WO2024127580A1 - Phase adjusting circuit - Google Patents

Phase adjusting circuit Download PDF

Info

Publication number
WO2024127580A1
WO2024127580A1 PCT/JP2022/046188 JP2022046188W WO2024127580A1 WO 2024127580 A1 WO2024127580 A1 WO 2024127580A1 JP 2022046188 W JP2022046188 W JP 2022046188W WO 2024127580 A1 WO2024127580 A1 WO 2024127580A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
output
amplifier circuit
phase adjustment
Prior art date
Application number
PCT/JP2022/046188
Other languages
French (fr)
Japanese (ja)
Inventor
勉 竹谷
宗彦 長谷
宏行 高橋
斉 脇田
照男 徐
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/046188 priority Critical patent/WO2024127580A1/en
Publication of WO2024127580A1 publication Critical patent/WO2024127580A1/en

Links

Images

Definitions

  • the present invention relates to a sine wave phase adjustment circuit.
  • sine waves play an important role.
  • sine waves are sometimes used to generate carrier waves, and sometimes as clocks.
  • clocks are used not only as carrier waves, but also as a timing reference to determine data.
  • clock data recovery When using a clock as a timing reference for such data judgments, it is necessary to adjust the phase of the clock and make data judgments at the appropriate timing.
  • One method for making data judgments at the appropriate timing is clock data recovery.
  • a known means for achieving clock data recovery is a configuration that uses a phase comparator and a phase adjustment circuit. In this configuration, the phase is compared by some means, and the desired phase is generated based on the comparison results.
  • is as follows:
  • sine waves sin ⁇ t and cos ⁇ t are generated by using a Quadrature-VCO (Voltage Controlled Oscillator) 200.
  • the Quadrature-VCO 200 Due to its structure, the Quadrature-VCO 200 has a low oscillation frequency, which makes it difficult to use in the device's limit range.
  • a method of using a 90-degree hybrid is known as a method of creating a sine wave with a fixed phase difference of ⁇ /2 from a sine wave, but when using a 90-degree hybrid, there is an issue that it only works at specific frequencies.
  • the present invention has been made to solve the above problems, and aims to provide a phase adjustment circuit that can be used over a wide range of frequencies.
  • the phase adjustment circuit of the present invention is characterized by comprising a clock generation circuit configured to generate a sine wave clock signal, an amplifier circuit configured to amplify the clock signal output from the clock generation circuit, a transmission line whose input end is connected to the output terminal of the amplifier circuit, a load circuit whose impedance can be adjusted externally and connected to the end of the transmission line, and an output circuit whose input is a signal obtained by adding the output signal of the amplifier circuit and the return signal from the transmission line at the output terminal of the amplifier circuit.
  • the present invention by providing a clock generation circuit, an amplifier circuit, a transmission line, a load circuit, and an output circuit, it is no longer necessary to use a quadrature-VCO as in the past as a clock generation circuit that is the basis of a sine wave signal, and an LC-VCO consisting of a general LC oscillator can be used as the clock generation circuit, making it possible to generate a clock with an intermediate phase and to achieve operation at a higher frequency. Furthermore, compared to a configuration that uses a 90-degree hybrid as the clock generation circuit, the present invention can be used at a wider range of frequencies.
  • FIG. 1 is a block diagram showing the configuration of a phase adjustment circuit according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a simulation result of the phase adjustment circuit according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing the configuration of a phase adjustment circuit according to a second embodiment of the present invention.
  • FIG. 4 is a circuit diagram showing the configuration of an amplifier circuit according to a second embodiment of the present invention.
  • FIG. 5 is a block diagram showing the configuration of a phase adjustment circuit according to a third embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing the configuration of a mixer according to a third embodiment of the present invention.
  • FIG. 7 is a block diagram showing the configuration of a phase adjustment circuit according to a fourth embodiment of the present invention.
  • FIG. 8 is a block diagram showing the configuration of a phase adjustment circuit according to a fifth embodiment of the present invention.
  • FIG. 9 is a block diagram showing the configuration of a phase adjustment circuit according to a sixth embodiment of the present invention.
  • FIG. 10 is a circuit diagram showing the configuration of a signal quality evaluation circuit according to a sixth embodiment of the present invention.
  • FIG. 11 is a circuit diagram showing the configuration of a load circuit according to a seventh embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • FIG. 13 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • FIG. 14 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • FIG. 14 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • FIG. 15 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • FIG. 16 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • FIG. 17 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • FIG. 18 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • FIG. 19 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • FIG. 20 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • FIG. 21 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention.
  • a function of adjusting a sine wave to an arbitrary phase is realized by a circuit configuration in which a transmission line having a variable impedance load is provided for a clock buffer.
  • Fig. 1 is a block diagram showing the configuration of a phase adjustment circuit according to a first embodiment of the present invention.
  • the phase adjustment circuit includes a clock generation circuit 1 that generates a sine wave clock signal, an amplifier circuit 2 that amplifies the clock signal output from the clock generation circuit 1, an amplifier circuit 3 whose input terminal is connected to the output terminal of the amplifier circuit 2, a transmission line 4 whose input end is connected to the output terminal of the amplifier circuit 2, and a load circuit 5 connected to the end of the transmission line 4 and capable of adjusting the impedance from outside.
  • the sinusoidal clock signal output from the clock generation circuit 1 passes through the amplifier circuit 2 and is input to the amplifier circuit 3 and the transmission line 4. Because the impedance of the transmission line 4 differs from the impedance of the load circuit 5, the signal input to the transmission line 4 is reflected at the end of the transmission line 4 and returns to the output of the amplifier circuit 2. As a result, the signal output from the amplifier circuit 2 and the signal delayed by traveling back and forth on the transmission line 4 are added together at the output terminal of the amplifier circuit 2.
