can make the installation easier, and can reduce the occupied space, weight and cost.
  • the housing of at least one of the hydrogen nozzle 21, the jet pump 22, the pressure release valve 23, the water separator 24, the circulation pump 25, the drain valve 26, and the exhaust valve 27 is configured by The main housing 50 is formed.
  • these components may no longer be independent components, but a part of the main housing 50 integrated.
  • the jet pump 22 may be formed by directly mounting the jet assembly in the internal space formed in the body of the main housing 50
  • the circulating pump 25 may be formed by directly mounting the impeller and the drive motor in the body of the main housing 50. Constructed in the internal space.
  • the water separator 24, the drain valve 26, and the exhaust valve 27 can also be constructed by directly installing corresponding functional elements in the internal space formed in the body of the main housing 50.
  • the main housing 50 constitutes the housing of each component, not only does not require connecting pipes, but also does not require connectors, so that the installation process can be further simplified, hydrogen leakage can be avoided, and the safety of the equipment can be improved.
  • the hydrogen supply device 60 further includes at least one sensor 51 installed in the main housing 50, as shown in FIG. 2.
  • An example of the sensor 51 is given in FIG. 1, for example, an intake air temperature sensor T1 for measuring the temperature of the intake air, an outlet air temperature sensor T2 for measuring the temperature of the outlet air, and a sensor for measuring the pressure of the gas discharged from the jet pump 22
  • the pressure sensor P3 is a pressure sensor P4 for measuring the pressure of the gas discharged from the stack 40, and the pressure sensors P5 and P6 are used for measuring the pressure on the inlet side and the outlet side of the circulating pump 25.
  • more sensors can be set according to the needs of control.
  • the hydrogen supply device 60 of the present application further includes a control module (not shown) configured to control the operation of each component according to the operating state of the fuel cell.
  • the control module can be a separate control module or a part of the electronic control unit of the fuel cell.
  • the hydrogen supply device 60 further includes a heating device 52 for heating the main housing 50.
  • a heating device 52 for heating the main housing 50.
  • the internal passages and various components formed in the body of the main housing 50 can be directly heated, so that the entire hydrogen supply device 60 can be quickly heated to avoid the generation of condensed water during cold start.
  • an internal passage 39 is formed in the body of the main housing 50 to allow the circulation pump 25 to communicate with the drain valve 26 and/or the exhaust valve 27, as shown in FIG. 2 .
  • the condensed water can be directly discharged to the drain valve 26 and/or the exhaust valve 27 without accumulating in the circulating pump 25.
  • the drain valve 26 may be arranged such that the drain valve 26 is located at a lower position than the circulation pump 25 when the fuel cell is in an operating state.
  • each component (for example, jet pump, circulation pump, etc.) of the hydrogen supply device is installed in the main housing 50 means to be installed in the main housing 50. Inside or installed on the main housing 50.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本申请公开一种氢气供应装置,其用于燃料电池,所述氢气供应装置包括:喷射泵,其用于将氢气供应入所述燃料电池的电堆;循环泵,其用于将从所述电堆排出的气体循环入所述电堆;其中,所述氢气供应装置还包括主壳体,所述喷射泵和所述循环泵被安装于所述主壳体,且至少通过在所述主壳体的本体中形成的内部通道与所述电堆流体连通。本申请还公开了一种包括上述氢气供应装置的燃料电池。根据本申请,可简化安装、减小尺寸,并提高设备的安全性和可靠性。

