WO2021241763A1 - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
WO2021241763A1
WO2021241763A1 PCT/JP2021/020567 JP2021020567W WO2021241763A1 WO 2021241763 A1 WO2021241763 A1 WO 2021241763A1 JP 2021020567 W JP2021020567 W JP 2021020567W WO 2021241763 A1 WO2021241763 A1 WO 2021241763A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
independently
resin composition
formula
Prior art date
Application number
PCT/JP2021/020567
Other languages
French (fr)
Japanese (ja)
Inventor
友裕 頼末
昌樹 米谷
隆行 金田
隆志 岩田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020227037482A priority Critical patent/KR20220158818A/en
Priority to JP2022526687A priority patent/JPWO2021241763A1/ja
Priority to CN202180038523.3A priority patent/CN115667368A/en
Publication of WO2021241763A1 publication Critical patent/WO2021241763A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a polyimide precursor / polyimide-containing resin composition and a polyimide film.
  • the present invention further relates to a method for producing a polyimide precursor / polyimide-containing resin composition, and a method for producing a polyimide film, a display, a laminate, and a flexible device.
  • the polyimide resin is an insoluble and infusible super heat resistant resin, and has excellent properties such as heat oxidation resistance, heat resistance, radiation resistance, low temperature resistance, and chemical resistance. Therefore, polyimide resins are used in a wide range of fields including electronic materials. Examples of applications of polyimide resins in the field of electronic materials include insulating coating materials, insulating films, semiconductors, electrode protective films for thin film transistor liquid crystal displays (TFT-LCD), and the like. Recently, taking advantage of the lightness and flexibility of the polyimide film, adoption as a flexible substrate is being considered in place of the glass substrate conventionally used in the field of display materials.
  • Patent Document 1 describes, as a monomer, 3,5-diaminobenzamide (hereinafter, also referred to as DABA) and the following structural formula: A polyimide film obtained by synthesizing a polyimide using the above compound (hereinafter, also referred to as CpODA) and another compound, adding a cross-linking agent to the obtained polyimide varnish, applying the mixture, and drying the film is described. .. Further, Patent Document 1 also describes that this film has excellent gas separation performance.
  • Patent Document 2 is a transparent polyimide film obtained by applying and drying a polyimide varnish using DABA, TFMB (2,2'-bis (trifluoromethyl) benzidine) as a diamine and CpODA as an acid dianhydride. Is described.
  • Patent Document 1 The polyimide film described in Patent Document 1 is used as a gas separation membrane and has not been studied as an optical material.
  • the present inventors synthesized a polyimide varnish in the same manner as described in Patent Document 2 using DABA, TFMB and CpODA, a silicon-containing compound, etc. as a monomer, and found that the varnish required in the varnish manufacturing process. It was found that the polyimide film obtained by applying and heating the polyimide varnish has insufficient properties (tensile elongation, etc.) required for display applications.
  • the present inventors have DABA, 3,3'-diaminodiphenyl sulfone (33DAS), 4,4'-diaminodiphenyl sulfone (44DAS), 9,9-bis (4-aminophenyl) fluorene (BAFL) and the like.
  • ODPA 4,4'-oxydiphthalic anhydride
  • BPAF 9,9-bis (3,4-dicarboxyphenyl) fluorene diacid anhydride
  • the present invention has been made in view of the above circumstances, and has both the characteristics required for the manufacturing process of the polyimide precursor and / or the polyimide-containing resin composition and other characteristics required for display applications. It is an object of the present invention to provide an excellent polyimide film and a resin composition for forming the same.
  • At least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • It contains a structural unit derived from the silicon-containing compound represented by, and contains 25% by mass or less of the silicon-containing compound based on the total mass of the resin.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • It contains a structural unit derived from a silicon-containing compound represented by, and the imidization ratio of the resin is 50% or more.
  • Resin composition. ⁇ 3> The resin composition according to item 1, wherein the resin has an imidization ratio of 50% or more.
  • At least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • the P 3 and / or P 5 is the following general formula (8): In comprising a structural unit derived from a compound represented; or (b) the P 4 and / or P 6 is represented by the following general formula (9): Includes structural units derived from the compounds represented by; A resin composition that satisfies any of the above.
  • At least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • ⁇ Containing a structural unit derived from the silicon-containing compound represented by, and the P 3 and / or P 5 are independent of each other.
  • 3,3'-Diaminodiphenyl sulfone (33DAS), 4,4'-Diaminodiphenyl sulfone (44DAS), or 9,9-bis (4-aminophenyl) fluorene (BAFL) A resin composition containing at least one structural unit derived from each of the above compounds.
  • At least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • ⁇ Containing a structural unit derived from the silicon-containing compound represented by, and the P 3 and / or P 5 are independent of each other.
  • 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) A resin composition containing at least one structural unit derived from. ⁇ 7> The following general formulas (6) and (7): ⁇ In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer.
  • P 5 represents a divalent organic group
  • P 6 represents a tetravalent organic group
  • q represents a positive integer.
  • P 5 or P 6 is represented by the following general formula (10):
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • Each independently is an amino group
  • i is an integer of 1 to 200
  • j and k are independently integers of 0 to 200, with 0 ⁇ j / (i + j + k) ⁇ 0.50. be.
  • the diamine The following general formula (8): Compound represented by, 3,3'-Diaminodiphenyl sulfone (33DAS), 4,4'-Diaminodiphenyl sulfone (44DAS), and 9,9-bis (4-aminophenyl) fluorene (BAFL)
  • 33DAS 3,3'-Diaminodiphenyl sulfone
  • 44DAS 4,4'-Diaminodiphenyl sulfone
  • BAFL 9,9-bis (4-aminophenyl) fluorene
  • P 4 and / or P 6 are each independently, 4,4'-oxydiphthalic anhydride (ODPA), or 9,9-bis ( 3,4-Dicarboxyphenyl)
  • ODPA 4,4'-oxydiphthalic anhydride
  • BPAF fluorene diacid anhydride
  • the P 5 contains a structural unit derived from the compound represented by the general formula (10), and the L 1 and L 2 in the general formula (10) are independently amino groups.
  • P 4 or P 6 are each independently, 4,4 '- (hexafluoro isopropylidene) diphthalic anhydride, the following formula: Compound represented by (BzDA), or the following formula:
  • BNBDA compound represented by (BzDA)
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • ⁇ After polycondensation reaction of the silicon-containing compound represented by It comprises polycondensing reaction with other compounds to provide a resin composition containing a polyimide precursor and a resin containing polyimide.
  • the silicon-containing compound is contained in an amount of 25% by mass or less based on the total mass of the resin.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • ⁇ After polycondensation reaction of the silicon-containing compound represented by It comprises polycondensing reaction with other compounds to provide a resin composition containing a polyimide precursor and a resin containing polyimide.
  • the imidization rate of the resin is 50% or more.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • a method for producing a resin composition which comprises subjecting a resin composition containing a polyimide precursor and a polyimide by polycondensation reaction with other compounds.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • a method for producing a resin composition which comprises subjecting a resin composition containing a polyimide precursor and a polyimide by polycondensation reaction with other compounds.
  • a resin composition containing a polyimide precursor and a polyimide by polycondensation reaction with other compounds At least one compound selected from 4,4'-oxydiphthalic anhydride (ODPA) and 9,9-bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride (BPAF), and the following general formula ( 10):
  • ODPA 4,4'-oxydiphthalic anhydride
  • BPAF 9,9-bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms.
  • At least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • a method for producing a resin composition which comprises subjecting a resin composition containing a polyimide precursor and a polyimide by polycondensation reaction with other compounds.
  • a film forming step of heating the resin composition to form a polyimide resin film An element forming step of forming an element on the polyimide resin film and A peeling step of peeling the polyimide resin film on which the element is formed from the support, How to make a display, including.
  • the P 1 is the following general formula (3): Containing a structural unit derived from in the compound represented by, and the P 1
  • the P 2 is represented by the following general formula (5): ⁇ In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • Each independently is an amino group
  • i is an integer of 1 to 200
  • j and k are each independently an integer of 0 to 200
  • the functional group equivalent is 800 or more.
  • the above P 2 is the following general formula (4): 28.
  • the resin composition according to item 28 which comprises a structural unit derived from the compound represented by.
  • the above P 3 or P 4 is the following general formula (10): ⁇
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups.
  • P 5 indicates a divalent organic group
  • P 6 indicates a tetravalent organic group
  • q indicates a positive integer
  • P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included.
  • the above P 3 or P 4 is the following general formula (10): ⁇ In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms.
  • the P 3 and / or P 5 is the following general formula (8): In comprising a structural unit derived from a compound represented; or (b) the P 4 and / or P 6 is represented by the following general formula (9): Includes structural units derived from the compounds represented by; A resin composition that satisfies any of the above.
  • P 5 indicates a divalent organic group
  • P 6 indicates a tetravalent organic group
  • q indicates a positive integer
  • P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included.
  • the above P 3 or P 4 is the following general formula (10): ⁇ In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms.
  • At least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • Each independently is an amino group
  • i is an integer of 1 to 200
  • j and k are independently integers of 0 to 200, with 0 ⁇ j / (i + j + k) ⁇ 0.50. be.
  • ⁇ Containing a structural unit derived from in the silicon-containing compound represented, and the P 3 and / or P 5 is 3,3'-diaminodiphenyl sulfone (33DAS), or 4,4'-diaminodiphenyl sulfone (44DAS)
  • Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • Each independently is an amino group
  • i is an integer of 1 to 200
  • j and k are independently integers of 0 to 200, with 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • BAFL 9,9-Bis (4-aminophenyl) fluorene
  • Compound (BisAM) A resin composition containing at least one structural unit derived from each of the above compounds.
  • the above P 3 or P 4 is the following general formula (10): ⁇
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups.
  • Each independently is an amino group
  • i is an integer of 1 to 200
  • j and k are independently integers of 0 to 200, with 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • In comprising a structural unit derived from silicon-containing compound represented, and the P 4 and / or P 6 is 4,4'-Oxydiphthalic anhydride (ODPA), 4,4'-(Hexafluoroisopropylidene) diphthalic acid anhydride (6FDA), 9,9-Bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride (BPAF), The following general formula: Compound (BzDA); or the following general formula: Compound (BNBDA); A resin composition containing at least one structural unit derived from each of the above compounds.
  • ODPA 4,4'-Oxydiphthalic anhydride
  • 6FDA 4,4'-(Hexafluoroisopropylidene) diphthal
  • the P 3 contains a structural unit derived from the compound represented by the general formula (10).
  • the P 3 contains a structural unit derived from the compound represented by the general formula (10), and the L 1 and L 2 in the general formula (10) are independently amino groups.
  • the compound represented by the general formula (3) or (8) is more than 50 mol% when the total diamine (excluding the compound represented by the general formula (5) or (10)) is 100 mol%.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • Each independently is an amino group
  • i is an integer of 1 to 200
  • j and k are independently integers of 0 to 200, with 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • a method for producing a resin composition which comprises subjecting a silicon-containing compound represented by (1) to a polycondensation reaction of another compound to provide a polyimide precursor and / or a polyimide.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • Each independently is an amino group
  • i is an integer of 1 to 200
  • j and k are independently integers of 0 to 200, with 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • a method for producing a resin composition which comprises subjecting a silicon-containing compound represented by (1) to a polycondensation reaction with another compound to provide a resin composition containing a polyimide precursor and a polyimide.
  • At least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • Each independently is an amino group
  • i is an integer of 1 to 200
  • j and k are independently integers of 0 to 200, with 0 ⁇ j / (i + j + k) ⁇ 0.50. be.
  • a method for producing a resin composition which comprises subjecting a silicon-containing compound represented by (1) to a polycondensation reaction with another compound to provide a resin composition containing a polyimide precursor and a polyimide.
  • a film forming step of heating the resin composition to form a polyimide resin film A peeling step of peeling the polyimide resin film from the support, A method for producing a polyimide resin film, including.
  • the method for producing a polyimide resin film according to item 43 which comprises an irradiation step of irradiating the resin composition with a laser from the support side prior to the peeling step.
  • a film forming step of heating the resin composition to form a polyimide resin film An element forming step of forming an element on the polyimide resin film and A peeling step of peeling the polyimide resin film on which the element is formed from the support, How to make a display, including.
  • a method for manufacturing a flexible device which comprises manufacturing the laminate by the method according to item 46 or 47.
  • a polyimide precursor or a polyimide resin composition having excellent properties required for display applications by using DABA, CpODA, other silicon-containing compounds and the like as monomers.
  • secondly using DABA, a silicon-containing compound and other compounds as a monomer, or using DABA and a silicon-containing compound and other compounds as a monomer, 3,3'-diamino Using diphenyl sulfone (33DAS) and / or 4,4'-diaminodiphenyl sulfone (44DAS), a silicon-containing compound and other compounds as monomers, a polyimide precursor or polyimide resin composition having excellent properties required for display applications.
  • DABA diphenyl sulfone
  • 44DAS 4,4'-diaminodiphenyl sulfone
  • FIG. 1 is a schematic view showing the structure of a top-emission type flexible organic EL display above the polyimide substrate as an example of the display of the present embodiment.
  • the present embodiment an exemplary embodiment of the present invention (hereinafter, abbreviated as “the present embodiment”) will be described in detail.
  • the present invention is not limited to the present embodiment, and can be variously modified and implemented within the scope of the gist thereof.
  • the upper limit value and the lower limit value of each numerical range can be arbitrarily combined.
  • the resin composition of the present embodiment has the following general formulas (6) and (7): ⁇ In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. ⁇ ⁇ In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer.
  • ⁇ In comprising a structural unit of the resin represented, in part may also include imidized polyimide precursor, P 5 or P 6 is represented by the following general formula (10):
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • Includes a structural unit derived from a silicon-containing compound represented by.
  • the viscosity stability of the composition is superior to that of the total polyimide precursor, and the polyimide (polyimide precursor) is synthesized as compared with the total polyimide. Excellent in terms of ease.
  • the ratio of the silicon group-containing compound is 25% by mass or less based on the total mass of the resin.
  • the ratio of the silicon-containing compound in the total resin is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less, from the viewpoint of viscosity storage stability and filterability of the varnish.
  • the mechanism by which the smaller the ratio of the silicon-containing compound in the resin is, the better the viscosity storage stability and the filterability of the varnish is unclear, but it is considered that the aggregation of the dissociated silicon group-containing compound is correlated. Be done.
  • the ratio of the silicon group-containing compound is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more, from the viewpoint of the residual stress of the obtained polyimide film.
  • the appropriate ratio of the silicon-containing compound in the total resin varies depending on the type and ratio of the diamine monomer and acid dianhydride monomer used, and the residual stress of the polyimide film, the viscosity storage stability of the varnish, the filterability, etc. are mutually considered. Then you need to decide.
  • the imidization rate of the resin is 50% or more.
  • the imidization ratio of the resin is preferably 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably 90% or more from the viewpoint of viscosity storage stability of the varnish.
  • the mechanism by which the viscosity storage stability of the varnish is better as the imidization ratio is larger is not clear, but it is considered that there is a correlation with the occurrence of decomposition polymerization of the amide portion during the storage of the varnish.
  • the imidization rate of the resin is preferably 90% or less, more preferably 80% or less, still more preferably 70% or less, from the viewpoint of hygroscopic white turbidity of the varnish.
  • the mechanism by which the hygroscopic white turbidity of the varnish is less likely to occur as the imidization ratio is smaller is not clear, but it is considered to have a correlation with the solvent solubility of the polyimide / polyamide.
  • the appropriate imidization ratio of the resin varies depending on the type and ratio of the diamine monomer and acid dianhydride monomer used, and it is necessary to determine the appropriate imidization ratio in consideration of the viscosity storage stability of the varnish, the moisture absorption and cloudiness of the varnish, and the like. ..
  • the difference between the imide unit and the amide unit in the ratio of the silicon-containing compound in the diamine monomer of the resin is larger than 0 and 60 or less.
  • the difference between the imide unit and the amide unit in the ratio of the silicon-containing compound in the diamine monomer of the resin can be obtained from the following formula.
  • A: Silicon-containing compound ratio (% by mass) in diamine of imide unit silicon-containing compound used in imidization step / total mass of diamine monomer (including silicon-containing compound) used in imidization step * 100
  • B: Silicon-containing compound ratio (% by mass) in diamine of the amide unit total mass of silicon-containing compound used in the imidization step / diamine monomer (including silicon-containing compound) used in the amidation step * 100
  • A is "among the general formula in (7) of the diamine constituting the P 5, the ratio (mass%) of the general formula (10)" and can turn also.
  • B can be rephrased as "the ratio (mass%) of the general formula (10) to the diamines constituting P 3 in the general formula (6)". Then, the difference between the imide unit and the amide unit in the ratio of the silicon-containing compound in the diamine becomes BA by using the above A and B.
  • the difference between the imide unit and the amide unit in the proportion of the silicon-containing compound in the diamine monomer is the difference between the imide unit and the amide unit in the partially imidized polyimide precursor (polyamide-imide) resin having a structure derived from the silicon-containing compound.
  • polyamide-imide partially imidized polyimide precursor
  • the diamine used for the resin is The following general formula (8): Compound; 3,3'-Diaminodiphenyl sulfone (33DAS); 4,4'-Diaminodiphenyl sulfone (44DAS); and 9,9-bis (4-aminophenyl) fluorene (BAFL)
  • 33DAS 3,3'-Diaminodiphenyl sulfone
  • 44DAS 4,4'-Diaminodiphenyl sulfone
  • BAFL 9,9-bis (4-aminophenyl) fluorene
  • the resin composition according to another embodiment of the present invention has the following general formulas (6) and (7): ⁇ In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. ⁇ ⁇ In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. ⁇ It can also contain a partially imidized polyimide precursor, including structural units represented by. P 5 or P 6 is represented by the following general formula (10): ⁇ In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms.
  • At least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers of 0 to 200, and 0 ⁇ j / (i + j + k) ⁇ 0.50.
  • It can contain a structural unit derived from a silicon-containing compound represented by, and can satisfy any of the following (a) or (b):
  • (A) The P 3 and / or P 5 is the following general formula (8): In comprising a structural unit derived from a compound represented; or (b) the P 4 and / or P 6 is represented by the following general formula (9): Includes building blocks derived from the compound represented by.
  • the diamine resin composition has the following general formula (8): Compound; 3,3'-Diaminodiphenyl sulfone (33DAS); 4,4'-Diaminodiphenyl sulfone (44DAS); 9,9-bis (4-aminophenyl) fluorene (BAFL); or 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) Contains at least one building block selected from each diamine compound of.
  • diamine compounds represented by the general formula (8) 3,5-diaminobenzoic acid (DABA) is preferable from the viewpoint of transparency of the polyimide film and YI.
  • the content of DABA in the total diamine is more than 50 mol%, more than 55 mol%, or more than 70 mol%, or 90. It may be mol% or more, or 95 mol% or more.
  • the larger the amount of DABA the larger the tensile elongation of the polyimide film, which is preferable.
  • diamines other than the general formula (8) examples include p-phenylenediamine (PDA), m-phenylenediamine, 2,2'-dimethylbenzidine (mTB), 4,4'-diaminodiphenylsulfide, and 3,4'-diamino.
  • PDA p-phenylenediamine
  • mTB 2,2'-dimethylbenzidine
  • 4,4'-diaminodiphenylsulfide 4,4'-diaminodiphenylsulfide
  • 3,4'-diamino examples include p-phenylenediamine (PDA), m-phenylenediamine, 2,2'-dimethylbenzidine (mTB), 4,4'-diaminodiphenylsulfide, and 3,4'-diamino.
  • Diamines other than the general formula (8) consist of a group consisting of 1,3-bis [1- (4-aminophenyl) -1-methylethyl] benzene] (BisAM) and 1,4-cyclohexanediamine (CHDA). It is preferably at least one selected.
  • the acid dianhydride resin composition has the following general formula (9): Compound represented by (also referred to as CpODA), 4,4'-Oxydiphthalic anhydride (ODPA) or 9,9-bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride (BPAF) Contains at least one building block selected from each acid dianhydride compound of. Having these structural units is preferable because the transparency, YI, and heat resistance of the obtained polyimide film can be improved.
  • CpODA Compound represented by
  • ODPA 4,4'-Oxydiphthalic anhydride
  • BPAF 9,9-bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride
  • the content of CpODA, ODPA, and BPAF in the total acid dianhydride is 50 mol% or more and 60 mol% or more. , Or 70 mol% or more, 90 mol% or more, or 95 mol% or more.
  • a larger amount of CpODA, ODPA, and BPAF is preferable because the transparency of the polyimide film is improved.
  • Examples of the acid dianhydride other than the general formula (9) include pyromellitic acid dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA), 2,2',.
  • PMDA pyromellitic acid dianhydride
  • BPDA 4,4'-biphenyltetracarboxylic acid dianhydride
  • 2,2' 2,2'
  • 3,3'-Biphenyltetracarboxylic dianhydride 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 5- (2,5-dioxotetrahydro-3-franyl) -3- Methyl-cyclohexene-1,2 dicarboxylic acid anhydride, 1,2,3,4-benzenetetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,2' , 3,3'-benzophenone tetracarboxylic acid dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride, methylene-4,4'-diphthalic acid dianhydride, 1,1- Ethiliden-4,4'-diphthalic acid dianhydride, 2,2-propylidene-4,4'-diphthal
  • the acid dianhydride other than the above general formula (9) may be at least one selected from the group consisting of BzDA, BNBDA, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (HPMDA). preferable.
  • the acid dianhydride may be used alone or in combination of two or more.
  • the polyimide precursor in the present embodiment may have a structure represented by the above formula (6) as well as a structure represented by the above formula (7).
  • the content ratio of the structure derived from the silicon-containing compound in the polyimide precursor is preferably 5% by mass or more and 40% by mass or less based on the mass of the polyimide precursor. It is preferable that the polyimide precursor contains a structure derived from a silicon-containing compound within this numerical range because it is possible to achieve both low residual stress and high transparency and heat resistance in the obtained polyimide film.
  • the content ratio of the structure derived from the silicon-containing compound may be 6% by mass or more, 7% by mass or more, or 30% by mass or less, or 25% by mass or less, based on the mass of the polyimide precursor. You may.
  • the polyimide / polyimide precursor in this embodiment has a structure derived from a silicon-containing compound. Therefore, the silicon-containing compound used in the synthesis of the polyimide precursor in the present embodiment may be a compound having a reactive group capable of cocondensing with at least one of the tetracarboxylic dianhydride and the diamine.
  • Such a silicon-containing compound is, for example, the following formula (10) :.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms.
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 2 and R 3 is a monovalent aliphatic group having 1 to 5 carbon atoms.
  • It is a hydrocarbon group and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 4 and R 5 is a monovalent aromatic group having 6 to 10 carbon atoms.
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 6 and R 7 is an unsaturated aliphatic hydrocarbon having 2 to 10 carbon atoms. It is an organic group containing a hydrogen group.
  • L 1 and L 2 are each independently a monovalent organic group containing an acid anhydride structure, an amino group, an isocyanate group, a carboxyl group, an alkoxycarbonyl group, a halogenated carbonyl group, a hydroxy group, an epoxy group, or a mercapto group.
  • i and j are independently integers from 1 to 200, respectively.
  • k is an integer from 0 to 200, and The relationship of 0.05 ⁇ j / (i + j + k) ⁇ 0.50 is satisfied. ⁇ Can be mentioned.
  • R 1 in the formula (10) is a single bond or a divalent organic group having 1 to 10 carbon atoms, respectively.
  • the divalent organic group having 1 to 10 carbon atoms may be linear, cyclic, or branched, and may be saturated or unsaturated.
  • Examples of the divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms include a methylene group, an ethylene group, an n-propylene group, an i-propylene group, an n-butylene group, an s-butylene group and a t-butylene group.
  • Linear or branched alkylene groups such as n-pentylene group, neopentylene group, n-hexylene group, n-heptylene group, n-octylene group, n-nonylene group, n-decylene group; cyclopropylene group, cyclobutylene group, Examples thereof include a cycloalkylene group such as a cyclopentylene group, a cyclohexylene group, a cycloheptylene group and a cyclooctylene group.
  • the divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of an ethylene group, an n-propylene group and an i-propylene group.
  • R 2 and R 3 in the formula (10) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • the monovalent organic group having 1 to 10 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, a t-butyl group, and an n-pentyl group.
  • Cycloalkyl group such as cycloheptyl group, cyclooctyl group; aromatic group such as phenyl group, tolyl group, xsilyl group, ⁇ -naphthyl group, ⁇ -naphthyl group and the like.
  • the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, and a t-butyl group.
  • Linear or branched alkyl groups such as n-pentyl group and neopentyl group; cycloalkyl groups such as cyclopropyl group, cyclobutyl group and cyclopentyl group can be mentioned.
  • the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably at least one selected from the group consisting of a methyl group, an ethyl group, and an n-propyl group.
  • R 4 and R 5 in the formula (10) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aromatic group having 6 to 10 carbon atoms.
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • monovalent organic groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group and n-pentyl.
  • Linear or branched alkyl group such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl.
  • Cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; aromatic groups such as phenyl group, trill group, xylyl group, ⁇ -naphthyl group and ⁇ -naphthyl group can be mentioned.
  • Examples of the monovalent aromatic group having 6 to 10 carbon atoms include a phenyl group, a tolyl group, a xsilyl group, an ⁇ -naphthyl group, a ⁇ -naphthyl group and the like, and may be a phenyl group, a tolyl group, or a xsilyl group. It is preferable to have.
  • R 6 and R 7 in the formula (10) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is an organic group having an unsaturated aliphatic hydrocarbon group.
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched. Examples of the monovalent organic group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, a t-butyl group and an n-pentyl group.
  • Linear or branched alkyl group such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl.
  • Cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; aromatic groups such as phenyl group, trill group, xylyl group, ⁇ -naphthyl group and ⁇ -naphthyl group can be mentioned.
  • the monovalent organic group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of a methyl group, an ethyl group, and a group phenyl.
  • the organic group having an unsaturated aliphatic hydrocarbon group may be an unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms, and may be linear, cyclic or branched.
  • Examples of the unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms include a vinyl group, an allyl group, a 1-propenyl group, a 3-butenyl group, a 2-butenyl group, a pentenyl group, a cyclopentenyl group, a hexenyl group and a cyclo. Examples thereof include a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an ethynyl group, a propynyl group, a butynyl group, a pentynyl group and a hexynyl group.
  • the unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms is preferably at least one selected from the group consisting of a vinyl group, an allyl group, and a 3-butenyl group.
  • a part or all of the hydrogen atoms of R 1 to R 7 in the formula (10) may be substituted with a substituent such as a halogen atom such as F, Cl, Br, etc., or may be unsubstituted.
  • L 1 and L 2 in the formula (10) are each independently a monovalent organic group (also referred to as an acid anhydride group) containing an acid anhydride structure, an amino group, an isocyanate group, a carboxyl group, an alkoxycarbonyl group, and the like. It is a halogenated carbonyl group, a hydroxy group, an epoxy group, or a mercapto group.
  • Examples of the monovalent organic group containing an acid anhydride structure include the following formula: ⁇ In the above formula, "*" represents a bond. ⁇ , Examples thereof include a 2,5-dioxotetrahydrofuran-3-yl group.
  • the alkoxyl group in the alkoxycarbonyl group may be an alkoxyl group having 1 to 6 carbon atoms, for example, a methoxyl group, an ethoxyl group, an n-propoxyl group, an i-propoxyl group, an n-butoxyl group, or an i-butoxyl group. , T-butoxyl group and the like.
  • the halogen atom in the halogenated carbonyl group is preferably a halogen atom other than a fluorine atom, and more preferably a chlorine atom or an iodine atom.
  • the functional group equivalent of the silicon-containing compound represented by the formula (10) is preferably 800 or more, more preferably 1000 or more, still more preferably 1500 or more, from the viewpoint of the filterability of the resin composition.
  • the functional group equivalent is the molecular weight of the silicon-containing compound per 1 mol of the functional group (unit: g / mol).
  • the functional group equivalent can be measured by a known method.
  • the functional group equivalent of the silicon-containing compound is 800 or more, the residual stress of the polyimide film under the nitrogen atmosphere is small, which is preferable. The reason for this is considered to be that when the functional group equivalent is equal to or more than a specific value, the silicone domain increases and stress is relaxed.
  • the functional group equivalent can be measured according to existing standards and the like.
  • I in the formula (10) is an integer of 1 to 200, preferably an integer of 2 to 100, more preferably an integer of 4 to 80, and even more preferably an integer of 8 to 40.
  • j and k are independently integers of 0 to 200, preferably an integer of 0 to 50, more preferably an integer of 0 to 20, and even more preferably an integer of 0 to 50.
  • the polyimide in the resin composition has a structure derived from the formula (10) because the residual stress measured in the nitrogen atmosphere of the polyimide film is good (small).
  • the reason for measuring in a nitrogen atmosphere is that when an inorganic film such as SiO, SiN is formed on a polyimide film in the display process, it may be exposed to the nitrogen atmosphere, and the residual stress in the nitrogen atmosphere is small. This is because it is required.
  • the resin composition of this embodiment is The following general formula (1) or (2): ⁇ In the formula, P 1 represents a divalent organic group, P 2 represents a tetravalent organic group, and p represents a positive integer. ⁇ ⁇ In the formula, P 1 represents a divalent organic group, P 2 represents a tetravalent organic group, and p represents a positive integer.
  • P 1 contains the resin of the structural unit represented by, and may also contain a polyimide precursor (hereinafter, also referred to as a total polyimide precursor) or a polyimide (hereinafter, also referred to as a total polyimide), and P 1 is the following general formula (3). : Containing a structural unit derived from the compound represented by, and optionally, P 2 is the following general formula (4) :. It can contain a structural unit derived from the compound represented by. Further, P 1 or P 2 is expressed by the following general formula (5): ⁇ In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms.
  • At least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms
  • R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • Each independently is an amino group
  • i is an integer of 1 to 200
  • j and k are each independently an integer of 0 to 200
  • the functional group equivalent is 8000 or more ⁇ Includes a structural unit derived from a silicon-containing compound represented by.
  • Polyimide can be obtained by thermally imidizing a polyimide precursor and can also be chemically imidized. Thermal imidization is preferable from the viewpoint of transparency of the obtained polyimide film.
  • the polyimide resin composition is preferable as compared with the polyimide precursor resin composition from the viewpoint of the viscosity stability of the composition.
  • the resin composition according to another embodiment of the present invention has the following general formulas (6) and (7): ⁇ In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Does not contain fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) or structural units derived from it. ⁇ ⁇ In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri).
  • P 3 and / or P 5 are 3,3'-diaminodiphenyl sulfone (33DAS); or 4,4'-diaminodiphenyl sulfone (44DAS) It can contain at least one structural unit derived from each compound of.
  • P 3 and / or P 5 are 9,9-Bis (4-aminophenyl) fluorene (BAFL); or the following general formula: Compound (BisAM) It can contain at least one structural unit derived from each compound of.
  • the compound of the following general formula (8), 3,3'-diaminodiphenyl sulfone (33DAS) and / or 4,4'-diaminodiphenyl sulfone ( 44DAS) is preferred.
  • the use of 6FODA for P 3 and / or P 5 is not preferable from the viewpoint of viscosity stability of the varnish, filterability, and foreign matter generated during imidization.
  • P 4 and / or P 6 is represented by the following general formula (9): It can also contain a structural unit derived from the compound represented by.
  • P 4 and / or P 6 is 4,4'-Oxydiphthalic anhydride (ODPA); 4,4'-(Hexafluoroisopropylidene) diphthalic acid anhydride (6FDA); 9,9-Bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride (BPAF); the following general formula: Compound (BzDA); and the following general formula: Compound (BNBDA); Can contain at least one structural unit derived from the compound of.
  • ODPA 4,4'-Oxydiphthalic anhydride
  • 6FDA 4,4'-(Hexafluoroisopropylidene) diphthalic acid anhydride
  • BPAF 9,9-Bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride
  • the compound of the general formula (9), ODPA is preferable from the viewpoint of viscosity stability of the varnish, filterability, and transparency of the polyimide film.
  • P 3 or P 4 is represented by the following general formula (10): ⁇
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively.
  • At least one is a monovalent aromatic group having 6 to 10 carbon atoms
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms
  • L 1 and L 2 are independent groups.
  • each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group
  • i is an integer of 1 to 200.
  • j and k are independently integers from 0 to 200, 0 ⁇ j / (i + j + k) ⁇ 0.50, and the functional group equivalent is 8000 or more ⁇ .
  • the viscosity stability of the composition is excellent as compared with the above-mentioned all polyimide precursor, and compared with the above-mentioned all polyimide, the polyimide (polyimide precursor) It is excellent in terms of ease of synthesis.
  • L 1 and L 2 are independently amino group, acid anhydride group, isocyanate group, carboxyl group, acid ester group, acid halide group, hydroxy group, epoxy group or mercapto. It is a group, and among them, an amino group is preferable from the viewpoint of resin properties or film properties.
  • the diamine resin composition has the following general formula (3): Contains structural units derived from the diamine compound represented by.
  • diamine compounds represented by the general formula (3) 3,5-diaminobenzoic acid (DABA) is preferable from the viewpoint of transparency of the polyimide film and YI. Having this structural unit is preferable because the mechanical properties of the obtained polyimide film can be improved (particularly the tensile elongation) and the heat resistance can be improved. The reason for the improvement of such properties is not clear, but it is considered that the intramolecular interaction is working due to the action of the carboxyl group.
  • the content of DABA in the total diamine is more than 50 mol%, more than 55 mol%, or 70 mol%. It may be 90 mol% or more, or 95 mol% or more.
  • the larger the amount of DABA the larger the tensile elongation of the polyimide film, which is preferable.
  • the resin composition also contains structural units derived from 33 DAS and / or 44 DAS.
  • 33DAS and 44DAS it is preferable to use a mixture of 33DAS and 44DAS from the viewpoint of achieving both the thickness direction Rth (retaration) of the polyimide film and the mechanical properties.
  • the total content of 33 DAS and / or 44 DAS in the total diamine is more than 50 mol% and more than 55 mol%. , Or 70 mol% or more, 90 mol% or more, or 95 mol% or more. A larger amount of 33 DAS and / or 44 DAS is preferable because the mechanical strength of the polyimide film is improved.
  • diamines other than the general formula (3) examples include p-phenylenediamine (PDA), m-phenylenediamine, 2,2'-dimethylbenzidine (mTB), 4,4'-diaminodiphenylsulfide, and 3,4'-diamino.
  • PDA p-phenylenediamine
  • mTB 2,2'-dimethylbenzidine
  • 4,4'-diaminodiphenylsulfide 4,4'-diaminodiphenylsulfide
  • 3,4'-diamino examples include p-phenylenediamine (PDA), m-phenylenediamine, 2,2'-dimethylbenzidine (mTB), 4,4'-diaminodiphenylsulfide, and 3,4'-diamino.
  • BAFL 9,9-bis (4-aminophenyl) fluorene
  • BiSAM 1,3-bis [1- (4-aminophenyl) -1-methylethyl] benzene]
  • CHDA 1,4 -Preferably at least one selected from the group consisting of cyclohexanediamine
  • diamines other than the general formula (3) 33DAS and / or 44DAS are 9,9-bis (4-aminophenyl) fluorene (BAFL), 1,3-. More preferably, it is at least one selected from the group consisting of bis [1- (4-aminophenyl) -1-methylethyl] benzene] (BiSAM).
  • the acid dianhydride resin composition has the following general formula (4): It contains a structural unit derived from a compound represented by (also referred to as CpODA). Having this structural unit is preferable because it can improve the transparency, YI, and heat resistance of the obtained polyimide film.
  • the content of CpODA in total acid anhydride is 50 mol% or more and 60 mol% or more. , Or 70 mol% or more, 90 mol% or more, or 95 mol% or more.
  • the resin composition contains a structural unit derived from ODPA. Having this structural unit is preferable because it can improve the viscosity stability of the varnish, the filterability, and the transparency of the obtained polyimide film.
  • the content of ODPA in total acid anhydride (including compounds in which L 1 and L 2 are acid anhydride groups in the above general formulas (5) and (10)) is 50 mol% or more and 60 mol% or more. , Or 70 mol% or more, 90 mol% or more, or 95 mol% or more.
  • Examples of the acid dianhydride other than the general formula (4) include pyromellitic acid dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA), 2,2',.
  • PMDA pyromellitic acid dianhydride
  • BPDA 4,4'-biphenyltetracarboxylic acid dianhydride
  • 2,2' 2,2'
  • 3,3'-Biphenyltetracarboxylic dianhydride 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 5- (2,5-dioxotetrahydro-3-franyl) -3- Methyl-cyclohexene-1,2 dicarboxylic acid anhydride, 1,2,3,4-benzenetetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,2' , 3,3'-benzophenone tetracarboxylic acid dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride, methylene-4,4'-diphthalic acid dianhydride, 1,1- Ethiliden-4,4'-diphthalic acid dianhydride, 2,2-propylidene-4,4'-diphthal
  • Acid dianhydrides other than the above general formula (4) include 6FDA, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride (BPAF), BzDA, BNBDA, 1, 2, 4, 5 -Preferably at least one selected from the group consisting of cyclohexanetetracarboxylic dianhydride (HPMDA).
  • the acid dianhydride may be used alone or in combination of two or more.
  • the polyimide precursor in the present embodiment may have a structure represented by the above formula (1) as well as a structure represented by the above formula (2).
  • the content ratio of the structure derived from the silicon-containing compound in the polyimide precursor is preferably 5% by mass or more and 40% by mass or less based on the mass of the polyimide precursor. It is preferable that the polyimide precursor contains a structure derived from a silicon-containing compound within this numerical range because it is possible to achieve both low residual stress and high transparency and heat resistance in the obtained polyimide film.
  • the content ratio of the structure derived from the silicon-containing compound may be 6% by mass or more, 7% by mass or more, or 30% by mass or less, or 25% by mass or less, based on the mass of the polyimide precursor. You may.
  • the polyimide / polyimide precursor in this embodiment has a structure derived from a silicon-containing compound. Therefore, the silicon-containing compound used in the synthesis of the polyimide precursor in the present embodiment may be a compound having a reactive group capable of cocondensing with at least one of the tetracarboxylic dianhydride and the diamine.
  • Such a silicon-containing compound is, for example, the following formula (5) :.
  • R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms.
  • R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 2 and R 3 is a monovalent aliphatic group having 1 to 5 carbon atoms.
  • It is a hydrocarbon group and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 4 and R 5 is a monovalent aromatic group having 6 to 10 carbon atoms.
  • R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 6 and R 7 is an unsaturated aliphatic hydrocarbon having 2 to 10 carbon atoms. It is an organic group containing a hydrogen group.
  • L 1 and L 2 are each independently a monovalent organic group containing an acid anhydride structure, an amino group, an isocyanate group, a carboxyl group, an alkoxycarbonyl group, a halogenated carbonyl group, a hydroxy group, an epoxy group, or a mercapto group.
  • i and j are independently integers from 1 to 200, respectively.
  • k is an integer from 0 to 200, and The relationship of 0.05 ⁇ j / (i + j + k) ⁇ 0.50 is satisfied. ⁇ Can be mentioned.
  • R 1 in the formula (5) is a single bond or a divalent organic group having 1 to 10 carbon atoms, respectively.
  • the divalent organic group having 1 to 10 carbon atoms may be linear, cyclic, or branched, and may be saturated or unsaturated.
  • Examples of the divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms include a methylene group, an ethylene group, an n-propylene group, an i-propylene group, an n-butylene group, an s-butylene group and a t-butylene group.
  • Linear or branched alkylene groups such as n-pentylene group, neopentylene group, n-hexylene group, n-heptylene group, n-octylene group, n-nonylene group, n-decylene group; cyclopropylene group, cyclobutylene group, Examples thereof include a cycloalkylene group such as a cyclopentylene group, a cyclohexylene group, a cycloheptylene group and a cyclooctylene group.
  • the divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of an ethylene group, an n-propylene group and an i-propylene group.
  • R 2 and R 3 in the formula (5) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • the monovalent organic group having 1 to 10 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, a t-butyl group, and an n-pentyl group.
  • Cycloalkyl group such as cycloheptyl group, cyclooctyl group; aromatic group such as phenyl group, tolyl group, xsilyl group, ⁇ -naphthyl group, ⁇ -naphthyl group and the like.
  • the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, and a t-butyl group.
  • Linear or branched alkyl groups such as n-pentyl group and neopentyl group; cycloalkyl groups such as cyclopropyl group, cyclobutyl group and cyclopentyl group can be mentioned.
  • the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably at least one selected from the group consisting of a methyl group, an ethyl group, and an n-propyl group.
  • R 4 and R 5 in the formula (5) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aromatic group having 6 to 10 carbon atoms.
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated.
  • monovalent organic groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group and n-pentyl.
  • Linear or branched alkyl group such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl.
  • Cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; aromatic groups such as phenyl group, trill group, xylyl group, ⁇ -naphthyl group and ⁇ -naphthyl group can be mentioned.
  • Examples of the monovalent aromatic group having 6 to 10 carbon atoms include a phenyl group, a tolyl group, a xsilyl group, an ⁇ -naphthyl group, a ⁇ -naphthyl group and the like, and may be a phenyl group, a tolyl group, or a xsilyl group. It is preferable to have.
  • R 6 and R 7 in the formula (5) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is an organic group having an unsaturated aliphatic hydrocarbon group.
  • the monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched. Examples of the monovalent organic group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, a t-butyl group and an n-pentyl group.
  • Linear or branched alkyl group such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl.
  • Cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; aromatic groups such as phenyl group, trill group, xylyl group, ⁇ -naphthyl group and ⁇ -naphthyl group can be mentioned.
  • the monovalent organic group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of a methyl group, an ethyl group, and a group phenyl.
  • the organic group having an unsaturated aliphatic hydrocarbon group may be an unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms, and may be linear, cyclic or branched.
  • Examples of the unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms include a vinyl group, an allyl group, a 1-propenyl group, a 3-butenyl group, a 2-butenyl group, a pentenyl group, a cyclopentenyl group, a hexenyl group and a cyclo. Examples thereof include a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an ethynyl group, a propynyl group, a butynyl group, a pentynyl group and a hexynyl group.
  • the unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms is preferably at least one selected from the group consisting of a vinyl group, an allyl group, and a 3-butenyl group.
  • a part or all of the hydrogen atoms of R 1 to R 7 in the formula (5) may be substituted with a substituent such as a halogen atom such as F, Cl, Br or the like, or may be unsubstituted.
  • L 1 and L 2 in the formula (5) are each independently a monovalent organic group (also referred to as an acid anhydride group) containing an acid anhydride structure, an amino group, an isocyanate group, a carboxyl group, an alkoxycarbonyl group, and the like. It is a halogenated carbonyl group, a hydroxy group, an epoxy group, or a mercapto group. Among them, as L 1 and L 2 , an amino group is preferable from the viewpoint of resin properties or film properties.
  • Examples of the monovalent organic group containing an acid anhydride structure include the following formula: ⁇ In the above formula, "*" represents a bond. ⁇ , Examples thereof include a 2,5-dioxotetrahydrofuran-3-yl group. Among these, an amino group and an acid anhydride group are preferable, and an amino group is more preferable from the viewpoint of viscosity stability of the resin composition.
  • the alkoxyl group in the alkoxycarbonyl group may be an alkoxyl group having 1 to 6 carbon atoms, for example, a methoxyl group, an ethoxyl group, an n-propoxyl group, an i-propoxyl group, an n-butoxyl group, or an i-butoxyl group. , T-butoxyl group and the like.
  • the halogen atom in the halogenated carbonyl group is preferably a halogen atom other than a fluorine atom, and more preferably a chlorine atom or an iodine atom.
  • the functional group equivalent of the silicon-containing compound represented by the formula (5) is preferably 800 or more, more preferably 1000 or more, still more preferably 1500 or more, from the viewpoint of the filterability of the resin composition.
  • the functional group equivalent is the molecular weight of the silicon-containing compound per 1 mol of the functional group (unit: g / mol).
  • the functional group equivalent can be measured by a known method.
  • the functional group equivalent of the silicon-containing compound is 800 or more, the residual stress of the polyimide film under the nitrogen atmosphere is small, which is preferable. The reason for this is considered to be that when the functional group equivalent is equal to or more than a specific value, the silicone domain increases and stress is relaxed.
  • the functional group equivalent can be measured according to existing standards and the like.
  • I in the formula (5) is an integer of 1 to 200, preferably an integer of 2 to 100, more preferably an integer of 4 to 80, and even more preferably an integer of 8 to 40.
  • j and k are independently integers of 0 to 200, preferably an integer of 0 to 50, more preferably an integer of 0 to 20, and even more preferably an integer of 0 to 50.
  • the polyimide in the resin composition has a structure derived from the formula (5) because the residual stress measured in the nitrogen atmosphere of the polyimide film is good (small).
  • the reason for measuring in a nitrogen atmosphere is that when an inorganic film such as SiO, SiN is formed on a polyimide film in the display process, it may be exposed to the nitrogen atmosphere, and the residual stress in the nitrogen atmosphere is small. This is because it is required.
  • the silicon-containing compound of the general formula (5) or (10) described above is preferably a silicon-containing diamine.
  • the silicon-containing diamine include the following formula (11): ⁇ In the formula, P 5 independently represents a divalent hydrocarbon group, which may be the same or different, and P 3 and P 4 are R 2 defined in the general formula (5) or (10). , R 3 and l represents an integer from 1 to 200. ⁇ The diamino (poly) siloxane represented by is preferable.
  • P 3 and P 4 in the general formula (11) a methyl group, an ethyl group, a propyl group, a butyl group, and phenyl group and the like.
  • the methyl group is preferable.
  • L in the general formula (11) is an integer of 1 to 200, and is an integer of 3 to 200 from the viewpoint of heat resistance of the polyimide obtained by using the silicon-containing diamine represented by the formula (11). Is preferable.
  • the preferable range of the functional group equivalent of the compound represented by the general formula (11) is the same as that of the silicon-containing compound represented by the general formula (10) described above.
  • the copolymerization ratio of the silicon-containing diamine is preferably 0.5 to 30% by mass, more preferably 1.0% by mass to 25% by mass, and further preferably 1.5 with respect to the total mass of the polyimide precursor / polyimide. It is from% by mass to 20% by mass.
  • the silicon-containing diamine is 0.5% by mass or more, the residual stress generated between the silicon-containing diamine and the support can be effectively reduced.
  • the silicon-containing diamine is 30% by mass or less, the transparency (particularly low HAZE) of the obtained polyimide film is good, which is preferable from the viewpoint of achieving high total light transmittance and high glass transition temperature.
  • the silicon-containing compound as the monomer used for the polyimide precursor / polyimide may be synthesized by using the common general technical knowledge at the time of filing, or a commercially available product may be used.
  • Commercially available products include both-terminal amine-modified methylphenyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-1660B-3 (functional group equivalent 2200), X22-9409 (functional group equivalent 670)), both-terminal acid anhydride-modified methylphenyl.
  • Silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-168-P5-B (functional group equivalent 2100)), both-ended epoxy-modified methylphenyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-2000 (functional group equivalent 620)), both ends Amino-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .: PAM-E (functional group equivalent 130), X22-161A (functional group equivalent 800), X22-161B (functional group equivalent 1500), KF8012 (functional group equivalent 2200), Toledau Made by Corning: BY16-853U (functional group equivalent 450), JNC: Silaplane FM3311 (number average molecular weight 1000)), both-ended epoxy-modified dimethyl silicone (made by Shin-Etsu Chemical Co., Ltd .: X-22-163A (functional group equivalent 1750) ), Both-ended
  • the resin composition typically contains a solvent.
  • the solvent those having good solubility of the polyimide / polyimide precursor and capable of appropriately controlling the solution viscosity of the resin composition are preferable, and the reaction solvent of the polyimide precursor can be used as the solvent of the composition.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • the like are preferable.
  • the solvent composition examples include N-methyl-2-pyrrolidone (NMP) alone, or a mixed solvent of N-methyl-2-pyrrolidone (NMP) and ⁇ -butyrolactone (GBL).
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • the resin composition of this embodiment may further contain additional components in addition to the polyimide / polyimide precursor, small molecule cyclic siloxane, and solvent. Additional components include, for example, surfactants, alkoxysilane compounds and the like.
  • the coatability of the resin composition can be improved. Specifically, it is possible to prevent the occurrence of streaks in the coating film.
  • surfactants examples include silicone-based surfactants, fluorine-based surfactants, and nonionic surfactants other than these.
  • silicone-based surfactant examples include organosiloxane polymers KF-640, 642, 643, KP341, X-70-092, X-70-093 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.); SH-28PA, SH.
  • fluorine-based surfactant examples include Megafuck F171, F173, R-08 (manufactured by Dainippon Ink and Chemicals, Inc., trade name); Florard FC4430, FC4432 (Sumitomo 3M Ltd., trade name) and the like. ..
  • nonionic surfactant other than these include polyoxyethylene uralyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether and the like.
  • silicone-based surfactants and fluorine-based surfactants are preferable from the viewpoint of coatability (streak suppression) of the resin composition, and the YI value and total light transmittance depending on the oxygen concentration during the curing step are preferable.
  • a silicone-based surfactant is preferable from the viewpoint of reducing the influence on the rate.
  • the blending amount thereof is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyimide precursor in the resin composition.
  • the resin composition is a polyimide precursor from the viewpoint of obtaining good adhesion between the support and the polyimide film in the manufacturing process. 0.01 to 20 parts by mass of the alkoxysilane compound can be contained with respect to 100 parts by mass.
  • the content of the alkoxysilane compound with respect to 100 parts by mass of the polyimide precursor is 0.01 parts by mass or more, good adhesion between the support and the polyimide film can be obtained. Further, it is preferable that the content of the alkoxysilane compound is 20 parts by mass or less from the viewpoint of storage stability of the resin composition.
  • the content of the alkoxysilane compound is preferably 0.02 to 15 parts by mass, more preferably 0.05 to 10 parts by mass, and further preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of the polyimide precursor. be.
  • alkoxysilane compound examples include 3-ureidopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, and ⁇ -aminopropyltrimethoxysilane.
  • the method for producing the resin composition in the present embodiment is not particularly limited, and for example, the following method can be used.
  • the resin composition of the present embodiment can be produced by subjecting a polycondensation component containing an acid dianhydride, a diamine, and a silicon-containing compound to a polycondensation reaction.
  • a polycondensation component containing an acid dianhydride, a diamine, and a silicon-containing compound to a polycondensation reaction.
  • the silicon-containing compound is purified before the polycondensation reaction to obtain the total amount of the cyclic silicon-containing compound. Is mentioned.
  • the resin composition may be purified to reduce the total amount of cyclic silicon-containing compounds.
  • stripping may be performed while blowing an inert gas, for example, nitrogen gas, into the silicon-containing compound in an arbitrary container.
  • the stripping temperature is preferably 200 ° C. or higher and 300 ° C. or lower, more preferably 220 ° C. or higher and 300 ° C. or lower, and further preferably 240 ° C. or higher and 300 ° C. or lower.
  • the stripping vapor pressure is preferably as low as possible, more preferably 1000 Pa or less, more preferably 300 Pa or less, still more preferably 200 Pa or less, still more preferably 133.32 Pa (1 mmHg) or less.
  • the stripping time is preferably 4 hours or more and 12 hours or less, and more preferably 6 hours or more and 10 hours or less.
  • the polyimide precursor of the present embodiment can be synthesized by subjecting a polycondensation component containing an acid dianhydride, a diamine, and a silicon-containing compound to a polycondensation reaction.
  • one of the following steps -The compound represented by the general formula (8) or the compound represented by the general formula (9) described above is subjected to a polycondensation reaction with the silicon-containing compound represented by the general formula (10) to form a polyimide.
  • a step of polycondensing reaction with other compounds to provide a resin composition containing a polyimide precursor and polyimide -The diamine or acid dianhydride described above and the silicon-containing compound represented by the general formula (10) are polycondensed to obtain a polyimide, and then other compounds are polycondensed to obtain the polyimide.
  • a method for producing a resin composition which comprises a step of providing a resin composition containing a precursor and a polyimide.
  • one of the following steps -The compound represented by the general formula (3) described above, the compound represented by the general formula (4), the silicon-containing compound represented by the general formula (5), and other compounds are weighted.
  • a silicon-containing compound represented by the general formula (5) and another compound are subjected to a polycondensation reaction to contain a polyimide precursor and a polyimide.
  • the polycondensation component comprises an acid dianhydride, a diamine, and a silicon-containing compound.
  • the polycondensation reaction is preferably carried out in a suitable solvent. Specific examples thereof include a method in which a predetermined amount of a diamine component and a silicon-containing compound are dissolved in a solvent, a predetermined amount of acid dianhydride is added to the obtained diamine solution, and the mixture is stirred.
  • the molar ratio of acid dianhydride to diamine when synthesizing the polyimide / polyimide precursor is determined from the viewpoint of increasing the molecular weight of the polyimide precursor resin and the slit coating characteristics of the resin composition.
  • Acid dianhydride: diamine 100.
  • the range is preferably 90 to 100: 110 (0.90 to 1.10 parts of diamine with respect to 1 mol of acid dianhydride), and 100: 95 to 100: 105 (with respect to 1 mol of acid dianhydride).
  • the range of diamine 0.95 to 1.05 mol parts) is more preferable.
  • the molecular weight of the polyimide / polyimide precursor is controlled by adjusting the types of acid dianhydride, diamine and silicon-containing compounds, adjusting the molar ratio of acid dianhydride and diamine, adding an end-capping agent, adjusting reaction conditions, and the like. It is possible. The closer the molar ratio of the acid dianhydride component to the diamine component is to 1: 1 and the smaller the amount of the end-capping agent used, the higher the molecular weight of the polyimide precursor can be.
  • the purity is preferably 98% by mass or more, more preferably 99% by mass or more, and further preferably 99.5% by mass or more, respectively. High purity can also be achieved by reducing the water content in the acid dianhydride component and the diamine component.
  • the acid dianhydride components as a whole and the diamine components as a whole have the above-mentioned purity, and all types to be used. It is more preferable that the acid dianhydride component and the diamine component of the above have the above-mentioned purity, respectively.
  • the solvent for the reaction is not particularly limited as long as it can dissolve the acid dianhydride component and the diamine component, and the resulting polyimide / polyimide precursor, and a high-molecular-weight polymer can be obtained.
  • a solvent include an aprotic solvent, a phenol-based solvent, an ether and a glycol-based solvent, and the like.
  • Examples of the aprotonic solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), N-methylcaprolactam, 1,3-dimethyl.
  • phenolic solvent examples include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3, Examples thereof include 4-xylenol and 3,5-xylenol.
  • ether and glycol-based solvent examples include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl. ] Ether, tetrahydrofuran, 1,4-dioxane and the like can be mentioned.
  • solvents may be used alone or in combination of two or more.
  • the boiling point of the solvent used for the synthesis of the polyimide / polyimide precursor at normal pressure is preferably 60 to 300 ° C, more preferably 140 to 280 ° C, and further preferably 170 to 270 ° C. Since the boiling point of the solvent is lower than 300 ° C., the drying step is shortened. When the boiling point of the solvent is 60 ° C. or higher, roughening of the surface of the resin film, mixing of air bubbles in the resin film, and the like are less likely to occur during the drying step, and a more uniform film can be obtained. In particular, it is preferable to use a solvent having a boiling point of 170 to 270 ° C. and / or a vapor pressure of 250 Pa or less at 20 ° C.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • One or more are preferable.
  • the water content in the solvent is preferably, for example, 3,000 mass ppm or less in order to allow the polycondensation reaction to proceed satisfactorily.
  • the content of molecules having a molecular weight of less than 1,000 is preferably less than 5% by mass. It is considered that the reason why the molecule having a molecular weight of less than 1,000 is present in the resin composition is that the water content of the solvent and the raw material (acid dianhydride, diamine) used at the time of synthesis is involved. That is, it is considered that the acid anhydride group of some acid dianhydride monomers is hydrolyzed by water to become a carboxyl group and remains in a low molecular weight state without increasing the molecular weight.
  • the water content of the solvent used for the above polycondensation reaction is small.
  • the water content of the solvent is preferably 3,000 mass ppm or less, more preferably 1,000 mass ppm or less.
  • the amount of water contained in the raw material is preferably 3,000 mass ppm or less, and more preferably 1,000 mass ppm or less.
  • the water content of the solvent is the grade of the solvent used (dehydration grade, general-purpose grade, etc.), solvent container (bin, 18L can, canister can, etc.), storage state of the solvent (presence or absence of rare gas filling, etc.), from opening to use. It is considered that the time (whether it is used immediately after opening or after a lapse of time after opening, etc.) is involved. It is considered that the replacement of rare gas in the reactor before synthesis and the presence or absence of rare gas flow during synthesis are also involved. Therefore, when synthesizing the polyimide precursor, it is recommended to use a high-purity product as a raw material, use a solvent with a low water content, and take measures to prevent water from the environment from entering the system before and during the reaction. Will be done.
  • the reaction temperature at the time of synthesizing the polyimide precursor may be preferably 0 ° C to 120 ° C, 40 ° C to 100 ° C, or 60 to 100 ° C, and the polymerization time may be set. Is preferably 1 to 100 hours, or 2 to 10 hours.
  • the polymerization time is 1 hour or more, a polyimide precursor having a uniform degree of polymerization can be obtained, and when the polymerization time is 100 hours or less, a polyimide precursor having a high degree of polymerization can be obtained.
  • the resin composition of the present embodiment may contain other additional polyimide precursors in addition to the polyimide / polyimide precursor of the present embodiment.
  • the mass ratio of the additional polyimide / polyimide precursor is relative to the total amount of the polyimide / polyimide precursor in the resin composition from the viewpoint of reducing the oxygen dependence of the YI value and the total light transmittance of the polyimide film. It is preferably 30% by mass or less, more preferably 10% by mass or less.
  • a part of the polyimide precursor in the present embodiment may be imidized (partially imidized).
  • the imidization ratio is preferably 5% or more, more preferably 8% or more, and preferably 8% or more, from the viewpoint of balancing the solubility of the polyimide precursor in the resin composition and the storage stability of the solution. It is 80% or less, more preferably 70% or less, still more preferably 50% or less. This partial imidization is obtained by heating the polyimide precursor to dehydrate and ring closure.
  • This heating can be carried out at a temperature of preferably 120 to 200 ° C., more preferably 150 to 185 ° C., still more preferably 150 to 180 ° C., preferably for 15 minutes to 20 hours, more preferably 30 minutes to 10 hours. ..
  • a part or all of the carboxylic acid is esterified by adding N, N-dimethylformamide dimethylacetal or N, N-dimethylformamide diethylacetal to the polyimide / polyimide precursor obtained by the above reaction and heating. May be used as the polyimide precursor of the present embodiment. Esterification can improve viscosity stability during storage.
  • the above-mentioned acid dianhydride component is sequentially reacted with 1 equivalent of a monovalent alcohol with respect to the acid anhydride group and a dehydration condensing agent such as thionyl chloride and dicyclohexylcarbodiimide. It can also be obtained by a method of conducting a condensation reaction with a diamine component.
  • the polyimide varnish dissolves an acid dianhydride component and a diamine component in a solvent, for example, an organic solvent, adds a co-boiling solvent such as toluene, and removes water generated during imidization to the outside of the system. By removing it, it can be produced as a polyimide solution (also referred to as polyimide varnish) containing polyimide and a solvent.
  • a solvent for example, an organic solvent
  • a co-boiling solvent such as toluene
  • the conditions at the time of reaction are not particularly limited, but for example, the reaction temperature is 0 ° C. to 180 ° C. and the reaction time is 3 to 72 hours.
  • the atmosphere is an inert atmosphere such as argon or nitrogen.
  • the synthesized polyimide / polyimide precursor solution can be used as it is as the resin composition.
  • a resin composition is prepared by adding one or more of a further solvent and an additional component to the polyimide precursor and stirring and mixing them in a temperature range of room temperature (25 ° C.) to 80 ° C. You may. This stirring and mixing can be performed by using an appropriate device such as a three-one motor (manufactured by Shinto Chemical Co., Ltd.) equipped with a stirring blade, a rotation / revolution mixer, and the like. If necessary, the resin composition may be heated to 40 ° C to 100 ° C.
  • the solvent in the synthesized polyimide precursor solution is used, for example, reprecipitation, solvent distillation, etc.
  • the polyimide / polyimide precursor may be isolated by removing it by an appropriate method. Then, in the temperature range of room temperature (25 ° C.) to 80 ° C., a desired solvent and, if necessary, additional components are added to the isolated polyimide precursor, and the mixture is stirred and mixed to prepare a resin composition. You may.
  • the resin composition is heated at, for example, 130 to 200 ° C. for, for example, 5 minutes to 2 hours to remove a part of the polyimide precursor to the extent that the polymer does not precipitate.
  • Dehydration imidization may be carried out (partial imidization).
  • the imidization rate can be controlled by controlling the heating temperature and the heating time.
  • the solution viscosity of the resin composition is preferably 500 to 100,000 mPa ⁇ s, more preferably 1,000 to 50,000 mPa ⁇ s, still more preferably 3,000 to 20,000 mPa ⁇ s from the viewpoint of slit coat performance. s. Specifically, it is preferably 500 mPa ⁇ s or more, more preferably 1,000 mPa ⁇ s or more, and further preferably 3,000 mPa ⁇ s or more in terms of preventing liquid leakage from the slit nozzle.
  • the slit nozzle is less likely to be clogged, and is preferably 100,000 mPa ⁇ s or less, more preferably 50,000 mPa ⁇ s or less, and further preferably 20,000 mPa ⁇ s or less.
  • the solution viscosity of the resin composition during the synthesis of the polyimide / polyimide precursor is higher than 200,000 mPa ⁇ s, there may be a problem that stirring during the synthesis becomes difficult. However, even if the solution becomes highly viscous during synthesis, it is possible to obtain a resin composition having a viscosity that is easy to handle by adding a solvent and stirring after the reaction is completed.
  • the solution viscosity of the resin composition in this embodiment is a value measured at 23 ° C. using an E-type viscometer (for example, VISCONICEHD, manufactured by Toki Sangyo).
  • the water content of the resin composition of the present embodiment is preferably 3,000 mass ppm or less, more preferably 2,500 mass ppm or less, still more preferably 2 from the viewpoint of viscosity stability when the resin composition is stored.
  • a polyimide film (hereinafter, also referred to as a polyimide resin film) can be provided by using the resin composition of the present embodiment.
  • the method for producing the polyimide film of the present embodiment includes a coating step of applying the resin composition of the present embodiment on the surface of the support; and a film forming step of heating the resin composition to form a polyimide resin film. Includes a peeling step of peeling the polyimide resin film from the support.
  • the resin composition of the present embodiment is coated on the surface of the support.
  • the support is not particularly limited as long as it has heat resistance to the heating temperature in the subsequent film forming step (heating step) and has good peelability in the peeling step.
  • the support include a glass substrate, for example, a non-alkali glass substrate; a silicon wafer; PET (polyethylene terephthalate), OPP (stretched polypropylene), polyethylene glycol terephthalate, polyethylene glycol naphthalate, polycarbonate, polyimide, polyamideimide, and polyetherimide.
  • Resin substrates such as polyetheretherketone, polyethersulfone, polyphenylene sulfone, and polyphenylene sulfide; metal substrates such as stainless steel, alumina, copper, and nickel can be mentioned.
  • a thin film-shaped polyimide molded body for example, a glass substrate, a silicon wafer, etc. are preferable, and when forming a thick film-shaped film-shaped or sheet-shaped polyimide molded body, for example, PET (polyethylene terephthalate) is used. ), OPP (stretched polypropylene) and the like are preferable.
  • a doctor blade knife coater As a coating method, generally, a doctor blade knife coater, an air knife coater, a roll coater, a rotary coater, a flow coater, a die coater, a bar coater, etc., a spin coat, a spray coat, a dip coat, etc. are applied; screen printing. And printing technology typified by gravure printing and the like.
  • the resin composition of the present embodiment is preferably coated with a slit coat.
  • the coating thickness should be appropriately adjusted according to the desired thickness of the resin film and the content of the polyimide precursor in the resin composition, but is preferably about 1 to 1,000 ⁇ m.
  • the temperature in the coating step may be room temperature, and the resin composition may be heated to, for example, 40 to 80 ° C. in order to reduce the viscosity and improve the workability.
  • the drying step may be performed after the coating step, or the drying step may be omitted and the process may be directly proceeded to the next film forming step (heating step).
  • the drying step is performed for the purpose of removing the organic solvent in the resin composition.
  • an appropriate device such as a hot plate, a box-type dryer, or a conveyor-type dryer can be used.
  • the temperature of the drying step is preferably 80 to 200 ° C, more preferably 100 to 150 ° C.
  • the implementation time of the drying step is preferably 1 minute to 10 hours, more preferably 3 minutes to 1 hour.
  • a coating film containing the polyimide precursor is formed on the support.
  • a film forming step (heating step) is performed.
  • the heating step is a step of removing the organic solvent contained in the coating film and advancing the imidization reaction of the polyimide precursor in the coating film to obtain a polyimide resin film.
  • This heating step can be performed using, for example, an apparatus such as an inert gas oven, a hot plate, a box-type dryer, and a conveyor-type dryer. This step may be carried out at the same time as the drying step, or both steps may be carried out sequentially.
  • the heating step may be carried out in an air atmosphere, but from the viewpoint of safety, good transparency of the obtained polyimide film, low thickness direction retardation (Rth) and low YI value, it is carried out in an inert gas atmosphere. It is preferable to do so.
  • the inert gas include nitrogen, argon and the like.
  • the heating temperature may be appropriately set depending on the type of the polyimide precursor and the type of the solvent in the resin composition, but is preferably 250 ° C to 550 ° C, more preferably 300 to 450 ° C. If the temperature is 250 ° C. or higher, imidization proceeds satisfactorily, and if the temperature is 550 ° C. or lower, inconveniences such as deterioration of transparency and heat resistance of the obtained polyimide film can be avoided.
  • the heating time is preferably about 0.1 to 10 hours.
  • the oxygen concentration in the ambient atmosphere in the heating step is preferably 2,000 mass ppm or less, more preferably 100 mass ppm or less, still more preferably 100 mass ppm or less, from the viewpoint of the transparency and YI value of the obtained polyimide film. Is 10 mass ppm or less.
  • the YI value of the obtained polyimide film can be reduced to 30 or less.
  • the peeling step the polyimide resin film on the support is cooled to, for example, room temperature (25 ° C.) to about 50 ° C. and then peeled off.
  • Examples of the peeling step include the following aspects (1) to (4).
  • the interface between the support and the polyimide resin film is ablated by irradiating a laser from the support side of the structure.
  • a method of peeling off the polyimide resin examples include a solid (YAG) laser and a gas (UV excimer) laser. It is preferable to use a spectrum having a wavelength of 308 nm or the like (see Japanese Patent Publication No. 2007-512568, Japanese Patent Publication No. 2012-511173, etc.).
  • release layer A method in which a release layer is formed on a support before the resin composition is applied to the support, and then a structure including a polyimide resin film / release layer / support is obtained and the polyimide resin film is peeled off. ..
  • the release layer include parylene (registered trademark, manufactured by Japan Parylene LLC) and tungsten oxide; a release agent such as vegetable oil-based, silicone-based, fluorine-based, and alkyd-based may be used (Japanese Patent Laid-Open No. 2010-067957). No., Japanese Patent Application Laid-Open No. 2013-179306, etc.).
  • This method (2) and the laser irradiation of the method (1) may be used in combination.
  • a method of obtaining a polyimide resin film by using an etchable metal substrate as a support, obtaining a structure including a polyimide resin film / support, and then etching the metal with an etchant for example, copper (specifically, electrolytic copper foil "DFF" manufactured by Mitsui Mining & Smelting Co., Ltd.), aluminum and the like can be used.
  • the etchant ferric chloride or the like can be used for copper, and dilute hydrochloric acid or the like can be used for aluminum.
  • the method (1) or (2) is preferable from the viewpoint of the difference in refractive index between the front and back surfaces of the obtained polyimide resin film, the YI value and the elongation. From the viewpoint of the difference in refractive index between the front and back of the obtained polyimide resin film, it is more preferable to perform the method (1), that is, the irradiation step of irradiating the laser from the support side prior to the peeling step.
  • the YI value of the obtained polyimide resin film tends to be large and the elongation tends to be small. This is considered to be the effect of copper ions.
  • the thickness of the obtained polyimide film is not limited, but is preferably 1 to 200 ⁇ m, and more preferably 5 to 100 ⁇ m.
  • the polyimide film obtained from the resin composition of the present embodiment can be used as, for example, a semiconductor insulating film, a thin film transistor liquid crystal display (TFT-LCD) insulating film, an electrode protective film, a liquid crystal display, an organic electroluminescence display, a field emission display, or the like. It can be applied as a transparent substrate of a display device such as electronic paper.
  • the polyimide film obtained from the resin composition of the present embodiment is suitable as a substrate for a thin film transistor (TFT) substrate, a color filter substrate, a touch panel substrate, and a transparent conductive film (ITO, Indium Thin Oxide) in the manufacture of a flexible device. Can be used.
  • Examples of the flexible device to which the polyimide film in this embodiment can be applied include a TFT device for a flexible display, a flexible solar cell, a flexible touch panel, a flexible lighting, a flexible battery, a flexible printed substrate, a flexible color filter, a surface cover lens for a smartphone, and the like. Can be mentioned.
  • the step of forming a TFT on a flexible substrate using a polyimide film is typically carried out at a temperature in a wide range of 150 to 650 ° C.
  • a process temperature of 250 ° C to 350 ° C is generally required, and the polyimide film of the present embodiment needs to be able to withstand that temperature.
  • a process temperature of 320 ° C to 400 ° C is generally required, and the polyimide film of the present embodiment must be able to withstand that temperature. Therefore, it is necessary to appropriately select a polymer structure having a glass transition temperature equal to or higher than the maximum temperature of the TFT fabrication process and a thermal decomposition start temperature.
  • LTPS low temperature polysilicon
  • a process temperature of 380 ° C to 520 ° C is generally required, and the polyimide film of the present embodiment needs to be able to withstand that temperature. It is necessary to appropriately select the glass transition temperature and the thermal decomposition start temperature above the maximum temperature of the TFT fabrication process.
  • the optical properties of the polyimide film tend to decrease as they are exposed to high temperature processes.
  • the polyimide obtained from the polyimide precursor of the present embodiment has good optical properties even after undergoing thermal history.
  • the method for manufacturing the display of the present embodiment includes a coating step of applying the resin composition of the present embodiment on the surface of the support; and a film forming step of heating the resin composition to form a polyimide resin film. It includes an element forming step of forming an element on the polyimide resin film; and a peeling step of peeling the polyimide resin film on which the element is formed from the support.
  • FIG. 1 is a schematic view showing a structure above a polyimide substrate of a top emission type flexible organic EL display as an example of the display of the present embodiment.
  • the organic EL structure portion 25 of FIG. 1 will be described.
  • an organic EL element 250a that emits red light, an organic EL element 250b that emits green light, and an organic EL element 250c that emits blue light are arranged in a matrix as one unit, and are arranged in a matrix.
  • the light emitting region of each organic EL element is defined by 251.
  • Each organic EL element is composed of a lower electrode (anode) 252, a hole transport layer 253, a light emitting layer 254, and an upper electrode (cathode) 255.
  • an interlayer insulating film 258 provided with contact holes 257, and a plurality of lower electrodes 259 are provided.
  • the organic EL element is enclosed by a sealing substrate 2b, and a hollow portion 261 is formed between each organic EL element and the sealing substrate 2b.
  • the manufacturing process of the flexible organic EL display consists of manufacturing a polyimide film on a glass substrate support and manufacturing the organic EL substrate shown in FIG. 1 on the polyimide film, and manufacturing a sealed substrate.
  • the assembly step of bonding and the peeling step of peeling the organic EL display produced on the polyimide film from the glass substrate support are included.
  • a well-known manufacturing process can be applied to the organic EL substrate manufacturing process, the sealed substrate manufacturing process, and the assembling process. The following is an example, but the present invention is not limited to this.
  • the peeling step is the same as the peeling step of the polyimide film described above.
  • a polyimide film is formed on a glass substrate support by the above method, and a multilayer layer of silicon nitride (SiN) and silicon oxide (SiO) is formed on the polyimide film by a CVD method or a sputtering method.
  • a multi-barrier layer having a structure (lower substrate 2a in FIG. 1) is manufactured, and a metal wiring layer for driving a TFT is manufactured on the upper portion by using a photoresist or the like.
  • An active buffer layer such as SiO is formed on the upper portion by a CVD method, and a TFT device (TFT256 in FIG.
  • IGZO metal oxide semiconductor
  • LTPS low-temperature polysilicon
  • the hole transport layer 253 and the light emitting layer 254 are formed in each space partitioned by the partition wall.
  • the upper electrode (cathode) 255 is formed so as to cover the light emitting layer 254 and the partition wall (bank) 251.
  • an organic EL substrate is manufactured.
  • the organic EL substrate is sealed with a sealing film or the like (sealed substrate 2b in FIG. 1), and the device above the polyimide substrate is peeled from the glass substrate support by a known peeling method such as laser peeling to obtain a top.
  • Emission type flexible organic EL display can be manufactured.
  • a see-through type flexible organic EL display can be manufactured.
  • a bottom emission type flexible organic EL display may be manufactured by a known method.
  • a flexible liquid crystal display can be manufactured using the polyimide film of the present embodiment.
  • a polyimide film is produced on a glass substrate support by the above method, and the above method is used, for example, composed of amorphous silicon, a metal oxide semiconductor (IGZO, etc.), and low-temperature polysilicon.
  • a TFT substrate is manufactured.
  • a polyimide film is produced on a glass substrate support according to the coating step and the film forming step of the present embodiment, and a color resist or the like is used according to a known method to provide a color filter glass substrate (CF substrate) with the polyimide film. ) Is prepared.
  • a sealing material made of thermosetting epoxy resin or the like is applied to one of the TFT substrate and the CF substrate by screen printing to a frame-shaped pattern lacking the liquid crystal injection port portion, and the other substrate corresponds to the thickness of the liquid crystal layer.
  • a spherical spacer made of plastic or silica is sprayed.
  • a flexible liquid crystal display can be manufactured by peeling the glass substrate on the CF side and the glass substrate on the TFT side at the interface between the polyimide film and the glass substrate by a laser peeling method or the like.
  • the method for producing the laminate of the present embodiment includes a coating step of applying the resin composition of the present embodiment on the surface of the support; and a film forming step of heating the resin composition to form a polyimide resin film. Includes an element forming step of forming an element on the polyimide resin film.
  • the element in the laminated body examples include those exemplified in the manufacture of the above-mentioned flexible device.
  • the support for example, a glass substrate can be used.
  • the preferred specific procedure of the coating step and the film forming step is the same as that described with respect to the above-mentioned method for producing a polyimide film.
  • the above-mentioned element is formed on the polyimide resin film as a flexible substrate formed on the support. Then, optionally, the polyimide resin film and the element may be peeled from the support in the peeling step.
  • the calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (manufactured by Toso Co., Ltd.). Column: Shodex KD-806M (manufactured by Showa Denko KK) Flow rate: 1.0 mL / min Column temperature: 40 ° C Pump: PU-2080Plus (manufactured by JASCO) Detector: RI-2031Plus (RI: differential refractometer, manufactured by JASCO) and UV-2075Plus (UV-VIS: ultraviolet-visible absorptiometer, manufactured by JASCO)
  • Viscosity stability was evaluated according to the following criteria.
  • C Viscosity stability 6% / day more than 10% / day or less "OK”
  • D Viscosity stability 8% / day over "OK”
  • a 6-inch silicon wafer substrate having an aluminum-deposited layer on its surface was used as a support, and the resin compositions prepared in Examples and Comparative Examples were placed on the surface of the aluminum-deposited layer, and the thickness of the polyimide resin film was 10 ⁇ m.
  • a coating film was formed by spin coating so as to be. After prebaking this coating film at 100 ° C. for 6 minutes, a vertical curing furnace (manufactured by Koyo Thermo System Co., Ltd., model name "VF-2000B") in which the oxygen concentration in the refrigerator was adjusted to 10 mass ppm or less was used. It was heated at 400 ° C.
  • a dicing saw manufactured by Disco Co., Ltd., product name "DAD 3350" was used to make a 3 mm wide cut in the obtained polyimide film, and then the wafer with the polyimide film was immersed in a dilute hydrochloric acid aqueous solution overnight. , The polyimide film piece was peeled off and dried to obtain a polyimide piece having a width of 3 mm. This was cut into a length of 50 mm to obtain a polyimide measurement sample having a width of 3 mm and a length of 50 mm.
  • the ratio of the silicon group-containing compound can be determined by the following method using a varnish. An appropriate amount of water is added to the varnish, and the mixture is heat-treated at 80 ° C. for 3 days to depolymerize the depolymerization component into the acid component and the amine component to obtain an acid monomer and an amine monomer. Then, the solvent is distilled off to obtain a powder in which an acid monomer and an amine monomer are mixed, an acetonitrile solution is prepared, and high performance liquid chromatography mass spectrometry (LC / MS) measurement is performed. Then, the peak area of each monomer can be obtained and calculated from the peak area ratio.
  • LC / MS high performance liquid chromatography mass spectrometry
  • Example I-1 Total number of moles of diamine monomer in the imidization step (including the silicon-containing compound in which L 1 and L 2 of the general formula (10) are amino groups): 93.6 mmol Total number of moles of diamine monomer in the amidation step (including the silicon-containing compound in which L 1 and L 2 of the general formula (10) are amino groups): 111.9 mmol
  • the imidization rate is 83.7%.
  • Imidization rate (%) Total number of moles of acid dianhydride monomer in the imidization step (where L 1 and L 2 in the general formula (10) include the silicon-containing compound of the acid anhydride group) / ⁇ acid anhydride monomer in the imidization step (general formula (general formula (1) 10) L 1 and L 2 are the total number of moles of the silicon-containing compound of the acid anhydride group) + the acid dianhydride monomer in the amidation step (L 1 and L 2 of the general formula (10) are the acid anhydride groups Total number of moles of (including silicon-containing compounds) ⁇ * 100
  • the imidization rate can be determined by the following method using a varnish. An appropriate amount of water is added to the varnish, and the mixture is heat-treated at 80 ° C. for 3 days to depolymerize the depolymerization component into the acid component and the amine component to obtain an acid monomer and an amine monomer. Then, the solvent is distilled off to obtain a powder in which an acid monomer and an amine monomer are mixed, an acetonitrile solution is prepared, and high performance liquid chromatography mass spectrometry (LC / MS) measurement is performed. Then, the peak area of each monomer can be obtained and calculated from the peak area ratio.
  • LC / MS high performance liquid chromatography mass spectrometry
  • the imidization rate can also be measured using an IR (infrared spectrophotometer).
  • the varnish was reprecipitated with an aqueous solvent, the powder was separated and dried, and KBr was added to make pellets, which were used as a sample. Then, by measuring the infrared absorption spectrum of the resin layer at one time reflection ATR method, with respect to the benzene ring carbon hydrogen bonds 1009Cm -1, can be calculated from the absorbance from the imide groups of 1778cm -1.
  • the imidization ratio of the polyimide film after heat-treating the varnish at 400 ° C. for 1 hour was set to 100%.
  • A: Silicon-containing compound ratio (% by mass) in diamine of imide unit silicon-containing compound used in imidization step / total mass of diamine monomer (including silicon-containing compound) used in imidization step * 100
  • B: Silicon-containing compound ratio (% by mass) in diamine of the amide unit total mass of silicon-containing compound used in the imidization step / diamine monomer (including silicon-containing compound) used in the amidation step * 100
  • A is "among the general formula in (7) of the diamine constituting the P 5, the ratio (mass%) of the general formula (10)" and can turn also.
  • B can be rephrased as "the ratio (mass%) of the general formula (10) to the diamines constituting P 3 in the general formula (6)". Then, the ratio of the silicon-containing compound in the diamine The difference between the imide unit and the amide unit is expressed as "BA".
  • Table 5 shows the values of BA of Examples I-14, I-16, I-17 and Comparative Examples I-4 to I-6, their varnishes, and the characteristics of the polyimide film.
  • Example I-1 As shown in Tables 1 and 2, NMP (189 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (73.0 mmol, 11.1 g) and silicon-containing compound (2) (6.699 mmol, 10.72 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. rice field. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • DABA 73.0 mmol, 11.1 g
  • silicon-containing compound (2) 6.699 mmol, 10.72 g
  • Example I-2 As shown in Tables 1 and 2, NMP (191 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (13.6 g) and the silicon-containing compound (1) (10.82 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-3 As shown in Tables 1 and 2, NMP (191 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (7.3 g) and the silicon-containing compound (3) (10.85 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-4 As shown in Tables 1 and 2, NMP (191 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (8.7 g) and the silicon-containing compound (4) (10.85 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-5 As shown in Tables 1 and 2, NMP (186 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (14.9 g) was added with stirring, and then CpODA (32.8 g) and a silicon-containing compound (5) (10.51 g) were added as acid dianhydride at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-6 >> As shown in Tables 1 and 2, NMP (184 g), toluene (18 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (12.9 g) and the silicon-containing compound (1) (10.44 g) were added with stirring, and then CpODA (28.8 g) and ODPA (7.8 g) were added as acid dianhydrides at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-7 As shown in Tables 1 and 2, NMP (194 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (11.1 g) and the silicon-containing compound (2) (11.02 g) were added with stirring, and then CpODA (28.8 g) and 6FDA (11.1 g) were added as acid dianhydrides at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-8 As shown in Tables 1 and 2, NMP (197 g), toluene (20 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (8.6 g) and the silicon-containing compound (1) (11.19 g) were added with stirring, and then CpODA (28.8 g) and BPAF (11.5 g) were added as acid dianhydrides at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-9 >> As shown in Tables 1 and 2, NMP (193 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (7.2 g) and the silicon-containing compound (1) (10.92 g) were added with stirring, and then CpODA (28.8 g) and BzDA (10.1 g) were added as acid dianhydrides at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-10 As shown in Tables 1 and 2, NMP (170 g), toluene (17 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (13.3 g) and the silicon-containing compound (2) (9.62 g) were added with stirring, and then CpODA (28.8 g) and BNBDF (4.1 g) were added as acid dianhydrides at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-11 >> As shown in Tables 1 and 2, NMP (204 g), toluene (20 g), and diamine as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (10.3 g), BAFL (5.9 g) and silicon-containing compound (1) (11.57 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-12 As shown in Tables 1 and 2, NMP (202 g), toluene (20 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (5.5 g), BisAM (3.1 g) and silicon-containing compound (2) (11.42 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-13 >> As shown in Tables 1 and 2, NMP (218 g), toluene (22 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (5.9 g), BAFL (9.4 g) and silicon-containing compound (1) (12.35 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature to obtain an NMP solution of a polyimide resin (functional group other than silicon-containing compound: imide group, functional group of silicon-containing compound: imide group). The obtained varnish was stored in a freezer (setting -20 ° C, the same applies hereinafter), and was thawed and used for evaluation.
  • a polyimide resin functional group other than silicon-containing compound: imide group, functional group of silicon-containing compound: imide group
  • Comparative Examples I-2 and I-3 >> In Comparative Example I-1, the same procedure was used for Comparative Example I-1 except that the types and amounts of the solvent, acid dianhydride, and diamine were changed to those shown in Tables 1 and 2.
  • Example I-14 As shown in Tables 3 and 4, NMP (177 g), toluene (18 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. As a silicon-containing compound (2) (4.12 g), 33 DAS (8.5 g), 44 DAS (12.8 g) was added with stirring, and then ODPA (31.0 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-15 As shown in Tables 3 and 4, NMP (170 g), toluene (17 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top.
  • Example I-16 As shown in Tables 3 and 4, NMP (204 g), toluene (20 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top.
  • the silicon-containing compound (2) (16.36 g) and DABA (12.0 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-17 As shown in Tables 3 and 4, NMP (259 g), toluene (26 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top.
  • the silicon-containing compound (1) (15.54 g) and BAFL (29.1 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example I-18 As shown in Tables 3 and 4, NMP (232 g), toluene (23 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. As a silicon-containing compound (1) (7.73 g), 33 DAS (8.5 g), 44 DAS (12.8 g) was added with stirring, and then BPAF (45.8 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • BPAF 45.8 g
  • Example I-19 As shown in Tables 3 and 4, NMP (235 g), toluene (24 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top.
  • the silicon-containing compound (1) (7.84 g) and 6FODA (28.9 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • the temperature was raised to 80 ° C., 11.30 g (13.78 mmol) of the silicon-containing compound KF-8010 (manufactured by Shin-Etsu Chemical Co., Ltd., both ends: amino group, functional group equal amount 430) was added, and the mixture was further stirred for 0.5 hour. After that, the temperature was raised to 170 ° C. and heated for 4 hours.
  • the by-produced water was azeotropically boiled with toluene and dehydrated under reflux using a condenser with a ball equipped with a water separation trap. After draining the by-product water, reflux was stopped and all toluene was drained.
  • Comparative Example I-6 A 500 mL five-necked round-bottom flask with a stainless half-moon agitator, a nitrogen inlet tube, a Dean Stark with a condenser, a thermometer, and a glass end cap, as described in Tables 3 and 4. 27.0 g (0.0802 mol) of 6FODA and 56.000 g of NMP were added, and the mixture was stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
  • DABA 3,5-diaminobenzoic acid 3,3'-diaminodiphenyl sulfone (33DAS) 4,4'-Diaminodiphenyl sulfone (44DAS)
  • BAFL 9,9-bis (4-aminophenyl) fluorene
  • BisAM a compound of the following general formula TFMB: Diaminobis (trifluoromethyl) biphenyl
  • BAPP Compound of the following general formula mBAPS: Bis [4- (3-aminophenoxy) phenyl] Sulfone
  • APB 1,3-Bis (3-aminophenoxy) benzene
  • Silicon-containing compound (1) (In the general formula (10), L 1 and L 2 are amino groups (-NH 2 ), R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ), and R 2 ,. A compound in which R 3 is a methyl group, j and k are 0, and a functional group equivalent is 1500).
  • Silicon-containing compound (3) (In the general formula (10), L 1 and L 2 are amino groups (-NH 2 ), R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ), and R 2 ,. A compound in which R 3 is a methyl group, j and k are 0, and a functional group equivalent is 2200). Silicon-containing compound (4): In the general formula (10), L 1 and L 2 are amino groups, R 1 is ⁇ CH 2 CH 2 CH 2 ⁇ , and R 2 , R 3 , R 6 and R 7 are methyl.
  • R 1 is a trimethylene group (-CH 2 CH 2 CH 2- )
  • R 2 and R 3 are methyl groups, and j and k are 0.
  • the calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (manufactured by Toso Co., Ltd.). Column: Shodex KD-806M (manufactured by Showa Denko KK) Flow rate: 1.0 mL / min Column temperature: 40 ° C Pump: PU-2080Plus (manufactured by JASCO) Detector: RI-2031Plus (RI: differential refractometer, manufactured by JASCO) and UV-2075Plus (UV-VIS: ultraviolet-visible absorptiometer, manufactured by JASCO)
  • Viscosity stability was evaluated according to the following criteria.
  • C Viscosity stability 3% / day over 5% / day or less "OK”
  • D Viscosity stability 5% / day over "OK”
  • a 6-inch silicon wafer substrate having an aluminum-deposited layer on its surface was used as a support, and the resin compositions prepared in Examples and Comparative Examples were placed on the surface of the aluminum-deposited layer, and the thickness of the polyimide resin film was 10 ⁇ m.
  • a coating film was formed by spin coating so as to be. After prebaking this coating film at 100 ° C. for 6 minutes, a vertical curing furnace (manufactured by Koyo Thermo System Co., Ltd., model name "VF-2000B") in which the oxygen concentration in the refrigerator was adjusted to 10 mass ppm or less was used. It was heated at 400 ° C.
  • a dicing saw manufactured by Disco Co., Ltd., product name "DAD 3350" was used to make a 3 mm wide cut in the obtained polyimide film, and then the wafer with the polyimide film was immersed in a dilute hydrochloric acid aqueous solution overnight. , The polyimide film piece was peeled off and dried to obtain a polyimide piece having a width of 3 mm. This was cut into a length of 50 mm to obtain a polyimide measurement sample having a width of 3 mm and a length of 50 mm.
  • Example II-1 As shown in Tables 6 and 7, NMP (191 g) as a solvent, DABA (14.4 g) as a diamine, and a silicon-containing compound (1) (1) while introducing nitrogen gas into a 3 L separable flask with a stirring rod. 10.82 g) was added with stirring, followed by CpODA (38.4 g) as acid dianhydride. The molar ratio of acid dianhydride and diamine was 100: 98. The mixture was stirred at room temperature for 48 hours to obtain an NMP solution (hereinafter, also referred to as varnish) of a transparent polyimide precursor (functional group other than silicon-containing compound: amide group, functional group of silicon-containing compound: amide group). The obtained varnish was stored in a freezer (setting -20 ° C, the same applies hereinafter), and was thawed and used for evaluation.
  • NMP (191 g) as a solvent, DABA (14.4 g) as a diamine, and a silicon-containing compound (1) (1) while
  • Example II-2 As shown in Tables 6 and 7, NMP (191 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (14.4 g) and the silicon-containing compound (1) (10.82 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example II-3 While introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top, as shown in any of Tables 6 to 9, NMP (189 g) and toluene (19 g) were used as solvents. ), DABA (13.9 g) as a diamine was added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization.
  • Example II-16 As shown in Tables 8 and 9, NMP (177 g), toluene (18 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. 33 DAS (8.5 g) and 44 DAS (12.8 g) were added with stirring, and then ODPA (31.0 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene.
  • Example II-17 As shown in Tables 8 and 9, NMP (173 g), toluene (17 g), as solvents, while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dane Stark tube and a reflux tube at the top. DABA (13.0 g) was added as a diamine with stirring, followed by CpODA (38.4 g) as an acid dianhydride at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene.
  • Comparative Example II-4 A 500 mL five-necked round-bottom flask with a stainless half-moon agitator, a nitrogen inlet tube, a Dean Stark with a condenser, a thermometer, and a glass end cap, as described in Tables 8 and 9. 27.0 g (0.0802 mol) of 6FODA and 56.000 g of NMP were added, and the mixture was stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
  • Example II-3 the same procedure was used for Example II-3, except that the types and amounts of the solvent, acid dianhydride, diamine, and silicon-containing compound were changed to those shown in Tables 6 and 7. ..
  • Example II-2 the same procedure was used for Example II-2, except that the types and amounts of the solvent, acid dianhydride, diamine, and silicon-containing compound were changed to those shown in Tables 6 and 7. ..
  • DABA 3,5-diaminobenzoic acid
  • BAFL 9,9-bis (4-aminophenyl) fluorene
  • BisAM a compound of the following general formula
  • TFMB Diaminobis (trifluoromethyl) biphenyl
  • BAPP Compound of the following general formula 33DAS: 3,3'-diaminodiphenyl sulfone 44DAS: 3,3'-diaminodiphenyl sulfone 6FODA: 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether
  • Silicon-containing compound (1) (in the general formulas (5) and (10), L 1 and L 2 are amino groups (-NH 2 ) and R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ). , R 2 and R 3 are methyl groups, j and k are 0, and the functional group equivalent is 1500). Silicon-containing compound (2): (In the general formulas (5) and (10), L 1 and L 2 are amino groups (-NH 2 ), and R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ). , R 2 and R 3 are methyl groups, j and k are 0, and the functional group equivalent is 800).
  • Silicon-containing compound (3) (in the general formulas (5) and (10), L 1 and L 2 are amino groups (-NH 2 ) and R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ). , R 2 and R 3 are methyl groups, j and k are 0, and the functional group equivalent is 2200).