  • the amplifier circuits 2 and 3 a buffer circuit with an amplification factor of 1, an amplifier circuit with an amplification factor higher than 1, or an amplifier circuit with an amplification factor higher than 0 and lower than 1 may be used.
  • the amplifier circuit 3 is used as an output circuit that receives as input a signal obtained by adding the output signal of the amplifier circuit 2 and the return signal from the transmission line 4 at the output terminal of the amplifier circuit 2.
  • the output circuit does not have to be an amplifier circuit, and may be a circuit that combines a mixer and a filter.
  • phase adjustment circuit The operation of the phase adjustment circuit will be explained using a formula. If the signal input from the amplifier circuit 2 to the transmission line 4 is A sin ⁇ t, and the signal reflected back from the transmission line 4 is B sin( ⁇ t + ⁇ ), then the final output signal OUT of the amplifier circuit 3 will be expressed by the following formula.
  • the amplification degree of the amplifier circuit 3 is set to 1.
  • e j ⁇ t indicates a reference sine wave.
  • B sin( ⁇ t + ⁇ ) is a reflected wave returning from the transmission line 4, so it is not amplified and B ⁇ A.
  • the values of B and ⁇ depend on the impedance of the load circuit 5 and the length of the transmission line 4.
  • equation (3) From equation (3), it can be seen that by adding a sine wave of a reference frequency and a sine wave differing by an arbitrary phase ⁇ , a sine wave with a phase difference of ⁇ from the sine wave of the reference phase can be generated. Since the amount of change in the output phase can be calculated by re j ⁇ , equation (3) can be rearranged to obtain equation (4).
  • the output impedance of the amplifier circuit 2 is r o
  • the characteristic impedance of the transmission line 4 is Z 0
  • the impedance of the load circuit 5 is Z T.
  • the impedance Z in of the transmission line 4 and the load circuit 5 as viewed from the input of the transmission line 4 is given by equation (6).
  • B is the phase constant
  • L is the length of the transmission line 4. Since B ⁇ L is determined by the physical structure and the frequency of the signal, when focusing on a specific frequency, tanBL may be regarded as a constant.
  • the impedance Z out at the output terminal of the amplifier circuit 2 is the combined resistance of Z in and r o , and can be expressed as in equation (7).
  • the output voltage of an amplifier circuit is expressed as the product of the transconductance and the impedance of the output terminal. Therefore, if the transconductance of the amplifier circuit 2 is gma, the output voltage Vout of the amplifier circuit 2 can be expressed as shown in equation (8).
  • V out gma ⁇ Z out (8)
  • Reference numeral 20 denotes a sine wave output from the clock generation circuit 1
  • reference numeral 21 denotes a sine wave whose phase has been changed by the phase adjustment circuit of this embodiment.
  • the frequency of the sine wave is 60 GHz. It can be confirmed that by changing the impedance ZT of the load circuit 5, the phase of the sine wave changes by approximately 3 ps in time.
  • the range of the impedance ZT is not limited to real numbers, but may be complex numbers.
  • the characteristic impedance Z0 of the transmission line 4 and the output impedance r0 of the amplifier circuit 2 may be made to match each other.
  • [Second embodiment] 3 is a block diagram showing the configuration of a phase adjustment circuit according to a second embodiment of the present invention.
  • the phase adjustment circuit of this embodiment includes a differential output type clock generation circuit 1a that generates a sine wave differential clock signal, a differential input/differential output type amplifier circuit 2a whose non-inverting input terminal is connected to the non-inverting output terminal of the clock generation circuit 1a and whose inverting input terminal is connected to the inverting output terminal of the clock generation circuit 1a, a differential input/differential output type amplifier circuit 3a whose non-inverting input terminal is connected to the non-inverting output terminal of the amplifier circuit 2a and whose inverting input terminal is connected to the inverting output terminal of the amplifier circuit 2a, a transmission line 4p whose input terminal is connected to the non-inverting output terminal of the amplifier circuit 2a, a transmission line 4n whose input terminal is connected to the inverting output terminal of the amplifier circuit 2a, a load circuit 5p
  • the transmission lines 4p, 4n are lines having the same length L and the same characteristic impedance Z0 .
  • the load circuits 5p, 5n are circuits having the same impedance ZT . However, as described later, the impedances ZT of the load circuits 5p, 5n may be adjusted to different values.
  • the amplifier circuits 2a and 3a may have the configuration shown in FIG. 4, which is a typical differential amplifier circuit.
  • NPN bipolar transistor Q3 It is composed of an NPN bipolar transistor Q3, a resistor R1 connected to the power supply voltage VCC at one end and the collector of transistor Q1 at the other end, a resistor R2 connected to the power supply voltage VCC at one end and the collector of transistor Q2 at the other end, a resistor R3 connected to the emitter of transistor Q1 at one end and the collector of transistor Q3 at the other end, a resistor R4 connected to the emitter of transistor Q2 at one end and the collector of transistor Q3 at the other end, and a resistor R5 connected to the emitter of transistor Q3 at one end and the ground at the other end.
  • amplifier circuit 3a is the same as that of amplifier circuit 2a.
  • the amplification degree of amplifier circuits 2a and 3a may be 1, may be higher than 1, or may be higher than 0 and lower than 1.
  • FIG. 5 is a block diagram showing the configuration of a phase adjustment circuit according to a third embodiment of the present invention.
  • the phase adjustment circuit of this embodiment includes a clock generation circuit 1a, an amplifier circuit 2a, transmission lines 4p, 4n, load circuits 5p, 5n, a differential input/differential output type mixer 6 that mixes sum signals IN6p, IN6n of the output signal of the amplifier circuit 2a and the return signal from the transmission lines 4p, 4n, and carrier signals IN7p, IN7n input from the outside, and a differential input/differential output type filter 7 that filters the output signal of the mixer 6 and passes differential signals OUTp, OUTn of a desired frequency.
  • the frequency of the sum signals IN6p, IN6n is f1
  • the frequency of the carrier signals IN7p, IN7n is f2.
  • a signal having the sum and difference frequencies f1 ⁇ f2 is output from the mixer 6.
