WO2021240876A1 - 排気浄化装置 - Google Patents

排気浄化装置 Download PDF

Info

Publication number
WO2021240876A1
WO2021240876A1 PCT/JP2021/002560 JP2021002560W WO2021240876A1 WO 2021240876 A1 WO2021240876 A1 WO 2021240876A1 JP 2021002560 W JP2021002560 W JP 2021002560W WO 2021240876 A1 WO2021240876 A1 WO 2021240876A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
unit
exhaust gas
space
flow path
Prior art date
Application number
PCT/JP2021/002560
Other languages
English (en)
French (fr)
Inventor
達樹 深川
英介 鵜飼
Original Assignee
株式会社三五
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三五 filed Critical 株式会社三五
Priority to JP2022527497A priority Critical patent/JP7350171B2/ja
Publication of WO2021240876A1 publication Critical patent/WO2021240876A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to an exhaust gas purification device. More specifically, the present invention relates to an exhaust gas purification device capable of achieving miniaturization and improvement of warm-up performance while suppressing an increase in back pressure.
  • Exhausts emitted from internal combustion engines such as gasoline engines and diesel engines include particulate matter (PM) consisting of soot and the like, carbon monoxide (CO), unburned hydrocarbons (HC: HydroCarbon), and nitrogen oxides (HC: HydroCarbon). Includes specific substances such as NOx). Therefore, from the viewpoint of protecting the global environment, for example, filters such as a gasoline particulate filter (GPF: Gasolin Particulate Filter) and a diesel particulate filter (DPF: Diesel Particulate Filter) that collect PM, and an oxidation catalyst (OC: Oxidation Catalyst) are used.
  • PM particulate matter
  • CO carbon monoxide
  • HC HydroCarbon
  • NOx nitrogen oxides
  • Exhaust purification unit including exhaust purification catalyst such as three-way catalyst (TWC: Three-Way Catalyst), selective catalytic reduction denitration device (SCR: Selective Catalytic Reduction) and ammonia slip catalyst (ASC: Ammonia Sleep Catalyst).
  • TWC Three-Way Catalyst
  • SCR Selective Catalytic Reduction
  • ASC Ammonia Sleep Catalyst
  • an exhaust gas treatment device that accelerates warm-up and achieves miniaturization by holding a honeycomb filter and a catalyst-supported honeycomb structure that are inclined to each other at a predetermined angle in the can body (for example, Patent Document 2). See.).
  • the catalyst-supported honeycomb structure on the upstream side is arranged so as to overlap the end face of the inflow side (upstream side) of the honeycomb filter on the downstream side.
  • the upstream exhaust purification unit overlaps the inflow side (upstream) end face of the downstream exhaust purification unit for the purpose of accelerating warm-up and achieving miniaturization as described above.
  • Various exhaust gas purification devices and catalytic converters arranged in such a manner have been proposed (see, for example, Patent Documents 3 and 4).
  • the configuration in which the upstream exhaust gas purification unit exists on the extension line in the axial direction of the end face on the inlet side of the downstream exhaust purification unit hinders the inflow of exhaust gas into the downstream exhaust gas purification unit. It is easy to cause an increase in back pressure (increase in pressure loss), which may lead to a decrease in engine performance. In addition, stagnation of the exhaust flow is likely to occur, and there is a possibility that problems such as soot accumulation may occur in the stagnation area. Contrary to the above, such a problem may occur even in a configuration in which the exhaust gas purification unit on the downstream side exists on the extension line in the axial direction of the end face on the outlet side of the exhaust gas purification unit on the upstream side.
  • an exhaust gas purification device in which the first converter and the second converter, each of which has a built-in exhaust gas purification unit, are connected so as to be positioned parallel to each other by an S-shaped connecting pipe in which a reducing agent injection nozzle is installed.
  • the S-shaped communication pipe provided in the exhaust gas purification device is provided for the purpose of stirring and mixing the reducing agent added to the exhaust on the upstream side, and when the addition of the reducing agent is unnecessary, the reducing agent may not be added.
  • the communication pipe as described above should be as short as possible from the viewpoint of suppressing an increase in back pressure, downsizing, and improving warm-up performance.
  • Japanese Patent No. 6537606 Japanese Unexamined Patent Publication No. 2011-117409 Japanese Unexamined Patent Publication No. 2011-241705 Japanese Unexamined Patent Publication No. 2020-045897 Japanese Unexamined Patent Publication No. 2014-0848550 Japanese Patent No. 6404701
  • the present inventor has a region inside the casing in which the outer surfaces of the exhaust gas purification unit on the upstream side and the exhaust gas purification unit on the downstream side directly face each other, and one of these exhaust gas purification units. It has been found that the above-mentioned problems can be solved by arranging the end faces so that the other does not overlap.
  • the exhaust gas purification device (hereinafter, may be referred to as “the device of the present invention") is an exhaust gas purification device including a casing, a first unit, and a second unit.
  • the casing is a container that defines the first space, which is one internal space as a part of the exhaust flow path, which is the flow path of the exhaust gas discharged from the internal combustion engine, and is an opening formed on the upstream side of the exhaust flow path. It is provided with a first opening which is an opening and a second opening which is an opening formed on the downstream side in the exhaust flow path.
  • the first unit is an exhaust purification unit arranged on the upstream side in the exhaust flow path.
  • the second unit is an exhaust purification unit arranged on the downstream side of the first unit in the exhaust flow path.
  • the first unit includes a first housing having a cylindrical shape and a first purification member which is one or more members held inside the first housing to purify exhaust gas.
  • the second unit includes a second housing having a cylindrical shape and a second purification member which is one or more members held inside the second housing to purify the exhaust gas.
  • the first opening of the casing is fitted on the outer surface of the first housing, and the second opening of the casing is fitted on the outer surface of the second housing.
  • first region which is a region sandwiched between the outer surfaces of the first housing and the outer surfaces of the second housing facing each other in the first space.
  • first pillar and the second pillar do not intersect in the first space.
  • the first prism is a virtual prism surrounded by the outer surface of the first housing extending in the axial direction of the first housing.
  • the second pillar is a virtual pillar surrounded by the outer surface of the second housing extending in the axial direction of the second housing.
  • first region which is a region sandwiched between the outer surface of the first housing and the outer surface of the second housing facing each other in the first space, and the first prism
  • the first unit and the second unit are arranged so that the second pillar and the second prism do not intersect with each other. That is, in the first unit and the second unit, not a few portions are housed inside the casing, and the other is arranged so as not to overlap with one end face inside the casing.
  • the casing can be made smaller. Further, by reducing the size of the casing, heat dissipation to the outside can be reduced, and the warm-up performance of the apparatus of the present invention can be improved, for example, an increase in the heating rate and an improvement in heat retention.
  • the exhaust gas discharged from the upstream exhaust gas purification unit (first unit) is discharged. It can smoothly flow into the exhaust gas purification unit (second unit) on the downstream side. As a result, it is possible to suppress an increase in back pressure as compared with the conventional device.
  • the exhaust gas discharged from the first unit passes through the first region and flows to the second unit, the exhaust gas flows along the outer surfaces of the first housing and the second housing, so that the first unit And the second unit is heated by the exhaust.
  • the warm-up performance of the apparatus of the present invention can be further improved.
  • an exhaust gas purification device capable of achieving miniaturization and improvement of warm-up performance while suppressing an increase in back pressure.
  • FIG. 3 is a schematic cross-sectional view showing an example of the internal structure of the first apparatus illustrated in FIG. 1. It is a schematic perspective view which shows an example of the appearance of the exhaust gas purification apparatus (second apparatus) which concerns on 2nd Embodiment of this invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of the internal structure of the second device illustrated in FIG. It is a schematic perspective view which shows one example of the appearance of the exhaust gas purification apparatus (third apparatus) which concerns on 3rd Embodiment of this invention.
  • FIG. 5 is a schematic cross-sectional view showing an example of the internal structure of the third device illustrated in FIG. It is a schematic perspective view which shows another example of the appearance of the exhaust gas purification apparatus (third apparatus) which concerns on 3rd Embodiment of this invention.
  • FIG. 7 is a schematic perspective view and a hexagonal view of the third device illustrated in FIG. 7.
  • 7 is a schematic cross-sectional view showing an example of the internal structure of the third apparatus illustrated in FIGS. 7 and 8.
  • It is a schematic front view of the exhaust gas purification apparatus (1st Example apparatus) which concerns on 1st Embodiment of this invention.
  • It is a schematic diagram which shows the 1st Example apparatus cut by the plane including the straight line L3 shown in FIG.
  • FIG. 14 is a schematic perspective view showing the arrangement of the first unit and the second unit inside the casing by removing the upper half body of the casing constituting the second embodiment device shown in FIG.
  • FIG. 14 is a schematic perspective view showing the configurations of the first unit and the second unit by removing the casing constituting the second embodiment device and a part of the first unit and the second unit shown in FIG.
  • first device the exhaust gas purification device
  • the first device is an exhaust gas purification device including a casing, a first unit, and a second unit.
  • the casing is a container that defines the first space, which is one internal space as a part of the exhaust flow path, which is the flow path of the exhaust gas discharged from the internal combustion engine, and is an opening formed on the upstream side of the exhaust flow path. It is provided with a first opening which is an opening and a second opening which is an opening formed on the downstream side in the exhaust flow path.
  • the first unit is an exhaust purification unit arranged on the upstream side in the exhaust flow path.
  • the second unit is an exhaust purification unit arranged on the downstream side of the first unit in the exhaust flow path.
  • the first unit includes a first housing having a cylindrical shape and a first purification member which is one or more members held inside the first housing to purify exhaust gas.
  • the second unit includes a second housing having a cylindrical shape and a second purification member which is one or more members held inside the second housing to purify the exhaust gas.
  • the first opening of the casing is fitted on the outer surface of the first housing, and the second opening of the casing is fitted on the outer surface of the second housing.
  • first region which is a region sandwiched between the outer surfaces of the first housing and the outer surfaces of the second housing facing each other in the first space.
  • first pillar and the second pillar do not intersect in the first space.
  • the first prism is a virtual prism surrounded by the outer surface of the first housing extending in the axial direction of the first housing.
  • the second pillar is a virtual pillar surrounded by the outer surface of the second housing extending in the axial direction of the second housing.
  • the first opening and the second opening are fitted on the outer surfaces of the first unit and the second unit, respectively, so that a part of the first unit and the second unit is exposed to the outside.
  • the specific configuration of the casing is not particularly limited as long as it can meet the above-mentioned requirements and can withstand the usage environment and usage conditions as an exhaust gas purification device.
  • the casing may be composed of a tubular member made of a metal material such as stainless steel, or may be configured by a manufacturing method (so-called "Monaka manufacturing method") in which a plurality of press-molded members are superposed. It may have been done.
  • the first device guides the exhaust gas discharged from the internal combustion engine to the first unit and the second unit to remove and / or detoxify the above-mentioned specific substances and / or objects contained in the exhaust gas. It is an exhaust purification device that purifies the exhaust. Therefore, it is necessary to airtightly join between the first opening of the casing and the outer surface of the first housing and between the second opening of the casing and the outer surface of the second housing.
  • the casing is formed by superimposing a plurality of members press-molded by the above-mentioned Monaca manufacturing method, it is also necessary to airtightly join the plurality of members. Specific examples of the method for achieving such joining include a method such as welding.
  • the first unit is an exhaust purification unit arranged on the upstream side in the exhaust flow path
  • the second unit is an exhaust purification unit arranged on the downstream side of the first unit in the exhaust flow path. be. Therefore, the exhaust gas discharged from the internal combustion engine and guided to the first device is first introduced into the first unit through the first opening, and the exhaust gas discharged from the first unit passes through the first space which is the internal space of the casing. Then, it is introduced into the second unit, and the exhaust gas discharged from the second unit is discharged to the outside of the casing through the second opening.
  • the first unit includes a first housing having a cylindrical shape and a first purification member which is one or more members held inside the first housing to purify the exhaust gas.
  • the second unit also includes a second housing having a cylindrical shape and a second purifying member which is one or more members held inside the second housing to purify the exhaust gas.
  • the first housing and the second housing are tubular members containing the first unit and the second unit, respectively.
  • the specific configuration of the first housing and the second housing accommodates the first unit and the second unit, respectively, and guides the exhaust gas discharged from the internal combustion engine to the first unit and the second unit, respectively, as an exhaust purification device.
  • the first housing and the second housing may be made of a tubular member (pipe) made of a metal material such as stainless steel, or may be made of the above-mentioned Monaca manufacturing method.
  • the size and shape of the first housing and the second housing can be appropriately determined, for example, according to the size and shape of the first purification member and the second purification member held inside.
  • the first purification member and the second purification member are members that purify the exhaust gas.
  • the first purification member and the second purification member have a function of purifying the exhaust gas by removing and / or detoxifying the above-mentioned specific substances contained in the exhaust gas discharged from the internal combustion engine. It is a member.
  • Specific examples of such a member include filters such as a gasoline particulate filter (GPF) and a diesel particulate filter (DPF) for collecting PM, an oxidation catalyst (OC), and a three-way catalyst (TWC).
  • Exhaust gas purification catalysts such as a catalytic reduction denitration device (SCR) and an ammonia slip catalyst (ASC) can be mentioned.
  • the first device includes a first purification member and / or a second purification member that requires an additive such as a reducing agent for removing and / or detoxifying a specific substance, the member that requires the additive.
  • the first device may be provided with a device for supplying the additive to the exhaust flow path on the upstream side.
  • first purification member and the second purification member are, for example, an electric heating type catalyst (EHC: Electrically) which is a purification member including a heating element which generates heat by energizing through a pair of electrodes to heat an exhaust purification catalyst. Heated Catalyst) and / or the heating element may be used.
  • EHC electric heating type catalyst
  • the number of first purification members held inside the first housing may be one or two or more. In the latter case, all of the plurality of first purification members may be the same member or may contain different members. Further, these plurality of first purification members may be arranged in series or in parallel. The same applies to the second purification member held inside the second housing. Further, the first purification member held inside the first housing and the second purification member held inside the second housing may be the same member or different from each other.
  • the size and shape of the first purification member and the second purification member may be appropriately determined according to, for example, the exhaust gas purification performance and pressure loss required for each member, the space in which the first device is mounted, and the like. can.
  • the first purification member and the second purification member may have a cross-sectional shape such as a perfect circle and an ellipse, and a polygon such as a triangle, a quadrangle, a trapezoid, and a rhombus. That is, the first purification member and the second purification member may have an outer shape such as a cylinder and an elliptical column, and a polygonal column such as a triangular prism and a quadrangular prism.
  • the first purification member and the second purification member are placed in the first housing and the second housing. It is not particularly limited as long as it can be fixed at a predetermined position inside the housing and can withstand the usage environment and usage conditions as an exhaust purification device.
  • a holding member (mat) which is a cushioning material made of a material capable of exerting a restoring force as a repulsion against compression and having sufficient heat resistance is used as a first purification member and a first. Cushioning is held between the housing and between the second purification member and the second housing, and the first purification member and the second purification member are designated inside the first housing and the second housing by the restoring force of the holding member. Can be held in the position of.
  • the holding member is sandwiched and held between the first purifying member and the first housing and between the second purifying member and the second housing, and the restoring force of the holding member is used to hold the first purifying member and the second purifying member and the second.
  • Specific examples of the method for holding the purification member at a predetermined position inside the first housing and the second housing include methods used by, for example, a press-fitting method and a sizing method. Since the details of the press-fitting method and the sizing method are well known to those skilled in the art, the description thereof is omitted here.
  • the material constituting the holding member as described above include inorganic fibers such as alumina-based fibers and alumina-silica fibers, and those obtained by adding a resin as a binder to such inorganic fibers. Can be done.
  • the resin used as the binder include acrylic rubber, nitrile rubber, polyvinyl alcohol, and acrylic resin.
  • first region which is a region sandwiched between the outer surfaces of the first housing and the outer surfaces of the second housing facing each other in the first space.