Abstract

Provided is a resin composition that includes a polyimide precursor and/or a polyimide resin and that satisfies (A) or (B) below: (A) A polyimide structural unit includes a divalent organic group P5 and a tetravalent organic group P6, P5 or P6 includes a structural unit derived from a silicon-containing compound represented by formula (10), and the resin composition contains 25 mass% or less of silicon-containing compounds in terms of the total mass of resin; (B) a resin structural unit includes a divalent organic group P1 and a tetravalent organic group P2, P1 includes a structural unit derived from a compound represented by formula (3), and P1 or P2 includes a structural unit derived from a silicon-containing compound represented by formula (5). [In the formulas, each symbol is as defined in the specification.]

Description

樹脂組成物Resin composition
 本発明は、ポリイミド前駆体/ポリイミド含有樹脂組成物及びポリイミドフィルムに関する。本発明はさらに、ポリイミド前駆体/ポリイミド含有樹脂組成物の製造方法、並びにポリイミドフィルム、ディスプレイ、積層体及びフレキシブルデバイスの製造方法にも関する。 The present invention relates to a polyimide precursor / polyimide-containing resin composition and a polyimide film. The present invention further relates to a method for producing a polyimide precursor / polyimide-containing resin composition, and a method for producing a polyimide film, a display, a laminate, and a flexible device.
 ポリイミド樹脂は、不溶、不融の超耐熱性樹脂であり、耐熱酸化性、耐熱特性、耐放射線性、耐低温性、耐薬品性等に優れた特性を有している。このため、ポリイミド樹脂は、電子材料を含む広範囲な分野で用いられている。電子材料分野におけるポリイミド樹脂の適用例としては、例えば絶縁コーティング材、絶縁膜、半導体、薄膜トランジスタ液晶ディスプレイ(TFT-LCD)の電極保護膜等を挙げることができる。最近は、ポリイミドフィルムの軽さ、柔軟性などを利用して、ディスプレイ材料の分野において従来使用されていたガラス基板に代わり、フレキシブル基板としても採用が検討されている。 The polyimide resin is an insoluble and infusible super heat resistant resin, and has excellent properties such as heat oxidation resistance, heat resistance, radiation resistance, low temperature resistance, and chemical resistance. Therefore, polyimide resins are used in a wide range of fields including electronic materials. Examples of applications of polyimide resins in the field of electronic materials include insulating coating materials, insulating films, semiconductors, electrode protective films for thin film transistor liquid crystal displays (TFT-LCD), and the like. Recently, taking advantage of the lightness and flexibility of the polyimide film, adoption as a flexible substrate is being considered in place of the glass substrate conventionally used in the field of display materials.
 特許文献1には、モノマーとして、3,5-ジアミノベンズアミド(以下、DABAともいう)と、下記構造式:
Figure JPOXMLDOC01-appb-C000062
の化合物(以下、CpODAともいう)と、その他の化合物とを用いて、ポリイミドを合成し、得られたポリイミドワニスに架橋剤を添加し、塗布、乾燥して得られるポリイミドフィルムが記載されている。また、特許文献1には、このフィルムは、ガス分離性能が優れることも記載されている。特許文献2には、ジアミンとしてDABA、TFMB(2,2’-ビス(トリフルオロメチル)ベンジジン)などを、酸二無水物としてCpODAを用いたポリイミドワニスを塗布、乾燥して得られる透明ポリイミドフィルムが記載されている。
Patent Document 1 describes, as a monomer, 3,5-diaminobenzamide (hereinafter, also referred to as DABA) and the following structural formula:
Figure JPOXMLDOC01-appb-C000062
A polyimide film obtained by synthesizing a polyimide using the above compound (hereinafter, also referred to as CpODA) and another compound, adding a cross-linking agent to the obtained polyimide varnish, applying the mixture, and drying the film is described. .. Further, Patent Document 1 also describes that this film has excellent gas separation performance. Patent Document 2 is a transparent polyimide film obtained by applying and drying a polyimide varnish using DABA, TFMB (2,2'-bis (trifluoromethyl) benzidine) as a diamine and CpODA as an acid dianhydride. Is described.
特許第6551640号公報Japanese Patent No. 651640 国際公開第2019/211972号International Publication No. 2019/211972
 特許文献1に記載のポリイミドフィルムは、その用途がガス分離膜であり、光学材料として検討が為されていない。 The polyimide film described in Patent Document 1 is used as a gas separation membrane and has not been studied as an optical material.
 また、本発明者らは、DABA、TFMBとCpODA、ケイ素含有化合物などをモノマーとして用いて、上記特許文献2に記載されたものと同様にポリイミドワニスを合成したところ、ワニス製造プロセスで求められるワニスのろ過性が不十分であり、そのポリイミドワニスを塗布、加熱して得られるポリイミドフィルムは、ディスプレイ用途に求められる特性(引張伸度等)が不十分であることを見出した。他方、本発明者らは、DABA、3,3’-ジアミノジフェニルスルホン(33DAS)、4,4’-ジアミノジフェニルスルホン(44DAS)、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)等のジアミンと、CpODA、4,4’-オキシジフタル酸無水物(ODPA)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)等の酸二無水物と、その他のケイ素含有化合物などをモノマーとして用いて得られたポリイミドは、ディスプレイ用途に求められる特性が優れることを見出した。 Further, the present inventors synthesized a polyimide varnish in the same manner as described in Patent Document 2 using DABA, TFMB and CpODA, a silicon-containing compound, etc. as a monomer, and found that the varnish required in the varnish manufacturing process. It was found that the polyimide film obtained by applying and heating the polyimide varnish has insufficient properties (tensile elongation, etc.) required for display applications. On the other hand, the present inventors have DABA, 3,3'-diaminodiphenyl sulfone (33DAS), 4,4'-diaminodiphenyl sulfone (44DAS), 9,9-bis (4-aminophenyl) fluorene (BAFL) and the like. Diamine, acid dianhydrides such as CpODA, 4,4'-oxydiphthalic anhydride (ODPA), 9,9-bis (3,4-dicarboxyphenyl) fluorene diacid anhydride (BPAF), and others. It has been found that the polyimide obtained by using the silicon-containing compound of the above as a monomer has excellent properties required for display applications.
 したがって、本発明は、上記の事情に鑑みて為されたものであり、ポリイミド前駆体及び/又はポリイミド含有樹脂組成物の製造プロセスに求められる特性、及びディスプレイ用途に求められるその他の特性の双方に優れるポリイミドフィルム、及びこれを形成するための樹脂組成物を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and has both the characteristics required for the manufacturing process of the polyimide precursor and / or the polyimide-containing resin composition and other characteristics required for display applications. It is an object of the present invention to provide an excellent polyimide film and a resin composition for forming the same.
 上記課題は、以下の技術的手段により解決されることができる。 The above problem can be solved by the following technical means.
〔第一の態様〕
<1>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000063
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
Figure JPOXMLDOC01-appb-C000064
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000065
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含み、かつ
 前記樹脂の総質量を基準に前記ケイ素含有化合物を25質量%以下含む、
樹脂組成物。
<2>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000066
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
Figure JPOXMLDOC01-appb-C000067
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000068
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含み、かつ
 前記樹脂のイミド化率が50%以上である、
樹脂組成物。
<3>
 前記樹脂のイミド化率が50%以上である、項目1に記載の樹脂組成物。
<4>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000069
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
Figure JPOXMLDOC01-appb-C000070
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000071
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含み、かつ
 下記(ア)又は(イ):
  (ア)前記P及び/又はPは、下記一般式(8):
Figure JPOXMLDOC01-appb-C000072
で表される化合物に由来する構成単位を含む;又は
  (イ)前記P及び/又はPは、下記一般式(9):
Figure JPOXMLDOC01-appb-C000073
で表される化合物に由来する構成単位を含む;
のいずれかを満たす、樹脂組成物。
<5>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000074
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
Figure JPOXMLDOC01-appb-C000075
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000076
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含み、かつ
 前記P及び/又はPが、それぞれ独立に、
3,3’-ジアミノジフェニルスルホン(33DAS)、
4,4’-ジアミノジフェニルスルホン(44DAS)、又は
9,9-ビス(4-アミノフェニル)フルオレン(BAFL)
の各化合物に由来する構成単位を少なくとも一つ含む、樹脂組成物。
<6>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000077
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
Figure JPOXMLDOC01-appb-C000078
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000079
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含み、かつ
 前記P及び/又はPが、それぞれ独立に、
2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)
に由来する構成単位を少なくとも一つ含む、樹脂組成物。
<7>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000080
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
Figure JPOXMLDOC01-appb-C000081
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000082
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含み、かつ
A(質量%):一般式(7)におけるPを構成するジアミンのうち、一般式(10)の割合
B(質量%):一般式(6)におけるPを構成するジアミンのうち、一般式(10)の割合
としたとき、B-Aが、0より大きく、60未満である、
樹脂組成物。
<8>
 前記ジアミンが、
下記一般式(8):
Figure JPOXMLDOC01-appb-C000083
で表される化合物、
3,3’-ジアミノジフェニルスルホン(33DAS)、
4,4’-ジアミノジフェニルスルホン(44DAS)、及び
9,9-ビス(4-アミノフェニル)フルオレン(BAFL)
から選択される少なくとも一つの化合物である、項目7に記載の樹脂組成物。
<9>
 前記一般式(6)及び/又は前記一般式(7)において、P及び/又はPが、それぞれ独立に、4,4’-オキシジフタル酸無水物(ODPA)、又は9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)の各化合物に由来する構成単位を少なくとも一つ含む、請求項1~8のいずれか1項に記載の樹脂組成物。
<10>
 前記一般式(10)で表されるケイ素含有化合物の官能基当量が800以上である、項目1~9のいずれか一項に記載の樹脂組成物。
<11>
 前記Pが、前記一般式(10)で表される化合物に由来する構成単位を含み、かつ
 前記一般式(10)において前記L及びLが、それぞれ独立に、アミノ基である、
項目1~10のいずれか一項に記載の樹脂組成物。
<12>
 前記一般式(8)で表される化合物が、全ジアミン(前記一般式(10)で表される化合物を除く)を100mol%としたとき、50mol%より多い、項目4及び9~11のいずれか一項に記載の樹脂組成物。
<13>
 前記P又はPが、それぞれ独立に、下記式:
Figure JPOXMLDOC01-appb-C000084
で表される化合物(BisAM)に由来する構成単位を含む、項目1~12のいずれか一項に記載の樹脂組成物。
<14>
 前記P又はPが、それぞれ独立に、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、下記式:
Figure JPOXMLDOC01-appb-C000085
で表される化合物(BzDA)、又は下記式:
Figure JPOXMLDOC01-appb-C000086
で表される化合物(BNBDA)に由来する構成単位を含む、項目1~13のいずれか一項に記載の樹脂組成物。
<15>
 前記樹脂を加熱して得られるポリイミド樹脂膜が、フレキシブル基板に用いられる、項目1~14のいずれか一項に記載の樹脂組成物。
<16>
 前記樹脂を硬化して得られるポリイミド樹脂膜が、フレキシブルディスプレイに用いられる、項目1~15のいずれか一項に記載の樹脂組成物。
<17>
 ジアミン又は酸二無水物と下記一般式(10):
Figure JPOXMLDOC01-appb-C000087
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物を重縮合反応させてポリイミドを得た後、
その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂を含む樹脂組成物を提供することを含み、
前記樹脂の総質量を基準に前記ケイ素含有化合物を25質量%以下含む、
樹脂組成物の製造方法。
<18>
 ジアミン又は酸二無水物と下記一般式(10):
Figure JPOXMLDOC01-appb-C000088
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物を重縮合反応させてポリイミドを得た後、
その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂を含む樹脂組成物を提供することを含み、
前記樹脂のイミド化率が50%以上である、
樹脂組成物の製造方法。
<19>
 下記一般式(8):
Figure JPOXMLDOC01-appb-C000089
で表される化合物、又は下記一般式(9):
Figure JPOXMLDOC01-appb-C000090
で表される化合物と、下記一般式(10):
Figure JPOXMLDOC01-appb-C000091
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物と、その他の化合物を重縮合反応させてポリイミドを得た後、
その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂組成物を提供することを含む、樹脂組成物の製造方法。
<20>
 3,3’-ジアミノジフェニルスルホン(33DAS)、
 4,4’-ジアミノジフェニルスルホン(44DAS)、及び
 9,9-ビス(4-アミノフェニル)フルオレン(BAFL)
から選択される少なくとも一つの化合物と、
下記一般式(10):
Figure JPOXMLDOC01-appb-C000092
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させてポリイミドを得た後、
その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂組成物を提供することを含む、樹脂組成物の製造方法。
<21>
 4,4’-オキシジフタル酸無水物(ODPA)、及び9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)から選択される少なくとも一つの化合物と、下記一般式(10):
Figure JPOXMLDOC01-appb-C000093
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させてポリイミドを得た後、
その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂組成物を提供することを含む、樹脂組成物の製造方法。
<22>
 支持体の表面上に、項目1~16のいずれか一項に記載の樹脂組成物、又は項目17~21のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
 該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
 該ポリイミド樹脂膜を該支持体から剥離する剥離工程と、
を含む、ポリイミド樹脂膜の製造方法。
<23>
 前記剥離工程に先立って、前記支持体側から前記樹脂組成物にレーザーを照射する照射工程を含む、項目22に記載のポリイミド樹脂膜の製造方法。
<24>
 支持体の表面上に、項目1~16のいずれか一項に記載の樹脂組成物、又は項目17~21のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
 該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
 該ポリイミド樹脂膜上に素子を形成する素子形成工程と、
 該素子が形成された該ポリイミド樹脂膜を該支持体から剥離する剥離工程と、
を含む、ディスプレイの製造方法。
<25>
 支持体の表面上に、項目1~16のいずれか一項に記載の樹脂組成物、又は項目17~21のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
 該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
 該ポリイミド樹脂膜上に素子を形成する素子形成工程と、
を含む、積層体の製造方法。
<26>
 前記素子が形成された前記ポリイミド樹脂膜を前記支持体から剥離する工程をさらに含む、項目25に記載の積層体の製造方法。
<27>
 項目25又は26に記載の方法により積層体を製造することを含む、フレキシブルデバイスの製造方法。
[First aspect]
<1>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000063
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
Figure JPOXMLDOC01-appb-C000064
{In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
A resin composition containing a resin of a structural unit represented by.
Wherein P 5 or P 6 is represented by the following general formula (10):
Figure JPOXMLDOC01-appb-C000065
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
It contains a structural unit derived from the silicon-containing compound represented by, and contains 25% by mass or less of the silicon-containing compound based on the total mass of the resin.
Resin composition.
<2>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000066
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
Figure JPOXMLDOC01-appb-C000067
{In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
A resin composition containing a resin of a structural unit represented by.
Wherein P 5 or P 6 is represented by the following general formula (10):
Figure JPOXMLDOC01-appb-C000068
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
It contains a structural unit derived from a silicon-containing compound represented by, and the imidization ratio of the resin is 50% or more.
Resin composition.
<3>
The resin composition according to item 1, wherein the resin has an imidization ratio of 50% or more.
<4>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000069
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
Figure JPOXMLDOC01-appb-C000070
{In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
A resin composition containing a resin of a structural unit represented by.
Wherein P 5 or P 6 is represented by the following general formula (10):
Figure JPOXMLDOC01-appb-C000071
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
It contains a structural unit derived from a silicon-containing compound represented by (a) or (b) below.
(A) The P 3 and / or P 5 is the following general formula (8):
Figure JPOXMLDOC01-appb-C000072
In comprising a structural unit derived from a compound represented; or (b) the P 4 and / or P 6 is represented by the following general formula (9):
Figure JPOXMLDOC01-appb-C000073
Includes structural units derived from the compounds represented by;
A resin composition that satisfies any of the above.
<5>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000074
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
Figure JPOXMLDOC01-appb-C000075
{In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
A resin composition containing a resin of a structural unit represented by.
Wherein P 5 or P 6 is represented by the following general formula (10):
Figure JPOXMLDOC01-appb-C000076
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
Containing a structural unit derived from the silicon-containing compound represented by, and the P 3 and / or P 5 are independent of each other.
3,3'-Diaminodiphenyl sulfone (33DAS),
4,4'-Diaminodiphenyl sulfone (44DAS), or 9,9-bis (4-aminophenyl) fluorene (BAFL)
A resin composition containing at least one structural unit derived from each of the above compounds.
<6>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000077
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
Figure JPOXMLDOC01-appb-C000078
{In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
A resin composition containing a resin of a structural unit represented by.
Wherein P 5 or P 6 is represented by the following general formula (10):
Figure JPOXMLDOC01-appb-C000079
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
Containing a structural unit derived from the silicon-containing compound represented by, and the P 3 and / or P 5 are independent of each other.
2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (6FODA)
A resin composition containing at least one structural unit derived from.
<7>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000080
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
Figure JPOXMLDOC01-appb-C000081
{In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
A resin composition containing a resin of a structural unit represented by.
Wherein P 5 or P 6 is represented by the following general formula (10):
Figure JPOXMLDOC01-appb-C000082
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
Containing a structural unit derived from in the silicon-containing compound represented, and A (wt%): Of the diamine that constitutes the P 5 in the general formula (7), the proportion of the general formula (10) B (wt%): of the diamine that constitutes the P 3 in the general formula (6), when the ratio of the general formula (10), B-a is greater than 0 and less than 60,
Resin composition.
<8>
The diamine
The following general formula (8):
Figure JPOXMLDOC01-appb-C000083
Compound represented by,
3,3'-Diaminodiphenyl sulfone (33DAS),
4,4'-Diaminodiphenyl sulfone (44DAS), and 9,9-bis (4-aminophenyl) fluorene (BAFL)
The resin composition according to item 7, which is at least one compound selected from the above.
<9>
In Formula (6) and / or the general formula (7), P 4 and / or P 6 are each independently, 4,4'-oxydiphthalic anhydride (ODPA), or 9,9-bis ( 3,4-Dicarboxyphenyl) The resin composition according to any one of claims 1 to 8, which comprises at least one structural unit derived from each compound of fluorene diacid anhydride (BPAF).
<10>
The resin composition according to any one of items 1 to 9, wherein the silicon-containing compound represented by the general formula (10) has a functional group equivalent of 800 or more.
<11>
The P 5 contains a structural unit derived from the compound represented by the general formula (10), and the L 1 and L 2 in the general formula (10) are independently amino groups.
The resin composition according to any one of items 1 to 10.
<12>
The compound represented by the general formula (8) is more than 50 mol% when the total diamine (excluding the compound represented by the general formula (10)) is 100 mol%, whichever of items 4 and 9 to 11. The resin composition according to item 1.
<13>
Wherein P 3 or P 5 are each independently, the following formula:
Figure JPOXMLDOC01-appb-C000084
The resin composition according to any one of items 1 to 12, which comprises a structural unit derived from the compound represented by (BisAM).
<14>
Wherein P 4 or P 6 are each independently, 4,4 '- (hexafluoro isopropylidene) diphthalic anhydride, the following formula:
Figure JPOXMLDOC01-appb-C000085
Compound represented by (BzDA), or the following formula:
Figure JPOXMLDOC01-appb-C000086
The resin composition according to any one of items 1 to 13, which comprises a structural unit derived from the compound represented by (BNBDA).
<15>
The resin composition according to any one of items 1 to 14, wherein the polyimide resin film obtained by heating the resin is used for a flexible substrate.
<16>
The resin composition according to any one of items 1 to 15, wherein the polyimide resin film obtained by curing the resin is used for a flexible display.
<17>
Diamine or acid dianhydride and the following general formula (10):
Figure JPOXMLDOC01-appb-C000087
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
After polycondensation reaction of the silicon-containing compound represented by
It comprises polycondensing reaction with other compounds to provide a resin composition containing a polyimide precursor and a resin containing polyimide.
The silicon-containing compound is contained in an amount of 25% by mass or less based on the total mass of the resin.
A method for producing a resin composition.
<18>
Diamine or acid dianhydride and the following general formula (10):
Figure JPOXMLDOC01-appb-C000088
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
After polycondensation reaction of the silicon-containing compound represented by
It comprises polycondensing reaction with other compounds to provide a resin composition containing a polyimide precursor and a resin containing polyimide.
The imidization rate of the resin is 50% or more.
A method for producing a resin composition.
<19>
The following general formula (8):
Figure JPOXMLDOC01-appb-C000089
The compound represented by, or the following general formula (9):
Figure JPOXMLDOC01-appb-C000090
The compound represented by the following and the following general formula (10):
Figure JPOXMLDOC01-appb-C000091
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
After polycondensation reaction of the silicon-containing compound represented by (1) and other compounds to obtain polyimide,
A method for producing a resin composition, which comprises subjecting a resin composition containing a polyimide precursor and a polyimide by polycondensation reaction with other compounds.
<20>
3,3'-Diaminodiphenyl sulfone (33DAS),
4,4'-Diaminodiphenyl sulfone (44DAS), and 9,9-bis (4-aminophenyl) fluorene (BAFL)
With at least one compound selected from
The following general formula (10):
Figure JPOXMLDOC01-appb-C000092
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
After polycondensation reaction of the silicon-containing compound represented by (1) and other compounds to obtain polyimide,
A method for producing a resin composition, which comprises subjecting a resin composition containing a polyimide precursor and a polyimide by polycondensation reaction with other compounds.
<21>
At least one compound selected from 4,4'-oxydiphthalic anhydride (ODPA) and 9,9-bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride (BPAF), and the following general formula ( 10):
Figure JPOXMLDOC01-appb-C000093
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
After polycondensation reaction of the silicon-containing compound represented by (1) and other compounds to obtain polyimide,
A method for producing a resin composition, which comprises subjecting a resin composition containing a polyimide precursor and a polyimide by polycondensation reaction with other compounds.
<22>
A coating step of applying the resin composition according to any one of items 1 to 16 or the resin composition obtained by the method according to any one of items 17 to 21 onto the surface of the support. ,
A film forming step of heating the resin composition to form a polyimide resin film,
A peeling step of peeling the polyimide resin film from the support,
A method for producing a polyimide resin film, including.
<23>
The method for producing a polyimide resin film according to item 22, further comprising an irradiation step of irradiating the resin composition with a laser from the support side prior to the peeling step.
<24>
A coating step of applying the resin composition according to any one of items 1 to 16 or the resin composition obtained by the method according to any one of items 17 to 21 onto the surface of the support. ,
A film forming step of heating the resin composition to form a polyimide resin film,
An element forming step of forming an element on the polyimide resin film and
A peeling step of peeling the polyimide resin film on which the element is formed from the support,
How to make a display, including.
<25>
A coating step of applying the resin composition according to any one of items 1 to 16 or the resin composition obtained by the method according to any one of items 17 to 21 onto the surface of the support. ,
A film forming step of heating the resin composition to form a polyimide resin film,
An element forming step of forming an element on the polyimide resin film and
A method for manufacturing a laminate, including.
<26>
The method for producing a laminate according to item 25, further comprising a step of peeling the polyimide resin film on which the element is formed from the support.
<27>
A method for manufacturing a flexible device, which comprises manufacturing the laminate by the method according to item 25 or 26.
〔第二の態様〕
<28>
 下記一般式(1)又は(2):
Figure JPOXMLDOC01-appb-C000094
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
Figure JPOXMLDOC01-appb-C000095
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは、かつ正の整数を示す。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記Pは、下記一般式(3):
Figure JPOXMLDOC01-appb-C000096
で表される化合物に由来する構成単位を含み、かつ
 前記P又Pは、下記一般式(5):
Figure JPOXMLDOC01-appb-C000097
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50であり、かつ官能基当量が800以上である。}
で表されるケイ素含有化合物に由来する構成単位を含む、
樹脂組成物。
<29>
 前記Pが、下記一般式(4):
Figure JPOXMLDOC01-appb-C000098
で表される化合物に由来する構成単位を含む、項目28に記載の樹脂組成物。
<30>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000099
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
Figure JPOXMLDOC01-appb-C000100
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000101
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含む、
樹脂組成物。
<31>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000102
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
Figure JPOXMLDOC01-appb-C000103
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000104
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含み、かつ
 下記(ア)又は(イ):
  (ア)前記P及び/又はPは、下記一般式(8):
Figure JPOXMLDOC01-appb-C000105
で表される化合物に由来する構成単位を含む;又は
  (イ)前記P及び/又はPは、下記一般式(9):
Figure JPOXMLDOC01-appb-C000106
で表される化合物に由来する構成単位を含む;
のいずれかを満たす、樹脂組成物。
<32>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000107
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
Figure JPOXMLDOC01-appb-C000108
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000109
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含み、かつ
 前記P及び/又はPは、
3,3’-ジアミノジフェニルスルホン(33DAS)、又は
4,4’-ジアミノジフェニルスルホン(44DAS)
の各化合物に由来する構成単位を少なくとも一つ含む、樹脂組成物。
<33>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000110
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
Figure JPOXMLDOC01-appb-C000111
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000112
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含み、かつ
 前記P及び/又はPは、
9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、又は
下記一般式:
Figure JPOXMLDOC01-appb-C000113
の化合物(BisAM)
の各化合物に由来する構成単位を少なくとも一つ含む、樹脂組成物。
<34>
 下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000114
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
Figure JPOXMLDOC01-appb-C000115
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
で表される構造単位の樹脂を含む、樹脂組成物であって、
 前記P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000116
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含み、かつ
 前記P及び/又はPは、
4,4’-オキシジフタル酸無水物(ODPA)、
4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、
9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、
下記一般式:
Figure JPOXMLDOC01-appb-C000117
の化合物(BzDA);又は
下記一般式:
Figure JPOXMLDOC01-appb-C000118
の化合物(BNBDA);
の各化合物に由来する構成単位を少なくとも一つ含む、樹脂組成物。
<35>
 前記Pが、前記一般式(10)で表される化合物に由来する構成単位を含み、
 前記一般式(10)で表されるケイ素含有化合物の官能基当量が800以上である、項目30~34のいずれか一項に記載の樹脂組成物。
<36>
 前記Pが、前記一般式(10)で表される化合物に由来する構成単位を含み、かつ
 前記一般式(10)において前記L及びLが、それぞれ独立に、アミノ基である、
項目30~35のいずれか一項に記載の樹脂組成物。
<37>
 前記一般式(3)又は(8)で表される化合物が、全ジアミン(前記一般式(5)又は(10)で表される化合物を除く)を100mol%としたとき、50mol%より多い、項目28、29及び31のいずれか一項に記載の樹脂組成物。
<38>
 前記樹脂を加熱して得られるポリイミド樹脂膜が、フレキシブル基板に用いられる、項目28~37のいずれか一項に記載の樹脂組成物。
<39>
 前記樹脂を硬化して得られるポリイミド樹脂膜が、フレキシブルディスプレイに用いられる、項目28~38のいずれか一項に記載の樹脂組成物。
<40> 下記一般式(3):
Figure JPOXMLDOC01-appb-C000119
で表される化合物、
3,3’-ジアミノジフェニルスルホン(33DAS)、及び
4,4’-ジアミノジフェニルスルホン(44DAS)、
から選択される少なくとも一つのジアミンと、
酸二無水物と、
下記一般式(5):
Figure JPOXMLDOC01-appb-C000120
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させてポリイミド前駆体及び/又はポリイミドを提供することを含む、樹脂組成物の製造方法。
<41>
 ジアミン(ただし、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない)と酸二無水物を重縮合反応させてポリイミドを得た後、
 下記一般式(5):
Figure JPOXMLDOC01-appb-C000121
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂組成物を提供することを含む、樹脂組成物の製造方法。
<42>
 下記一般式(3):
Figure JPOXMLDOC01-appb-C000122
で表される化合物、
 3,3’-ジアミノジフェニルスルホン(33AS)、及び
 4,4’-ジアミノジフェニルスルホン(44DAS)、
から選択される少なくとも一つのジアミンと、
酸二無水物と、
その他の化合物とを重縮合反応させてポリイミドを得た後、
 下記一般式(5):
Figure JPOXMLDOC01-appb-C000123
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10sの二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂組成物を提供することを含む、樹脂組成物の製造方法。
<43>
 支持体の表面上に、項目28~39のいずれか一項に記載の樹脂組成物、又は項目40~42のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
 該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
 該ポリイミド樹脂膜を該支持体から剥離する剥離工程と、
を含む、ポリイミド樹脂膜の製造方法。
<44>
 前記剥離工程に先立って、前記支持体側から前記樹脂組成物にレーザーを照射する照射工程を含む、項目43に記載のポリイミド樹脂膜の製造方法。
<45>
 支持体の表面上に、項目28~39のいずれか一項に記載の樹脂組成物、又は項目40~42のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
 該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
 該ポリイミド樹脂膜上に素子を形成する素子形成工程と、
 該素子が形成された該ポリイミド樹脂膜を該支持体から剥離する剥離工程と、
を含む、ディスプレイの製造方法。
<46>
 支持体の表面上に、項目28~39のいずれか一項に記載の樹脂組成物、又は項目40~42のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
 該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
 該ポリイミド樹脂膜上に素子を形成する素子形成工程と、
を含む、積層体の製造方法。
<47>
 前記素子が形成された前記ポリイミド樹脂膜を前記支持体から剥離する工程をさらに含む、項目46に記載の積層体の製造方法。
<48>
 項目46又は47に記載の方法により積層体を製造することを含む、フレキシブルデバイスの製造方法。
[Second aspect]
<28>
The following general formula (1) or (2):
Figure JPOXMLDOC01-appb-C000094
{In the formula, P 1 represents a divalent organic group, P 2 represents a tetravalent organic group, and p represents a positive integer. }
Figure JPOXMLDOC01-appb-C000095
{In the formula, P 1 represents a divalent organic group, P 2 represents a tetravalent organic group, and p represents a positive integer. }
A resin composition containing a resin of a structural unit represented by.
The P 1 is the following general formula (3):
Figure JPOXMLDOC01-appb-C000096
Containing a structural unit derived from in the compound represented by, and the P 1 The P 2 is represented by the following general formula (5):
Figure JPOXMLDOC01-appb-C000097
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, j and k are each independently an integer of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. Yes, and the functional group equivalent is 800 or more. }
Containing structural units derived from silicon-containing compounds represented by
Resin composition.
<29>
The above P 2 is the following general formula (4):
Figure JPOXMLDOC01-appb-C000098
28. The resin composition according to item 28, which comprises a structural unit derived from the compound represented by.
<30>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000099
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
Figure JPOXMLDOC01-appb-C000100
{In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
A resin composition containing a resin of a structural unit represented by.
The above P 3 or P 4 is the following general formula (10):
Figure JPOXMLDOC01-appb-C000101
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
Containing structural units derived from silicon-containing compounds represented by
Resin composition.
<31>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000102
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
Figure JPOXMLDOC01-appb-C000103
{In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
A resin composition containing a resin of a structural unit represented by.
The above P 3 or P 4 is the following general formula (10):
Figure JPOXMLDOC01-appb-C000104
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
It contains a structural unit derived from a silicon-containing compound represented by (a) or (b) below.
(A) The P 3 and / or P 5 is the following general formula (8):
Figure JPOXMLDOC01-appb-C000105
In comprising a structural unit derived from a compound represented; or (b) the P 4 and / or P 6 is represented by the following general formula (9):
Figure JPOXMLDOC01-appb-C000106
Includes structural units derived from the compounds represented by;
A resin composition that satisfies any of the above.
<32>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000107
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
Figure JPOXMLDOC01-appb-C000108
{In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
A resin composition containing a resin of a structural unit represented by.
The above P 3 or P 4 is the following general formula (10):
Figure JPOXMLDOC01-appb-C000109
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
Containing a structural unit derived from in the silicon-containing compound represented, and the P 3 and / or P 5 is
3,3'-diaminodiphenyl sulfone (33DAS), or 4,4'-diaminodiphenyl sulfone (44DAS)
A resin composition containing at least one structural unit derived from each of the above compounds.
<33>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000110
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
Figure JPOXMLDOC01-appb-C000111
{In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
A resin composition containing a resin of a structural unit represented by.
The above P 3 or P 4 is the following general formula (10):
Figure JPOXMLDOC01-appb-C000112
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
Containing a structural unit derived from in the silicon-containing compound represented, and the P 3 and / or P 5 is
9,9-Bis (4-aminophenyl) fluorene (BAFL), or the following general formula:
Figure JPOXMLDOC01-appb-C000113
Compound (BisAM)
A resin composition containing at least one structural unit derived from each of the above compounds.
<34>
The following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000114
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
Figure JPOXMLDOC01-appb-C000115
{In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
A resin composition containing a resin of a structural unit represented by.
The above P 3 or P 4 is the following general formula (10):
Figure JPOXMLDOC01-appb-C000116
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
In comprising a structural unit derived from silicon-containing compound represented, and the P 4 and / or P 6 is
4,4'-Oxydiphthalic anhydride (ODPA),
4,4'-(Hexafluoroisopropylidene) diphthalic acid anhydride (6FDA),
9,9-Bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride (BPAF),
The following general formula:
Figure JPOXMLDOC01-appb-C000117
Compound (BzDA); or the following general formula:
Figure JPOXMLDOC01-appb-C000118
Compound (BNBDA);
A resin composition containing at least one structural unit derived from each of the above compounds.
<35>
The P 3 contains a structural unit derived from the compound represented by the general formula (10).
The resin composition according to any one of items 30 to 34, wherein the silicon-containing compound represented by the general formula (10) has a functional group equivalent of 800 or more.
<36>
The P 3 contains a structural unit derived from the compound represented by the general formula (10), and the L 1 and L 2 in the general formula (10) are independently amino groups.
The resin composition according to any one of items 30 to 35.
<37>
The compound represented by the general formula (3) or (8) is more than 50 mol% when the total diamine (excluding the compound represented by the general formula (5) or (10)) is 100 mol%. The resin composition according to any one of items 28, 29 and 31.
<38>
The resin composition according to any one of items 28 to 37, wherein the polyimide resin film obtained by heating the resin is used for a flexible substrate.
<39>
The resin composition according to any one of items 28 to 38, wherein the polyimide resin film obtained by curing the resin is used for a flexible display.
<40> The following general formula (3):
Figure JPOXMLDOC01-appb-C000119
Compound represented by,
3,3'-Diaminodiphenyl sulfone (33DAS), and 4,4'-diaminodiphenyl sulfone (44DAS),
With at least one diamine selected from,
Acid dianhydride and
The following general formula (5):
Figure JPOXMLDOC01-appb-C000120
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
A method for producing a resin composition, which comprises subjecting a silicon-containing compound represented by (1) to a polycondensation reaction of another compound to provide a polyimide precursor and / or a polyimide.
<41>
After polycondensation reaction of diamine (however, 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not contained) and acid dianhydride to obtain polyimide,
The following general formula (5):
Figure JPOXMLDOC01-appb-C000121
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
A method for producing a resin composition, which comprises subjecting a silicon-containing compound represented by (1) to a polycondensation reaction with another compound to provide a resin composition containing a polyimide precursor and a polyimide.
<42>
The following general formula (3):
Figure JPOXMLDOC01-appb-C000122
Compound represented by,
3,3'-Diaminodiphenyl sulfone (33AS), and 4,4'-diaminodiphenyl sulfone (44DAS),
With at least one diamine selected from,
Acid dianhydride and
After polycondensation reaction with other compounds to obtain polyimide,
The following general formula (5):
Figure JPOXMLDOC01-appb-C000123
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 s carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
A method for producing a resin composition, which comprises subjecting a silicon-containing compound represented by (1) to a polycondensation reaction with another compound to provide a resin composition containing a polyimide precursor and a polyimide.
<43>
A coating step of applying the resin composition according to any one of items 28 to 39 or the resin composition obtained by the method according to any one of items 40 to 42 on the surface of the support. ,
A film forming step of heating the resin composition to form a polyimide resin film,
A peeling step of peeling the polyimide resin film from the support,
A method for producing a polyimide resin film, including.
<44>
The method for producing a polyimide resin film according to item 43, which comprises an irradiation step of irradiating the resin composition with a laser from the support side prior to the peeling step.
<45>
A coating step of applying the resin composition according to any one of items 28 to 39 or the resin composition obtained by the method according to any one of items 40 to 42 on the surface of the support. ,
A film forming step of heating the resin composition to form a polyimide resin film,
An element forming step of forming an element on the polyimide resin film and
A peeling step of peeling the polyimide resin film on which the element is formed from the support,
How to make a display, including.
<46>
A coating step of applying the resin composition according to any one of items 28 to 39 or the resin composition obtained by the method according to any one of items 40 to 42 on the surface of the support. ,
A film forming step of heating the resin composition to form a polyimide resin film,
An element forming step of forming an element on the polyimide resin film and
A method for manufacturing a laminate, including.
<47>
The method for producing a laminate according to item 46, further comprising a step of peeling the polyimide resin film on which the element is formed from the support.
<48>
A method for manufacturing a flexible device, which comprises manufacturing the laminate by the method according to item 46 or 47.
 本発明によれば、第一に、DABAとCpODAと他のケイ素含有化合物等とをモノマーとして用いて、ディスプレイ用途に求められる特性に優れるポリイミド前駆体又はポリイミド樹脂組成物を提供することができる。
 本発明によれば、第二に、DABAとケイ素含有化合物とその他の化合物等をモノマーとして用いて、または、DABAとケイ素含有化合物とその他の化合物等をモノマーとして用いて、3,3’-ジアミノジフェニルスルホン(33DAS)及び/又は、4,4’-ジアミノジフェニルスルホン(44DAS)とケイ素含有化合物とその他の化合物等をモノマーとして用いて、ディスプレイ用途に求められる特性に優れるポリイミド前駆体又はポリイミド樹脂組成物を提供することができる。
 なお、上述の記載は、本発明の全ての実施形態及び本発明に関する全ての利点を開示したものと見なしてはならない。本発明の更なる実施形態及びその利点は、以下の記載を参照することにより明らかとなる。
According to the present invention, firstly, it is possible to provide a polyimide precursor or a polyimide resin composition having excellent properties required for display applications by using DABA, CpODA, other silicon-containing compounds and the like as monomers.
According to the present invention, secondly, using DABA, a silicon-containing compound and other compounds as a monomer, or using DABA and a silicon-containing compound and other compounds as a monomer, 3,3'-diamino Using diphenyl sulfone (33DAS) and / or 4,4'-diaminodiphenyl sulfone (44DAS), a silicon-containing compound and other compounds as monomers, a polyimide precursor or polyimide resin composition having excellent properties required for display applications. Can provide things.
It should be noted that the above description shall not be deemed to disclose all the embodiments of the present invention and all the advantages relating to the present invention. Further embodiments of the present invention and their advantages will become apparent with reference to the following description.
図1は、本実施形態のディスプレイの例として、トップエミッション型フレキシブル有機ELディスプレイの、ポリイミド基板より上部の構造を示す模式図である。FIG. 1 is a schematic view showing the structure of a top-emission type flexible organic EL display above the polyimide substrate as an example of the display of the present embodiment.
 以下、本発明の例示の実施の形態(以下、「本実施形態」と略記する。)について、詳細に説明する。本発明は、本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。本願明細書において、各数値範囲の上限値及び下限値は任意に組み合わせることができる。 Hereinafter, an exemplary embodiment of the present invention (hereinafter, abbreviated as “the present embodiment”) will be described in detail. The present invention is not limited to the present embodiment, and can be variously modified and implemented within the scope of the gist thereof. In the present specification, the upper limit value and the lower limit value of each numerical range can be arbitrarily combined.
〔第一の態様〕
《樹脂組成物》
〈樹脂/ポリイミド前駆体/ポリイミド〉
 本実施形態の樹脂組成物は、下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000124
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
Figure JPOXMLDOC01-appb-C000125
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
で表される構造単位の樹脂を含み、一部がイミド化されたポリイミド前駆体を含むこともでき、P又はPは、下記一般式(10):
Figure JPOXMLDOC01-appb-C000126
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含む。このような一部がイミド化されたポリイミド前駆体の場合、全ポリイミド前駆体と比較して、組成物の粘度安定性に優れ、全ポリイミドと比較すると、ポリイミド(ポリイミド前駆体)の合成のし易さの観点で優れる。
[First aspect]
<< Resin composition >>
<Resin / Polyimide precursor / Polyimide>
The resin composition of the present embodiment has the following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000124
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
Figure JPOXMLDOC01-appb-C000125
{In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
In comprising a structural unit of the resin represented, in part may also include imidized polyimide precursor, P 5 or P 6 is represented by the following general formula (10):
Figure JPOXMLDOC01-appb-C000126
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
Includes a structural unit derived from a silicon-containing compound represented by. In the case of such a partially imidized polyimide precursor, the viscosity stability of the composition is superior to that of the total polyimide precursor, and the polyimide (polyimide precursor) is synthesized as compared with the total polyimide. Excellent in terms of ease.
 前記ケイ素基含有化合物の割合は、前記樹脂の総質量を基準に25質量%以下である。全樹脂中のケイ素含有化合物の割合は、ワニスの粘度保存安定性、ろ過性の観点から20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が特に好ましい。このように、樹脂中のケイ素含有化合物の割合が小さいほどワニスの粘度保存安定性、ろ過性が良好であるメカニズムは定かではないが、解離したケイ素基含有化合物の凝集が相関していると考えられる。 The ratio of the silicon group-containing compound is 25% by mass or less based on the total mass of the resin. The ratio of the silicon-containing compound in the total resin is preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less, from the viewpoint of viscosity storage stability and filterability of the varnish. As described above, the mechanism by which the smaller the ratio of the silicon-containing compound in the resin is, the better the viscosity storage stability and the filterability of the varnish is unclear, but it is considered that the aggregation of the dissociated silicon group-containing compound is correlated. Be done.
 一方、前記ケイ素基含有化合物の割合は、得られるポリイミドフィルムの残留応力の観点から、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上が特に好ましい。 On the other hand, the ratio of the silicon group-containing compound is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 15% by mass or more, from the viewpoint of the residual stress of the obtained polyimide film.
 全樹脂中のケイ素含有化合物の適切な割合は、使用するジアミンモノマー・酸二無水物モノマーの種類・割合によっても異なり、ポリイミドフィルムの残留応力、ワニスの粘度保存安定性、ろ過性等を相互勘案して、決める必要がある。 The appropriate ratio of the silicon-containing compound in the total resin varies depending on the type and ratio of the diamine monomer and acid dianhydride monomer used, and the residual stress of the polyimide film, the viscosity storage stability of the varnish, the filterability, etc. are mutually considered. Then you need to decide.
 前記樹脂のイミド化率は、50%以上である。前記樹脂のイミド化率は、ワニスの粘度保存安定性の観点から60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましく、90%以上が特に好ましい。このように、イミド化率が大きいほどワニスの粘度保存安定性が良好であるメカニズムは定かではないが、ワニス保存時に、アミド部分解重合がおこることと相関があると考えられる。 The imidization rate of the resin is 50% or more. The imidization ratio of the resin is preferably 60% or more, more preferably 70% or more, further preferably 80% or more, and particularly preferably 90% or more from the viewpoint of viscosity storage stability of the varnish. As described above, the mechanism by which the viscosity storage stability of the varnish is better as the imidization ratio is larger is not clear, but it is considered that there is a correlation with the occurrence of decomposition polymerization of the amide portion during the storage of the varnish.
 一方、前記樹脂のイミド化率は、ワニスの吸湿白濁の観点から、90%以下が好ましく、80%以下がより好ましく、70%以下がさらに好ましい。このように、イミド化率が小さいほどワニスの吸湿白濁が起こりくいメカニズムは定かではないが、ポリイミド/ポリアミドの溶媒溶解性と相関があると考えられる。 On the other hand, the imidization rate of the resin is preferably 90% or less, more preferably 80% or less, still more preferably 70% or less, from the viewpoint of hygroscopic white turbidity of the varnish. As described above, the mechanism by which the hygroscopic white turbidity of the varnish is less likely to occur as the imidization ratio is smaller is not clear, but it is considered to have a correlation with the solvent solubility of the polyimide / polyamide.
 前記樹脂の適切なイミド化率は、使用するジアミンモノマー・酸二無水物モノマーの種類・割合によっても異なり、ワニスの粘度保存安定性、ワニスの吸湿白濁等を相互勘案して、決める必要がある。 The appropriate imidization ratio of the resin varies depending on the type and ratio of the diamine monomer and acid dianhydride monomer used, and it is necessary to determine the appropriate imidization ratio in consideration of the viscosity storage stability of the varnish, the moisture absorption and cloudiness of the varnish, and the like. ..
 前記樹脂のジアミンモノマー中のケイ素含有化合物割合の、イミドユニットとアミドユニットの差は、0より大きく、60以下である。この前記樹脂のジアミンモノマー中のケイ素含有化合物割合の、イミドユニットとアミドユニットの差は、下記式より求められる。
A:イミドユニットのジアミン中のケイ素含有化合物割合(質量%)=イミド化工程で用いたケイ素含有化合物/イミド化工程で用いたジアミンモノマー(ケイ素含有化合物含む)の質量の総量*100
B:アミドユニットのジアミン中のケイ素含有化合物割合(質量%)=イミド化工程で用いたケイ素含有化合物/アミド化工程で用いたジアミンモノマー(ケイ素含有化合物含む)の質量の総量*100
ここで、Aは、“一般式(7)におけるPを構成するジアミンのうち、一般式(10)の割合(質量%)”とも言い換えることができる。また、Bは、“一般式(6)におけるPを構成するジアミンのうち、一般式(10)の割合(質量%)”とも言い換えることができる。
そして、ジアミン中のケイ素含有化合物割合のイミドユニットとアミドユニットの差は、上記A,Bを用いて、B-Aとなる。
The difference between the imide unit and the amide unit in the ratio of the silicon-containing compound in the diamine monomer of the resin is larger than 0 and 60 or less. The difference between the imide unit and the amide unit in the ratio of the silicon-containing compound in the diamine monomer of the resin can be obtained from the following formula.
A: Silicon-containing compound ratio (% by mass) in diamine of imide unit = silicon-containing compound used in imidization step / total mass of diamine monomer (including silicon-containing compound) used in imidization step * 100