  • the filter 7 filters the output signal of the mixer 6, for example, to pass a signal of frequency f1+f2. In this way, the sum signals IN6p and IN6n input to the mixer 6 can be converted to signals OUTp and OUTn of higher frequencies and output.
  • the Gilbert cell circuit shown in Figure 6 can be used as the mixer 6 that functions as a multiplier.
  • the mixer 6 is made up of an NPN bipolar transistor Q4, which receives the negative-phase addition signal IN6n at its base and outputs the positive-phase output signal OUT6p of the mixer 6 from its collector, an NPN bipolar transistor Q5, which receives the positive-phase addition signal IN6p at its base and outputs the negative-phase output signal OUT6n of the mixer 6 from its collector, an NPN bipolar transistor Q6, which receives the addition signal IN6n at its base and outputs the output signal OUT6n from its collector, an NPN bipolar transistor Q7, which receives the addition signal IN6p at its base and outputs the output signal OUT6p from its collector, an NPN bipolar transistor Q8, which receives the positive-phase carrier signal IN7p at its base and has its collector connected to the emitters of the transistors Q4 and Q5, and an NPN bipolar transistor Q9, which receives the negative-phase carrier signal I N7n is
  • a differential circuit configuration is shown, but in a single-phase configuration as shown in FIG. 1, a single-phase input/single-phase output mixer and a single-phase input/single-phase output filter may be provided instead of the amplifier circuit 3.
  • [Fourth embodiment] 7 is a block diagram showing the configuration of a phase adjustment circuit according to a fourth embodiment of the present invention.
  • the phase adjustment circuit of this embodiment includes a clock generation circuit 1a, a differential input/differential output type variable gain amplifier circuit 2b having a non-inverting input terminal connected to the non-inverting output terminal of the clock generation circuit 1a and an inverting input terminal connected to the inverting output terminal of the clock generation circuit 1a, a differential input/differential output type amplifier circuit 3a having a non-inverting input terminal connected to the non-inverting output terminal of the variable gain amplifier circuit 2b and an inverting input terminal connected to the inverting output terminal of the variable gain amplifier circuit 2b, transmission lines 4p, 4n, and load circuits 5p, 5n.
  • variable gain amplifier circuit 2b is provided instead of the amplifier circuit 2a in the second embodiment in order to adjust the amplitude of the differential signals OUTp and OUTn output from the amplifier circuit 3a.
  • the configuration of the variable gain amplifier circuit 2b is not important, but for example, the Gilbert cell circuit shown in FIG. 6 can be used.
  • variable gain amplifier circuit 2b When a Gilbert cell circuit is used as the variable gain amplifier circuit 2b, the positive phase gain control signal is input instead of IN6p in FIG. 6, the negative phase gain control signal is input instead of IN6n, the positive phase clock signal output from the clock generation circuit 1a is input instead of IN7p, and the negative phase clock signal output from the clock generation circuit 1a is input instead of IN7n.
  • the gain of the variable gain amplifier circuit 2b can be controlled by the voltage difference between the positive phase gain control signal and the negative phase gain control signal.
  • [Fifth Example] 8 is a block diagram showing the configuration of a phase adjustment circuit according to a fifth embodiment of the present invention.
  • the phase adjustment circuit of this embodiment includes a clock generation circuit 1a, a variable gain amplifier circuit 2b, an amplifier circuit 3a, transmission lines 4p and 4n, load circuits 5p and 5n, and an amplitude control circuit 8.
  • the amplitude control circuit 8 outputs a gain control signal to the variable gain amplifier circuit 2b so that the amplitudes of the output signals OUTp, OUTn of the amplifier circuit 3a are constant. In this way, by performing feedback control in which the amplitude of the output signals OUTp, OUTn is detected and the gain of the variable gain amplifier circuit 2b is adjusted, the amplitude of the output signals OUTp, OUTn can be made constant.
  • FIG. 9 is a block diagram showing the configuration of a phase adjustment circuit according to a sixth embodiment of the present invention.
  • the phase adjustment circuit of this embodiment includes a clock generation circuit 1a, amplifier circuits 2a and 3a, transmission lines 4p and 4n, load circuits 5p and 5n, and an impedance control circuit 9.
  • an impedance control circuit 9 is used to maintain the signal quality of the differential signal.
  • the impedance control circuit 9 evaluates the signal quality of the differential signals OUTp, OUTn output from the amplifier circuit 3a, and individually controls the impedance of each of the load circuits 5p, 5n based on the evaluation results.
  • FIG. 10 is a circuit diagram showing the configuration of a signal quality evaluation circuit 10 in the impedance control circuit 9.
  • the signal quality evaluation circuit 10 comprises an NPN bipolar transistor Q11, which receives the positive phase output signal OUTp output from the amplifier circuit 3a at its base and outputs the negative phase output signal OUT10n from its collector, an NPN bipolar transistor Q12, which receives the negative phase output signal OUTn output from the amplifier circuit 3a at its base and outputs the positive phase output signal OUT10p from its collector, an NPN bipolar transistor Q13, whose base is given a bias voltage Vb, and an NPN bipolar transistor Q14, which has one end connected to the power supply voltage VCC and the other end connected to the transistor 12.
  • resistor R11 connected to the collector of transistor Q11
  • resistor R12 having one end connected to the power supply voltage VCC and the other end connected to the collector of transistor Q12
  • resistor R13 having one end connected to the emitter of transistor Q11 and the other end connected to the collector of transistor Q13
  • resistor R14 having one end connected to the emitter of transistor Q12 and the other end connected to the collector of transistor Q13
  • resistor R15 having one end connected to the emitter of transistor Q13 and the other end connected to ground.
  • the difference between the output signals OUT10p, OUT10n of the signal quality evaluation circuit 10 is 0.
  • the impedance of the load circuits 5p, 5n so that the sum of the differential signals OUTp, OUTn is 0 (so that the difference between the output signals OUT10p, OUT10n is 0)
  • the quality of the differential signals OUTp, OUTn can be improved.
  • a processor or the like that performs digital signal processing is provided after the signal quality evaluation circuit 10 in the impedance control circuit 9, and the impedance of the load circuits 5p, 5n is controlled based on the output signals OUT10p, OUT10n of the signal quality evaluation circuit 10 so that the time average of the sum of the differential signals OUTp, OUTn becomes 0.