Description

氢气供应装置和燃料电池 技术领域
本申请涉及燃料电池领域,尤其涉及一种用于燃料电池的氢气供应装置和包括这种氢气供应装置的燃料电池。
背景技术
随着燃料电池技术的发展,使用燃料电池(例如,质子交换膜燃料电池PEMFC)作为电力供应装置日益被研究人员和市场所关注。通常,燃料电池包括电堆、氢气供应装置、氧气供应装置、电力输出装置等。在使用过程中,通过氢气供应装置向电堆供应氢气,并通过氧气供应装置向电堆供应氧气,在催化剂的作用下氢气和氧气在电堆内发生化学反应,释放出电子,从而可以向外输出电力(例如,驱动电机)。
氢气通常存储在高压储罐中,并经过氢气喷嘴、喷射泵、释压阀等供应至电堆。然而,供应到电堆的氢气并不能完全参与反应,多余的氢气则通过出气管排出,并经过水分离器、循环泵等再次输送回电堆,其中分离出的水可以经排水阀排出。经过一段时间运行之后,如果经出气管排出的气体中杂质含量过多,则需要经排气阀排出。在上述的各部件之间,需要采用许多管件和连接器来实现彼此连接。然而,由于存在这些分散的管件和连接器,一方面安装困难、占用较多空间、增加总重量和成本,另一方面增加了氢气泄露的风险,且在冷启动时难以快速地加热整个管路而可能导致在循环泵内出现冷凝水,从而导致设备故障。
因此,需要一种集成的氢气供应装置和燃料电池,以便能够简化安装、缩小尺寸、降低重量和成本,并避免氢气泄露、实现快速加热和提高可靠性。
发明内容
本申请的目的在于提供提出一种集成的氢气供应装置和燃料电池,以期望可以克服上述的至少一个技术问题。
为此,根据本申请的一方面,提供一种氢气供应装置,其用于燃料电池,所述氢气供应装置包括:喷射泵,其用于将氢气供应入所述燃料电池的电堆;循环泵,其用于将从所述电堆排出的气体循环入所述电堆;其中,所述氢气供应装置还包括主壳体,所述喷射泵和所述循环泵被安装于所述主壳体,且至少通过在所述主壳体的本体中形成的内部通道与所述电堆流体连通。
根据本申请的另一方面,提供一种燃料电池,包括:电堆;氧气供应装置,其用于将氧气供应至所述电堆;其中,所述燃料电池还包括上述的氢气供应装置。
本申请的集成的氢气供应装置和燃料电池可以简化安装、减小尺寸,并提高设备的安全性和可靠性。
附图说明
下面将参照附图对本申请的示例性实施例进行详细描述,应当理解,下面描述的实施例仅用于解释本申请,而不是对本申请范围的限制,在附图中:
图1示意性地示出了根据本申请的一实施例的燃料电池的结构框图,其中示出了本申请的氢气供应装置;
图2示意性地示出了图1所示的氢气供应装置的结构框图。
具体实施方式
下面结合示例详细描述本申请的优选实施例。在本申请的实施例中,以质子交换膜燃料电池(PEMFC)及其氢气供应装置为例对本申请进行 描述。但是,本领域技术人员应当理解,这些示例性实施例并不意味着对本申请形成任何限制。此外,在不冲突的情况下,本申请的实施例中的特征可以相互组合。在不同的附图中,相同的部件用相同的附图标记表示,且为简要起见,省略了其它的部件,但这并不表明本申请的氢气供应装置和燃料电池不可包括其它部件。应当理解,附图中各部件的尺寸、比例关系以及部件的数目均不作为对本申请的限制。
下面参照图1来描述本申请的用于燃料电池的氢气供应装置,图1示意性示出了根据本申请的一个实施例的燃料电池的结构框图。图1中所示的燃料电池例如可以是质子交换膜燃料电池,其包括电堆40,还包括氢气供应装置60、氧气供应装置70、冷却装置80和电力输出装置90。经氢气供应装置60供应至电堆40的阳极41处的氢气经过质子交换膜与经氧气供应装置70供应至电堆40的阴极42处的氧气反应,释放出电子而提供给电力输出装置90,同时产生热量由冷却装置80耗散。应指出的是,在图1中仅示出了氢气供应装置60的示例性构成和管路连接,而没有示出氧气供应装置70、冷却装置80和电力输出装置90的具体构成及连接。对于本领域技术人员来说,可以采用多种现有的氧气供应装置、冷却装置和电力输出装置,在本文中不再赘述。
