WO2021240813A1 - Phase shifter and distortion compensation circuit - Google Patents

Phase shifter and distortion compensation circuit Download PDF

Info

Publication number
WO2021240813A1
WO2021240813A1 PCT/JP2020/021452 JP2020021452W WO2021240813A1 WO 2021240813 A1 WO2021240813 A1 WO 2021240813A1 JP 2020021452 W JP2020021452 W JP 2020021452W WO 2021240813 A1 WO2021240813 A1 WO 2021240813A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
phase
frequency signal
phase shifter
high frequency
Prior art date
Application number
PCT/JP2020/021452
Other languages
French (fr)
Japanese (ja)
Inventor
由文 河村
政毅 半谷
真太郎 新庄
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020563732A priority Critical patent/JPWO2021240813A1/ja
Priority to PCT/JP2020/021452 priority patent/WO2021240813A1/en
Publication of WO2021240813A1 publication Critical patent/WO2021240813A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters

Definitions

  • the present disclosure relates to a phase shifter and a distortion compensation circuit provided with the phase shifter.
  • Non-Patent Document 1 discloses a phase shifter including a coupling line.
  • the coupling line includes a first transmission line and a second transmission line, and the first transmission line and the second transmission line are arranged in parallel with each other.
  • An even-mode propagation mode in which the current flowing through the first transmission line and the current flowing through the second transmission line are in phase, and the current flowing through the first transmission line.
  • An odd-mode propagation mode occurs in which the current flowing through the second transmission line is out of phase.
  • the phase shift of the high frequency signal according to the difference between the propagation speed of the even mode in the high frequency signal and the propagation speed of the odd mode in the high frequency signal is realized.
  • the phase shift amount of the high frequency signal can be increased by increasing the coupling degree of the coupling line.
  • the distance between the first transmission line and the second transmission line cannot be narrowed infinitely, so that the desired phase shift amount may not be achieved. There was a challenge.
  • the present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to obtain a phase shifter capable of achieving a desired phase shift amount without increasing the coupling degree of the coupling line. ..
  • the phase shifter includes a first transmission line in which a high-frequency signal given to one end propagates to the other end, and a second transmission line in which the other end and one end of the first transmission line are connected.
  • a third transmission line to which the other end and one end of the second transmission line are connected, and the high frequency signal propagating through the first transmission line is that of the second transmission line and the third transmission line.
  • the coupled line in which the even mode propagation mode and the odd mode propagation mode occur, and the other end and one end of the third transmission line are connected, and the high frequency signal propagating through the coupled line is One end of the propagating fourth transmission line and one or more of the first transmission line and the fourth transmission line are connected to each other, and the phase shift that adjusts the propagation speed of the even mode in the high frequency signal. It is equipped with an adjustment circuit.
  • a desired phase shift amount can be realized without increasing the degree of coupling of the coupling line.
  • FIG. 7A is an explanatory diagram showing a circuit pattern of the reference phase circuit 10, and FIG.
  • FIG. 7B is an explanatory diagram showing a relative phase circuit 20 having no first open stub 27a and a second open stub 27b.
  • FIG. 7C is an explanatory diagram showing a relative phase circuit 20 in which each of the first open stub 27a and the second open stub 27b is arranged on the same side as the coupling line 22, and
  • FIG. 7D is an explanatory diagram showing the first open stub. It is explanatory drawing which shows the relative phase circuit 20 which each 27a and the 2nd open stub 27b are arranged on the opposite side to the coupling line 22.
  • FIG. 1 is a configuration diagram showing a phase shifter 1 according to the first embodiment.
  • the phase shifter 1 shown in FIG. 1 includes a reference phase circuit 10 and a relative phase circuit 20.
  • the input terminal 2a is a terminal to which a high frequency signal is given from the outside.
  • the output terminal 3a is a terminal for outputting a high frequency signal output from the reference phase circuit 10 to the outside.
  • the input terminal 2b is a terminal to which a high frequency signal is given from the outside.
  • the high frequency signal given to the input terminal 2a and the high frequency signal given to the input terminal 2b are high frequency signals having the same amplitude and the same phase.
  • the output terminal 3b is a terminal for outputting a high frequency signal output from the relative phase circuit 20 to the outside.
  • the reference phase circuit 10 includes a fifth transmission line 11. One end of the fifth transmission line 11 is connected to the input terminal 2a, and the other end of the fifth transmission line 11 is connected to the output terminal 3a.
  • the high frequency signal input from the input terminal 2a propagates on the fifth transmission line 11.
  • the high frequency signal propagating through the fifth transmission line 11 is output to the outside from the output terminal 3a.
  • the relative phase circuit 20 includes a first transmission line 21, a coupling line 22, a fourth transmission line 25, a first phase shift adjustment circuit 26a, and a second phase shift adjustment circuit 26b.
  • the coupling line 22 includes a second transmission line 23 and a third transmission line 24.
  • the phase shifter 1 shown in FIG. 1 includes a first phase shift adjustment circuit 26a and a second phase shift adjustment circuit 26b.
  • the phase shifter 1 may include any of the phase shift adjustment circuits 26 of the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b, and the first phase shift adjustment circuit 26a or a second phase shift adjusting circuit 26b may be provided.
  • the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b are not distinguished, they are described as the phase shift adjustment circuit 26.
  • One end of the first transmission line 21 is connected to the input terminal 2b, and the other end of the first transmission line 21 is connected to one end of the second transmission line 23.
  • the high frequency signal input from the input terminal 2b propagates on the first transmission line 21.
  • the propagation mode of the even mode is a propagation mode in which when the high frequency signal propagates on the coupled line 22, the current flowing through the second transmission line 23 and the current flowing through the third transmission line 24 are in phase with each other.
  • the propagation mode of the odd mode is a propagation mode in which when the high frequency signal propagates on the coupled line 22, the current flowing through the second transmission line 23 and the current flowing through the third transmission line 24 are in opposite phases.
  • One end of the second transmission line 23 is connected to the other end of the first transmission line 21, and the other end of the second transmission line 23 is connected to one end of the third transmission line 24.
  • One end of the third transmission line 24 is connected to the other end of the second transmission line 23, and the other end of the third transmission line 24 is connected to one end of the fourth transmission line 25.
  • the second transmission line 23 and the third transmission line 24 are arranged in parallel with each other.
  • One end of the fourth transmission line 25 is connected to the other end of the third transmission line 24, and the other end of the fourth transmission line 25 is connected to the output terminal 3b.
  • the high frequency signal propagating on the third transmission line 24 propagates on the fourth transmission line 25.
  • the first phase shift adjusting circuit 26a adjusts the propagation velocity of the even mode in the high frequency signal.
  • the first phase shift adjusting circuit 26a is realized by, for example, a capacitive element. When the first phase shift adjusting circuit 26a is realized by the capacitive element, one end of the capacitive element is connected to the first transmission line 21 and the other end of the capacitive element is grounded.
  • the second phase shift adjusting circuit 26b adjusts the propagation velocity of the even mode in the high frequency signal.
  • the second phase shift adjusting circuit 26b is realized by, for example, a capacitive element. When the second phase shift adjusting circuit 26b is realized by the capacitive element, one end of the capacitive element is connected to the fourth transmission line 25, and the other end of the capacitive element is grounded.
  • the high frequency signal RF 1 is given to the input terminal 2a, and the high frequency signal RF 2 is given to the input terminal 2b.
  • the high frequency signal RF 1 input from the input terminal 2a propagates on the fifth transmission line 11 in the reference phase circuit 10.
  • the high frequency signal RF 1 propagating through the fifth transmission line 11 is output to the outside from the output terminal 3a.
  • the passing phase of the reference phase circuit 10 in the high-frequency signal RF 1 is phi 1.
  • the high frequency signal RF 2 input from the input terminal 2b propagates on each of the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the relative phase circuit 20.
  • the high frequency signal RF 2 propagating through each of the first transmission line 21, the coupling line 22, and the fourth transmission line 25 is output to the outside from the output terminal 3b.
  • the phase velocity of a specific frequency is accelerated by the first phase shift adjustment circuit 26a, and when the high frequency signal RF 2 propagates on the fourth transmission line 25.
  • the second phase shift adjustment circuit 26b accelerates the phase velocity of a specific frequency.
  • the passing phase ⁇ 2 of the relative phase circuit 20 in the high frequency signal RF 2 is different from the passing phase ⁇ 1 of the reference phase circuit 10 in the high frequency signal RF 1.
  • the specific frequency is the respective frequency in the high frequency signal RF 1 and the high frequency signal RF 2.
  • phase shifter 1 In the coupled line 22, when the high frequency signal RF 2 propagating on the first transmission line 21 propagates on each of the second transmission line 23 and the third transmission line 24, the propagation mode of the even mode and the odd mode are used. Propagation mode occurs.
  • phase shifter 2 In the phase shifter 1, and the propagation velocity V e of the even mode in the high-frequency signal RF 2, phase of the high frequency signal RF 2 is achieved according to the difference ⁇ V between the propagation velocity V o of the odd mode in the high-frequency signal RF 2 ..
  • the phase shift amount ps of the phase shift of the high frequency signal RF 2 according to the difference ⁇ V is determined by the coupling degree of the coupling line 22.
  • each of the first phase adjustment circuit 26a and the second phase adjustment circuit 26b it is possible to adjust the propagation velocity V e of the even mode in the high-frequency signal RF 2, propagation velocity V e of the even mode it is possible to adjust the difference ⁇ V between the propagation velocity V o of an odd mode. Therefore, a desired phase shift amount ps can be realized without increasing the degree of coupling of the coupling line 22. If each of the first phase adjustment circuit 26a and the second phase adjustment circuit 26b is realized by a capacitive element, in accordance with the capacity of the capacitive element, the propagation velocity V e of the even mode is changed, By changing the capacitance of the capacitive element, a desired phase shift amount ps can be realized.
  • FIG. 2 is an explanatory diagram showing a reflection coefficient S11e in the even mode.
  • FIG. 3 is an explanatory diagram showing the reflection coefficient S11o in the odd mode.
  • the coupling line 22 includes a second transmission line 23 and a third transmission line 24, and the second transmission line 23 and the third transmission line 24 are arranged in parallel with each other. Has been done. Then, in the phase shifter 1 shown in FIG. 1, the second transmission line 23 and the third transmission line 24 are arranged with the boundary between the second transmission line 23 and the third transmission line 24 as the axis of symmetry.
  • the component on the input terminal 2b side of the connection point and the component on the output terminal 3b side of the connection point are symmetrical.
  • the components on the input terminal 2b side of the connection point are the first transmission line 21 and the second transmission line 23, and the components on the output terminal 3b side of the connection point are the third transmission line 24 and the second transmission line 23.
  • 4 is the transmission line 25.
  • the boundary between the second transmission line 23 and the third transmission line 24 is a magnetic wall as shown in FIG. 2
  • the reflectance coefficient of the high frequency signal RF 2 with respect to the input terminal 2b is an even mode.
  • Reflection coefficient S11e Assuming that the boundary between the second transmission line 23 and the third transmission line 24 is an electric wall as shown in FIG. 3, the reflectance coefficient of the high frequency signal RF 2 with respect to the input terminal 2b is an odd mode. Reflection coefficient S11e.
  • the reflection coefficient S11 of the relative phase circuit 20 is expressed by the following equation (1) by using the reflection coefficient S11e in the even mode and the reflection coefficient S11e in the odd mode. Further, the transmission coefficient S21 of the relative phase circuit 20 is expressed by the following equation (2) by using the reflection coefficient S11e in the even mode and the reflection coefficient S11e in the odd mode.
  • Each of the reflection coefficient S11, the transmission coefficient S21, the reflection coefficient S11e, and the reflection coefficient S11e is a complex vector.
  • the reflection coefficient S11 is expressed by the following equation (3).
  • the transmission coefficient S21 is expressed by the following equation (4).
  • FIG. 4 is an explanatory diagram showing a simulation result of the group delay of the reflection coefficient S11e in the even mode in the relative phase circuit 20.
  • the frequency of the high frequency signal according to the simulation result shown in FIG. 4 is in the range of 18 [GHz] to 25 [GHz].
  • the solid line shows the group delay of the reflectance coefficient S11e of the even mode for the relative phase circuit 20 when the phase shifter 1 includes the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b. Is shown.
  • the broken line indicates the group delay of the reflectance coefficient S11e of the even mode for the relative phase circuit 20 when the phase shifter 1 does not include the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b. ..
  • the group delay of the reflectance coefficient S11e in even mode is 60 if the phase shifter 1 does not include the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b. [Psec].
  • the group delay of the reflection coefficient S11e in the even mode is about 100 [psec]. Therefore, the phase shifter 1 provided with the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b does not include the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b. compared with vessel 1, it is possible to increase the propagation velocity V e of the even mode.
  • FIG. 5 is an explanatory diagram showing the simulation results of the phase difference ⁇ between a passing phase phi 2 of the passing phase phi 1 and the relative phase shift circuit 20 of the reference phase circuit 10.
  • the solid line shows the phase difference ⁇ when the phase shifter 1 includes the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b.
  • the broken line shows the phase difference ⁇ when the phase shifter 1 does not include the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b.
  • the even-mode impedance Ze is 85 ⁇
  • the odd-mode impedance Zo is 25 ⁇
  • the ratio ⁇ of the even-mode impedance to the odd-mode impedance is 3.4
  • the electrical length ⁇ 1 of the coupling line 22 in the relative phase circuit 20 Is 90 degrees
  • the ratio K of the electric length of the reference phase circuit 10 and the electric length of the relative phase circuit 20 is 4.
  • the phase shifter 1 includes the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b
  • 23 and a third transmission line 24 having one end connected to the other end of the second transmission line 23, and a high-frequency signal propagating through the first transmission line 21 is the second transmission line 23 and
  • the coupled line 22 in which the propagation mode of the even mode and the propagation mode of the odd mode are generated is connected to the other end and one end of the third transmission line 24.
  • One end of the fourth transmission line 25 through which the high-frequency signal propagating the coupled line 22 propagates is connected to one or more of the first transmission line 21 and the fourth transmission line 25.
  • the phase shifter 1 is configured to include a phase shift adjustment circuit 26 for adjusting the propagation speed of the even mode in a high frequency signal. Therefore, the phase shifter 1 can realize a desired phase shift amount without increasing the degree of coupling of the coupling line 22.
  • Embodiment 2 the phase shifter 1 in which the first phase shift adjustment circuit 26a includes the first open stub 27a and the second phase shift adjustment circuit 26b includes the second open stub 27b will be described. ..
  • FIG. 6 is a block diagram showing the phase shifter 1 according to the second embodiment.
  • the phase shifter 1 shown in FIG. 6 is assumed to be arranged in the xy plane for convenience of explanation.
  • the reference phase circuit 10 includes a fifth transmission line 12.
  • the fifth transmission line 12 includes transmission lines 12a, 12b, 12c, 12d, 12e.
  • One end of the transmission line 12a is connected to the input terminal 2a, and the other end of the transmission line 12a is connected to one end of the transmission line 12b.
  • One end of the transmission line 12b is connected to the other end of the transmission line 12a, and the other end of the transmission line 12b is connected to one end of the transmission line 12c.
  • One end of the transmission line 12c is connected to the other end of the transmission line 12b, and the other end of the transmission line 12c is connected to one end of the transmission line 12d.
  • One end of the transmission line 12d is connected to the other end of the transmission line 12c, and the other end of the transmission line 12d is connected to one end of the transmission line 12e.
  • One end of the transmission line 12e is connected to the other end of the transmission line 12d, and the other end of the transmission line 12e is connected to the output terminal 3a.
  • the fifth transmission line 12 is bent in the middle. That is, the transmission line 12a is arranged parallel to the x-axis, and the propagation direction of the high-frequency signal RF 1 is the + x direction.
  • the transmission line 12b is arranged in parallel with the y-axis, and the propagation direction of the high-frequency signal RF 1 is the + y direction.
  • the transmission line 12c is arranged parallel to the x-axis, and the propagation direction of the high-frequency signal RF 1 is the + x direction.
  • the transmission line 12d is arranged in parallel with the y-axis, and the propagation direction of the high-frequency signal RF 1 is the ⁇ y direction.
  • the transmission line 12e is arranged parallel to the x-axis, and the propagation direction of the high-frequency signal RF 1 is the + x direction.
  • the reference phase circuit 10 includes a fifth transmission line 12 that is bent in the middle.
  • the reference phase circuit 10 may include the fifth transmission line 11 shown in FIG.
  • the first transmission line 21 is arranged parallel to the x-axis
  • the fourth transmission line 25 is arranged parallel to the x-axis.
  • the second transmission line 23 is arranged parallel to the y-axis
  • the third transmission line 24 is arranged parallel to the y-axis.
  • Each of the arrangement of the first transmission line 21 and the arrangement of the fourth transmission line 25 is not limited to the arrangement exactly parallel to the x-axis, and is not limited to the arrangement of the x-axis within a range where there is no practical problem. They may be arranged in parallel.
  • Each of the arrangement of the second transmission line 23 and the arrangement of the third transmission line 24 is not limited to those arranged exactly parallel to the y-axis, and is not limited to the arrangement of the y-axis and non-arrangement within a range where there is no practical problem. They may be arranged in parallel.
  • the first phase shift adjusting circuit 26a includes a first open stub 27a.
  • One end of the first open stub 27a is connected to the first transmission line 21.
  • the first open stub 27a is arranged parallel to the y-axis and is arranged on the opposite side of the coupling line 22 with the first transmission line 21 interposed therebetween.
  • the first open stub 27a is in the ⁇ y direction with respect to the first transmission line 21. Is located in.
  • the first open stub 27a by binding the second transmission line 23 and the electromagnetic field coupled line 22, acts to increase the propagation velocity V e of the even mode in the high-frequency signal RF 2.
  • the first open stub 27a is not limited to the one that is strictly parallel to the y-axis, and may be arranged non-parallel to the y-axis as long as there is no practical problem.
  • the second phase shift adjusting circuit 26b includes a second open stub 27b.
  • One end of the second open stub 27b is connected to the fourth transmission line 25.
  • the second open stub 27b is arranged parallel to the y-axis and is arranged on the opposite side of the coupling line 22 with the fourth transmission line 25 interposed therebetween.
  • the second open stub 27b is in the ⁇ y direction with respect to the fourth transmission line 25. Is located in.
  • the second open stub 27b by binding the third transmission line 24 and the electromagnetic field coupled line 22, acts to increase the propagation velocity V e of the even mode in the high-frequency signal RF 2.
  • the second open stub 27b is not limited to the one that is strictly parallel to the y-axis, and may be arranged non-parallel to the y-axis as long as there is no practical problem.
  • the high frequency signal RF 1 is given to the input terminal 2a, and the high frequency signal RF 2 is given to the input terminal 2b.
  • the high frequency signal RF 1 input from the input terminal 2a propagates on the fifth transmission line 12 in the reference phase circuit 10.
  • the high frequency signal RF 1 propagating through the fifth transmission line 12 is output to the outside from the output terminal 3a.
  • the passing phase of the reference phase circuit 10 in the high-frequency signal RF 1 is phi 1.
  • the high frequency signal RF 2 input from the input terminal 2b propagates on each of the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the relative phase circuit 20.
  • the high frequency signal RF 2 propagating through each of the first transmission line 21, the coupling line 22, and the fourth transmission line 25 is output to the outside from the output terminal 3b.
  • the first open stub 27a accelerates the phase velocity of a specific frequency
  • the high frequency signal RF 2 propagates on the fourth transmission line 25, the first The open stub 27b of 2 increases the phase velocity of a specific frequency. Therefore, the passing phase ⁇ 2 of the relative phase circuit 20 in the high frequency signal RF 2 is different from the passing phase ⁇ 1 of the reference phase circuit 10 in the high frequency signal RF 1.