  • the signal quality evaluation circuit 10 is not limited to the configuration shown in FIG. 10, and may be realized by a passive multiplexing circuit.
  • the amplifier circuit 2a may be replaced by a variable gain amplifier circuit 2b, and in the fourth to sixth embodiments, the mixer 6 and filter 7 described in the third embodiment may be replaced by the amplifier circuit 3a.
  • the load circuits 5, 5p, and 5n in the first to sixth embodiments may be a circuit as shown in Fig. 11, which is made up of a capacitance for blocking DC components and a variable resistor.
  • One end of the capacitance C1 is connected to the end of the transmission line 4, 4p, or 4n, and the other end of the capacitance C1 is connected to one end of the variable resistor VR1.
  • the other end of the variable resistor VR1 is connected to ground.
  • variable resistor VR1 is composed of an NPN bipolar transistor Q14, whose base receives a control voltage Vctrl, whose collector is connected to the power supply voltage VCC, and whose emitter is connected to the other end of capacitor C1, and a resistor R16, whose one end is connected to the emitter of transistor Q14 and whose other end is connected to ground.
  • variable resistor VR1 is composed of an NPN bipolar transistor Q15, whose base receives a control voltage Vctrl, whose collector is connected to the power supply voltage VCC, and whose emitter is connected to the other end of capacitance C1, and an NPN bipolar transistor Q16, whose base receives a bias voltage Vb, whose collector is connected to the emitter of transistor Q15, and whose emitter is connected to ground.
  • the impedance of the load circuit 5 can be changed by changing the control voltage Vctrl.
  • increasing the control voltage Vctrl increases the impedance of the load circuit 5, and decreasing the control voltage Vctrl decreases the impedance of the load circuit 5.
  • the load circuit 5 may be realized by a feedback configuration using a variable gain amplifier circuit as shown in FIG. 14.
  • the variable resistor VR1 is composed of a variable gain amplifier circuit A1 having a reference voltage VRef input to its non-inverting input terminal and an inverting input terminal connected to the other end of the capacitor C1, and a resistor R17 having one end connected to the output terminal of the variable gain amplifier circuit A1 and the other end connected to the inverting input terminal of the variable gain amplifier circuit A1.
  • increasing the gain of the variable gain amplifier circuit A1 reduces the impedance of the load circuit 5, and decreasing the gain of the variable gain amplifier circuit A1 increases the impedance of the load circuit 5.
  • the gain of the variable gain amplifier circuit A1 can be changed by the control voltage Vctrl, thereby changing the impedance of the load circuit 5.
  • a Gilbert cell circuit can be used in the same manner as above.
  • the capacitance C1 is inserted to consider the bias point, but depending on the design, the capacitance C1 may not be inserted and the ends of the transmission lines 4, 4p, and 4n may be directly connected to the variable resistor VR1.
  • variable capacitance VC1 As the load circuits 5, 5p, and 5n in the first to sixth embodiments, it is also possible to use a variable capacitance VC1 as shown in FIG. 15. One end of the variable capacitance VC1 is connected to the end of the transmission line 4, 4p, and 4n, and the other end of the variable capacitance VC1 is connected to ground.
  • variable capacitance VC1 is composed of a capacitance C2, one end of which is connected to the end of the transmission lines 4, 4p, and 4n, a diode D1, the anode of which receives the control voltage Vctrl and the cathode of which is connected to the other end of the capacitance C2, and a resistor R18, one end of which is connected to the cathode of the diode D1 and the other end of which is connected to ground.
  • variable capacitance VC1 is composed of a capacitance C3, one end of which is connected to the end of the transmission lines 4, 4p, and 4n; a diode D2, whose anode receives a control voltage Vctrl and whose cathode is connected to the other end of the capacitance C3; and an NPN bipolar transistor Q17, whose base is supplied with a bias voltage Vb, whose collector is connected to the cathode of the diode D2, and whose emitter is connected to ground.
  • the impedance of the load circuit 5 can be changed by changing the control voltage Vctrl.
  • increasing the control voltage Vctrl increases the impedance of the load circuit 5, and decreasing the control voltage Vctrl decreases the impedance of the load circuit 5.
  • variable capacitance VC1 may be realized by a feedback configuration using a variable gain amplifier circuit.
  • the variable capacitance VC1 is composed of a capacitance C4 having one end connected to the end of the transmission line 4, 4p, 4n, a variable gain amplifier circuit A2 having a non-inverting input terminal to which a reference voltage VRef is input and an inverting input terminal connected to the other end of the capacitance C4, and a capacitance C5 having one end connected to the output terminal of the variable gain amplifier circuit A2 and the other end connected to the inverting input terminal of the variable gain amplifier circuit A2.
  • increasing the gain of the variable gain amplifier circuit A2 reduces the impedance of the load circuit 5, and decreasing the gain of the variable gain amplifier circuit A2 increases the impedance of the load circuit 5.
  • the impedance of the load circuit 5 can be changed by changing the gain of the variable gain amplifier circuit A2 using the control voltage Vctrl.
  • a Gilbert cell circuit can be used as the variable gain amplifier circuit A2.
  • the load circuits 5, 5p, and 5n in the first to sixth embodiments it is also possible to use a circuit that combines a variable resistor VR1 and a variable capacitor VC1 as shown in FIG. 19.
  • the configurations shown in FIGS. 20 to 22 can be used as the load circuits 5, 5p, and 5n.
  • the load circuit 5 is composed of a capacitor C1, one end of which is connected to the end of the transmission lines 4, 4p, and 4n; an NPN bipolar transistor Q15, whose base receives a control voltage Vctrl, whose collector is connected to the power supply voltage VCC, and whose emitter is connected to the other end of the capacitor C1; an NPN bipolar transistor Q16, whose base receives a bias voltage Vb, whose collector is connected to the emitter of the transistor Q15, and whose emitter is connected to ground; and a diode D2, whose anode receives a control voltage Vctrlc, and whose cathode is connected to the other end of the capacitor C1.