  • the outer surfaces (of the first housing and the second housing) of the portions housed inside the casings of the first unit and the second unit face each other.
  • the first prism which is a virtual prism surrounded by the axially extended outer surface of the first housing
  • the second prism which is a virtual prism, in the first space.
  • the first unit does not overlap the inflow side (upstream side) end face of the second unit
  • the second unit overlaps the outflow side (downstream side) end face of the first unit. do not. That is, the first unit and the second unit are arranged so as not to interfere with either the outflow of the exhaust gas from the first unit or the inflow of the exhaust gas into the second unit.
  • the first pillar and the second pillar may intersect.
  • the casing can be made smaller than the case where a plurality of exhaust gas purification units are linearly arranged as in the conventional device described above. Further, by reducing the size of the casing, heat dissipation to the outside can be reduced, and the warm-up performance of the apparatus of the present invention can be improved, for example, an increase in the heating rate and an improvement in heat retention. Further, since the exhaust gas discharged from the first unit can smoothly flow into the second unit, it is possible to suppress an increase in back pressure. In addition, the exhaust gas flowing from the first unit to the second unit via the first space flows along the outer surfaces of the first housing and the second housing, and a part of the exhaust gas passes through the first region. , 1st unit and 2nd unit can be heated by exhaust gas.
  • the first device is the above-mentioned first device, which is an exhaust gas purification device characterized in that the first ratio is larger than the second ratio.
  • the first ratio is the ratio of the portion where the outer surface of the first housing and the outer surface of the second housing are directly opposed to each other in the first region without interposing other members.
  • the second ratio is the ratio of the portion in which the outer surface of the first housing and the outer surface of the second housing indirectly face each other via other members in the first region. Since the first ratio is larger than the second ratio in this way, the flow of exhaust gas is less likely to be obstructed in the first region, so that the increase in back pressure (increase in pressure loss) in the first device can be further reduced. can. Further, since the heating of the first unit and the second unit by the exhaust gas flowing from the first unit to the second unit and the heating of the second unit by the radiant heat from the first unit are promoted, the warm-up performance of the first device is improved. It can be further improved.
  • the first device according to another modification is the above-mentioned first device, in which the outer surface of the first housing and the outer surface of the second housing in the first region do not interfere with each other without intervening other members. It is an exhaust gas purification device characterized by being directly opposed to each other. In other words, in the first region, there are no other members between the outer surface of the first housing and the outer surface of the second housing.
  • FIG. 1 is a schematic perspective view showing an example of the appearance of the first apparatus having the above-mentioned configuration.
  • the first device 101 exemplified in FIG. 1 is an exhaust gas purification device including a casing 10, a first unit 21, and a second unit 22.
  • the casing 10 is a container-shaped member having a rectangular parallelepiped outer shape, and is configured by bonding two press-molded members at the locations shown in the figure by broken lines by the above-mentioned Monaca manufacturing method. There is.
  • the first unit 21 is the first opening 11 which is an opening formed on the upstream side (upper side toward the drawing) of the casing 10 and the second opening 12 which is an opening formed on the downstream side (lower side toward the drawing). And the outer surface of the second unit 22 are fitted to each other.
  • the exhaust gas discharged from the internal combustion engine (not shown) is guided from the upstream end of the first unit 21 to the inside of the first device 101, and is guided to the inside of the first device 101 of the second unit 22. It is guided to the outside of the first device 101 from the end on the downstream side. That is, the second unit 22 is an exhaust purification unit arranged on the downstream side of the first unit 21 in the exhaust flow path.
  • the first unit 21 and the second unit 21 and the second unit 21 are parallel to each other so that the shaft AX1 of the first housing constituting the first unit 21 and the shaft AX2 of the second housing constituting the second unit 22 are parallel to each other.
  • the unit 22 is arranged.
  • FIG. 2 is a schematic cross-sectional view showing an example of the internal structure of the first apparatus exemplified in FIG.
  • FIG. 2A is a cross-sectional view of the first device 101 in a plane including both the shaft AX1 of the first housing and the shaft AX2 of the second housing exemplified in FIG.
  • FIG. 2B is a cross-sectional view of the first apparatus 101 including the straight line L1 shown in FIG. 2 and a plane perpendicular to the axes AX1 and AX2.
  • first region 10r which is a region sandwiched between the outer surface of the first housing 21h and the outer surface of the second housing 22h facing each other in the first space 10s (see the shaded area). ).
  • first unit 21 and the second unit 22 are arranged so that the axis AX1 of the first housing 21h and the axis AX2 of the second housing 22h are parallel to each other. .. Therefore, it is surrounded by a virtual prism (first prism 21v) surrounded by an outer surface extending in the direction of the axis AX1 of the first housing 21h and an outer surface extended in the direction of the axis AX2 of the second housing 22h.
  • the first unit 21 does not overlap the end surface of the inflow side (upstream side) of the second unit 22, and the second unit 22 is on the outflow side (downstream side) of the first unit 21. Does not overlap the end face of. That is, the first unit 21 and the second unit 22 are arranged so as not to interfere with either the outflow of the exhaust gas from the first unit 21 or the inflow of the exhaust gas into the second unit 22.
  • Two units 22 are arranged.
  • the axis of the first housing and the axis of the second housing are parallel in the first device, and as described above, the first prism 21v and the second prism 22v are the first. It does not have to intersect in the space 10s.
  • the first opening 11 and the second opening 12 are formed in the outer shells of the casings 10 facing each other with the first space 10s interposed therebetween.
  • the first opening 11 and the second opening 12 are formed in the outer shells of the casings facing each other with the first space interposed therebetween.
  • the first opening and the second opening may be formed in the outer shell on the same side of the casing, or may be formed in the outer shell on the different side of the casing.
  • the outer surface of the first housing 21h and the outer surface of the second housing 22h directly face each other without interposing other members. That is, in the first region 10r, there is no other member between the outer surface of the first housing 21h and the outer surface of the second housing 22h, and the exhaust gas discharged from the first unit 21 goes to the second unit 22. And can flow in more smoothly. Therefore, the increase in back pressure in the first device 101 can be further reduced. Further, the first unit 21 and the second unit 22 can be heated more effectively by the exhaust gas flowing from the first unit 21 to the second unit 22.
  • radiant heat is likely to be transmitted from the first unit 21 which has a relatively high temperature because it exists on the upstream side to the second unit 22 which has a relatively low temperature because it exists on the downstream side.
  • the warm-up performance of the first device 101 can be further improved.
  • the casing can be made smaller than the case where a plurality of exhaust gas purification units are linearly arranged as in the conventional apparatus described above. Further, by reducing the size of the casing, heat dissipation to the outside can be reduced, and the warm-up performance of the first device can be improved, for example, an increase in the heating rate and an improvement in heat retention. Further, since the exhaust gas discharged from the first unit can smoothly flow into the second unit, it is possible to suppress an increase in back pressure. In addition, the exhaust gas passing through the first region flows along the outer surfaces of the first housing and the second housing, so that the first unit and the second unit can be heated by the exhaust gas. As a result, the warm-up performance of the first device can be further improved.
  • the above effect can be achieved as long as the first region exists in the first space and the requirement that the first pillar and the second pillar do not intersect is satisfied, so that the exhaust gas can be achieved.
  • the degree of freedom in designing the purification device is high, and the configuration can be flexibly designed according to the space in which the first device is mounted. Further, for example, as compared with the case where the first unit and the second unit are communicated with each other by an S-shaped communication pipe as a separate body as described above, for example, a flow path for guiding the exhaust gas from the first unit to the second unit.
  • Second Embodiment the exhaust gas purification device (hereinafter, may be referred to as “second device”) according to the second embodiment of the present invention will be described with reference to the drawings.
  • the first device it is an essential requirement that the axis of the first housing constituting the first unit and the axis of the second housing constituting the second unit are parallel in the first device. Instead, as described above, the first prism and the second prism do not have to intersect in the first space. Further, in the first apparatus, it is not an essential requirement that the first opening and the second opening are formed in the outer shells of the casings facing each other across the first space, and the first opening and the second opening are not required. It may be formed on the outer shell on the same side of the casing, or it may be formed on the outer shell on a different side of the casing.
  • the second device is the first device described above, and is characterized in that the straight line passing through the axis of the first housing and the straight line passing through the axis of the second housing are at the positions of the spatial geometric twist. It is a purification device.
  • the two straight lines are in the position of a spatial geometric twist means that the two straight lines are "not parallel to each other and do not intersect", as is well known to those skilled in the art. .. In this case, those two straight lines do not exist on the same plane.
  • the apparatus of the present invention including the above-mentioned first apparatus, there is a first region which is a region sandwiched between the outer surface of the first housing and the outer surface of the second housing facing each other in the first space. do. In other words, in the first space, the first unit and the second unit are separated from each other without contacting or crossing each other, and there is a gap between them. Therefore, in the second device, it is possible to surely achieve a state in which the first pillar body and the second pillar body do not intersect in the first space.
  • FIG. 3 is a schematic perspective view showing an example of the appearance of the second device having the above-mentioned configuration.
  • the second device 102 illustrated in FIG. 3 is also an exhaust gas purification device including a casing 10, a first unit 21 and a second unit 22, similar to the first device 101 illustrated in FIG.
  • the casing 10 is a container-shaped member having a rectangular parallelepiped outer shape, and is configured by bonding two press-molded members at the locations shown in the figure by broken lines by the above-mentioned Monaca manufacturing method. There is.
  • the straight line passing through the axis AX1 of the first housing 21 and the straight line passing through the axis AX2 of the second housing 22 are at the positions of the spatial geometric twist.
  • the first unit 21 has a right angle so that the angle formed by the direction parallel to the straight line passing through the axis AX1 of the first housing 21 and the direction parallel to the straight line passing through the axis AX2 of the second housing 22 is a right angle.
  • the second unit 22 are arranged. Therefore, the first opening 11 is formed on the upstream side (upper side toward the drawing) of the casing 10, and the second opening 12 is formed on the downstream side (front side toward the drawing) of the casing 10.
  • the second device 102 also has the first opening 11 and the second opening 12 fitted on the outer surfaces of the first unit 21 and the second unit 22, respectively, and is the first in the exhaust flow path.
  • the second unit 22 is arranged on the downstream side of the unit 21.
  • FIG. 4 is a schematic cross-sectional view showing an example of the internal structure of the second device illustrated in FIG.
  • FIG. 4A is a cross-sectional view of the second device 102 including the axis AX1 of the first housing illustrated in FIG. 3 and having a plane orthogonal to the axis AX2 of the second housing.
  • FIG. 4B is a cross-sectional view of the second device 102 including the axis AX2 of the second housing illustrated in FIG. 3 and having a plane orthogonal to the axis AX1 of the first housing.
  • first region 10r which is a region sandwiched between the outer surface of the first housing 21h and the outer surface of the second housing 22h facing each other in the first space 10s (see the shaded area). ).
  • first prism 21v a virtual prism surrounded by an outer surface extending in the direction of the axis AX1 of the first housing 21h and an outer surface extended in the direction of the axis AX2 of the second housing 22h.
  • the first unit 21 does not overlap the end surface of the inflow side (upstream side) of the second unit 22, and the second unit 22 is on the outflow side (downstream side) of the first unit 21. Does not overlap the end face of. That is, in the second device 102 as well, in the first unit 21 and the second unit 22, both the outflow of the exhaust gas from the first unit 21 and the inflow of the exhaust gas into the second unit 22 It is arranged so as not to interfere.
  • the direction parallel to the straight line passing through the axis AX1 of the first housing 21 and the direction parallel to the straight line passing through the axis AX2 of the second housing 22 are parallel.
  • the first unit 21 and the second unit 22 are arranged so that the angle formed by the direction is a right angle.
  • the angles be right angles in the second device, and as described above, the straight line passing through the axis AX1 of the first housing 21 and the straight line passing through the axis AX2 of the second housing 22 are spatial geometry.
  • the angle formed by the direction parallel to the straight line passing through the axis AX1 of the first housing 21 and the direction parallel to the straight line passing through the axis AX2 of the second housing 22 is arbitrary except for a right angle.
  • the first unit 21 and the second unit 22 may be arranged so as to be at an angle.
  • the first opening 11 and the second opening 12 are formed in the outer shell of the casing 10 at positions corresponding to the arrangement of the first unit 21 and the second unit 22.
  • the outer surface of the first housing 21h and the outer surface of the second housing 22h directly face each other without interposing other members. That is, in the first region 10r, there is no other member between the outer surface of the first housing 21h and the outer surface of the second housing 22h, and the exhaust gas discharged from the first unit 21 goes to the second unit 22. And can flow in more smoothly. Therefore, the increase in back pressure in the first device 101 can be further reduced. Further, the first unit 21 and the second unit 22 can be heated more effectively by the exhaust gas flowing from the first unit 21 to the second unit 22.
  • radiant heat is likely to be transmitted from the first unit 21 which has a relatively high temperature because it exists on the upstream side to the second unit 22 which has a relatively low temperature because it exists on the downstream side.
  • the warm-up performance of the second device 102 can be further improved.
  • the straight line passing through the axis of the first housing 21 and the straight line passing through the axis of the second housing 22 are at the positions of the spatial geometric twists, so that the first prism body and the first prism are present.
  • a state in which the two prisms do not intersect in the first space is surely achieved. Therefore, according to the second device, it is possible to achieve miniaturization and improvement of warm-up performance while suppressing an increase in back pressure.
  • the first device is such that the angle formed by the direction parallel to the straight line passing through the axis of the first housing and the direction parallel to the straight line passing through the axis of the second housing is an arbitrary angle other than a right angle.
  • a unit and a second unit may be arranged. Therefore, in the second device, the degree of freedom in designing the exhaust gas purification device is further high, and the configuration according to the space in which the second device is mounted can be further flexibly designed.
  • third device the exhaust gas purification device (hereinafter, may be referred to as “third device”) according to the third embodiment of the present invention will be described with reference to the drawings.
  • the exhaust gas discharged from the internal combustion engine and guided to the first device is first introduced into the first unit through the first opening, and the exhaust gas discharged from the first unit is It is introduced into the second unit via the first space, which is the internal space of the casing, and the exhaust gas discharged from the second unit is discharged to the outside of the casing through the second opening.
  • the device of the present invention including the first device does not require a separate member for guiding the exhaust from the first unit to the second unit, so that the configuration of the exhaust purification device is simplified and the exhaust gas is exhausted.
  • the purification device can be miniaturized.
  • the exhaust gas discharged from the first unit passes through the first region and flows to the second unit, the exhaust gas flows along the outer surfaces of the first housing and the second housing, so that the first unit And the second unit is heated by the exhaust.
  • the warm-up performance of the apparatus of the present invention can be further improved.
  • the outer surface of the first housing and the outer surface of the second housing in the first space which is the internal space of the casing It is desirable to reduce or eliminate the area other than the first area, which is the area sandwiched by the above.
  • the third device is the first device or the second device described above, and the outer surface of the first housing facing each other, the outer surface of the second housing, and the outer surface of the first housing facing each other and the second device. It is an exhaust gas purification device characterized in that an independent flow path, which is a space defined by inner wall surfaces of casings facing each other and interposed between the outer surface of the housing, is formed in the first space.
  • the third device includes the outer surfaces of the first housing and the outer surface of the second housing facing each other, and the outside of the casing joined to the outer surfaces of the first housing and the second housing facing each other.
  • a space (independent flow path) surrounded by a shell and a substantially cylindrical member composed of the shell is formed in the first space.
  • the shape and area of the cross section of the independent flow path are determined by, for example, the outer surface of the first housing and the outer surface of the second housing surrounding the independent flow path, and the shape of the outer shell of the casing, and the back pressure in the third device increases. And it affects the degree of improvement of warm-up performance by the exhaust flowing in the independent flow path.