  • phase shifter 1 In the coupled line 22, when the high frequency signal RF 2 propagating on the first transmission line 21 propagates on each of the second transmission line 23 and the third transmission line 24, the propagation mode of the even mode and the odd mode are used. Propagation mode occurs.
  • phase shifter 2 In the phase shifter 1, and the propagation velocity V e of the even mode in the high-frequency signal RF 2, phase of the high frequency signal RF 2 corresponding to the difference ⁇ V between the propagation velocity V o of the odd mode in the high-frequency signal is realized.
  • each of the first open stub 27a and the second open stub 27b to act as increase the propagation velocity V e of the even mode in the high-frequency signal RF 2, the even mode propagation velocity V e and the odd mode it is possible to adjust the difference ⁇ V between the propagation velocity V o. Therefore, a desired phase shift amount ps can be realized without increasing the degree of coupling of the coupling line 22.
  • the propagation velocity V e of the even mode is changed by changing the stub length, to achieve a desired phase shift ps be able to.
  • the stub lengths of the first open stub 27a and the second open stub 27b may be any one that satisfies the condition of 0.5 ⁇ ⁇ 1 or less.
  • FIG. 7 is an explanatory diagram showing each circuit pattern in the reference phase circuit 10 and the relative phase circuit 20.
  • FIG. 7A shows the circuit pattern of the reference phase circuit 10.
  • FIG. 7B shows a relative phase circuit 20 without a first open stub 27a and a second open stub 27b.
  • the relative phase circuit 20 is referred to as “relative phase circuit A”.
  • FIG. 7C shows a relative phase circuit 20 in which each of the first open stub 27a and the second open stub 27b is arranged on the same side as the coupling line 22.
  • the relative phase circuit 20 is referred to as “relative phase circuit B”.
  • FIG. 7A shows the circuit pattern of the reference phase circuit 10.
  • FIG. 7B shows a relative phase circuit 20 without a first open stub 27a and a second open stub 27b.
  • the relative phase circuit 20 is referred to as “relative phase circuit A”.
  • FIG. 7C shows a relative phase circuit 20 in which each of the first open
  • FIG. 7D shows a relative phase circuit 20 in which each of the first open stub 27a and the second open stub 27b is arranged on the opposite side of the coupling line 22, as in the relative phase circuit 20 shown in FIG. ing.
  • the relative phase circuit 20 is referred to as “relative phase circuit C”.
  • FIG. 8 is an explanatory diagram showing simulation results of each group delay characteristic in the circuit pattern of the reference phase circuit 10, the circuit pattern of the relative phase circuit A, the circuit pattern of the relative phase circuit B, and the circuit pattern of the relative phase circuit C. ..
  • the horizontal axis is frequency and the vertical axis is group delay.
  • the group delay of the relative phase circuit B is larger than the group delay of the relative phase circuit A.
  • the group delay of the relative phase circuit C is further larger than the group delay of the relative phase circuit B.
  • the group delay of the relative phase circuit C is a frequency of about 20 [GHz], which is 65 [psec], which is substantially the same as the group delay of the reference phase circuit 10.
  • the group delay of the relative phase circuit A ⁇ the group delay of the relative phase circuit B ⁇ the group delay of the relative phase circuit C
  • the phenomenon that the group delay of the relative phase circuits B and C becomes larger than the group delay of the relative phase circuit A is the first phenomenon.
  • Each of the open stub 27a and the second open stub 27b is generated by the electromagnetic field coupling with the coupling line 22 so that the propagation speed of the even-mode current flowing into the coupling line 22 becomes high.
  • FIG. 9 is an explanatory diagram showing simulation results of each passing amplitude characteristic in the circuit pattern of the reference phase circuit 10, the circuit pattern of the relative phase circuit A, the circuit pattern of the relative phase circuit B, and the circuit pattern of the relative phase circuit C. ..
  • the horizontal axis is the frequency and the vertical axis is the passing amplitude.
  • the passing amplitude of the relative phase circuits B and C is larger than the passing amplitude of the relative phase circuit A.
  • the passing amplitude of the relative phase circuit A is ⁇ 1.0 [dB] or more.
  • the passing amplitude of the relative phase circuits B and C is ⁇ 0.5 [dB] or more. Therefore, at a frequency of 21 [GHz] or less, the reflection mismatch of the relative phase circuits B and C is improved as compared with the reflection mismatch of the relative phase circuit A.
  • FIG. 10 is an explanatory diagram showing simulation results of the respective phase differences ⁇ in the phase shifter 1 provided with the relative phase circuit A, the phase shifter 1 provided with the relative phase circuit B, and the phase shifter 1 provided with the relative phase circuit C. be.
  • the horizontal axis is the frequency and the vertical axis is the phase difference ⁇ .
  • the phase shifter 1 provided with the relative phase circuit A is referred to as “phase shifter A”
  • the phase shifter 1 provided with the relative phase circuit B is referred to as “phase shifter B”
  • the relative phase circuit C is indicated.
  • the phase shifter 1 provided with the above is referred to as "phase shifter C".
  • phase shifter C As shown in FIG.
  • the phase difference ⁇ of the phase shifter A is 180 degrees at a frequency of about 16.5 [GHz]
  • the phase difference ⁇ of the phase shifter B is as shown in FIG. , 180 degrees at a frequency of about 17.4 [GHz].
  • the phase difference ⁇ of the phase shifter C is 180 degrees at a frequency of 19 [GHz] to 21 [GHz].
  • the phase shifter C can realize a phase difference of 180 degrees in a wider band than each of the phase shifter A and the phase shifter B.
  • the first phase shift adjustment circuit 26a is connected to one end of the first transmission line 21 and is electromagnetically coupled to the coupling line 22 to propagate an even mode in a high frequency signal.
  • a first open stub 27a for accelerating the speed is provided, and a second phase shift adjusting circuit 26b is connected to a fourth transmission line 25 at one end and is electromagnetically coupled to the coupling line 22 in a high frequency signal.
  • the phase shifter 1 shown in FIG. 6 is configured to include a second open stub 27b that increases the propagation speed of the even mode. Therefore, the phase shifter 1 shown in FIG. 6 can realize a desired phase shift amount without increasing the degree of coupling of the coupling line 22 as in the phase shifter 1 shown in FIG.
  • the phase shifter 1 shown in FIG. 6 includes a relative phase circuit C as the relative phase circuit 20.
  • Embodiment 3 In the third embodiment, the phase shifter 1 shown in FIG. 1 or the strain compensation circuit including the phase shifter 1 shown in FIG. 6 will be described.
  • FIG. 11 is a configuration diagram showing a strain compensation circuit according to the third embodiment.
  • the distortion compensation circuit shown in FIG. 11 includes a power distributor 31, a first phase shifter 32, a sixth transmission line 33, a seventh transmission line 34, a second phase shifter 35, a power combiner 36, and a direct current. It includes a bias supply resistor 39, a diode 40, and a DC bias supply resistor 41.
  • the input terminal 30 is a terminal to which a high frequency signal RF is given from the outside.
  • the power distributor 31 is realized by, for example, a T-branch line or a Wilkinson distributor.
  • the power distributor 31 distributes the high frequency signal RF given to the input terminal 30 into two.
  • the power distributor 31 outputs the high frequency signal RF 1 , which is one of the high frequency signals after the two distributions, to the fifth transmission line 12 of the first phase shifter 32 via the input terminal 2a. do.
  • the power distributor 31 outputs the high frequency signal RF 2 , which is the other high frequency signal among the high frequency signals after the two distributions, to the first transmission line 21 of the first phase shifter 32 via the input terminal 2b. do.
  • the first phase shifter 32 is a phase shifter having the same configuration as the phase shifter 1 shown in FIG.
  • the high frequency signal RF 1 output from the power distributor 31 propagates in the fifth transmission line 12 in the first phase shifter 32.
  • the high frequency signal RF 2 output from the power distributor 31 propagates in each of the first transmission line 21, the coupling line 22, and the fourth transmission line 25 in the first phase shifter 32.
  • the first phase shifter 32 is a phase shifter having the same configuration as the phase shifter 1 shown in FIG.
  • the first phase shifter 32 may be a phase shifter having the same configuration as the phase shifter 1 shown in FIG.
  • the sixth transmission line 33 includes DC block capacitors 33a and 33b.
  • the high frequency signal RF 1 propagating through the fifth transmission line 12 in the first phase shifter 32 propagates.
  • One end of the DC block capacitor 33a is connected to the other end of the fifth transmission line 12 in the first phase shifter 32 via the output terminal 3a, and the other end of the DC block capacitor 33a is for the DC block. It is connected to one end of the capacitor 33b and the like.
  • the DC block capacitor 33a blocks the flow of DC current so that the DC current does not flow to the first phase shifter 32.
  • One end of the DC block capacitor 33b is connected to the other end of the DC block capacitor 33a and the like, and the other end of the DC block capacitor 33b is the first in the second phase shifter 35 via the input terminal 2a. It is connected to one end of the transmission line 21.
  • the DC block capacitor 33b blocks the flow of DC current so that the DC current does not flow to the second phase shifter 35.
  • the seventh transmission line 34 includes DC block capacitors 34a and 34b.
  • the high frequency signal RF 2 propagating through each of the first transmission line 21, the coupling line 22, and the fourth transmission line 25 in the first phase shifter 32 propagates.
  • One end of the DC block capacitor 34a is connected to the other end of the fourth transmission line 25 in the first phase shifter 32 via the output terminal 3b, and the other end of the DC block capacitor 34a is for the DC block. It is connected to one end of the capacitor 34b and the like.
  • the DC block capacitor 34a blocks the flow of DC current so that the DC current does not flow to the first phase shifter 32.
  • One end of the DC block capacitor 34b is connected to the other end of the DC block capacitor 34a and the like, and the other end of the DC block capacitor 34b is the fifth phase shifter 35 in the second phase shifter 35 via the input terminal 2b. It is connected to one end of the transmission line 12.
  • the DC block capacitor 34b blocks the flow of DC current so that the DC current does not flow to the second phase shifter 35.
  • the second phase shifter 35 is a phase shifter having the same configuration as the phase shifter 1 shown in FIG.
  • the high frequency signal RF 1 that has propagated through the sixth transmission line 33 propagates in each of the first transmission line 21, the coupling line 22, and the fourth transmission line 25 in the second phase shifter 35.
  • the high frequency signal RF 2 propagating through the seventh transmission line 34 propagates in the fifth transmission line 12 in the second phase shifter 35.
  • the second phase shifter 35 is a phase shifter having the same configuration as the phase shifter 1 shown in FIG.
  • the second phase shifter 35 may be a phase shifter having the same configuration as the phase shifter 1 shown in FIG.
  • the power synthesizer 36 is realized by, for example, a Wilkinson synthesizer.
  • One end of the power combiner 36 is connected to the other end of the fourth transmission line 25 in the second phase shifter 35 via the output terminal 3a, and the other end of the power combiner 36 is connected via the output terminal 3b. It is connected to the other end of the fifth transmission line 12 in the second phase shifter 35.
  • the power combiner 36 is in the high frequency signal RF 1 and the second phase shifter 35 that have propagated through the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the second phase shifter 35, respectively.
  • the high frequency signal RF 2 propagating on the fifth transmission line 12 is combined with the high frequency signal RF 2.
  • the power synthesizer 36 outputs the combined signal RF'of the high frequency signal RF 1 and the high frequency signal RF 2 to the output terminal 37.
  • the output terminal 37 is a terminal for outputting the combined signal RF'to the outside.
  • the DC power supply 38 applies a positive DC voltage to the anode terminal of the diode 40 via the DC bias supply resistor 39.
  • One end of the DC bias supply resistor 39 is connected to the DC power supply 38.
  • the other end of the DC bias supply resistor 39 is connected to the anode terminal of the diode 40, the other end of the DC block capacitor 33a, and one end of the DC block capacitor 33b.
  • the diode 40 is inserted between the sixth transmission line 33 and the seventh transmission line 34. That is, the anode terminal of the diode 40 is connected to the other end of the DC bias supply resistor 39, the other end of the DC block capacitor 33a, and one end of the DC block capacitor 33b.
  • the cathode terminal of the diode 40 is connected to one end of the DC bias supply resistor 41, the other end of the DC block capacitor 34a, and one end of the DC block capacitor 34b.
  • a direct current supplied from the direct current power source 38 is applied to the diode 40 in the forward direction.
  • One end of the DC bias supply resistor 41 is connected to the cathode terminal of the diode 40, the other end of the DC block capacitor 34a, and one end of the DC block capacitor 34b.
  • the other end of the DC bias supply resistor 41 is connected to the ground.
  • a direct current supplied from the direct current power source 38 may be applied to the diode 40 in the forward direction, and a negative direct current voltage from the direct current power source 38 may be applied to the cathode terminal of the diode 40.
  • the power distributor 31 distributes the high frequency signal RF given to the input terminal 30 into two.
  • the power distributor 31 outputs the high frequency signal RF 1 , which is one of the high frequency signals after the two distributions, to the fifth transmission line 12 of the first phase shifter 32 via the input terminal 2a. do.
  • the power distributor 31 outputs the high frequency signal RF 2 , which is the other high frequency signal among the high frequency signals after the two distributions, to the first transmission line 21 of the first phase shifter 32 via the input terminal 2b. do.
  • the first phase shifter 32 operates in the same manner as the phase shifter 1 shown in FIG. Therefore, the high frequency signal RF 1 output from the power distributor 31 propagates through the fifth transmission line 12 in the first phase shifter 32 and reaches the sixth transmission line 33. Further, the high frequency signal RF 2 output from the power distributor 31 propagates through each of the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the first phase shifter 32, and the seventh It reaches the transmission line 34.
  • Each of the first open stub 27a and the second open stub 27b of the first phase shifter 32 acts to increase the propagation velocity V e of the even mode in the high-frequency signal RF 2.
  • the high frequency signal RF 1 that has reached the sixth transmission line 33 propagates on the sixth transmission line 33.
  • the DC block capacitor 33a blocks the flow of the DC current so that the DC current supplied from the DC power supply 38 does not flow to the first phase shifter 32.
  • the DC block capacitor 33b blocks the flow of the DC current so that the DC current supplied from the DC power supply 38 does not flow to the second phase shifter 35.
  • the high frequency signal RF 2 that has reached the seventh transmission line 34 propagates through the seventh transmission line 34.
  • the DC block capacitor 34a blocks the flow of the DC current so that the DC current supplied from the DC power supply 38 does not flow to the first phase shifter 32.
  • the DC block capacitor 34b blocks the flow of the DC current so that the DC current supplied from the DC power supply 38 does not flow to the second phase shifter 35.
  • the second phase shifter 35 operates in the same manner as the phase shifter 1 shown in FIG.
  • the high-frequency signal RF 1 propagating through the sixth transmission line 33 propagates through each of the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the second phase shifter 35, and is a power combiner. Reach 36.
  • the high frequency signal RF 2 propagating through the seventh transmission line 34 propagates through the fifth transmission line 12 in the second phase shifter 35 and reaches the power combiner 36.
  • Each of the first open stub 27a and the second open stub 27b in the second phase shifter 35 acts to increase the propagation velocity V e of the even mode in the high-frequency signal RF 1.
  • the power combiner 36 includes a high frequency signal RF 1 propagating on each of the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the second phase shifter 35, and the second phase shifter 35.
  • the high frequency signal RF 2 propagating through the fifth transmission line 12 in the above is combined with the high frequency signal RF 2.
  • the power synthesizer 36 outputs the combined signal RF'of the high frequency signal RF 1 and the high frequency signal RF 2 to the output terminal 37.
  • the degree of coupling of the coupling line 22 in the first phase shifter 32 and the degree of coupling of the coupling line 22 in the second phase shifter 35 are the same.
  • phase shift amount of the high frequency signal RF 2 by the first open stub 27a and the second open stub 27b in the first phase shifter 32, and the first open stub 27a and the second in the second phase shifter 35 is assumed that the phase shift amount of the high frequency signal RF 1 by the open stub 27b of 2 is the same as the phase shift amount.
  • the high frequency signal RF 1 and the high frequency signal RF 2 synthesized by the power synthesizer 36 are signals having the same phase.
  • the DC current output from the DC power supply 38 flows to the ground via the DC bias supply resistor 39, the diode 40, and the DC bias supply resistor 41.
  • the pre-distortion signal for compensating the distortion of the high-frequency signal RF given to the input terminal 30 by the DC current output from the DC power supply 38 flowing through the diode 40 is the high-frequency signal RF 1 and the high-frequency signal RF 2 , respectively.
  • the high frequency signal RF given to the input terminal 30 is a high frequency signal amplified by an amplifier (not shown), the high frequency signal RF may be distorted.
  • the pre-distortion signal is a signal having an amplitude distortion characteristic opposite to the amplitude distortion characteristic of the high-frequency signal RF and having a phase distortion characteristic opposite to the phase distortion characteristic of the high-frequency signal RF.
  • Each of the amplitude and the phase in the pre-distortion signal can be controlled by the direct current supplied from the direct current power source 38 to the diode 40. Further, each of the amplitude and the phase in the pre-distortion signal can also be controlled by the respective resistance values of the DC bias supply resistor 39 and the DC bias supply resistor 41.
  • a direct current flows through the diode 40 to compensate for the distortion of the high frequency signal RF after amplification by an amplifier (not shown).
  • the DC current flows through the diode 40 to compensate for the distortion of the signal after amplification by an amplifier (not shown) that amplifies the combined signal RF'output from the output terminal 37, for example. You can also.
  • FIG. 12 is an explanatory diagram showing a simulation result of the relative gain characteristic of the distortion compensation circuit with respect to the electric power of the high frequency signal RF given to the input terminal 30.
  • FIG. 13 is an explanatory diagram showing a simulation result of the phase characteristic of the distortion compensation circuit for the power of the high frequency signal RF given to the input terminal 30.
  • the frequency of the high-frequency signal according to the simulation results shown in FIGS. 12 and 13 has a center frequency of about 20 [GHz] as a center frequency of f 0 and a specific band of 0.8f 0 to 1.25f 0 as 45%.
  • the relative gain characteristic is calculated every 0.25f 0 step.
  • the power of the high frequency signal RF given to the input terminal 30 is in the range of ⁇ 20 [dBm] to +10 [dBm].
  • FIG. 14 is an explanatory diagram showing a calculation result of the amplitude fluctuation amount characteristic of the distortion compensation circuit with respect to the normalized frequency.
  • the calculation result of the amplitude fluctuation amount characteristic is calculated based on the simulation result shown in FIG.
  • FIG. 15 is an explanatory diagram showing a calculation result of the phase fluctuation amount characteristic of the distortion compensation circuit with respect to the normalized frequency.
  • the calculation result of the phase fluctuation amount characteristic is calculated based on the simulation result shown in FIG.
  • the solid line indicates the strain compensation circuit shown in FIG. 11, and the broken line indicates the strain compensation circuit described in Patent Document 1.
  • the distortion compensation circuit described in Patent Document 1 is a general distortion compensation circuit that does not include the first phase shifter 32 and the second phase shifter 35.
  • the amplitude fluctuation amount of the distortion compensation circuit shown in FIG. 11 takes a positive value of 0.5 [dB / dB] or more in the range of 0.8f 0 to 1.25f 0. Therefore, the amplitude distortion characteristic of monotonically increasing is obtained.
  • Phase variation amount of the distortion compensation circuit shown in FIG. 11, as shown in FIG. 15, in the range of 0.85F 0 of fractional bandwidth of 30% 1.15F 0, can be realized about -5 [deg / dB] There is. Therefore, the strain compensation circuit shown in FIG. 11 has a wide band characteristic.
  • Distortion compensating circuit described in Patent Document 1 the largest amount of phase change at the center frequency f 0 has become (-13 [degrees / dB]), farther from the center frequency f 0, and the amount of phase variation becomes smaller There is. From the above, the distortion compensation circuit shown in FIG. 11 can realize a wide-band amplitude distortion characteristic and a phase distortion characteristic in a high frequency band.
  • any combination of the embodiments can be freely combined, any component of the embodiment can be modified, or any component can be omitted in each embodiment.
  • the present disclosure is suitable for a phase shifter and a strain compensation circuit provided with the phase shifter.
  • Phase shifter 2a, 2b input terminal, 3a, 3b output terminal, 10 reference phase circuit, 11 fifth transmission line, 12a, 12b, 12c, 12d, 12e transmission line, 20 relative phase circuit, 21 first Transmission line, 22 coupled line, 23 second transmission line, 24 third transmission line, 25 fourth transmission line, 26 phase shift adjustment circuit, 26a first phase shift adjustment circuit, 26b second phase shift adjustment Circuit, 27a 1st open stub, 27b 2nd open stub, 30 input terminal, 31 power distributor, 32 1st phase shifter, 33 6th transmission line, 33a, 33b DC block capacitor, 34th 7 transmission lines, 34a, 34b DC block capacitors, 35 second phase shifters, 36 power synthesizers, 37 output terminals, 38 DC power supplies, 39 DC bias supply resistors, 40 diodes, 41 DC bias supply resistors ..