  • the load circuit 5 is composed of a capacitor C1 having one end connected to the end of the transmission line 4, 4p, 4n, a variable gain amplifier circuit A1 having a non-inverting input terminal to which a reference voltage VRef is input and an inverting input terminal connected to the other end of the capacitor C1, a resistor R17 having one end connected to the output terminal of the variable gain amplifier circuit A1 and the other end connected to the inverting input terminal of the variable gain amplifier circuit A1, a variable gain amplifier circuit A2 having a non-inverting input terminal to which a reference voltage VRef is input and an inverting input terminal connected to the other end of the capacitor C1, and a capacitor C5 having one end connected to the output terminal of the variable gain amplifier circuit A2 and the other end connected to the inverting input terminal of the variable gain amplifier circuit A2.
  • variable inductor VL1 As the load circuits 5, 5p, 5n in the first to sixth embodiments, it is also possible to use a variable inductor VL1 as shown in FIG. 23. One end of the capacitance C1 is connected to the termination of the transmission line 4, 4p, 4n, and the other end of the capacitance C1 is connected to one end of the variable inductor VL1. The other end of the variable inductor VL1 is connected to ground.
  • the load circuits 5, 5p, 5n in the first to sixth embodiments it is also possible to use a circuit that combines a variable resistor VR1, a variable capacitance VC1, and a variable inductor VL1, as shown in FIG. 24. It is also possible to combine a variable resistor VR1 with a variable inductor VL1, or to combine a variable capacitance VC1 with a variable inductor VL1.
  • the configuration of the load circuit 5 is taken as an example for explanation, but the configuration of the load circuits 5p and 5n is also similar to that of the load circuit 5.
  • the impedance control circuit 9 when the load circuits 5p, 5n are combined with the impedance control circuit 9, if the sum of the differential signals OUTp, OUTn is positive, the impedance of the load circuit 5n is increased and the impedance of the load circuit 5p is decreased. Also, if the sum of the differential signals OUTp, OUTn is negative, the impedance of the load circuit 5p is increased and the impedance of the load circuit 5n is decreased.
  • FIG. 25 shows an example of a microstrip line.
  • the transmission line 4p is composed of a dielectric 400, a signal line 401 made of a conductor formed on the surface of the dielectric 400, and a ground plane 403 made of a conductor formed on the back surface of the dielectric 400.
  • the transmission line 4n is composed of a dielectric 400, a signal line 402 made of a conductor formed on the surface of the dielectric 400, and a ground plane 403.
  • the example in FIG. 26 shows an example of a coplanar line.
  • the transmission line 4p is composed of a dielectric 400, a signal line 401, and a ground plane 404 made of a conductor formed on the surface of the dielectric 400 on the side opposite the signal line 402, with the signal line 401 in between.
  • the transmission line 4n is composed of a dielectric 400, a signal line 402, and a ground plane 405 made of a conductor formed on the surface of the dielectric 400 on the side opposite the signal line 401, with the signal line 402 in between.
  • Transmission line 4p is composed of a dielectric 400, a signal line 401, and ground planes 403 and 404.
  • Transmission line 4n is composed of a dielectric 400, a signal line 402, and ground planes 403 and 405.
  • the configuration of the transmission lines 4p and 4n is taken as an example for explanation, but in the case of the transmission line 4, it is sufficient to provide only one of the signal lines 401 and 402.
  • the structures of the transmission lines 4, 4p, 4n are not limited to the cross-sectional structures shown in FIGS. 25 to 27, but may be other structures as long as the characteristic impedance can be defined.
  • bipolar transistors are used as transistors Q1 to Q17, but MOS transistors may also be used.
  • MOS transistors simply replace the base with the gate, the collector with the drain, and the emitter with the source in the above explanation.
  • the phase adjustment circuit of the present invention comprises a clock generation circuit configured to generate a sine wave clock signal, an amplifier circuit configured to amplify the clock signal output from the clock generation circuit, a transmission line whose input end is connected to the output terminal of the amplifier circuit, a load circuit whose impedance can be adjusted externally and connected to the end of the transmission line, and an output circuit whose input is a signal obtained by adding the output signal of the amplifier circuit and a return signal from the transmission line at the output terminal of the amplifier circuit.
  • the load circuit is made of a variable resistor whose impedance can be adjusted externally.
  • the load circuit is made of a variable inductor whose impedance can be adjusted externally.
  • the load circuit is composed of a combination of at least two of a variable resistor, a variable capacitor, and a variable inductor whose impedance can be adjusted externally.
  • the clock generation circuit generates a sine wave differential clock signal
  • the amplifier circuit is a differential input/differential output type circuit that amplifies the differential clock signal
  • the transmission line is composed of a first transmission line whose input end is connected to the non-inverting output terminal of the amplifier circuit and a second transmission line whose input end is connected to the inverting output terminal of the amplifier circuit
  • the load circuit is composed of a first load circuit connected to the end of the first transmission line and capable of adjusting impedance from the outside, and a second load circuit connected to the end of the second transmission line and capable of adjusting impedance from the outside.
  • the output circuit is a differential input/differential output type circuit that receives as input a signal obtained by adding the positive-phase output signal of the amplifier circuit and the return signal from the first transmission line at the non-inverting output terminal of the amplifier circuit, and a signal obtained by adding the negative-phase output signal of the amplifier circuit and the return signal from the second transmission line at the inverting output terminal of the amplifier circuit, and further includes an impedance control circuit configured to control the impedances of the first and second load circuits so that the sum of the differential signals output from the output circuit is 0.
  • the output circuit is an amplifier circuit configured to amplify the signal added at the output terminal of the amplifier circuit.
  • the output circuit is composed of a mixer configured to mix the signal added at the output terminal of the amplifier circuit with an externally input carrier signal, and a filter configured to filter the output signal of the mixer and pass a signal of a desired frequency.
  • the present invention can be applied to technology for adjusting the phase of a sine wave.