B: Silicon-containing compound ratio (% by mass) in diamine of the amide unit = total mass of silicon-containing compound used in the imidization step / diamine monomer (including silicon-containing compound) used in the amidation step * 100
Here, A is "among the general formula in (7) of the diamine constituting the P 5, the ratio (mass%) of the general formula (10)" and can turn also. Further, B can be rephrased as "the ratio (mass%) of the general formula (10) to the diamines constituting P 3 in the general formula (6)".
Then, the difference between the imide unit and the amide unit in the ratio of the silicon-containing compound in the diamine becomes BA by using the above A and B.
 ジアミンモノマー中のケイ素含有化合物割合のイミドユニットとアミドユニットの差は、ケイ素含有化合物に由来する構造を有する一部にイミド化されたポリイミド前駆体(ポリアミドイミド)樹脂において、イミドユニットとアミドユニットのケイ素含有化合物割合の多寡をしめし、値が大きいほど、イミドユニットにケイ素含有化合物に由来する構造を有するといえる。この値が大きいほど、ポリイミドフィルムの残留応力が良好になり、この値が小さいとワニスの泡立ち性・ろ過性・ポリイミドフィルムのHaze(濁り度)が良好になる。そして、この値が上記範囲の場合、ワニスの泡立ち性・ろ過性・ポリイミドフィルムの残留応力・Haze(濁り度)等の各特性を両立できるため好ましい。 The difference between the imide unit and the amide unit in the proportion of the silicon-containing compound in the diamine monomer is the difference between the imide unit and the amide unit in the partially imidized polyimide precursor (polyamide-imide) resin having a structure derived from the silicon-containing compound. It can be said that the larger the ratio of the silicon-containing compound is, the more the imide unit has a structure derived from the silicon-containing compound. The larger this value, the better the residual stress of the polyimide film, and the smaller this value, the better the foaming property, the filterability, and the haze (turbidity) of the polyimide film. When this value is in the above range, it is preferable because each property such as foaming property of varnish, filterability, residual stress of polyimide film, and Haze (degree of turbidity) can be compatible with each other.
 また、その中でも前記樹脂に用いるジアミンが、
下記一般式(8):
Figure JPOXMLDOC01-appb-C000127
の化合物;
3,3’-ジアミノジフェニルスルホン(33DAS);
4,4’-ジアミノジフェニルスルホン(44DAS);及び
9,9-ビス(4-アミノフェニル)フルオレン(BAFL)
から選択される少なくとも一つの化合物である場合は、ワニス・ポリイミドの特性がさらによくなるため好ましい。
Among them, the diamine used for the resin is
The following general formula (8):
Figure JPOXMLDOC01-appb-C000127
Compound;
3,3'-Diaminodiphenyl sulfone (33DAS);
4,4'-Diaminodiphenyl sulfone (44DAS); and 9,9-bis (4-aminophenyl) fluorene (BAFL)
When it is at least one compound selected from the above, it is preferable because the characteristics of the varnish / polyimide are further improved.
 また、本発明の別の実施形態に係る樹脂組成物は、下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000128
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
Figure JPOXMLDOC01-appb-C000129
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
で表される構造単位を含む、一部がイミド化されたポリイミド前駆体を含むこともでき、
又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000130
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
で表されるケイ素含有化合物に由来する構成単位を含むことができ、そして
下記(ア)又は(イ)のいずれかを満たすことができる:
  (ア)前記P及び/又はPは、下記一般式(8):
Figure JPOXMLDOC01-appb-C000131
で表される化合物に由来する構成単位を含む;又は
  (イ)前記P及び/又はPは、下記一般式(9):
Figure JPOXMLDOC01-appb-C000132
で表される化合物に由来する構成単位を含む。
Further, the resin composition according to another embodiment of the present invention has the following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000128
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
Figure JPOXMLDOC01-appb-C000129
{In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
It can also contain a partially imidized polyimide precursor, including structural units represented by.
P 5 or P 6 is represented by the following general formula (10):
Figure JPOXMLDOC01-appb-C000130
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
It can contain a structural unit derived from a silicon-containing compound represented by, and can satisfy any of the following (a) or (b):
(A) The P 3 and / or P 5 is the following general formula (8):
Figure JPOXMLDOC01-appb-C000131
In comprising a structural unit derived from a compound represented; or (b) the P 4 and / or P 6 is represented by the following general formula (9):
Figure JPOXMLDOC01-appb-C000132
Includes building blocks derived from the compound represented by.
ジアミン
 樹脂組成物は、下記一般式(8):
Figure JPOXMLDOC01-appb-C000133
の化合物;
3,3’-ジアミノジフェニルスルホン(33DAS);
4,4’-ジアミノジフェニルスルホン(44DAS);
9,9-ビス(4-アミノフェニル)フルオレン(BAFL);又は
2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)
の各ジアミン化合物から選択される少なくとも一つの構成単位を含む。一般式(8)で表されるジアミン化合物の中でも、ポリイミドフィルムの透明性、YIの観点から、3,5-ジアミノ安息香酸(DABA)が好ましい。ジアミン化合物として、DABA,33DAS,44DAS,BAFL,及び6FODAから選択される少なくとも一つを用いることにより、ポリイミドフィルムの機械特性向上し(特に引張伸度)、耐熱性を向上することができるため好ましい。
The diamine resin composition has the following general formula (8):
Figure JPOXMLDOC01-appb-C000133
Compound;
3,3'-Diaminodiphenyl sulfone (33DAS);
4,4'-Diaminodiphenyl sulfone (44DAS);
9,9-bis (4-aminophenyl) fluorene (BAFL); or 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (6FODA)
Contains at least one building block selected from each diamine compound of. Among the diamine compounds represented by the general formula (8), 3,5-diaminobenzoic acid (DABA) is preferable from the viewpoint of transparency of the polyimide film and YI. It is preferable to use at least one selected from DABA, 33DAS, 44DAS, BAFL, and 6FODA as the diamine compound because the mechanical properties of the polyimide film can be improved (particularly the tensile elongation) and the heat resistance can be improved. ..
 全ジアミン(上記一般式の(10)においてL及びLがアミノ基の化合物を含む)中のDABAの含有量は、50モル%超、55モル%超、又は70モル%以上、又は90モル%以上、又は95モル%以上であってよい。DABAの量が多いほど、ポリイミドフィルムの引張伸度が大きくなるため好ましい。 The content of DABA in the total diamine (including the compound in which L 1 and L 2 are amino groups in (10) of the above general formula) is more than 50 mol%, more than 55 mol%, or more than 70 mol%, or 90. It may be mol% or more, or 95 mol% or more. The larger the amount of DABA, the larger the tensile elongation of the polyimide film, which is preferable.
 一般式(8)以外のジアミンとしては、p-フェニレンジアミン(PDA)、m-フェニレンジアミン、2,2’-ジメチルベンジジン(mTB)、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、4,4-ビス(4-アミノフェノキシ)ビフェニル、4,4-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、及び1,4-ビス(3-アミノプロピルジメチルシリル)ベンゼン,1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン](BiSAM)等が挙げられる。 Examples of diamines other than the general formula (8) include p-phenylenediamine (PDA), m-phenylenediamine, 2,2'-dimethylbenzidine (mTB), 4,4'-diaminodiphenylsulfide, and 3,4'-diamino. Diphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 4,4'-diaminobenzophenone, 3,4'-diamino Benzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3 -Bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 4,4-bis (4-aminophenoxy) biphenyl, 4,4-Bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, 1,4-bis (4-amino) Benzene) benzene, 1,3-bis (4-aminophenyl) benzene, 9,10-bis (4-aminophenyl) anthracene, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4) -Aminophenyl) hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl) propane, 2,2-bis [4- (4-aminophenoxy) phenyl) hexafluoropropane, and 1,4 -Bis (3-aminopropyldimethylsilyl) benzene, 1,3-bis [1- (4-aminophenyl) -1-methylethyl] benzene] (BiSAM) and the like can be mentioned.
 一般式(8)以外のジアミンは、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン](BisAM)、及び1,4-シクロヘキサンジアミン(CHDA)から成る群から選択される少なくとも1つであることが好ましい。 Diamines other than the general formula (8) consist of a group consisting of 1,3-bis [1- (4-aminophenyl) -1-methylethyl] benzene] (BisAM) and 1,4-cyclohexanediamine (CHDA). It is preferably at least one selected.
酸二無水物
 樹脂組成物は、下記一般式(9):
Figure JPOXMLDOC01-appb-C000134
で表される化合物(CpODAともいう)、
4,4’-オキシジフタル酸無水物(ODPA)、又は
9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)
の各酸二無水物化合物から選択される少なくとも一つの構成単位を含む。これらの構造単位を有すると、得られるポリイミドフィルムの透明性、YI、耐熱性の機械特性を向上することができるため好ましい。
The acid dianhydride resin composition has the following general formula (9):
Figure JPOXMLDOC01-appb-C000134
Compound represented by (also referred to as CpODA),
4,4'-Oxydiphthalic anhydride (ODPA) or 9,9-bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride (BPAF)
Contains at least one building block selected from each acid dianhydride compound of. Having these structural units is preferable because the transparency, YI, and heat resistance of the obtained polyimide film can be improved.
 全酸二無水物(上記一般式(10)においてL及びLが酸無水物基の化合物を含む)中のCpODA、ODPA、及びBPAFの含有量は、50モル%以上、60モル%以上、又は70モル%以上、又は90モル%以上、又は95モル%以上であってよい。CpODA、ODPA、及びBPAFの量が多いほど、ポリイミドフィルムの透明性が向上するため好ましい。 The content of CpODA, ODPA, and BPAF in the total acid dianhydride (where L 1 and L 2 include the compound having an acid anhydride group in the above general formula (10)) is 50 mol% or more and 60 mol% or more. , Or 70 mol% or more, 90 mol% or more, or 95 mol% or more. A larger amount of CpODA, ODPA, and BPAF is preferable because the transparency of the polyimide film is improved.
 一般式(9)以外の酸二無水物としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、p-フェニレンビス(トリメリテート酸無水物)、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、及び1,2,7,8-フェナントレンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、及び1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、下記構造:
Figure JPOXMLDOC01-appb-C000135
の化合物(BzDA);下記構造:
Figure JPOXMLDOC01-appb-C000136
の化合物(BNBDA)等が挙げられる。
Examples of the acid dianhydride other than the general formula (9) include pyromellitic acid dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA), 2,2',. 3,3'-Biphenyltetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 5- (2,5-dioxotetrahydro-3-franyl) -3- Methyl-cyclohexene-1,2 dicarboxylic acid anhydride, 1,2,3,4-benzenetetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,2' , 3,3'-benzophenone tetracarboxylic acid dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride, methylene-4,4'-diphthalic acid dianhydride, 1,1- Ethiliden-4,4'-diphthalic acid dianhydride, 2,2-propylidene-4,4'-diphthalic acid dianhydride, 1,2-ethylene-4,4'-diphthalic acid dianhydride, 1,3 -Trimethylene-4,4'-diphthalic acid dianhydride, 1,4-tetramethylene-4,4'-diphthalic acid dianhydride, 1,5-pentamethylene-4,4'-diphthalic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride, p-phenylenebis (trimeritate acid anhydride), thio-4,4'-diphthalic acid dianhydride, sulfonyl-4,4'-diphthalic acid dianhydride, 1, 3-Bis (3,4-dicarboxyphenyl) benzene dianhydride, 1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) Benzene dianhydride, 1,3-bis [2- (3,4-dicarboxyphenyl) -2-propyl] benzene dianhydride, 1,4-bis [2- (3,4-dicarboxyphenyl)- 2-propyl] benzene dianhydride, bis [3- (3,4-dicarboxyphenoxy) phenyl] methane dianhydride, bis [4- (3,4-dicarboxyphenoxy) phenyl] methane dianhydride, 2 , 2-bis [3- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, bis (3) , 4-Dicarboxyphenoxy) dimethylsilane dianhydride, 1,3-bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride, 2,3,6 7-Naphthalenetetracarboxylic dianhydride, 1,4,5 , 8-Naphthalenetetracarboxylic acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid dianhydride, 3,4,9,10-Perylenetetracarboxylic acid dianhydride, 2,3,6,7 -Anthracene tetracarboxylic acid dianhydride and 1,2,7,8-phenanthrentetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride (HPMDA), and 1,2, 3,4-Cyclobutanetetracarboxylic acid dianhydride (CBDA), structure:
Figure JPOXMLDOC01-appb-C000135
Compound (BzDA); structure below:
Figure JPOXMLDOC01-appb-C000136
(BNBDA) and the like.
 上記一般式(9)以外の酸二無水物は、BzDA、BNBDA、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)から成る群から選択される少なくとも1つであることが好ましい。酸二無水物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The acid dianhydride other than the above general formula (9) may be at least one selected from the group consisting of BzDA, BNBDA, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (HPMDA). preferable. The acid dianhydride may be used alone or in combination of two or more.
〈ケイ素含有化合物〉
  本実施形態におけるポリイミド前駆体は、上記式(6)で表される構造とともに、上記式(7)で表される構造を有していてもよい。ポリイミド前駆体中の、ケイ素含有化合物に由来する構造の含有割合は、ポリイミド前駆体の質量を基準として、5質量%以上40質量%以下であることが好ましい。ポリイミド前駆体がケイ素含有化合物に由来する構造をこの数値範囲内で含むと、得られるポリイミドフィルムにおいて、低い残留応力と、高度の透明性及び耐熱性とを両立することができるため好ましい。ケイ素含有化合物に由来する構造の含有割合は、ポリイミド前駆体の質量を基準として、6質量%以上、又は7質量%以上であってもよく、また30質量%以下、又は25質量%以下であってもよい。
<Silicon-containing compound>
The polyimide precursor in the present embodiment may have a structure represented by the above formula (6) as well as a structure represented by the above formula (7). The content ratio of the structure derived from the silicon-containing compound in the polyimide precursor is preferably 5% by mass or more and 40% by mass or less based on the mass of the polyimide precursor. It is preferable that the polyimide precursor contains a structure derived from a silicon-containing compound within this numerical range because it is possible to achieve both low residual stress and high transparency and heat resistance in the obtained polyimide film. The content ratio of the structure derived from the silicon-containing compound may be 6% by mass or more, 7% by mass or more, or 30% by mass or less, or 25% by mass or less, based on the mass of the polyimide precursor. You may.
 本実施形態におけるポリイミド/ポリイミド前駆体は、ケイ素含有化合物に由来する構造を有する。したがって、本実施形態におけるポリイミド前駆体の合成に用いられるケイ素含有化合物は、テトラカルボン酸二無水物及びジアミンのうちの少なくとも一方と共縮合し得る反応性基とを有する化合物であってよい。 The polyimide / polyimide precursor in this embodiment has a structure derived from a silicon-containing compound. Therefore, the silicon-containing compound used in the synthesis of the polyimide precursor in the present embodiment may be a compound having a reactive group capable of cocondensing with at least one of the tetracarboxylic dianhydride and the diamine.
 このようなケイ素含有化合物は、例えば、下記式(10):
Figure JPOXMLDOC01-appb-C000137
{式中、
  Rは、それぞれ独立に、単結合又は炭素数1~10の2価の有機基であり、
  R及びRは、それぞれ独立に、炭素数1~10の1価の有機基であって、R及びRのうちの少なくとも1つは、炭素数1~5の1価の脂肪族炭化水素基であり、
  R及びRは、それぞれ独立に、炭素数1~10の1価の有機基であって、R及びRのうちの少なくとも1つは、炭素数6~10の1価の芳香族基であり、
  R及びRは、それぞれ独立に、炭素数1~10の1価の有機基であって、R及びRのうちの少なくとも1つは、炭素数2~10の不飽和脂肪族炭化水素基を含む有機基であり、
  L及びLは、それぞれ独立に、酸無水物構造を含む1価の有機基、アミノ基、イソシアネート基、カルボキシル基、アルコキシカルボニル基、ハロゲン化カルボニル基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、
  i及びjは、それぞれ独立に、1~200の整数であり、
  kは、0~200の整数であり、そして、
  0.05≦j/(i+j+k)≦0.50の関係を満たす。}で表される化合物が挙げられる。
Such a silicon-containing compound is, for example, the following formula (10) :.
Figure JPOXMLDOC01-appb-C000137
{In the formula,
R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms.
R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 2 and R 3 is a monovalent aliphatic group having 1 to 5 carbon atoms. It is a hydrocarbon group and
R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 4 and R 5 is a monovalent aromatic group having 6 to 10 carbon atoms. Is the basis and
R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 6 and R 7 is an unsaturated aliphatic hydrocarbon having 2 to 10 carbon atoms. It is an organic group containing a hydrogen group.
L 1 and L 2 are each independently a monovalent organic group containing an acid anhydride structure, an amino group, an isocyanate group, a carboxyl group, an alkoxycarbonyl group, a halogenated carbonyl group, a hydroxy group, an epoxy group, or a mercapto group. And
i and j are independently integers from 1 to 200, respectively.
k is an integer from 0 to 200, and
The relationship of 0.05 ≦ j / (i + j + k) ≦ 0.50 is satisfied. } Can be mentioned.
 式(10)中のRは、それぞれ独立に、単結合又は炭素数1~10の2価の有機基である。炭素数1~10の2価の有機基は、直鎖状、環状、及び分枝状のいずれでもよく、飽和していても不飽和であってもよい。炭素数1~10の2価の脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、s-ブチレン基、t-ブチレン基、n-ペンチレン基、ネオペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、n-ノニレン基、n-デシレン基等の直鎖又は分岐鎖アルキレン基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基等のシクロアルキレン基が挙げられる。炭素数1~10の2価の脂肪族炭化水素基としては、エチレン基、n-プロピレン基、及びi-プロピレン基からなる群から選択される少なくとも1種であることが好ましい。 R 1 in the formula (10) is a single bond or a divalent organic group having 1 to 10 carbon atoms, respectively. The divalent organic group having 1 to 10 carbon atoms may be linear, cyclic, or branched, and may be saturated or unsaturated. Examples of the divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms include a methylene group, an ethylene group, an n-propylene group, an i-propylene group, an n-butylene group, an s-butylene group and a t-butylene group. Linear or branched alkylene groups such as n-pentylene group, neopentylene group, n-hexylene group, n-heptylene group, n-octylene group, n-nonylene group, n-decylene group; cyclopropylene group, cyclobutylene group, Examples thereof include a cycloalkylene group such as a cyclopentylene group, a cyclohexylene group, a cycloheptylene group and a cyclooctylene group. The divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of an ethylene group, an n-propylene group and an i-propylene group.
 式(10)中のR及びRそれぞれ独立に、炭素数1~10の1価の有機基であり、少なくとも1つは炭素数1~5の1価の脂肪族炭化水素基である。
 炭素数1~10の1価の有機基は、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~10の1価の有機基としては、メチル基、エチル基、n-プロピル基i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等の芳香族基等が挙げられる。
 炭素数1~5の1価の脂肪族炭化水素基は、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~5の1価の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基等の直鎖または分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基等のシクロアルキル基等が挙げられる。炭素数1~5の1価の脂肪族炭化水素基としては、メチル基、エチル基、及びn-プロピル基からなる群から選択される少なくとも1種であることが好ましい。
R 2 and R 3 in the formula (10) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms.
The monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated. For example, the monovalent organic group having 1 to 10 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, a t-butyl group, and an n-pentyl group. , Neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and other linear or branched alkyl groups; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group. , Cycloalkyl group such as cycloheptyl group, cyclooctyl group; aromatic group such as phenyl group, tolyl group, xsilyl group, α-naphthyl group, β-naphthyl group and the like.
The monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated. For example, the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, and a t-butyl group. Linear or branched alkyl groups such as n-pentyl group and neopentyl group; cycloalkyl groups such as cyclopropyl group, cyclobutyl group and cyclopentyl group can be mentioned. The monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably at least one selected from the group consisting of a methyl group, an ethyl group, and an n-propyl group.
 式(10)中のR及びRは、それぞれ独立に、炭素数1~10の1価の有機基であり、少なくとも1つは炭素数6~10の1価の芳香族基である。炭素数1~10の1価の有機基は、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~10の1価の有機基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等の芳香族基等が挙げられる。炭素数6~10の1価の芳香族基としては、例えば、フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等が挙げられ、フェニル基、トリル基、又はキシリル基であることが好ましい。 R 4 and R 5 in the formula (10) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aromatic group having 6 to 10 carbon atoms. The monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated. For example, monovalent organic groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group and n-pentyl. Linear or branched alkyl group such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl. Cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; aromatic groups such as phenyl group, trill group, xylyl group, α-naphthyl group and β-naphthyl group can be mentioned. Examples of the monovalent aromatic group having 6 to 10 carbon atoms include a phenyl group, a tolyl group, a xsilyl group, an α-naphthyl group, a β-naphthyl group and the like, and may be a phenyl group, a tolyl group, or a xsilyl group. It is preferable to have.
 式(10)中のR及びRは、それぞれ独立に、炭素数1~10の1価の有機基であり、少なくとも1つは不飽和脂肪族炭化水素基を有する有機基である。炭素数1~10の1価の有機基は、直鎖状、環状、分枝状のいずれでもよい。炭素数1~10の1価の有機基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等の芳香族基等が挙げられる。炭素数1~10の1価の有機基としては、メチル基、エチル基、及び基フェニルから成る群から選択される少なくとも1種であることが好ましい。
 不飽和脂肪族炭化水素基を有する有機基は、炭素数3~10の不飽和脂肪族炭化水素基であってよく、直鎖状、環状、分枝状のいずれでもよい。炭素数3~10の不飽和脂肪族炭化水素基としては、例えば、ビニル基、アリル基、1-プロペニル基、3-ブテニル基、2-ブテニル基、ペンテニル基、シクロペンテニル基、ヘキセニル基、シクロヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基等が挙げられる。炭素数3~10の不飽和脂肪族炭化水素基としては、ビニル基、アリル基、及び3-ブテニル基から成る群から選択される少なくとも1種であることが好ましい。
R 6 and R 7 in the formula (10) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is an organic group having an unsaturated aliphatic hydrocarbon group. The monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched. Examples of the monovalent organic group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, a t-butyl group and an n-pentyl group. Linear or branched alkyl group such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl. Cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; aromatic groups such as phenyl group, trill group, xylyl group, α-naphthyl group and β-naphthyl group can be mentioned. The monovalent organic group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of a methyl group, an ethyl group, and a group phenyl.
The organic group having an unsaturated aliphatic hydrocarbon group may be an unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms, and may be linear, cyclic or branched. Examples of the unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms include a vinyl group, an allyl group, a 1-propenyl group, a 3-butenyl group, a 2-butenyl group, a pentenyl group, a cyclopentenyl group, a hexenyl group and a cyclo. Examples thereof include a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an ethynyl group, a propynyl group, a butynyl group, a pentynyl group and a hexynyl group. The unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms is preferably at least one selected from the group consisting of a vinyl group, an allyl group, and a 3-butenyl group.
 式(10)中のR~Rの水素原子の一部又は全部は、F、Cl、Br等のハロゲン原子等の置換基で置換されていてもよく、非置換であってもよい。 A part or all of the hydrogen atoms of R 1 to R 7 in the formula (10) may be substituted with a substituent such as a halogen atom such as F, Cl, Br, etc., or may be unsubstituted.
 式(10)中のL及びLは、それぞれ独立に、酸無水物構造を含む1価の有機基(酸無水物基ともいう)、アミノ基、イソシアネート基、カルボキシル基、アルコキシカルボニル基、ハロゲン化カルボニル基、ヒドロキシ基、エポキシ基、又はメルカプト基である。
 酸無水物構造を含む1価の有機基としては、例えば、下記式:
Figure JPOXMLDOC01-appb-C000138
{上記式中、「*」は、結合手を表す。}で表される、2,5-ジオキソテトラヒドロフラン-3-イル基が挙げられる。これらの中でもアミノ基、酸無水物基が好ましく、樹脂組成物の粘度安定性の観点から、アミノ基がより好ましい。
 アルコキシカルボニル基におけるアルコキシル基は、炭素数1~6のアルコキシル基であってよく、例えば、メトキシル基、エトキシル基、n-プロポキシル基、i-プロポキシル基、n-ブトキシル基、i-ブトキシル基、t-ブトキシル基等であってよい。
 ハロゲン化カルボニル基におけるハロゲン原子は、フッ素原子以外のハロゲン原子が好ましく、より好ましくは、塩素原子又はヨウ素原子である。
L 1 and L 2 in the formula (10) are each independently a monovalent organic group (also referred to as an acid anhydride group) containing an acid anhydride structure, an amino group, an isocyanate group, a carboxyl group, an alkoxycarbonyl group, and the like. It is a halogenated carbonyl group, a hydroxy group, an epoxy group, or a mercapto group.
Examples of the monovalent organic group containing an acid anhydride structure include the following formula:
Figure JPOXMLDOC01-appb-C000138
{In the above formula, "*" represents a bond. }, Examples thereof include a 2,5-dioxotetrahydrofuran-3-yl group. Among these, an amino group and an acid anhydride group are preferable, and an amino group is more preferable from the viewpoint of viscosity stability of the resin composition.
The alkoxyl group in the alkoxycarbonyl group may be an alkoxyl group having 1 to 6 carbon atoms, for example, a methoxyl group, an ethoxyl group, an n-propoxyl group, an i-propoxyl group, an n-butoxyl group, or an i-butoxyl group. , T-butoxyl group and the like.
The halogen atom in the halogenated carbonyl group is preferably a halogen atom other than a fluorine atom, and more preferably a chlorine atom or an iodine atom.
 式(10)で表されるケイ素含有化合物の官能基当量は、樹脂組成物のろ過性の観点から800以上が好ましく、1000以上がより好ましく、1500以上がさらに好ましい。他方、官能基当量が500以下の場合は、ろ過性が悪くなることがある。ここで官能基当量とは、官能基1mol当たりのケイ素含有化合物の分子量である(単位:g/mol)。官能基当量は、公知の方法によって測定できる。また、ケイ素含有化合物の官能基当量が800以上である場合は、ポリイミドフィルムの窒素雰囲気下の残留応力が小さいため好ましい。この理由としては、官能基当量が特定の値以上の場合、シリコーンドメインが増え、応力緩和されるためと考えられる。
 なお、官能基当量は、既存の規格等に従って、測定することができる。
The functional group equivalent of the silicon-containing compound represented by the formula (10) is preferably 800 or more, more preferably 1000 or more, still more preferably 1500 or more, from the viewpoint of the filterability of the resin composition. On the other hand, when the functional group equivalent is 500 or less, the filterability may deteriorate. Here, the functional group equivalent is the molecular weight of the silicon-containing compound per 1 mol of the functional group (unit: g / mol). The functional group equivalent can be measured by a known method. Further, when the functional group equivalent of the silicon-containing compound is 800 or more, the residual stress of the polyimide film under the nitrogen atmosphere is small, which is preferable. The reason for this is considered to be that when the functional group equivalent is equal to or more than a specific value, the silicone domain increases and stress is relaxed.
The functional group equivalent can be measured according to existing standards and the like.
 式(10)中のiは、1~200の整数であり、好ましくは2~100の整数、より好ましくは4~80の整数、更に好ましくは8~40の整数である。j及びkは、それぞれ独立に、0~200の整数であり、好ましくは0~50の整数、より好ましくは0~20の整数、更に好ましくは0~50の整数である。 I in the formula (10) is an integer of 1 to 200, preferably an integer of 2 to 100, more preferably an integer of 4 to 80, and even more preferably an integer of 8 to 40. j and k are independently integers of 0 to 200, preferably an integer of 0 to 50, more preferably an integer of 0 to 20, and even more preferably an integer of 0 to 50.
 樹脂組成物中のポリイミドは、式(10)に由来する構造を有していると、ポリイミドフィルムの窒素雰囲気下で測定した残留応力が良好(小さい)であるため、好ましい。窒素雰囲気下で測定する理由としては、ディスプレイのプロセスにおいて、ポリイミドフィルム上にSiO,SiN等の無機膜を形成する際、窒素雰囲気下に曝される場合があり、窒素雰囲気下の残留応力が小さいことが求められるからである。 It is preferable that the polyimide in the resin composition has a structure derived from the formula (10) because the residual stress measured in the nitrogen atmosphere of the polyimide film is good (small). The reason for measuring in a nitrogen atmosphere is that when an inorganic film such as SiO, SiN is formed on a polyimide film in the display process, it may be exposed to the nitrogen atmosphere, and the residual stress in the nitrogen atmosphere is small. This is because it is required.
〔第二の態様〕
《樹脂組成物》
〈樹脂/ポリイミド前駆体/ポリイミド〉
 本実施形態の樹脂組成物は、
下記一般式(1)又は(2):
Figure JPOXMLDOC01-appb-C000139
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
Figure JPOXMLDOC01-appb-C000140
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
で表される構造単位の樹脂を含み、ポリイミド前駆体(以下、全ポリイミド前駆体ともいう)又はポリイミド(以下、全ポリイミドともいう)を含むこともでき、Pは、下記一般式(3):
Figure JPOXMLDOC01-appb-C000141
で表される化合物に由来する構成単位を含み、そして所望により、Pは、下記一般式(4):
Figure JPOXMLDOC01-appb-C000142
で表される化合物に由来する構成単位を含むことができる。
また、P又Pは、下記一般式(5):
Figure JPOXMLDOC01-appb-C000143
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50であり、かつ官能基当量が8000以上である}
で表されるケイ素含有化合物に由来する構成単位を含む。
[Second aspect]
<< Resin composition >>
<Resin / Polyimide precursor / Polyimide>
The resin composition of this embodiment is
The following general formula (1) or (2):
Figure JPOXMLDOC01-appb-C000139
{In the formula, P 1 represents a divalent organic group, P 2 represents a tetravalent organic group, and p represents a positive integer. }
Figure JPOXMLDOC01-appb-C000140
{In the formula, P 1 represents a divalent organic group, P 2 represents a tetravalent organic group, and p represents a positive integer. }
It contains the resin of the structural unit represented by, and may also contain a polyimide precursor (hereinafter, also referred to as a total polyimide precursor) or a polyimide (hereinafter, also referred to as a total polyimide), and P 1 is the following general formula (3). :
Figure JPOXMLDOC01-appb-C000141
Containing a structural unit derived from the compound represented by, and optionally, P 2 is the following general formula (4) :.
Figure JPOXMLDOC01-appb-C000142
It can contain a structural unit derived from the compound represented by.
Further, P 1 or P 2 is expressed by the following general formula (5):
Figure JPOXMLDOC01-appb-C000143
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, j and k are each independently an integer of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. Yes, and the functional group equivalent is 8000 or more}
Includes a structural unit derived from a silicon-containing compound represented by.
 ポリイミドは、ポリイミド前駆体を熱イミド化することで得られ、化学イミド化することもできる。得られるポリイミドフィルムの透明性の観点から、熱イミド化が好ましい。 Polyimide can be obtained by thermally imidizing a polyimide precursor and can also be chemically imidized. Thermal imidization is preferable from the viewpoint of transparency of the obtained polyimide film.
 また、ポリイミド樹脂組成物は、組成物の粘度安定性の観点から、ポリイミド前駆体樹脂組成物と比較して好ましい。 Further, the polyimide resin composition is preferable as compared with the polyimide precursor resin composition from the viewpoint of the viscosity stability of the composition.
 また、本発明の別の実施形態に係る樹脂組成物は、下記一般式(6)及び(7):
Figure JPOXMLDOC01-appb-C000144
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)又はそれに由来の構造単位を含まない。}
Figure JPOXMLDOC01-appb-C000145
{式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)又はそれに由来の構造単位を含まない。}
で表される構造単位を含む、一部がイミド化されたポリイミド前駆体を含むこともでき、P及び/又はPは、下記一般式(8):
Figure JPOXMLDOC01-appb-C000146
で表される化合物に由来する構成単位を含むこともできる。
Further, the resin composition according to another embodiment of the present invention has the following general formulas (6) and (7):
Figure JPOXMLDOC01-appb-C000144
{In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Does not contain fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) or structural units derived from it. }
Figure JPOXMLDOC01-appb-C000145
{In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Does not contain fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) or structural units derived from it. }
In a structural unit represented by the part it can also include imidized polyimide precursor, P 3 and / or P 5 is represented by the following general formula (8):
Figure JPOXMLDOC01-appb-C000146
It can also contain a structural unit derived from the compound represented by.
 また、P及び/又はPは、
3,3’-ジアミノジフェニルスルホン(33DAS);又は
4,4’-ジアミノジフェニルスルホン(44DAS)
の各化合物に由来する構成単位を少なくとも一つ含むことができる。
Further, P 3 and / or P 5 are
3,3'-diaminodiphenyl sulfone (33DAS); or 4,4'-diaminodiphenyl sulfone (44DAS)
It can contain at least one structural unit derived from each compound of.
 また、P及び/又はPは、
9,9-ビス(4-アミノフェニル)フルオレン(BAFL);又は
下記一般式:
Figure JPOXMLDOC01-appb-C000147
の化合物(BisAM)
の各化合物に由来する構成単位を少なくとも一つ含むことができる。
Further, P 3 and / or P 5 are
9,9-Bis (4-aminophenyl) fluorene (BAFL); or the following general formula:
Figure JPOXMLDOC01-appb-C000147
Compound (BisAM)
It can contain at least one structural unit derived from each compound of.
 これらの中でも、ポリイミドフィルムの伸度、機械特性の観点で、前記下記一般式(8)の化合物、3,3’-ジアミノジフェニルスルホン(33DAS)及び/または、4,4’-ジアミノジフェニルスルホン(44DAS)が好ましい。一方、前記P及び/又は、Pに6FODAを用いることは、ワニスの粘度安定性、ろ過性の観点、イミド化する際に発生する異物の観点から、好ましくない。 Among these, from the viewpoint of the elongation and mechanical properties of the polyimide film, the compound of the following general formula (8), 3,3'-diaminodiphenyl sulfone (33DAS) and / or 4,4'-diaminodiphenyl sulfone ( 44DAS) is preferred. On the other hand, the use of 6FODA for P 3 and / or P 5 is not preferable from the viewpoint of viscosity stability of the varnish, filterability, and foreign matter generated during imidization.
 P及び/又はPは、下記一般式(9):
Figure JPOXMLDOC01-appb-C000148
で表される化合物に由来する構成単位を含むこともできる。
P 4 and / or P 6 is represented by the following general formula (9):
Figure JPOXMLDOC01-appb-C000148
It can also contain a structural unit derived from the compound represented by.
 また、P及び/又はPは、
4,4’-オキシジフタル酸無水物(ODPA);
4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA);
9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF);下記一般式:
Figure JPOXMLDOC01-appb-C000149
の化合物(BzDA);及び
下記一般式:
Figure JPOXMLDOC01-appb-C000150
の化合物(BNBDA);
の化合物に由来する構成単位を少なくとも一つ含むことができる。
Moreover, P 4 and / or P 6 is
4,4'-Oxydiphthalic anhydride (ODPA);
4,4'-(Hexafluoroisopropylidene) diphthalic acid anhydride (6FDA);
9,9-Bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride (BPAF); the following general formula:
Figure JPOXMLDOC01-appb-C000149
Compound (BzDA); and the following general formula:
Figure JPOXMLDOC01-appb-C000150
Compound (BNBDA);
Can contain at least one structural unit derived from the compound of.
 これらの中でも、ワニスの粘度安定性、ろ過性の観点、ポリイミドフィルムの透明性の観点から、一般式(9)の化合物、ODPAが好ましい。 Among these, the compound of the general formula (9), ODPA, is preferable from the viewpoint of viscosity stability of the varnish, filterability, and transparency of the polyimide film.
 また、一実施形態では、P又はPが、下記一般式(10):
Figure JPOXMLDOC01-appb-C000151
{式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50であり、かつ官能基当量が8000以上である}
で表されるケイ素含有化合物に由来する構成単位を含む。
Further, in one embodiment, P 3 or P 4 is represented by the following general formula (10):
Figure JPOXMLDOC01-appb-C000151
{In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers from 0 to 200, 0 ≦ j / (i + j + k) ≦ 0.50, and the functional group equivalent is 8000 or more}.
Includes a structural unit derived from a silicon-containing compound represented by.
 このような一部がイミド化されたポリイミド前駆体の場合、前述の全ポリイミド前駆体と比較して、組成物の粘度安定性に優れ、前述の全ポリイミドと比較すると、ポリイミド(ポリイミド前駆体)の合成のし易さの観点で優れる。 In the case of such a partially imidized polyimide precursor, the viscosity stability of the composition is excellent as compared with the above-mentioned all polyimide precursor, and compared with the above-mentioned all polyimide, the polyimide (polyimide precursor) It is excellent in terms of ease of synthesis.
 また、一般式(10)において、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、それらの中でも、樹脂特性又はフィルム特性の観点からアミノ基が好ましい。 Further, in the general formula (10), L 1 and L 2 are independently amino group, acid anhydride group, isocyanate group, carboxyl group, acid ester group, acid halide group, hydroxy group, epoxy group or mercapto. It is a group, and among them, an amino group is preferable from the viewpoint of resin properties or film properties.
ジアミン
 樹脂組成物は、下記一般式(3):
Figure JPOXMLDOC01-appb-C000152
で表されるジアミン化合物に由来する構成単位を含む。一般式(3)で表されるジアミン化合物の中でも、ポリイミドフィルムの透明性、YIの観点から、3,5-ジアミノ安息香酸(DABA)が好ましい。この構造単位を有すると、得られるポリイミドフィルムの機械特性向上し(特に引張伸度)、耐熱性を向上することができるため好ましい。このような特性が向上する理由は明確ではないが、カルボキシル基の作用によって、分子間相互作用が働いているためと考えられる。
The diamine resin composition has the following general formula (3):
Figure JPOXMLDOC01-appb-C000152
Contains structural units derived from the diamine compound represented by. Among the diamine compounds represented by the general formula (3), 3,5-diaminobenzoic acid (DABA) is preferable from the viewpoint of transparency of the polyimide film and YI. Having this structural unit is preferable because the mechanical properties of the obtained polyimide film can be improved (particularly the tensile elongation) and the heat resistance can be improved. The reason for the improvement of such properties is not clear, but it is considered that the intramolecular interaction is working due to the action of the carboxyl group.
 全ジアミン(上記一般式の(5)、(10)においてL及びLがアミノ基の化合物を含む)中のDABAの含有量は、50モル%超、55モル%超、又は70モル%以上、又は90モル%以上、又は95モル%以上であってよい。DABAの量が多いほど、ポリイミドフィルムの引張伸度が大きくなるため好ましい。 The content of DABA in the total diamine (including the compound in which L 1 and L 2 are amino groups in the above general formulas (5) and (10)) is more than 50 mol%, more than 55 mol%, or 70 mol%. It may be 90 mol% or more, or 95 mol% or more. The larger the amount of DABA, the larger the tensile elongation of the polyimide film, which is preferable.
また、樹脂組成物は、33DAS及び/又は44DASに由来する構成単位を含む。33DAS,44DASは、ポリイミドフィルムの厚さ方向Rth(リタデーション)と機械特性を両立する観点から、33DAS及び44DASの混合物を用いることが好ましい。 The resin composition also contains structural units derived from 33 DAS and / or 44 DAS. For 33DAS and 44DAS, it is preferable to use a mixture of 33DAS and 44DAS from the viewpoint of achieving both the thickness direction Rth (retaration) of the polyimide film and the mechanical properties.
 全ジアミン(上記一般式の(5)、(10)においてL及びLがアミノ基の化合物を含む)中の33DAS及び/又は44DASの総含有量は、50モル%超、55モル%超、又は70モル%以上、又は90モル%以上、又は95モル%以上であってよい。33DAS及び/又は44DASの量が多いほど、ポリイミドフィルムの機械強度が向上するため好ましい。 The total content of 33 DAS and / or 44 DAS in the total diamine (including the compound in which L 1 and L 2 are amino groups in the above general formulas (5) and (10)) is more than 50 mol% and more than 55 mol%. , Or 70 mol% or more, 90 mol% or more, or 95 mol% or more. A larger amount of 33 DAS and / or 44 DAS is preferable because the mechanical strength of the polyimide film is improved.
 一般式(3)以外のジアミンとしては、p-フェニレンジアミン(PDA)、m-フェニレンジアミン、2,2’-ジメチルベンジジン(mTB)、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、4,4’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、4,4-ビス(4-アミノフェノキシ)ビフェニル、4,4-ビス(3-アミノフェノキシ)ビフェニル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、9,10-ビス(4-アミノフェニル)アントラセン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、及び1,4-ビス(3-アミノプロピルジメチルシリル)ベンゼン,9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン](BiSAM)等が挙げられる。 Examples of diamines other than the general formula (3) include p-phenylenediamine (PDA), m-phenylenediamine, 2,2'-dimethylbenzidine (mTB), 4,4'-diaminodiphenylsulfide, and 3,4'-diamino. Diphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 4,4'-diaminobenzophenone, 3,4'-diamino Benzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 1,4-bis (4-aminophenoxy) benzene, 1,3 -Bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4-aminophenoxy) phenyl] sulfone, 4,4-bis (4-aminophenoxy) biphenyl, 4,4-Bis (3-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] ether, 1,4-bis (4-amino) Benzene) benzene, 1,3-bis (4-aminophenyl) benzene, 9,10-bis (4-aminophenyl) anthracene, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4) -Aminophenyl) hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl) propane, 2,2-bis [4- (4-aminophenoxy) phenyl) hexafluoropropane, and 1,4 -Bis (3-aminopropyldimethylsilyl) benzene, 9,9-bis (4-aminophenyl) fluorene (BAFL), 1,3-bis [1- (4-aminophenyl) -1-methylethyl] benzene] (BiSAM) and the like.
 これらの中でも、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン](BiSAM)、及び1,4-シクロヘキサンジアミン(CHDA)から成る群から選択される少なくとも1つであることが好ましい。 Among these, 9,9-bis (4-aminophenyl) fluorene (BAFL), 1,3-bis [1- (4-aminophenyl) -1-methylethyl] benzene] (BiSAM), and 1,4 -Preferably at least one selected from the group consisting of cyclohexanediamine (CHDA).
 得られるポリイミド樹脂膜の耐熱性と機械強度の観点から、一般式(3)33DAS及び/又は44DAS以外のジアミンは、9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン](BiSAM)から成る群から選択される少なくとも一以上であることがより好ましい。 From the viewpoint of heat resistance and mechanical strength of the obtained polyimide resin film, diamines other than the general formula (3) 33DAS and / or 44DAS are 9,9-bis (4-aminophenyl) fluorene (BAFL), 1,3-. More preferably, it is at least one selected from the group consisting of bis [1- (4-aminophenyl) -1-methylethyl] benzene] (BiSAM).
酸二無水物
 樹脂組成物は、下記一般式(4):
Figure JPOXMLDOC01-appb-C000153
で表される化合物(CpODAともいう)に由来する構成単位を含む。この構造単位を有すると、得られるポリイミドフィルムの透明性、YI、耐熱性の機械特性を向上することができるため好ましい。
The acid dianhydride resin composition has the following general formula (4):
Figure JPOXMLDOC01-appb-C000153
It contains a structural unit derived from a compound represented by (also referred to as CpODA). Having this structural unit is preferable because it can improve the transparency, YI, and heat resistance of the obtained polyimide film.
 全酸二無水物(上記一般式の(5)、(10)においてL及びLが酸無水物基の化合物を含む)中のCpODAの含有量は、50モル%以上、60モル%以上、又は70モル%以上、又は90モル%以上、又は95モル%以上であってよい。CpODAの量が多いほど、ポリイミドフィルムの透明性が向上するため好ましい。 The content of CpODA in total acid anhydride (including compounds in which L 1 and L 2 are acid anhydride groups in the above general formulas (5) and (10)) is 50 mol% or more and 60 mol% or more. , Or 70 mol% or more, 90 mol% or more, or 95 mol% or more. The larger the amount of CpODA, the better the transparency of the polyimide film, which is preferable.
 また。樹脂組成物は、ODPAに由来する構成単位を含む。この構造単位を有すると、ワニスの粘度安定性、ろ過性の観点、得られるポリイミドフィルムの透明性を向上することができるため好ましい。 Also. The resin composition contains a structural unit derived from ODPA. Having this structural unit is preferable because it can improve the viscosity stability of the varnish, the filterability, and the transparency of the obtained polyimide film.
 全酸二無水物(上記一般式の(5)、(10)においてL及びLが酸無水物基の化合物を含む)中のODPAの含有量は、50モル%以上、60モル%以上、又は70モル%以上、又は90モル%以上、又は95モル%以上であってよい。ODPAの量が多いほど、ポリイミドフィルムの透明性が向上するため好ましい。 The content of ODPA in total acid anhydride (including compounds in which L 1 and L 2 are acid anhydride groups in the above general formulas (5) and (10)) is 50 mol% or more and 60 mol% or more. , Or 70 mol% or more, 90 mol% or more, or 95 mol% or more. The larger the amount of ODPA, the better the transparency of the polyimide film, which is preferable.
 一般式(4)以外の酸二無水物としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-シクロヘキセン-1,2ジカルボン酸無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’―ジフェニルスルホンテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物、p-フェニレンビス(トリメリテート酸無水物)、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、1,4-ビス[2-(3,4-ジカルボキシフェニル)-2-プロピル]ベンゼン二無水物、ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]メタン二無水物、2,2-ビス[3-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、及び1,2,7,8-フェナントレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、4,4’-オキシジフタル酸無水物(ODPA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)、及び1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、下記構造:
Figure JPOXMLDOC01-appb-C000154
の化合物(BzDA);下記構造:
Figure JPOXMLDOC01-appb-C000155
の化合物(BNBDA)等が挙げられる。
Examples of the acid dianhydride other than the general formula (4) include pyromellitic acid dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride (BPDA), 2,2',. 3,3'-Biphenyltetracarboxylic dianhydride, 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), 5- (2,5-dioxotetrahydro-3-franyl) -3- Methyl-cyclohexene-1,2 dicarboxylic acid anhydride, 1,2,3,4-benzenetetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, 2,2' , 3,3'-benzophenone tetracarboxylic acid dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic acid dianhydride, methylene-4,4'-diphthalic acid dianhydride, 1,1- Ethiliden-4,4'-diphthalic acid dianhydride, 2,2-propylidene-4,4'-diphthalic acid dianhydride, 1,2-ethylene-4,4'-diphthalic acid dianhydride, 1,3 -Trimethylene-4,4'-diphthalic acid dianhydride, 1,4-tetramethylene-4,4'-diphthalic acid dianhydride, 1,5-pentamethylene-4,4'-diphthalic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride, p-phenylenebis (trimeritate acid anhydride), thio-4,4'-diphthalic acid dianhydride, sulfonyl-4,4'-diphthalic acid dianhydride, 1, 3-Bis (3,4-dicarboxyphenyl) benzene dianhydride, 1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) Benzene dianhydride, 1,3-bis [2- (3,4-dicarboxyphenyl) -2-propyl] benzene dianhydride, 1,4-bis [2- (3,4-dicarboxyphenyl)- 2-propyl] benzene dianhydride, bis [3- (3,4-dicarboxyphenoxy) phenyl] methane dianhydride, bis [4- (3,4-dicarboxyphenoxy) phenyl] methane dianhydride, 2 , 2-bis [3- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, bis (3) , 4-Dicarboxyphenoxy) dimethylsilane dianhydride, 1,3-bis (3,4-dicarboxyphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride, 2,3,6 7-Naphthalenetetracarboxylic dianhydride, 1,4,5 , 8-naphthalenetetracarboxylic acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid dianhydride, 3,4,9,10-perylenetetracarboxylic acid dianhydride, 2,3,6,7 -Anthracene tetracarboxylic acid dianhydride, and 1,2,7,8-phenanthrentetracarboxylic acid dianhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianohydride (BPAF), 4 , 4'-oxydiphthalic anhydride (ODPA), 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride (HPMDA), and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride (CBDA). , The following structure:
Figure JPOXMLDOC01-appb-C000154
Compound (BzDA); structure below:
Figure JPOXMLDOC01-appb-C000155
(BNBDA) and the like.
 上記一般式(4)以外の酸二無水物は、6FDA、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、BzDA、BNBDA、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(HPMDA)から成る群から選択される少なくとも1つであることが好ましい。酸二無水物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Acid dianhydrides other than the above general formula (4) include 6FDA, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride (BPAF), BzDA, BNBDA, 1, 2, 4, 5 -Preferably at least one selected from the group consisting of cyclohexanetetracarboxylic dianhydride (HPMDA). The acid dianhydride may be used alone or in combination of two or more.
〈ケイ素含有化合物〉
 本実施形態におけるポリイミド前駆体は、上記式(1)で表される構造とともに、上記式(2)で表される構造を有していてもよい。ポリイミド前駆体中の、ケイ素含有化合物に由来する構造の含有割合は、ポリイミド前駆体の質量を基準として、5質量%以上40質量%以下であることが好ましい。ポリイミド前駆体がケイ素含有化合物に由来する構造をこの数値範囲内で含むと、得られるポリイミドフィルムにおいて、低い残留応力と、高度の透明性及び耐熱性とを両立することができるため好ましい。ケイ素含有化合物に由来する構造の含有割合は、ポリイミド前駆体の質量を基準として、6質量%以上、又は7質量%以上であってもよく、また30質量%以下、又は25質量%以下であってもよい。
<Silicon-containing compound>
The polyimide precursor in the present embodiment may have a structure represented by the above formula (1) as well as a structure represented by the above formula (2). The content ratio of the structure derived from the silicon-containing compound in the polyimide precursor is preferably 5% by mass or more and 40% by mass or less based on the mass of the polyimide precursor. It is preferable that the polyimide precursor contains a structure derived from a silicon-containing compound within this numerical range because it is possible to achieve both low residual stress and high transparency and heat resistance in the obtained polyimide film. The content ratio of the structure derived from the silicon-containing compound may be 6% by mass or more, 7% by mass or more, or 30% by mass or less, or 25% by mass or less, based on the mass of the polyimide precursor. You may.
 本実施形態におけるポリイミド/ポリイミド前駆体は、ケイ素含有化合物に由来する構造を有する。したがって、本実施形態におけるポリイミド前駆体の合成に用いられるケイ素含有化合物は、テトラカルボン酸二無水物及びジアミンのうちの少なくとも一方と共縮合し得る反応性基とを有する化合物であってよい。 The polyimide / polyimide precursor in this embodiment has a structure derived from a silicon-containing compound. Therefore, the silicon-containing compound used in the synthesis of the polyimide precursor in the present embodiment may be a compound having a reactive group capable of cocondensing with at least one of the tetracarboxylic dianhydride and the diamine.
 このようなケイ素含有化合物は、例えば、下記式(5):
Figure JPOXMLDOC01-appb-C000156
{式中、
  Rは、それぞれ独立に、単結合又は炭素数1~10の2価の有機基であり、
  R及びRは、それぞれ独立に、炭素数1~10の1価の有機基であって、R及びRのうちの少なくとも1つは、炭素数1~5の1価の脂肪族炭化水素基であり、
  R及びRは、それぞれ独立に、炭素数1~10の1価の有機基であって、R及びRのうちの少なくとも1つは、炭素数6~10の1価の芳香族基であり、
  R及びRは、それぞれ独立に、炭素数1~10の1価の有機基であって、R及びRのうちの少なくとも1つは、炭素数2~10の不飽和脂肪族炭化水素基を含む有機基であり、
  L及びLは、それぞれ独立に、酸無水物構造を含む1価の有機基、アミノ基、イソシアネート基、カルボキシル基、アルコキシカルボニル基、ハロゲン化カルボニル基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、
  i及びjは、それぞれ独立に、1~200の整数であり、
  kは、0~200の整数であり、そして、
  0.05≦j/(i+j+k)≦0.50の関係を満たす。}で表される化合物が挙げられる。
Such a silicon-containing compound is, for example, the following formula (5) :.
Figure JPOXMLDOC01-appb-C000156
{In the formula,
R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms.