  • the shape of the outer surface of the first housing, the outer surface of the second housing, and the outer shell of the casing surrounding the independent flow path is, for example, due to the exhaust gas flowing in the independent flow path while suppressing the increase in the back pressure in the third device. It is desirable to set it to improve the warm-up performance.
  • the space upstream of the independent flow path in the first space and the space downstream of the independent flow path in the first space are communicated only by the independent flow path. That is, in the third device, in order for the exhaust gas discharged from the first unit to reach the second unit, the exhaust gas must pass through an independent flow path. In other words, in the third device, the exhaust gas discharged from the first unit and introduced into the second unit always passes through the independent flow path. Therefore, in the third device, the region other than the independent flow path in the first space can be excluded, so that the device of the present invention can be further miniaturized while maintaining the warm-up performance of the device of the present invention.
  • FIG. 5 is a schematic perspective view showing one example of the appearance of the third device having the above-described configuration.
  • FIG. 6 is a schematic cross-sectional view showing an example of the internal structure of the third device illustrated in FIG.
  • FIG. 6A is a cross-sectional view of the third device 103a in a plane including both the shaft AX1 of the first housing and the shaft AX2 of the second housing exemplified in FIG.
  • FIG. 6B is a cross-sectional view of the third device 103a including the straight line L2 shown in FIG. 6 and a plane perpendicular to the axes AX1 and AX2.
  • the third device 103a exemplified in FIGS. 5 and 6 is an exhaust gas purification device corresponding to the first device 101 described with reference to FIGS. 1 and 2.
  • the first region 10r hatchched portion
  • the first space 10s is composed only of the upstream side region, which is a region for exhaust gas to flow into 10r, and the downstream side region, which is a region for exhaust gas to flow in from the first region 10r to the second unit 22. , Areas other than these are excluded.
  • the first region 10r is defined by the inner wall surfaces of the casings 10 that are interposed between the two and face each other. That is, in the third device 103a, the first region 10r is formed as an independent flow path. Further, the independent flow path in the first space, the above-mentioned upstream side region and the region other than the downstream side region are excluded.
  • the third device 103a in the third device 103a, the space upstream of the independent flow path in the first space 10s and the space downstream of the independent flow path in the first space are communicated only by the independent flow path.
  • the third device 103a is configured so that the exhaust gas discharged from the first unit 21 and introduced into the second unit 22 always passes through the independent flow path.
  • FIG. 7 is a schematic perspective view showing another example of the appearance of the third device having the above-mentioned configuration.
  • FIG. 8 is a schematic perspective view and a hexagonal view of the third device exemplified in FIG. 7.
  • FIG. 8A is a perspective view
  • FIG. 8B is a front view when observed from the direction of the black arrow shown in FIG. 8A
  • FIG. 8C is a plan view (top view).
  • (D) is a bottom view
  • (e) is a left side view
  • (f) is a right side view. Since the rear view is the same as the bottom view shown in (d), it is omitted.
  • FIG. 8 is a schematic perspective view and a hexagonal view of the third device exemplified in FIG. 7.
  • FIG. 8A is a perspective view
  • FIG. 8B is a front view when observed from the direction of the black arrow shown in FIG. 8A
  • FIG. 8C is a plan view (top view).
  • FIG. 9 is a schematic cross-sectional view showing an example of the internal structure of the third apparatus exemplified in FIGS. 7 and 8.
  • FIG. 9A is a cross-sectional view of the third device 103b including the axis AX1 of the first housing illustrated in FIG. 7 and having a plane orthogonal to the axis AX2 of the second housing.
  • FIG. 9B is a cross-sectional view of the third device 103b including the axis AX2 of the second housing illustrated in FIG. 7 and having a plane orthogonal to the axis AX1 of the first housing.
  • the third device 103b exemplified in FIGS. 7 to 9 is an exhaust gas purification device corresponding to the second device 102 described with reference to FIGS. 3 and 4.
  • the first region 10r (hatched portion), which is a region sandwiched between the outer surfaces of the first housing 21h and the outer surfaces of the second housing 22h facing each other, and the first unit 21 to the first region.
  • the first space 10s is composed only of the upstream side region, which is a region for exhaust gas to flow into 10r, and the downstream side region, which is a region for exhaust gas to flow in from the first region 10r to the second unit 22. , Areas other than these are excluded.
  • a partition plate is provided at a predetermined position inside the first space so that the exhaust gas does not flow from the upstream side region to the downstream side region without passing through the first region 10r.
  • the first region 10r is defined by the inner wall surfaces of the casings 10 that are interposed between the outer surface of the second housing 22 and face each other. That is, also in the device 103b, the first region 10r is formed as an independent flow path as in the third device 103a. Further, the independent flow path in the first space, the above-mentioned upstream side region and the region other than the downstream side region are excluded.
  • the third device 103b is also configured so that the exhaust gas discharged from the first unit 21 and introduced into the second unit 22 always passes through the independent flow path, like the third device 103a. ..
  • the casing joined to the outer surface of the first housing and the outer surface of the second housing facing each other and the outer surfaces of the first housing and the second housing facing each other.
  • An independent flow path which is a space surrounded by an outer shell and a substantially cylindrical member composed of the outer shell, is formed in the first space.
  • the third device is configured so that the exhaust gas discharged from the first unit and introduced into the second unit always passes through the independent flow path.
  • the entire device can be further miniaturized while maintaining the warm-up performance as the exhaust gas purification device.
  • first embodiment device The exhaust gas purification device according to the first embodiment of the present invention (hereinafter, may be referred to as "first embodiment device”) will be described in detail below with reference to the drawings.
  • FIG. 10 is a schematic front view of the first embodiment device
  • FIG. 11 is a schematic view showing the first embodiment device cut by a plane including the straight line L3 shown in FIG. 10
  • 13 is a schematic left side view and right side view showing the configuration of the first embodiment device shown in FIG. 10, respectively.
  • the outline of the casing is drawn by thick lines for the purpose of facilitating the understanding of the configuration of the first embodiment device.
  • the first embodiment device 201 is an exhaust manifold integrated exhaust purification system integrally configured with an exhaust manifold (hereinafter, may be abbreviated as “exhaust manifold”) portion 31. It is a device (exhaust treatment unit). Such an exhaust gas purification device is also called a "maniverter".
  • the first embodiment device 201 is attached to the side surface of the engine head of a four-cylinder internal combustion engine (not shown) via the head flange 31f of the exhaust manifold portion 31. Further, in the first embodiment device 201, the first unit 21 which is an exhaust gas purification unit on the upstream side and the second unit 22 which is an exhaust gas purification unit on the downstream side are arranged so as to be parallel to each other.
  • the casing 10 is assembled by the above-mentioned "Monaka manufacturing method". Specifically, the casing 10 is formed by welding two halves press-molded from a stainless steel plate to each other so that the casing 10 is divided into two in the front-back direction (front and back direction) in FIG. Is assembled by.
  • the downstream end of the exhaust manifold portion 31 is fitted onto the upstream end of the first housing 21h constituting the first unit 21 and fixed by welding.
  • the first opening 11, which is an opening on the upstream side of the casing 10, opens so as to cover most of the region of the outer surface of the first housing 21h facing the second housing 22h and the downstream end of the first housing 21h. It is fitted onto the downstream end and outer surface of the first housing 21h and fixed by welding.
  • the second opening 12 which is an opening on the downstream side of the casing 10, covers most of the region of the outer surface of the second housing 22h facing the first housing 21h and the upstream end of the second housing 22h. It is open to the outside and is fitted to the downstream end and the outer surface of the second housing 22h and fixed by welding.
  • the first region which is a region sandwiched between the side surfaces and the inner wall surfaces of the casing 10, is largely formed. Also in this first region, the outer surface of the first housing 21h and the outer surface of the second housing 22h directly face each other without interposing other members. Therefore, the exhaust gas discharged from the first unit 21 can flow into the second unit 22 more smoothly. As a result, the increase in back pressure in the first embodiment device 201 can be further reduced.
  • first unit 21 and the second unit 22 can be heated more effectively by the exhaust gas flowing from the first unit 21 to the second unit 22.
  • radiant heat is likely to be transmitted from the first unit 21 which has a relatively high temperature because it exists on the upstream side to the second unit 22 which has a relatively low temperature because it exists on the downstream side.
  • the warm-up performance of the first embodiment device 201 can be further improved.
  • a substantially S-shaped flow path that guides the exhaust gas from the first unit 21 to the second unit 22 is formed in the shortest and minimum by the first space. Further, in the first region, between the outer surface of the first housing 21h and the outer surface of the second housing 22h facing each other, and the outer surface of the first housing 21h facing each other and the outer surface of the second housing 22h. An independent flow path is formed, which is a space defined by the inner wall surfaces of the casings 10 that are interposed and face each other. The exhaust gas discharged from the first unit 21 and introduced into the second unit 22 always passes through an independent flow path. That is, the first embodiment device 201 is an exhaust gas purification device corresponding to the above-mentioned third device.
  • the third opening 13 is a casing 10 as a further opening for connecting the EGR pipe 23. It is provided in.
  • the third opening 13 is a circular opening, which is fitted with the EGR pipe 23 and fixed by welding.
  • the apparatus of the present invention does not necessarily have to be equipped with the above-mentioned sensor, and the internal combustion engine to which the apparatus of the present invention is applied does not necessarily have to be equipped with an EGR system. That is, the sensor insertion hole 10h, the third opening 13, and the EGR tube 23 are not essential constituents of the present invention.
  • the first unit 21 on the upstream side and the second unit 22 on the downstream side are arranged so as to be parallel to each other and outside the first housing 21h.
  • a first region which is a region sandwiched between the side surface and the outer surface of the second housing 22h, is formed in the first space. That is, the virtual prism (first prism) surrounded by the outer surface of the first housing 21h extended in the axial direction of the first housing 21h and the second housing 22h extended in the axial direction of the second housing. It does not intersect with the virtual prism (second prism) surrounded by the outer side surface in the first space. That is, the first unit 21 and the second unit 22 are arranged inside the casing 10 so that the other does not overlap with one end face.
  • the heat dissipation to the outside is reduced by downsizing the casing 10, for example, the heating rate is increased and the heat retention is improved.
  • the warm-up performance of 201 can be improved.
  • an independent flow path which is a space defined by the outer surfaces of the first housing and the second housing facing each other and the inner wall surface of the casing 10 is formed.
  • the exhaust gas flowing from the first unit 21 to the second unit 22 always passes through the independent flow path. Therefore, the first unit 21 and the second unit 22 can be effectively heated by the exhaust gas.
  • the warm-up performance of the first embodiment device 201 can be further improved.
  • the exhaust gas discharged from the first unit 21 can smoothly flow into the second unit 22, it is possible to suppress an increase in back pressure.
  • the first region there is no other member between the outer surface of the first housing 21h and the outer surface of the second housing 22h.
  • the flow of exhaust gas and the transmission of radiant heat are not hindered in the first region, so that the increase in back pressure (increase in pressure loss) in the first embodiment device 201 is further reduced and the first embodiment device 201 is further reduced. It is possible to further improve the warm-up performance of.
  • the exhaust air is exhausted from the first unit 21 to the second unit 22. It is possible to freely set the transition pattern of the inner diameter and / or the cross-sectional shape of the flow path leading to the above, and the shape of the internal space in the inflow portion of the exhaust gas to the second unit 22. Therefore, for example, it is possible to easily achieve the effect of improving the uniformity (uniformity) of the exhaust gas hitting the second purification member (not shown) arranged on the most upstream side of the second unit 22. can.
  • the first unit and the second unit may be in a spatial geometric twist position.
  • second embodiment device The exhaust gas purification device according to the second embodiment of the present invention (hereinafter, may be referred to as "second embodiment device”) will be described in detail below with reference to the drawings.
  • FIG. 14 is a schematic perspective view of the second embodiment device
  • FIG. 15 is a first unit inside the casing by removing the upper half body of the casing constituting the second embodiment device shown in FIG.
  • It is a schematic perspective view which shows the arrangement of a 2nd unit.
  • FIG. 16 is a schematic perspective view showing the configurations of the first unit and the second unit by removing the casing constituting the second embodiment device shown in FIG. 14 and a part of the first unit and the second unit. Is.
  • the casing 10 constituting the second embodiment device 202 is also assembled by the above-mentioned "Monaka manufacturing method". Specifically, the casing 10 is assembled by welding two halves press-molded from a stainless steel plate to each other so that the casing 10 is divided into two in the vertical direction in FIGS. 14 to 16. ing.
  • the portions of the first unit 21 and the second unit 22 facing each other are included, and the upstream end of the first unit 21 and the downstream end of the second unit 22 are included.
  • the casing 10 is configured so as to project outward from the first opening 11 and the second opening 12, respectively.
  • the first space which is the internal space of the casing 10, functions as a flow path for guiding the exhaust gas from the first unit 21 to the second unit 22.
  • the holding member (mat) 21b is between the first purification member 21m and the first housing 21h and between the second purification member 22m and the second housing 22h. And 22b are held in a pinched pressure, respectively. Due to the restoring force of these holding members 21b and 22b, the first purification member 21m and the second purification member 22m are held at predetermined positions inside the first housing 21h and the second housing 22h, respectively.
  • the first unit 21 and the second unit 22 are in a state of "not parallel to each other and do not intersect with each other". That is, the first unit 21 and the second unit 22 are in the position of the spatial geometric twist. Therefore, also in the second embodiment device 202, the first unit 21 and the second unit 22 are arranged inside the casing 10 so that the other does not overlap with one end face. Further, as shown in FIGS. 15 and 16, it is a region sandwiched between the outer surface of the first housing 21h and the outer surface of the second housing 22h facing each other in the first space 10s, which is the internal space of the casing 10. There is a first region 10r (see shaded area).
  • the second embodiment device 202 is an exhaust gas purification device corresponding to the above-mentioned second device. Also in the second embodiment device 202, the outer surface of the first housing 21h and the outer surface of the second housing 22h directly face each other in the first region without interposing other members.
  • the heat dissipation to the outside is reduced by downsizing the casing 10, and for example, the temperature rising rate is increased and the heat retention property is improved.
  • the warm-up performance of 202 can be improved.
  • the exhaust gas discharged from the first unit 21 can smoothly flow into the second unit 22, it is possible to suppress an increase in back pressure.
  • the exhaust gas flowing from the first unit 21 to the second unit 22 via the first space 10s flows along the outer surfaces of the first housing 21h and the second housing 22h, and a part of the exhaust gas is the first. Since it passes through the region 10r, the first unit 21 and the second unit 22 can be efficiently heated by exhaust gas. As a result, the warm-up performance of the second embodiment device 202 can be further improved.
  • the exhaust gas discharged from the first unit 21 goes to the second unit 22. And can flow in more smoothly.
  • the increase in back pressure in the second embodiment device 202 can be further reduced.
  • the first unit 21 and the second unit 22 can be heated more effectively by the exhaust gas flowing from the first unit 21 to the second unit 22.
  • radiant heat is likely to be transmitted from the first unit 21 which has a relatively high temperature because it exists on the upstream side to the second unit 22 which has a relatively low temperature because it exists on the downstream side.
  • the warm-up performance of the second embodiment device 202 can be further improved.
  • the straight line passing through the axis of the first housing 21h and the straight line passing through the axis of the second housing 22h are at the positions of the spatial geometric twist, so that the first column A state in which the body and the second prism do not intersect in the first space is surely achieved.
  • the angle formed by the direction parallel to the straight line passing through the axis of the first housing 21h and the direction parallel to the straight line passing through the axis of the second housing 22h is set to an arbitrary angle other than a right angle.
  • the first unit 21 and the second unit 22 may be arranged in the first unit 21 and the second unit 22. Therefore, according to the second embodiment device 202, the degree of freedom in designing the exhaust gas purification device can be further increased, and the configuration according to the space in which the second embodiment device 202 is mounted can be further flexibly designed.
  • the second implementation device 202 is arranged on the side of the internal combustion engine, and the exhaust gas flows in from above through the exhaust manifold or the turbocharger with respect to the first opening 11 which opens upward in the vertical direction, and the direction away from the internal combustion engine.
  • the layout so that the exhaust gas flows out to the wake exhaust pipe connected to the second opening 12 which opens to the inside, the narrow space around the internal combustion engine can be effectively utilized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