Landscapes

  • Networks Using Active Elements (AREA)

Abstract

This phase adjusting circuit comprises: a clock generation circuit (1) that generates a clock signal of a sinusoidal shape; an amplification circuit (2) that amplifies the clock signal; a transfer line (4) the input end of which is connected to the output terminal of the amplification circuit (2); a load circuit (5) which is connected to the terminal end of the transfer line (4) and the impedance of which can be externally adjusted; and an amplification circuit (3) that receives, as an input thereof, a signal obtained by adding, at the output terminal of the amplification circuit (2), the output signal of the amplification circuit (2) and a return signal from the transfer line (4).

Description

位相調整回路Phase Adjustment Circuit
 本発明は、正弦波の位相調整回路に関するものである。 The present invention relates to a sine wave phase adjustment circuit.
 現代において、正弦波は重要な役割を果たしている。通信において、搬送波の生成に正弦波を用いることもあれば、正弦波をクロックとして使用することもある。通信においては、搬送波として用いられるだけでなく、データを判定するタイミング基準としてもクロックが使用される。 In modern times, sine waves play an important role. In communications, sine waves are sometimes used to generate carrier waves, and sometimes as clocks. In communications, clocks are used not only as carrier waves, but also as a timing reference to determine data.
 こういったデータ判定のタイミング基準としてクロックを使用する場合、クロックの位相を調整し、適切なタイミングでデータ判定を行うことが必要である。適切なタイミングでデータ判定を行う方法として、クロック・データ・リカバリがある。クロック・データ・リカバリを実現する手段としては、位相比較器と位相調整回路を用いる構成が知られている。この構成では、何らかの手段で位相を比較し、その比較結果に基づき、所望する位相を生成する。 When using a clock as a timing reference for such data judgments, it is necessary to adjust the phase of the clock and make data judgments at the appropriate timing. One method for making data judgments at the appropriate timing is clock data recovery. A known means for achieving clock data recovery is a configuration that uses a phase comparator and a phase adjustment circuit. In this configuration, the phase is compared by some means, and the desired phase is generated based on the comparison results.
 従来、位相調整回路として、非特許文献1に開示された構成が知られていた。従来の位相調整回路の構成を図28に示す。図28の構成では、基準となる正弦波sinωtと、正弦波sinωtに対してπ/2の固定位相差を持つ正弦波cosωtとを加算器203によって加算することで、任意の中間位相の波形を生成する。正弦波sinωt,cosωtには、それぞれ乗算器201,202によって定数A,Bが乗算される。三角関数合成の式より、次式が成立する。  Conventionally, the configuration disclosed in Non-Patent Document 1 has been known as a phase adjustment circuit. The configuration of a conventional phase adjustment circuit is shown in FIG. 28. In the configuration of FIG. 28, a reference sine wave sinωt and a sine wave cosωt having a fixed phase difference of π/2 with respect to the sine wave sinωt are added by adder 203 to generate a waveform of any intermediate phase. The sine waves sinωt and cosωt are multiplied by constants A and B by multipliers 201 and 202, respectively. The following equation is established from the trigonometric function synthesis equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)におけるαは以下のようになる。 In equation (1), α is as follows:
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図28の構成では、Quadrature-VCO(Voltage Controlled Oscillator)200を用いることで、正弦波sinωt,cosωtを生成している。しかしながら、Quadrature-VCO200は、構造上、発振周波数が低くなるため、デバイスの限界領域で用いることが難しい、という課題があった。また、正弦波からπ/2の固定位相差を持つ正弦波を作成する方法として、90度ハイブリッドを使用する方法が知られているが、90度ハイブリッドを使用する場合、特定の周波数においてしか動作しない、という課題があった。 In the configuration of Figure 28, sine waves sinωt and cosωt are generated by using a Quadrature-VCO (Voltage Controlled Oscillator) 200. However, due to its structure, the Quadrature-VCO 200 has a low oscillation frequency, which makes it difficult to use in the device's limit range. In addition, a method of using a 90-degree hybrid is known as a method of creating a sine wave with a fixed phase difference of π/2 from a sine wave, but when using a 90-degree hybrid, there is an issue that it only works at specific frequencies.
 本発明は、上記課題を解決するためになされたもので、幅広い周波数で利用が可能な位相調整回路を提供することを目的とする。 The present invention has been made to solve the above problems, and aims to provide a phase adjustment circuit that can be used over a wide range of frequencies.
 本発明の位相調整回路は、正弦波状のクロック信号を生成するように構成されたクロック生成回路と、前記クロック生成回路から出力されたクロック信号を増幅するように構成された増幅回路と、入力端が前記増幅回路の出力端子に接続された伝送線路と、前記伝送線路の終端に接続された、外部からインピーダンスの調整が可能な負荷回路と、前記増幅回路の出力信号と前記伝送線路からの戻り信号とが前記増幅回路の出力端子において加算された信号を入力とする出力回路とを備えることを特徴とするものである。 The phase adjustment circuit of the present invention is characterized by comprising a clock generation circuit configured to generate a sine wave clock signal, an amplifier circuit configured to amplify the clock signal output from the clock generation circuit, a transmission line whose input end is connected to the output terminal of the amplifier circuit, a load circuit whose impedance can be adjusted externally and connected to the end of the transmission line, and an output circuit whose input is a signal obtained by adding the output signal of the amplifier circuit and the return signal from the transmission line at the output terminal of the amplifier circuit.
 本発明によれば、クロック生成回路と増幅回路と伝送線路と負荷回路と出力回路とを設けることにより、正弦波信号の基となるクロック生成回路として従来のようなQuadrature-VCOを使う必要がなくなり、クロック生成回路として一般的なLC発振器からなるLC-VCOを使用することができるので、中間位相のクロックを生成することができ、より高い周波数での動作を実現することができる。また、本発明では、クロック生成回路として90度ハイブリッドを用いる構成に比べて、幅広い周波数で利用が可能となる。 According to the present invention, by providing a clock generation circuit, an amplifier circuit, a transmission line, a load circuit, and an output circuit, it is no longer necessary to use a quadrature-VCO as in the past as a clock generation circuit that is the basis of a sine wave signal, and an LC-VCO consisting of a general LC oscillator can be used as the clock generation circuit, making it possible to generate a clock with an intermediate phase and to achieve operation at a higher frequency. Furthermore, compared to a configuration that uses a 90-degree hybrid as the clock generation circuit, the present invention can be used at a wider range of frequencies.
図1は、本発明の第1の実施例に係る位相調整回路の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a phase adjustment circuit according to a first embodiment of the present invention. 図2は、本発明の第1の実施例に係る位相調整回路のシミュレーション結果を示す図である。FIG. 2 is a diagram showing a simulation result of the phase adjustment circuit according to the first embodiment of the present invention. 図3は、本発明の第2の実施例に係る位相調整回路の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of a phase adjustment circuit according to a second embodiment of the present invention. 図4は、本発明の第2の実施例に係る増幅回路の構成を示す回路図である。FIG. 4 is a circuit diagram showing the configuration of an amplifier circuit according to a second embodiment of the present invention. 図5は、本発明の第3の実施例に係る位相調整回路の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of a phase adjustment circuit according to a third embodiment of the present invention. 図6は、本発明の第3の実施例に係るミキサの構成を示す回路図である。FIG. 6 is a circuit diagram showing the configuration of a mixer according to a third embodiment of the present invention. 図7は、本発明の第4の実施例に係る位相調整回路の構成を示すブロック図である。FIG. 7 is a block diagram showing the configuration of a phase adjustment circuit according to a fourth embodiment of the present invention. 図8は、本発明の第5の実施例に係る位相調整回路の構成を示すブロック図である。FIG. 8 is a block diagram showing the configuration of a phase adjustment circuit according to a fifth embodiment of the present invention. 図9は、本発明の第6の実施例に係る位相調整回路の構成を示すブロック図である。FIG. 9 is a block diagram showing the configuration of a phase adjustment circuit according to a sixth embodiment of the present invention. 