R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 2 and R 3 is a monovalent aliphatic group having 1 to 5 carbon atoms. It is a hydrocarbon group and
R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 4 and R 5 is a monovalent aromatic group having 6 to 10 carbon atoms. Is the basis and
R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one of R 6 and R 7 is an unsaturated aliphatic hydrocarbon having 2 to 10 carbon atoms. It is an organic group containing a hydrogen group.
L 1 and L 2 are each independently a monovalent organic group containing an acid anhydride structure, an amino group, an isocyanate group, a carboxyl group, an alkoxycarbonyl group, a halogenated carbonyl group, a hydroxy group, an epoxy group, or a mercapto group. And
i and j are independently integers from 1 to 200, respectively.
k is an integer from 0 to 200, and
The relationship of 0.05 ≦ j / (i + j + k) ≦ 0.50 is satisfied. } Can be mentioned.
 式(5)中のRは、それぞれ独立に、単結合又は炭素数1~10の2価の有機基である。炭素数1~10の2価の有機基は、直鎖状、環状、及び分枝状のいずれでもよく、飽和していても不飽和であってもよい。炭素数1~10の2価の脂肪族炭化水素基としては、例えば、メチレン基、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、s-ブチレン基、t-ブチレン基、n-ペンチレン基、ネオペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、n-ノニレン基、n-デシレン基等の直鎖又は分岐鎖アルキレン基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基等のシクロアルキレン基が挙げられる。炭素数1~10の2価の脂肪族炭化水素基としては、エチレン基、n-プロピレン基、及びi-プロピレン基からなる群から選択される少なくとも1種であることが好ましい。 R 1 in the formula (5) is a single bond or a divalent organic group having 1 to 10 carbon atoms, respectively. The divalent organic group having 1 to 10 carbon atoms may be linear, cyclic, or branched, and may be saturated or unsaturated. Examples of the divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms include a methylene group, an ethylene group, an n-propylene group, an i-propylene group, an n-butylene group, an s-butylene group and a t-butylene group. Linear or branched alkylene groups such as n-pentylene group, neopentylene group, n-hexylene group, n-heptylene group, n-octylene group, n-nonylene group, n-decylene group; cyclopropylene group, cyclobutylene group, Examples thereof include a cycloalkylene group such as a cyclopentylene group, a cyclohexylene group, a cycloheptylene group and a cyclooctylene group. The divalent aliphatic hydrocarbon group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of an ethylene group, an n-propylene group and an i-propylene group.
 式(5)中のR及びRそれぞれ独立に、炭素数1~10の1価の有機基であり、少なくとも1つは炭素数1~5の1価の脂肪族炭化水素基である。
 炭素数1~10の1価の有機基は、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~10の1価の有機基としては、メチル基、エチル基、n-プロピル基i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等の芳香族基等が挙げられる。
 炭素数1~5の1価の脂肪族炭化水素基は、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~5の1価の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基等の直鎖または分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基等のシクロアルキル基等が挙げられる。炭素数1~5の1価の脂肪族炭化水素基としては、メチル基、エチル基、及びn-プロピル基からなる群から選択される少なくとも1種であることが好ましい。
R 2 and R 3 in the formula (5) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms.
The monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated. For example, the monovalent organic group having 1 to 10 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, a t-butyl group, and an n-pentyl group. , Neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group and other linear or branched alkyl groups; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group. , Cycloalkyl group such as cycloheptyl group, cyclooctyl group; aromatic group such as phenyl group, tolyl group, xsilyl group, α-naphthyl group, β-naphthyl group and the like.
The monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated. For example, the monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms includes a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, and a t-butyl group. Linear or branched alkyl groups such as n-pentyl group and neopentyl group; cycloalkyl groups such as cyclopropyl group, cyclobutyl group and cyclopentyl group can be mentioned. The monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms is preferably at least one selected from the group consisting of a methyl group, an ethyl group, and an n-propyl group.
 式(5)中のR及びRは、それぞれ独立に、炭素数1~10の1価の有機基であり、少なくとも1つは炭素数6~10の1価の芳香族基である。炭素数1~10の1価の有機基は、直鎖状、環状、分枝状のいずれでもよく、飽和していても不飽和であってもよい。例えば、炭素数1~10の1価の有機基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等の芳香族基等が挙げられる。炭素数6~10の1価の芳香族基としては、例えば、フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等が挙げられ、フェニル基、トリル基、又はキシリル基であることが好ましい。 R 4 and R 5 in the formula (5) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is a monovalent aromatic group having 6 to 10 carbon atoms. The monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched, and may be saturated or unsaturated. For example, monovalent organic groups having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group and n-pentyl. Linear or branched alkyl group such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl. Cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; aromatic groups such as phenyl group, trill group, xylyl group, α-naphthyl group and β-naphthyl group can be mentioned. Examples of the monovalent aromatic group having 6 to 10 carbon atoms include a phenyl group, a tolyl group, a xsilyl group, an α-naphthyl group, a β-naphthyl group and the like, and may be a phenyl group, a tolyl group, or a xsilyl group. It is preferable to have.
 式(5)中のR及びRは、それぞれ独立に、炭素数1~10の1価の有機基であり、少なくとも1つは不飽和脂肪族炭化水素基を有する有機基である。炭素数1~10の1価の有機基は、直鎖状、環状、分枝状のいずれでもよい。炭素数1~10の1価の有機基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の直鎖又は分岐鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、α-ナフチル基、β-ナフチル基等の芳香族基等が挙げられる。炭素数1~10の1価の有機基としては、メチル基、エチル基、及び基フェニルから成る群から選択される少なくとも1種であることが好ましい。
 不飽和脂肪族炭化水素基を有する有機基は、炭素数3~10の不飽和脂肪族炭化水素基であってよく、直鎖状、環状、分枝状のいずれでもよい。炭素数3~10の不飽和脂肪族炭化水素基としては、例えば、ビニル基、アリル基、1-プロペニル基、3-ブテニル基、2-ブテニル基、ペンテニル基、シクロペンテニル基、ヘキセニル基、シクロヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基等が挙げられる。炭素数3~10の不飽和脂肪族炭化水素基としては、ビニル基、アリル基、及び3-ブテニル基から成る群から選択される少なくとも1種であることが好ましい。
R 6 and R 7 in the formula (5) are independently monovalent organic groups having 1 to 10 carbon atoms, and at least one is an organic group having an unsaturated aliphatic hydrocarbon group. The monovalent organic group having 1 to 10 carbon atoms may be linear, cyclic or branched. Examples of the monovalent organic group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s-butyl group, a t-butyl group and an n-pentyl group. Linear or branched alkyl group such as group, neopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group; cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl. Cycloalkyl groups such as groups, cycloheptyl groups and cyclooctyl groups; aromatic groups such as phenyl group, trill group, xylyl group, α-naphthyl group and β-naphthyl group can be mentioned. The monovalent organic group having 1 to 10 carbon atoms is preferably at least one selected from the group consisting of a methyl group, an ethyl group, and a group phenyl.
The organic group having an unsaturated aliphatic hydrocarbon group may be an unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms, and may be linear, cyclic or branched. Examples of the unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms include a vinyl group, an allyl group, a 1-propenyl group, a 3-butenyl group, a 2-butenyl group, a pentenyl group, a cyclopentenyl group, a hexenyl group and a cyclo. Examples thereof include a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an ethynyl group, a propynyl group, a butynyl group, a pentynyl group and a hexynyl group. The unsaturated aliphatic hydrocarbon group having 3 to 10 carbon atoms is preferably at least one selected from the group consisting of a vinyl group, an allyl group, and a 3-butenyl group.
 式(5)中のR~Rの水素原子の一部又は全部は、F、Cl、Br等のハロゲン原子等の置換基で置換されていてもよく、非置換であってもよい。 A part or all of the hydrogen atoms of R 1 to R 7 in the formula (5) may be substituted with a substituent such as a halogen atom such as F, Cl, Br or the like, or may be unsubstituted.
 式(5)中のL及びLは、それぞれ独立に、酸無水物構造を含む1価の有機基(酸無水物基ともいう)、アミノ基、イソシアネート基、カルボキシル基、アルコキシカルボニル基、ハロゲン化カルボニル基、ヒドロキシ基、エポキシ基、又はメルカプト基である。それらの中でも、L及びLとしては、樹脂特性又はフィルム特性の観点からアミノ基が好ましい。 L 1 and L 2 in the formula (5) are each independently a monovalent organic group (also referred to as an acid anhydride group) containing an acid anhydride structure, an amino group, an isocyanate group, a carboxyl group, an alkoxycarbonyl group, and the like. It is a halogenated carbonyl group, a hydroxy group, an epoxy group, or a mercapto group. Among them, as L 1 and L 2 , an amino group is preferable from the viewpoint of resin properties or film properties.
 酸無水物構造を含む1価の有機基としては、例えば、下記式:
Figure JPOXMLDOC01-appb-C000157
{上記式中、「*」は、結合手を表す。}で表される、2,5-ジオキソテトラヒドロフラン-3-イル基が挙げられる。これらの中でもアミノ基、酸無水物基が好ましく、樹脂組成物の粘度安定性の観点から、アミノ基がより好ましい。
Examples of the monovalent organic group containing an acid anhydride structure include the following formula:
Figure JPOXMLDOC01-appb-C000157
{In the above formula, "*" represents a bond. }, Examples thereof include a 2,5-dioxotetrahydrofuran-3-yl group. Among these, an amino group and an acid anhydride group are preferable, and an amino group is more preferable from the viewpoint of viscosity stability of the resin composition.
 アルコキシカルボニル基におけるアルコキシル基は、炭素数1~6のアルコキシル基であってよく、例えば、メトキシル基、エトキシル基、n-プロポキシル基、i-プロポキシル基、n-ブトキシル基、i-ブトキシル基、t-ブトキシル基等であってよい。
 ハロゲン化カルボニル基におけるハロゲン原子は、フッ素原子以外のハロゲン原子が好ましく、より好ましくは、塩素原子又はヨウ素原子である。
The alkoxyl group in the alkoxycarbonyl group may be an alkoxyl group having 1 to 6 carbon atoms, for example, a methoxyl group, an ethoxyl group, an n-propoxyl group, an i-propoxyl group, an n-butoxyl group, or an i-butoxyl group. , T-butoxyl group and the like.
The halogen atom in the halogenated carbonyl group is preferably a halogen atom other than a fluorine atom, and more preferably a chlorine atom or an iodine atom.
 式(5)で表されるケイ素含有化合物の官能基当量は、樹脂組成物のろ過性の観点から800以上が好ましく、1000以上がより好ましく、1500以上がさらに好ましい。他方、官能基当量が500以下の場合は、ろ過性が悪くなることがある。ここで官能基当量とは、官能基1mol当たりのケイ素含有化合物の分子量である(単位:g/mol)。官能基当量は、公知の方法によって測定できる。また、ケイ素含有化合物の官能基当量が800以上である場合は、ポリイミドフィルムの窒素雰囲気下の残留応力が小さいため好ましい。この理由としては、官能基当量が特定の値以上の場合、シリコーンドメインが増え、応力緩和されるためと考えられる。 The functional group equivalent of the silicon-containing compound represented by the formula (5) is preferably 800 or more, more preferably 1000 or more, still more preferably 1500 or more, from the viewpoint of the filterability of the resin composition. On the other hand, when the functional group equivalent is 500 or less, the filterability may deteriorate. Here, the functional group equivalent is the molecular weight of the silicon-containing compound per 1 mol of the functional group (unit: g / mol). The functional group equivalent can be measured by a known method. Further, when the functional group equivalent of the silicon-containing compound is 800 or more, the residual stress of the polyimide film under the nitrogen atmosphere is small, which is preferable. The reason for this is considered to be that when the functional group equivalent is equal to or more than a specific value, the silicone domain increases and stress is relaxed.
 なお、官能基当量は、既存の規格等に従って、測定することができる。 The functional group equivalent can be measured according to existing standards and the like.
 式(5)中のiは、1~200の整数であり、好ましくは2~100の整数、より好ましくは4~80の整数、更に好ましくは8~40の整数である。j及びkは、それぞれ独立に、0~200の整数であり、好ましくは0~50の整数、より好ましくは0~20の整数、更に好ましくは0~50の整数である。 I in the formula (5) is an integer of 1 to 200, preferably an integer of 2 to 100, more preferably an integer of 4 to 80, and even more preferably an integer of 8 to 40. j and k are independently integers of 0 to 200, preferably an integer of 0 to 50, more preferably an integer of 0 to 20, and even more preferably an integer of 0 to 50.
 樹脂組成物中のポリイミドは、式(5)に由来する構造を有していると、ポリイミドフィルムの窒素雰囲気下で測定した残留応力が良好(小さい)であるため、好ましい。窒素雰囲気下で測定する理由としては、ディスプレイのプロセスにおいて、ポリイミドフィルム上にSiO,SiN等の無機膜を形成する際、窒素雰囲気下に曝される場合があり、窒素雰囲気下の残留応力が小さいことが求められるからである。 It is preferable that the polyimide in the resin composition has a structure derived from the formula (5) because the residual stress measured in the nitrogen atmosphere of the polyimide film is good (small). The reason for measuring in a nitrogen atmosphere is that when an inorganic film such as SiO, SiN is formed on a polyimide film in the display process, it may be exposed to the nitrogen atmosphere, and the residual stress in the nitrogen atmosphere is small. This is because it is required.
〔第一の態様と第二の態様に共通する構成要素及び好ましい実施形態〕
 本発明の第一の態様と第二の態様に共通する構成要素、及び本発明の好ましい実施形態について以下に説明する。なお、第一の態様と第二の態様の構成要素は、互換したり、組み合わせたりしてよい。
[Components common to the first and second aspects and preferred embodiments]
The components common to the first aspect and the second aspect of the present invention, and preferred embodiments of the present invention will be described below. The components of the first aspect and the second aspect may be compatible or combined.
〈ケイ素含有ジアミン〉
 モノマーの種類、コストの観点、および得られるポリイミド前駆体の分子量の観点から、上記で説明された一般式(5)又は(10)のケイ素含有化合物は、ケイ素含有ジアミンであることが好ましい。ケイ素含有ジアミンとしては、例えば、下記式(11):
Figure JPOXMLDOC01-appb-C000158
{式中、Pは、それぞれ独立に、二価の炭化水素基を示し、同一でも異なっていてもよく、P及びPは、一般式(5)又は(10)において定義したR、Rと同様であり、lは、1~200の整数を表す。}
で表されるジアミノ(ポリ)シロキサンが好ましい。
<Silicon-containing diamine>
From the viewpoint of the type of monomer, the cost, and the molecular weight of the obtained polyimide precursor, the silicon-containing compound of the general formula (5) or (10) described above is preferably a silicon-containing diamine. Examples of the silicon-containing diamine include the following formula (11):
Figure JPOXMLDOC01-appb-C000158
{In the formula, P 5 independently represents a divalent hydrocarbon group, which may be the same or different, and P 3 and P 4 are R 2 defined in the general formula (5) or (10). , R 3 and l represents an integer from 1 to 200. }
The diamino (poly) siloxane represented by is preferable.
 上記一般式(11)中のP及びPの好ましい構造としては、メチル基、エチル基、プロピル基、ブチル基、及びフェニル基等が挙げられる。これらの中でも好ましいのは、メチル基である。 The preferred structure of P 3 and P 4 in the general formula (11), a methyl group, an ethyl group, a propyl group, a butyl group, and phenyl group and the like. Of these, the methyl group is preferable.
 上記一般式(11)中のlは、1~200の整数であり、式(11)で表されるケイ素含有ジアミンを用いて得られるポリイミドの耐熱性の観点から、3~200の整数であることが好ましい。 L in the general formula (11) is an integer of 1 to 200, and is an integer of 3 to 200 from the viewpoint of heat resistance of the polyimide obtained by using the silicon-containing diamine represented by the formula (11). Is preferable.
 一般式(11)で表される化合物の官能基当量の好ましい範囲は、前述した一般式(10)で表されるケイ素含有化合物と同様である。 The preferable range of the functional group equivalent of the compound represented by the general formula (11) is the same as that of the silicon-containing compound represented by the general formula (10) described above.
 ケイ素含有ジアミンの共重合割合は、ポリイミド前駆体/ポリイミドの全質量に対して、好ましくは0.5~30質量%、より好ましくは1.0質量%~25質量%、更に好ましくは1.5質量%~20質量%である。ケイ素含有ジアミンが0.5質量%以上である場合、支持体との間に発生する残留応力を効果的に低下することができる。ケイ素含有ジアミンが30質量%以下である場合、得られるポリイミドフィルムの透明性(特に低HAZE)が良好であり、高い全光線透過率の実現、及び高いガラス転移温度の観点から好ましい。 The copolymerization ratio of the silicon-containing diamine is preferably 0.5 to 30% by mass, more preferably 1.0% by mass to 25% by mass, and further preferably 1.5 with respect to the total mass of the polyimide precursor / polyimide. It is from% by mass to 20% by mass. When the silicon-containing diamine is 0.5% by mass or more, the residual stress generated between the silicon-containing diamine and the support can be effectively reduced. When the silicon-containing diamine is 30% by mass or less, the transparency (particularly low HAZE) of the obtained polyimide film is good, which is preferable from the viewpoint of achieving high total light transmittance and high glass transition temperature.
 ポリイミド前駆体/ポリイミドに用いる単量体としてのケイ素含有化合物は、上述のとおり、出願時の技術常識を用いて合成してもよいし、市販品を用いてもよい。市販品としては、両末端アミン変性メチルフェニルシリコーンオイル(信越化学社製:X22-1660B-3(官能基当量2200)、X22-9409(官能基当量670))、両末端酸無水物変性メチルフェニルシリコーンオイル(信越化学社製:X22-168-P5-B(官能基当量2100))、両末端エポキシ変性メチルフェニルシリコーンオイル(信越化学社製:X22-2000(官能基当量620))、両末端アミノ変性ジメチルシリコーン(信越化学社製:PAM-E(官能基当量130)、X22-161A(官能基当量800)、X22-161B(官能基当量1500)、KF8012(官能基当量2200)、東レダウコーニング製:BY16-853U(官能基当量450)、JNC社製:サイラプレーンFM3311(数平均分子量1000))、両末端エポキシ変性ジメチルシリコーン(信越化学社製:X-22-163A(官能基当量1750)、両末端脂環式エポキシ変性ジメチルシリコーン(信越化学社製:X-22-169B(官能基当量1700))、両末端ヒドキシ基変性ジメチルシリコーン(信越化学社製:KF-6000)、両末端メルカプト変性ジメチルシリコーン(信越化学社製:X-22-167B(官能基当量1700))、両末端酸無水物変性ジメチルシリコーン(信越化学社製:X-22-168A(官能基当量1000))等が挙げられる。これらの中でも、価格、耐薬品性向上、及びTgの向上の観点から、両末端アミン変性ジメチルシリコーンオイルが好ましい。 As described above, the silicon-containing compound as the monomer used for the polyimide precursor / polyimide may be synthesized by using the common general technical knowledge at the time of filing, or a commercially available product may be used. Commercially available products include both-terminal amine-modified methylphenyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-1660B-3 (functional group equivalent 2200), X22-9409 (functional group equivalent 670)), both-terminal acid anhydride-modified methylphenyl. Silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-168-P5-B (functional group equivalent 2100)), both-ended epoxy-modified methylphenyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd .: X22-2000 (functional group equivalent 620)), both ends Amino-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .: PAM-E (functional group equivalent 130), X22-161A (functional group equivalent 800), X22-161B (functional group equivalent 1500), KF8012 (functional group equivalent 2200), Toledau Made by Corning: BY16-853U (functional group equivalent 450), JNC: Silaplane FM3311 (number average molecular weight 1000)), both-ended epoxy-modified dimethyl silicone (made by Shin-Etsu Chemical Co., Ltd .: X-22-163A (functional group equivalent 1750) ), Both-ended alicyclic epoxy-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-169B (functional group equivalent 1700)), both-ended hydroxy group-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .: KF-6000), both ends Mercapto-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-167B (functional group equivalent 1700)), bi-terminal acid anhydride-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-168A (functional group equivalent 1000)), etc. Among these, both-terminal amine-modified dimethyl silicone oil is preferable from the viewpoint of price, improvement of chemical resistance, and improvement of Tg.
〈溶媒〉
 樹脂組成物は典型的に溶媒を含む。溶媒としては、ポリイミド/ポリイミド前駆体の溶解性が良好で、かつ樹脂組成物の溶液粘度を適切に制御できるものが好ましく、ポリイミド前駆体の反応溶媒を、組成物の溶媒として用いることができる。その中でも、N-メチル-2-ピロリドン(NMP)、γ-ブチロラクトン(GBL)、第一の態様に係る上記一般式(9)で表される化合物、第二の態様に係る上記一般式(4)で表される化合物等が好ましい。溶媒組成の具体例としては、N-メチル-2-ピロリドン(NMP)単独、又はN-メチル-2-ピロリドン(NMP)とγ-ブチロラクトン(GBL)との混合溶媒等が挙げられる。NMPとGBLとの質量比は、例えば、NMP:GBL(質量比)=10:90~90:10であってよい。
<solvent>
The resin composition typically contains a solvent. As the solvent, those having good solubility of the polyimide / polyimide precursor and capable of appropriately controlling the solution viscosity of the resin composition are preferable, and the reaction solvent of the polyimide precursor can be used as the solvent of the composition. Among them, N-methyl-2-pyrrolidone (NMP), γ-butyrolactone (GBL), the compound represented by the above general formula (9) according to the first aspect, and the above general formula (4) according to the second aspect. ) And the like are preferable. Specific examples of the solvent composition include N-methyl-2-pyrrolidone (NMP) alone, or a mixed solvent of N-methyl-2-pyrrolidone (NMP) and γ-butyrolactone (GBL). The mass ratio of NMP to GBL may be, for example, NMP: GBL (mass ratio) = 10: 90 to 90:10.
〈追加の成分〉
 本実施形態の樹脂組成物は、ポリイミド/ポリイミド前駆体、低分子環状シロキサン、及び溶媒に加えて、追加の成分を更に含んでもよい。追加の成分としては、例えば、界面活性剤、及びアルコキシシラン化合物等が挙げられる。
<Additional ingredients>
The resin composition of this embodiment may further contain additional components in addition to the polyimide / polyimide precursor, small molecule cyclic siloxane, and solvent. Additional components include, for example, surfactants, alkoxysilane compounds and the like.
界面活性剤
 本実施形態の樹脂組成物に界面活性剤を添加することによって、樹脂組成物の塗布性を向上することができる。具体的には、塗工膜におけるスジの発生を防ぐことができる。
Surfactant By adding a surfactant to the resin composition of the present embodiment, the coatability of the resin composition can be improved. Specifically, it is possible to prevent the occurrence of streaks in the coating film.
 このような界面活性剤は、例えば、シリコーン系界面活性剤、フッ素系界面活性剤、これら以外の非イオン界面活性剤等を挙げることができる。シリコーン系界面活性剤としては、例えば、オルガノシロキサンポリマーKF-640、642、643、KP341、X-70-092、X-70-093(商品名、信越化学工業社製);SH-28PA、SH-190、SH-193、SZ-6032、SF-8428、DC-57、DC-190(商品名、東レ・ダウコーニング・シリコーン社製);SILWET L-77,L-7001,FZ-2105,FZ-2120,FZ-2154,FZ-2164,FZ-2166,L-7604(商品名、日本ユニカー社製);DBE-814、DBE-224、DBE-621、CMS-626、CMS-222、KF-352A、KF-354L、KF-355A、KF-6020、DBE-821、DBE-712(Gelest)、BYK-307、BYK-310、BYK-378、BYK-333(商品名、ビックケミー・ジャパン製);グラノール(商品名、共栄社化学社製)等が挙げられる。フッ素系界面活性剤としては、例えば、メガファックF171、F173、R-08(大日本インキ化学工業株式会社製、商品名);フロラードFC4430、FC4432(住友スリーエム株式会社、商品名)等が挙げられる。これら以外の非イオン界面活性剤としては、例えば、ポリオキシエチレンウラリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェノールエーテル等が挙げられる。 Examples of such surfactants include silicone-based surfactants, fluorine-based surfactants, and nonionic surfactants other than these. Examples of the silicone-based surfactant include organosiloxane polymers KF-640, 642, 643, KP341, X-70-092, X-70-093 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.); SH-28PA, SH. -190, SH-193, SZ-6032, SF-8428, DC-57, DC-190 (trade name, manufactured by Toray Dow Corning Silicone); SILWET L-77, L-7001, FZ-2105, FZ -2120, FZ-214, FZ-2164, FZ-2166, L-7604 (trade name, manufactured by Nippon Unicar Co., Ltd.); DBE-814, DBE-224, DBE-621, CMS-626, CMS-222, KF- 352A, KF-354L, KF-355A, KF-6020, DBE-821, DBE-712 (Gelest), BYK-307, BYK-310, BYK-378, BYK-333 (trade name, manufactured by Big Chemie Japan); Granol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) and the like can be mentioned. Examples of the fluorine-based surfactant include Megafuck F171, F173, R-08 (manufactured by Dainippon Ink and Chemicals, Inc., trade name); Florard FC4430, FC4432 (Sumitomo 3M Ltd., trade name) and the like. .. Examples of the nonionic surfactant other than these include polyoxyethylene uralyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether and the like.
 これらの界面活性剤の中でも、樹脂組成物の塗工性(スジ抑制)の観点から、シリコーン系界面活性剤、フッ素系界面活性剤が好ましく、キュア工程時の酸素濃度によるYI値及び全光線透過率への影響を低減する観点から、シリコーン系界面活性剤が好ましい。界面活性剤を用いる場合、その配合量は、樹脂組成物中のポリイミド前駆体100質量部に対して、好ましくは0.001~5質量部、より好ましくは0.01~3質量部である。 Among these surfactants, silicone-based surfactants and fluorine-based surfactants are preferable from the viewpoint of coatability (streak suppression) of the resin composition, and the YI value and total light transmittance depending on the oxygen concentration during the curing step are preferable. A silicone-based surfactant is preferable from the viewpoint of reducing the influence on the rate. When a surfactant is used, the blending amount thereof is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 3 parts by mass with respect to 100 parts by mass of the polyimide precursor in the resin composition.
アルコキシシラン化合物
 本実施形態の樹脂組成物から得られるポリイミドフィルムをフレキシブル基板等に用いる場合、製造プロセスにおける支持体とポリイミドフィルムとの良好な密着性を得る観点から、樹脂組成物は、ポリイミド前駆体100質量部に対して、アルコキシシラン化合物を0.01~20質量部含有することができる。ポリイミド前駆体100質量部に対するアルコキシシラン化合物の含有量が0.01質量部以上であることにより、支持体とポリイミドフィルムとの間に良好な密着性を得ることができる。またアルコキシシラン化合物の含有量が20質量部以下であることが、樹脂組成物の保存安定性の観点から好ましい。アルコキシシラン化合物の含有量は、ポリイミド前駆体100質量部に対して、好ましくは0.02~15質量部、より好ましくは0.05~10質量部、更に好ましくは0.1~8質量部である。アルコキシシラン化合物を用いることにより、上記の密着性の向上に加えて、樹脂組成物の塗工性が向上し(スジムラ抑制)、及びキュア時の酸素濃度によるポリイミドフィルムのYI値への影響を低減することもできる。
Aalkoxysilane compound When the polyimide film obtained from the resin composition of the present embodiment is used for a flexible substrate or the like, the resin composition is a polyimide precursor from the viewpoint of obtaining good adhesion between the support and the polyimide film in the manufacturing process. 0.01 to 20 parts by mass of the alkoxysilane compound can be contained with respect to 100 parts by mass. When the content of the alkoxysilane compound with respect to 100 parts by mass of the polyimide precursor is 0.01 parts by mass or more, good adhesion between the support and the polyimide film can be obtained. Further, it is preferable that the content of the alkoxysilane compound is 20 parts by mass or less from the viewpoint of storage stability of the resin composition. The content of the alkoxysilane compound is preferably 0.02 to 15 parts by mass, more preferably 0.05 to 10 parts by mass, and further preferably 0.1 to 8 parts by mass with respect to 100 parts by mass of the polyimide precursor. be. By using the alkoxysilane compound, in addition to the above-mentioned improvement of the adhesion, the coatability of the resin composition is improved (sujimura suppression), and the influence of the oxygen concentration at the time of curing on the YI value of the polyimide film is reduced. You can also do it.
 アルコキシシラン化合物としては、例えば、3-ウレイドプロピルトリエトキシシラン、ビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリプロポキシシラン、γ-アミノプロピルトリブトキシシラン、γ-アミノエチルトリエトキシシラン、γ-アミノエチルトリプロポキシシラン、γ-アミノエチルトリブトキシシラン、γ-アミノブチルトリエトキシシラン、γ-アミノブチルトリメトキシシラン、γ-アミノブチルトリプロポキシシラン、γ-アミノブチルトリブトキシシラン、フェニルシラントリオール、トリメトキシフェニルシラン、トリメトキシ(p-トリル)シラン、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、トリフェニルシラノール、及び下記構造:
Figure JPOXMLDOC01-appb-C000159
のそれぞれで表されるアルコキシシラン化合物等を挙げることができる。アルコキシシラン化合物は、一種を単独で用いても二種以上を組み合わせて使用してもよい。
Examples of the alkoxysilane compound include 3-ureidopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, and γ-aminopropyltrimethoxysilane. γ-Aminopropyltripropoxysilane, γ-aminopropyltributoxysilane, γ-aminoethyltriethoxysilane, γ-aminoethyltripropoxysilane, γ-aminoethyltributoxysilane, γ-aminobutyltriethoxysilane, γ- Aminobutyltrimethoxysilane, γ-aminobutyltripropoxysilane, γ-aminobutyltributoxysilane, phenylsilanetriol, trimethoxyphenylsilane, trimethoxy (p-tolyl) silane, diphenylsilanediol, dimethoxydiphenylsilane, diethoxydiphenyl Silane, dimethoxydi-p-tolylsilane, triphenylsilanol, and the following structures:
Figure JPOXMLDOC01-appb-C000159
Examples thereof include an alkoxysilane compound represented by each of the above. The alkoxysilane compound may be used alone or in combination of two or more.
《樹脂組成物の製造方法》
 本実施形態における樹脂組成物の製造方法は、特に限定されるものではなく、例えば、以下の方法によることができる。
<< Manufacturing method of resin composition >>
The method for producing the resin composition in the present embodiment is not particularly limited, and for example, the following method can be used.
〈ケイ素含有化合物の精製〉
 本実施形態の樹脂組成物は、酸二無水物、ジアミン、及びケイ素含有化合物を含む重縮合成分を重縮合反応させることにより製造することができる。本実施形態の樹脂組成物中に含まれる、環状のケイ素含有化合物の総量を低減する方法としては、例えば、重縮合反応の前に、ケイ素含有化合物を精製して、環状のケイ素含有化合物の総量を低減することが挙げられる。あるいは、重縮合反応の後に、樹脂組成物を精製して、環状のケイ素含有化合物の総量を低減してもよい。
<Purification of silicon-containing compounds>
The resin composition of the present embodiment can be produced by subjecting a polycondensation component containing an acid dianhydride, a diamine, and a silicon-containing compound to a polycondensation reaction. As a method for reducing the total amount of the cyclic silicon-containing compound contained in the resin composition of the present embodiment, for example, the silicon-containing compound is purified before the polycondensation reaction to obtain the total amount of the cyclic silicon-containing compound. Is mentioned. Alternatively, after the polycondensation reaction, the resin composition may be purified to reduce the total amount of cyclic silicon-containing compounds.
 ケイ素含有化合物を精製する方法としては、例えば、任意の容器内でケイ素含有化合物に不活性ガス、例えば窒素ガスを吹き込みながらストリッピングを行うことが挙げられる。ストリッピングの温度としては、好ましくは200℃以上300℃以下、より好ましくは220℃以上300℃以下、更に好ましくは240℃以上300℃以下である。ストリッピングの蒸気圧としては、低いほど好ましく、1000Pa以下、より好ましくは300Pa以下、更に好ましくは200Pa以下、より更に好ましくは133.32Pa(1mmHg)以下である。ストリッピングの時間としては、好ましくは4時間以上12時間以下、より好ましくは6時間以上10時間以下である。上記の条件に調整することにより、一環状のケイ素含有化合物を効率的に除去することができ、また、環状のケイ素含有化合物の総量を好ましい範囲に制御することができる。 As a method for purifying the silicon-containing compound, for example, stripping may be performed while blowing an inert gas, for example, nitrogen gas, into the silicon-containing compound in an arbitrary container. The stripping temperature is preferably 200 ° C. or higher and 300 ° C. or lower, more preferably 220 ° C. or higher and 300 ° C. or lower, and further preferably 240 ° C. or higher and 300 ° C. or lower. The stripping vapor pressure is preferably as low as possible, more preferably 1000 Pa or less, more preferably 300 Pa or less, still more preferably 200 Pa or less, still more preferably 133.32 Pa (1 mmHg) or less. The stripping time is preferably 4 hours or more and 12 hours or less, and more preferably 6 hours or more and 10 hours or less. By adjusting to the above conditions, the monocyclic silicon-containing compound can be efficiently removed, and the total amount of the cyclic silicon-containing compound can be controlled within a preferable range.
〈ポリイミド/ポリイミド前駆体の合成〉
 本実施形態のポリイミド前駆体は、酸二無水物、ジアミン、及びケイ素含有化合物を含む重縮合成分を重縮合反応させることにより合成することができる。
<Synthesis of polyimide / polyimide precursor>
The polyimide precursor of the present embodiment can be synthesized by subjecting a polycondensation component containing an acid dianhydride, a diamine, and a silicon-containing compound to a polycondensation reaction.
 第一の態様に係るポリイミド/ポリイミド前駆体の合成と関連して、例えば、次のいずれかの工程:
  ・上記で説明された一般式(8)で表される化合物又は一般式(9)で表される化合物と、一般式(10)で表されるケイ素含有化合物とを重縮合反応させてポリイミドを得た後、その他の化合物とを重縮合反応させてポリイミド前駆体及びポリイミドを含む樹脂組成物を提供する工程;
  ・上記で説明されたジアミン又は酸二無水物と、一般式(10)で表されるケイ素含有化合物とを重縮合反応させてポリイミドを得た後、その他の化合物とを重縮合反応させてポリイミド前駆体及びポリイミドを含む樹脂組成物を提供する工程
を含む樹脂組成物の製造方法が提供される。
In connection with the synthesis of the polyimide / polyimide precursor according to the first aspect, for example, one of the following steps:
-The compound represented by the general formula (8) or the compound represented by the general formula (9) described above is subjected to a polycondensation reaction with the silicon-containing compound represented by the general formula (10) to form a polyimide. After obtaining, a step of polycondensing reaction with other compounds to provide a resin composition containing a polyimide precursor and polyimide;
-The diamine or acid dianhydride described above and the silicon-containing compound represented by the general formula (10) are polycondensed to obtain a polyimide, and then other compounds are polycondensed to obtain the polyimide. Provided is a method for producing a resin composition, which comprises a step of providing a resin composition containing a precursor and a polyimide.
 第二の態様に係るポリイミド/ポリイミド前駆体の合成と関連して、例えば、次のいずれかの工程:
  ・上記で説明された一般式(3)で表される化合物と、一般式(4)で表される化合物と、一般式(5)で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させてポリイミド前駆体又はポリイミドを含む樹脂組成物を提供する工程;
  ・上記で説明された一般式(3)で表される化合物とその他の化合物と、一般式(4)で表される化合物とその他の化合物とを重縮合反応させてポリイミドを得た後、上記で説明された一般式(5)で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させてポリイミド前駆体及びポリイミドを含む樹脂組成物を提供する工程;又は
  ・上記で説明されたジアミンと酸二無水物とを重縮合反応させてポリイミドを得た後、一般式(5)で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させてポリイミド前駆体及びポリイミドを含む樹脂組成物を提供する工程;
を含む樹脂組成物の製造方法が提供される。
In connection with the synthesis of the polyimide / polyimide precursor according to the second aspect, for example, one of the following steps:
-The compound represented by the general formula (3) described above, the compound represented by the general formula (4), the silicon-containing compound represented by the general formula (5), and other compounds are weighted. A step of subjecting a condensation reaction to provide a polyimide precursor or a resin composition containing a polyimide;
-After subjecting the compound represented by the general formula (3) and other compounds described above to a polycondensation reaction with the compound represented by the general formula (4) and other compounds to obtain polyimide, the above. A step of polycondensing the silicon-containing compound represented by the general formula (5) described in (5) with another compound to provide a resin composition containing a polyimide precursor and a polyimide; or-described above. After a polycondensation reaction of diamine and acid dianhydride to obtain a polyimide, a silicon-containing compound represented by the general formula (5) and another compound are subjected to a polycondensation reaction to contain a polyimide precursor and a polyimide. Step of providing the resin composition;
A method for producing a resin composition containing the above is provided.
 また、ケイ素含有化合物は、上記の精製したものを用いることが好ましい。好ましい態様において、重縮合成分は、酸二無水物と、ジアミンと、ケイ素含有化合物とからなる。重縮合反応は、適当な溶媒中で行うことが好ましい。具体的には、例えば、溶媒に所定量のジアミン成分及びケイ素含有化合物を溶解させた後、得られたジアミン溶液に、酸二無水物を所定量添加し、撹拌する方法が挙げられる。 Further, it is preferable to use the above-mentioned purified compound as the silicon-containing compound. In a preferred embodiment, the polycondensation component comprises an acid dianhydride, a diamine, and a silicon-containing compound. The polycondensation reaction is preferably carried out in a suitable solvent. Specific examples thereof include a method in which a predetermined amount of a diamine component and a silicon-containing compound are dissolved in a solvent, a predetermined amount of acid dianhydride is added to the obtained diamine solution, and the mixture is stirred.
 ポリイミド/ポリイミド前駆体を合成する際の酸二無水物とジアミンとのモル比は、ポリイミド前駆体樹脂の高分子量化、樹脂組成物のスリットコーティング特性の観点から、酸二無水物:ジアミン=100:90~100:110(酸二無水物1モル部に対してジアミン0.90~1.10モル部)の範囲が好ましく、100:95~100:105(酸二無水物1モル部に対してジアミン0.95~1.05モル部)の範囲が更に好ましい。 The molar ratio of acid dianhydride to diamine when synthesizing the polyimide / polyimide precursor is determined from the viewpoint of increasing the molecular weight of the polyimide precursor resin and the slit coating characteristics of the resin composition. Acid dianhydride: diamine = 100. The range is preferably 90 to 100: 110 (0.90 to 1.10 parts of diamine with respect to 1 mol of acid dianhydride), and 100: 95 to 100: 105 (with respect to 1 mol of acid dianhydride). The range of diamine 0.95 to 1.05 mol parts) is more preferable.
 ポリイミド/ポリイミド前駆体の分子量は、酸二無水物、ジアミン及びケイ素含有化合物の種類、酸二無水物とジアミンとのモル比の調整、末端封止剤の添加、反応条件の調整等によってコントロールすることが可能である。酸二無水物成分とジアミン成分とのモル比が1:1に近いほど、及び末端封止剤の使用量が少ないほど、ポリイミド前駆体を高分子量化することができる。 The molecular weight of the polyimide / polyimide precursor is controlled by adjusting the types of acid dianhydride, diamine and silicon-containing compounds, adjusting the molar ratio of acid dianhydride and diamine, adding an end-capping agent, adjusting reaction conditions, and the like. It is possible. The closer the molar ratio of the acid dianhydride component to the diamine component is to 1: 1 and the smaller the amount of the end-capping agent used, the higher the molecular weight of the polyimide precursor can be.
 酸二無水物成分及びジアミン成分として、高純度品を使用することが推奨される。その純度としては、それぞれ、好ましくは98質量%以上、より好ましくは99質量%以上、更に好ましくは99.5質量%以上である。酸二無水物成分及びジアミン成分における水分含量を低減することによって高純度化することもできる。複数種類の酸二無水物成分、及び/又は複数種類のジアミン成分を使用する場合には、酸二無水物成分全体として、及びジアミン成分全体として上記の純度を有することが好ましく、使用する全種類の酸二無水物成分及びジアミン成分が、それぞれ上記の純度を有していることがより好ましい。 It is recommended to use high-purity products as the acid dianhydride component and diamine component. The purity is preferably 98% by mass or more, more preferably 99% by mass or more, and further preferably 99.5% by mass or more, respectively. High purity can also be achieved by reducing the water content in the acid dianhydride component and the diamine component. When a plurality of types of acid dianhydride components and / or a plurality of types of diamine components are used, it is preferable that the acid dianhydride components as a whole and the diamine components as a whole have the above-mentioned purity, and all types to be used. It is more preferable that the acid dianhydride component and the diamine component of the above have the above-mentioned purity, respectively.
 反応の溶媒としては、酸二無水物成分及びジアミン成分、並びに生じるポリイミド/ポリイミド前駆体を溶解することができ、高分子量の重合体が得られる溶媒であれば特に限定されない。このような溶媒としては、例えば、非プロトン性溶媒、フェノール系溶媒、エーテル及びグリコール系溶媒等が挙げられる。 The solvent for the reaction is not particularly limited as long as it can dissolve the acid dianhydride component and the diamine component, and the resulting polyimide / polyimide precursor, and a high-molecular-weight polymer can be obtained. Examples of such a solvent include an aprotic solvent, a phenol-based solvent, an ether and a glycol-based solvent, and the like.
 非プロトン性溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素、及び下記一般式のアミド系溶媒:
Figure JPOXMLDOC01-appb-C000160
{式中、R12=メチル基で表されるエクアミドM100(商品名:出光興産社製)、及び、R12=n-ブチル基で表されるエクアミドB100(商品名:出光興産社製)};γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶媒;ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶媒;ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶媒;ピコリン、ピリジン等の3級アミン系溶媒;酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶媒等が挙げられる。
Examples of the aprotonic solvent include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), N-methylcaprolactam, 1,3-dimethyl. Imidazolidinone, tetramethylurea, and amide-based solvents of the following general formula:
Figure JPOXMLDOC01-appb-C000160
{In the formula, R 12 = Equamid M100 represented by a methyl group (trade name: manufactured by Idemitsu Kosan Co., Ltd.) and R 12 = Equamid B100 represented by an n-butyl group (trade name: manufactured by Idemitsu Kosan Co., Ltd.)} Lactone-based solvents such as γ-butyrolactone and γ-valerolactone; phosphorus-containing amide-based solvents such as hexamethylphosphoric amide and hexamethylphosphintriamide; sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide and sulfolane; cyclohexanone , A ketone solvent such as methylcyclohexanone; a tertiary amine solvent such as picolin and pyridine; an ester solvent such as acetic acid (2-methoxy-1-methylethyl) and the like.
 フェノ-ル系溶媒としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。 Examples of the phenolic solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3, Examples thereof include 4-xylenol and 3,5-xylenol.
 エーテル及びグリコール系溶媒としては、例えば、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス[2-(2-メトキシエトキシ)エチル]エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。 Examples of the ether and glycol-based solvent include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl. ] Ether, tetrahydrofuran, 1,4-dioxane and the like can be mentioned.
 これらの溶媒は、単独で又は2種類以上混合して用いてもよい。 These solvents may be used alone or in combination of two or more.
 ポリイミド/ポリイミド前駆体の合成に用いられる溶媒の常圧における沸点は、好ましくは60~300℃、より好ましくは140~280℃、更に好ましくは170~270℃である。溶媒の沸点が300℃より低いことにより、乾燥工程が短時間になる。溶媒の沸点が60℃以上であると、乾燥工程中に、樹脂膜の表面における荒れの発生、樹脂膜中への気泡の混入等が起こり難く、より均一なフィルムを得ることができる。特に、沸点が170~270℃であり、及び/又は20℃における蒸気圧が250Pa以下である溶媒を使用することが、溶解性及び塗工時のエッジ異常の低減の観点から好ましい。より具体的には、N-メチル-2-ピロリドン(NMP)、γ-ブチロラクトン(GBL)、及び第一及び第二の態様に係る一般式(6)で表される化合物から成る群より選択される1種以上が好ましい。 The boiling point of the solvent used for the synthesis of the polyimide / polyimide precursor at normal pressure is preferably 60 to 300 ° C, more preferably 140 to 280 ° C, and further preferably 170 to 270 ° C. Since the boiling point of the solvent is lower than 300 ° C., the drying step is shortened. When the boiling point of the solvent is 60 ° C. or higher, roughening of the surface of the resin film, mixing of air bubbles in the resin film, and the like are less likely to occur during the drying step, and a more uniform film can be obtained. In particular, it is preferable to use a solvent having a boiling point of 170 to 270 ° C. and / or a vapor pressure of 250 Pa or less at 20 ° C. from the viewpoint of solubility and reduction of edge abnormality during coating. More specifically, it is selected from the group consisting of N-methyl-2-pyrrolidone (NMP), γ-butyrolactone (GBL), and the compound represented by the general formula (6) according to the first and second embodiments. One or more are preferable.
 溶媒中の水分含量は、重縮合反応を良好に進行させるために、例えば3,000質量ppm以下であることが好ましい。本実施形体における樹脂組成物中、分子量1,000未満の分子の含有量が5質量%未満であることが好ましい。樹脂組成物中に分子量1,000未満の分子が存在するのは、合成時に使用する溶媒や原料(酸二無水物、ジアミン)の水分量が関与しているためと考えられる。すなわち、一部の酸二無水物モノマーの酸無水物基が水分によって加水分解してカルボキシル基になり、高分子量化することなく低分子の状態で残存することによると考えられる。従って、上記の重縮合反応に使用する溶媒の水分量は少ないほど好ましい。溶媒の水分量は、3,000質量ppm以下とすることが好ましく、1,000質量ppm以下とすることがより好ましい。同様に、原料に含まれる水分量についても、3,000質量ppm以下とすることが好ましく、1,000質量ppm以下とすることがより好ましい。 The water content in the solvent is preferably, for example, 3,000 mass ppm or less in order to allow the polycondensation reaction to proceed satisfactorily. In the resin composition of the present embodiment, the content of molecules having a molecular weight of less than 1,000 is preferably less than 5% by mass. It is considered that the reason why the molecule having a molecular weight of less than 1,000 is present in the resin composition is that the water content of the solvent and the raw material (acid dianhydride, diamine) used at the time of synthesis is involved. That is, it is considered that the acid anhydride group of some acid dianhydride monomers is hydrolyzed by water to become a carboxyl group and remains in a low molecular weight state without increasing the molecular weight. Therefore, it is preferable that the water content of the solvent used for the above polycondensation reaction is small. The water content of the solvent is preferably 3,000 mass ppm or less, more preferably 1,000 mass ppm or less. Similarly, the amount of water contained in the raw material is preferably 3,000 mass ppm or less, and more preferably 1,000 mass ppm or less.
 溶媒の水分量は、使用する溶媒のグレード(脱水グレード、汎用グレード等)、溶媒容器(ビン、18L缶、キャニスター缶等)、溶媒の保管状態(希ガス封入の有無等)、開封から使用までの時間(開封後すぐ使用するか、開封後経時した後に使用するか等)等が関与すると考えられる。合成前の反応器の希ガス置換、合成中の希ガス流通の有無等も関与すると考えられる。従って、ポリイミド前駆体の合成時には、原料として高純度品を用い、水分量の少ない溶媒を用いるとともに、反応前および反応中に系内に環境からの水分が混入しないような措置を講ずることが推奨される。 The water content of the solvent is the grade of the solvent used (dehydration grade, general-purpose grade, etc.), solvent container (bin, 18L can, canister can, etc.), storage state of the solvent (presence or absence of rare gas filling, etc.), from opening to use. It is considered that the time (whether it is used immediately after opening or after a lapse of time after opening, etc.) is involved. It is considered that the replacement of rare gas in the reactor before synthesis and the presence or absence of rare gas flow during synthesis are also involved. Therefore, when synthesizing the polyimide precursor, it is recommended to use a high-purity product as a raw material, use a solvent with a low water content, and take measures to prevent water from the environment from entering the system before and during the reaction. Will be done.
 溶媒中に各重縮合成分を溶解させるときには、必要に応じて加熱してもよい。重合度の高いポリイミド前駆体を得る観点から、ポリイミド前駆体合成時の反応温度としては、好ましくは0℃~120℃、40℃~100℃、又は60~100℃であってよく、重合時間としては、好ましくは1~100時間、又は2~10時間であってよい。重合時間を1時間以上とすることによって均一な重合度のポリイミド前駆体となり、100時間以下とすることによって重合度の高いポリイミド前駆体を得ることができる。 When dissolving each polycondensation component in a solvent, it may be heated if necessary. From the viewpoint of obtaining a polyimide precursor having a high degree of polymerization, the reaction temperature at the time of synthesizing the polyimide precursor may be preferably 0 ° C to 120 ° C, 40 ° C to 100 ° C, or 60 to 100 ° C, and the polymerization time may be set. Is preferably 1 to 100 hours, or 2 to 10 hours. When the polymerization time is 1 hour or more, a polyimide precursor having a uniform degree of polymerization can be obtained, and when the polymerization time is 100 hours or less, a polyimide precursor having a high degree of polymerization can be obtained.
 本実施形態の樹脂組成物は、本実施形態におけるポリイミド/ポリイミド前駆体以外に、他の追加のポリイミド前駆体を含んでもよい。しかしながら、追加のポリイミド/ポリイミド前駆体の質量割合は、ポリイミドフィルムのYI値及び全光線透過率の酸素依存性を低減する観点から、樹脂組成物中のポリイミド/ポリイミド前駆体の総量に対して、好ましくは30質量%以下、更に好ましくは10質量%以下である。 The resin composition of the present embodiment may contain other additional polyimide precursors in addition to the polyimide / polyimide precursor of the present embodiment. However, the mass ratio of the additional polyimide / polyimide precursor is relative to the total amount of the polyimide / polyimide precursor in the resin composition from the viewpoint of reducing the oxygen dependence of the YI value and the total light transmittance of the polyimide film. It is preferably 30% by mass or less, more preferably 10% by mass or less.
 本実施形態におけるポリイミド前駆体は、その一部がイミド化されていてもよい(部分イミド化)。ポリイミド前駆体を部分イミド化することにより、樹脂組成物を保存する際の粘度安定性を向上できる。この場合のイミド化率は、樹脂組成物中のポリイミド前駆体の溶解性と溶液の保存安定性とのバランスをとる観点から、好ましくは5%以上、より好ましくは8%以上であり、好ましくは80%以下、より好ましくは70%以下、更に好ましくは50%以下である。この部分イミド化は、ポリイミド前駆体を加熱して脱水閉環することにより得られる。この加熱は、好ましくは120~200℃、より好ましくは150~185℃、さらに好ましくは150~180℃の温度において、好ましくは15分~20時間、より好ましくは30分~10時間行うことができる。 A part of the polyimide precursor in the present embodiment may be imidized (partially imidized). By partially imidizing the polyimide precursor, the viscosity stability when the resin composition is stored can be improved. In this case, the imidization ratio is preferably 5% or more, more preferably 8% or more, and preferably 8% or more, from the viewpoint of balancing the solubility of the polyimide precursor in the resin composition and the storage stability of the solution. It is 80% or less, more preferably 70% or less, still more preferably 50% or less. This partial imidization is obtained by heating the polyimide precursor to dehydrate and ring closure. This heating can be carried out at a temperature of preferably 120 to 200 ° C., more preferably 150 to 185 ° C., still more preferably 150 to 180 ° C., preferably for 15 minutes to 20 hours, more preferably 30 minutes to 10 hours. ..
 上述の反応によって得られたポリイミド/ポリイミド前駆体に、N,N-ジメチルホルムアミドジメチルアセタール又はN,N-ジメチルホルムアミドジエチルアセタールを加えて加熱することでカルボン酸の一部又は全部をエステル化したものを、本実施形態のポリイミド前駆体として用いてもよい。エステル化によって、保存時の粘度安定性を向上することができる。これらエステル変性ポリアミド酸は、上述の酸二無水物成分を、酸無水物基に対して1当量の1価のアルコール、及び塩化チオニル、ジシクロヘキシルカルボジイミド等の脱水縮合剤と順次に反応させた後、ジアミン成分と縮合反応させる方法によっても得ることができる。 A part or all of the carboxylic acid is esterified by adding N, N-dimethylformamide dimethylacetal or N, N-dimethylformamide diethylacetal to the polyimide / polyimide precursor obtained by the above reaction and heating. May be used as the polyimide precursor of the present embodiment. Esterification can improve viscosity stability during storage. In these ester-modified polyamic acids, the above-mentioned acid dianhydride component is sequentially reacted with 1 equivalent of a monovalent alcohol with respect to the acid anhydride group and a dehydration condensing agent such as thionyl chloride and dicyclohexylcarbodiimide. It can also be obtained by a method of conducting a condensation reaction with a diamine component.
〈ポリイミドの合成〉
 より好ましい様態としては、ポリイミドワニスは、酸二無水物成分及びジアミン成分を、溶媒、例えば有機溶媒に溶解し、トルエンなどの共沸溶媒を加え、イミド化の際に発生する水を系外に除去することでポリイミド及び溶媒を含有するポリイミド溶液(ポリイミドワニスとも言う)として製造することが出来る。ここで、反応時の条件は特に限定されないが、例えば、反応温度は0℃~180℃、反応時間は3~72時間である。スルホン基含有ジアミン類との反応を充分に進めるために、180℃で12時間程度加熱反応させることが好ましい。また、反応時、アルゴンや窒素などの不活性雰囲気であることが好ましい。
<Synthesis of polyimide>