如图1所示,本申请的用于燃料电池的氢气供应装置包括喷射泵22和循环泵25。喷射泵22用于将氢气供应入燃料电池的电堆40,例如供应入电堆40的进气口46。喷射泵30可以在燃料电池的电子控制单元ECU的控制下,调节供应至电堆40的氢气量。氢气来自于储罐10,储罐10通常是用于存储氢气的能够承受数十兆帕的高压容器。循环泵50用于将从电堆40排出的气体(主要是未参与反应的氢气,当然也包括杂质气体,例如氮气)循环入电堆40,例如,从电堆40的出气口47排出的气体经过循环泵25再次流入电堆40的进气口46。这样可以使在电堆40内没有参与反应的多余氢气得到再次利用,从而提高氢气的利用效率。
根据本申请的一实施例,氢气供应装置60还包括主壳体50,喷射泵22和循环泵25被安装于主壳体50,且至少通过在主壳体50的本体中形成的内部通道与电堆40流体连通。例如,图2示意性地示出了喷射泵22和循环泵25相对于主壳体50的布置结构及连接。如图2所示,喷射泵22和循环泵25被安装于主壳体50,且分别通过在主壳体50的本体中形成的内部通道33和34与电堆40流体连通。在图1和图2中,在主壳体50的本体中形成的内部通道由箭头来示出。应指出的是,在图1和2所示的实施例中,循环泵25和喷射泵22通过在主壳体50的本体中形成的内部通道38流体连通,即串联连接。这样,循环泵25将从电堆40排出的气体经过喷射泵25循环入电堆40。然而,循环泵25也可以通过在主壳体50的本体中形成的其它内部通道绕过喷射泵22与电堆40流体连通,这样不经过喷射泵22将从电堆40排出的气体循环入电堆40,即并联连接(未示出)。
参考图1和图2,根据本申请的一实施例,氢气供应装置60还包括用于控制氢气从储罐10排出的氢气喷嘴21和用于释放氢气压力的释压阀23,氢气喷嘴21和释压阀23被安装于主壳体50,且氢气喷嘴21与喷射泵22、喷射泵22与释压阀23至少通过在主壳体50的本体中形成的内部通道流体连通。例如,氢气喷嘴21和喷射泵22通过在主壳体50的本体中形成的内部通道31流体连通,喷射泵22和释压阀23通过在主壳体50的本体中形成的内部通道32流体连通,而释压阀23通过在主壳体50的本体中形成的内部通道33与电堆40流体连通。应指出的是,氢气喷嘴21可以与储罐10的出口11流体连通,也可以直接安装在储罐10上,且释压阀23是可选的。
继续参考图1和图2,根据本申请的一实施例,氢气供应装置60还包括用于分离从电堆40排出的气体中的水分的水分离器24、用于将所分离出的水排出的排水阀26和用于将经过分离的气体排出的排气阀27,其 中水分离器24、排水阀26和排气阀27被安装于主壳体50,且水分离器24与排水阀26、排气阀27和循环泵25至少通过在主壳体50的本体中形成的内部通道流体连通。例如,水分离器24与电堆40通过在主壳体50的本体中形成的内部通道34流体连通,水分离器24与排水阀26通过在主壳体50的本体中形成的内部通道35流体连通,水分离器24与循环泵25通过在主壳体50的本体中形成的内部通道36流体连通,且水分离器24与排气阀27通过在主壳体50的本体中形成的内部通道37流体连通。水分离器24可以是二级水分离器,其中第一级是离心机,第二级是泡沫金属,两者可以直接安装于主壳体50。