上流側及び下流側の排気浄化ユニットである柱状の第1ユニット及び第2ユニットとケーシングを備える排気浄化装置において、ケーシングの1つの内部空間である第1空間において第1ユニット及び第2ユニットの外側面が所定の間隔を空けて対向する領域である第1領域を形成させると共に一方の端面に他方がオーバーラップしないように配置する。これにより、背圧の上昇を抑制しつつ小型化及び暖機性能の向上を達成することが可能な排気浄化装置を提供する。第1領域においては、第1ハウジングの外側面と第2ハウジングの外側面とが他の部材を介すること無く互いに直接的に対向していることが望ましい。第1ユニットと第2ユニットとを空間幾何学的ねじれの位置に配置してもよい。互いに対向する第1ユニット及び第2ユニットの外側面と並びに当該互いに対向する第1ハウジングの外側面と第2ハウジングの外側面との間に介在して互いに対向するケーシングの内壁面同士によって画定される独立流路を第1空間に形成して第1ユニットから第2ユニットへと流れる排気が独立流路を必ず経由するようにしてもよい。

Description

排気浄化装置
 本発明は、排気浄化装置に関する。より具体的には、本発明は、背圧の上昇を抑制しつつ小型化及び暖機性能の向上を達成することが可能な排気浄化装置に関する。
 ガソリンエンジン及びディーゼルエンジン等の内燃機関から排出される排気には、例えば煤等からなる粒子状物質(PM)、一酸化炭素(CO)、未燃焼炭化水素(HC:HydroCarbon)及び窒素酸化物(NOx)等の特定物質が含まれる。そこで、地球環境保護等の観点から、例えばPMを捕集するガソリンパティキュレートフィルタ(GPF:Gasoline Particulate Filter)及びディーゼルパティキュレートフィルタ(DPF:Diesel Particulate Filter)等のフィルタ並びに酸化触媒(OC:Oxidation Catalyst)、三元触媒(TWC:Three-Way Catalyst)、選択触媒還元脱硝装置(SCR:Selective Catalytic Reduction)及びアンモニアスリップ触媒(ASC:Ammonia Slip Catalyst)等の排気浄化触媒等の排気浄化ユニットを含む排気浄化装置を内燃機関の排気流路に介装して、これらの特定物質を除去することが広く行われている。
 昨今の車輛においてはエンジンルーム内における内燃機関の側部近傍に排気浄化装置が搭載されることが一般的である。最近では、排気浄化装置の内部に複数の排気浄化ユニット(例えば、触媒コンバータ及びフィルタ等)が内蔵され且つ各々の排気浄化ユニットが大容量化(大型化)される傾向にあるため、エンジンルームにおける限られたスペースに排気浄化装置を収容することが益々困難になってきている。
 例えば、当該技術分野においては、エンジンルームにおける限られたスペースにおいて排気の偏流を抑制しつつ排気浄化触媒の昇温を速めることを目的として排気管から排気浄化触媒へと排気を導入する部分の構造に特徴を有する排気管構造が提案されている(例えば、特許文献1を参照。)。しかしながら、排気浄化装置の内部においては複数の排気浄化ユニットが直線状に配置されているため、排気浄化装置全体としては長大化しており、三次元的に傾斜して配置することによりエンジンルーム内に辛うじて収容されているのが実情である。
 また、所定の角度にて互いに傾斜したハニカムフィルタ及び触媒担持ハニカム構造体を缶体内に保持することにより暖機を早めると共に小型化を達成する排ガス処理装置も提案されている(例えば、特許文献2を参照。)。具体的には、当該排ガス処理装置においては、上流側の触媒担持ハニカム構造体が下流側のハニカムフィルタの流入側(上流側)の端面にオーバーラップするように配置されている。
 当該技術分野においては、上記と同様に暖機を早めると共に小型化を達成することを目的として上流側の排気浄化ユニットが下流側の排気浄化ユニットの流入側(上流側)の端面にオーバーラップするように配置された様々な排気ガス浄化装置及び触媒コンバータが提案されている(例えば、特許文献3及び特許文献4を参照。)。
 しかしながら、上記のように下流側の排気浄化ユニットの入口側の端面の軸方向における延長線上に上流側の排気浄化ユニットが存在する構成は下流側の排気浄化ユニット内への排気の流入の障害となり易く、背圧の上昇(圧力損失の増大)を招き、エンジン性能の低下に繋がる虞がある。また、排気の流れの淀みを生じ易く、淀みが生じた領域において煤の堆積等の問題が生ずる虞もある。このような問題は、上記とは逆に上流側の排気浄化ユニットの出口側の端面の軸方向における延長線上に下流側の排気浄化ユニットが存在する構成においても同様に生じ得る。
 更に、当該技術分野においては、平行に配設された2つの排気浄化ユニットがS字状の連通管によって繋がれたレイアウトも多用されている。例えば、それぞれが排気浄化ユニットを内蔵する第1コンバータと第2コンバータとが還元剤の噴射ノズルが設置されたS字状の連結管によって互いに平行に位置するように接続された排ガス浄化装置が提案されている(例えば、特許文献5を参照。)。しかしながら、当該排ガス浄化装置が備えるS字状の連通管は上流側において排気中に添加された還元剤の攪拌及び混合を目的として設けられるものであり、還元剤の添加が不要な場合においては、このような構成は必須ではない。それどころか、例えば背圧の上昇の抑制、小型化及び暖機性能の向上等の観点からは、上記のような連通管は出来る限り短くあるべきである。
 ところで、例えば二輪自動車等の鞍乗型車両においては、消音装置の設計自由度の低下を防ぎつつ排気の漏れを低減することを目的として、ケーシングの入口部及び出口部に2つの排気浄化ユニットをそれぞれ溶接された消音装置が提案されている(例えば、特許文献6を参照。)。当該消音装置においては2つの排気浄化ユニットがケーシングの内部において仕切られた2つの空間にそれぞれ配設されている。しかしながら、当該消音装置は四輪自動車に比べてスペース面での制約が小さい鞍乗型車両への搭載を前提としたものであり、例えば背圧の上昇の抑制、小型化及び暖機性能の向上等については何ら言及されていない。
特許第6537606号公報 特開2011-117409号公報 特開2011-241705号公報 特開2020-045897号公報 特開2014-084850号公報 特許第6404701号公報
 前述したように、当該技術分野においては、背圧の上昇を抑制しつつ小型化及び暖機性能の向上を達成することが可能な排気浄化装置が求められている。
 本発明者は鋭意研究の結果、ケーシングの内部において上流側の排気浄化ユニット及び下流側の排気浄化ユニットの外側面同士が互いに直接的に対向する領域が存在し且つこれらの排気浄化ユニットの一方の端面に他方がオーバーラップしないように配置することにより、上記課題を解決することができることを見出した。
 即ち、本発明に係る排気浄化装置(以降、「本発明装置」と称呼される場合がある。)は、ケーシングと、第1ユニットと、第2ユニットと、を備える排気浄化装置である。ケーシングは、内燃機関から排出される排気の流路である排気流路の一部としての1つの内部空間である第1空間を画定する容器であり且つ排気流路における上流側に形成された開口である第1開口及び排気流路における下流側に形成された開口である第2開口を備える。第1ユニットは、排気流路において上流側に配設された排気浄化ユニットである。第2ユニットは、排気流路において第1ユニットよりも下流側に配設された排気浄化ユニットである。
 第1ユニットは、筒状の形状を有する第1ハウジング及び第1ハウジングの内部に保持されて排気を浄化する1つ以上の部材である第1浄化部材を備える。第2ユニットは、筒状の形状を有する第2ハウジング及び第2ハウジングの内部に保持されて排気を浄化する1つ以上の部材である第2浄化部材を備える。ケーシングの第1開口は第1ハウジングの外側面に外嵌し、ケーシングの第2開口は第2ハウジングの外側面に外嵌している。
 更に、第1空間において互いに対向する第1ハウジングの外側面と第2ハウジングの外側面とによって挟まれた領域である第1領域が存在する。加えて、第1柱体と第2柱体とは第1空間において交差しない。第1柱体は、第1ハウジングの軸方向に延長された第1ハウジングの外側面によって囲まれる仮想的な柱体である。第2柱体とは、第2ハウジングの軸方向に延長された第2ハウジングの外側面によって囲まれる仮想的な柱体である。
 上記のように、本発明装置においては、第1空間において互いに対向する第1ハウジングの外側面と第2ハウジングの外側面とによって挟まれた領域である第1領域が存在し且つ第1柱体と第2柱体とが交差しないように第1ユニット及び第2ユニットが配置されている。即ち、第1ユニット及び第2ユニットは、少なからぬ部分がケーシングの内部に収容されており且つケーシングの内部において一方の端面に他方がオーバーラップしないように配置されている。
 上記の結果、例えば、前述した従来技術に係る排気浄化装置(以降、「従来装置」と称呼される場合がある。)のように複数の排気浄化ユニットを直線状に配置する場合に比べて、ケーシングをより小型化することができる。また、ケーシングの小型化により、外部への放熱が低減され、例えば昇温速度の上昇及び保温性の向上等、本発明装置の暖機性能を向上させることができる。
 更に、前述した別の従来装置のように一方の排気浄化ユニットの端面に他方の排気浄化ユニットがオーバーラップする場合に比べて、上流側の排気浄化ユニット(第1ユニット)から排出された排気が下流側の排気浄化ユニット(第2ユニット)へと円滑に流入することができる。その結果、当該従来装置に比べて、背圧の上昇を抑制することができる。
 加えて、第1ユニットから排出された排気が第1領域を通過して第2ユニットへと流れる際には、第1ハウジング及び第2ハウジングの外側面に沿って排気が流れるので、第1ユニット及び第2ユニットが排気によって加熱される。その結果、本発明装置の暖機性能を更に向上させることができる。
 以上のように、本発明によれば、背圧の上昇を抑制しつつ小型化及び暖機性能の向上を達成することが可能な排気浄化装置を提供することができる。
 本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。
本発明の第1実施態様に係る排気浄化装置(第1装置)の外観の一例を示す模式的な斜視図である。 図1に例示した第1装置の内部構造の一例を示す模式的な断面図である。 本発明の第2実施態様に係る排気浄化装置(第2装置)の外観の一例を示す模式的な斜視図である。 図3に例示した第2装置の内部構造の一例を示す模式的な断面図である。 本発明の第3実施態様に係る排気浄化装置(第3装置)の外観の1つの例を示す模式的な斜視図である。 図5に例示した第3装置の内部構造の一例を示す模式的な断面図である。 本発明の第3実施態様に係る排気浄化装置(第3装置)の外観のもう1つの例を示す模式的な斜視図である。 図7に例示した第3装置の模式的な斜視図及び六面図である。 図7及び図8に例示した第3装置の内部構造の一例を示す模式的な断面図である。 本発明の第1実施例に係る排気浄化装置(第1実施例装置)の模式的な正面図である。 図10に示した直線L3を含む平面によって切断された第1実施例装置を示す模式図である。 図10に示した第1実施例装置の構成を示す模式的な左側面図である。 図10に示した第1実施例装置の構成を示す模式的な右側面図である。 本発明の第2実施例に係る排気浄化装置(第2実施例装置)の模式的な斜視図である。 図14に示した第2実施例装置を構成するケーシングの上側の半体を取り除いてケーシングの内部における第1ユニット及び第2ユニットの配置を示す模式的な斜視図である。 図14に示した第2実施例装置を構成するケーシング並びに第1ユニット及び第2ユニットの一部を取り除いて第1ユニット及び第2ユニットの構成を示す模式的な斜視図である。
《第1実施形態》
 以下、図面を参照しながら本発明の第1実施形態に係る排気浄化装置(以降、「第1装置」と称呼される場合がある。)について説明する。
〈構成〉
 第1装置は、ケーシングと、第1ユニットと、第2ユニットと、を備える排気浄化装置である。ケーシングは、内燃機関から排出される排気の流路である排気流路の一部としての1つの内部空間である第1空間を画定する容器であり且つ排気流路における上流側に形成された開口である第1開口及び排気流路における下流側に形成された開口である第2開口を備える。第1ユニットは、排気流路において上流側に配設された排気浄化ユニットである。第2ユニットは、排気流路において第1ユニットよりも下流側に配設された排気浄化ユニットである。
 第1ユニットは、筒状の形状を有する第1ハウジング及び第1ハウジングの内部に保持されて排気を浄化する1つ以上の部材である第1浄化部材を備える。第2ユニットは、筒状の形状を有する第2ハウジング及び第2ハウジングの内部に保持されて排気を浄化する1つ以上の部材である第2浄化部材を備える。ケーシングの第1開口は第1ハウジングの外側面に外嵌し、ケーシングの第2開口は第2ハウジングの外側面に外嵌している。
 更に、第1空間において互いに対向する第1ハウジングの外側面と第2ハウジングの外側面とによって挟まれた領域である第1領域が存在する。加えて、第1柱体と第2柱体とは第1空間において交差しない。第1柱体は、第1ハウジングの軸方向に延長された第1ハウジングの外側面によって囲まれる仮想的な柱体である。第2柱体とは、第2ハウジングの軸方向に延長された第2ハウジングの外側面によって囲まれる仮想的な柱体である。
 上記のように、ケーシングは、第1ユニット及び第2ユニットの外側面に第1開口及び第2開口がそれぞれ外嵌することにより、第1ユニット及び第2ユニットの一部を外部に露出しつつ、その他の部分を第1空間に内包する容器状の部材である。ケーシングの具体的な構成は、上述した要件を満たし且つ排気浄化装置としての使用環境及び使用条件に耐えることが可能である限り、特に限定されない。具体的には、ケーシングは、例えばステンレス鋼等の金属材料からなる筒状の部材によって構成されていてもよく、或いはプレス成型された複数の部材を重ね合わせる製法(所謂「モナカ製法」)によって構成されていてもよい。
 尚、第1装置は、内燃機関から排出される排気を第1ユニット及び第2ユニットに導いて当該排気に含まれる前述したような特定物質及び/又は物体を除去及び/又は無害化することによって当該排気を浄化する排気浄化装置である。従って、ケーシングの第1開口と第1ハウジングの外側面との間及びケーシングの第2開口と第2ハウジングの外側面との間は気密に接合される必要がある。上述したモナカ製法によってプレス成型された複数の部材を重ね合わせることによりケーシングを構成する場合は、これらの複数の部材の間もまた、気密に接合される必要がある。このような接合を達成するための手法の具体例としては、例えば溶接等の手法を挙げることができる。
 上述したように、第1ユニットは排気流路において上流側に配設された排気浄化ユニットであり、第2ユニットは排気流路において第1ユニットよりも下流側に配設された排気浄化ユニットである。従って、内燃機関から排出され第1装置に導かれた排気は先ず第1開口を介して第1ユニットに導入され、第1ユニットから排出された排気はケーシングの内部空間である第1空間を経由して第2ユニットに導入され、第2ユニットから排出された排気は第2開口を介してケーシングの外部へと排出される。