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

A phase shifter that comprises a first transmission line (21) through which high-frequency signals applied to one end are propagated to the other end, a second transmission line (23) that is connected at one end to the other end of the first transmission line (21), a third transmission line (24) that is connected at one end to the other end of the second transmission line (23), a coupled line (22) in which an even mode propagation mode and an odd mode propagation mode occur when high-frequency signals that have propagated through the first transmission line (21) are propagated through each of the second transmission line (23) and the third transmission line (24), a fourth transmission line (25) that is connected at one end to the other end of the third transmission line (24) and propagates high-frequency signals that have propagated through the coupled line (22), and a phase adjustment circuit (26) that is connected at one end to at least one transmission line from among the first transmission line (21) and the fourth transmission line (25) and adjusts the propagation speed of even mode high-frequency signals.

Description

移相器及び歪補償回路Phase shifter and distortion compensation circuit
 本開示は、移相器と、移相器を備える歪補償回路とに関するものである。 The present disclosure relates to a phase shifter and a distortion compensation circuit provided with the phase shifter.
 以下の非特許文献1には、結合線路を備える移相器が開示されている。当該結合線路は、第1の伝送線路及び第2の伝送線路を備え、第1の伝送線路と第2の伝送線路とは、互いに平行に配置されている。高周波信号が結合線路を伝搬するとき、第1の伝送線路を流れる電流と、第2の伝送線路を流れる電流とが同相となる偶モードの伝搬モードと、第1の伝送線路を流れる電流と、第2の伝送線路を流れる電流とが逆相となる奇モードの伝搬モードとが発生する。当該移相器では、高周波信号における偶モードの伝搬速度と、高周波信号における奇モードの伝搬速度との差分に応じた高周波信号の移相が実現される。 The following Non-Patent Document 1 discloses a phase shifter including a coupling line. The coupling line includes a first transmission line and a second transmission line, and the first transmission line and the second transmission line are arranged in parallel with each other. When a high-frequency signal propagates on a coupled line, an even-mode propagation mode in which the current flowing through the first transmission line and the current flowing through the second transmission line are in phase, and the current flowing through the first transmission line, An odd-mode propagation mode occurs in which the current flowing through the second transmission line is out of phase. In the phase shifter, the phase shift of the high frequency signal according to the difference between the propagation speed of the even mode in the high frequency signal and the propagation speed of the odd mode in the high frequency signal is realized.
 非特許文献1に開示されている移相器では、結合線路の結合度を高めれば、高周波信号の移相量を増やすことができる。結合線路の結合度を高めるには、第1の伝送線路と第2の伝送線路との間隔を狭める必要がある。しかし、移相器を回路基板に形成するような場合、第1の伝送線路と第2の伝送線路との間隔を無限に狭めることはできないため、所望の移相量を実現できないことがあるという課題があった。 In the phase shifter disclosed in Non-Patent Document 1, the phase shift amount of the high frequency signal can be increased by increasing the coupling degree of the coupling line. In order to increase the degree of coupling of the coupled lines, it is necessary to narrow the distance between the first transmission line and the second transmission line. However, when a phase shifter is formed on a circuit board, the distance between the first transmission line and the second transmission line cannot be narrowed infinitely, so that the desired phase shift amount may not be achieved. There was a challenge.
 本開示は、上記のような課題を解決するためになされたもので、結合線路の結合度を高めることなく、所望の移相量を実現することができる移相器を得ることを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and an object of the present disclosure is to obtain a phase shifter capable of achieving a desired phase shift amount without increasing the coupling degree of the coupling line. ..
 本開示に係る移相器は、一端に与えられた高周波信号が他端まで伝搬する第1の伝送線路と、第1の伝送線路の他端と一端が接続されている第2の伝送線路と、第2の伝送線路の他端と一端が接続されている第3の伝送線路とを有し、第1の伝送線路を伝搬してきた高周波信号が第2の伝送線路及び第3の伝送線路のそれぞれを伝搬するとき、偶モードの伝搬モードと奇モードの伝搬モードとが発生する結合線路と、第3の伝送線路の他端と一端が接続されており、結合線路を伝搬してきた高周波信号が伝搬する第4の伝送線路と、第1の伝送線路及び第4の伝送線路のうち、1つ以上の伝送線路と一端が接続されており、高周波信号における偶モードの伝搬速度を調整する移相調整回路とを備えるものである。 The phase shifter according to the present disclosure includes a first transmission line in which a high-frequency signal given to one end propagates to the other end, and a second transmission line in which the other end and one end of the first transmission line are connected. , A third transmission line to which the other end and one end of the second transmission line are connected, and the high frequency signal propagating through the first transmission line is that of the second transmission line and the third transmission line. When propagating each, the coupled line in which the even mode propagation mode and the odd mode propagation mode occur, and the other end and one end of the third transmission line are connected, and the high frequency signal propagating through the coupled line is One end of the propagating fourth transmission line and one or more of the first transmission line and the fourth transmission line are connected to each other, and the phase shift that adjusts the propagation speed of the even mode in the high frequency signal. It is equipped with an adjustment circuit.
 本開示によれば、結合線路の結合度を高めることなく、所望の移相量を実現することができる。 According to the present disclosure, a desired phase shift amount can be realized without increasing the degree of coupling of the coupling line.
実施の形態1に係る移相器1を示す構成図である。It is a block diagram which shows the phase shifter 1 which concerns on Embodiment 1. FIG. 偶モードの反射係数S11eを示す説明図である。It is explanatory drawing which shows the reflection coefficient S11e of an even mode. 奇モードの反射係数S11oを示す説明図である。It is explanatory drawing which shows the reflection coefficient S11o of an odd mode. 相対位相回路20における偶モードの反射係数S11eの群遅延についてのシミュレーション結果を示す説明図である。It is explanatory drawing which shows the simulation result about the group delay of the reflection coefficient S11e of the even mode in a relative phase circuit 20. 基準位相回路10の通過位相φと相対位相回路20の通過位相φとの位相差Δφのシミュレーション結果を示す説明図である。Is an explanatory diagram showing the simulation results of the phase difference Δφ between a passing phase phi 2 of the passing phase phi 1 and the relative phase shift circuit 20 of the reference phase circuit 10. 実施の形態2に係る移相器1を示す構成図である。It is a block diagram which shows the phase shifter 1 which concerns on Embodiment 2. FIG. 図7Aは、基準位相回路10の回路パターンを示す説明図、図7Bは、第1のオープンスタブ27a及び第2のオープンスタブ27bを備えていない相対位相回路20を示す説明図。図7Cは、第1のオープンスタブ27a及び第2のオープンスタブ27bのそれぞれが、結合線路22と同じ側に配置されている相対位相回路20を示す説明図、図7Dは、第1のオープンスタブ27a及び第2のオープンスタブ27bのそれぞれが、結合線路22と反対側に配置されている相対位相回路20を示す説明図である。FIG. 7A is an explanatory diagram showing a circuit pattern of the reference phase circuit 10, and FIG. 7B is an explanatory diagram showing a relative phase circuit 20 having no first open stub 27a and a second open stub 27b. FIG. 7C is an explanatory diagram showing a relative phase circuit 20 in which each of the first open stub 27a and the second open stub 27b is arranged on the same side as the coupling line 22, and FIG. 7D is an explanatory diagram showing the first open stub. It is explanatory drawing which shows the relative phase circuit 20 which each 27a and the 2nd open stub 27b are arranged on the opposite side to the coupling line 22. 基準位相回路10の回路パターン、相対位相回路Aの回路パターン、相対位相回路Bの回路パターン及び相対位相回路Cの回路パターンにおけるそれぞれの群遅延特性のシミュレーション結果を示す説明図である。It is explanatory drawing which shows the simulation result of each group delay characteristic in the circuit pattern of the reference phase circuit 10, the circuit pattern of the relative phase circuit A, the circuit pattern of the relative phase circuit B, and the circuit pattern of the relative phase circuit C. 基準位相回路10の回路パターン、相対位相回路Aの回路パターン、相対位相回路Bの回路パターン及び相対位相回路Cの回路パターンにおけるそれぞれの通過振幅特性のシミュレーション結果を示す説明図である。It is explanatory drawing which shows the simulation result of each passing amplitude characteristic in the circuit pattern of the reference phase circuit 10, the circuit pattern of the relative phase circuit A, the circuit pattern of the relative phase circuit B, and the circuit pattern of the relative phase circuit C. 相対位相回路Aを備える移相器1、相対位相回路Bを備える移相器1及び相対位相回路Cを備える移相器1におけるそれぞれの位相差Δφのシミュレーション結果を示す説明図である。It is explanatory drawing which shows the simulation result of each phase difference Δφ in the phase shifter 1 which has a relative phase circuit A, the phase shifter 1 which has a relative phase circuit B, and the phase shifter 1 which has a relative phase circuit C. 実施の形態3に係る歪補償回路を示す構成図である。It is a block diagram which shows the distortion compensation circuit which concerns on Embodiment 3. 入力端子30に与えられる高周波信号RFの電力に対する歪補償回路の相対利得特性のシミュレーション結果を示す説明図である。It is explanatory drawing which shows the simulation result of the relative gain characteristic of the distortion compensation circuit with respect to the electric power of a high frequency signal RF given to an input terminal 30. 入力端子30に与えられる高周波信号RFの電力に対する歪補償回路の位相特性のシミュレーション結果を示す説明図である。It is explanatory drawing which shows the simulation result of the phase characteristic of the distortion compensation circuit with respect to the electric power of a high frequency signal RF given to an input terminal 30. 規格化周波数に対する歪補償回路の振幅変動量特性の計算結果を示す説明図である。It is explanatory drawing which shows the calculation result of the amplitude fluctuation amount characteristic of the distortion compensation circuit with respect to the standardized frequency. 規格化周波数に対する歪補償回路の位相変動量特性の計算結果を示す説明図である。It is explanatory drawing which shows the calculation result of the phase fluctuation amount characteristic of the distortion compensation circuit with respect to the standardized frequency.
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present disclosure in more detail, a mode for carrying out the present disclosure will be described in accordance with the attached drawings.
実施の形態1.
 図1は、実施の形態1に係る移相器1を示す構成図である。
 図1に示す移相器1は、基準位相回路10及び相対位相回路20を備えている。
 入力端子2aは、外部から高周波信号が与えられる端子である。
 出力端子3aは、基準位相回路10から出力された高周波信号を外部に出力するための端子である。
 入力端子2bは、外部から高周波信号が与えられる端子である。入力端子2aに与えられる高周波信号と入力端子2bに与えられる高周波信号とは、同振幅及び同位相の高周波信号である。しかし、2つの高周波信号の振幅は、厳密に同振幅であるものに限るものではなく、実用上問題のない範囲で異なっていてもよい。また、2つの高周波信号の位相は、厳密に同位相であるものに限るものではなく、実用上問題のない範囲で異なっていてもよい。
 出力端子3bは、相対位相回路20から出力された高周波信号を外部に出力するための端子である。
Embodiment 1.
FIG. 1 is a configuration diagram showing a phase shifter 1 according to the first embodiment.
The phase shifter 1 shown in FIG. 1 includes a reference phase circuit 10 and a relative phase circuit 20.
The input terminal 2a is a terminal to which a high frequency signal is given from the outside.
The output terminal 3a is a terminal for outputting a high frequency signal output from the reference phase circuit 10 to the outside.
The input terminal 2b is a terminal to which a high frequency signal is given from the outside. The high frequency signal given to the input terminal 2a and the high frequency signal given to the input terminal 2b are high frequency signals having the same amplitude and the same phase. However, the amplitudes of the two high-frequency signals are not limited to those having exactly the same amplitude, and may be different within a range where there is no practical problem. Further, the phases of the two high frequency signals are not limited to those having exactly the same phase, and may be different within a range where there is no practical problem.
The output terminal 3b is a terminal for outputting a high frequency signal output from the relative phase circuit 20 to the outside.
 基準位相回路10は、第5の伝送線路11を備えている。
 第5の伝送線路11の一端は、入力端子2aと接続され、第5の伝送線路11の他端は、出力端子3aと接続されている。
 入力端子2aから入力された高周波信号は、第5の伝送線路11を伝搬する。第5の伝送線路11を伝搬した高周波信号は、出力端子3aから外部に出力される。
The reference phase circuit 10 includes a fifth transmission line 11.
One end of the fifth transmission line 11 is connected to the input terminal 2a, and the other end of the fifth transmission line 11 is connected to the output terminal 3a.
The high frequency signal input from the input terminal 2a propagates on the fifth transmission line 11. The high frequency signal propagating through the fifth transmission line 11 is output to the outside from the output terminal 3a.
 相対位相回路20は、第1の伝送線路21、結合線路22、第4の伝送線路25、第1の移相調整回路26a及び第2の移相調整回路26bを備えている。
 結合線路22は、第2の伝送線路23及び第3の伝送線路24を備えている。
 図1に示す移相器1は、第1の移相調整回路26a及び第2の移相調整回路26bを備えている。しかし、移相器1は、第1の移相調整回路26a及び第2の移相調整回路26bのうち、いずれかの移相調整回路26を備えていればよく、第1の移相調整回路26a、又は、第2の移相調整回路26bを備えるものであってもよい。以下、第1の移相調整回路26aと第2の移相調整回路26bとを区別しないときは、移相調整回路26のように表記する。
The relative phase circuit 20 includes a first transmission line 21, a coupling line 22, a fourth transmission line 25, a first phase shift adjustment circuit 26a, and a second phase shift adjustment circuit 26b.
The coupling line 22 includes a second transmission line 23 and a third transmission line 24.
The phase shifter 1 shown in FIG. 1 includes a first phase shift adjustment circuit 26a and a second phase shift adjustment circuit 26b. However, the phase shifter 1 may include any of the phase shift adjustment circuits 26 of the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b, and the first phase shift adjustment circuit 26a or a second phase shift adjusting circuit 26b may be provided. Hereinafter, when the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b are not distinguished, they are described as the phase shift adjustment circuit 26.
 第1の伝送線路21の一端は、入力端子2bと接続され、第1の伝送線路21の他端は、第2の伝送線路23の一端と接続されている。
 入力端子2bから入力された高周波信号は、第1の伝送線路21を伝搬する。
One end of the first transmission line 21 is connected to the input terminal 2b, and the other end of the first transmission line 21 is connected to one end of the second transmission line 23.
The high frequency signal input from the input terminal 2b propagates on the first transmission line 21.
 結合線路22では、第1の伝送線路21を伝搬してきた高周波信号が第2の伝送線路23及び第3の伝送線路24のそれぞれを伝搬するときに、偶モードの伝搬モードと奇モードの伝搬モードとが発生する。
 偶モードの伝搬モードは、高周波信号が結合線路22を伝搬するとき、第2の伝送線路23を流れる電流と、第3の伝送線路24を流れる電流とが同相となる伝搬モードである。
 奇モードの伝搬モードは、高周波信号が結合線路22を伝搬するとき、第2の伝送線路23を流れる電流と、第3の伝送線路24を流れる電流とが逆相となる伝搬モードである。
 第2の伝送線路23の一端は、第1の伝送線路21の他端と接続され、第2の伝送線路23の他端は、第3の伝送線路24の一端と接続されている。
 第3の伝送線路24の一端は、第2の伝送線路23の他端と接続され、第3の伝送線路24の他端は、第4の伝送線路25の一端と接続されている。
 第2の伝送線路23と第3の伝送線路24とは、互いに平行に配置されている。
In the coupled line 22, when the high frequency signal propagating on the first transmission line 21 propagates on each of the second transmission line 23 and the third transmission line 24, the propagation mode of the even mode and the propagation mode of the odd mode And occur.
The propagation mode of the even mode is a propagation mode in which when the high frequency signal propagates on the coupled line 22, the current flowing through the second transmission line 23 and the current flowing through the third transmission line 24 are in phase with each other.
The propagation mode of the odd mode is a propagation mode in which when the high frequency signal propagates on the coupled line 22, the current flowing through the second transmission line 23 and the current flowing through the third transmission line 24 are in opposite phases.
One end of the second transmission line 23 is connected to the other end of the first transmission line 21, and the other end of the second transmission line 23 is connected to one end of the third transmission line 24.
One end of the third transmission line 24 is connected to the other end of the second transmission line 23, and the other end of the third transmission line 24 is connected to one end of the fourth transmission line 25.
The second transmission line 23 and the third transmission line 24 are arranged in parallel with each other.
 第4の伝送線路25の一端は、第3の伝送線路24の他端と接続され、第4の伝送線路25の他端は、出力端子3bと接続されている。
 第3の伝送線路24を伝搬してきた高周波信号は、第4の伝送線路25を伝搬する。
One end of the fourth transmission line 25 is connected to the other end of the third transmission line 24, and the other end of the fourth transmission line 25 is connected to the output terminal 3b.
The high frequency signal propagating on the third transmission line 24 propagates on the fourth transmission line 25.
 第1の移相調整回路26aの一端は、第1の伝送線路21と接続されている。
 第1の移相調整回路26aは、高周波信号における偶モードの伝搬速度を調整する。
 第1の移相調整回路26aは、例えば、容量性素子によって実現される。
 第1の移相調整回路26aが容量性素子によって実現される場合、容量性素子の一端は、第1の伝送線路21と接続され、容量性素子の他端は、接地される。
One end of the first phase shift adjusting circuit 26a is connected to the first transmission line 21.
The first phase shift adjusting circuit 26a adjusts the propagation velocity of the even mode in the high frequency signal.
The first phase shift adjusting circuit 26a is realized by, for example, a capacitive element.
When the first phase shift adjusting circuit 26a is realized by the capacitive element, one end of the capacitive element is connected to the first transmission line 21 and the other end of the capacitive element is grounded.
 第2の移相調整回路26bの一端は、第4の伝送線路25と接続されている。
 第2の移相調整回路26bは、高周波信号における偶モードの伝搬速度を調整する。
 第2の移相調整回路26bは、例えば、容量性素子によって実現される。
 第2の移相調整回路26bが容量性素子によって実現される場合、容量性素子の一端は、第4の伝送線路25と接続され、容量性素子の他端は、接地される。
One end of the second phase shift adjusting circuit 26b is connected to the fourth transmission line 25.
The second phase shift adjusting circuit 26b adjusts the propagation velocity of the even mode in the high frequency signal.
The second phase shift adjusting circuit 26b is realized by, for example, a capacitive element.
When the second phase shift adjusting circuit 26b is realized by the capacitive element, one end of the capacitive element is connected to the fourth transmission line 25, and the other end of the capacitive element is grounded.
 次に、図1に示す移相器1の動作について説明する。
 入力端子2aには、高周波信号RFが与えられ、入力端子2bには、高周波信号RFが与えられる。
 入力端子2aから入力された高周波信号RFは、基準位相回路10における第5の伝送線路11を伝搬する。第5の伝送線路11を伝搬した高周波信号RFは、出力端子3aから外部に出力される。
 図1に示す移相器1では、高周波信号RFにおける基準位相回路10の通過位相がφである。
Next, the operation of the phase shifter 1 shown in FIG. 1 will be described.
The high frequency signal RF 1 is given to the input terminal 2a, and the high frequency signal RF 2 is given to the input terminal 2b.
The high frequency signal RF 1 input from the input terminal 2a propagates on the fifth transmission line 11 in the reference phase circuit 10. The high frequency signal RF 1 propagating through the fifth transmission line 11 is output to the outside from the output terminal 3a.
In the phase shifter 1 shown in FIG. 1, the passing phase of the reference phase circuit 10 in the high-frequency signal RF 1 is phi 1.
 入力端子2bから入力された高周波信号RFは、相対位相回路20における第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれを伝搬する。第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれを伝搬した高周波信号RFは、出力端子3bから外部に出力される。
 高周波信号RFが第1の伝送線路21を伝搬する際、第1の移相調整回路26aによって、特定周波数の位相速度が速められ、高周波信号RFが第4の伝送線路25を伝搬する際、第2の移相調整回路26bによって、特定周波数の位相速度が速められる。
 したがって、高周波信号RFにおける相対位相回路20の通過位相φは、高周波信号RFにおける基準位相回路10の通過位相φと異なる。特定周波数は、高周波信号RF及び高周波信号RFにおけるそれぞれの周波数である。
The high frequency signal RF 2 input from the input terminal 2b propagates on each of the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the relative phase circuit 20. The high frequency signal RF 2 propagating through each of the first transmission line 21, the coupling line 22, and the fourth transmission line 25 is output to the outside from the output terminal 3b.
When the high frequency signal RF 2 propagates on the first transmission line 21, the phase velocity of a specific frequency is accelerated by the first phase shift adjustment circuit 26a, and when the high frequency signal RF 2 propagates on the fourth transmission line 25. , The second phase shift adjustment circuit 26b accelerates the phase velocity of a specific frequency.
Therefore, the passing phase φ 2 of the relative phase circuit 20 in the high frequency signal RF 2 is different from the passing phase φ 1 of the reference phase circuit 10 in the high frequency signal RF 1. The specific frequency is the respective frequency in the high frequency signal RF 1 and the high frequency signal RF 2.
 結合線路22では、第1の伝送線路21を伝搬してきた高周波信号RFが第2の伝送線路23及び第3の伝送線路24のそれぞれを伝搬するときに、偶モードの伝搬モードと奇モードの伝搬モードとが発生する。
 移相器1では、高周波信号RFにおける偶モードの伝搬速度Vと、高周波信号RFにおける奇モードの伝搬速度Vとの差分ΔVに応じた高周波信号RFの移相が実現される。差分ΔVに応じた高周波信号RFの移相の移相量psは、結合線路22の結合度によって決定される。
 また、第1の移相調整回路26a及び第2の移相調整回路26bのそれぞれは、高周波信号RFにおける偶モードの伝搬速度Vを調整することができるため、偶モードの伝搬速度Vと奇モードの伝搬速度Vとの差分ΔVを調整することができる。したがって、結合線路22の結合度を高めることなく、所望の移相量psを実現することができる。
 第1の移相調整回路26a及び第2の移相調整回路26bのそれぞれが容量性素子によって実現される場合、容量性素子の容量に応じて、偶モードの伝搬速度Vが変化するため、容量性素子の容量を変えることによって、所望の移相量psを実現することができる。
 図1に示す移相器1では、通過位相φと通過位相φとの位相差Δφが、例えば、180度×n(n=1,2,・・・)に調整される。
 なお、容量性素子の使用可能な容量Cとしては、結合線路22の電気長がθであるとき、高周波信号RFの周波数fと容量Cとによって形成されるインピーダンスZc(=-j×(2πfC))の通過位相が、0.5×θ以下となる条件を満足するものであればよい。
In the coupled line 22, when the high frequency signal RF 2 propagating on the first transmission line 21 propagates on each of the second transmission line 23 and the third transmission line 24, the propagation mode of the even mode and the odd mode are used. Propagation mode occurs.
In the phase shifter 1, and the propagation velocity V e of the even mode in the high-frequency signal RF 2, phase of the high frequency signal RF 2 is achieved according to the difference ΔV between the propagation velocity V o of the odd mode in the high-frequency signal RF 2 .. The phase shift amount ps of the phase shift of the high frequency signal RF 2 according to the difference ΔV is determined by the coupling degree of the coupling line 22.
Further, each of the first phase adjustment circuit 26a and the second phase adjustment circuit 26b, it is possible to adjust the propagation velocity V e of the even mode in the high-frequency signal RF 2, propagation velocity V e of the even mode it is possible to adjust the difference ΔV between the propagation velocity V o of an odd mode. Therefore, a desired phase shift amount ps can be realized without increasing the degree of coupling of the coupling line 22.
If each of the first phase adjustment circuit 26a and the second phase adjustment circuit 26b is realized by a capacitive element, in accordance with the capacity of the capacitive element, the propagation velocity V e of the even mode is changed, By changing the capacitance of the capacitive element, a desired phase shift amount ps can be realized.
In the phase shifter 1 shown in FIG. 1, the phase difference Δφ between the passing phase φ 1 and the passing phase φ 2 is adjusted to, for example, 180 degrees × n (n = 1, 2, ...).
The usable capacitance C of the capacitive element is the impedance Zc (= −j × (= −j ×) formed by the frequency f of the high frequency signal RF 2 and the capacitance C when the electrical length of the coupling line 22 is θ 1. It suffices as long as it satisfies the condition that the passing phase of 2πfC)) is 0.5 × θ 1 or less.
 図2は、偶モードの反射係数S11eを示す説明図である。
 図3は、奇モードの反射係数S11oを示す説明図である。
 図1に示す移相器1では、結合線路22が、第2の伝送線路23及び第3の伝送線路24を備え、第2の伝送線路23と第3の伝送線路24とが互いに平行に配置されている。
 そして、図1に示す移相器1では、第2の伝送線路23と第3の伝送線路24との間の境界を対称軸として、第2の伝送線路23と第3の伝送線路24との接続点よりも入力端子2b側の構成要素と、当該接続点よりも出力端子3b側の構成要素とが対称になっている。
 接続点よりも入力端子2b側の構成要素は、第1の伝送線路21及び第2の伝送線路23であり、接続点よりも出力端子3b側の構成要素は、第3の伝送線路24及び第4の伝送線路25である。
 第2の伝送線路23と第3の伝送線路24との間の境界が、図2に示すように、磁気壁であるとすれば、高周波信号RFの入力端子2bに対する反射係数は、偶モードの反射係数S11eである。
 第2の伝送線路23と第3の伝送線路24との間の境界が、図3に示すように、電気壁であるとすれば、高周波信号RFの入力端子2bに対する反射係数は、奇モードの反射係数S11eである。
FIG. 2 is an explanatory diagram showing a reflection coefficient S11e in the even mode.
FIG. 3 is an explanatory diagram showing the reflection coefficient S11o in the odd mode.
In the phase shifter 1 shown in FIG. 1, the coupling line 22 includes a second transmission line 23 and a third transmission line 24, and the second transmission line 23 and the third transmission line 24 are arranged in parallel with each other. Has been done.
Then, in the phase shifter 1 shown in FIG. 1, the second transmission line 23 and the third transmission line 24 are arranged with the boundary between the second transmission line 23 and the third transmission line 24 as the axis of symmetry. The component on the input terminal 2b side of the connection point and the component on the output terminal 3b side of the connection point are symmetrical.
The components on the input terminal 2b side of the connection point are the first transmission line 21 and the second transmission line 23, and the components on the output terminal 3b side of the connection point are the third transmission line 24 and the second transmission line 23. 4 is the transmission line 25.
Assuming that the boundary between the second transmission line 23 and the third transmission line 24 is a magnetic wall as shown in FIG. 2, the reflectance coefficient of the high frequency signal RF 2 with respect to the input terminal 2b is an even mode. Reflection coefficient S11e.
Assuming that the boundary between the second transmission line 23 and the third transmission line 24 is an electric wall as shown in FIG. 3, the reflectance coefficient of the high frequency signal RF 2 with respect to the input terminal 2b is an odd mode. Reflection coefficient S11e.
 相対位相回路20の反射係数S11は、偶モードの反射係数S11e及び奇モードの反射係数S11eを用いることによって、以下の式(1)のように表される。

Figure JPOXMLDOC01-appb-I000001
 また、相対位相回路20の透過係数S21は、偶モードの反射係数S11e及び奇モードの反射係数S11eを用いることによって、以下の式(2)のように表される。

Figure JPOXMLDOC01-appb-I000002
 反射係数S11、透過係数S21、反射係数S11e及び反射係数S11eのそれぞれは、複素ベクトルである。
The reflection coefficient S11 of the relative phase circuit 20 is expressed by the following equation (1) by using the reflection coefficient S11e in the even mode and the reflection coefficient S11e in the odd mode.

Figure JPOXMLDOC01-appb-I000001
Further, the transmission coefficient S21 of the relative phase circuit 20 is expressed by the following equation (2) by using the reflection coefficient S11e in the even mode and the reflection coefficient S11e in the odd mode.

Figure JPOXMLDOC01-appb-I000002
Each of the reflection coefficient S11, the transmission coefficient S21, the reflection coefficient S11e, and the reflection coefficient S11e is a complex vector.
 反射係数S11の大きさを|S11|、反射係数S11の位相角度を∠S11とすると、反射係数S11は、以下の式(3)のように表される。

Figure JPOXMLDOC01-appb-I000003
Assuming that the magnitude of the reflection coefficient S11 is | S11 | and the phase angle of the reflection coefficient S11 is ∠S11, the reflection coefficient S11 is expressed by the following equation (3).

Figure JPOXMLDOC01-appb-I000003
 透過係数S21の大きさを|S21|、透過係数S21の位相角度を∠S21とすると、透過係数S21は、以下の式(4)のように表される。

Figure JPOXMLDOC01-appb-I000004
Assuming that the magnitude of the transmission coefficient S21 is | S21 | and the phase angle of the transmission coefficient S21 is ∠S21, the transmission coefficient S21 is expressed by the following equation (4).