这样,从电堆40的出气口47排出的气体进入内部通道34,然后进入水分离器24;分离出的水进入排水阀26,并经过与排水阀26连接的排水管28排出;经过水分离的气体经内部通道36进入循环泵25以及喷射泵23而进行循环,或者在所排出的气体中杂质含量过高时使气体进入排气阀27,并经过与排气阀27连接的排气管29而间歇地排放到大气中或进一步处理。在图1和图2所示的实施例中,排水管28和排气管29被构造成由在主壳体50的本体中形成的两个内部通道形成,当然,排水管28和排气管29也可以被构造成由在主壳体50的本体中形成的一个内部通道形成,即,两者共用一个内部通道。
根据本申请的一实施例,上述的氢气喷嘴21、喷射泵22、释压阀23、水分离器24、循环泵25、排水阀26和排气阀27可以作为独立的部件安装于主壳体50,且通过在主壳体50的本体中形成的内部通道来代替连接各部件之间的管件,这样可以使安装更简单,且可以减小占用的空间、降低重量和成本。
根据本申请的另一实施例,氢气喷嘴21、喷射泵22、释压阀23、水分离器24、循环泵25、排水阀26和排气阀27中的至少一个的壳体被构造成由主壳体50形成。也就是说,这些部件可以不再是独立的部件,而 是集成到主壳体50上的一部分。例如,喷射泵22可以通过将喷射组件直接安装在主壳体50的本体中形成的内部空间中来构成,循环泵25可以通过将叶轮和驱动马达直接安装在主壳体50的本体中形成的内部空间中来构成。类似地,水分离器24、排水阀26和排气阀27也可以通过将相应的功能元件直接安装在主壳体50的本体中形成的内部空间中来构成。这样,主壳体50构成各部件的壳体,不仅不需要连接管件,而且不需要连接器,从而可以进一步简化安装过程,且可以避免氢气泄露,提高设备的安全性。
为了监控氢气供应装置60的运行,氢气供应装置60还包括至少一个传感器51,该传感器被安装于主壳体50,如图2所示。在图1中给出了传感器51的示例,例如,用于测量进气温度的进气温度传感器T1,用于测量出气温度的出气温度传感器T2,用于测量从喷射泵22排出的气体压力的压力传感器P3,用于测量从电堆40排出的气体压力的压力传感器P4,用于测量循环泵25的进气侧和出气侧的压力的压力传感器P5和P6。当然,根据控制的需要,可以设置更多的传感器。相应地,本申请的氢气供应装置60还包括控制模块(未示出),该控制模块被配置成根据燃料电池的运行状态来控制各部件的运行。该控制模块可以是单独的控制模块,也可以是燃料电池的电子控制单元的一部分。
根据本申请的一实施例,氢气供应装置60还包括加热装置52,其用于加热主壳体50。通过加热主壳体50,可以直接加热在主壳体50的本体中形成的内部通道和各部件,从而可以快速地加热整个氢气供应装置60,避免冷启动时生成冷凝水。另外,为了进一步避免在循环泵25中积聚冷却水,在主壳体50的本体中形成使循环泵25与排水阀26和/或排气阀27连通的内部通道39,如图2中所示。这样,冷凝水可以直接排放到排水阀26和/或排气阀27,而不会积聚在循环泵25内。相应地,排水阀26可以被设置成在当燃料电池处于工作状态时排水阀26位于比循环泵25 低的位置。
应指出的是,在包括上述实施例在内的本申请的实施方式中,氢气供应装置的各部件(例如,喷射泵、循环泵等)安装于主壳体50是指安装于主壳体50内或安装于主壳体50上。
根据本申请的上述实施例,通过将氢气供应装置的各部件及其管路集成在一个共同的主壳体中,可以简化安装、缩小尺寸、减轻重量,并且可以进一步提高设备的安全性和可能性。
以上结合具体实施例对本申请进行了详细描述。显然,以上描述以及在附图中示出的实施例均应被理解为是示例性的,而不构成对本申请的限制。对于本领域技术人员而言,可以在不脱离本申请的精神的情况下对其进行各种变型或修改,这些变型或修改均不脱离本申请的范围。