 また、第1ユニットは、筒状の形状を有する第1ハウジング及び第1ハウジングの内部に保持されて排気を浄化する1つ以上の部材である第1浄化部材を備える。第2ユニットもまた、筒状の形状を有する第2ハウジング及び第2ハウジングの内部に保持されて排気を浄化する1つ以上の部材である第2浄化部材を備える。第1ハウジング及び第2ハウジングは、それぞれ第1ユニット及び第2ユニットを内包する筒状の部材である。
 第1ハウジング及び第2ハウジングの具体的な構成は、それぞれ第1ユニット及び第2ユニットを内部に収容し且つ内燃機関から排出される排気を第1ユニット及び第2ユニットに導き且つ排気浄化装置としての使用環境及び使用条件に耐えることが可能である限り、特に限定されない。具体的には、第1ハウジング及び第2ハウジングは、例えばステンレス鋼等の金属材料からなる管状部材(パイプ)によって構成されていてもよく、或いは上述したモナカ製法によって構成されていてもよい。第1ハウジング及び第2ハウジングの大きさ及び形状等は、例えば、内部に保持される第1浄化部材及び第2浄化部材の大きさ及び形状等に応じて、適宜定めることができる。
 上記のように、第1浄化部材及び第2浄化部材は排気を浄化する部材である。具体的には、第1浄化部材及び第2浄化部材は、内燃機関から排出される排気に含まれる前述したような特定物質を除去及び/又は無害化することにより当該排気を浄化する機能を有する部材である。このような部材の具体例としては、例えば、PMを捕集するガソリンパティキュレートフィルタ(GPF)及びディーゼルパティキュレートフィルタ(DPF)等のフィルタ並びに酸化触媒(OC)、三元触媒(TWC)、選択触媒還元脱硝装置(SCR)及びアンモニアスリップ触媒(ASC)等の排気浄化触媒等を挙げることができる。特定物質を除去及び/又は無害化において例えば還元剤等の添加剤を必要とする第1浄化部材及び/又は第2浄化部材を第1装置が備える場合は、当該添加剤を必要とする当該部材よりも上流側の排気流路に当該添加剤を供給するための装置を第1装置が備えていてもよい。
 更に、第1浄化部材及び第2浄化部材は、例えば、一対の電極を介して通電することによって発熱して排気浄化触媒を加熱する発熱体を備える浄化部材である電気加熱式触媒(EHC:Electrically Heated Catalyst)及び/又は当該発熱体であってもよい。
 第1ハウジングの内部に保持される第1浄化部材の数は1つであっても或いは2つ以上であってもよい。後者の場合、複数の第1浄化部材の全てが同じ部材であっても或いは異なる部材が含まれていてもよい。また、これら複数の第1浄化部材は直列に配置されていても或いは並列に配置されていてもよい。第2ハウジングの内部に保持される第2浄化部材についても上記と同様である。更に、第1ハウジングの内部に保持される第1浄化部材と第2ハウジングの内部に保持される第2浄化部材とが同じ部材であっても或いは異なっていてもよい。
 また、第1浄化部材及び第2浄化部材の大きさ及び形状等は、例えば個々の部材に求められる排気浄化性能及び圧力損失並びに第1装置が搭載されるスペース等に応じて、適宜定めることができる。具体的には、第1浄化部材及び第2浄化部材は、例えば真円形及び楕円形、並びに三角形、四角形、台形及び菱形等の多角形等の断面形状を有していてもよい。即ち、第1浄化部材及び第2浄化部材は、例えば円柱及び楕円柱、並びに三角柱及び四角柱等の多角柱等の外形を有していてもよい。
 尚、第1浄化部材及び第2浄化部材を第1ハウジング及び第2ハウジングの内部にそれぞれ保持するための具体的な手法は、第1浄化部材及び第2浄化部材を第1ハウジング及び第2ハウジングの内部の所定の位置にそれぞれ固定し且つ排気浄化装置としての使用環境及び使用条件に耐えることが可能である限り、特に限定されない。例えば、第1装置においては、圧縮に対する反発としての復元力を作用することが可能であり且つ十分な耐熱性を有する材料からなる緩衝材である保持部材(マット)を第1浄化部材と第1ハウジングとの間及び第2浄化部材と第2ハウジングとの間に挟圧保持し、当該保持部材の復元力によって第1浄化部材及び第2浄化部材を第1ハウジング及び第2ハウジングの内部の所定の位置に保持することができる。
 上記のように第1浄化部材と第1ハウジングとの間及び第2浄化部材と第2ハウジングとの間に保持部材を挟圧保持し、当該保持部材の復元力によって第1浄化部材及び第2浄化部材を第1ハウジング及び第2ハウジングの内部の所定の位置に保持するための手法の具体例としては、例えば圧入工法及びサイジング工法等の用いる手法を挙げることができる。圧入工法及びサイジング工法の詳細については当業者に周知であるので、ここでの説明は省略する。
 尚、上記のような保持部材を構成する材料の具体例としては、例えばアルミナ系繊維及びアルミナ-シリカ系繊維等の無機繊維及びこのような無機繊維にバインダとしての樹脂を加えたものを挙げることができる。バインダとして使用される樹脂の具体例としては、例えば、アクリルゴム、ニトリルゴム、ポリビニルアルコール及びアクリル樹脂等を挙げることができる。
 更に、上述したように、第1空間において互いに対向する第1ハウジングの外側面と第2ハウジングの外側面とによって挟まれた領域である第1領域が存在する。換言すれば、第1領域においては第1ユニット及び第2ユニットのケーシングの内部に収容されている部分の(第1ハウジング及び第2ハウジングの)外側面同士が互いに対向している。
 加えて、上述したように、第1ハウジングの軸方向に延長された外側面によって囲まれる仮想的な柱体である第1柱体と第2ハウジングの軸方向に延長された外側面によって囲まれる仮想的な柱体である第2柱体とは第1空間において交差しない。換言すれば、第1空間において、第1ユニットは第2ユニットの流入側(上流側)の端面にオーバーラップせず且つ第2ユニットは第1ユニットの流出側(下流側)の端面にオーバーラップしない。即ち、第1ユニット及び第2ユニットは、第1ユニットからの排気の流出及び第2ユニットへの排気の流入の何れも妨げないように配置されている。但し、第1空間の外部においては、第1柱体と第2柱体とが交差していてもよい。
 従って、前述した従来装置のように複数の排気浄化ユニットを直線状に配置する場合に比べて、ケーシングをより小型化することができる。また、ケーシングの小型化により、外部への放熱が低減され、例えば昇温速度の上昇及び保温性の向上等、本発明装置の暖機性能を向上させることができる。更に、第1ユニットから排出された排気が第2ユニットへと円滑に流入することができるので、背圧の上昇を抑制することができる。加えて、第1ユニットから第1空間を経由して第2ユニットへと流れる排気は第1ハウジング及び第2ハウジングの外側面に沿って流れ、当該排気の一部は第1領域を通過するので、第1ユニット及び第2ユニットを排気によって加熱することができる。
 ところで、第1装置における背圧の上昇(圧力損失の増大)を低減する観点からは、第1領域において排気の流れを妨げる部材が存在しない又は出来るだけ少ないことが望ましい。また、上記のように第1ユニットから第2ユニットへと流れる排気により第1ユニット及び第2ユニットを加熱する観点からも、第1領域において排気の流れを妨げる部材が存在しない又は出来るだけ少なく、第1ユニットから排出された排気が第2ハウジングに容易に接触することができることが望ましい。更に、第1ユニットは上流側に存在するが故に相対的に高い温度となり、第2ユニットは下流側に存在するが故に相対的に低い温度となる。第1ユニットからの輻射熱によって第2ユニットを加熱する観点からは、第1領域において第1ユニットから第2ユニットへの輻射熱を遮る部材が存在しない又は出来るだけ少ないことが望ましい。
 そこで、1つの変形例に係る第1装置は、上述した第1装置であって、第1割合が第2割合よりも大きいことを特徴とする排気浄化装置である。第1割合とは、第1領域において第1ハウジングの外側面と第2ハウジングの外側面とが他の部材を介すること無く互いに直接的に対向している部分の占める割合である。第2割合とは、第1領域において第1ハウジングの外側面と第2ハウジングの外側面とが他の部材を介して互いに間接的に対向している部分の占める割合である。このように第1割合が第2割合よりも大きいことにより、第1領域において排気の流れが妨げられ難くなるので、第1装置における背圧の上昇(圧力損失の増大)を更に低減することができる。また、第1ユニットから第2ユニットへと流れる排気による第1ユニット及び第2ユニットの加熱並びに第1ユニットからの輻射熱による第2ユニットの加熱が促進されるので、第1装置の暖機性能を更に向上させることができる。
 より好ましくは、第1領域において第1ハウジングの外側面と第2ハウジングの外側面との間において、排気の流れを妨げたり輻射熱の伝達を妨げたりする部材が存在しない。そこで、もう1つの変形例に係る第1装置は、上述した第1装置であって、第1領域において第1ハウジングの外側面と第2ハウジングの外側面とが他の部材を介すること無く互いに直接的に対向していることを特徴とする排気浄化装置である。換言すれば、第1領域において、第1ハウジングの外側面と第2ハウジングの外側面との間には他の部材が存在しない。これにより、第1領域においては排気の流れ及び輻射熱の伝達が妨げられないので、第1装置における背圧の上昇(圧力損失の増大)をより一層低減すると共に第1装置の暖機性能をより一層向上させることができる。
 図1は、上述したような構成を有する第1装置の外観の一例を示す模式的な斜視図である。図1に例示する第1装置101は、ケーシング10と第1ユニット21と第2ユニット22とを備える排気浄化装置である。この例においては、ケーシング10は直方体状の外形を有する容器状の部材であり、上述したモナカ製法により、プレス成型された2つの部材を破線によって図中に示す箇所において貼り合わせることによって構成されている。
 ケーシング10の上流側(図面に向かって上側)に形成された開口である第1開口11及び下流側(図面に向かって下側)に形成された開口である第2開口12が第1ユニット21及び第2ユニット22の外側面にそれぞれ外嵌している。白抜きの矢印によって図中に示すように、図示しない内燃機関から排出される排気は、第1ユニット21の上流側の端部から第1装置101の内部へと導かれ、第2ユニット22の下流側の端部から第1装置101の外部へと導かれる。即ち、第2ユニット22は、排気流路において第1ユニット21よりも下流側に配設された排気浄化ユニットである。尚、第1装置101においては、第1ユニット21を構成する第1ハウジングの軸AX1と第2ユニット22を構成する第2ハウジングの軸AX2とが平行になるように第1ユニット21及び第2ユニット22が配置されている。
 図2は、図1に例示した第1装置の内部構造の一例を示す模式的な断面図である。図2の(a)は、図1に例示した第1ハウジングの軸AX1及び第2ハウジングの軸AX2の両方を含む平面による第1装置101の断面図である。一方、図2の(b)は、(a)に示した直線L1を含み軸AX1及びAX2に垂直な平面による第1装置101の断面図である。
 図2に示すように、第1空間10sにおいて互いに対向する第1ハウジング21hの外側面と第2ハウジング22hの外側面とによって挟まれた領域である第1領域10rが存在する(斜線部を参照)。また、上述したように、第1装置101においては、第1ハウジング21hの軸AX1と第2ハウジング22hの軸AX2とが平行になるように第1ユニット21及び第2ユニット22が配置されている。従って、第1ハウジング21hの軸AX1の方向に延長された外側面によって囲まれる仮想的な柱体(第1柱体21v)と第2ハウジング22hの軸AX2の方向に延長された外側面によって囲まれる仮想的な柱体(第2柱体22v)とは第1空間10sにおいて交差しない。換言すれば、第1空間10sにおいて、第1ユニット21は第2ユニット22の流入側(上流側)の端面にオーバーラップせず且つ第2ユニット22は第1ユニット21の流出側(下流側)の端面にオーバーラップしない。即ち、第1ユニット21及び第2ユニット22は、第1ユニット21からの排気の流出及び第2ユニット22への排気の流入の何れも妨げないように配置されている。
 尚、図1及び図2に例示した第1装置101においては、上述したように、第1ハウジング21hの軸AX1と第2ハウジング22hの軸AX2とが平行になるように第1ユニット21及び第2ユニット22が配置されている。しかしながら、第1装置において第1ハウジングの軸と第2ハウジングの軸とが平行であることは必須の要件ではではなく、上述したように第1柱体21vと第2柱体22vとが第1空間10sにおいて交差しなければよい。また、図1及び図2に例示した第1装置101においては、第1空間10sを挟んで互いに対向するケーシング10の外殻に第1開口11及び第2開口12がそれぞれ形成されている。しかしながら、第1空間を挟んで互いに対向するケーシングの外殻に第1開口11及び第2開口12がそれぞれ形成されていることは必須の要件ではではない。例えば、第1開口及び第2開口は、ケーシングの同じ側の外殻に形成されていてもよく、或いはケーシングの異なる側の外殻に形成されていてもよい。
 尚、図2に例示した第1領域10rにおいては、第1ハウジング21hの外側面と第2ハウジング22hの外側面とが他の部材を介すること無く互いに直接的に対向している。即ち、第1領域10rにおいては第1ハウジング21hの外側面と第2ハウジング22hの外側面との間に他の部材が存在せず、第1ユニット21から排出された排気が第2ユニット22へとより円滑に流入することができる。従って、第1装置101における背圧の上昇を更に低減することができる。更に、第1ユニット21から第2ユニット22へと流れる排気により第1ユニット21及び第2ユニット22をより有効に加熱することができる。加えて、上流側に存在するが故に相対的に高い温度となる第1ユニット21から下流側に存在するが故に相対的に低い温度となる第2ユニット22へと輻射熱が伝わり易い。これらにより、第1装置101の暖機性能をより一層向上させることができる。
〈効果〉
 以上のように、第1装置によれば、前述した従来装置のように複数の排気浄化ユニットを直線状に配置する場合に比べて、ケーシングをより小型化することができる。また、ケーシングの小型化により、外部への放熱が低減され、例えば昇温速度の上昇及び保温性の向上等、第1装置の暖機性能を向上させることができる。更に、第1ユニットから排出された排気が第2ユニットへと円滑に流入することができるので、背圧の上昇を抑制することができる。加えて、第1領域を通過する排気は第1ハウジング及び第2ハウジングの外側面に沿って流れるので、第1ユニット及び第2ユニットを排気によって加熱することができる。その結果、第1装置の暖機性能を更に向上させることができる。
 上記に加えて、第1空間において第1領域が存在し且つ第1柱体と第2柱体とが交差しないという要件さえ満たしていれば上記のような効果を達成することができるので、排気浄化装置としての設計自由度が高く、第1装置が搭載されるスペースに応じた構成を柔軟に設計することができる。また、例えば、前述したように別体としてのS字状の連通管によって第1ユニットと第2ユニットとを連通させる場合に比べて、例えば第1ユニットから第2ユニットへと排気を導く流路の内径及び/又は横断面形状の推移パターン並びに第2ユニットへの排気の流入部における内部空間の形状等を自由に設定することができる。従って、例えば第2ユニットの最も上流側に配設された第2浄化部材への排気の当たりの均一性(一様度)の向上等の効果を容易に達成することができる。