In a more preferable mode, the polyimide varnish dissolves an acid dianhydride component and a diamine component in a solvent, for example, an organic solvent, adds a co-boiling solvent such as toluene, and removes water generated during imidization to the outside of the system. By removing it, it can be produced as a polyimide solution (also referred to as polyimide varnish) containing polyimide and a solvent. Here, the conditions at the time of reaction are not particularly limited, but for example, the reaction temperature is 0 ° C. to 180 ° C. and the reaction time is 3 to 72 hours. In order to sufficiently proceed with the reaction with the sulfone group-containing diamines, it is preferable to carry out a heating reaction at 180 ° C. for about 12 hours. Further, during the reaction, it is preferable that the atmosphere is an inert atmosphere such as argon or nitrogen.
〈樹脂組成物の調製〉
 ポリイミド前駆体を合成した際に用いた溶媒と、樹脂組成物に含有させる溶媒とが同一の場合には、合成したポリイミド/ポリイミド前駆体溶液をそのまま樹脂組成物として使用することができる。必要に応じて、室温(25℃)~80℃の温度範囲で、ポリイミド前駆体に更なる溶媒及び追加の成分の1種以上を添加して、攪拌混合することにより、樹脂組成物を調製してもよい。この攪拌混合は、撹拌翼を備えたスリーワンモータ(新東化学株式会社製)、自転公転ミキサー等の適宜の装置を用いて行うことができる。必要に応じて樹脂組成物を40℃~100℃に加熱してもよい。
<Preparation of resin composition>
When the solvent used when synthesizing the polyimide precursor and the solvent contained in the resin composition are the same, the synthesized polyimide / polyimide precursor solution can be used as it is as the resin composition. If necessary, a resin composition is prepared by adding one or more of a further solvent and an additional component to the polyimide precursor and stirring and mixing them in a temperature range of room temperature (25 ° C.) to 80 ° C. You may. This stirring and mixing can be performed by using an appropriate device such as a three-one motor (manufactured by Shinto Chemical Co., Ltd.) equipped with a stirring blade, a rotation / revolution mixer, and the like. If necessary, the resin composition may be heated to 40 ° C to 100 ° C.
 他方、ポリイミド/ポリイミド前駆体を合成した際に用いた溶媒と、樹脂組成物に含有させる溶媒とが異なる場合には、合成したポリイミド前駆体溶液中の溶媒を、例えば再沈殿、溶媒留去等の適宜の方法により除去してポリイミド/ポリイミド前駆体を単離してもよい。次いで、室温(25℃)~80℃の温度範囲で、単離したポリイミド前駆体に、所望の溶媒及び必要に応じて追加の成分を添加して、攪拌混合することにより、樹脂組成物を調製してもよい。 On the other hand, when the solvent used when synthesizing the polyimide / polyimide precursor and the solvent contained in the resin composition are different, the solvent in the synthesized polyimide precursor solution is used, for example, reprecipitation, solvent distillation, etc. The polyimide / polyimide precursor may be isolated by removing it by an appropriate method. Then, in the temperature range of room temperature (25 ° C.) to 80 ° C., a desired solvent and, if necessary, additional components are added to the isolated polyimide precursor, and the mixture is stirred and mixed to prepare a resin composition. You may.
 上述のように樹脂組成物を調製した後、樹脂組成物を、例えば130~200℃で、例えば5分~2時間加熱することにより、ポリマーが析出を起こさない程度にポリイミド前駆体の一部を脱水イミド化してもよい(部分イミド化)。加熱温度及び加熱時間をコントロールすることにより、イミド化率を制御することができる。ポリイミド前駆体を部分イミド化することにより、樹脂組成物を保存する際の粘度安定性を向上することができる。 After preparing the resin composition as described above, the resin composition is heated at, for example, 130 to 200 ° C. for, for example, 5 minutes to 2 hours to remove a part of the polyimide precursor to the extent that the polymer does not precipitate. Dehydration imidization may be carried out (partial imidization). The imidization rate can be controlled by controlling the heating temperature and the heating time. By partially imidizing the polyimide precursor, it is possible to improve the viscosity stability when the resin composition is stored.
 樹脂組成物の溶液粘度は、スリットコート性能の観点においては、好ましくは500~100,000mPa・s、より好ましくは1,000~50,000mPa・s、更に好ましくは3,000~20,000mPa・sである。具体的には、スリットノズルから液漏れし難い点で、好ましくは500mPa・s以上、より好ましくは1,000mPa・s以上、更に好ましくは3,000mPa・s以上である。スリットノズルが目詰まりし難い点で、好ましくは100,000mPa・s以下、より好ましくは50,000mPa・s以下、更に好ましくは20,000mPa・s以下である。 The solution viscosity of the resin composition is preferably 500 to 100,000 mPa · s, more preferably 1,000 to 50,000 mPa · s, still more preferably 3,000 to 20,000 mPa · s from the viewpoint of slit coat performance. s. Specifically, it is preferably 500 mPa · s or more, more preferably 1,000 mPa · s or more, and further preferably 3,000 mPa · s or more in terms of preventing liquid leakage from the slit nozzle. The slit nozzle is less likely to be clogged, and is preferably 100,000 mPa · s or less, more preferably 50,000 mPa · s or less, and further preferably 20,000 mPa · s or less.
 ポリイミド/ポリイミド前駆体合成時における樹脂組成物の溶液粘度については、200,000mPa・sより高いと、合成時の撹拌が困難になるという問題が生じるおそれがある。ただし、合成する際に溶液が高粘度になったとしても、反応終了後に溶媒を添加して撹拌することにより、取扱い性のよい粘度の樹脂組成物を得ることが可能である。本実施形態における樹脂組成物の溶液粘度は、E型粘度計(例えばVISCONICEHD、東機産業製)を用い、23℃で測定される値である。 If the solution viscosity of the resin composition during the synthesis of the polyimide / polyimide precursor is higher than 200,000 mPa · s, there may be a problem that stirring during the synthesis becomes difficult. However, even if the solution becomes highly viscous during synthesis, it is possible to obtain a resin composition having a viscosity that is easy to handle by adding a solvent and stirring after the reaction is completed. The solution viscosity of the resin composition in this embodiment is a value measured at 23 ° C. using an E-type viscometer (for example, VISCONICEHD, manufactured by Toki Sangyo).
 本実施形態の樹脂組成物の水分量は、樹脂組成物を保存する際の粘度安定性の観点から、好ましくは3,000質量ppm以下、より好ましくは2,500質量ppm以下、更に好ましくは2,000質量ppm以下、より更に好ましくは1,500質量ppm以下、特に好ましくは1,000質量ppm以下、特に好ましくは500質量ppm以下、特に好ましくは300質量ppm以下、特に好ましくは100質量ppm以下である。 The water content of the resin composition of the present embodiment is preferably 3,000 mass ppm or less, more preferably 2,500 mass ppm or less, still more preferably 2 from the viewpoint of viscosity stability when the resin composition is stored. 000 mass ppm or less, more preferably 1,500 mass ppm or less, particularly preferably 1,000 mass ppm or less, particularly preferably 500 mass ppm or less, particularly preferably 300 mass ppm or less, particularly preferably 100 mass ppm or less. Is.
《ポリイミドフィルム及びその製造方法》
 本実施形態の樹脂組成物を用いて、ポリイミドフィルム(以下、ポリイミド樹脂膜ともいう)を提供することができる。本実施形態のポリイミドフィルムの製造方法は、支持体の表面上に、本実施形態の樹脂組成物を塗布する塗布工程と;上記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と;上記ポリイミド樹脂膜を上記支持体から剥離する剥離工程とを含む。
<< Polyimide film and its manufacturing method >>
A polyimide film (hereinafter, also referred to as a polyimide resin film) can be provided by using the resin composition of the present embodiment. The method for producing the polyimide film of the present embodiment includes a coating step of applying the resin composition of the present embodiment on the surface of the support; and a film forming step of heating the resin composition to form a polyimide resin film. Includes a peeling step of peeling the polyimide resin film from the support.
〈塗布工程〉
 塗布工程では、支持体の表面上に本実施形態の樹脂組成物を塗布する。支持体は、その後の膜形成工程(加熱工程)における加熱温度に対する耐熱性を有し、かつ剥離工程における剥離性が良好であれば特に限定されない。支持体としては、例えば、ガラス基板、例えば無アルカリガラス基板;シリコンウェハー;PET(ポリエチレンテレフタレート)、OPP(延伸ポリプロピレン)、ポリエチレングリコールテレフタレート、ポリエチレングリコールナフタレート、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィド等の樹脂基板;ステンレス、アルミナ、銅、ニッケル等の金属基板等が挙げられる。
<Applying process>
In the coating step, the resin composition of the present embodiment is coated on the surface of the support. The support is not particularly limited as long as it has heat resistance to the heating temperature in the subsequent film forming step (heating step) and has good peelability in the peeling step. Examples of the support include a glass substrate, for example, a non-alkali glass substrate; a silicon wafer; PET (polyethylene terephthalate), OPP (stretched polypropylene), polyethylene glycol terephthalate, polyethylene glycol naphthalate, polycarbonate, polyimide, polyamideimide, and polyetherimide. , Resin substrates such as polyetheretherketone, polyethersulfone, polyphenylene sulfone, and polyphenylene sulfide; metal substrates such as stainless steel, alumina, copper, and nickel can be mentioned.
 薄膜状のポリイミド成形体を形成する場合には、例えば、ガラス基板、シリコンウェハー等が好ましく、厚膜状のフィルム状又はシート状のポリイミド成形体を形成する場合には、例えばPET(ポリエチレンテレフタラート)、OPP(延伸ポリプロピレン)等からなる支持体が好ましい。 When forming a thin film-shaped polyimide molded body, for example, a glass substrate, a silicon wafer, etc. are preferable, and when forming a thick film-shaped film-shaped or sheet-shaped polyimide molded body, for example, PET (polyethylene terephthalate) is used. ), OPP (stretched polypropylene) and the like are preferable.
 塗布方法としては、一般には、ドクターブレードナイフコーター、エアナイフコーター、ロールコーター、ロータリーコーター、フローコーター、ダイコーター、バーコーター等の塗布方法、スピンコート、スプレイコート、ディップコート等の塗布方法;スクリーン印刷及びグラビア印刷等に代表される印刷技術等が挙げられる。本実施形態の樹脂組成物には、スリットコートによる塗布が好ましい。塗布厚は、所望の樹脂フィルムの厚さと樹脂組成物中のポリイミド前駆体の含有量に応じて適宜調整するべきであるが、好ましくは1~1,000μm程度である。塗布工程における温度は室温でもよく、粘度を下げて作業性をよくするために、樹脂組成物を例えば40~80℃に加温してもよい。 As a coating method, generally, a doctor blade knife coater, an air knife coater, a roll coater, a rotary coater, a flow coater, a die coater, a bar coater, etc., a spin coat, a spray coat, a dip coat, etc. are applied; screen printing. And printing technology typified by gravure printing and the like. The resin composition of the present embodiment is preferably coated with a slit coat. The coating thickness should be appropriately adjusted according to the desired thickness of the resin film and the content of the polyimide precursor in the resin composition, but is preferably about 1 to 1,000 μm. The temperature in the coating step may be room temperature, and the resin composition may be heated to, for example, 40 to 80 ° C. in order to reduce the viscosity and improve the workability.
〈任意の乾燥工程〉
 塗布工程に続いて乾燥工程を行ってもよく、又は乾燥工程を省略して直接次の膜形成工程(加熱工程)に進んでもよい。乾燥工程は、樹脂組成物中の有機溶剤除去の目的で行われる。乾燥工程を行う場合、例えば、ホットプレート、箱型乾燥機、コンベヤー型乾燥機等の適宜の装置を使用することができる。乾燥工程の温度は、好ましくは80~200℃、より好ましくは100~150℃である。乾燥工程の実施時間は、好ましくは1分~10時間、より好ましくは3分~1時間である。上記のようにして、支持体上にポリイミド前駆体を含有する塗膜が形成される。
<Arbitrary drying process>
The drying step may be performed after the coating step, or the drying step may be omitted and the process may be directly proceeded to the next film forming step (heating step). The drying step is performed for the purpose of removing the organic solvent in the resin composition. When performing the drying step, for example, an appropriate device such as a hot plate, a box-type dryer, or a conveyor-type dryer can be used. The temperature of the drying step is preferably 80 to 200 ° C, more preferably 100 to 150 ° C. The implementation time of the drying step is preferably 1 minute to 10 hours, more preferably 3 minutes to 1 hour. As described above, a coating film containing the polyimide precursor is formed on the support.
〈膜形成工程〉
 続いて、膜形成工程(加熱工程)を行う。加熱工程は、上記の塗膜中に含まれる有機溶剤の除去を行うとともに、塗膜中のポリイミド前駆体のイミド化反応を進行させ、ポリイミド樹脂膜を得る工程である。この加熱工程は、例えば、イナートガスオーブン、ホットプレート、箱型乾燥機、コンベヤー型乾燥機等の装置を用いて行うことができる。この工程は乾燥工程と同時に行っても、両工程を逐次的に行なってもよい。
<Membrane formation process>
Subsequently, a film forming step (heating step) is performed. The heating step is a step of removing the organic solvent contained in the coating film and advancing the imidization reaction of the polyimide precursor in the coating film to obtain a polyimide resin film. This heating step can be performed using, for example, an apparatus such as an inert gas oven, a hot plate, a box-type dryer, and a conveyor-type dryer. This step may be carried out at the same time as the drying step, or both steps may be carried out sequentially.
 加熱工程は、空気雰囲気下で行なってもよいが、安全性と、得られるポリイミドフィルムの良好な透明性、低い厚み方向レタデーション(Rth)及び低いYI値を得る観点から、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、例えば、窒素、アルゴン等が挙げられる。加熱温度は、ポリイミド前駆体の種類、及び樹脂組成物中の溶媒の種類に応じて適宜に設定されてよいが、好ましくは250℃~550℃、より好ましくは300~450℃である。250℃以上であればイミド化が良好に進行し、550℃以下であれば得られるポリイミドフィルムの透明性の低下、耐熱性の悪化等の不都合を回避できる。加熱時間は、好ましくは0.1~10時間程度である。 The heating step may be carried out in an air atmosphere, but from the viewpoint of safety, good transparency of the obtained polyimide film, low thickness direction retardation (Rth) and low YI value, it is carried out in an inert gas atmosphere. It is preferable to do so. Examples of the inert gas include nitrogen, argon and the like. The heating temperature may be appropriately set depending on the type of the polyimide precursor and the type of the solvent in the resin composition, but is preferably 250 ° C to 550 ° C, more preferably 300 to 450 ° C. If the temperature is 250 ° C. or higher, imidization proceeds satisfactorily, and if the temperature is 550 ° C. or lower, inconveniences such as deterioration of transparency and heat resistance of the obtained polyimide film can be avoided. The heating time is preferably about 0.1 to 10 hours.
 本実施形態では、上記の加熱工程における周囲雰囲気の酸素濃度は、得られるポリイミドフィルムの透明性及びYI値の観点から、好ましくは2,000質量ppm以下、より好ましくは100質量ppm以下、更に好ましくは10質量ppm以下である。酸素濃度が2,000質量ppm以下の雰囲気中で加熱を行うことにより、得られるポリイミドフィルムのYI値を30以下にすることができる。 In the present embodiment, the oxygen concentration in the ambient atmosphere in the heating step is preferably 2,000 mass ppm or less, more preferably 100 mass ppm or less, still more preferably 100 mass ppm or less, from the viewpoint of the transparency and YI value of the obtained polyimide film. Is 10 mass ppm or less. By heating in an atmosphere having an oxygen concentration of 2,000 mass ppm or less, the YI value of the obtained polyimide film can be reduced to 30 or less.
〈剥離工程〉
 剥離工程では、支持体上のポリイミド樹脂膜を、例えば室温(25℃)~50℃程度まで冷却した後に剥離する。この剥離工程としては、例えば下記の(1)~(4)の態様が挙げられる。
<Peeling process>
In the peeling step, the polyimide resin film on the support is cooled to, for example, room temperature (25 ° C.) to about 50 ° C. and then peeled off. Examples of the peeling step include the following aspects (1) to (4).
 (1)上記の方法によりポリイミド樹脂膜/支持体を含む構成体を作製した後、構造体の支持体側からレーザーを照射して、支持体とポリイミド樹脂膜との界面をアブレーション加工することにより、ポリイミド樹脂を剥離する方法。レーザーの種類としては、固体(YAG)レーザー、ガス(UVエキシマー)レーザー等が挙げられる。波長308nm等のスペクトルを用いることが好ましい(特表2007-512568号公報、特表2012-511173号公報等を参照)。 (1) After producing a structure including the polyimide resin film / support by the above method, the interface between the support and the polyimide resin film is ablated by irradiating a laser from the support side of the structure. A method of peeling off the polyimide resin. Examples of the laser include a solid (YAG) laser and a gas (UV excimer) laser. It is preferable to use a spectrum having a wavelength of 308 nm or the like (see Japanese Patent Publication No. 2007-512568, Japanese Patent Publication No. 2012-511173, etc.).
 (2)支持体に樹脂組成物を塗工する前に、支持体に剥離層を形成し、その後ポリイミド樹脂膜/剥離層/支持体を含む構成体を得て、ポリイミド樹脂膜を剥離する方法。剥離層としては、パリレン(登録商標、日本パリレン合同会社製)、酸化タングステンが挙げられ;植物油系、シリコーン系、フッ素系、アルキッド系等の離型剤を用いてもよい(特開2010-067957号公報、特開2013-179306号公報等を参照)。
 この方法(2)と方法(1)のレーザー照射とを併用してもよい。
(2) A method in which a release layer is formed on a support before the resin composition is applied to the support, and then a structure including a polyimide resin film / release layer / support is obtained and the polyimide resin film is peeled off. .. Examples of the release layer include parylene (registered trademark, manufactured by Japan Parylene LLC) and tungsten oxide; a release agent such as vegetable oil-based, silicone-based, fluorine-based, and alkyd-based may be used (Japanese Patent Laid-Open No. 2010-067957). No., Japanese Patent Application Laid-Open No. 2013-179306, etc.).
This method (2) and the laser irradiation of the method (1) may be used in combination.
 (3)支持体としてエッチング可能な金属基板を用いて、ポリイミド樹脂膜/支持体を含む構成体を得た後、エッチャントで金属をエッチングすることにより、ポリイミド樹脂フィルムを得る方法。金属としては、例えば、銅(具体例としては、三井金属鉱業株式会社製の電解銅箔「DFF」)、アルミニウム等を使用することができる。エッチャントとしては、銅に対しては塩化第二鉄等を、アルミニウムに対しては希塩酸等を使用することができる。 (3) A method of obtaining a polyimide resin film by using an etchable metal substrate as a support, obtaining a structure including a polyimide resin film / support, and then etching the metal with an etchant. As the metal, for example, copper (specifically, electrolytic copper foil "DFF" manufactured by Mitsui Mining & Smelting Co., Ltd.), aluminum and the like can be used. As the etchant, ferric chloride or the like can be used for copper, and dilute hydrochloric acid or the like can be used for aluminum.
 (4)上記方法によりポリイミド樹脂膜/支持体を含む構成体を得た後、ポリイミド樹脂膜表面に粘着フィルムを貼り付けて、支持体から粘着フィルム/ポリイミド樹脂膜を分離し、その後粘着フィルムからポリイミド樹脂膜を分離する方法。 (4) After obtaining a structure including a polyimide resin film / support by the above method, an adhesive film is attached to the surface of the polyimide resin film, the adhesive film / polyimide resin film is separated from the support, and then from the adhesive film. A method for separating a polyimide resin film.
 これらの剥離方法の中でも、得られるポリイミド樹脂フィルムの表裏の屈折率差、YI値及び伸度の観点から、方法(1)又は(2)が好ましい。得られるポリイミド樹脂フィルムの表裏の屈折率差の観点から方法(1)、すなわち、剥離工程に先立って、支持体側からレ-ザ-を照射する照射工程を行うことがより好ましい。なお、方法(3)において、支持体として銅を用いた場合は、得られるポリイミド樹脂フィルムのYI値が大きくなり、伸度が小さくなる傾向が見られる。これは、銅イオンの影響であると考えられる。 Among these peeling methods, the method (1) or (2) is preferable from the viewpoint of the difference in refractive index between the front and back surfaces of the obtained polyimide resin film, the YI value and the elongation. From the viewpoint of the difference in refractive index between the front and back of the obtained polyimide resin film, it is more preferable to perform the method (1), that is, the irradiation step of irradiating the laser from the support side prior to the peeling step. When copper is used as the support in the method (3), the YI value of the obtained polyimide resin film tends to be large and the elongation tends to be small. This is considered to be the effect of copper ions.
 得られるポリイミドフィルムの厚さは、限定されないが、好ましくは1~200μm、より好ましくは5~100μmである。 The thickness of the obtained polyimide film is not limited, but is preferably 1 to 200 μm, and more preferably 5 to 100 μm.
《ポリイミドフィルムの用途》
 本実施形態の樹脂組成物から得られるポリイミドフィルムは、例えば、半導体絶縁膜、薄膜トランジスタ液晶ディスプレイ(TFT-LCD)絶縁膜、電極保護膜として、また、液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、フィールドエミッションディスプレイ、電子ペーパー等の表示装置の透明基板等として適用できる。特に、本実施形態の樹脂組成物から得られるポリイミドフィルムは、フレキシブルデバイスの製造において、薄膜トランジスタ(TFT)基板、カラーフィルタ基板、タッチパネル基板、透明導電膜(ITO、Indium Thin Oxide)の基板として好適に使用することができる。本実施形態におけるポリイミドフィルムを適用可能なフレキシブルデバイスとしては、例えば、フレキシブルディスプレイ用TFTデバイス、フレキシブル太陽電池、フレキシブルタッチパネル、フレキシブル照明、フレキシブルバッテリー、フレキシブルプリント基板、フレキシブルカラーフィルター、スマートフォン向け表面カバーレンズ等を挙げることができる。
<< Applications of polyimide film >>
The polyimide film obtained from the resin composition of the present embodiment can be used as, for example, a semiconductor insulating film, a thin film transistor liquid crystal display (TFT-LCD) insulating film, an electrode protective film, a liquid crystal display, an organic electroluminescence display, a field emission display, or the like. It can be applied as a transparent substrate of a display device such as electronic paper. In particular, the polyimide film obtained from the resin composition of the present embodiment is suitable as a substrate for a thin film transistor (TFT) substrate, a color filter substrate, a touch panel substrate, and a transparent conductive film (ITO, Indium Thin Oxide) in the manufacture of a flexible device. Can be used. Examples of the flexible device to which the polyimide film in this embodiment can be applied include a TFT device for a flexible display, a flexible solar cell, a flexible touch panel, a flexible lighting, a flexible battery, a flexible printed substrate, a flexible color filter, a surface cover lens for a smartphone, and the like. Can be mentioned.
 ポリイミドフィルムを使ったフレキシブル基板上にTFTを形成する工程は、典型的には、150~650℃の広い範囲の温度で実施される。具体的にはアモルファスシリコンを使用したTFTデバイスを作製する場合には、一般的に250℃~350℃のプロセス温度が必要となり、本実施形態のポリイミドフィルムはその温度に耐えうる必要があるため、具体的にはプロセス温度以上のガラス転移温度、熱分解開始温度を有するポリマー構造を適宜選択する必要がある。 The step of forming a TFT on a flexible substrate using a polyimide film is typically carried out at a temperature in a wide range of 150 to 650 ° C. Specifically, when manufacturing a TFT device using amorphous silicon, a process temperature of 250 ° C to 350 ° C is generally required, and the polyimide film of the present embodiment needs to be able to withstand that temperature. Specifically, it is necessary to appropriately select a polymer structure having a glass transition temperature higher than the process temperature and a thermal decomposition start temperature.
 金属酸化物半導体(IGZO等)を使用したTFTデバイスを作製する場合には、一般的に320℃~400℃のプロセス温度が必要となり、本実施形態のポリイミドフィルムはその温度に耐えうる必要があるため、TFT作製プロセス最高温度以上のガラス転移温度、熱分解開始温度を有するポリマー構造を適宜選択する必要がある。 When manufacturing a TFT device using a metal oxide semiconductor (IGZO or the like), a process temperature of 320 ° C to 400 ° C is generally required, and the polyimide film of the present embodiment must be able to withstand that temperature. Therefore, it is necessary to appropriately select a polymer structure having a glass transition temperature equal to or higher than the maximum temperature of the TFT fabrication process and a thermal decomposition start temperature.
 低温ポリシリコン(LTPS)を使用したTFTデバイスを作製する場合には、一般的に380℃~520℃のプロセス温度が必要となり、本実施形態のポリイミドフィルムはその温度に耐えうる必要があるため、TFT作製プロセス最高温度以上のガラス転移温度、熱分解開始温度を適宜選択有する必要がある。他方で、これら熱履歴により、ポリイミドフィルムの光学特性(特に、光線透過率、レタデーション特性及びYI値)は高温プロセスにさらされるほどに低下する傾向にある。しかし、本実施形態のポリイミド前駆体から得られるポリイミドは、熱履歴を経ても良好な光学特性を有する。 When manufacturing a TFT device using low temperature polysilicon (LTPS), a process temperature of 380 ° C to 520 ° C is generally required, and the polyimide film of the present embodiment needs to be able to withstand that temperature. It is necessary to appropriately select the glass transition temperature and the thermal decomposition start temperature above the maximum temperature of the TFT fabrication process. On the other hand, due to these thermal histories, the optical properties of the polyimide film (particularly the light transmittance, retardation properties and YI value) tend to decrease as they are exposed to high temperature processes. However, the polyimide obtained from the polyimide precursor of the present embodiment has good optical properties even after undergoing thermal history.
 以下に、本実施形態のポリイミドフィルムの用途例として、ディスプレイ及び積層体の製造方法について説明する。 Hereinafter, a method for manufacturing a display and a laminate will be described as an application example of the polyimide film of the present embodiment.
〈ディスプレイの製造方法〉
 本実施形態のディスプレイの製造方法は、支持体の表面上に、本実施形態の樹脂組成物を塗布する塗布工程と;上記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と;上記ポリイミド樹脂膜上に素子を形成する素子形成工程と;上記素子が形成された上記ポリイミド樹脂膜を上記支持体から剥離する剥離工程とを含む。
<Manufacturing method of display>
The method for manufacturing the display of the present embodiment includes a coating step of applying the resin composition of the present embodiment on the surface of the support; and a film forming step of heating the resin composition to form a polyimide resin film. It includes an element forming step of forming an element on the polyimide resin film; and a peeling step of peeling the polyimide resin film on which the element is formed from the support.
 フレキシブル有機ELディスプレイの製造例
 図1は、本実施形態のディスプレイの例として、トップエミッション型フレキシブル有機ELディスプレイのポリイミド基板より上部の構造を示す模式図である。図1の有機EL構造部25について説明する。例えば、赤色光を発光する有機EL素子250aと、緑色光を発光する有機EL素子250bと、青色光を発光する有機EL素子250cと1単位として、マトリクス状に配列されており、隔壁(バンク)251により、各有機EL素子の発光領域が画定されている。各有機EL素子は、下部電極(陽極)252、正孔輸送層253、発光層254、上部電極(陰極)255から構成されている。窒化ケイ素(SiN)や酸化ケイ素(SiO)からなるCVD複層膜(マルチバリヤーレイヤー)を示す下部層2a上には、有機EL素子を駆動するためのTFT256(低温ポリシリコン(LTPS)や金属酸化物半導体(IGZO等)から選択される)、コンタクトホール257を備えた層間絶縁膜258、及び下部電極259が複数設けられている。有機EL素子は封止基板2bで封入されており、各有機EL素子と封止基板2bとの間に中空部261が形成されている。
Manufacturing Example of Flexible Organic EL Display FIG. 1 is a schematic view showing a structure above a polyimide substrate of a top emission type flexible organic EL display as an example of the display of the present embodiment. The organic EL structure portion 25 of FIG. 1 will be described. For example, an organic EL element 250a that emits red light, an organic EL element 250b that emits green light, and an organic EL element 250c that emits blue light are arranged in a matrix as one unit, and are arranged in a matrix. The light emitting region of each organic EL element is defined by 251. Each organic EL element is composed of a lower electrode (anode) 252, a hole transport layer 253, a light emitting layer 254, and an upper electrode (cathode) 255. On the lower layer 2a showing the CVD multilayer film (multi-barrier layer) made of silicon nitride (SiN) or silicon oxide (SiO), TFT 256 (low temperature polysilicon (LTPS)) for driving an organic EL element and metal oxidation (Selected from physical semiconductors (IGZO, etc.)), an interlayer insulating film 258 provided with contact holes 257, and a plurality of lower electrodes 259 are provided. The organic EL element is enclosed by a sealing substrate 2b, and a hollow portion 261 is formed between each organic EL element and the sealing substrate 2b.
 フレキシブル有機ELディスプレイの製造工程は、ガラス基板支持体上にポリイミドフィルムを作製し、その上部に図1に示される有機EL基板を製造する工程と、封止基板を製造する工程と、両基板を貼り合わせる組み立て工程と、ガラス基板支持体からポリイミドフィルム上に作製された有機ELディスプレイを剥離する剥離工程とを含む。有機EL基板製造工程、封止基板製造工程、及び組み立て工程は、周知の製造工程を適用することができる。以下ではその一例を挙げるが、これに限定されるものではない。剥離工程は、上述したポリイミドフィルムの剥離工程と同一である。 The manufacturing process of the flexible organic EL display consists of manufacturing a polyimide film on a glass substrate support and manufacturing the organic EL substrate shown in FIG. 1 on the polyimide film, and manufacturing a sealed substrate. The assembly step of bonding and the peeling step of peeling the organic EL display produced on the polyimide film from the glass substrate support are included. A well-known manufacturing process can be applied to the organic EL substrate manufacturing process, the sealed substrate manufacturing process, and the assembling process. The following is an example, but the present invention is not limited to this. The peeling step is the same as the peeling step of the polyimide film described above.
 例えば、図1を参照すれば、まず、上記の方法によりガラス基板支持体上にポリイミドフィルムを作製し、その上部にCVD法やスパッタ法により窒化ケイ素(SiN)と酸化ケイ素(SiO)の複層構造からなるマルチバリアレイヤー(図1中の下部基板2a)を作製し、その上部にTFTを駆動するためのメタル配線層を、フォトレジスト等を使用して作製する。その上部にCVD法を用いてSiO等のアクティブバッファー層を作製し、その上部に金属酸化物半導体(IGZO)や低温ポリシリコン(LTPS)などのTFTデバイス(図1中のTFT256)を作製する。フレキシブルディスプレイ用TFT基板を作製後、感光性アクリル樹脂等でコンタクトホール257を備えた層間絶縁膜258を形成する。スパッタ法等にてITO膜を成膜し、TFTと対をなすように下部電極259を形成する。 For example, referring to FIG. 1, first, a polyimide film is formed on a glass substrate support by the above method, and a multilayer layer of silicon nitride (SiN) and silicon oxide (SiO) is formed on the polyimide film by a CVD method or a sputtering method. A multi-barrier layer having a structure (lower substrate 2a in FIG. 1) is manufactured, and a metal wiring layer for driving a TFT is manufactured on the upper portion by using a photoresist or the like. An active buffer layer such as SiO is formed on the upper portion by a CVD method, and a TFT device (TFT256 in FIG. 1) such as a metal oxide semiconductor (IGZO) or low-temperature polysilicon (LTPS) is formed on the upper portion. After manufacturing the TFT substrate for a flexible display, an interlayer insulating film 258 having a contact hole 257 is formed with a photosensitive acrylic resin or the like. An ITO film is formed by a sputtering method or the like, and a lower electrode 259 is formed so as to form a pair with the TFT.
 次に、感光性ポリイミド等で隔壁(バンク)251を形成した後、隔壁で区画された各空間内に、正孔輸送層253、発光層254を形成する。発光層254及び隔壁(バンク)251を覆うように上部電極(陰極)255を形成する。その後、ファインメタルマスク等をマスクにして、赤色光を発光する有機EL材料(図1中の、赤色光を発光する有機EL素子250aに対応)、緑色光を発光する有機EL材料(図1中の、緑色光を発光する有機EL素子250bに対応)及び青色光を発光する有機EL材料(図1中の、青色光を発光する有機EL素子250cに対応)を公知の方法にて蒸着することで、有機EL基板を作製する。有機EL基板を封止フィルム等(図1中の封止基板2b)で封止し、ガラス基板支持体からポリイミド基板より上部のデバイスをレーザー剥離等の公知の剥離方法で剥離することで、トップエミッション形フレキシブル有機ELディスプレイを作製することができる。本実施形態のポリイミドを使用する場合は、シースルー型のフレキシブル有機ELディスプレイを作製することができる。公知の方法でボトムエミッション形のフレキシブル有機ELディスプレイを作製してもよい。 Next, after forming the partition wall (bank) 251 with photosensitive polyimide or the like, the hole transport layer 253 and the light emitting layer 254 are formed in each space partitioned by the partition wall. The upper electrode (cathode) 255 is formed so as to cover the light emitting layer 254 and the partition wall (bank) 251. After that, using a fine metal mask or the like as a mask, an organic EL material that emits red light (corresponding to the organic EL element 250a that emits red light in FIG. 1) and an organic EL material that emits green light (in FIG. 1). (Corresponding to the organic EL element 250b that emits green light) and the organic EL material that emits blue light (corresponding to the organic EL element 250c that emits blue light in FIG. 1) are vapor-deposited by a known method. Then, an organic EL substrate is manufactured. The organic EL substrate is sealed with a sealing film or the like (sealed substrate 2b in FIG. 1), and the device above the polyimide substrate is peeled from the glass substrate support by a known peeling method such as laser peeling to obtain a top. Emission type flexible organic EL display can be manufactured. When the polyimide of the present embodiment is used, a see-through type flexible organic EL display can be manufactured. A bottom emission type flexible organic EL display may be manufactured by a known method.
 フレキシブル液晶ディスプレイの製造例
 本実施形態のポリイミドフィルムを使用してフレキシブル液晶ディスプレイを作製することができる。具体的な作製方法としては、上記の方法でガラス基板支持体上にポリイミドフィルムを作製し、上記の方法を用いて、例えばアモルファスシリコン、金属酸化物半導体(IGZO等)、及び低温ポリシリコンからなるTFT基板を作製する。別途、本実施形態の塗布工程及び膜形成工程に従って、ガラス基板支持体上にポリイミドフィルムを作製し、公知の方法に従ってカラーレジスト等を使用して、ポリイミドフィルムを備えたカラーフィルターガラス基板(CF基板)を作製する。TFT基板およびCF基板の一方に、スクリーン印刷により、熱硬化性エポキシ樹脂などからなるシール材料を液晶注入口の部分を欠いた枠状パターンに塗布し、他方の基板に液晶層の厚さに相当する直径を持ち、プラスチックまたはシリカからなる球状のスペーサーを散布する。
Manufacturing Example of Flexible Liquid Crystal Display A flexible liquid crystal display can be manufactured using the polyimide film of the present embodiment. As a specific production method, a polyimide film is produced on a glass substrate support by the above method, and the above method is used, for example, composed of amorphous silicon, a metal oxide semiconductor (IGZO, etc.), and low-temperature polysilicon. A TFT substrate is manufactured. Separately, a polyimide film is produced on a glass substrate support according to the coating step and the film forming step of the present embodiment, and a color resist or the like is used according to a known method to provide a color filter glass substrate (CF substrate) with the polyimide film. ) Is prepared. A sealing material made of thermosetting epoxy resin or the like is applied to one of the TFT substrate and the CF substrate by screen printing to a frame-shaped pattern lacking the liquid crystal injection port portion, and the other substrate corresponds to the thickness of the liquid crystal layer. A spherical spacer made of plastic or silica is sprayed.
 次いで、TFT基板とCF基板とを貼り合わせ、シール材料を硬化させる。そして、TFT基板及びCF基板並びにシール材料で囲まれる空間に、減圧法により液晶材料を注入し、液晶注入口に熱硬化樹脂を塗布し、加熱によって液晶材料を封止することで液晶層を形成する。最後に、CF側のガラス基板とTFT側のガラス基板とをレーザー剥離法などでポリイミドフィルムとガラス基板の界面で剥離することで、フレキシブル液晶ディスプレイを作製することができる。 Next, the TFT substrate and the CF substrate are bonded together to cure the sealing material. Then, the liquid crystal material is injected into the space surrounded by the TFT substrate, the CF substrate, and the sealing material by the decompression method, the heat-curable resin is applied to the liquid crystal injection port, and the liquid crystal material is sealed by heating to form the liquid crystal layer. do. Finally, a flexible liquid crystal display can be manufactured by peeling the glass substrate on the CF side and the glass substrate on the TFT side at the interface between the polyimide film and the glass substrate by a laser peeling method or the like.
〈積層体の製造方法〉
 本実施形態の積層体の製造方法は、支持体の表面上に、本実施形態の樹脂組成物を塗布する塗布工程と;上記樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と;上記ポリイミド樹脂膜上に素子を形成する素子形成工程とを含む。
<Manufacturing method of laminated body>
The method for producing the laminate of the present embodiment includes a coating step of applying the resin composition of the present embodiment on the surface of the support; and a film forming step of heating the resin composition to form a polyimide resin film. Includes an element forming step of forming an element on the polyimide resin film.
 積層体における素子としては、上記のフレキシブルデバイスの製造に例示したものが挙げられる。支持体としては、例えばガラス基板を用いることができる。塗布工程及び膜形成工程の好ましい具体的手順は、上記のポリイミドフィルムの製造方法に関して記載したものと同様である。素子形成工程においては、支持体上に形成された、フレキシブル基板としてのポリイミド樹脂膜の上に、上記の素子を形成する。その後、任意に剥離工程においてポリイミド樹脂膜及び素子を支持体から剥離してもよい。 Examples of the element in the laminated body include those exemplified in the manufacture of the above-mentioned flexible device. As the support, for example, a glass substrate can be used. The preferred specific procedure of the coating step and the film forming step is the same as that described with respect to the above-mentioned method for producing a polyimide film. In the element forming step, the above-mentioned element is formed on the polyimide resin film as a flexible substrate formed on the support. Then, optionally, the polyimide resin film and the element may be peeled from the support in the peeling step.
 以下、実施例及び比較例により本発明の実施形態を具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples.
〔第一の態様〕
《測定及び評価方法》
〈重量平均分子量〉
 重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエ-ションクロマトグラフィー(GPC)にて、下記の条件により測定した。
 溶媒として、NMP(和光純薬工業社製、高速液体クロマトグラフ用、測定直前に24.8mmol/Lの臭化リチウム一水和物(和光純薬工業社製、純度99.5%)及び63.2mmol/Lのリン酸(和光純薬工業社製、高速液体クロマトグラフ用)を加えて溶解したもの)を使用した。重量平均分子量を算出するための検量線は、スタンダ-ドポリスチレン(東ソ-社製)を用いて作製した。
カラム:Shodex KD-806M(昭和電工社製)
流速:1.0mL/分
カラム温度:40℃
ポンプ:PU-2080Plus(JASCO社製)
検出器:RI-2031Plus(RI:示差屈折計、JASCO社製)及びUV-2075Plus(UV-VIS:紫外可視吸光計、JASCO社製)
[First aspect]
<< Measurement and evaluation method >>
<Weight average molecular weight>
The weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) under the following conditions.
As solvents, NMP (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph, 24.8 mmol / L lithium bromide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5%) immediately before measurement) and 63. .2 mmol / L phosphoric acid (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph) was added and dissolved) was used. The calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (manufactured by Toso Co., Ltd.).
Column: Shodex KD-806M (manufactured by Showa Denko KK)
Flow rate: 1.0 mL / min Column temperature: 40 ° C
Pump: PU-2080Plus (manufactured by JASCO)
Detector: RI-2031Plus (RI: differential refractometer, manufactured by JASCO) and UV-2075Plus (UV-VIS: ultraviolet-visible absorptiometer, manufactured by JASCO)
<組成物(ワニス)の粘度安定性の評価>
実施例、及び比較例において調製した樹脂組成物を23℃、50%RHの雰囲気下で24時間放置し、樹脂組成物の初期(0日)の粘度を、温調機付粘度計(東機産業械社製VISCOMATER TVE-35H)を用いて測定した。そして、樹脂組成物を23℃、50%RHの雰囲気下で10日間放置し、初期と同様にして、10日後の粘度を測定した。続いて、下記式で表される粘度安定性を算出した。
 粘度安定性(%/day)=|(初期の粘度(mPa・s))―(10日後の粘度(mPa・s))|/(初期粘度(mPa・s))*100/10(day)
粘度安定性は下記基準で評価を行った。
 A:粘度安定性2%/day以下 「優良」
 B:粘度安定性4%/day超7%/day以下 「良」 
 C:粘度安定性6%/day超10%/day以下 「可」
 D:粘度安定性8%/day超 「可」
<Evaluation of viscosity stability of composition (varnish)>
The resin compositions prepared in Examples and Comparative Examples were left to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours, and the initial (0 day) viscosity of the resin composition was measured by a viscometer with a temperature controller (Toki). It was measured using VISCOMATER TVE-35H) manufactured by Sangyo Kikai. Then, the resin composition was left to stand in an atmosphere of 23 ° C. and 50% RH for 10 days, and the viscosity after 10 days was measured in the same manner as in the initial stage. Subsequently, the viscosity stability represented by the following formula was calculated.
Viscosity stability (% / day) = | (initial viscosity (mPa · s))-(viscosity after 10 days (mPa · s)) | / (initial viscosity (mPa · s)) * 100/10 (day)
Viscosity stability was evaluated according to the following criteria.
A: Viscosity stability 2% / day or less "excellent"
B: Viscosity stability 4% / day over 7% / day or less "Good"
C: Viscosity stability 6% / day more than 10% / day or less "OK"
D: Viscosity stability 8% / day over "OK"
<組成物(ワニス)のろ過性の評価>
 実施例、及び比較例において調製した樹脂組成物を23℃、50%RHの雰囲気下で、サイズ900mmφ、目付0.2μmのポリエチレン製のメンブレンフィルターを用いて、0.25MPaの圧力で加圧ろ過を行った。この時のろ過された樹脂組成物の質量を測定し、ろ過速度を計算した。ろ過性は下記基準で評価を行った。
 A:ろ過速度1700g/hr以上 「優」
 B:ろ過速度1700g/hr未満1500g/hr以上 「良」
 C:ろ過速度1500g/hr未満500g/hr以上 「可」
 D:ろ過速度500g/hr未満 「不可」
<Evaluation of the filterability of the composition (varnish)>
The resin compositions prepared in Examples and Comparative Examples were pressure-filtered at a pressure of 0.25 MPa at 23 ° C. and 50% RH using a polyethylene membrane filter having a size of 900 mmφ and a basis weight of 0.2 μm. Was done. The mass of the filtered resin composition at this time was measured, and the filtration rate was calculated. The filterability was evaluated according to the following criteria.
A: Filtration speed of 1700 g / hr or more "excellent"
B: Filtration rate less than 1700 g / hr 1500 g / hr or more "Good"
C: Filtration rate less than 1500 g / hr 500 g / hr or more "OK"
D: Filtration rate less than 500 g / hr "impossible"
<ポリイミド樹脂膜の引張伸度の評価>
 支持体として、表面にアルミニウム蒸着層を設けた6インチシリコンウェハー基板を用い、そのアルミニウム蒸着層の面上に、実施例及び比較例において調製した樹脂組成物を、ポリイミド樹脂膜の膜厚が10μmになるようにスピンコートして、塗膜を形成した。この塗膜を、100℃、6分間プリベークした後、庫内の酸素濃度が10質量ppm以下に調整された縦型キュア炉(光洋サーモシステム(株)製、型式名「VF-2000B」)を用いて、400℃にて1時間加熱し、ウェハー上にポリイミドフィルムを形成した。続いて、ダイシングソー((株)ディスコ製、品名「DAD 3350」)を用いて、得られたポリイミドフィルムに3mm幅の切れ目を入れた後、ポリイミドフィルム付きウェハーを、希塩酸水溶液に一晩浸して、ポリイミドフィルム片を剥離して、乾燥させて、幅3mmのポリイミド片を得た。これを長さ50mmにカットして、幅3mm、長さ50mmのポリイミド測定試料を得た。TENSILON((株)オリエンテック社製、型式名「UTM-II-20」)を用いて、試験速度40mm/分、初期加重0.5fsにて、ポリイミド樹脂膜の引張伸度を測定した。引張伸度は下記基準で評価を行った。
 A:引張伸度が40%超 「優良」
 B:引張伸度が30%超40%以下 「良」
 C:引張伸度が20%超30%以下 「可」
 D:引張伸度が20%未満 「不可」
<Evaluation of tensile elongation of polyimide resin film>
A 6-inch silicon wafer substrate having an aluminum-deposited layer on its surface was used as a support, and the resin compositions prepared in Examples and Comparative Examples were placed on the surface of the aluminum-deposited layer, and the thickness of the polyimide resin film was 10 μm. A coating film was formed by spin coating so as to be. After prebaking this coating film at 100 ° C. for 6 minutes, a vertical curing furnace (manufactured by Koyo Thermo System Co., Ltd., model name "VF-2000B") in which the oxygen concentration in the refrigerator was adjusted to 10 mass ppm or less was used. It was heated at 400 ° C. for 1 hour to form a polyimide film on the wafer. Subsequently, a dicing saw (manufactured by Disco Co., Ltd., product name "DAD 3350") was used to make a 3 mm wide cut in the obtained polyimide film, and then the wafer with the polyimide film was immersed in a dilute hydrochloric acid aqueous solution overnight. , The polyimide film piece was peeled off and dried to obtain a polyimide piece having a width of 3 mm. This was cut into a length of 50 mm to obtain a polyimide measurement sample having a width of 3 mm and a length of 50 mm. Using TENSILON (manufactured by Orientec Co., Ltd., model name "UTM-II-20"), the tensile elongation of the polyimide resin film was measured at a test speed of 40 mm / min and an initial load of 0.5 fs. The tensile elongation was evaluated according to the following criteria.
A: Tensile elongation exceeds 40% "excellent"
B: Tensile elongation is more than 30% and 40% or less "Good"
C: Tensile elongation is more than 20% and 30% or less "OK"
D: Tensile elongation is less than 20% "impossible"
<ポリイミド樹脂膜の残留応力の評価>
 予め「反り量」を測定しておいた、厚み625μm±25μmの6インチシリコンウェハー上に、実施例及び比較例において調製した樹脂組成物をスピンコーターにより塗布し、100℃において7分間プリベークした。その後、縦型キュア炉(光洋リンドバーグ社製、型式名VF-2000B)を用いて、庫内の酸素濃度が10質量ppm以下になるように調整して、400℃において1時間の加熱硬化処理(キュア処理)を施し、硬化後膜厚10μmのポリイミド樹脂膜のついたシリコンウェハーを作製した。
 このウェハーの反り量を、残留応力測定装置(テンコール社製、型式名FLX-2320)を用いて測定し、“窒素雰囲気下において”シリコンウェハーと樹脂膜との間に生じた残留応力を評価した。
 A:残留応力が35MPa未満 「良」
 B:残留応力が35MPa以上45MPa未満 「可」
 C:残留応力が45MPa以上 「不可」
<Evaluation of residual stress of polyimide resin film>
The resin compositions prepared in Examples and Comparative Examples were applied on a 6-inch silicon wafer having a thickness of 625 μm ± 25 μm for which the “warp amount” had been measured in advance by a spin coater, and prebaked at 100 ° C. for 7 minutes. After that, using a vertical curing furnace (manufactured by Koyo Lindbergh Co., Ltd., model name VF-2000B), the oxygen concentration in the refrigerator was adjusted to 10% by mass or less, and heat curing treatment was performed at 400 ° C. for 1 hour. After curing, a silicon wafer with a polyimide resin film having a thickness of 10 μm was produced.
The amount of warpage of this wafer was measured using a residual stress measuring device (model name FLX-2320 manufactured by Tencor), and the residual stress generated between the silicon wafer and the resin film was evaluated "under a nitrogen atmosphere". ..
A: Residual stress is less than 35 MPa "Good"
B: Residual stress is 35 MPa or more and less than 45 MPa "Yes"
C: Residual stress is 45 MPa or more "impossible"
<全樹脂中のケイ素含有化合物割合>
 実施例/比較例の樹脂組成物の全樹脂の総質量におけるケイ素基含有化合物の割合(質量%)を下記の通り算出した。
ケイ素基含有化合物の割合(質量%)=ケイ素基含有化合物の質量(g)/各モノマー(酸二無水物モノマー、ジアミンモノマー、ケイ素基含有化合物)の質量の総量(g)*100
<Ratio of silicon-containing compounds in all resins>
The ratio (mass%) of the silicon group-containing compound to the total mass of the total resin of the resin composition of Example / Comparative Example was calculated as follows.
Ratio of silicon group-containing compound (mass%) = mass of silicon group-containing compound (g) / total mass of each monomer (acid dianhydride monomer, diamine monomer, silicon group-containing compound) (g) * 100
 また、ケイ素基含有化合物の割合は、ワニスを用いて下記方法により求めることができる。
ワニスに水を適当量加え、80℃で3日間加熱処理を行い、酸成分とアミン成分とに解重合成分とを解重合させ、酸モノマーとアミンモノマーとする。その後、溶媒留去により酸モノマーとアミンモノマーが混ざった粉体を得て、アセトニトリル溶液を調製し、高速液体クロマトグラフィー質量分析(LC/MS)測定を行う。そして、各モノマーのピーク面積を求め、そのピーク面積比から算出することができる。
The ratio of the silicon group-containing compound can be determined by the following method using a varnish.
An appropriate amount of water is added to the varnish, and the mixture is heat-treated at 80 ° C. for 3 days to depolymerize the depolymerization component into the acid component and the amine component to obtain an acid monomer and an amine monomer. Then, the solvent is distilled off to obtain a powder in which an acid monomer and an amine monomer are mixed, an acetonitrile solution is prepared, and high performance liquid chromatography mass spectrometry (LC / MS) measurement is performed. Then, the peak area of each monomer can be obtained and calculated from the peak area ratio.
<イミド化率>
 実施例/比較例の樹脂のイミド化率(%)を下記の通り算出した。
(一般式(10)のL及びLがアミノ基の場合)
イミド化率(%)=
イミド化工程のジアミンモノマー(一般式(10)のL及びLがアミノ基のケイ素含有化合物含む)の総モル数/{イミド化工程のジアミンモノマー(一般式(10)のL及びLがアミノ基のケイ素含有化合物含む)の総モル数+アミド化工程のジアミンモノマー(一般式(10)のL及びLがアミノ基のケイ素含有化合物含む)の総モル数}*100
<Imidization rate>
The imidization rate (%) of the resin of the example / comparative example was calculated as follows.
(When L 1 and L 2 of the general formula (10) are amino groups)
Imidization rate (%) =
Total number of moles of diamine monomers in the imidization step (including compounds containing silicon containing amino groups L 1 and L 2 in the general formula (10)) / {diamine monomers in the imidization step (L 1 and L in the general formula (10)) 2 is the total number of moles of the amino group silicon-containing compound) + the total number of moles of the diamine monomer in the amidation step (where L 1 and L 2 of the general formula (10) include the amino group silicon-containing compound)} * 100
 例えば、実施例I-1の場合、
イミド化工程のジアミンモノマー(一般式(10)のL及びLがアミノ基のケイ素含有化合物含む)の総モル数:93.6mmol
アミド化工程のジアミンモノマー(一般式(10)のL及びLがアミノ基のケイ素含有化合物含む)の総モル数:111.9mmol
であり、イミド化率は83.7%になる。
For example, in the case of Example I-1
Total number of moles of diamine monomer in the imidization step (including the silicon-containing compound in which L 1 and L 2 of the general formula (10) are amino groups): 93.6 mmol
Total number of moles of diamine monomer in the amidation step (including the silicon-containing compound in which L 1 and L 2 of the general formula (10) are amino groups): 111.9 mmol
The imidization rate is 83.7%.
(一般式(10)のL及びLが酸無水物基の場合)
イミド化率(%)=
イミド化工程の酸二無水物モノマー(一般式(10)のL及びLが酸無水物基のケイ素含有化合物含む)の総モル数/{イミド化工程の酸無水物モノマー(一般式(10)のL及びLが酸無水物基のケイ素含有化合物含む)の総モル数+アミド化工程の酸二無水物モノマー(一般式(10)のL及びLが酸無水物基のケイ素含有化合物含む)の総モル数}*100
(When L 1 and L 2 of the general formula (10) are acid anhydride groups)
Imidization rate (%) =
Total number of moles of acid dianhydride monomer in the imidization step (where L 1 and L 2 in the general formula (10) include the silicon-containing compound of the acid anhydride group) / {acid anhydride monomer in the imidization step (general formula (general formula (1) 10) L 1 and L 2 are the total number of moles of the silicon-containing compound of the acid anhydride group) + the acid dianhydride monomer in the amidation step (L 1 and L 2 of the general formula (10) are the acid anhydride groups Total number of moles of (including silicon-containing compounds)} * 100
 また、イミド化率は、ワニスを用いて下記方法により求めることができる。
ワニスに水を適当量加え、80℃で3日間加熱処理を行い、酸成分とアミン成分とに解重合成分とを解重合させ、酸モノマーとアミンモノマーとする。その後、溶媒留去により酸モノマーとアミンモノマーが混ざった粉体を得て、アセトニトリル溶液を調製し、高速液体クロマトグラフィー質量分析(LC/MS)測定を行う。そして、各モノマーのピーク面積を求め、そのピーク面積比から算出することができる。
The imidization rate can be determined by the following method using a varnish.
An appropriate amount of water is added to the varnish, and the mixture is heat-treated at 80 ° C. for 3 days to depolymerize the depolymerization component into the acid component and the amine component to obtain an acid monomer and an amine monomer. Then, the solvent is distilled off to obtain a powder in which an acid monomer and an amine monomer are mixed, an acetonitrile solution is prepared, and high performance liquid chromatography mass spectrometry (LC / MS) measurement is performed. Then, the peak area of each monomer can be obtained and calculated from the peak area ratio.
 また、イミド化率は、IR(赤外分光光度計)を用いて測定することも可能である。ワニスを水溶媒で再沈殿したのち、粉体を分離乾燥後、KBrを加えてペレットにしてサンプルとして用いた。そして、一回反射ATR法にて樹脂層の赤外線吸収スペクトルを測定することによって、1009cm-1のベンゼン環炭素水素結合を基準とし、1778cm-1のイミド基由来の吸光度から算出することができる。ここでは、ワニスを400℃で1時間熱処理後のポリイミドフィルムのイミド化率を100%とした。 The imidization rate can also be measured using an IR (infrared spectrophotometer). The varnish was reprecipitated with an aqueous solvent, the powder was separated and dried, and KBr was added to make pellets, which were used as a sample. Then, by measuring the infrared absorption spectrum of the resin layer at one time reflection ATR method, with respect to the benzene ring carbon hydrogen bonds 1009Cm -1, can be calculated from the absorbance from the imide groups of 1778cm -1. Here, the imidization ratio of the polyimide film after heat-treating the varnish at 400 ° C. for 1 hour was set to 100%.
<ジアミン中のケイ素含有化合物割合 イミドユニットとアミドユニットの差>
 実施例/比較例の樹脂の、ジアミン中のケイ素含有化合物割合の、イミドユニットとアミドユニットの差は、下記式より求められる。
A:イミドユニットのジアミン中のケイ素含有化合物割合(質量%)=イミド化工程で用いたケイ素含有化合物/イミド化工程で用いたジアミンモノマー(ケイ素含有化合物含む)の質量の総量*100
B:アミドユニットのジアミン中のケイ素含有化合物割合(質量%)=イミド化工程で用いたケイ素含有化合物/アミド化工程で用いたジアミンモノマー(ケイ素含有化合物含む)の質量の総量*100
 Aは、“一般式(7)におけるPを構成するジアミンのうち、一般式(10)の割合(質量%)”とも言い換えることができる。
 また、Bは、“一般式(6)におけるPを構成するジアミンのうち、一般式(10)の割合(質量%)”とも言い換えることができる。
そして、ジアミン中のケイ素含有化合物割合 イミドユニットとアミドユニットの差は、“B-A”と表される。
<Ratio of silicon-containing compounds in diamine Difference between imide unit and amide unit>
The difference between the imide unit and the amide unit in the ratio of the silicon-containing compound in the diamine of the resin of the example / comparative example can be obtained from the following formula.
A: Silicon-containing compound ratio (% by mass) in diamine of imide unit = silicon-containing compound used in imidization step / total mass of diamine monomer (including silicon-containing compound) used in imidization step * 100