図10は、本発明の第6の実施例に係る信号品質評価回路の構成を示す回路図である。FIG. 10 is a circuit diagram showing the configuration of a signal quality evaluation circuit according to a sixth embodiment of the present invention. 図11は、本発明の第7の実施例に係る負荷回路の構成を示す回路図である。FIG. 11 is a circuit diagram showing the configuration of a load circuit according to a seventh embodiment of the present invention. 図12は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 12 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図13は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 13 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図14は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 14 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図15は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 15 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図16は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 16 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図17は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 17 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図18は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 18 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図19は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 19 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図20は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 20 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図21は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 21 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図22は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 22 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図23は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 23 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図24は、本発明の第7の実施例に係る負荷回路の別の構成を示す回路図である。FIG. 24 is a circuit diagram showing another configuration of the load circuit according to the seventh embodiment of the present invention. 図25は、本発明の第8の実施例に係る伝送線路の構成を示す断面図である。FIG. 25 is a cross-sectional view showing the configuration of a transmission line according to an eighth embodiment of the present invention. 図26は、本発明の第8の実施例に係る伝送線路の別の構成を示す断面図である。FIG. 26 is a cross-sectional view showing another configuration of a transmission line according to the eighth embodiment of the present invention. 図27は、本発明の第8の実施例に係る伝送線路の別の構成を示す断面図である。FIG. 27 is a cross-sectional view showing another configuration of a transmission line according to the eighth embodiment of the present invention. 図28は、従来の位相調整回路の構成を示すブロック図である。FIG. 28 is a block diagram showing a configuration of a conventional phase adjustment circuit.
[発明の原理]
 本発明では、クロックバッファに対して、インピーダンス可変な負荷を有する伝送線路を設けた回路構成により、正弦波を任意の位相に調整する機能を実現する。
[Principle of the Invention]
In the present invention, a function of adjusting a sine wave to an arbitrary phase is realized by a circuit configuration in which a transmission line having a variable impedance load is provided for a clock buffer.
[第1の実施例]
 以下、本発明の実施例について図面を参照して説明する。図1は本発明の第1の実施例に係る位相調整回路の構成を示すブロック図である。位相調整回路は、正弦波状のクロック信号を生成するクロック生成回路1と、クロック生成回路1から出力されたクロック信号を増幅する増幅回路2と、入力端子が増幅回路2の出力端子と接続された増幅回路3と、入力端が増幅回路2の出力端子に接続された伝送線路4と、伝送線路4の終端に接続された、外部からインピーダンスの調整が可能な負荷回路5とを備えている。
[First embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Fig. 1 is a block diagram showing the configuration of a phase adjustment circuit according to a first embodiment of the present invention. The phase adjustment circuit includes a clock generation circuit 1 that generates a sine wave clock signal, an amplifier circuit 2 that amplifies the clock signal output from the clock generation circuit 1, an amplifier circuit 3 whose input terminal is connected to the output terminal of the amplifier circuit 2, a transmission line 4 whose input end is connected to the output terminal of the amplifier circuit 2, and a load circuit 5 connected to the end of the transmission line 4 and capable of adjusting the impedance from outside.
 図1の構成では、クロック生成回路1から出力された正弦波状のクロック信号は、増幅回路2を通過して、増幅回路3と伝送線路4とに入力される。伝送線路4のインピーダンスと負荷回路5のインピーダンスとが異なるため、伝送線路4に入力された信号は、伝送線路4の終端で反射され、増幅回路2の出力に戻る。このため、増幅回路2から出力された信号と、伝送線路4を往復することによって遅延された信号とが増幅回路2の出力端子において加算されることとなる。 In the configuration of FIG. 1, the sinusoidal clock signal output from the clock generation circuit 1 passes through the amplifier circuit 2 and is input to the amplifier circuit 3 and the transmission line 4. Because the impedance of the transmission line 4 differs from the impedance of the load circuit 5, the signal input to the transmission line 4 is reflected at the end of the transmission line 4 and returns to the output of the amplifier circuit 2. As a result, the signal output from the amplifier circuit 2 and the signal delayed by traveling back and forth on the transmission line 4 are added together at the output terminal of the amplifier circuit 2.
 増幅回路2,3としては、増幅度が1のバッファ回路を用いてもよいし、増幅度が1より高い増幅回路を用いてもよいし、増幅度が0より高く1より低い増幅回路を用いてもよい。
 本実施例では、増幅回路2の出力信号と伝送線路4からの戻り信号とが増幅回路2の出力端子において加算された信号を入力とする出力回路として、増幅回路3を用いているが、後述のように出力回路は、増幅回路でなくてもよく、ミキサとフィルタを組み合わせた回路でもよい。
As the amplifier circuits 2 and 3, a buffer circuit with an amplification factor of 1, an amplifier circuit with an amplification factor higher than 1, or an amplifier circuit with an amplification factor higher than 0 and lower than 1 may be used.
In this embodiment, the amplifier circuit 3 is used as an output circuit that receives as input a signal obtained by adding the output signal of the amplifier circuit 2 and the return signal from the transmission line 4 at the output terminal of the amplifier circuit 2. However, as described later, the output circuit does not have to be an amplifier circuit, and may be a circuit that combines a mixer and a filter.
 位相調整回路の動作を数式を用いて説明する。増幅回路2から伝送線路4に入力された信号をAsinωtとし、伝送線路4から反射して戻ってきた信号をBsin(ωt+φ)とすると、最終的に増幅回路3の出力信号OUTは、次式のようになる。 The operation of the phase adjustment circuit will be explained using a formula. If the signal input from the amplifier circuit 2 to the transmission line 4 is A sinωt, and the signal reflected back from the transmission line 4 is B sin(ωt + φ), then the final output signal OUT of the amplifier circuit 3 will be expressed by the following formula.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)では増幅回路3の増幅度を1としている。ejωtは基準となる正弦波を示す。Bsin(ωt+φ)は、伝送線路4から戻ってきた反射波なので、増幅されておらず、B<Aである。Bとφの値は、負荷回路5のインピーダンスと伝送線路4の長さとに依存する。 In equation (3), the amplification degree of the amplifier circuit 3 is set to 1. e jωt indicates a reference sine wave. B sin(ωt + φ) is a reflected wave returning from the transmission line 4, so it is not amplified and B < A. The values of B and φ depend on the impedance of the load circuit 5 and the length of the transmission line 4.
 式(3)より、基準周波数の正弦波と、任意位相φだけ異なる正弦波とを加算することにより、基準位相の正弦波からρだけ位相の異なる正弦波を生成できることが分かる。出力位相の変化量はrejρを計算すれば良いため、式(3)を整理すると、式(4)のようになる。 From equation (3), it can be seen that by adding a sine wave of a reference frequency and a sine wave differing by an arbitrary phase φ, a sine wave with a phase difference of ρ from the sine wave of the reference phase can be generated. Since the amount of change in the output phase can be calculated by re , equation (3) can be rearranged to obtain equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 よって、位相角ρは式(5)で与えられる。 Then, the phase angle ρ is given by equation (5).
Figure JPOXMLDOC01-appb-M000005