《第2実施形態》
 以下、図面を参照しながら本発明の第2実施形態に係る排気浄化装置(以降、「第2装置」と称呼される場合がある。)について説明する。
 上述した第1装置に関する説明において述べたように、第1装置において第1ユニットを構成する第1ハウジングの軸と第2ユニットを構成する第2ハウジングの軸とが平行であることは必須の要件ではではなく、上述したように第1柱体と第2柱体とが第1空間において交差しなければよい。また、第1装置において第1空間を挟んで互いに対向するケーシングの外殻に第1開口及び第2開口がそれぞれ形成されていることは必須の要件ではなく、第1開口及び第2開口は、ケーシングの同じ側の外殻に形成されていてもよく、或いはケーシングの異なる側の外殻に形成されていてもよい。
〈構成〉
 そこで、第2装置は、上述した第1装置であって、第1ハウジングの軸を通る直線と第2ハウジングの軸を通る直線とが空間幾何学的ねじれの位置にあることを特徴とする排気浄化装置である。
 「2つの直線が空間幾何学的ねじれの位置にある」とは、当業者に周知であるように、それら2つの直線が「互いに平行ではなく且つ交差もしない」という状態にあることを意味する。この場合、それら2つの直線は、同一平面上に存在しない。また、上述した第1装置を始めとする本発明装置においては、第1空間において互いに対向する第1ハウジングの外側面と第2ハウジングの外側面とによって挟まれた領域である第1領域が存在する。換言すれば、第1空間において第1ユニットと第2ユニットとは互いに接触も交差もせず離れており、互いの間に隙間が存在する。従って、第2装置においては、第1柱体と第2柱体とが第1空間において交差しない状態を確実に達成することができる。
 図3は、上述したような構成を有する第2装置の外観の一例を示す模式的な斜視図である。図3に例示する第2装置102もまた、図1に例示した第1装置101と同様に、ケーシング10と第1ユニット21と第2ユニット22とを備える排気浄化装置である。この例においても、ケーシング10は直方体状の外形を有する容器状の部材であり、上述したモナカ製法により、プレス成型された2つの部材を破線によって図中に示す箇所において貼り合わせることによって構成されている。
 但し、第2装置102においては、第1ハウジング21の軸AX1を通る直線と第2ハウジング22の軸AX2を通る直線とが空間幾何学的ねじれの位置にある。尚、この例においては、第1ハウジング21の軸AX1を通る直線に平行な方向と第2ハウジング22の軸AX2を通る直線に平行な方向とがなす角が直角となるように第1ユニット21及び第2ユニット22が配置されている。従って、第1開口11はケーシング10の上流側(図面に向かって上側)に形成されており、第2開口12はケーシング10の下流側(図面に向かって手前側)に形成されている。第2装置102においても、第1装置101と同様に、第1ユニット21及び第2ユニット22の外側面に第1開口11及び第2開口12それぞれ外嵌しており、排気流路において第1ユニット21よりも下流側に第2ユニット22が配設されている。その結果、白抜きの矢印によって図中に示すように、図示しない内燃機関から排出される排気は、第1ユニット21の上流側の端部から第2装置102の内部へと導かれ、第2ユニット22の下流側の端部から第2装置102の外部へと導かれる。
 図4は、図3に例示した第2装置の内部構造の一例を示す模式的な断面図である。図4の(a)は、図3に例示した第1ハウジングの軸AX1を含み且つ第2ハウジングの軸AX2に直交する平面による第2装置102の断面図である。一方、図4の(b)は、図3に例示した第2ハウジングの軸AX2を含み且つ第1ハウジングの軸AX1に直交する平面による第2装置102の断面図である。
 図4に示すように、第1空間10sにおいて互いに対向する第1ハウジング21hの外側面と第2ハウジング22hの外側面とによって挟まれた領域である第1領域10rが存在する(斜線部を参照)。また、上述したように、第2装置102においては、第1ハウジング21の軸AX1を通る直線と第2ハウジング22の軸AX2を通る直線とが空間幾何学的ねじれの位置にある。従って、第1ハウジング21hの軸AX1の方向に延長された外側面によって囲まれる仮想的な柱体(第1柱体21v)と第2ハウジング22hの軸AX2の方向に延長された外側面によって囲まれる仮想的な柱体(第2柱体22v)とは第1空間10sにおいて交差しない。換言すれば、第1空間10sにおいて、第1ユニット21は第2ユニット22の流入側(上流側)の端面にオーバーラップせず且つ第2ユニット22は第1ユニット21の流出側(下流側)の端面にオーバーラップしない。即ち、第2装置102においても、第1装置101と同様に、第1ユニット21及び第2ユニット22は、第1ユニット21からの排気の流出及び第2ユニット22への排気の流入の何れも妨げないように配置されている。
 尚、図3及び図4に例示した第2装置102においては、上述したように、第1ハウジング21の軸AX1を通る直線に平行な方向と第2ハウジング22の軸AX2を通る直線に平行な方向とがなす角が直角となるように第1ユニット21及び第2ユニット22が配置されている。しかしながら、第2装置において上記角が直角となることは必須の要件ではではなく、上述したように第1ハウジング21の軸AX1を通る直線と第2ハウジング22の軸AX2を通る直線とが空間幾何学的ねじれの位置にあることにより、第1柱体21vと第2柱体22vとが第1空間10sにおいて交差しない状態が確実に達成されていればよい。換言すれば、第2装置102においては、第1ハウジング21の軸AX1を通る直線に平行な方向と第2ハウジング22の軸AX2を通る直線に平行な方向とがなす角が直角以外の任意の角度となるように第1ユニット21及び第2ユニット22が配置されていてもよい。この場合、第1開口11及び第2開口12は、ケーシング10の外殻において、第1ユニット21及び第2ユニット22の配置に応じた位置に形成される。
 尚、図4に例示した第1領域10rにおいても、第1ハウジング21hの外側面と第2ハウジング22hの外側面とが他の部材を介すること無く互いに直接的に対向している。即ち、第1領域10rにおいては第1ハウジング21hの外側面と第2ハウジング22hの外側面との間に他の部材が存在せず、第1ユニット21から排出された排気が第2ユニット22へとより円滑に流入することができる。従って、第1装置101における背圧の上昇を更に低減することができる。更に、第1ユニット21から第2ユニット22へと流れる排気により第1ユニット21及び第2ユニット22をより有効に加熱することができる。加えて、上流側に存在するが故に相対的に高い温度となる第1ユニット21から下流側に存在するが故に相対的に低い温度となる第2ユニット22へと輻射熱が伝わり易い。これらにより、第2装置102の暖機性能をより一層向上させることができる。
〈効果〉
 以上のように、第2装置においては、第1ハウジング21の軸を通る直線と第2ハウジング22の軸を通る直線とが空間幾何学的ねじれの位置にあることにより、第1柱体と第2柱体とが第1空間において交差しない状態が確実に達成される。従って、第2装置によれば、背圧の上昇を抑制しつつ小型化及び暖機性能の向上を達成することができる。また、第2装置においては、第1ハウジングの軸を通る直線に平行な方向と第2ハウジングの軸を通る直線に平行な方向とがなす角が直角以外の任意の角度となるように第1ユニット及び第2ユニットが配置されていてもよい。従って、第2装置においては、排気浄化装置としての設計自由度が更に高く、第2装置が搭載されるスペースに応じた構成を更に柔軟に設計することができる。
《第3実施形態》
 以下、図面を参照しながら本発明の第3実施形態に係る排気浄化装置(以降、「第3装置」と称呼される場合がある。)について説明する。
 前述した第1装置に関する説明において述べたように、内燃機関から排出され第1装置に導かれた排気は先ず第1開口を介して第1ユニットに導入され、第1ユニットから排出された排気はケーシングの内部空間である第1空間を経由して第2ユニットに導入され、第2ユニットから排出された排気は第2開口を介してケーシングの外部へと排出される。このように第1装置を始めとする本発明装置においては、第1ユニットから第2ユニットへと排気を導くための別個の部材を必要としないので、排気浄化装置の構成を単純化すると共に排気浄化装置を小型化することができる。
 加えて、第1ユニットから排出された排気が第1領域を通過して第2ユニットへと流れる際には、第1ハウジング及び第2ハウジングの外側面に沿って排気が流れるので、第1ユニット及び第2ユニットが排気によって加熱される。その結果、本発明装置の暖機性能を更に向上させることができる。
 従って、本発明装置の暖機性能を維持しつつ本発明装置を更に小型化する観点からは、ケーシングの内部空間である第1空間のうち第1ハウジングの外側面と第2ハウジングの外側面とによって挟まれた領域である第1領域以外の領域を縮小又は排除することが望ましい。
 そこで、第3装置は、上述した第1装置又は第2装置であって、互いに対向する第1ハウジングの外側面及び第2ハウジングの外側面並びに当該互いに対向する第1ハウジングの外側面と第2ハウジングの外側面との間に介在して互いに対向するケーシングの内壁面同士によって画定される空間である独立流路が第1空間に形成されていることを特徴とする排気浄化装置である。
 換言すれば、第3装置には、互いに対向する第1ハウジングの外側面及び第2ハウジングの外側面と、これらの互いに対向する第1ハウジング及び第2ハウジングの外側面に接合されたケーシングの外殻と、によって構成された略筒状の部材によって取り囲まれた空間(独立流路)が第1空間に形成されている。この独立流路の横断面の形状及び面積は、例えば独立流路を取り囲む第1ハウジングの外側面及び第2ハウジングの外側面並びにケーシングの外殻の形状によって定まり、第3装置における背圧の上昇及び独立流路に流れる排気による暖機性能の向上の程度に影響を及ぼす。従って、独立流路を取り囲む第1ハウジングの外側面及び第2ハウジングの外側面並びにケーシングの外殻の形状は、例えば、第3装置における背圧の上昇を抑制しつつ独立流路に流れる排気による暖機性能を向上させるように定めることが望ましい。
 更に、第3装置においては、第1空間における独立流路よりも上流側の空間と第1空間における独立流路よりも下流側の空間とが独立流路のみによって連通されている。即ち、第3装置においては、第1ユニットから排出された排気が第2ユニットに到達するには、独立流路を排気が通過しなければならない。換言すれば、第3装置においては、第1ユニットから排出されて第2ユニットに導入される排気は独立流路を必ず経由する。従って、第3装置においては、第1空間における独立流路以外の領域を排除することができるので、本発明装置の暖機性能を維持しつつ本発明装置を更に小型化することができる。
 図5は、上述したような構成を有する第3装置の外観の1つの例を示す模式的な斜視図である。図6は、図5に例示した第3装置の内部構造の一例を示す模式的な断面図である。図6の(a)は、図5に例示した第1ハウジングの軸AX1及び第2ハウジングの軸AX2の両方を含む平面による第3装置103aの断面図である。一方、図6の(b)は、(a)に示した直線L2を含み軸AX1及びAX2に垂直な平面による第3装置103aの断面図である。
 図5及び図6に例示する第3装置103aは、図1及び図2を参照しながら説明した第1装置101に対応する排気浄化装置である。第3装置103aにおいては、互いに対向する第1ハウジング21hの外側面と第2ハウジング22hの外側面とによって挟まれた領域である第1領域10r(斜線部)、第1ユニット21から第1領域10rへと排気が流入するための領域であり上流側領域及び第1領域10rから第2ユニット22へと排気が流入するための領域である下流側領域のみによって第1空間10sが構成されており、これら以外の領域は排除されている。
 上記の結果、第3装置103aにおいては、互いに対向する第1ハウジング21の外側面及び第2ハウジング22の外側面並びに当該互いに対向する第1ハウジング21の外側面と第2ハウジング22の外側面との間にそれぞれ介在して互いに対向するケーシング10の内壁面同士によって第1領域10rが画定されている。即ち、第3装置103aにおいては、第1領域10rが独立流路として形成されている。また、第1空間における独立流路、上述した上流側領域及び下流側領域以外の領域は排除されている。即ち、第3装置103aにおいては、第1空間10sにおける独立流路よりも上流側の空間と第1空間における独立流路よりも下流側の空間とが独立流路のみによって連通されている。換言すれば、第3装置103aは、第1ユニット21から排出されて第2ユニット22に導入される排気が独立流路を必ず経由するように構成されている。
 一方、図7は、上述したような構成を有する第3装置の外観のもう1つの例を示す模式的な斜視図である。図8は、図7に例示した第3装置の模式的な斜視図及び六面図である。図8の(a)は斜視図であり、(b)は(a)に示す黒塗りの矢印の方向から観察した場合における正面図であり、(c)は平面図(頂面図)であり、(d)は底面図であり、(e)は左側面図であり、(f)は右側面図である。尚、背面図は(d)に示す底面図と同様であるので省略した。また、図8においては、第3装置の構成を見易く示すことを目的として、符号を省略した。次に、図9は、図7及び図8に例示した第3装置の内部構造の一例を示す模式的な断面図である。図9の(a)は、図7に例示した第1ハウジングの軸AX1を含み且つ第2ハウジングの軸AX2に直交する平面による第3装置103bの断面図である。一方、図9の(b)は、図7に例示した第2ハウジングの軸AX2を含み且つ第1ハウジングの軸AX1に直交する平面による第3装置103bの断面図である。
 図7乃至図9に例示する第3装置103bは、図3及び図4を参照しながら説明した第2装置102に対応する排気浄化装置である。第3装置103bにおいては、互いに対向する第1ハウジング21hの外側面と第2ハウジング22hの外側面とによって挟まれた領域である第1領域10r(斜線部)、第1ユニット21から第1領域10rへと排気が流入するための領域であり上流側領域及び第1領域10rから第2ユニット22へと排気が流入するための領域である下流側領域のみによって第1空間10sが構成されており、これら以外の領域は排除されている。また、図示しないが、上流側領域から第1領域10rを経由すること無く下流側領域へと排気が流れないように、第1空間の内部における所定の位置に仕切り板が設けられている。
 上記の結果、第3装置103bにおいても、第3装置103aと同様に、互いに対向する第1ハウジング21の外側面及び第2ハウジング22の外側面並びに当該互いに対向する第1ハウジング21の外側面と第2ハウジング22の外側面との間に介在して互いに対向するケーシング10の内壁面同士によって第1領域10rが画定されている。即ち、装置103bにおいても、第3装置103aと同様に、第1領域10rが独立流路として形成されている。また、第1空間における独立流路、上述した上流側領域及び下流側領域以外の領域は排除されている。即ち、第3装置103bにおいても、第3装置103aと同様に、第1空間10sにおける独立流路よりも上流側の空間と第1空間における独立流路よりも下流側の空間とが独立流路のみによって連通されている。換言すれば、第3装置103bもまた、第3装置103aと同様に、第1ユニット21から排出されて第2ユニット22に導入される排気が独立流路を必ず経由するように構成されている。