B: Silicon-containing compound ratio (% by mass) in diamine of the amide unit = total mass of silicon-containing compound used in the imidization step / diamine monomer (including silicon-containing compound) used in the amidation step * 100
A is "among the general formula in (7) of the diamine constituting the P 5, the ratio (mass%) of the general formula (10)" and can turn also.
Further, B can be rephrased as "the ratio (mass%) of the general formula (10) to the diamines constituting P 3 in the general formula (6)".
Then, the ratio of the silicon-containing compound in the diamine The difference between the imide unit and the amide unit is expressed as "BA".
 実施例I-14,I-16,I-17、比較例I-4~I-6のB-Aの値と、それらのワニス、及びポリイミドフィルムの特性とを表5に示した。 Table 5 shows the values of BA of Examples I-14, I-16, I-17 and Comparative Examples I-4 to I-6, their varnishes, and the characteristics of the polyimide film.
《実施例I-1》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(189g)、トルエン(19g)、ジアミンとしてDABA(73.0mmol,11.1g)、ケイ素含有化合物(2)(6.699mmol,10.72g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(18.3mmol,2.8g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液(以下、ワニスともいう)を得た。
<< Example I-1 >>
As shown in Tables 1 and 2, NMP (189 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (73.0 mmol, 11.1 g) and silicon-containing compound (2) (6.699 mmol, 10.72 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. rice field. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (18.3 mmol, 2.8 g) was added as a diamine with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture was stirred at room temperature for 48 hours, and an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group) ( Hereinafter, it is also referred to as varnish).
《実施例I-2》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(191g)、トルエン(19g)、ジアミンとしてDABA(13.6g)、ケイ素含有化合物(1)(10.82g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(0.7g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-2 >>
As shown in Tables 1 and 2, NMP (191 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (13.6 g) and the silicon-containing compound (1) (10.82 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (0.7 g) was added as a diamine with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-3》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(191g)、トルエン(19g)、ジアミンとしてDABA(7.3g)、ケイ素含有化合物(3)(10.85g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(7.3g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-3 >>
As shown in Tables 1 and 2, NMP (191 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (7.3 g) and the silicon-containing compound (3) (10.85 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (7.3 g) was added as a diamine with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-4》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(191g)、トルエン(19g)、ジアミンとしてDABA(8.7g)、ケイ素含有化合物(4)(10.85g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(5.8g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-4 >>
As shown in Tables 1 and 2, NMP (191 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (8.7 g) and the silicon-containing compound (4) (10.85 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (5.8 g) was added as a diamine with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-5》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(186g)、トルエン(19g)、ジアミンとしてDABA(14.9g)を撹拌しながら加え、続いて酸二無水物としてCpODA(32.8g)、ケイ素含有化合物(5)(10.51g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、酸二無水物としてCpODA(3.6g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-5 >>
As shown in Tables 1 and 2, NMP (186 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (14.9 g) was added with stirring, and then CpODA (32.8 g) and a silicon-containing compound (5) (10.51 g) were added as acid dianhydride at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, CpODA (3.6 g) was added as an acid dianhydride with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-6》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(184g)、トルエン(18g)、ジアミンとしてDABA(12.9g)、ケイ素含有化合物(1)(10.44g)を撹拌しながら加え、続いて酸二無水物としてCpODA(28.8g),ODPA(7.8g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(1.4g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-6 >>
As shown in Tables 1 and 2, NMP (184 g), toluene (18 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (12.9 g) and the silicon-containing compound (1) (10.44 g) were added with stirring, and then CpODA (28.8 g) and ODPA (7.8 g) were added as acid dianhydrides at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (1.4 g) was added as a diamine with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-7》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(194g)、トルエン(19g)、ジアミンとしてDABA(11.1g)、ケイ素含有化合物(2)(11.02g)を撹拌しながら加え、続いて酸二無水物としてCpODA(28.8g),6FDA(11.1g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(2.8g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-7 >>
As shown in Tables 1 and 2, NMP (194 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (11.1 g) and the silicon-containing compound (2) (11.02 g) were added with stirring, and then CpODA (28.8 g) and 6FDA (11.1 g) were added as acid dianhydrides at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (2.8 g) was added as a diamine with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-8》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(197g)、トルエン(20g)、ジアミンとしてDABA(8.6g)、ケイ素含有化合物(1)(11.19g)を撹拌しながら加え、続いて酸二無水物としてCpODA(28.8g),BPAF(11.5g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(5.7g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-8 >>
As shown in Tables 1 and 2, NMP (197 g), toluene (20 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (8.6 g) and the silicon-containing compound (1) (11.19 g) were added with stirring, and then CpODA (28.8 g) and BPAF (11.5 g) were added as acid dianhydrides at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (5.7 g) was added as a diamine with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-9》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(193g)、トルエン(19g)、ジアミンとしてDABA(7.2g)、ケイ素含有化合物(1)(10.92g)を撹拌しながら加え、続いて酸二無水物としてCpODA(28.8g),BzDA(10.1g)を室温で 加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(7.2g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-9 >>
As shown in Tables 1 and 2, NMP (193 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (7.2 g) and the silicon-containing compound (1) (10.92 g) were added with stirring, and then CpODA (28.8 g) and BzDA (10.1 g) were added as acid dianhydrides at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (7.2 g) was added as a diamine with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-10》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(170g)、トルエン(17g)、ジアミンとしてDABA(13.3g)、ケイ素含有化合物(2)(9.62g)を撹拌しながら加え、続いて酸二無水物としてCpODA(28.8g),BNBDF(4.1g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(0.7g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-10 >>
As shown in Tables 1 and 2, NMP (170 g), toluene (17 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (13.3 g) and the silicon-containing compound (2) (9.62 g) were added with stirring, and then CpODA (28.8 g) and BNBDF (4.1 g) were added as acid dianhydrides at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (0.7 g) was added as a diamine with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-11》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(204g)、トルエン(20g)、ジアミンとしてDABA(10.3g)、BAFL(5.9g)、ケイ素含有化合物(1)(11.57g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(1.1g)、BAFL(0.7g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-11 >>
As shown in Tables 1 and 2, NMP (204 g), toluene (20 g), and diamine as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (10.3 g), BAFL (5.9 g) and silicon-containing compound (1) (11.57 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (1.1 g) and BAFL (0.7 g) were added as diamines with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-12》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(202g)、トルエン(20g)、ジアミンとしてDABA(5.5g)、BisAM(3.1g)、ケイ素含有化合物(2)(11.42g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(5.5g)、BisAM(3.1g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-12 >>
As shown in Tables 1 and 2, NMP (202 g), toluene (20 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (5.5 g), BisAM (3.1 g) and silicon-containing compound (2) (11.42 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (5.5 g) and BisAM (3.1 g) were added as diamines with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-13》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(218g)、トルエン(22g)、ジアミンとしてDABA(5.9g)、BAFL(9.4g)、ケイ素含有化合物(1)(12.35g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(2.5g)、BAFL(4.0g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-13 >>
As shown in Tables 1 and 2, NMP (218 g), toluene (22 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (5.9 g), BAFL (9.4 g) and silicon-containing compound (1) (12.35 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (2.5 g) and BAFL (4.0 g) were added as diamines with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《比較例I-1》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表1及び2に記載する様に、溶媒としてNMP(208g)、トルエン(21g)、ジアミンとしてDABA(10.22g)、TFMB(16.0g)を撹拌しながら加え、続いて酸二無水物としてCpODA(27.7g)、BPDA(5.3g)、ケイ素含有化合物(6)(9.95g)を室温で加えた。酸二無水物、ジアミンのモル比は、100:100であった。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、ポリイミド樹脂(ケイ素含有化合物以外の官能基:イミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。得られたワニスを冷凍庫(設定-20℃、以下同様)で保管し、評価をする際は解凍して使用した。
<< Comparative Example I-1 >>
As shown in Tables 1 and 2, NMP (208 g), toluene (21 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (10.22 g) and TFMB (16.0 g) were added with stirring, followed by CpODA (27.7 g), BPDA (5.3 g) and silicon-containing compound (6) (9.) as acid dianhydride. 95 g) was added at room temperature. The molar ratio of acid dianhydride and diamine was 100: 100. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature to obtain an NMP solution of a polyimide resin (functional group other than silicon-containing compound: imide group, functional group of silicon-containing compound: imide group). The obtained varnish was stored in a freezer (setting -20 ° C, the same applies hereinafter), and was thawed and used for evaluation.
《比較例I-2,I-3》
 比較例I-1において、溶媒、酸二無水物、ジアミンの種類及び量を表1及び2に記載したものに変更したことを除いて、比較例I-1と同様に行った。
<< Comparative Examples I-2 and I-3 >>
In Comparative Example I-1, the same procedure was used for Comparative Example I-1 except that the types and amounts of the solvent, acid dianhydride, and diamine were changed to those shown in Tables 1 and 2.
《実施例I-14》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表3及び4に記載する様に、溶媒としてNMP(177g)、トルエン(18g)、ジアミンとしてケイ素含有化合物(2)(4.12g)、33DAS(8.5g)、44DAS(12.8g)を撹拌しながら加え、続いて酸二無水物としてODPA(31.0g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとして33DAS(0.9g)、44DAS(1.4g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-14 >>
As shown in Tables 3 and 4, NMP (177 g), toluene (18 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. As a silicon-containing compound (2) (4.12 g), 33 DAS (8.5 g), 44 DAS (12.8 g) was added with stirring, and then ODPA (31.0 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, 33 DAS (0.9 g) and 44 DAS (1.4 g) were added as diamines with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-15》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表3及び4に記載する様に、溶媒としてNMP(170g)、トルエン(17g)、ジアミンとしてケイ素含有化合物(2)(1.70g)、33DAS(8.7g)、44DAS(13.0g)を撹拌しながら加え、続いて酸二無水物としてODPA(31.0g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとして33DAS(1.0g)、44DAS(1.4g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-15 >>
As shown in Tables 3 and 4, NMP (170 g), toluene (17 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. The silicon-containing compound (2) (1.70 g), 33DAS (8.7 g) and 44DAS (13.0 g) were added with stirring, and then ODPA (31.0 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, 33 DAS (1.0 g) and 44 DAS (1.4 g) were added as diamines with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-16》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表3及び4に記載する様に、溶媒としてNMP(204g)、トルエン(20g)、ジアミンとしてケイ素含有化合物(2)(16.36g)、DABA(12.0g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(1.3g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-16 >>
As shown in Tables 3 and 4, NMP (204 g), toluene (20 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. The silicon-containing compound (2) (16.36 g) and DABA (12.0 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (1.3 g) was added as a diamine with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-17》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表3及び4に記載する様に、溶媒としてNMP(259g)、トルエン(26g)、ジアミンとしてケイ素含有化合物(1)(15.54g)、BAFL(29.1g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてBAFL(3.2g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-17 >>
As shown in Tables 3 and 4, NMP (259 g), toluene (26 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. The silicon-containing compound (1) (15.54 g) and BAFL (29.1 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, BAFL (3.2 g) as a diamine was added with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-18》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表3及び4に記載する様に、溶媒としてNMP(232g)、トルエン(23g)、ジアミンとしてケイ素含有化合物(1)(7.73g)、33DAS(8.5g)、44DAS(12.8g)を撹拌しながら加え、続いて酸二無水物としてBPAF(45.8g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとして33DAS(0.9g)、44DAS(1.4g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-18 >>
As shown in Tables 3 and 4, NMP (232 g), toluene (23 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. As a silicon-containing compound (1) (7.73 g), 33 DAS (8.5 g), 44 DAS (12.8 g) was added with stirring, and then BPAF (45.8 g) as an acid dianhydride was added at room temperature. .. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, 33 DAS (0.9 g) and 44 DAS (1.4 g) were added as diamines with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《実施例I-19》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表3及び4に記載する様に、溶媒としてNMP(235g)、トルエン(24g)、ジアミンとしてケイ素含有化合物(1)(7.84g)、6FODA(28.9g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとして6FODA(3.2g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。
<< Example I-19 >>
As shown in Tables 3 and 4, NMP (235 g), toluene (24 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. The silicon-containing compound (1) (7.84 g) and 6FODA (28.9 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, 6FODA (3.2 g) as a diamine was added with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture is stirred at room temperature for 48 hours to prepare an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: imide group). Obtained.
《比較例I-4》
 表3及び4に記載する様に、BPADA200g(0.384mol)を1,2-ビス(2-メトキシエトキシ)エタン(トリグラム)1101gに分散し、80℃に保った。これにケイ素含有化合物X-22-9409(信越化学社製、両末端:アミノ基、官能基等量:670)を172g(0.115mol)投入し、30分間均一攪拌を行った。次いで、140℃に加熱して1時間攪拌を行い、反応を終了させた後、180℃に昇温させて3時間加熱還流を行った。反応終了後、室温まで冷却し水を27.7g(1.54mol)投入した。均一に30分間攪拌した後、80℃に加熱して3時間加熱還流を行った。このようにしてイミド化したテトラカルボン酸(末端テトラカルボン酸シロキサンイミドオリゴマー)を溶解した溶液を得た。
次いで溶液を、室温まで冷却してmBAPSを99.7g(0.230mol)投入して室温下で1時間均一攪拌を行い、樹脂組成物溶液を得た。
<< Comparative Example I-4 >>
As shown in Tables 3 and 4, 200 g (0.384 mol) of BPADA was dispersed in 1101 g of 1,2-bis (2-methoxyethoxy) ethane (trigram) and kept at 80 ° C. 172 g (0.115 mol) of a silicon-containing compound X-22-9409 (manufactured by Shin-Etsu Chemical Co., Ltd., both ends: amino group, functional group equal amount: 670) was added thereto, and the mixture was uniformly stirred for 30 minutes. Then, the mixture was heated to 140 ° C. and stirred for 1 hour to complete the reaction, and then the temperature was raised to 180 ° C. and reflux was performed for 3 hours. After completion of the reaction, the mixture was cooled to room temperature and 27.7 g (1.54 mol) of water was added. After stirring uniformly for 30 minutes, the mixture was heated to 80 ° C. and heated under reflux for 3 hours. A solution in which the tetracarboxylic acid (terminal tetracarboxylic acid siloxaneimide oligomer) imidized in this manner was dissolved was obtained.
Then, the solution was cooled to room temperature, 99.7 g (0.230 mol) of mBAPS was added, and the mixture was uniformly stirred at room temperature for 1 hour to obtain a resin composition solution.
《比較例I-5》
 表3及び4に記載する様に、三口セパラブルフラスコに窒素導入管、温度計、水分分離トラップを備えた玉付冷却管を取り付けた。室温25℃で、トリエチレングリコールジメチルエーテル(トリグラム)15g、γ-ブチロラクトン(GBL)35g、トルエン20.0g、ODPA10.86g(35.00mmol)を入れ、均一になるまで攪拌した。その後、80℃に昇温しケイ素含有化合物KF-8010(信越化学工業社製、両末端:アミノ基、官能基等量430)11.30g(13.78mmol)を加え、更に0.5時間攪拌した後、170℃まで昇温し、4時間加熱した。反応中、副生する水は、トルエンと共沸し、水分分離トラップを備えた玉付冷却管を用いて、還流下、脱水を行った。副生水を抜いた後、還流を止め、トルエンを全抜きした。系を100℃まで冷却した後、無水マレイン酸0.14gを加え0.5時間攪拌した。
12時間室温25℃にて静置、冷却した後にAPB6.00g(20.52mmol)を添加し、樹脂組成物を得た。
<< Comparative Example I-5 >>
As shown in Tables 3 and 4, a cooling tube with a ball equipped with a nitrogen introduction tube, a thermometer, and a water separation trap was attached to the three-necked separable flask. At room temperature of 25 ° C., 15 g of triethylene glycol dimethyl ether (trigram), 35 g of γ-butyrolactone (GBL), 20.0 g of toluene and 10.86 g of ODPA (35.00 mmol) were added and stirred until uniform. Then, the temperature was raised to 80 ° C., 11.30 g (13.78 mmol) of the silicon-containing compound KF-8010 (manufactured by Shin-Etsu Chemical Co., Ltd., both ends: amino group, functional group equal amount 430) was added, and the mixture was further stirred for 0.5 hour. After that, the temperature was raised to 170 ° C. and heated for 4 hours. During the reaction, the by-produced water was azeotropically boiled with toluene and dehydrated under reflux using a condenser with a ball equipped with a water separation trap. After draining the by-product water, reflux was stopped and all toluene was drained. After cooling the system to 100 ° C., 0.14 g of maleic anhydride was added and the mixture was stirred for 0.5 hours.
After allowing to stand at room temperature of 25 ° C. for 12 hours and cooling, 6.00 g (20.52 mmol) of APB was added to obtain a resin composition.
《比較例I-6》
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーン・スターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、表3及び4に記載する様に、6FODAを27.0g(0.0802モル)、及びNMPを56.000g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
<< Comparative Example I-6 >>
A 500 mL five-necked round-bottom flask with a stainless half-moon agitator, a nitrogen inlet tube, a Dean Stark with a condenser, a thermometer, and a glass end cap, as described in Tables 3 and 4. 27.0 g (0.0802 mol) of 6FODA and 56.000 g of NMP were added, and the mixture was stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
 この溶液に、CpODA 19.2g(0.050モル)、及びNMP 14.000gを一括で添加した後、イミド化触媒としてTEAを0.253g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して1時間還流した。その後、NMPを85.806g添加して、反応系内温度を50℃まで冷却し、イミド繰り返し構造単位を有するオリゴマーを含む溶液を得た。 After adding 19.2 g (0.050 mol) of CpODA and 14.000 g of NMP to this solution in a batch, 0.253 g of TEA was added as an imidization catalyst, and the mixture was heated by a mantle heater over about 20 minutes. The temperature inside the reaction system was raised to 190 ° C. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. and refluxed for 1 hour while adjusting the rotation speed according to the increase in viscosity. Then, 85.806 g of NMP was added to cool the temperature inside the reaction system to 50 ° C. to obtain a solution containing an oligomer having an imide repeating structural unit.
 得られた溶液に、BPDA 9.7g(0.033モル)、及びNMP 7.527gを一括で添加し50℃で5時間撹拌した。その後、NMPを100.000g添加し均一化した後、NMP 16.667gにX-22-1660B-3(変性シリコーンオイル、官能基等量2200、信越化学)を13.2g(0.003モル)溶解させた混合液を投入し、更に約1時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:アミド基)のNMP溶液(以下、ワニスともいう)を得た。 9.7 g (0.033 mol) of BPDA and 7.527 g of NMP were collectively added to the obtained solution, and the mixture was stirred at 50 ° C. for 5 hours. Then, after adding 100.000 g of NMP to homogenize, 13.2 g (0.003 mol) of X-22-1660B-3 (modified silicone oil, functional group equal amount 2200, Shin-Etsu Chemical Co., Ltd.) was added to 16.667 g of NMP. The dissolved mixed solution is added, and the mixture is further stirred for about 1 hour to partially imidize a polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: amide group). ) NMP solution (hereinafter, also referred to as varnish) was obtained.
 実施例及び比較例の樹脂組成物を用いて、粘度安定性、ろ過性の各評価を、得られたポリイミド樹脂膜を用いて、引張伸度、残留応力の各評価を行った。評価結果を表1~4に示す。 Using the resin compositions of Examples and Comparative Examples, each evaluation of viscosity stability and filterability was performed, and each evaluation of tensile elongation and residual stress was performed using the obtained polyimide resin film. The evaluation results are shown in Tables 1 to 4.
 実施例及び比較例における略号は以下のとおりである;
〈酸二無水物〉
CpODA:下記一般式の化合物
Figure JPOXMLDOC01-appb-C000161
ODPA:4,4’-オキシジフタル酸無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
BPAF:9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物
BzDA:下記一般式の化合物
Figure JPOXMLDOC01-appb-C000162
BNBDA:下記一般式の化合物
Figure JPOXMLDOC01-appb-C000163
BPADA:2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]プロパン二無水物
The abbreviations in the examples and comparative examples are as follows;
<Acid dianhydride>
CpODA: A compound of the following general formula
Figure JPOXMLDOC01-appb-C000161
ODPA: 4,4'-oxydiphthalic anhydride 6FDA: 4,4'-(hexafluoroisopropylidene) diphthalic acid anhydride BPAF: 9,9-bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride BzDA : Compound of the following general formula
Figure JPOXMLDOC01-appb-C000162
BNBDA: Compound of the following general formula
Figure JPOXMLDOC01-appb-C000163
BPADA: 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride
〈ジアミン〉
DABA:3,5-ジアミノ安息香酸
3,3’-ジアミノジフェニルスルホン(33DAS)
4,4’-ジアミノジフェニルスルホン(44DAS)
BAFL:9,9-ビス(4-アミノフェニル)フルオレン
BisAM:下記一般式の化合物
Figure JPOXMLDOC01-appb-C000164
TFMB:ジアミノビス(トリフルオロメチル)ビフェニル
BAPP:下記一般式の化合物
Figure JPOXMLDOC01-appb-C000165
mBAPS:ビス[4-(3-アミノフェノキシ)フェニル]スルホン
APB:1,3-ビス(3-アミノフェノキシ)ベンゼン
<Diamine>
DABA: 3,5-diaminobenzoic acid 3,3'-diaminodiphenyl sulfone (33DAS)
4,4'-Diaminodiphenyl sulfone (44DAS)
BAFL: 9,9-bis (4-aminophenyl) fluorene BisAM: a compound of the following general formula
Figure JPOXMLDOC01-appb-C000164
TFMB: Diaminobis (trifluoromethyl) biphenyl BAPP: Compound of the following general formula
Figure JPOXMLDOC01-appb-C000165
mBAPS: Bis [4- (3-aminophenoxy) phenyl] Sulfone APB: 1,3-Bis (3-aminophenoxy) benzene
〈ケイ素含有化合物〉
 ケイ素含有化合物(1):(一般式(10)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量1500の化合物)
 ケイ素含有化合物(2):(一般式(10)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量800の化合物)
 ケイ素含有化合物(3):(一般式(10)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量2200の化合物)
 ケイ素含有化合物(4):一般式(10)において、L及びLがアミノ基、Rが-CHCHCH-であり、R、R、R、Rがメチル基、R、Rがフェニル基、j/(i+j+k)=0.15であり、官能基当量2200の化合物
 ケイ素含有化合物(5):(一般式(10)において、L及びLが酸無水物基(―CH(C=O)O)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量1000の化合物)
 ケイ素含有化合物(6):(一般式(10)において、L及びLが酸無水物基(―CH(C=O)O)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量500の化合物)
<Silicon-containing compound>
Silicon-containing compound (1): (In the general formula (10), L 1 and L 2 are amino groups (-NH 2 ), R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ), and R 2 ,. A compound in which R 3 is a methyl group, j and k are 0, and a functional group equivalent is 1500).
Silicon-containing compound (2): (In the general formula (10), L 1 and L 2 are amino groups (-NH 2 ), R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ), and R 2 ,. A compound in which R 3 is a methyl group, j and k are 0, and a functional group equivalent is 800).
Silicon-containing compound (3): (In the general formula (10), L 1 and L 2 are amino groups (-NH 2 ), R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ), and R 2 ,. A compound in which R 3 is a methyl group, j and k are 0, and a functional group equivalent is 2200).
Silicon-containing compound (4): In the general formula (10), L 1 and L 2 are amino groups, R 1 is −CH 2 CH 2 CH 2 −, and R 2 , R 3 , R 6 and R 7 are methyl. Group, R 4 , R 5 are phenyl group, j / (i + j + k) = 0.15, functional group equivalent 2200 compound Silicon-containing compound (5): (In the general formula (10), L 1 and L 2 are The acid anhydride group (-CH (C = O) 2 O), R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ), R 2 and R 3 are methyl groups, and j and k are 0. , A compound having a functional group equivalent of 1000)
Silicon-containing compound (6): (In the general formula (10), L 1 and L 2 are acid anhydride groups (-CH (C = O) 2 O), R 1 is a trimethylene group (-CH 2 CH 2 CH 2). -), R 2 and R 3 are methyl groups, j and k are 0, and the functional group equivalent is 500).
Figure JPOXMLDOC01-appb-T000166
Figure JPOXMLDOC01-appb-T000166
Figure JPOXMLDOC01-appb-T000167
Figure JPOXMLDOC01-appb-T000167
Figure JPOXMLDOC01-appb-T000168
Figure JPOXMLDOC01-appb-T000168
Figure JPOXMLDOC01-appb-T000169
Figure JPOXMLDOC01-appb-T000169
Figure JPOXMLDOC01-appb-T000170
Figure JPOXMLDOC01-appb-T000170
〔第二の態様〕
《測定及び評価方法》
〈重量平均分子量〉
 重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエ-ションクロマトグラフィー(GPC)にて、下記の条件により測定した。
 溶媒として、NMP(和光純薬工業社製、高速液体クロマトグラフ用、測定直前に24.8mmol/Lの臭化リチウム一水和物(和光純薬工業社製、純度99.5%)及び63.2mmol/Lのリン酸(和光純薬工業社製、高速液体クロマトグラフ用)を加えて溶解したもの)を使用した。重量平均分子量を算出するための検量線は、スタンダ-ドポリスチレン(東ソ-社製)を用いて作製した。
カラム:Shodex KD-806M(昭和電工社製)
流速:1.0mL/分
カラム温度:40℃
ポンプ:PU-2080Plus(JASCO社製)
検出器:RI-2031Plus(RI:示差屈折計、JASCO社製)及びUV-2075Plus(UV-VIS:紫外可視吸光計、JASCO社製)
[Second aspect]
<< Measurement and evaluation method >>
<Weight average molecular weight>
The weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) under the following conditions.
As solvents, NMP (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph, 24.8 mmol / L lithium bromide monohydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5%) immediately before measurement) and 63. .2 mmol / L phosphoric acid (manufactured by Wako Pure Chemical Industries, Ltd., for high performance liquid chromatograph) was added and dissolved) was used. The calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (manufactured by Toso Co., Ltd.).
Column: Shodex KD-806M (manufactured by Showa Denko KK)
Flow rate: 1.0 mL / min Column temperature: 40 ° C
Pump: PU-2080Plus (manufactured by JASCO)
Detector: RI-2031Plus (RI: differential refractometer, manufactured by JASCO) and UV-2075Plus (UV-VIS: ultraviolet-visible absorptiometer, manufactured by JASCO)
<組成物(ワニス)の粘度安定性の評価>
実施例、及び比較例において調製した樹脂組成物を23℃、50%RHの雰囲気下で24時間放置し、樹脂組成物の初期(0日)の粘度を、温調機付粘度計(東機産業械社製VISCOMATER TVE-35H)を用いて測定した。そして、樹脂組成物を23℃、50%RHの雰囲気下で7日間放置し、初期と同様にして、7日後の粘度を測定した。続いて、下記式で表される粘度安定性を算出した。
 粘度安定性(%/day)=|(初期の粘度(mPa・s))―(7日後の粘度(mPa・s))|/(初期粘度(mPa・s))*100/7(day)
粘度安定性は下記基準で評価を行った。
 A:粘度安定性1%/day以下 「優良」
 B:粘度安定性1%/day超3%/day以下 「良」
 C:粘度安定性3%/day超5%/day以下 「可」
 D:粘度安定性5%/day超 「可」
<Evaluation of viscosity stability of composition (varnish)>
The resin compositions prepared in Examples and Comparative Examples were left to stand in an atmosphere of 23 ° C. and 50% RH for 24 hours, and the initial (0 day) viscosity of the resin composition was measured by a viscometer with a temperature controller (Toki). It was measured using VISCOMATER TVE-35H) manufactured by Sangyo Kikai. Then, the resin composition was left to stand in an atmosphere of 23 ° C. and 50% RH for 7 days, and the viscosity after 7 days was measured in the same manner as in the initial stage. Subsequently, the viscosity stability represented by the following formula was calculated.
Viscosity stability (% / day) = | (Initial viscosity (mPa · s))-(Viscosity after 7 days (mPa · s)) | / (Initial viscosity (mPa · s)) * 100/7 (day)
Viscosity stability was evaluated according to the following criteria.
A: Viscosity stability 1% / day or less "excellent"
B: Viscosity stability 1% / day over 3% / day or less "Good"
C: Viscosity stability 3% / day over 5% / day or less "OK"
D: Viscosity stability 5% / day over "OK"
<組成物(ワニス)のろ過性の評価>
 実施例、及び比較例において調製した樹脂組成物を23℃、50%RHの雰囲気下で、サイズ900mmφ、目付0.2μmのポリエチレン製のメンブレンフィルターを用いて、0.25MPaの圧力で加圧ろ過を行った。この時のろ過された樹脂組成物の質量を測定し、ろ過速度を計算した。ろ過性は下記基準で評価を行った。
 A:ろ過速度2000g/hr以上 「優」
 B:ろ過速度2000g/hr未満1500g/hr以上 「良」
 C:ろ過速度1500g/hr未満1000g/hr以上 「可」
 D:ろ過速度1000g/hr未満 「不可」
<Evaluation of the filterability of the composition (varnish)>
The resin compositions prepared in Examples and Comparative Examples were pressure-filtered at a pressure of 0.25 MPa at 23 ° C. and 50% RH using a polyethylene membrane filter having a size of 900 mmφ and a basis weight of 0.2 μm. Was done. The mass of the filtered resin composition at this time was measured, and the filtration rate was calculated. The filterability was evaluated according to the following criteria.
A: Filtration speed 2000g / hr or more "excellent"
B: Filtration rate less than 2000 g / hr 1500 g / hr or more "Good"
C: Filtration rate less than 1500 g / hr 1000 g / hr or more "OK"
D: Filtration rate less than 1000 g / hr "impossible"
<ポリイミド樹脂膜の引張伸度の評価>
 支持体として、表面にアルミニウム蒸着層を設けた6インチシリコンウェハー基板を用い、そのアルミニウム蒸着層の面上に、実施例及び比較例において調製した樹脂組成物を、ポリイミド樹脂膜の膜厚が10μmになるようにスピンコートして、塗膜を形成した。この塗膜を、100℃、6分間プリベークした後、庫内の酸素濃度が10質量ppm以下に調整された縦型キュア炉(光洋サーモシステム(株)製、型式名「VF-2000B」)を用いて、400℃にて1時間加熱し、ウェハー上にポリイミドフィルムを形成した。続いて、ダイシングソー((株)ディスコ製、品名「DAD 3350」)を用いて、得られたポリイミドフィルムに3mm幅の切れ目を入れた後、ポリイミドフィルム付きウェハーを、希塩酸水溶液に一晩浸して、ポリイミドフィルム片を剥離して、乾燥させて、幅3mmのポリイミド片を得た。これを長さ50mmにカットして、幅3mm、長さ50mmのポリイミド測定試料を得た。TENSILON((株)オリエンテック社製、型式名「UTM-II-20」)を用いて、試験速度40mm/分、初期加重0.5fsにて、ポリイミド樹脂膜の引張伸度を測定した。引張伸度は下記基準で評価を行った。
 A:引張伸度が50%超 「優良」
 B:引張伸度が40%超50%以下 「良」
 C:引張伸度が30%超40%以下 「可」
 D:引張伸度が30%未満 「不可」
<Evaluation of tensile elongation of polyimide resin film>
A 6-inch silicon wafer substrate having an aluminum-deposited layer on its surface was used as a support, and the resin compositions prepared in Examples and Comparative Examples were placed on the surface of the aluminum-deposited layer, and the thickness of the polyimide resin film was 10 μm. A coating film was formed by spin coating so as to be. After prebaking this coating film at 100 ° C. for 6 minutes, a vertical curing furnace (manufactured by Koyo Thermo System Co., Ltd., model name "VF-2000B") in which the oxygen concentration in the refrigerator was adjusted to 10 mass ppm or less was used. It was heated at 400 ° C. for 1 hour to form a polyimide film on the wafer. Subsequently, a dicing saw (manufactured by Disco Co., Ltd., product name "DAD 3350") was used to make a 3 mm wide cut in the obtained polyimide film, and then the wafer with the polyimide film was immersed in a dilute hydrochloric acid aqueous solution overnight. , The polyimide film piece was peeled off and dried to obtain a polyimide piece having a width of 3 mm. This was cut into a length of 50 mm to obtain a polyimide measurement sample having a width of 3 mm and a length of 50 mm. Using TENSILON (manufactured by Orientec Co., Ltd., model name "UTM-II-20"), the tensile elongation of the polyimide resin film was measured at a test speed of 40 mm / min and an initial load of 0.5 fs. The tensile elongation was evaluated according to the following criteria.
A: Tensile elongation exceeds 50% "excellent"
B: Tensile elongation is more than 40% and 50% or less "Good"
C: Tensile elongation is more than 30% and 40% or less "OK"
D: Tensile elongation is less than 30% "impossible"
<ポリイミド樹脂膜の残留応力の評価>
 予め「反り量」を測定しておいた、厚み625μm±25μmの6インチシリコンウェハー上に、実施例及び比較例において調製した樹脂組成物をスピンコーターにより塗布し、100℃において7分間プリベークした。その後、縦型キュア炉(光洋リンドバーグ社製、型式名VF-2000B)を用いて、庫内の酸素濃度が10質量ppm以下になるように調整して、400℃において1時間の加熱硬化処理(キュア処理)を施し、硬化後膜厚10μmのポリイミド樹脂膜のついたシリコンウェハーを作製した。
 このウェハーの反り量を、残留応力測定装置(テンコール社製、型式名FLX-2320)を用いて測定し、“窒素雰囲気下において”シリコンウェハーと樹脂膜との間に生じた残留応力を評価した。
 A:残留応力が30MPa未満 「良」
 B:残留応力が30MPa以上40MPa未満 「可」
 C:引張伸度が40MPa以上 「不可」
<Evaluation of residual stress of polyimide resin film>
The resin compositions prepared in Examples and Comparative Examples were applied on a 6-inch silicon wafer having a thickness of 625 μm ± 25 μm for which the “warp amount” had been measured in advance by a spin coater, and prebaked at 100 ° C. for 7 minutes. After that, using a vertical curing furnace (manufactured by Koyo Lindbergh Co., Ltd., model name VF-2000B), the oxygen concentration in the refrigerator was adjusted to 10% by mass or less, and heat curing treatment was performed at 400 ° C. for 1 hour. After curing, a silicon wafer with a polyimide resin film having a thickness of 10 μm was produced.
The amount of warpage of this wafer was measured using a residual stress measuring device (model name FLX-2320 manufactured by Tencor), and the residual stress generated between the silicon wafer and the resin film was evaluated "under a nitrogen atmosphere". ..
A: Residual stress is less than 30 MPa "Good"
B: Residual stress is 30 MPa or more and less than 40 MPa "Yes"
C: Tensile elongation is 40 MPa or more "impossible"
《実施例II-1》
 撹拌棒付き3Lセパラブルフラスコに、窒素ガスを導入しながら、表6及び7に記載するように、溶媒としてNMP(191g)、ジアミンとしてDABA(14.4g)、及びケイ素含有化合物(1)(10.82g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を加えた。酸二無水物、ジアミンのモル比は、100:98であった。混合物を室温で48時間撹拌し、透明なポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基、ケイ素含有化合物の官能基:アミド基)のNMP溶液(以下、ワニスともいう)を得た。得られたワニスを冷凍庫(設定-20℃、以下同様)で保管し、評価をする際は解凍して使用した。
<< Example II-1 >>
As shown in Tables 6 and 7, NMP (191 g) as a solvent, DABA (14.4 g) as a diamine, and a silicon-containing compound (1) (1) while introducing nitrogen gas into a 3 L separable flask with a stirring rod. 10.82 g) was added with stirring, followed by CpODA (38.4 g) as acid dianhydride. The molar ratio of acid dianhydride and diamine was 100: 98. The mixture was stirred at room temperature for 48 hours to obtain an NMP solution (hereinafter, also referred to as varnish) of a transparent polyimide precursor (functional group other than silicon-containing compound: amide group, functional group of silicon-containing compound: amide group). The obtained varnish was stored in a freezer (setting -20 ° C, the same applies hereinafter), and was thawed and used for evaluation.
《実施例II-2》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表6及び7に記載する様に、溶媒としてNMP(191g)、トルエン(19g)、ジアミンとしてDABA(14.4g)、及びケイ素含有化合物(1)(10.82g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。酸二無水物、ジアミンのモル比は、100:98であった。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し、ポリイミド樹脂(ケイ素含有化合物以外の官能基:イミド基、ケイ素含有化合物の官能基:イミド基)のNMP溶液を得た。得られたワニスを冷凍庫(設定-20℃、以下同様)で保管し、評価をする際は解凍して使用した。
<< Example II-2 >>
As shown in Tables 6 and 7, NMP (191 g), toluene (19 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. DABA (14.4 g) and the silicon-containing compound (1) (10.82 g) were added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature to obtain an NMP solution of a polyimide resin (functional group other than silicon-containing compound: imide group, functional group of silicon-containing compound: imide group). The obtained varnish was stored in a freezer (setting -20 ° C, the same applies hereinafter), and was thawed and used for evaluation.
《実施例II-3》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表6~9のいずれかに記載する様に、溶媒としてNMP(189g)、トルエン(19g)、ジアミンとしてDABA(13.9g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ケイ素含有化合物(2)(10.72g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:アミド基)のNMP溶液(以下、ワニスともいう)を得た。
<< Example II-3 >>
While introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top, as shown in any of Tables 6 to 9, NMP (189 g) and toluene (19 g) were used as solvents. ), DABA (13.9 g) as a diamine was added with stirring, and then CpODA (38.4 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, the silicon-containing compound (2) (10.72 g) was added with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture was stirred at room temperature for 48 hours, and an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: amide group) ( Hereinafter, it is also referred to as varnish).
《実施例II-16》
 ディーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表8及び9に記載する様に、溶媒としてNMP(177g)、トルエン(18g)、ジアミンとして33DAS(8.5g)及び44DAS(12.8g)を撹拌しながら加え、続いて酸二無水物としてODPA(31.0g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとして33DAS(0.9g)及び44DAS(1.4g)と、ケイ素含有化合物(2)(4.12g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:アミド基)のNMP溶液(以下、ワニスともいう)を得た。
<< Example II-16 >>
As shown in Tables 8 and 9, NMP (177 g), toluene (18 g), and diamine were used as solvents while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dean-Stark tube and a reflux tube at the top. 33 DAS (8.5 g) and 44 DAS (12.8 g) were added with stirring, and then ODPA (31.0 g) as an acid dianhydride was added at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, 33 DAS (0.9 g) and 44 DAS (1.4 g) as diamines and the silicon-containing compound (2) (4.12 g) were added with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture was stirred at room temperature for 48 hours, and an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: amide group) ( Hereinafter, it is also referred to as varnish).
《実施例II-17》 
 デ  ィーン・スターク管及び還流管を上部に備えた撹拌棒付きセパラブルフラスコに、窒素ガスを導入しながら、表8及び9に記載する様に、溶媒としてNMP(173g)、トルエン(17g)、ジアミンとしてDABA(13.0g)を撹拌しながら加え、続いて酸二無水物としてCpODA(38.4g)を室温で加えた。その後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻した。次に、ジアミンとしてDABA(1.4g)と、ケイ素含有化合物(2)(4.80g)を撹拌しながら加えた。酸二無水物、ジアミンのモル比は、100:98であった。そして、混合物を室温で48時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:アミド基)のNMP溶液(以下、ワニスともいう)を得た。
<< Example II-17 >>
As shown in Tables 8 and 9, NMP (173 g), toluene (17 g), as solvents, while introducing nitrogen gas into a separable flask with a stirring rod equipped with a Dane Stark tube and a reflux tube at the top. DABA (13.0 g) was added as a diamine with stirring, followed by CpODA (38.4 g) as an acid dianhydride at room temperature. Then, the temperature was raised to an internal temperature of 160 ° C., and the mixture was heated under reflux at 160 ° C. for 1 hour for imidization. After the imidization was completed, the temperature was raised to 180 ° C., and the reaction was continued while extracting toluene. After the reaction for 12 hours, the oil bath was removed and the temperature was returned to room temperature. Next, DABA (1.4 g) and the silicon-containing compound (2) (4.80 g) were added as diamines with stirring. The molar ratio of acid dianhydride and diamine was 100: 98. Then, the mixture was stirred at room temperature for 48 hours, and an NMP solution of a partially imidized polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: amide group) ( Hereinafter, it is also referred to as varnish).
《比較例II-4》
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーン・スターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、表8及び9に記載する様に、6FODAを27.0g(0.0802モル)、及びNMPを56.000g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
<< Comparative Example II-4 >>
A 500 mL five-necked round-bottom flask with a stainless half-moon agitator, a nitrogen inlet tube, a Dean Stark with a condenser, a thermometer, and a glass end cap, as described in Tables 8 and 9. 27.0 g (0.0802 mol) of 6FODA and 56.000 g of NMP were added, and the mixture was stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
 この溶液に、CpODA 19.2g(0.050モル)、及びNMP 14.000gを一括で添加した後、イミド化触媒としてTEAを0.253g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して1時間還流した。その後、NMPを85.806g添加して、反応系内温度を50℃まで冷却し、イミド繰り返し構造単位を有するオリゴマーを含む溶液を得た。 After adding 19.2 g (0.050 mol) of CpODA and 14.000 g of NMP to this solution in a batch, 0.253 g of TEA was added as an imidization catalyst, and the mixture was heated by a mantle heater over about 20 minutes. The temperature inside the reaction system was raised to 190 ° C. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. and refluxed for 1 hour while adjusting the rotation speed according to the increase in viscosity. Then, 85.806 g of NMP was added to cool the temperature inside the reaction system to 50 ° C. to obtain a solution containing an oligomer having an imide repeating structural unit.
 得られた溶液に、BPDA 9.7g(0.033モル)、及びNMP 7.527gを一括で添加し50℃で5時間撹拌した。その後、NMPを100.000g添加し均一化した後、NMP 16.667gにX-22-1660B-3(変性シリコーンオイル、官能基等量2200、信越化学)を13.2g(0.003モル)溶解させた混合液を投入し、更に約1時間撹拌し、一部がイミド化されたポリイミド前駆体(ケイ素含有化合物以外の官能基:アミド基又はイミド基、ケイ素含有化合物の官能基:アミド基)のNMP溶液(以下、ワニスともいう)を得た。 9.7 g (0.033 mol) of BPDA and 7.527 g of NMP were collectively added to the obtained solution, and the mixture was stirred at 50 ° C. for 5 hours. Then, after adding 100.000 g of NMP to homogenize, 13.2 g (0.003 mol) of X-22-1660B-3 (modified silicone oil, functional group equal amount 2200, Shin-Etsu Chemical Co., Ltd.) was added to 16.667 g of NMP. The dissolved mixed solution is added, and the mixture is further stirred for about 1 hour to partially imidize a polyimide precursor (functional group other than silicon-containing compound: amide group or imide group, functional group of silicon-containing compound: amide group). ) NMP solution (hereinafter, also referred to as varnish) was obtained.
《実施例II-4,II-5,II-7,II-9,II-10,II-12,II-14,II-15》
 実施例II-3において、溶媒、酸二無水物、ジアミン、ケイ素含有化合物の種類及び量を表6及び7に記載したものに変更したことを除いて、実施例II-3と同様に行った。
<< Examples II-4, II-5, II-7, II-9, II-10, II-12, II-14, II-15 >>
In Example II-3, the same procedure was used for Example II-3, except that the types and amounts of the solvent, acid dianhydride, diamine, and silicon-containing compound were changed to those shown in Tables 6 and 7. ..
《参考例II-6,実施例II-8,II-11,II-13、比較例II-1~II-3》
 実施例II-2において、溶媒、酸二無水物、ジアミン、ケイ素含有化合物の種類及び量を表6及び7に記載したものに変更したことを除いて、実施例II-2と同様に行った。
<< Reference Example II-6, Examples II-8, II-11, II-13, Comparative Examples II-1 to II-3 >>
In Example II-2, the same procedure was used for Example II-2, except that the types and amounts of the solvent, acid dianhydride, diamine, and silicon-containing compound were changed to those shown in Tables 6 and 7. ..
 実施例及び比較例の樹脂組成物を用いて、粘度安定性、ろ過性の各評価を、得られたポリイミド樹脂膜を用いて、引張伸度、残留応力の各評価を行った。評価結果を表6~表9に示す。 Using the resin compositions of Examples and Comparative Examples, each evaluation of viscosity stability and filterability was performed, and each evaluation of tensile elongation and residual stress was performed using the obtained polyimide resin film. The evaluation results are shown in Tables 6 to 9.
 実施例及び比較例における略号は以下のとおりである;
〈酸二無水物〉
CpODA:下記一般式の化合物
Figure JPOXMLDOC01-appb-C000171
ODPA:4,4’-オキシジフタル酸無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
BPAF:9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物
BzDA:下記一般式の化合物
Figure JPOXMLDOC01-appb-C000172
BNBDA:下記一般式の化合物
Figure JPOXMLDOC01-appb-C000173
The abbreviations in the examples and comparative examples are as follows;
<Acid dianhydride>
CpODA: A compound of the following general formula
Figure JPOXMLDOC01-appb-C000171
ODPA: 4,4'-oxydiphthalic anhydride 6FDA: 4,4'-(hexafluoroisopropylidene) diphthalic acid anhydride BPAF: 9,9-bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride BzDA : Compound of the following general formula
Figure JPOXMLDOC01-appb-C000172
BNBDA: Compound of the following general formula
Figure JPOXMLDOC01-appb-C000173
〈ジアミン〉
DABA:3,5-ジアミノ安息香酸
BAFL:9,9-ビス(4-アミノフェニル)フルオレン
BisAM:下記一般式の化合物
Figure JPOXMLDOC01-appb-C000174
TFMB:ジアミノビス(トリフルオロメチル)ビフェニル
BAPP:下記一般式の化合物
Figure JPOXMLDOC01-appb-C000175
33DAS:3,3’-ジアミノジフェニルスルホン
44DAS:3,3’-ジアミノジフェニルスルホン
6FODA:2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル
<Diamine>
DABA: 3,5-diaminobenzoic acid BAFL: 9,9-bis (4-aminophenyl) fluorene BisAM: a compound of the following general formula
Figure JPOXMLDOC01-appb-C000174
TFMB: Diaminobis (trifluoromethyl) biphenyl BAPP: Compound of the following general formula
Figure JPOXMLDOC01-appb-C000175
33DAS: 3,3'-diaminodiphenyl sulfone 44DAS: 3,3'-diaminodiphenyl sulfone 6FODA: 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether
〈ケイ素含有化合物〉
 ケイ素含有化合物(1):(一般式(5),(10)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量1500の化合物)
 ケイ素含有化合物(2):(一般式(5),(10)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量800の化合物)
 ケイ素含有化合物(3):(一般式(5),(10)において、L及びLがアミノ基(-NH)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量2200の化合物)
 ケイ素含有化合物(4)::一般式(5),(10)において、L及びLがアミノ基、Rが-CHCHCH-であり、R、R、R、Rがメチル基、R、Rがフェニル基、j/(i+j+k)=0.15であり、官能基当量2200の化合物
 ケイ素含有化合物(5):(一般式(5),(10)において、L及びLが酸無水物基(―CH(C=O)O)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量1000の化合物)
 ケイ素含有化合物(6):(一般式(5),(10)において、L及びLが酸無水物基(―CH(C=O)O)、Rがトリメチレン基(-CHCHCH-)であり、R、Rがメチル基、j,kが0であり、官能基当量500の化合物)
<Silicon-containing compound>
Silicon-containing compound (1): (in the general formulas (5) and (10), L 1 and L 2 are amino groups (-NH 2 ) and R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ). , R 2 and R 3 are methyl groups, j and k are 0, and the functional group equivalent is 1500).
Silicon-containing compound (2): (In the general formulas (5) and (10), L 1 and L 2 are amino groups (-NH 2 ), and R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ). , R 2 and R 3 are methyl groups, j and k are 0, and the functional group equivalent is 800).
Silicon-containing compound (3): (in the general formulas (5) and (10), L 1 and L 2 are amino groups (-NH 2 ) and R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ). , R 2 and R 3 are methyl groups, j and k are 0, and the functional group equivalent is 2200).
Silicon-containing compound (4) :: In the general formulas (5) and (10), L 1 and L 2 are amino groups, R 1 is -CH 2 CH 2 CH 2- , and R 2 , R 3 , R 6 , R 7 is a methyl group, R 4 , R 5 is a phenyl group, j / (i + j + k) = 0.15, and a functional group equivalent of 2200 is a compound Silicon-containing compound (5): (general formula (5), (10). ), L 1 and L 2 are acid anhydride groups (-CH (C = O) 2 O), R 1 is a trimethylene group (-CH 2 CH 2 CH 2- ), and R 2 and R 3 are methyl. A compound having 0 groups, j and k, and a functional group equivalent of 1000)
Silicon-containing compound (6): (In the general formulas (5) and (10), L 1 and L 2 are acid anhydride groups (-CH (C = O) 2 O), and R 1 is a trimethylene group (-CH 2). CH 2 CH 2- ), R 2 and R 3 are methyl groups, j and k are 0, and the functional group equivalent is 500).
Figure JPOXMLDOC01-appb-T000176
Figure JPOXMLDOC01-appb-T000176
Figure JPOXMLDOC01-appb-T000177
Figure JPOXMLDOC01-appb-T000177
Figure JPOXMLDOC01-appb-T000178
Figure JPOXMLDOC01-appb-T000178
Figure JPOXMLDOC01-appb-T000179
Figure JPOXMLDOC01-appb-T000179
 2a  下部基板
 2b  封止基板
 25  有機EL構造部
 250a  赤色光を発光する有機EL素子
 250b  緑色光を発光する有機EL素子
 250c  青色光を発光する有機EL素子
 251  隔壁(バンク)
 252  下部電極(陽極)
 253  正孔輸送層
 254  発光層
 255  上部電極(陰極)
 256  TFT
 257  コンタクトホール
 258  層間絶縁膜
 259  下部電極
 261  中空部
2a Lower substrate 2b Encapsulation substrate 25 Organic EL structure 250a Organic EL element that emits red light 250b Organic EL element that emits green light 250c Organic EL element that emits blue light 251 Partition (bank)
252 Lower electrode (anode)
253 Hole transport layer 254 Light emitting layer 255 Upper electrode (cathode)
256 TFT
257 Contact hole 258 Interlayer insulating film 259 Lower electrode 261 Hollow part