Claims (13)

  1. 一种氢气供应装置,其用于燃料电池,所述氢气供应装置包括:
    喷射泵(22),其用于将氢气供应入所述燃料电池的电堆(40);
    循环泵(25),其用于将从所述电堆(40)排出的气体循环入所述电堆(40);
    其特征在于,所述氢气供应装置还包括主壳体(50),所述喷射泵(22)和所述循环泵(25)被安装于所述主壳体(50),且至少通过在所述主壳体(50)的本体中形成的内部通道与所述电堆(40)流体连通。
  2. 根据权利要求1所述的氢气供应装置,其特征在于,所述氢气供应装置还包括用于控制氢气从所述燃料电池的储罐(10)排出的氢气喷嘴(21),所述氢气喷嘴(21)被安装于所述主壳体(50),且所述氢气喷嘴(21)和所述喷射泵(22)至少通过在所述主壳体(50)的本体中形成的内部通道流体连通。
  3. 根据权利要求1所述的氢气供应装置,其特征在于,所述氢气供应装置还包括用于分离从所述电堆(40)排出的气体中的水分的水分离器(24)、用于将所分离出的水排出的排水阀(26)和用于将经过分离的所述气体排出的排气阀(27),所述水分离器(24)、所述排水阀(26)和所述排气阀(27)被安装于所述主壳体(50),且所述水分离器(24)与所述排水阀(26)、所述排气阀(27)和所述循环泵(25)至少通过在所述主壳体(50)的本体中形成的内部通道流体连通。
  4. 根据权利要求3所述的氢气供应装置,其特征在于,所述电堆(40)与所述水分离器(24)至少通过在所述主壳体(50)的本体中形成的内部 通道流体连通。
  5. 根据权利要求3所述的氢气供应装置,其特征在于,所述排水阀(26)与排水管(28)连接,所述排气阀(27)与排气管(29)连接,所述排水管(28)和所述排气管(29)被构造成由在所述主壳体(50)的本体中形成的两个或一个内部通道形成。
  6. 根据权利要求3所述的氢气供应装置,其特征在于,所述氢气喷嘴(21)、所述喷射泵(22)、所述水分离器(24)、所述循环泵(25)、所述排水阀(26)和所述排气阀(27)中的至少一个的壳体被构造成由所述主壳体(50)形成。
  7. 根据权利要求1所述的氢气供应装置,其特征在于,所述氢气供应装置还包括用于释放氢气压力的释压阀(23),所述释压阀(23)被安装在于所述主壳体(50),且所述喷射泵(22)与所述释压阀(23)至少通过在所述主壳体(50)的本体中形成的内部通道流体连通,所述电堆(40)与所述释压阀(23)至少通过在所述主壳体(50)的本体中形成的内部通道流体连通。
  8. 根据权利要求1至7中的任一项所述的氢气供应装置,其特征在于,所述氢气供应装置还包括至少一个传感器(51),所述传感器(51)被安装于所述主壳体(50)。
  9. 根据权利要求1至7中的任一项所述的氢气供应装置,其特征在于,所述氢气供应装置还包括加热装置(52),所述加热装置(52)用于加热所述主壳体(50)。
  10. 根据权利要求1至7中的任一项所述的氢气供应装置,其特征在于,所述循环泵(25)被构造成经过所述喷射泵(22)或者不经过所述喷射泵(22)将从所述电堆(40)排出的气体循环入所述电堆(40)。
  11. 根据权利要求3所述的氢气供应装置,其特征在于,在所述主壳体(50)的本体中还形成使所述循环泵(25)与所述排水阀(26)和/或所述排气阀(27)连通的内部通道。
  12. 根据权利要求1所述的氢气供应装置,其特征在于,所述氢气供应装置还包括控制模块,所述控制模块被配置成根据所述燃料电池的运行状态来控制所述氢气供应装置的各部件的运行。
  13. 一种燃料电池,包括:
    电堆(40);
    氧气供应装置(70),其用于将氧气供应至所述电堆(40);
    其特征在于,所述燃料电池还包括根据权利要求1至12中的任一项所述的氢气供应装置。
PCT/CN2020/094571 2020-06-05 2020-06-05 氢气供应装置和燃料电池 WO2021243681A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/094571 WO2021243681A1 (zh) 2020-06-05 2020-06-05 氢气供应装置和燃料电池
CN202090001177.2U CN220491924U (zh) 2020-06-05 2020-06-05 氢气供应装置和燃料电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094571 WO2021243681A1 (zh) 2020-06-05 2020-06-05 氢气供应装置和燃料电池

Publications (1)

Publication Number Publication Date
WO2021243681A1 true WO2021243681A1 (zh) 2021-12-09