〈効果〉
 以上のように、第3装置においては、互いに対向する第1ハウジングの外側面及び第2ハウジングの外側面と、これらの互いに対向する第1ハウジング及び第2ハウジングの外側面に接合されたケーシングの外殻と、によって構成された略筒状の部材によって取り囲まれた空間である独立流路が第1空間に形成されている。更に、第3装置は、第1ユニットから排出されて第2ユニットに導入される排気が独立流路を必ず経由するように構成されている。その結果、第3装置によれば、排気浄化装置としての暖機性能を維持しつつ装置全体を更に小型化することができる。
 本発明の第1実施例に係る排気浄化装置(以降、「第1実施例装置」と称呼される場合がある。)につき、図面を参照しながら、以下に詳しく説明する。
 図10は第1実施例装置の模式的な正面図であり、図11は図10に示した直線L3を含む平面によって切断された第1実施例装置を示す模式図であり、図12及び図13はそれぞれ図10に示した第1実施例装置の構成を示す模式的な左側面図及び右側面図である。尚、図10乃至図13においては、第1実施例装置の構成についての理解を容易にすることを目的として、ケーシングの輪郭が太線によって描かれている。
 図10乃至図13に例示するように、第1実施例装置201は、エキゾーストマニホールド(以降、「エキマニ」と略称される場合がある。)部分31と一体的に構成されたエキマニ一体型排気浄化装置(排気処理ユニット)である。このような排気浄化装置は「マニバータ」とも称呼される。第1実施例装置201は、エキマニ部分31のヘッドフランジ31fを介して図示しない四気筒型内燃機関のエンジヘッドの側面に取り付けられる。また、第1実施例装置201においては、上流側の排気浄化ユニットである第1ユニット21と下流側の排気浄化ユニットである第2ユニット22とが互いに平行になるように配置されている。
 ケーシング10は、前述した「モナカ製法」によって集成されている。具体的には、ケーシング10は、図10における手前-奥方向(表裏方向)にケーシング10が二分割された形状となるようにステンレス鋼板からプレス成型された2つの半体を相互に溶接することによって集成されている。
 エキマニ部分31の下流側の端部は、第1ユニット21を構成する第1ハウジング21hの上流側の端部に外嵌されて溶接によって固定されている。ケーシング10の上流側の開口である第1開口11は、第1ハウジング21hの外側面の第2ハウジング22hに対向する領域の大部分及び第1ハウジング21hの下流側の端部を覆うように開口しており、第1ハウジング21hの下流側の端部及び外側面に外嵌されて溶接によって固定されている。一方、ケーシング10の下流側の開口である第2開口12は、第2ハウジング22hの外側面の第1ハウジング21hに対向する領域の大部分及び第2ハウジング22hの上流側の端部を覆うように開口しており、第2ハウジング22hの下流側の端部及び外側面に外嵌されて溶接によって固定されている。
 上記構成により、第1実施例装置201においては、図11に示すように、ケーシング10の1つの内部空間である第1空間において互いに対向する第1ハウジング21hの外側面と第2ハウジング22hの外側面とによって挟まれ且つケーシング10の内壁面同士によって挟まれた領域である第1領域が大きく形成されている。この第1領域においても、第1ハウジング21hの外側面と第2ハウジング22hの外側面とが他の部材を介すること無く互いに直接的に対向している。従って、第1ユニット21から排出された排気が第2ユニット22へとより円滑に流入することができる。その結果、第1実施例装置201における背圧の上昇を更に低減することができる。更に、第1ユニット21から第2ユニット22へと流れる排気により第1ユニット21及び第2ユニット22をより有効に加熱することができる。加えて、上流側に存在するが故に相対的に高い温度となる第1ユニット21から下流側に存在するが故に相対的に低い温度となる第2ユニット22へと輻射熱が伝わり易い。これらにより、第1実施例装置201の暖機性能をより一層向上させることができる。
 また、第1ユニット21から第2ユニット22へと排気を導く略S字状の流路が第1空間によって最短且つ最小に形成されている。更に、第1領域においては、互いに対向する第1ハウジング21hの外側面及び第2ハウジング22hの外側面並びに当該互いに対向する第1ハウジング21hの外側面と第2ハウジング22hの外側面との間に介在して互いに対向するケーシング10の内壁面同士によって画定される空間である独立流路が形成されている。第1ユニット21から排出されて第2ユニット22に導入される排気は独立流路を必ず経由する。即ち、第1実施例装置201は、前述した第3装置に該当する排気浄化装置である。
 尚、図10乃至図13に例示する第1実施例装置201が備えるケーシング10には、例えば上述した独立流路としての第1領域の内部を流れる排気の温度等を検知するセンサを挿入するためのセンサ挿入孔10hが形成されている。また、第1実施例装置201が適用される(図示しない)内燃機関は、排気再循環(EGR)システムを備えるため、EGR管23を接続するための更なる開口として第3開口13がケーシング10に設けられている。第3開口13は、円形状の開口であり、EGR管23と嵌合されて溶接によって固定されている。但し、本発明装置は必ずしも上記のようなセンサを備える必要は無く、本発明装置が適用される内燃機関は必ずしもEGRシステムを備える必要は無い。即ち、センサ挿入孔10h、第3開口13及びEGR管23は本発明の必須の構成要件ではない。
 ところで、上述したように、第1実施例装置201においては、上流側の第1ユニット21と下流側の第2ユニット22とが互いに平行になるように配置されており且つ第1ハウジング21hの外側面と第2ハウジング22hの外側面とによって挟まれた領域である第1領域が第1空間に形成されている。即ち、第1ハウジング21hの軸方向に延長された第1ハウジング21hの外側面によって囲まれる仮想的な柱体(第1柱体)と第2ハウジングの軸方向に延長された第2ハウジング22hの外側面によって囲まれる仮想的な柱体(第2柱体)とは第1空間において交差しない。即ち、第1ユニット21及び第2ユニット22は、ケーシング10の内部において一方の端面に他方がオーバーラップしないように配置されている。
 以上のような構成により、第1実施例装置201によれば、ケーシング10の小型化により、外部への放熱が低減され、例えば昇温速度の上昇及び保温性の向上等、第1実施例装置201の暖機性能を向上させることができる。特に、第1実施例装置201においては、上述したように、互いに対向する第1ハウジング及び第2ハウジングの外側面並びにケーシング10の内壁面によって画定される空間である独立流路が形成されており、第1ユニット21から第2ユニット22へと流れる排気が独立流路を必ず経由する。従って、第1ユニット21及び第2ユニット22を排気によって効果的に加熱することができる。その結果、第1実施例装置201の暖機性能を更に向上させることができる。更に、第1ユニット21から排出された排気が第2ユニット22へと円滑に流入することができるので、背圧の上昇を抑制することができる。しかも、第1領域において、第1ハウジング21hの外側面と第2ハウジング22hの外側面との間には他の部材が存在しない。これにより、第1領域においては排気の流れ及び輻射熱の伝達が妨げられないので、第1実施例装置201における背圧の上昇(圧力損失の増大)をより一層低減すると共に第1実施例装置201の暖機性能をより一層向上させることができる。
 また、例えば、前述したように別体としてのS字状の連通管によって第1ユニット21と第2ユニット22とを連通させる場合に比べて、例えば第1ユニット21から第2ユニット22へと排気を導く流路の内径及び/又は横断面形状の推移パターン並びに第2ユニット22への排気の流入部における内部空間の形状等を自由に設定することができる。従って、例えば第2ユニット22の最も上流側に配設された第2浄化部材(図示せず)への排気の当たりの均一性(一様度)の向上等の効果を容易に達成することができる。尚、第1装置に関する説明において述べたように、第1ハウジングの軸と第2ハウジングの軸とが平行であることは必須の要件ではではなく、第1柱体と第2柱体とが第1空間において交差しなければよい。例えば、後述する実施例2に係る排気浄化装置におけるように、第1ユニットと第2ユニットとが空間幾何学的ねじれの位置にあってもよい。
 本発明の第2実施例に係る排気浄化装置(以降、「第2実施例装置」と称呼される場合がある。)につき、図面を参照しながら、以下に詳しく説明する。
 図14は、第2実施例装置の模式的な斜視図であり、図15は図14に示した第2実施例装置を構成するケーシングの上側の半体を取り除いてケーシングの内部における第1ユニット及び第2ユニットの配置を示す模式的な斜視図である。また、図16は、図14に示した第2実施例装置を構成するケーシング並びに第1ユニット及び第2ユニットの一部を取り除いて第1ユニット及び第2ユニットの構成を示す模式的な斜視図である。
 第2実施例装置202を構成するケーシング10もまた、前述した「モナカ製法」によって集成されている。具体的には、ケーシング10は、図14乃至図16における上下方向にケーシング10が二分割された形状となるようにステンレス鋼板からプレス成型された2つの半体を相互に溶接することによって集成されている。
 図14乃至図16に例示するように、第1ユニット21及び第2ユニット22の互いに対向する部分を内包し且つ第1ユニット21の上流側の端部及び第2ユニット22の下流側の端部がそれぞれ第1開口11及び第2開口12から外部に突出するようにケーシング10が構成されている。このようなケーシング10の内部空間である第1空間は第1ユニット21から第2ユニット22へと排気を導く流路として機能する。
 図16に示すように、第2実施例装置202においては、第1浄化部材21mと第1ハウジング21hとの間及び第2浄化部材22mと第2ハウジング22hとの間に保持部材(マット)21b及び22bがそれぞれ挟圧保持されている。これらの保持部材21b及び22bの復元力により、第1浄化部材21m及び第2浄化部材22mが第1ハウジング21h及び第2ハウジング22hの内部の所定の位置にそれぞれ保持されている。
 また、図14乃至図16に例示するように、第2実施例装置202においては、第1ユニット21及び第2ユニット22が「互いに平行ではなく且つ交差もしない」状態にある。即ち、第1ユニット21及び第2ユニット22は空間幾何学的ねじれの位置にある。従って、第2実施例装置202においても、第1ユニット21及び第2ユニット22は、ケーシング10の内部において一方の端面に他方がオーバーラップしないように配置されている。更に、図15及び図16に示すように、ケーシング10の内部空間である第1空間10sにおいて互いに対向する第1ハウジング21hの外側面と第2ハウジング22hの外側面とによって挟まれた領域である第1領域10rが存在する(斜線部を参照)。このように、第2実施例装置202は、前述した第2装置に該当する排気浄化装置である。尚、第2実施例装置202においても、第1ハウジング21hの外側面と第2ハウジング22hの外側面とが第1領域において他の部材を介すること無く互いに直接的に対向している。
 以上のような構成により、第2実施例装置202によれば、ケーシング10の小型化により、外部への放熱が低減され、例えば昇温速度の上昇及び保温性の向上等、第2実施例装置202の暖機性能を向上させることができる。更に、第1ユニット21から排出された排気が第2ユニット22へと円滑に流入することができるので、背圧の上昇を抑制することができる。加えて、第1ユニット21から第1空間10sを経由して第2ユニット22へと流れる排気は第1ハウジング21h及び第2ハウジング22hの外側面に沿って流れ、当該排気の一部は第1領域10rを通過するので、第1ユニット21及び第2ユニット22を排気によって効率的に加熱することができる。その結果、第2実施例装置202の暖機性能を更に向上させることができる。
 しかも、第1領域10rにおいては第1ハウジング21hの外側面と第2ハウジング22hの外側面との間に他の部材が存在しないので、第1ユニット21から排出された排気が第2ユニット22へとより円滑に流入することができる。その結果、第2実施例装置202における背圧の上昇を更に低減することができる。更に、第1ユニット21から第2ユニット22へと流れる排気により第1ユニット21及び第2ユニット22をより有効に加熱することができる。加えて、上流側に存在するが故に相対的に高い温度となる第1ユニット21から下流側に存在するが故に相対的に低い温度となる第2ユニット22へと輻射熱が伝わり易い。これらにより、第2実施例装置202の暖機性能をより一層向上させることができる。
 上記に加えて、第2実施例装置202においては、第1ハウジング21hの軸を通る直線と第2ハウジング22hの軸を通る直線とが空間幾何学的ねじれの位置にあることにより、第1柱体と第2柱体とが第1空間において交差しない状態が確実に達成される。第2実施例装置202においては、第1ハウジング21hの軸を通る直線に平行な方向と第2ハウジング22hの軸を通る直線に平行な方向とがなす角を直角以外の任意の角度となるように第1ユニット21及び第2ユニット22が配置されていてもよい。従って、第2実施例装置202によれば、排気浄化装置としての設計自由度を更に高めて、第2実施例装置202が搭載されるスペースに応じた構成を更に柔軟に設計することができる。
 例えば、第2実施装置202を内燃機関の側方に配置し、鉛直方向における上向きに開口する第1開口11に対してエキマニ又はターボチャージャを介して上方から排気を流入させ且つ内燃機関から遠ざかる向きに開口する第2開口12に接続された後流排気管へと排気を流出させるようなレイアウトとすることにより、内燃機関の周辺の狭い空間を有効に活用することができる。
 以上、本発明を説明することを目的として、特定の構成を有する幾つかの実施形態及び実施例につき、時に添付図面を参照しながら説明してきたが、本発明の範囲は、これらの例示的な実施形態及び実施例に限定されると解釈されるべきではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることが可能であることは言うまでも無い。
 101、102、103a、103b、201、202…排気浄化装置、10…ケーシング、10s…第1空間、10r…第1領域、11…第1開口、12…第2開口、13…第3開口、10h…センサ挿入孔、21…第1ユニット、21h…第1ハウジング、21m…第1浄化部材、21v…第1柱体、22…第2ユニット、22h…第2ハウジング、22m…第2浄化部材、22v…第2柱体、22c…コーン部、22p…アウトレットパイプ、22f…アウトレットフランジ、23…EGR管、23f…EGRフランジ、31…エキマニ部分、31f…ヘッドフランジ、AX1…第1ハウジングの軸、AX2…第2ハウジングの軸。