Claims (48)

  1.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000001
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000002
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000003
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含み、かつ
     前記樹脂の総質量を基準に前記ケイ素含有化合物を25質量%以下含む、
    樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000001
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
    Figure JPOXMLDOC01-appb-C000002
    {In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
    A resin composition containing a resin of a structural unit represented by.
    Wherein P 5 or P 6 is represented by the following general formula (10):
    Figure JPOXMLDOC01-appb-C000003
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
    It contains a structural unit derived from the silicon-containing compound represented by, and contains 25% by mass or less of the silicon-containing compound based on the total mass of the resin.
    Resin composition.
  2.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000004
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000005
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000006
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含み、かつ
     前記樹脂のイミド化率が50%以上である、
    樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000004
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
    Figure JPOXMLDOC01-appb-C000005
    {In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
    A resin composition containing a resin of a structural unit represented by.
    Wherein P 5 or P 6 is represented by the following general formula (10):
    Figure JPOXMLDOC01-appb-C000006
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
    It contains a structural unit derived from a silicon-containing compound represented by, and the imidization ratio of the resin is 50% or more.
    Resin composition.
  3.  前記樹脂のイミド化率が50%以上である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the imidization ratio of the resin is 50% or more.
  4.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000007
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000008
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000009
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含み、かつ
     下記(ア)又は(イ):
      (ア)前記P及び/又はPは、下記一般式(8):
    Figure JPOXMLDOC01-appb-C000010
    で表される化合物に由来する構成単位を含む;又は
      (イ)前記P及び/又はPは、下記一般式(9):
    Figure JPOXMLDOC01-appb-C000011
    で表される化合物に由来する構成単位を含む;
    のいずれかを満たす、樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000007
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
    Figure JPOXMLDOC01-appb-C000008
    {In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
    A resin composition containing a resin of a structural unit represented by.
    Wherein P 5 or P 6 is represented by the following general formula (10):
    Figure JPOXMLDOC01-appb-C000009
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
    It contains a structural unit derived from a silicon-containing compound represented by (a) or (b) below.
    (A) The P 3 and / or P 5 is the following general formula (8):
    Figure JPOXMLDOC01-appb-C000010
    In comprising a structural unit derived from a compound represented; or (b) the P 4 and / or P 6 is represented by the following general formula (9):
    Figure JPOXMLDOC01-appb-C000011
    Includes structural units derived from the compounds represented by;
    A resin composition that satisfies any of the above.
  5.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000012
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000013
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000014
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含み、かつ
     前記P及び/又はPが、それぞれ独立に、
    3,3’-ジアミノジフェニルスルホン(33DAS)、
    4,4’-ジアミノジフェニルスルホン(44DAS)、又は
    9,9-ビス(4-アミノフェニル)フルオレン(BAFL)
    の各化合物に由来する構成単位を少なくとも一つ含む、樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000012
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
    Figure JPOXMLDOC01-appb-C000013
    {In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
    A resin composition containing a resin of a structural unit represented by.
    Wherein P 5 or P 6 is represented by the following general formula (10):
    Figure JPOXMLDOC01-appb-C000014
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
    Containing a structural unit derived from the silicon-containing compound represented by, and the P 3 and / or P 5 are independent of each other.
    3,3'-Diaminodiphenyl sulfone (33DAS),
    4,4'-Diaminodiphenyl sulfone (44DAS), or 9,9-bis (4-aminophenyl) fluorene (BAFL)
    A resin composition containing at least one structural unit derived from each of the above compounds.
  6.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000015
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000016
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000017
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含み、かつ
     前記P及び/又はPが、それぞれ独立に、
    2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)
    に由来する構成単位を少なくとも一つ含む、樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000015
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
    Figure JPOXMLDOC01-appb-C000016
    {In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
    A resin composition containing a resin of a structural unit represented by.
    Wherein P 5 or P 6 is represented by the following general formula (10):
    Figure JPOXMLDOC01-appb-C000017
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
    Containing a structural unit derived from the silicon-containing compound represented by, and the P 3 and / or P 5 are independent of each other.
    2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (6FODA)
    A resin composition containing at least one structural unit derived from.
  7.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000018
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000019
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示す。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000020
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含み、かつ
    A(質量%):一般式(7)におけるPを構成するジアミンのうち、一般式(10)の割合
    B(質量%):一般式(6)におけるPを構成するジアミンのうち、一般式(10)の割合
    としたとき、B-Aが、0より大きく、60未満である、
    樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000018
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, and p represents a positive integer. }
    Figure JPOXMLDOC01-appb-C000019
    {In the formula, P 5 represents a divalent organic group, P 6 represents a tetravalent organic group, and q represents a positive integer. }
    A resin composition containing a resin of a structural unit represented by.
    Wherein P 5 or P 6 is represented by the following general formula (10):
    Figure JPOXMLDOC01-appb-C000020
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
    Containing a structural unit derived from in the silicon-containing compound represented, and A (wt%): Of the diamine that constitutes the P 5 in the general formula (7), the proportion of the general formula (10) B (wt%): of the diamine that constitutes the P 3 in the general formula (6), when the ratio of the general formula (10), B-a is greater than 0 and less than 60,
    Resin composition.
  8.  前記ジアミンが、
    下記一般式(8):
    Figure JPOXMLDOC01-appb-C000021
    で表される化合物、
    3,3’-ジアミノジフェニルスルホン(33DAS)、
    4,4’-ジアミノジフェニルスルホン(44DAS)、及び
    9,9-ビス(4-アミノフェニル)フルオレン(BAFL)
    から選択される少なくとも一つの化合物である、請求項7に記載の樹脂組成物。
    The diamine
    The following general formula (8):
    Figure JPOXMLDOC01-appb-C000021
    Compound represented by,
    3,3'-Diaminodiphenyl sulfone (33DAS),
    4,4'-Diaminodiphenyl sulfone (44DAS), and 9,9-bis (4-aminophenyl) fluorene (BAFL)
    The resin composition according to claim 7, which is at least one compound selected from the above.
  9.  前記一般式(6)及び/又は前記一般式(7)において、P及び/又はPが、それぞれ独立に、4,4’-オキシジフタル酸無水物(ODPA)、又は9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)の各化合物に由来する構成単位を少なくとも一つ含む、請求項1~8のいずれか1項に記載の樹脂組成物。 In Formula (6) and / or the general formula (7), P 4 and / or P 6 are each independently, 4,4'-oxydiphthalic anhydride (ODPA), or 9,9-bis ( 3,4-Dicarboxyphenyl) The resin composition according to any one of claims 1 to 8, which comprises at least one structural unit derived from each compound of fluorene diacid anhydride (BPAF).
  10.  前記一般式(10)で表されるケイ素含有化合物の官能基当量が800以上である、請求項1~9のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 9, wherein the silicon-containing compound represented by the general formula (10) has a functional group equivalent of 800 or more.
  11.  前記Pが、前記一般式(10)で表される化合物に由来する構成単位を含み、かつ
     前記一般式(10)において前記L及びLが、それぞれ独立に、アミノ基である、
    請求項1~10のいずれか一項に記載の樹脂組成物。
    The P 5 contains a structural unit derived from the compound represented by the general formula (10), and the L 1 and L 2 in the general formula (10) are independently amino groups.
    The resin composition according to any one of claims 1 to 10.
  12.  前記一般式(8)で表される化合物が、全ジアミン(前記一般式(10)で表される化合物を除く)を100mol%としたとき、50mol%より多い、請求項4及び9~11のいずれか一項に記載の樹脂組成物。 The compound represented by the general formula (8) is more than 50 mol% when the total diamine (excluding the compound represented by the general formula (10)) is 100 mol%, according to claims 4 and 9 to 11. The resin composition according to any one of the above.
  13.  前記P又はPが、それぞれ独立に、下記式:
    Figure JPOXMLDOC01-appb-C000022
    で表される化合物(BisAM)に由来する構成単位を含む、請求項1~12のいずれか一項に記載の樹脂組成物。
    Wherein P 3 or P 5 are each independently, the following formula:
    Figure JPOXMLDOC01-appb-C000022
    The resin composition according to any one of claims 1 to 12, which comprises a structural unit derived from the compound (BisAM) represented by.
  14.  前記P又はPが、それぞれ独立に、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、下記式:
    Figure JPOXMLDOC01-appb-C000023
    で表される化合物(BzDA)、又は下記式:
    Figure JPOXMLDOC01-appb-C000024
    で表される化合物(BNBDA)に由来する構成単位を含む、請求項1~13のいずれか一項に記載の樹脂組成物。
    Wherein P 4 or P 6 are each independently, 4,4 '- (hexafluoro isopropylidene) diphthalic anhydride, the following formula:
    Figure JPOXMLDOC01-appb-C000023
    Compound represented by (BzDA), or the following formula:
    Figure JPOXMLDOC01-appb-C000024
    The resin composition according to any one of claims 1 to 13, which comprises a structural unit derived from the compound represented by (BNBDA).
  15.  前記樹脂を加熱して得られるポリイミド樹脂膜が、フレキシブル基板に用いられる、請求項1~14のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 14, wherein the polyimide resin film obtained by heating the resin is used for a flexible substrate.
  16.  前記樹脂を硬化して得られるポリイミド樹脂膜が、フレキシブルディスプレイに用いられる、請求項1~15のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 15, wherein the polyimide resin film obtained by curing the resin is used for a flexible display.
  17.  ジアミン又は酸二無水物と下記一般式(10):
    Figure JPOXMLDOC01-appb-C000025
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物を重縮合反応させてポリイミドを得た後、
    その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂を含む樹脂組成物を提供することを含み、
    前記樹脂の総質量を基準に前記ケイ素含有化合物を25質量%以下含む、
    樹脂組成物の製造方法。
    Diamine or acid dianhydride and the following general formula (10):
    Figure JPOXMLDOC01-appb-C000025
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
    After polycondensation reaction of the silicon-containing compound represented by
    It comprises polycondensing reaction with other compounds to provide a resin composition containing a polyimide precursor and a resin containing polyimide.
    The silicon-containing compound is contained in an amount of 25% by mass or less based on the total mass of the resin.
    A method for producing a resin composition.
  18.  ジアミン又は酸二無水物と下記一般式(10):
    Figure JPOXMLDOC01-appb-C000026
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物を重縮合反応させてポリイミドを得た後、
    その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂を含む樹脂組成物を提供することを含み、
    前記樹脂のイミド化率が50%以上である、
    樹脂組成物の製造方法。
    Diamine or acid dianhydride and the following general formula (10):
    Figure JPOXMLDOC01-appb-C000026
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
    After polycondensation reaction of the silicon-containing compound represented by
    It comprises polycondensing reaction with other compounds to provide a resin composition containing a polyimide precursor and a resin containing polyimide.
    The imidization rate of the resin is 50% or more.
    A method for producing a resin composition.
  19.  下記一般式(8):
    Figure JPOXMLDOC01-appb-C000027
    で表される化合物、又は下記一般式(9):
    Figure JPOXMLDOC01-appb-C000028
    で表される化合物と、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000029
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物と、その他の化合物を重縮合反応させてポリイミドを得た後、
    その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂組成物を提供することを含む、樹脂組成物の製造方法。
    The following general formula (8):
    Figure JPOXMLDOC01-appb-C000027
    The compound represented by, or the following general formula (9):
    Figure JPOXMLDOC01-appb-C000028
    The compound represented by the following and the following general formula (10):
    Figure JPOXMLDOC01-appb-C000029
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
    After polycondensation reaction of the silicon-containing compound represented by (1) and other compounds to obtain polyimide,
    A method for producing a resin composition, which comprises subjecting a resin composition containing a polyimide precursor and a polyimide by polycondensation reaction with other compounds.
  20.  3,3’-ジアミノジフェニルスルホン(33DAS)、
     4,4’-ジアミノジフェニルスルホン(44DAS)、及び
     9,9-ビス(4-アミノフェニル)フルオレン(BAFL)
    から選択される少なくとも一つの化合物と、
    下記一般式(10):
    Figure JPOXMLDOC01-appb-C000030
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させてポリイミドを得た後、
    その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂組成物を提供することを含む、樹脂組成物の製造方法。
    3,3'-Diaminodiphenyl sulfone (33DAS),
    4,4'-Diaminodiphenyl sulfone (44DAS), and 9,9-bis (4-aminophenyl) fluorene (BAFL)
    With at least one compound selected from
    The following general formula (10):
    Figure JPOXMLDOC01-appb-C000030
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
    After polycondensation reaction of the silicon-containing compound represented by (1) and other compounds to obtain polyimide,
    A method for producing a resin composition, which comprises subjecting a resin composition containing a polyimide precursor and a polyimide by polycondensation reaction with other compounds.
  21.  4,4’-オキシジフタル酸無水物(ODPA)、及び9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)から選択される少なくとも一つの化合物と、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000031
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基、酸無水物基、イソシアネート基、カルボキシル基、酸エステル基、酸ハライド基、ヒドロキシ基、エポキシ基、又はメルカプト基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させてポリイミドを得た後、
    その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂組成物を提供することを含む、樹脂組成物の製造方法。
    At least one compound selected from 4,4'-oxydiphthalic anhydride (ODPA) and 9,9-bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride (BPAF), and the following general formula ( 10):
    Figure JPOXMLDOC01-appb-C000031
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. Independently, each is an amino group, an acid anhydride group, an isocyanate group, a carboxyl group, an acid ester group, an acid halide group, a hydroxy group, an epoxy group, or a mercapto group, and i is an integer of 1 to 200. j and k are independently integers of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. }
    After polycondensation reaction of the silicon-containing compound represented by (1) and other compounds to obtain polyimide,
    A method for producing a resin composition, which comprises subjecting a resin composition containing a polyimide precursor and a polyimide by polycondensation reaction with other compounds.
  22.  支持体の表面上に、請求項1~16のいずれか一項に記載の樹脂組成物、又は請求項17~21のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
     該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
     該ポリイミド樹脂膜を該支持体から剥離する剥離工程と、
    を含む、ポリイミド樹脂膜の製造方法。
    Coating on the surface of the support by applying the resin composition according to any one of claims 1 to 16 or the resin composition obtained by the method according to any one of claims 17 to 21. Process and
    A film forming step of heating the resin composition to form a polyimide resin film,
    A peeling step of peeling the polyimide resin film from the support,
    A method for producing a polyimide resin film, including.
  23.  前記剥離工程に先立って、前記支持体側から前記樹脂組成物にレーザーを照射する照射工程を含む、請求項22に記載のポリイミド樹脂膜の製造方法。 The method for producing a polyimide resin film according to claim 22, further comprising an irradiation step of irradiating the resin composition with a laser from the support side prior to the peeling step.
  24.  支持体の表面上に、請求項1~16のいずれか一項に記載の樹脂組成物、又は請求項17~21のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
     該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
     該ポリイミド樹脂膜上に素子を形成する素子形成工程と、
     該素子が形成された該ポリイミド樹脂膜を該支持体から剥離する剥離工程と、
    を含む、ディスプレイの製造方法。
    Coating on the surface of the support by applying the resin composition according to any one of claims 1 to 16 or the resin composition obtained by the method according to any one of claims 17 to 21. Process and
    A film forming step of heating the resin composition to form a polyimide resin film,
    An element forming step of forming an element on the polyimide resin film and
    A peeling step of peeling the polyimide resin film on which the element is formed from the support,
    How to make a display, including.
  25.  支持体の表面上に、請求項1~16のいずれか一項に記載の樹脂組成物、又は請求項17~21のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
     該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
     該ポリイミド樹脂膜上に素子を形成する素子形成工程と、
    を含む、積層体の製造方法。
    Coating on the surface of the support by applying the resin composition according to any one of claims 1 to 16 or the resin composition obtained by the method according to any one of claims 17 to 21. Process and
    A film forming step of heating the resin composition to form a polyimide resin film,
    An element forming step of forming an element on the polyimide resin film and
    A method for manufacturing a laminate, including.
  26.  前記素子が形成された前記ポリイミド樹脂膜を前記支持体から剥離する工程をさらに含む、請求項25に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 25, further comprising a step of peeling the polyimide resin film on which the element is formed from the support.
  27.  請求項25又は26に記載の方法により積層体を製造することを含む、フレキシブルデバイスの製造方法。 A method for manufacturing a flexible device, which comprises manufacturing a laminate by the method according to claim 25 or 26.
  28.  下記一般式(1)又は(2):
    Figure JPOXMLDOC01-appb-C000032
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示す。}
    Figure JPOXMLDOC01-appb-C000033
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、pは、かつ正の整数を示す。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記Pは、下記一般式(3):
    Figure JPOXMLDOC01-appb-C000034
    で表される化合物に由来する構成単位を含み、かつ
     前記P又Pは、下記一般式(5):
    Figure JPOXMLDOC01-appb-C000035
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50であり、かつ官能基当量が800以上である。}
    で表されるケイ素含有化合物に由来する構成単位を含む、
    樹脂組成物。
    The following general formula (1) or (2):
    Figure JPOXMLDOC01-appb-C000032
    {In the formula, P 1 represents a divalent organic group, P 2 represents a tetravalent organic group, and p represents a positive integer. }
    Figure JPOXMLDOC01-appb-C000033
    {In the formula, P 1 represents a divalent organic group, P 2 represents a tetravalent organic group, and p represents a positive integer. }
    A resin composition containing a resin of a structural unit represented by.
    The P 1 is the following general formula (3):
    Figure JPOXMLDOC01-appb-C000034
    Containing a structural unit derived from in the compound represented by, and the P 1 The P 2 is represented by the following general formula (5):
    Figure JPOXMLDOC01-appb-C000035
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, j and k are each independently an integer of 0 to 200, and 0 ≦ j / (i + j + k) ≦ 0.50. Yes, and the functional group equivalent is 800 or more. }
    Containing structural units derived from silicon-containing compounds represented by
    Resin composition.
  29.  前記Pが、下記一般式(4):
    Figure JPOXMLDOC01-appb-C000036
    で表される化合物に由来する構成単位を含む、請求項28に記載の樹脂組成物。
    The above P 2 is the following general formula (4):
    Figure JPOXMLDOC01-appb-C000036
    28. The resin composition according to claim 28, which comprises a structural unit derived from the compound represented by.
  30.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000037
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
    Figure JPOXMLDOC01-appb-C000038
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000039
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含む、
    樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000037
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
    Figure JPOXMLDOC01-appb-C000038
    {In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
    A resin composition containing a resin of a structural unit represented by.
    The above P 3 or P 4 is the following general formula (10):
    Figure JPOXMLDOC01-appb-C000039
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
    Containing structural units derived from silicon-containing compounds represented by
    Resin composition.
  31.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000040
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
    Figure JPOXMLDOC01-appb-C000041
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000042
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含み、かつ
     下記(ア)又は(イ):
      (ア)前記P及び/又はPは、下記一般式(8):
    Figure JPOXMLDOC01-appb-C000043
    で表される化合物に由来する構成単位を含む;又は
      (イ)前記P及び/又はPは、下記一般式(9):
    Figure JPOXMLDOC01-appb-C000044
    で表される化合物に由来する構成単位を含む;
    のいずれかを満たす、樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000040
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
    Figure JPOXMLDOC01-appb-C000041
    {In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
    A resin composition containing a resin of a structural unit represented by.
    The above P 3 or P 4 is the following general formula (10):
    Figure JPOXMLDOC01-appb-C000042
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
    It contains a structural unit derived from a silicon-containing compound represented by (a) or (b) below.
    (A) The P 3 and / or P 5 is the following general formula (8):
    Figure JPOXMLDOC01-appb-C000043
    In comprising a structural unit derived from a compound represented; or (b) the P 4 and / or P 6 is represented by the following general formula (9):
    Figure JPOXMLDOC01-appb-C000044
    Includes structural units derived from the compounds represented by;
    A resin composition that satisfies any of the above.
  32.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000045
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
    Figure JPOXMLDOC01-appb-C000046
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000047
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含み、かつ
     前記P及び/又はPは、
    3,3’-ジアミノジフェニルスルホン(33DAS)、又は
    4,4’-ジアミノジフェニルスルホン(44DAS)
    の各化合物に由来する構成単位を少なくとも一つ含む、樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000045
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
    Figure JPOXMLDOC01-appb-C000046
    {In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
    A resin composition containing a resin of a structural unit represented by.
    The above P 3 or P 4 is the following general formula (10):
    Figure JPOXMLDOC01-appb-C000047
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
    Containing a structural unit derived from in the silicon-containing compound represented, and the P 3 and / or P 5 is
    3,3'-diaminodiphenyl sulfone (33DAS), or 4,4'-diaminodiphenyl sulfone (44DAS)
    A resin composition containing at least one structural unit derived from each of the above compounds.
  33.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000048
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
    Figure JPOXMLDOC01-appb-C000049
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000050
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含み、かつ
     前記P及び/又はPは、
    9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、又は
    下記一般式:
    Figure JPOXMLDOC01-appb-C000051
    の化合物(BisAM)
    の各化合物に由来する構成単位を少なくとも一つ含む、樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000048
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
    Figure JPOXMLDOC01-appb-C000049
    {In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
    A resin composition containing a resin of a structural unit represented by.
    The above P 3 or P 4 is the following general formula (10):
    Figure JPOXMLDOC01-appb-C000050
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
    Containing a structural unit derived from in the silicon-containing compound represented, and the P 3 and / or P 5 is
    9,9-Bis (4-aminophenyl) fluorene (BAFL), or the following general formula:
    Figure JPOXMLDOC01-appb-C000051
    Compound (BisAM)
    A resin composition containing at least one structural unit derived from each of the above compounds.
  34.  下記一般式(6)及び(7):
    Figure JPOXMLDOC01-appb-C000052
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつpは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
    Figure JPOXMLDOC01-appb-C000053
    {式中、Pは、2価の有機基を示し、Pは、4価の有機基を示し、かつqは、正の整数を示し、Pは、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない。}
    で表される構造単位の樹脂を含む、樹脂組成物であって、
     前記P又はPが、下記一般式(10):
    Figure JPOXMLDOC01-appb-C000054
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物に由来する構成単位を含み、かつ
     前記P及び/又はPは、
    4,4’-オキシジフタル酸無水物(ODPA)、
    4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDA)、
    9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物(BPAF)、
    下記一般式:
    Figure JPOXMLDOC01-appb-C000055
    の化合物(BzDA);又は
    下記一般式:
    Figure JPOXMLDOC01-appb-C000056
    の化合物(BNBDA);
    の各化合物に由来する構成単位を少なくとも一つ含む、樹脂組成物。
    The following general formulas (6) and (7):
    Figure JPOXMLDOC01-appb-C000052
    {In the formula, P 3 represents a divalent organic group, P 4 represents a tetravalent organic group, p represents a positive integer, and P 3 represents a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
    Figure JPOXMLDOC01-appb-C000053
    {In the formula, P 5 indicates a divalent organic group, P 6 indicates a tetravalent organic group, q indicates a positive integer, and P 5 indicates a 2,2'-bis (tri). Fluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not included. }
    A resin composition containing a resin of a structural unit represented by.
    The above P 3 or P 4 is the following general formula (10):
    Figure JPOXMLDOC01-appb-C000054
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
    In comprising a structural unit derived from silicon-containing compound represented, and the P 4 and / or P 6 is
    4,4'-Oxydiphthalic anhydride (ODPA),
    4,4'-(Hexafluoroisopropylidene) diphthalic acid anhydride (6FDA),
    9,9-Bis (3,4-dicarboxyphenyl) fluorene diic acid anhydride (BPAF),
    The following general formula:
    Figure JPOXMLDOC01-appb-C000055
    Compound (BzDA); or the following general formula:
    Figure JPOXMLDOC01-appb-C000056
    Compound (BNBDA);
    A resin composition containing at least one structural unit derived from each of the above compounds.
  35.  前記Pが、前記一般式(10)で表される化合物に由来する構成単位を含み、
     前記一般式(10)で表されるケイ素含有化合物の官能基当量が800以上である、請求項30~34のいずれか一項に記載の樹脂組成物。
    The P 3 contains a structural unit derived from the compound represented by the general formula (10).
    The resin composition according to any one of claims 30 to 34, wherein the silicon-containing compound represented by the general formula (10) has a functional group equivalent of 800 or more.
  36.  前記Pが、前記一般式(10)で表される化合物に由来する構成単位を含み、かつ
     前記一般式(10)において前記L及びLが、それぞれ独立に、アミノ基である、
    請求項30~35のいずれか一項に記載の樹脂組成物。
    The P 3 contains a structural unit derived from the compound represented by the general formula (10), and the L 1 and L 2 in the general formula (10) are independently amino groups.
    The resin composition according to any one of claims 30 to 35.
  37.  前記一般式(3)又は(8)で表される化合物が、全ジアミン(前記一般式(5)又は(10)で表される化合物を除く)を100mol%としたとき、50mol%より多い、請求項28、29及び31のいずれか一項に記載の樹脂組成物。 The compound represented by the general formula (3) or (8) is more than 50 mol% when the total diamine (excluding the compound represented by the general formula (5) or (10)) is 100 mol%. The resin composition according to any one of claims 28, 29 and 31.
  38.  前記樹脂を加熱して得られるポリイミド樹脂膜が、フレキシブル基板に用いられる、請求項28~37のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 28 to 37, wherein the polyimide resin film obtained by heating the resin is used for a flexible substrate.
  39.  前記樹脂を硬化して得られるポリイミド樹脂膜が、フレキシブルディスプレイに用いられる、請求項28~38のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 28 to 38, wherein the polyimide resin film obtained by curing the resin is used for a flexible display.
  40.  下記一般式(3):
    Figure JPOXMLDOC01-appb-C000057
    で表される化合物、
    3,3’-ジアミノジフェニルスルホン(33DAS)、及び
    4,4’-ジアミノジフェニルスルホン(44DAS)、
    から選択される少なくとも一つのジアミンと、
    酸二無水物と、
    下記一般式(5):
    Figure JPOXMLDOC01-appb-C000058
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させてポリイミド前駆体及び/又はポリイミドを提供することを含む、樹脂組成物の製造方法。
    The following general formula (3):
    Figure JPOXMLDOC01-appb-C000057
    Compound represented by,
    3,3'-Diaminodiphenyl sulfone (33DAS), and 4,4'-diaminodiphenyl sulfone (44DAS),
    With at least one diamine selected from,
    Acid dianhydride and
    The following general formula (5):
    Figure JPOXMLDOC01-appb-C000058
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
    A method for producing a resin composition, which comprises subjecting a silicon-containing compound represented by (1) to a polycondensation reaction of another compound to provide a polyimide precursor and / or a polyimide.
  41.  ジアミン(ただし、2,2 ’-ビス (トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)を含まない)と酸二無水物を重縮合反応させてポリイミドを得た後、
     下記一般式(5):
    Figure JPOXMLDOC01-appb-C000059
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10の二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂組成物を提供することを含む、樹脂組成物の製造方法。
    After polycondensation reaction of diamine (however, 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (6FODA) is not contained) and acid dianhydride to obtain polyimide,
    The following general formula (5):
    Figure JPOXMLDOC01-appb-C000059
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
    A method for producing a resin composition, which comprises subjecting a silicon-containing compound represented by (1) to a polycondensation reaction with another compound to provide a resin composition containing a polyimide precursor and a polyimide.
  42.  下記一般式(3):
    Figure JPOXMLDOC01-appb-C000060
    で表される化合物、
     3,3’-ジアミノジフェニルスルホン(33AS)、及び
     4,4’-ジアミノジフェニルスルホン(44DAS)、
    から選択される少なくとも一つのジアミンと、
    酸二無水物と、
    その他の化合物とを重縮合反応させてポリイミドを得た後、
     下記一般式(5):
    Figure JPOXMLDOC01-appb-C000061
    {式中、Rは、それぞれ独立に、単結合又は炭素数1~10sの二価の有機基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数1~5の一価の脂肪族炭化水素基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、少なくとも一つは炭素数6~10の一価の芳香族基であり、R及びRは、それぞれ独立に、炭素数1~10の一価の有機基であり、L及びLは、それぞれ独立に、アミノ基であり、iは、1~200の整数であり、j及びkは、それぞれ独立に、0~200の整数であり、0≦j/(i+j+k)≦0.50である。}
    で表されるケイ素含有化合物と、その他の化合物とを重縮合反応させて、ポリイミド前駆体及びポリイミドを含む樹脂組成物を提供することを含む、樹脂組成物の製造方法。
    The following general formula (3):
    Figure JPOXMLDOC01-appb-C000060
    Compound represented by,
    3,3'-Diaminodiphenyl sulfone (33AS), and 4,4'-diaminodiphenyl sulfone (44DAS),
    With at least one diamine selected from,
    Acid dianhydride and
    After polycondensation reaction with other compounds to obtain polyimide,
    The following general formula (5):
    Figure JPOXMLDOC01-appb-C000061
    {In the formula, R 1 is an independently single-bonded or divalent organic group having 1 to 10 s carbon atoms, and R 2 and R 3 are independently monovalent organic groups having 1 to 10 carbon atoms. It is a group, at least one is a monovalent aliphatic hydrocarbon group having 1 to 5 carbon atoms, and R 4 and R 5 are independently monovalent organic groups having 1 to 10 carbon atoms, respectively. At least one is a monovalent aromatic group having 6 to 10 carbon atoms, R 6 and R 7 are independently monovalent organic groups having 1 to 10 carbon atoms, and L 1 and L 2 are independent groups. , Each independently is an amino group, i is an integer of 1 to 200, and j and k are independently integers of 0 to 200, with 0 ≦ j / (i + j + k) ≦ 0.50. be. }
    A method for producing a resin composition, which comprises subjecting a silicon-containing compound represented by (1) to a polycondensation reaction with another compound to provide a resin composition containing a polyimide precursor and a polyimide.
  43.  支持体の表面上に、請求項28~39のいずれか一項に記載の樹脂組成物、又は請求項40~42のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
     該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
     該ポリイミド樹脂膜を該支持体から剥離する剥離工程と、
    を含む、ポリイミド樹脂膜の製造方法。
    Coating on the surface of the support by applying the resin composition according to any one of claims 28 to 39 or the resin composition obtained by the method according to any one of claims 40 to 42. Process and
    A film forming step of heating the resin composition to form a polyimide resin film,
    A peeling step of peeling the polyimide resin film from the support,
    A method for producing a polyimide resin film, including.
  44.  前記剥離工程に先立って、前記支持体側から前記樹脂組成物にレーザーを照射する照射工程を含む、請求項43に記載のポリイミド樹脂膜の製造方法。 The method for producing a polyimide resin film according to claim 43, which comprises an irradiation step of irradiating the resin composition with a laser from the support side prior to the peeling step.
  45.  支持体の表面上に、請求項28~39のいずれか一項に記載の樹脂組成物、又は請求項40~42のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
     該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
     該ポリイミド樹脂膜上に素子を形成する素子形成工程と、
     該素子が形成された該ポリイミド樹脂膜を該支持体から剥離する剥離工程と、
    を含む、ディスプレイの製造方法。
    Coating on the surface of the support by applying the resin composition according to any one of claims 28 to 39 or the resin composition obtained by the method according to any one of claims 40 to 42. Process and
    A film forming step of heating the resin composition to form a polyimide resin film,
    An element forming step of forming an element on the polyimide resin film and
    A peeling step of peeling the polyimide resin film on which the element is formed from the support,
    How to make a display, including.
  46.  支持体の表面上に、請求項28~39のいずれか一項に記載の樹脂組成物、又は請求項40~42のいずれか一項に記載の方法により得られた樹脂組成物を塗布する塗布工程と、
     該樹脂組成物を加熱してポリイミド樹脂膜を形成する膜形成工程と、
     該ポリイミド樹脂膜上に素子を形成する素子形成工程と、
    を含む、積層体の製造方法。
    Coating on the surface of the support by applying the resin composition according to any one of claims 28 to 39 or the resin composition obtained by the method according to any one of claims 40 to 42. Process and
    A film forming step of heating the resin composition to form a polyimide resin film,
    An element forming step of forming an element on the polyimide resin film and
    A method for manufacturing a laminate, including.
  47.  前記素子が形成された前記ポリイミド樹脂膜を前記支持体から剥離する工程をさらに含む、請求項46に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 46, further comprising a step of peeling the polyimide resin film on which the element is formed from the support.
  48.  請求項46又は47に記載の方法により積層体を製造することを含む、フレキシブルデバイスの製造方法。 A method for manufacturing a flexible device, which comprises manufacturing a laminate by the method according to claim 46 or 47.
PCT/JP2021/020567 2020-05-28 2021-05-28 Resin composition WO2021241763A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227037482A KR20220158818A (en) 2020-05-28 2021-05-28 resin composition
JP2022526687A JPWO2021241763A1 (en) 2020-05-28 2021-05-28
CN202180038523.3A CN115667368A (en) 2020-05-28 2021-05-28 Resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-093735 2020-05-28
JP2020093735 2020-05-28
JP2020-093706 2020-05-28
JP2020093706 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021241763A1 true WO2021241763A1 (en) 2021-12-02