Figure JPOXMLDOC01-appb-I000004
 ここで、偶モードの反射係数S11eの大きさ|S11e|と、奇モードの反射係数S11eの大きさ|S11o|とがほぼ等しいと仮定すると、相対位相回路20において、反射不整合を生じさせない条件は、以下の式(6)に示す通りとなる。
∠S11e=-∠S11o (6)
 このときの通過位相∠S21は、以下の式(7)のようになる。
∠S21=-2×∠S11o=2×∠S11e      (7)
Here, assuming that the magnitude | S11e | of the reflection coefficient S11e in the even mode and the magnitude | S11o | of the reflection coefficient S11e in the odd mode are substantially equal, a condition that does not cause reflection mismatch in the relative phase circuit 20. Is as shown in the following equation (6).
∠S11e = -∠S11o (6)
The passing phase ∠S21 at this time is as shown in the following equation (7).
∠S21 = -2 × ∠S11o = 2 × ∠S11e (7)
 図4は、相対位相回路20における偶モードの反射係数S11eの群遅延についてのシミュレーション結果を示す説明図である。
 図4に示すシミュレーション結果に係る高周波信号の周波数は、18[GHz]から25[GHz]の範囲である。
 図4において、実線は、移相器1が第1の移相調整回路26a及び第2の移相調整回路26bを備えている場合の相対位相回路20についての偶モードの反射係数S11eの群遅延を示している。破線は、移相器1が第1の移相調整回路26a及び第2の移相調整回路26bを備えていない場合の相対位相回路20についての偶モードの反射係数S11eの群遅延を示している。
 周波数が例えば22[GHz]であれば、移相器1が第1の移相調整回路26a及び第2の移相調整回路26bを備えていなければ、偶モードの反射係数S11eの群遅延が60[psec]である。一方、移相器1が第1の移相調整回路26a及び第2の移相調整回路26bを備えていれば、偶モードの反射係数S11eの群遅延が約100[psec]である。
 したがって、第1の移相調整回路26a及び第2の移相調整回路26bを備える移相器1は、第1の移相調整回路26a及び第2の移相調整回路26bを備えていない移相器1と比べて、偶モードの伝搬速度Vを速めることができる。
FIG. 4 is an explanatory diagram showing a simulation result of the group delay of the reflection coefficient S11e in the even mode in the relative phase circuit 20.
The frequency of the high frequency signal according to the simulation result shown in FIG. 4 is in the range of 18 [GHz] to 25 [GHz].
In FIG. 4, the solid line shows the group delay of the reflectance coefficient S11e of the even mode for the relative phase circuit 20 when the phase shifter 1 includes the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b. Is shown. The broken line indicates the group delay of the reflectance coefficient S11e of the even mode for the relative phase circuit 20 when the phase shifter 1 does not include the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b. ..
If the frequency is, for example, 22 [GHz], the group delay of the reflectance coefficient S11e in even mode is 60 if the phase shifter 1 does not include the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b. [Psec]. On the other hand, if the phase shifter 1 includes the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b, the group delay of the reflection coefficient S11e in the even mode is about 100 [psec].
Therefore, the phase shifter 1 provided with the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b does not include the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b. compared with vessel 1, it is possible to increase the propagation velocity V e of the even mode.
 図5は、基準位相回路10の通過位相φと相対位相回路20の通過位相φとの位相差Δφのシミュレーション結果を示す説明図である。
 図5において、実線は、移相器1が第1の移相調整回路26a及び第2の移相調整回路26bを備えている場合の位相差Δφを示している。破線は、移相器1が第1の移相調整回路26a及び第2の移相調整回路26bを備えていない場合の位相差Δφを示している。
 位相差Δφのシミュレーションでは、偶モードインピーダンスZeが85Ω、奇モードインピーダンスZoが25Ω、偶モードインピーダンスと奇モードインピーダンスとの比ρが3.4、相対位相回路20における結合線路22の電気長θが90度、基準位相回路10の電気長と相対位相回路20の電気長との比Kが4である。
 また、基準位相回路10の電気長は、22[GHz]の周波数における位相差Δφが180度となるように、K=4±0.5程度の範囲で調整されている。
 移相器1が第1の移相調整回路26a及び第2の移相調整回路26bを備えていない場合、位相差Δφ=180度となる周波数が約22[GHz]に限られている。
 一方、移相器1が第1の移相調整回路26a及び第2の移相調整回路26bを備えている場合、位相差Δφ=180度となる周波数が21[GHz]~23[GHz]の範囲となる。
 したがって、第1の移相調整回路26a及び第2の移相調整回路26bを備える移相器1は、第1の移相調整回路26a及び第2の移相調整回路26bを備えていない移相器1と比べて、Δφ=180度を維持できる周波数が広くなり、広帯域な位相差特性が得られる。
Figure 5 is an explanatory diagram showing the simulation results of the phase difference Δφ between a passing phase phi 2 of the passing phase phi 1 and the relative phase shift circuit 20 of the reference phase circuit 10.
In FIG. 5, the solid line shows the phase difference Δφ when the phase shifter 1 includes the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b. The broken line shows the phase difference Δφ when the phase shifter 1 does not include the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b.
In the simulation of the phase difference Δφ, the even-mode impedance Ze is 85Ω, the odd-mode impedance Zo is 25Ω, the ratio ρ of the even-mode impedance to the odd-mode impedance is 3.4, and the electrical length θ 1 of the coupling line 22 in the relative phase circuit 20. Is 90 degrees, and the ratio K of the electric length of the reference phase circuit 10 and the electric length of the relative phase circuit 20 is 4.
Further, the electrical length of the reference phase circuit 10 is adjusted in the range of about K = 4 ± 0.5 so that the phase difference Δφ at the frequency of 22 [GHz] is 180 degrees.
When the phase shifter 1 does not include the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b, the frequency at which the phase difference Δφ = 180 degrees is limited to about 22 [GHz].
On the other hand, when the phase shifter 1 includes the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b, the frequency at which the phase difference Δφ = 180 degrees is 21 [GHz] to 23 [GHz]. It becomes a range.
Therefore, the phase shifter 1 provided with the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b does not include the first phase shift adjustment circuit 26a and the second phase shift adjustment circuit 26b. Compared with the device 1, the frequency at which Δφ = 180 degrees can be maintained becomes wider, and a wide-band phase difference characteristic can be obtained.
 以上の実施の形態1では、一端に与えられた高周波信号が他端まで伝搬する第1の伝送線路21と、第1の伝送線路21の他端と一端が接続されている第2の伝送線路23と、第2の伝送線路23の他端と一端が接続されている第3の伝送線路24とを有し、第1の伝送線路21を伝搬してきた高周波信号が第2の伝送線路23及び第3の伝送線路24のそれぞれを伝搬するとき、偶モードの伝搬モードと奇モードの伝搬モードとが発生する結合線路22と、第3の伝送線路24の他端と一端が接続されており、結合線路22を伝搬してきた高周波信号が伝搬する第4の伝送線路25と、第1の伝送線路21及び第4の伝送線路25のうち、1つ以上の伝送線路と一端が接続されており、高周波信号における偶モードの伝搬速度を調整する移相調整回路26とを備えるように、移相器1を構成した。したがって、移相器1は、結合線路22の結合度を高めることなく、所望の移相量を実現することができる。 In the first embodiment as described above, the first transmission line 21 in which the high frequency signal given to one end propagates to the other end and the second transmission line in which the other end and one end of the first transmission line 21 are connected. 23 and a third transmission line 24 having one end connected to the other end of the second transmission line 23, and a high-frequency signal propagating through the first transmission line 21 is the second transmission line 23 and When propagating through each of the third transmission lines 24, the coupled line 22 in which the propagation mode of the even mode and the propagation mode of the odd mode are generated is connected to the other end and one end of the third transmission line 24. One end of the fourth transmission line 25 through which the high-frequency signal propagating the coupled line 22 propagates is connected to one or more of the first transmission line 21 and the fourth transmission line 25. The phase shifter 1 is configured to include a phase shift adjustment circuit 26 for adjusting the propagation speed of the even mode in a high frequency signal. Therefore, the phase shifter 1 can realize a desired phase shift amount without increasing the degree of coupling of the coupling line 22.
実施の形態2.
 実施の形態2では、第1の移相調整回路26aが第1のオープンスタブ27aを備え、第2の移相調整回路26bが第2のオープンスタブ27bを備えている移相器1について説明する。
Embodiment 2.
In the second embodiment, the phase shifter 1 in which the first phase shift adjustment circuit 26a includes the first open stub 27a and the second phase shift adjustment circuit 26b includes the second open stub 27b will be described. ..
 図6は、実施の形態2に係る移相器1を示す構成図である。図6において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 図6に示す移相器1は、説明の便宜上、x-y平面に配置されているものとする。
 基準位相回路10は、第5の伝送線路12を備えている。
 第5の伝送線路12は、伝送線路12a,12b,12c,12d,12eを含んでいる。
FIG. 6 is a block diagram showing the phase shifter 1 according to the second embodiment. In FIG. 6, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
The phase shifter 1 shown in FIG. 6 is assumed to be arranged in the xy plane for convenience of explanation.
The reference phase circuit 10 includes a fifth transmission line 12.
The fifth transmission line 12 includes transmission lines 12a, 12b, 12c, 12d, 12e.
 伝送線路12aの一端は、入力端子2aと接続され、伝送線路12aの他端は、伝送線路12bの一端と接続されている。
 伝送線路12bの一端は、伝送線路12aの他端と接続され、伝送線路12bの他端は、伝送線路12cの一端と接続されている。
 伝送線路12cの一端は、伝送線路12bの他端と接続され、伝送線路12cの他端は、伝送線路12dの一端と接続されている。
 伝送線路12dの一端は、伝送線路12cの他端と接続され、伝送線路12dの他端は、伝送線路12eの一端と接続されている。
 伝送線路12eの一端は、伝送線路12dの他端と接続され、伝送線路12eの他端は、出力端子3aと接続されている。
One end of the transmission line 12a is connected to the input terminal 2a, and the other end of the transmission line 12a is connected to one end of the transmission line 12b.
One end of the transmission line 12b is connected to the other end of the transmission line 12a, and the other end of the transmission line 12b is connected to one end of the transmission line 12c.
One end of the transmission line 12c is connected to the other end of the transmission line 12b, and the other end of the transmission line 12c is connected to one end of the transmission line 12d.
One end of the transmission line 12d is connected to the other end of the transmission line 12c, and the other end of the transmission line 12d is connected to one end of the transmission line 12e.
One end of the transmission line 12e is connected to the other end of the transmission line 12d, and the other end of the transmission line 12e is connected to the output terminal 3a.
 第5の伝送線路12は、途中で折り曲げられている。即ち、伝送線路12aは、x軸と平行に配置されており、高周波信号RFの伝搬方向が+x方向である。
 伝送線路12bは、y軸と平行に配置されており、高周波信号RFの伝搬方向が+y方向である。
 伝送線路12cは、x軸と平行に配置されており、高周波信号RFの伝搬方向が+x方向である。
 伝送線路12dは、y軸と平行に配置されており、高周波信号RFの伝搬方向が-y方向である。
 伝送線路12eは、x軸と平行に配置されており、高周波信号RFの伝搬方向が+x方向である。
 図6に示す移相器1では、基準位相回路10が、途中で折り曲げられている第5の伝送線路12を備えている。しかし、これは一例に過ぎず、基準位相回路10が、図1に示す第5の伝送線路11を備えていてもよい。
The fifth transmission line 12 is bent in the middle. That is, the transmission line 12a is arranged parallel to the x-axis, and the propagation direction of the high-frequency signal RF 1 is the + x direction.
The transmission line 12b is arranged in parallel with the y-axis, and the propagation direction of the high-frequency signal RF 1 is the + y direction.
The transmission line 12c is arranged parallel to the x-axis, and the propagation direction of the high-frequency signal RF 1 is the + x direction.
The transmission line 12d is arranged in parallel with the y-axis, and the propagation direction of the high-frequency signal RF 1 is the −y direction.
The transmission line 12e is arranged parallel to the x-axis, and the propagation direction of the high-frequency signal RF 1 is the + x direction.
In the phase shifter 1 shown in FIG. 6, the reference phase circuit 10 includes a fifth transmission line 12 that is bent in the middle. However, this is only an example, and the reference phase circuit 10 may include the fifth transmission line 11 shown in FIG.
 第1の伝送線路21は、x軸と平行に配置されており、第4の伝送線路25は、x軸と平行に配置されている。
 第2の伝送線路23は、y軸と平行に配置されており、第3の伝送線路24は、y軸と平行に配置されている。
 第1の伝送線路21の配置及び第4の伝送線路25の配置のそれぞれは、厳密にx軸と平行に配置されているものに限るものではなく、実用上問題のない範囲でx軸と非平行に配置されていてもよい。
 第2の伝送線路23の配置及び第3の伝送線路24の配置のそれぞれは、厳密にy軸と平行に配置されているものに限るものではなく、実用上問題のない範囲でy軸と非平行に配置されていてもよい。
The first transmission line 21 is arranged parallel to the x-axis, and the fourth transmission line 25 is arranged parallel to the x-axis.
The second transmission line 23 is arranged parallel to the y-axis, and the third transmission line 24 is arranged parallel to the y-axis.
Each of the arrangement of the first transmission line 21 and the arrangement of the fourth transmission line 25 is not limited to the arrangement exactly parallel to the x-axis, and is not limited to the arrangement of the x-axis within a range where there is no practical problem. They may be arranged in parallel.
Each of the arrangement of the second transmission line 23 and the arrangement of the third transmission line 24 is not limited to those arranged exactly parallel to the y-axis, and is not limited to the arrangement of the y-axis and non-arrangement within a range where there is no practical problem. They may be arranged in parallel.
 第1の移相調整回路26aは、第1のオープンスタブ27aを備えている。
 第1のオープンスタブ27aの一端は、第1の伝送線路21と接続されている。
 第1のオープンスタブ27aは、y軸と平行に配置され、かつ、第1の伝送線路21を挟んで、結合線路22と反対側に配置されている。
 図6に示す移相器1では、結合線路22が第1の伝送線路21よりも+y方向に配置されているため、第1のオープンスタブ27aは、第1の伝送線路21よりも-y方向に配置されている。
 第1のオープンスタブ27aは、結合線路22の第2の伝送線路23と電磁界結合することによって、高周波信号RFにおける偶モードの伝搬速度Vを速めるように作用する。
 第1のオープンスタブ27aは、厳密にy軸と平行に配置されているものに限るものではなく、実用上問題のない範囲でy軸と非平行に配置されていてもよい。
The first phase shift adjusting circuit 26a includes a first open stub 27a.
One end of the first open stub 27a is connected to the first transmission line 21.
The first open stub 27a is arranged parallel to the y-axis and is arranged on the opposite side of the coupling line 22 with the first transmission line 21 interposed therebetween.
In the phase shifter 1 shown in FIG. 6, since the coupling line 22 is arranged in the + y direction with respect to the first transmission line 21, the first open stub 27a is in the −y direction with respect to the first transmission line 21. Is located in.
The first open stub 27a by binding the second transmission line 23 and the electromagnetic field coupled line 22, acts to increase the propagation velocity V e of the even mode in the high-frequency signal RF 2.
The first open stub 27a is not limited to the one that is strictly parallel to the y-axis, and may be arranged non-parallel to the y-axis as long as there is no practical problem.
 第2の移相調整回路26bは、第2のオープンスタブ27bを備えている。
 第2のオープンスタブ27bの一端は、第4の伝送線路25と接続されている。
 第2のオープンスタブ27bは、y軸と平行に配置され、かつ、第4の伝送線路25を挟んで、結合線路22と反対側に配置されている。
 図6に示す移相器1では、結合線路22が第1の伝送線路21よりも+y方向に配置されているため、第2のオープンスタブ27bは、第4の伝送線路25よりも-y方向に配置されている。
 第2のオープンスタブ27bは、結合線路22の第3の伝送線路24と電磁界結合することによって、高周波信号RFにおける偶モードの伝搬速度Vを速めるように作用する。
 第2のオープンスタブ27bは、厳密にy軸と平行に配置されているものに限るものではなく、実用上問題のない範囲でy軸と非平行に配置されていてもよい。
The second phase shift adjusting circuit 26b includes a second open stub 27b.
One end of the second open stub 27b is connected to the fourth transmission line 25.
The second open stub 27b is arranged parallel to the y-axis and is arranged on the opposite side of the coupling line 22 with the fourth transmission line 25 interposed therebetween.
In the phase shifter 1 shown in FIG. 6, since the coupling line 22 is arranged in the + y direction with respect to the first transmission line 21, the second open stub 27b is in the −y direction with respect to the fourth transmission line 25. Is located in.
The second open stub 27b by binding the third transmission line 24 and the electromagnetic field coupled line 22, acts to increase the propagation velocity V e of the even mode in the high-frequency signal RF 2.
The second open stub 27b is not limited to the one that is strictly parallel to the y-axis, and may be arranged non-parallel to the y-axis as long as there is no practical problem.
 次に、図6に示す移相器1の動作について説明する。
 入力端子2aには、高周波信号RFが与えられ、入力端子2bには、高周波信号RFが与えられる。
 入力端子2aから入力された高周波信号RFは、基準位相回路10における第5の伝送線路12を伝搬する。第5の伝送線路12を伝搬した高周波信号RFは、出力端子3aから外部に出力される。
 図6に示す移相器1では、高周波信号RFにおける基準位相回路10の通過位相がφである。
Next, the operation of the phase shifter 1 shown in FIG. 6 will be described.
The high frequency signal RF 1 is given to the input terminal 2a, and the high frequency signal RF 2 is given to the input terminal 2b.
The high frequency signal RF 1 input from the input terminal 2a propagates on the fifth transmission line 12 in the reference phase circuit 10. The high frequency signal RF 1 propagating through the fifth transmission line 12 is output to the outside from the output terminal 3a.
In the phase shifter 1 shown in FIG. 6, the passing phase of the reference phase circuit 10 in the high-frequency signal RF 1 is phi 1.
 入力端子2bから入力された高周波信号RFは、相対位相回路20における第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれを伝搬する。第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれを伝搬した高周波信号RFは、出力端子3bから外部に出力される。
 高周波信号RFが第1の伝送線路21を伝搬する際、第1のオープンスタブ27aによって、特定周波数の位相速度が速められ、高周波信号RFが第4の伝送線路25を伝搬する際、第2のオープンスタブ27bによって、特定周波数の位相速度が速められる。
 したがって、高周波信号RFにおける相対位相回路20の通過位相φは、高周波信号RFにおける基準位相回路10の通過位相φと異なる。
The high frequency signal RF 2 input from the input terminal 2b propagates on each of the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the relative phase circuit 20. The high frequency signal RF 2 propagating through each of the first transmission line 21, the coupling line 22, and the fourth transmission line 25 is output to the outside from the output terminal 3b.
When the high frequency signal RF 2 propagates on the first transmission line 21, the first open stub 27a accelerates the phase velocity of a specific frequency, and when the high frequency signal RF 2 propagates on the fourth transmission line 25, the first The open stub 27b of 2 increases the phase velocity of a specific frequency.
Therefore, the passing phase φ 2 of the relative phase circuit 20 in the high frequency signal RF 2 is different from the passing phase φ 1 of the reference phase circuit 10 in the high frequency signal RF 1.
 結合線路22では、第1の伝送線路21を伝搬してきた高周波信号RFが第2の伝送線路23及び第3の伝送線路24のそれぞれを伝搬するときに、偶モードの伝搬モードと奇モードの伝搬モードとが発生する。
 移相器1では、高周波信号RFにおける偶モードの伝搬速度Vと、高周波信号における奇モードの伝搬速度Vとの差分ΔVに応じた高周波信号RFの移相が実現される。
 また、第1のオープンスタブ27a及び第2のオープンスタブ27bのそれぞれは、高周波信号RFにおける偶モードの伝搬速度Vを速めるように作用するため、偶モードの伝搬速度Vと奇モードの伝搬速度Vとの差分ΔVを調整することができる。したがって、結合線路22の結合度を高めることなく、所望の移相量psを実現することができる。
 第1のオープンスタブ27a及び第2のオープンスタブ27bにおけるそれぞれのスタブ長に応じて、偶モードの伝搬速度Vが変化するため、スタブ長を変えることによって、所望の移相量psを実現することができる。