Claims (5)

  1.  内燃機関から排出される排気の流路である排気流路の一部としての1つの内部空間である第1空間を画定する容器であり且つ前記排気流路における上流側に形成された開口である第1開口及び前記排気流路における下流側に形成された開口である第2開口を備えるケーシングと、前記排気流路において上流側に配設された排気浄化ユニットである第1ユニットと、前記排気流路において前記第1ユニットよりも下流側に配設された排気浄化ユニットである第2ユニットと、を備える排気浄化装置であって、
     前記第1ユニットは、筒状の形状を有する第1ハウジング及び前記第1ハウジングの内部に保持されて前記排気を浄化する1つ以上の部材である第1浄化部材を備え、
     前記第2ユニットは、筒状の形状を有する第2ハウジング及び前記第2ハウジングの内部に保持されて前記排気を浄化する1つ以上の部材である第2浄化部材を備え、
     前記第1開口が前記第1ハウジングの外側面に外嵌し、
     前記第2開口が前記第2ハウジングの外側面に外嵌し、
     前記第1空間において互いに対向する前記第1ハウジングの前記外側面と前記第2ハウジングの前記外側面とによって挟まれた領域である第1領域が存在し、
     前記第1ハウジングの軸方向に延長された前記第1ハウジングの前記外側面によって囲まれる仮想的な柱体である第1柱体と前記第2ハウジングの軸方向に延長された前記第2ハウジングの前記外側面によって囲まれる仮想的な柱体である第2柱体とは前記第1空間において交差しない、
    ことを特徴とする、排気浄化装置。
  2.  請求項1に記載された排気浄化装置であって、
     前記第1領域において前記第1ハウジングの前記外側面と前記第2ハウジングの前記外側面とが他の部材を介すること無く互いに直接的に対向している部分の占める割合である第1割合が前記第1領域において前記第1ハウジングの前記外側面と前記第2ハウジングの前記外側面とが他の部材を介して互いに間接的に対向している部分の占める割合である第2割合よりも大きい、
    ことを特徴とする、排気浄化装置。
  3.  請求項1に記載された排気浄化装置であって、
     前記第1領域において、前記第1ハウジングの前記外側面と前記第2ハウジングの前記外側面とが他の部材を介すること無く互いに直接的に対向している、
    ことを特徴とする、排気浄化装置。
  4.  請求項1乃至請求項3の何れか1項に記載された排気浄化装置であって、
     前記第1ハウジングの軸を通る直線と第2ハウジングの軸を通る直線とが空間幾何学的ねじれの位置にある、
    ことを特徴とする、排気浄化装置。
  5.  請求項1乃至請求項4の何れか1項に記載された排気浄化装置であって、
     互いに対向する前記第1ハウジングの前記外側面及び前記第2ハウジングの前記外側面並びに当該互いに対向する前記第1ハウジングの前記外側面と前記第2ハウジングの前記外側面との間にそれぞれ介在して互いに対向する前記ケーシングの内壁面同士によって画定される空間である独立流路が前記第1空間に形成されており、
     前記第1空間における前記独立流路よりも上流側の空間と前記第1空間における前記独立流路よりも下流側の空間とは前記独立流路のみによって連通されている、
    ことを特徴とする、排気浄化装置。
PCT/JP2021/002560 2020-05-26 2021-01-26 排気浄化装置 WO2021240876A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022527497A JP7350171B2 (ja) 2020-05-26 2021-01-26 排気浄化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020091591 2020-05-26
JP2020-091591 2020-05-26

Publications (1)

Publication Number Publication Date
WO2021240876A1 true WO2021240876A1 (ja) 2021-12-02

Family

ID=78744210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002560 WO2021240876A1 (ja) 2020-05-26 2021-01-26 排気浄化装置

Country Status (2)

Country Link
JP (1) JP7350171B2 (ja)
WO (1) WO2021240876A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881207U (ja) * 1972-01-08 1973-10-04
WO2013069115A1 (ja) * 2011-11-09 2013-05-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2015105500A1 (en) * 2014-01-10 2015-07-16 Faurecia Emissions Control Technologies Usa, Llc Modular mixer for exhaust assembly
JP6404701B2 (ja) * 2014-12-12 2018-10-10 川崎重工業株式会社 鞍乗型車両用の消音装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881207U (ja) * 1972-01-08 1973-10-04
WO2013069115A1 (ja) * 2011-11-09 2013-05-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
WO2015105500A1 (en) * 2014-01-10 2015-07-16 Faurecia Emissions Control Technologies Usa, Llc Modular mixer for exhaust assembly
JP6404701B2 (ja) * 2014-12-12 2018-10-10 川崎重工業株式会社 鞍乗型車両用の消音装置

Also Published As

Publication number Publication date
JP7350171B2 (ja) 2023-09-25
JPWO2021240876A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
US9062589B2 (en) Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
JP5114219B2 (ja) 内燃機関用の排ガス浄化装置
JP5132187B2 (ja) 排気浄化装置
US7611561B2 (en) Diesel exhaust filter construction
JP5602495B2 (ja) 排気ガス浄化装置
US8991160B2 (en) Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
JP4286888B2 (ja) 排気浄化装置
JP5066435B2 (ja) ディーゼルエンジン用の排ガス浄化装置
JP4286887B2 (ja) 排気浄化装置
US20080047260A1 (en) Exhaust aftertreatment system with spiral mixer
US20140196444A1 (en) Reductant aqueous solution mixing device and exhaust aftertreatment device provided with the same
JP2018044528A (ja) エンジンの排気浄化装置
WO2021240876A1 (ja) 排気浄化装置
JP2011231672A (ja) 排気ガス浄化装置
JP2012067697A (ja) 排気浄化装置
JP5737618B2 (ja) 内燃機関の排ガス浄化装置
JP7443822B2 (ja) 排気浄化装置
JP2007278156A (ja) エンジンの排気装置
JP2012092746A (ja) 排気浄化装置
WO2024100965A1 (ja) 内燃機関の排気装置
KR200440063Y1 (ko) 차량용 분리형 매연저감장치케이스
JP6013101B2 (ja) 排気浄化装置
JP5188477B2 (ja) 排気浄化装置
JP7211174B2 (ja) 排気管構造および車両
JP2012002082A (ja) 排気浄化触媒装置及び排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527497

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812304

Country of ref document: EP

Kind code of ref document: A1