Family

ID=78744834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020567 WO2021241763A1 (en) 2020-05-28 2021-05-28 Resin composition

Country Status (4)

Country Link
JP (1) JPWO2021241763A1 (en)
KR (1) KR20220158818A (en)
CN (1) CN115667368A (en)
WO (1) WO2021241763A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108879A (en) * 1990-08-30 1992-04-09 Nippon Steel Chem Co Ltd Polyimide resin coating agent composition
WO2014098235A1 (en) * 2012-12-21 2014-06-26 旭化成イーマテリアルズ株式会社 Polyimide precursor and resin composition containing same
WO2014148441A1 (en) * 2013-03-18 2014-09-25 旭化成イーマテリアルズ株式会社 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
JP2016162403A (en) * 2015-03-05 2016-09-05 旭化成株式会社 Optical member comprising polyimide as laminating adhesion layer
WO2019065164A1 (en) * 2017-09-26 2019-04-04 東レ株式会社 Polyimide precursor resin composition, polyimide resin composition, polyimide resin film, production method for layered product, production method for color filter, production method for liquid crystal element, and production method for organic el element
WO2019188305A1 (en) * 2018-03-28 2019-10-03 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
WO2019208590A1 (en) * 2018-04-23 2019-10-31 信越化学工業株式会社 Silicon-containing compound
WO2019211972A1 (en) * 2018-05-01 2019-11-07 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
JP2019203120A (en) * 2018-05-16 2019-11-28 旭化成株式会社 Polyimide precursor resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6551640B1 (en) 2018-02-05 2019-07-31 三菱瓦斯化学株式会社 Asymmetric membrane

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108879A (en) * 1990-08-30 1992-04-09 Nippon Steel Chem Co Ltd Polyimide resin coating agent composition
WO2014098235A1 (en) * 2012-12-21 2014-06-26 旭化成イーマテリアルズ株式会社 Polyimide precursor and resin composition containing same
WO2014148441A1 (en) * 2013-03-18 2014-09-25 旭化成イーマテリアルズ株式会社 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
JP2016162403A (en) * 2015-03-05 2016-09-05 旭化成株式会社 Optical member comprising polyimide as laminating adhesion layer
WO2019065164A1 (en) * 2017-09-26 2019-04-04 東レ株式会社 Polyimide precursor resin composition, polyimide resin composition, polyimide resin film, production method for layered product, production method for color filter, production method for liquid crystal element, and production method for organic el element
WO2019188305A1 (en) * 2018-03-28 2019-10-03 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
WO2019208590A1 (en) * 2018-04-23 2019-10-31 信越化学工業株式会社 Silicon-containing compound
WO2019211972A1 (en) * 2018-05-01 2019-11-07 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
JP2019203120A (en) * 2018-05-16 2019-11-28 旭化成株式会社 Polyimide precursor resin composition

Also Published As

Publication number Publication date
CN115667368A (en) 2023-01-31
JPWO2021241763A1 (en) 2021-12-02
KR20220158818A (en) 2022-12-01
TW202330733A (en) 2023-08-01
TW202204474A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP7055832B2 (en) Polyimide precursor, resin composition, resin film and its manufacturing method
CN108026273B (en) Polyimide precursor, resin composition, and method for producing resin film
CN113136103B (en) Polyimide precursor resin composition
JP2024028330A (en) Polyimide precursor resin composition
JP2022167930A (en) Polyimide precursor resin composition
JP7300504B2 (en) Polyimide precursor and polyimide resin composition
JP2023082676A (en) Resin composition and method for producing the same
JP2022087023A (en) Polyimide precursor and polyimide resin composition
JP7053807B2 (en) Silicon-containing compound
TW202229411A (en) Polyimide precursor and polyimide resin composition wherein the polyimide precursor includes a structural unit represented by a specific general formula which is partially imidized
WO2021241763A1 (en) Resin composition
TWI836943B (en) Resin composition
TWI836221B (en) Resin composition
WO2024048740A1 (en) Resin composition
JP7376274B2 (en) Polyimide precursor resin composition
JP7433007B2 (en) Polyimide precursor resin composition
JP2022082450A (en) Resin composition
JP2024035165A (en) resin composition
JP2023008995A (en) resin composition
JP2023008996A (en) resin composition
JP2023008992A (en) resin composition
WO2019208587A1 (en) Polyimide precursor resin composition
JPWO2019208587A1 (en) Polyimide precursor resin composition
JP2023016028A (en) resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526687

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227037482

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812014

Country of ref document: EP

Kind code of ref document: A1