 図6に示す移相器1では、通過位相φと通過位相φとの位相差Δφが、例えば、180度×n(n=1,2,・・・)に調整される。
 なお、第1のオープンスタブ27a及び第2のオープンスタブ27bにおけるそれぞれのスタブ長としては、0.5×θ以下となる条件を満足するものであればよい。
In the coupled line 22, when the high frequency signal RF 2 propagating on the first transmission line 21 propagates on each of the second transmission line 23 and the third transmission line 24, the propagation mode of the even mode and the odd mode are used. Propagation mode occurs.
In the phase shifter 1, and the propagation velocity V e of the even mode in the high-frequency signal RF 2, phase of the high frequency signal RF 2 corresponding to the difference ΔV between the propagation velocity V o of the odd mode in the high-frequency signal is realized.
Further, each of the first open stub 27a and the second open stub 27b, to act as increase the propagation velocity V e of the even mode in the high-frequency signal RF 2, the even mode propagation velocity V e and the odd mode it is possible to adjust the difference ΔV between the propagation velocity V o. Therefore, a desired phase shift amount ps can be realized without increasing the degree of coupling of the coupling line 22.
Depending on the respective stub length of the first open stub 27a and the second open stub 27b, the propagation velocity V e of the even mode is changed by changing the stub length, to achieve a desired phase shift ps be able to.
In the phase shifter 1 shown in FIG. 6, the phase difference Δφ between the passing phase φ 1 and the passing phase φ 2 is adjusted to, for example, 180 degrees × n (n = 1, 2, ...).
The stub lengths of the first open stub 27a and the second open stub 27b may be any one that satisfies the condition of 0.5 × θ 1 or less.
 図7は、基準位相回路10及び相対位相回路20におけるそれぞれの回路パターンを示す説明図である。
 図7Aは、基準位相回路10の回路パターンを示している。
 図7Bは、第1のオープンスタブ27a及び第2のオープンスタブ27bを備えていない相対位相回路20を示している。図7Bでは、当該相対位相回路20を「相対位相回路A」と表記している。
 図7Cは、第1のオープンスタブ27a及び第2のオープンスタブ27bのそれぞれが、結合線路22と同じ側に配置されている相対位相回路20を示している。図7Cでは、当該相対位相回路20を「相対位相回路B」と表記している。
 図7Dは、図6に示す相対位相回路20と同様に、第1のオープンスタブ27a及び第2のオープンスタブ27bのそれぞれが、結合線路22と反対側に配置されている相対位相回路20を示している。図7Dでは、当該相対位相回路20を「相対位相回路C」と表記している。
FIG. 7 is an explanatory diagram showing each circuit pattern in the reference phase circuit 10 and the relative phase circuit 20.
FIG. 7A shows the circuit pattern of the reference phase circuit 10.
FIG. 7B shows a relative phase circuit 20 without a first open stub 27a and a second open stub 27b. In FIG. 7B, the relative phase circuit 20 is referred to as “relative phase circuit A”.
FIG. 7C shows a relative phase circuit 20 in which each of the first open stub 27a and the second open stub 27b is arranged on the same side as the coupling line 22. In FIG. 7C, the relative phase circuit 20 is referred to as “relative phase circuit B”.
FIG. 7D shows a relative phase circuit 20 in which each of the first open stub 27a and the second open stub 27b is arranged on the opposite side of the coupling line 22, as in the relative phase circuit 20 shown in FIG. ing. In FIG. 7D, the relative phase circuit 20 is referred to as “relative phase circuit C”.
 図8は、基準位相回路10の回路パターン、相対位相回路Aの回路パターン、相対位相回路Bの回路パターン及び相対位相回路Cの回路パターンにおけるそれぞれの群遅延特性のシミュレーション結果を示す説明図である。
 図8において、横軸は周波数であり、縦軸は群遅延である。
 相対位相回路Bの群遅延は、図8に示すように、相対位相回路Aの群遅延よりも大きい。
 また、相対位相回路Cの群遅延は、図8に示すように、相対位相回路Bの群遅延よりも更に大きい。相対位相回路Cの群遅延は、約20[GHz]の周波数で、基準位相回路10の群遅延と概ね同様の65[psec]である。
 相対位相回路Aの群遅延<相対位相回路Bの群遅延<相対位相回路Cの群遅延
 相対位相回路B,Cの群遅延が相対位相回路Aの群遅延よりも大きくなる現象は、第1のオープンスタブ27a及び第2のオープンスタブ27bのそれぞれが、結合線路22と電磁界結合することによって、結合線路22へ流入する偶モード電流の伝搬速度が速くなることによって生じる。
FIG. 8 is an explanatory diagram showing simulation results of each group delay characteristic in the circuit pattern of the reference phase circuit 10, the circuit pattern of the relative phase circuit A, the circuit pattern of the relative phase circuit B, and the circuit pattern of the relative phase circuit C. ..
In FIG. 8, the horizontal axis is frequency and the vertical axis is group delay.
As shown in FIG. 8, the group delay of the relative phase circuit B is larger than the group delay of the relative phase circuit A.
Further, as shown in FIG. 8, the group delay of the relative phase circuit C is further larger than the group delay of the relative phase circuit B. The group delay of the relative phase circuit C is a frequency of about 20 [GHz], which is 65 [psec], which is substantially the same as the group delay of the reference phase circuit 10.
The group delay of the relative phase circuit A <the group delay of the relative phase circuit B <the group delay of the relative phase circuit C The phenomenon that the group delay of the relative phase circuits B and C becomes larger than the group delay of the relative phase circuit A is the first phenomenon. Each of the open stub 27a and the second open stub 27b is generated by the electromagnetic field coupling with the coupling line 22 so that the propagation speed of the even-mode current flowing into the coupling line 22 becomes high.
 図9は、基準位相回路10の回路パターン、相対位相回路Aの回路パターン、相対位相回路Bの回路パターン及び相対位相回路Cの回路パターンにおけるそれぞれの通過振幅特性のシミュレーション結果を示す説明図である。
 図9において、横軸は周波数であり、縦軸は通過振幅である。
 21[GHz]以下の周波数で、相対位相回路B,Cの通過振幅が、相対位相回路Aの通過振幅よりも大きくなっている。21[GHz]以下の周波数では、相対位相回路Aの通過振幅が、-1.0[dB]以上である。一方、21[GHz]以下の周波数では、相対位相回路B,Cの通過振幅が、-0.5[dB]以上である。
 したがって、21[GHz]以下の周波数では、相対位相回路B,Cの反射不整合が、相対位相回路Aの反射不整合よりも改善している。
FIG. 9 is an explanatory diagram showing simulation results of each passing amplitude characteristic in the circuit pattern of the reference phase circuit 10, the circuit pattern of the relative phase circuit A, the circuit pattern of the relative phase circuit B, and the circuit pattern of the relative phase circuit C. ..
In FIG. 9, the horizontal axis is the frequency and the vertical axis is the passing amplitude.
At a frequency of 21 [GHz] or less, the passing amplitude of the relative phase circuits B and C is larger than the passing amplitude of the relative phase circuit A. At a frequency of 21 [GHz] or less, the passing amplitude of the relative phase circuit A is −1.0 [dB] or more. On the other hand, at a frequency of 21 [GHz] or less, the passing amplitude of the relative phase circuits B and C is −0.5 [dB] or more.
Therefore, at a frequency of 21 [GHz] or less, the reflection mismatch of the relative phase circuits B and C is improved as compared with the reflection mismatch of the relative phase circuit A.
 図10は、相対位相回路Aを備える移相器1、相対位相回路Bを備える移相器1及び相対位相回路Cを備える移相器1におけるそれぞれの位相差Δφのシミュレーション結果を示す説明図である。
 図10において、横軸は周波数であり、縦軸は位相差Δφである。
 図10では、相対位相回路Aを備える移相器1を「移相器A」と表記し、相対位相回路Bを備える移相器1を「移相器B」と表記し、相対位相回路Cを備える移相器1を「移相器C」と表記している。
 移相器Aの位相差Δφは、図10に示すように、約16.5[GHz]の周波数で180度となっており、移相器Bの位相差Δφは、図10に示すように、約17.4[GHz]の周波数で180度となっている。
 移相器Cの位相差Δφは、図10に示すように、19[GHz]から21[GHz]の周波数で180度となっている。
 移相器Cは、図10に示すように、移相器A及び移相器Bのそれぞれと比べて、広帯域に位相差180度を実現できている。
FIG. 10 is an explanatory diagram showing simulation results of the respective phase differences Δφ in the phase shifter 1 provided with the relative phase circuit A, the phase shifter 1 provided with the relative phase circuit B, and the phase shifter 1 provided with the relative phase circuit C. be.
In FIG. 10, the horizontal axis is the frequency and the vertical axis is the phase difference Δφ.
In FIG. 10, the phase shifter 1 provided with the relative phase circuit A is referred to as “phase shifter A”, the phase shifter 1 provided with the relative phase circuit B is referred to as “phase shifter B”, and the relative phase circuit C is indicated. The phase shifter 1 provided with the above is referred to as "phase shifter C".
As shown in FIG. 10, the phase difference Δφ of the phase shifter A is 180 degrees at a frequency of about 16.5 [GHz], and the phase difference Δφ of the phase shifter B is as shown in FIG. , 180 degrees at a frequency of about 17.4 [GHz].
As shown in FIG. 10, the phase difference Δφ of the phase shifter C is 180 degrees at a frequency of 19 [GHz] to 21 [GHz].
As shown in FIG. 10, the phase shifter C can realize a phase difference of 180 degrees in a wider band than each of the phase shifter A and the phase shifter B.
 以上の実施の形態2では、第1の移相調整回路26aが、第1の伝送線路21と一端が接続されており、結合線路22と電磁界結合することによって、高周波信号における偶モードの伝搬速度を速める第1のオープンスタブ27aを備え、第2の移相調整回路26bが、第4の伝送線路25と一端が接続されており、結合線路22と電磁界結合することによって、高周波信号における偶モードの伝搬速度を速める第2のオープンスタブ27bを備えるように、図6に示す移相器1を構成した。したがって、図6に示す移相器1は、図1に示す移相器1と同様に、結合線路22の結合度を高めることなく、所望の移相量を実現することができる。 In the second embodiment as described above, the first phase shift adjustment circuit 26a is connected to one end of the first transmission line 21 and is electromagnetically coupled to the coupling line 22 to propagate an even mode in a high frequency signal. A first open stub 27a for accelerating the speed is provided, and a second phase shift adjusting circuit 26b is connected to a fourth transmission line 25 at one end and is electromagnetically coupled to the coupling line 22 in a high frequency signal. The phase shifter 1 shown in FIG. 6 is configured to include a second open stub 27b that increases the propagation speed of the even mode. Therefore, the phase shifter 1 shown in FIG. 6 can realize a desired phase shift amount without increasing the degree of coupling of the coupling line 22 as in the phase shifter 1 shown in FIG.
 図6に示す移相器1は、相対位相回路20として、相対位相回路Cを備えている。移相器1が、相対位相回路20として、相対位相回路Bを備える場合でも、図8に示すように、高周波信号RFにおける偶モードの伝搬速度Vを速めることができる。
 したがって、移相器1が、相対位相回路20として、相対位相回路Bを備えるものであってもよい。
The phase shifter 1 shown in FIG. 6 includes a relative phase circuit C as the relative phase circuit 20. Phase shifter 1, a relative phase circuit 20, even if provided with a relative phase circuit B, as shown in FIG. 8, it is possible to increase the propagation velocity V e of the even mode in the high-frequency signal RF 2.
Therefore, the phase shifter 1 may include the relative phase circuit B as the relative phase circuit 20.
実施の形態3.
 実施の形態3では、図1に示す移相器1、又は、図6に示す移相器1を備える歪補償回路について説明する。
Embodiment 3.
In the third embodiment, the phase shifter 1 shown in FIG. 1 or the strain compensation circuit including the phase shifter 1 shown in FIG. 6 will be described.
 図11は、実施の形態3に係る歪補償回路を示す構成図である。
 図11に示す歪補償回路は、電力分配器31、第1の移相器32、第6の伝送線路33、第7の伝送線路34、第2の移相器35、電力合成器36、直流バイアス供給用抵抗39、ダイオード40及び直流バイアス供給用抵抗41を備えている。
 入力端子30は、外部から高周波信号RFが与えられる端子である。
FIG. 11 is a configuration diagram showing a strain compensation circuit according to the third embodiment.
The distortion compensation circuit shown in FIG. 11 includes a power distributor 31, a first phase shifter 32, a sixth transmission line 33, a seventh transmission line 34, a second phase shifter 35, a power combiner 36, and a direct current. It includes a bias supply resistor 39, a diode 40, and a DC bias supply resistor 41.
The input terminal 30 is a terminal to which a high frequency signal RF is given from the outside.
 電力分配器31は、例えば、T分岐線路、又は、ウィルキンソン分配器によって実現される。
 電力分配器31は、入力端子30に与えられた高周波信号RFを2分配する。
 電力分配器31は、2分配後の高周波信号のうち、一方の高周波信号である高周波信号RFを、入力端子2aを介して、第1の移相器32の第5の伝送線路12に出力する。
 電力分配器31は、2分配後の高周波信号のうち、他方の高周波信号である高周波信号RFを、入力端子2bを介して、第1の移相器32の第1の伝送線路21に出力する。
The power distributor 31 is realized by, for example, a T-branch line or a Wilkinson distributor.
The power distributor 31 distributes the high frequency signal RF given to the input terminal 30 into two.
The power distributor 31 outputs the high frequency signal RF 1 , which is one of the high frequency signals after the two distributions, to the fifth transmission line 12 of the first phase shifter 32 via the input terminal 2a. do.
The power distributor 31 outputs the high frequency signal RF 2 , which is the other high frequency signal among the high frequency signals after the two distributions, to the first transmission line 21 of the first phase shifter 32 via the input terminal 2b. do.
 第1の移相器32は、図6に示す移相器1と同一構成の移相器である。
 第1の移相器32における第5の伝送線路12は、電力分配器31から出力された高周波信号RFが伝搬する。
 第1の移相器32における第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれは、電力分配器31から出力された高周波信号RFが伝搬する。
 図11に示す歪補償回路では、第1の移相器32が、図6に示す移相器1と同一構成の移相器である。しかし、これは一例に過ぎず、第1の移相器32が、図1に示す移相器1と同一構成の移相器であってもよい。
The first phase shifter 32 is a phase shifter having the same configuration as the phase shifter 1 shown in FIG.
The high frequency signal RF 1 output from the power distributor 31 propagates in the fifth transmission line 12 in the first phase shifter 32.
The high frequency signal RF 2 output from the power distributor 31 propagates in each of the first transmission line 21, the coupling line 22, and the fourth transmission line 25 in the first phase shifter 32.
In the distortion compensation circuit shown in FIG. 11, the first phase shifter 32 is a phase shifter having the same configuration as the phase shifter 1 shown in FIG. However, this is only an example, and the first phase shifter 32 may be a phase shifter having the same configuration as the phase shifter 1 shown in FIG.
 第6の伝送線路33は、直流ブロック用コンデンサ33a,33bを備えている。
 第6の伝送線路33は、第1の移相器32における第5の伝送線路12を伝搬してきた高周波信号RFが伝搬する。
 直流ブロック用コンデンサ33aの一端は、出力端子3aを介して、第1の移相器32における第5の伝送線路12の他端と接続され、直流ブロック用コンデンサ33aの他端は、直流ブロック用コンデンサ33bの一端等と接続されている。
 直流ブロック用コンデンサ33aは、直流電流が第1の移相器32に流れないように、直流電流の流れを阻止する。
 直流ブロック用コンデンサ33bの一端は、直流ブロック用コンデンサ33aの他端等と接続され、直流ブロック用コンデンサ33bの他端は、入力端子2aを介して、第2の移相器35における第1の伝送線路21の一端と接続されている。
 直流ブロック用コンデンサ33bは、直流電流が第2の移相器35に流れないように、直流電流の流れを阻止する。
The sixth transmission line 33 includes DC block capacitors 33a and 33b.
In the sixth transmission line 33, the high frequency signal RF 1 propagating through the fifth transmission line 12 in the first phase shifter 32 propagates.
One end of the DC block capacitor 33a is connected to the other end of the fifth transmission line 12 in the first phase shifter 32 via the output terminal 3a, and the other end of the DC block capacitor 33a is for the DC block. It is connected to one end of the capacitor 33b and the like.
The DC block capacitor 33a blocks the flow of DC current so that the DC current does not flow to the first phase shifter 32.
One end of the DC block capacitor 33b is connected to the other end of the DC block capacitor 33a and the like, and the other end of the DC block capacitor 33b is the first in the second phase shifter 35 via the input terminal 2a. It is connected to one end of the transmission line 21.
The DC block capacitor 33b blocks the flow of DC current so that the DC current does not flow to the second phase shifter 35.
 第7の伝送線路34は、直流ブロック用コンデンサ34a,34bを備えている。
 第7の伝送線路34は、第1の移相器32における第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれを伝搬してきた高周波信号RFが伝搬する。
 直流ブロック用コンデンサ34aの一端は、出力端子3bを介して、第1の移相器32における第4の伝送線路25の他端と接続され、直流ブロック用コンデンサ34aの他端は、直流ブロック用コンデンサ34bの一端等と接続されている。
 直流ブロック用コンデンサ34aは、直流電流が第1の移相器32に流れないように、直流電流の流れを阻止する。
 直流ブロック用コンデンサ34bの一端は、直流ブロック用コンデンサ34aの他端等と接続され、直流ブロック用コンデンサ34bの他端は、入力端子2bを介して、第2の移相器35における第5の伝送線路12の一端と接続されている。
 直流ブロック用コンデンサ34bは、直流電流が第2の移相器35に流れないように、直流電流の流れを阻止する。
The seventh transmission line 34 includes DC block capacitors 34a and 34b.
In the seventh transmission line 34, the high frequency signal RF 2 propagating through each of the first transmission line 21, the coupling line 22, and the fourth transmission line 25 in the first phase shifter 32 propagates.
One end of the DC block capacitor 34a is connected to the other end of the fourth transmission line 25 in the first phase shifter 32 via the output terminal 3b, and the other end of the DC block capacitor 34a is for the DC block. It is connected to one end of the capacitor 34b and the like.
The DC block capacitor 34a blocks the flow of DC current so that the DC current does not flow to the first phase shifter 32.
One end of the DC block capacitor 34b is connected to the other end of the DC block capacitor 34a and the like, and the other end of the DC block capacitor 34b is the fifth phase shifter 35 in the second phase shifter 35 via the input terminal 2b. It is connected to one end of the transmission line 12.
The DC block capacitor 34b blocks the flow of DC current so that the DC current does not flow to the second phase shifter 35.
 第2の移相器35は、図6に示す移相器1と同一構成の移相器である。
 第2の移相器35における第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれは、第6の伝送線路33を伝搬してきた高周波信号RFが伝搬する。
 第2の移相器35における第5の伝送線路12は、第7の伝送線路34を伝搬してきた高周波信号RFが伝搬する。
 図11に示す歪補償回路では、第2の移相器35が、図6に示す移相器1と同一構成の移相器である。しかし、これは一例に過ぎず、第2の移相器35が、図1に示す移相器1と同一構成の移相器であってもよい。
The second phase shifter 35 is a phase shifter having the same configuration as the phase shifter 1 shown in FIG.
The high frequency signal RF 1 that has propagated through the sixth transmission line 33 propagates in each of the first transmission line 21, the coupling line 22, and the fourth transmission line 25 in the second phase shifter 35.
The high frequency signal RF 2 propagating through the seventh transmission line 34 propagates in the fifth transmission line 12 in the second phase shifter 35.
In the distortion compensation circuit shown in FIG. 11, the second phase shifter 35 is a phase shifter having the same configuration as the phase shifter 1 shown in FIG. However, this is only an example, and the second phase shifter 35 may be a phase shifter having the same configuration as the phase shifter 1 shown in FIG.
 電力合成器36は、例えば、ウィルキンソン合成器によって実現される。
 電力合成器36の一端は、出力端子3aを介して、第2の移相器35における第4の伝送線路25の他端と接続され、電力合成器36の他端は、出力端子3bを介して、第2の移相器35における第5の伝送線路12の他端と接続されている。
 電力合成器36は、第2の移相器35における第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれを伝搬してきた高周波信号RFと第2の移相器35における第5の伝送線路12を伝搬してきた高周波信号RFとを合成する。