Family

ID=78830056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094571 WO2021243681A1 (zh) 2020-06-05 2020-06-05 氢气供应装置和燃料电池

Country Status (2)

Country Link
CN (1) CN220491924U (zh)
WO (1) WO2021243681A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116387561A (zh) * 2023-04-17 2023-07-04 武汉雄韬氢雄燃料电池科技有限公司 一种解决燃料电池氢系统中混合液态水的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390761A (zh) * 2012-05-07 2013-11-13 现代自动车株式会社 具有集成歧管块的燃料电池用氢供应系统
WO2014017846A1 (ko) * 2012-07-25 2014-01-30 주식회사 효성 연료전지 공용분배기
US20140212780A1 (en) * 2013-01-29 2014-07-31 Honda Motor Co., Ltd. Method of starting fuel cell system
CN207426027U (zh) * 2018-01-31 2018-05-29 安徽明天氢能科技股份有限公司 一种带集成加热功能的燃料电池供氢系统
CN109065933A (zh) * 2018-07-30 2018-12-21 冯强 一种集成燃料电池端板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390761A (zh) * 2012-05-07 2013-11-13 现代自动车株式会社 具有集成歧管块的燃料电池用氢供应系统
WO2014017846A1 (ko) * 2012-07-25 2014-01-30 주식회사 효성 연료전지 공용분배기
US20140212780A1 (en) * 2013-01-29 2014-07-31 Honda Motor Co., Ltd. Method of starting fuel cell system
CN207426027U (zh) * 2018-01-31 2018-05-29 安徽明天氢能科技股份有限公司 一种带集成加热功能的燃料电池供氢系统
CN109065933A (zh) * 2018-07-30 2018-12-21 冯强 一种集成燃料电池端板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116387561A (zh) * 2023-04-17 2023-07-04 武汉雄韬氢雄燃料电池科技有限公司 一种解决燃料电池氢系统中混合液态水的装置及方法
CN116387561B (zh) * 2023-04-17 2024-02-23 武汉雄韬氢雄燃料电池科技有限公司 一种解决燃料电池氢系统中混合液态水的装置及方法

Also Published As

Publication number Publication date
CN220491924U (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
JP5160774B2 (ja) 燃料電池システムの制御方法及び燃料電池システム
CN107078325B (zh) 燃料电池系统以及用于关停燃料电池堆栈的方法
CN101227005B (zh) 用于快速加热的热集成燃料电池加湿器
US7592083B2 (en) Integrated air supply with humidification control for fuel cell power systems
US10516178B2 (en) Fuel cell system and method for recirculating water in a fuel cell system
CN113629277A (zh) 一种燃料电池系统及其停机吹扫方法
KR101461874B1 (ko) 연료 전지 시스템 및 그 가습 및 냉각방법
US10680260B2 (en) Arrangement for a cathode recirculation in a fuel cell and method for cathode recirculation
WO2008149753A1 (ja) 加湿器及び燃料電池システム
CN114744238B (zh) 一种燃料电池系统及控制方法
JP2013235813A (ja) 統合型マニホールドブロックを有する燃料電池用水素供給システム
WO2018176941A1 (zh) 燃料电池集成系统
US20140178779A1 (en) Fuel Cell System Comprising a Water Separator
WO2021243681A1 (zh) 氢气供应装置和燃料电池
US8962203B2 (en) Fuel cell system and method of operating the system outside of desired thermal operating conditions
JP5508915B2 (ja) 燃料電池システム
JP5082790B2 (ja) 燃料電池システム
JP2005093374A (ja) 燃料電池発電システムおよび燃料電池発電システムの停止方法
CN210897483U (zh) 一种燃料电池发动机空气控制系统
CN115699376A (zh) 用于运行燃料电池堆的换热器系统
CN102037596B (zh) 燃料电池系统
JP2005032685A (ja) 燃料電池システム
JP2009295511A (ja) 燃料電池システム
KR100969061B1 (ko) 연료전지 시스템용 공용분배기 및 이를 이용한 수소 퍼지장치
JP7469483B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202090001177.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939154

Country of ref document: EP

Kind code of ref document: A1