 電力合成器36は、高周波信号RFと高周波信号RFとの合成信号RF’を出力端子37に出力する。
 出力端子37は、合成信号RF’を外部に出力するための端子である。
The power synthesizer 36 is realized by, for example, a Wilkinson synthesizer.
One end of the power combiner 36 is connected to the other end of the fourth transmission line 25 in the second phase shifter 35 via the output terminal 3a, and the other end of the power combiner 36 is connected via the output terminal 3b. It is connected to the other end of the fifth transmission line 12 in the second phase shifter 35.
The power combiner 36 is in the high frequency signal RF 1 and the second phase shifter 35 that have propagated through the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the second phase shifter 35, respectively. The high frequency signal RF 2 propagating on the fifth transmission line 12 is combined with the high frequency signal RF 2.
The power synthesizer 36 outputs the combined signal RF'of the high frequency signal RF 1 and the high frequency signal RF 2 to the output terminal 37.
The output terminal 37 is a terminal for outputting the combined signal RF'to the outside.
 直流電源38は、正の直流電圧を、直流バイアス供給用抵抗39を介して、ダイオード40のアノード端子に印加する。
 直流バイアス供給用抵抗39の一端は、直流電源38と接続されている。
 直流バイアス供給用抵抗39の他端は、ダイオード40のアノード端子、直流ブロック用コンデンサ33aの他端及び直流ブロック用コンデンサ33bの一端のそれぞれと接続されている。
The DC power supply 38 applies a positive DC voltage to the anode terminal of the diode 40 via the DC bias supply resistor 39.
One end of the DC bias supply resistor 39 is connected to the DC power supply 38.
The other end of the DC bias supply resistor 39 is connected to the anode terminal of the diode 40, the other end of the DC block capacitor 33a, and one end of the DC block capacitor 33b.
 ダイオード40は、第6の伝送線路33と第7の伝送線路34との間に挿入されている。
 即ち、ダイオード40のアノード端子は、直流バイアス供給用抵抗39の他端、直流ブロック用コンデンサ33aの他端及び直流ブロック用コンデンサ33bの一端のそれぞれと接続されている。ダイオード40のカソード端子は、直流バイアス供給用抵抗41の一端、直流ブロック用コンデンサ34aの他端及び直流ブロック用コンデンサ34bの一端のそれぞれと接続されている。
 ダイオード40は、直流電源38から供給される直流電流が順方向に印加される。
 直流バイアス供給用抵抗41の一端は、ダイオード40のカソード端子、直流ブロック用コンデンサ34aの他端及び直流ブロック用コンデンサ34bの一端のそれぞれと接続されている。
 直流バイアス供給用抵抗41の他端は、グランドと接続されている。
 ダイオード40は、直流電源38から供給される直流電流が順方向に印加されていればよく、直流電源38からの負の直流電圧が、ダイオード40のカソード端子に印加されていてもよい。
The diode 40 is inserted between the sixth transmission line 33 and the seventh transmission line 34.
That is, the anode terminal of the diode 40 is connected to the other end of the DC bias supply resistor 39, the other end of the DC block capacitor 33a, and one end of the DC block capacitor 33b. The cathode terminal of the diode 40 is connected to one end of the DC bias supply resistor 41, the other end of the DC block capacitor 34a, and one end of the DC block capacitor 34b.
A direct current supplied from the direct current power source 38 is applied to the diode 40 in the forward direction.
One end of the DC bias supply resistor 41 is connected to the cathode terminal of the diode 40, the other end of the DC block capacitor 34a, and one end of the DC block capacitor 34b.
The other end of the DC bias supply resistor 41 is connected to the ground.
A direct current supplied from the direct current power source 38 may be applied to the diode 40 in the forward direction, and a negative direct current voltage from the direct current power source 38 may be applied to the cathode terminal of the diode 40.
 次に、図11に示す歪補償回路の動作について説明する。
 電力分配器31は、入力端子30に与えられた高周波信号RFを2分配する。
 電力分配器31は、2分配後の高周波信号のうち、一方の高周波信号である高周波信号RFを、入力端子2aを介して、第1の移相器32の第5の伝送線路12に出力する。
 電力分配器31は、2分配後の高周波信号のうち、他方の高周波信号である高周波信号RFを、入力端子2bを介して、第1の移相器32の第1の伝送線路21に出力する。
Next, the operation of the distortion compensation circuit shown in FIG. 11 will be described.
The power distributor 31 distributes the high frequency signal RF given to the input terminal 30 into two.
The power distributor 31 outputs the high frequency signal RF 1 , which is one of the high frequency signals after the two distributions, to the fifth transmission line 12 of the first phase shifter 32 via the input terminal 2a. do.
The power distributor 31 outputs the high frequency signal RF 2 , which is the other high frequency signal among the high frequency signals after the two distributions, to the first transmission line 21 of the first phase shifter 32 via the input terminal 2b. do.
 第1の移相器32は、図6に示す移相器1と同様に動作する。
 したがって、電力分配器31から出力された高周波信号RFは、第1の移相器32における第5の伝送線路12を伝搬し、第6の伝送線路33に到達する。
 また、電力分配器31から出力された高周波信号RFは、第1の移相器32における第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれを伝搬し、第7の伝送線路34に到達する。
 第1の移相器32における第1のオープンスタブ27a及び第2のオープンスタブ27bのそれぞれが、高周波信号RFにおける偶モードの伝搬速度Vを速めるように作用している。
The first phase shifter 32 operates in the same manner as the phase shifter 1 shown in FIG.
Therefore, the high frequency signal RF 1 output from the power distributor 31 propagates through the fifth transmission line 12 in the first phase shifter 32 and reaches the sixth transmission line 33.
Further, the high frequency signal RF 2 output from the power distributor 31 propagates through each of the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the first phase shifter 32, and the seventh It reaches the transmission line 34.
Each of the first open stub 27a and the second open stub 27b of the first phase shifter 32, acts to increase the propagation velocity V e of the even mode in the high-frequency signal RF 2.
 第6の伝送線路33に到達した高周波信号RFは、第6の伝送線路33を伝搬する。
 このとき、直流電源38から供給される直流電流が第1の移相器32に流れないように、直流ブロック用コンデンサ33aが、直流電流の流れを阻止している。
 また、直流電源38から供給される直流電流が第2の移相器35に流れないように、直流ブロック用コンデンサ33bが、直流電流の流れを阻止している。
The high frequency signal RF 1 that has reached the sixth transmission line 33 propagates on the sixth transmission line 33.
At this time, the DC block capacitor 33a blocks the flow of the DC current so that the DC current supplied from the DC power supply 38 does not flow to the first phase shifter 32.
Further, the DC block capacitor 33b blocks the flow of the DC current so that the DC current supplied from the DC power supply 38 does not flow to the second phase shifter 35.
 第7の伝送線路34に到達した高周波信号RFは、第7の伝送線路34を伝搬する。
 このとき、直流電源38から供給される直流電流が第1の移相器32に流れないように、直流ブロック用コンデンサ34aが、直流電流の流れを阻止している。
 また、直流電源38から供給される直流電流が第2の移相器35に流れないように、直流ブロック用コンデンサ34bが、直流電流の流れを阻止している。
The high frequency signal RF 2 that has reached the seventh transmission line 34 propagates through the seventh transmission line 34.
At this time, the DC block capacitor 34a blocks the flow of the DC current so that the DC current supplied from the DC power supply 38 does not flow to the first phase shifter 32.
Further, the DC block capacitor 34b blocks the flow of the DC current so that the DC current supplied from the DC power supply 38 does not flow to the second phase shifter 35.
 第2の移相器35は、図6に示す移相器1と同様に動作する。
 第6の伝送線路33を伝搬してきた高周波信号RFは、第2の移相器35における第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれを伝搬し、電力合成器36に到達する。
 また、第7の伝送線路34を伝搬してきた高周波信号RFは、第2の移相器35における第5の伝送線路12を伝搬し、電力合成器36に到達する。
 第2の移相器35における第1のオープンスタブ27a及び第2のオープンスタブ27bのそれぞれが、高周波信号RFにおける偶モードの伝搬速度Vを速めるように作用する。
The second phase shifter 35 operates in the same manner as the phase shifter 1 shown in FIG.
The high-frequency signal RF 1 propagating through the sixth transmission line 33 propagates through each of the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the second phase shifter 35, and is a power combiner. Reach 36.
Further, the high frequency signal RF 2 propagating through the seventh transmission line 34 propagates through the fifth transmission line 12 in the second phase shifter 35 and reaches the power combiner 36.
Each of the first open stub 27a and the second open stub 27b in the second phase shifter 35 acts to increase the propagation velocity V e of the even mode in the high-frequency signal RF 1.
 電力合成器36は、第2の移相器35における第1の伝送線路21、結合線路22及び第4の伝送線路25のそれぞれを伝搬してきた高周波信号RFと、第2の移相器35における第5の伝送線路12を伝搬してきた高周波信号RFとを合成する。
 電力合成器36は、高周波信号RFと高周波信号RFとの合成信号RF’を出力端子37に出力する。
 図11に示す歪補償回路では、第1の移相器32における結合線路22の結合度と、第2の移相器35における結合線路22の結合度とが同じである。また、第1の移相器32における第1のオープンスタブ27a及び第2のオープンスタブ27bによる高周波信号RFの移相量と、第2の移相器35における第1のオープンスタブ27a及び第2のオープンスタブ27bによる高周波信号RFの移相量とが同じ移相量であるとする。この場合、電力合成器36により合成される、高周波信号RFと高周波信号RFとが同位相の信号となる。
The power combiner 36 includes a high frequency signal RF 1 propagating on each of the first transmission line 21, the coupling line 22 and the fourth transmission line 25 in the second phase shifter 35, and the second phase shifter 35. The high frequency signal RF 2 propagating through the fifth transmission line 12 in the above is combined with the high frequency signal RF 2.
The power synthesizer 36 outputs the combined signal RF'of the high frequency signal RF 1 and the high frequency signal RF 2 to the output terminal 37.
In the distortion compensation circuit shown in FIG. 11, the degree of coupling of the coupling line 22 in the first phase shifter 32 and the degree of coupling of the coupling line 22 in the second phase shifter 35 are the same. Further, the phase shift amount of the high frequency signal RF 2 by the first open stub 27a and the second open stub 27b in the first phase shifter 32, and the first open stub 27a and the second in the second phase shifter 35. It is assumed that the phase shift amount of the high frequency signal RF 1 by the open stub 27b of 2 is the same as the phase shift amount. In this case, the high frequency signal RF 1 and the high frequency signal RF 2 synthesized by the power synthesizer 36 are signals having the same phase.
 直流電源38から出力された直流電流は、直流バイアス供給用抵抗39、ダイオード40及び直流バイアス供給用抵抗41を介して、グランドに流れる。
 直流電源38から出力された直流電流がダイオード40に流れることによって、例えば、入力端子30に与えられる高周波信号RFの歪みを補償するための予歪信号を高周波信号RF及び高周波信号RFのそれぞれに与えることができる。
 例えば、入力端子30に与えられる高周波信号RFが、図示せぬ増幅器による増幅後の高周波信号であれば、高周波信号RFに歪みが生じていることがある。
 予歪信号は、高周波信号RFの振幅歪特性と逆の振幅歪特性を有し、かつ、高周波信号RFの位相歪特性と逆の位相歪特性を有する信号である。
 予歪信号における振幅及び位相のそれぞれは、直流電源38からダイオード40に供給される直流電流によって制御することができる。また、予歪信号における振幅及び位相のそれぞれは、直流バイアス供給用抵抗39及び直流バイアス供給用抵抗41におけるそれぞれの抵抗値によっても制御することができる。
The DC current output from the DC power supply 38 flows to the ground via the DC bias supply resistor 39, the diode 40, and the DC bias supply resistor 41.
For example, the pre-distortion signal for compensating the distortion of the high-frequency signal RF given to the input terminal 30 by the DC current output from the DC power supply 38 flowing through the diode 40 is the high-frequency signal RF 1 and the high-frequency signal RF 2 , respectively. Can be given to.
For example, if the high frequency signal RF given to the input terminal 30 is a high frequency signal amplified by an amplifier (not shown), the high frequency signal RF may be distorted.
The pre-distortion signal is a signal having an amplitude distortion characteristic opposite to the amplitude distortion characteristic of the high-frequency signal RF and having a phase distortion characteristic opposite to the phase distortion characteristic of the high-frequency signal RF.
Each of the amplitude and the phase in the pre-distortion signal can be controlled by the direct current supplied from the direct current power source 38 to the diode 40. Further, each of the amplitude and the phase in the pre-distortion signal can also be controlled by the respective resistance values of the DC bias supply resistor 39 and the DC bias supply resistor 41.
 図11に示す歪補償回路では、直流電流がダイオード40に流れることによって、図示せぬ増幅器による増幅後の高周波信号RFの歪みを補償している。しかし、これは一例に過ぎず、直流電流がダイオード40に流れることによって、例えば、出力端子37から出力された合成信号RF’を増幅する図示せぬ増幅器による増幅後の信号の歪みを補償することもできる。 In the distortion compensation circuit shown in FIG. 11, a direct current flows through the diode 40 to compensate for the distortion of the high frequency signal RF after amplification by an amplifier (not shown). However, this is only an example, and the DC current flows through the diode 40 to compensate for the distortion of the signal after amplification by an amplifier (not shown) that amplifies the combined signal RF'output from the output terminal 37, for example. You can also.
 図12は、入力端子30に与えられる高周波信号RFの電力に対する歪補償回路の相対利得特性のシミュレーション結果を示す説明図である。
 図13は、入力端子30に与えられる高周波信号RFの電力に対する歪補償回路の位相特性のシミュレーション結果を示す説明図である。
 図12及び図13に示すシミュレーション結果に係る高周波信号の周波数は、約20[GHz]を中心周波数fとして、0.8fから1.25fの比帯域を45%としている。そして、相対利得特性を0.25fステップ毎に計算している。
 また、入力端子30に与えられる高周波信号RFの電力を、-20[dBm]から+10[dBm]までの範囲としている。
FIG. 12 is an explanatory diagram showing a simulation result of the relative gain characteristic of the distortion compensation circuit with respect to the electric power of the high frequency signal RF given to the input terminal 30.
FIG. 13 is an explanatory diagram showing a simulation result of the phase characteristic of the distortion compensation circuit for the power of the high frequency signal RF given to the input terminal 30.
The frequency of the high-frequency signal according to the simulation results shown in FIGS. 12 and 13 has a center frequency of about 20 [GHz] as a center frequency of f 0 and a specific band of 0.8f 0 to 1.25f 0 as 45%. Then, the relative gain characteristic is calculated every 0.25f 0 step.
Further, the power of the high frequency signal RF given to the input terminal 30 is in the range of −20 [dBm] to +10 [dBm].
 図14は、規格化周波数に対する歪補償回路の振幅変動量特性の計算結果を示す説明図である。振幅変動量特性の計算結果は、図12に示すシミュレーション結果に基づいて計算されている。
 図15は、規格化周波数に対する歪補償回路の位相変動量特性の計算結果を示す説明図である。位相変動量特性の計算結果は、図13に示すシミュレーション結果に基づいて計算されている。
 図14及び図15において、実線は、図11に示す歪補償回路を示し、破線は、特許文献1に記載の歪補償回路を示している。
 特許文献1に記載の歪補償回路は、第1の移相器32及び第2の移相器35を備えていない一般的な歪補償回路である。
[特許文献1]特開2010-233055号公報
FIG. 14 is an explanatory diagram showing a calculation result of the amplitude fluctuation amount characteristic of the distortion compensation circuit with respect to the normalized frequency. The calculation result of the amplitude fluctuation amount characteristic is calculated based on the simulation result shown in FIG.
FIG. 15 is an explanatory diagram showing a calculation result of the phase fluctuation amount characteristic of the distortion compensation circuit with respect to the normalized frequency. The calculation result of the phase fluctuation amount characteristic is calculated based on the simulation result shown in FIG.
In FIGS. 14 and 15, the solid line indicates the strain compensation circuit shown in FIG. 11, and the broken line indicates the strain compensation circuit described in Patent Document 1.
The distortion compensation circuit described in Patent Document 1 is a general distortion compensation circuit that does not include the first phase shifter 32 and the second phase shifter 35.
[Patent Document 1] Japanese Unexamined Patent Publication No. 2010-233055
 図11に示す歪補償回路の振幅変動量は、図14に示すように、0.8fから1.25fの範囲内で、0.5[dB/dB]以上の正の値をとっており、単調増加の振幅歪特性が得られている。
 図11に示す歪補償回路の位相変動量は、図15に示すように、0.85fから1.15fの比帯域30%の範囲で、約-5[度/dB]を実現できている。したがって、図11に示す歪補償回路は、広帯域な特性が得られている。
 特許文献1に記載の歪補償回路は、中心周波数fで最も大きな位相変動量(-13[度/dB])になっており、中心周波数fから離れるほど、位相変動量が小さくなっている。
 以上より、図11に示す歪補償回路は、高周波数帯において、広帯域な振幅歪特性及び位相歪特性を実現することができる。
As shown in FIG. 14, the amplitude fluctuation amount of the distortion compensation circuit shown in FIG. 11 takes a positive value of 0.5 [dB / dB] or more in the range of 0.8f 0 to 1.25f 0. Therefore, the amplitude distortion characteristic of monotonically increasing is obtained.
Phase variation amount of the distortion compensation circuit shown in FIG. 11, as shown in FIG. 15, in the range of 0.85F 0 of fractional bandwidth of 30% 1.15F 0, can be realized about -5 [deg / dB] There is. Therefore, the strain compensation circuit shown in FIG. 11 has a wide band characteristic.
Distortion compensating circuit described in Patent Document 1, the largest amount of phase change at the center frequency f 0 has become (-13 [degrees / dB]), farther from the center frequency f 0, and the amount of phase variation becomes smaller There is.
From the above, the distortion compensation circuit shown in FIG. 11 can realize a wide-band amplitude distortion characteristic and a phase distortion characteristic in a high frequency band.
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present disclosure, any combination of the embodiments can be freely combined, any component of the embodiment can be modified, or any component can be omitted in each embodiment.
 本開示は、移相器と、移相器を備える歪補償回路とに適している。 The present disclosure is suitable for a phase shifter and a strain compensation circuit provided with the phase shifter.
 1 移相器、2a,2b 入力端子、3a,3b 出力端子、10 基準位相回路、11 第5の伝送線路、12a,12b,12c,12d,12e 伝送線路、20 相対位相回路、21 第1の伝送線路、22 結合線路、23 第2の伝送線路、24 第3の伝送線路、25 第4の伝送線路、26 移相調整回路、26a 第1の移相調整回路、26b 第2の移相調整回路、27a 第1のオープンスタブ、27b 第2のオープンスタブ、30 入力端子、31 電力分配器、32 第1の移相器、33 第6の伝送線路、33a,33b 直流ブロック用コンデンサ、34 第7の伝送線路、34a,34b 直流ブロック用コンデンサ、35 第2の移相器、36 電力合成器、37 出力端子、38 直流電源、39 直流バイアス供給用抵抗、40 ダイオード、41 直流バイアス供給用抵抗。 1 Phase shifter, 2a, 2b input terminal, 3a, 3b output terminal, 10 reference phase circuit, 11 fifth transmission line, 12a, 12b, 12c, 12d, 12e transmission line, 20 relative phase circuit, 21 first Transmission line, 22 coupled line, 23 second transmission line, 24 third transmission line, 25 fourth transmission line, 26 phase shift adjustment circuit, 26a first phase shift adjustment circuit, 26b second phase shift adjustment Circuit, 27a 1st open stub, 27b 2nd open stub, 30 input terminal, 31 power distributor, 32 1st phase shifter, 33 6th transmission line, 33a, 33b DC block capacitor, 34th 7 transmission lines, 34a, 34b DC block capacitors, 35 second phase shifters, 36 power synthesizers, 37 output terminals, 38 DC power supplies, 39 DC bias supply resistors, 40 diodes, 41 DC bias supply resistors ..

Claims (6)

  1.  一端に与えられた高周波信号が他端まで伝搬する第1の伝送線路と、
     前記第1の伝送線路の他端と一端が接続されている第2の伝送線路と、前記第2の伝送線路の他端と一端が接続されている第3の伝送線路とを有し、前記第1の伝送線路を伝搬してきた高周波信号が前記第2の伝送線路及び前記第3の伝送線路のそれぞれを伝搬するとき、偶モードの伝搬モードと奇モードの伝搬モードとが発生する結合線路と、
     前記第3の伝送線路の他端と一端が接続されており、前記結合線路を伝搬してきた高周波信号が伝搬する第4の伝送線路と、
     前記第1の伝送線路及び前記第4の伝送線路のうち、1つ以上の伝送線路と一端が接続されており、高周波信号における偶モードの伝搬速度を調整する移相調整回路と
     を備えた移相器。
    A first transmission line in which a high-frequency signal given to one end propagates to the other end,
    It has a second transmission line to which the other end and one end of the first transmission line are connected, and a third transmission line to which the other end and one end of the second transmission line are connected. When a high-frequency signal propagating through the first transmission line propagates through each of the second transmission line and the third transmission line, a coupled line in which an even mode propagation mode and an odd mode propagation mode occur. ,
    A fourth transmission line in which the other end and one end of the third transmission line are connected and a high frequency signal propagating through the coupled line propagates.
    Of the first transmission line and the fourth transmission line, one end is connected to one or more transmission lines, and the transfer is provided with a phase shift adjustment circuit for adjusting the propagation speed of even mode in a high frequency signal. Ai device.
  2.  前記移相調整回路は、
     前記第1の伝送線路と一端が接続されており、高周波信号における偶モードの伝搬速度を調整する第1の移相調整回路と、
     前記第4の伝送線路と一端が接続されており、高周波信号における偶モードの伝搬速度を調整する第2の移相調整回路とを備えていることを特徴とする請求項1記載の移相器。
    The phase shift adjustment circuit is
    A first phase shift adjustment circuit, which is connected to one end of the first transmission line and adjusts the propagation speed of even mode in a high frequency signal,
    The phase shifter according to claim 1, wherein one end is connected to the fourth transmission line, and a second phase shift adjustment circuit for adjusting the propagation speed of an even mode in a high frequency signal is provided. ..
  3.  前記第1の移相調整回路は、
     前記第1の伝送線路と一端が接続されており、前記結合線路と電磁界結合することによって、高周波信号における偶モードの伝搬速度を速める第1のオープンスタブを備え、
     前記第2の移相調整回路は、
     前記第4の伝送線路と一端が接続されており、前記結合線路と電磁界結合することによって、高周波信号における偶モードの伝搬速度を速める第2のオープンスタブを備えていることを特徴とする請求項1記載の移相器。
    The first phase shift adjustment circuit is
    One end is connected to the first transmission line, and the first open stub is provided, which accelerates the propagation speed of the even mode in a high frequency signal by electromagnetically coupling with the coupled line.
    The second phase shift adjustment circuit is
    A claim characterized in that one end is connected to the fourth transmission line, and a second open stub is provided which increases the propagation speed of the even mode in a high frequency signal by electromagnetically coupling with the coupled line. Item 1. The phase shifter according to item 1.
  4.  前記第1のオープンスタブは、前記第1の伝送線路を挟んで、前記結合線路と反対側に配置されており、
     前記第2のオープンスタブは、前記第4の伝送線路を挟んで、前記結合線路と反対側に配置されていることを特徴とする請求項3記載の移相器。
    The first open stub is arranged on the opposite side of the coupling line with the first transmission line interposed therebetween.
    The phase shifter according to claim 3, wherein the second open stub is arranged on the opposite side of the coupling line with the fourth transmission line interposed therebetween.
  5.  一端に与えられた高周波信号が他端まで伝搬する第5の伝送線路を備えたことを特徴とする請求項1記載の移相器。 The phase shifter according to claim 1, further comprising a fifth transmission line in which a high frequency signal given to one end propagates to the other end.
  6.  高周波信号を2分配する電力分配器と、
     請求項5記載の移相器と同一構成の移相器であって、前記電力分配器による2分配後の高周波信号のうちの一方の高周波信号が前記第5の伝送線路を伝搬し、他方の高周波信号が、前記第1の伝送線路、前記結合線路及び前記第4の伝送線路のそれぞれを伝搬する第1の移相器と、
     前記第1の移相器における前記第5の伝送線路を伝搬してきた高周波信号が伝搬する第6の伝送線路と、
     前記第1の移相器における前記第1の伝送線路、前記結合線路及び前記第4の伝送線路のそれぞれを伝搬してきた高周波信号が伝搬する第7の伝送線路と、
     請求項5記載の移相器と同一構成の移相器であって、前記第6の伝送線路を伝搬してきた高周波信号が、前記第1の伝送線路、前記結合線路及び前記第4の伝送線路のそれぞれを伝搬し、前記第7の伝送線路を伝搬してきた高周波信号が前記第5の伝送線路を伝搬する第2の移相器と、
     前記第2の移相器における前記第1の伝送線路、前記結合線路及び前記第4の伝送線路のそれぞれを伝搬してきた高周波信号と前記第2の移相器における前記第5の伝送線路を伝搬してきた高周波信号とを合成する電力合成器と、
     前記第6の伝送線路と前記第7の伝送線路との間に挿入されており、直流電源から供給される直流電流が順方向に印加されるダイオードと
     を備えていることを特徴とする歪補償回路。
    A power distributor that divides high-frequency signals into two,
    A phase shifter having the same configuration as that of the phase shifter according to claim 5, wherein one of the high frequency signals after the two distributions by the power distributor propagates through the fifth transmission line and the other. A first phase shifter in which a high-frequency signal propagates through the first transmission line, the coupling line, and the fourth transmission line, respectively.
    A sixth transmission line propagating the high frequency signal propagating through the fifth transmission line in the first phase shifter, and a sixth transmission line propagating.
    A seventh transmission line propagating a high frequency signal propagating through each of the first transmission line, the coupling line, and the fourth transmission line in the first phase shifter.
    A phase shifter having the same configuration as that of the phase shifter according to claim 5, wherein the high frequency signal propagating through the sixth transmission line is the first transmission line, the coupling line, and the fourth transmission line. A second phase shifter in which a high-frequency signal propagating through each of the above 7th transmission lines propagates through the fifth transmission line, and
    The high frequency signal propagating in each of the first transmission line, the coupling line, and the fourth transmission line in the second phase shifter and the fifth transmission line in the second phase shifter are propagated. A power synthesizer that synthesizes the high-frequency signals that have been used,
    Distortion compensation inserted between the sixth transmission line and the seventh transmission line and comprising a diode to which a direct current supplied from a direct current is applied in the forward direction. circuit.
PCT/JP2020/021452 2020-05-29 2020-05-29 Phase shifter and distortion compensation circuit WO2021240813A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020563732A JPWO2021240813A1 (en) 2020-05-29 2020-05-29
PCT/JP2020/021452 WO2021240813A1 (en) 2020-05-29 2020-05-29 Phase shifter and distortion compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021452 WO2021240813A1 (en) 2020-05-29 2020-05-29 Phase shifter and distortion compensation circuit

Publications (1)

Publication Number Publication Date
WO2021240813A1 true WO2021240813A1 (en) 2021-12-02

Family

ID=78744168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021452 WO2021240813A1 (en) 2020-05-29 2020-05-29 Phase shifter and distortion compensation circuit

Country Status (2)

Country Link
JP (1) JPWO2021240813A1 (en)
WO (1) WO2021240813A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040239447A1 (en) * 2003-05-27 2004-12-02 Soon-Young Eom Broadband phase shifter using coupled lines and parallel open/short stubs
JP2010233055A (en) * 2009-03-27 2010-10-14 Mitsubishi Electric Corp Distortion compensation circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040239447A1 (en) * 2003-05-27 2004-12-02 Soon-Young Eom Broadband phase shifter using coupled lines and parallel open/short stubs
JP2010233055A (en) * 2009-03-27 2010-10-14 Mitsubishi Electric Corp Distortion compensation circuit

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EOM, SOON-YOUNG: "Broadband 180° Bit Phase Shifter Using a À/2 Coupled Line and Parallel À/8 Stubs", IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, vol. 14, no. 5, 10 May 2004 (2004-05-10), pages 228 - 230, XP001195906 *
LI, ERIC S. ET AL.: "A Broadband Balun With Complex Impedance Transformation and High Isolation", IEEE ACCESS, vol. 7, 12 August 2019 (2019-08-12), pages 112295 - 112303, XP011741658, DOI: 10.1109/ACCESS.2019.2934506 *

Also Published As

Publication number Publication date
JPWO2021240813A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
US6335665B1 (en) Adjustable phase and delay shift element
US5291148A (en) Gain linearization with coplanar waveguide
US5313174A (en) 2:1 bandwidth, 4-way, combiner/splitter
US9362602B2 (en) Power dividing and/or power-combining circuits with isolation
JP5828069B2 (en) Power distribution circuit
US9698750B2 (en) Circuit
US20110187453A1 (en) Linearizer incorporating a phase shifter
JP7383706B2 (en) radio frequency power amplifier
US9000865B2 (en) Power dividing and power combining circuits
US6788139B2 (en) Broadband predistortion linearizer
US20080231359A1 (en) Power divider/combiner and power dividing/combining method using the same
US5966059A (en) Phase shifting power coupler with three signals of equal amplitude
KR20220121769A (en) High Frequency Power Divider/Combiner Circuit
US11750161B2 (en) Microwave and radio frequency (RF) power electronics system having power combiner circuit
JP6200635B2 (en) Broadband balun structure
US10177455B2 (en) Systems and methods for differential dipole-based waveguide power combining
WO2021240813A1 (en) Phase shifter and distortion compensation circuit
US20020153967A1 (en) Variable phase shifter with reduced frequency-dependent phase deviations
US6310788B1 (en) Three-way, three phase power divider and combiner
US10951179B2 (en) Impedance control unit
US8698557B2 (en) Hybrid coupler
CN106532199B (en) Broadband phase equalizer for random cooling system
US20210175853A1 (en) Power amplifier
JPH06188611A (en) Microwave signal distributing circuit
WO2024127580A1 (en) Phase adjusting circuit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020563732

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938203

Country of ref document: EP

Kind code of ref document: A1