                         ・・・(5)
Figure JPOXMLDOC01-appb-M000005

...(5)
 なお、ここでは多重反射の影響を無視したが、多重反射がある場合であっても、同様の議論により、中間位相の正弦波の生成可能性が説明できる。図1の例では、単相の構成を示しているが、差動構成の回路で実現することも可能である。 Note that the effects of multiple reflections have been ignored here, but even when multiple reflections are present, a similar argument can be used to explain the possibility of generating a sine wave with an intermediate phase. The example in Figure 1 shows a single-phase configuration, but it can also be realized with a differential circuit.
 次に、位相調整回路の実際の動作について更に詳細に説明する。増幅回路2の出力インピーダンスをr、伝送線路4の特性インピーダンスをZ、負荷回路5のインピーダンスをZとする。伝送線路4の入力から見た伝送線路4と負荷回路5のインピーダンスZinは式(6)のようになる。 Next, the actual operation of the phase adjustment circuit will be described in more detail. The output impedance of the amplifier circuit 2 is r o , the characteristic impedance of the transmission line 4 is Z 0 , and the impedance of the load circuit 5 is Z T. The impedance Z in of the transmission line 4 and the load circuit 5 as viewed from the input of the transmission line 4 is given by equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 Bは位相定数、Lは伝送線路4の長さである。B×Lは、物理的な構造と信号の周波数とによって決まるので、ある特定の周波数に着目する場合、tanBLは定数とみなしてよい。増幅回路2の出力端子におけるインピーダンスZoutは、Zinとrの合成抵抗であり、式(7)のように示すことができる。 B is the phase constant, and L is the length of the transmission line 4. Since B×L is determined by the physical structure and the frequency of the signal, when focusing on a specific frequency, tanBL may be regarded as a constant. The impedance Z out at the output terminal of the amplifier circuit 2 is the combined resistance of Z in and r o , and can be expressed as in equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 一般に、増幅回路の出力電圧は、トランスコンダクタンスと出力端子のインピーダンスとの積で表現される。したがって、増幅回路2のトランスコンダクタンスをgmaとおけば、増幅回路2の出力電圧Voutは式(8)のように表すことができる。
 Vout=gma×Zout              ・・・(8)
In general, the output voltage of an amplifier circuit is expressed as the product of the transconductance and the impedance of the output terminal. Therefore, if the transconductance of the amplifier circuit 2 is gma, the output voltage Vout of the amplifier circuit 2 can be expressed as shown in equation (8).
V out = gma × Z out (8)
 式(7)より、負荷回路5のインピーダンスZを変化させることで、インピーダンスZoutの偏角が変化することが分かる。つまり、インピーダンスZを変化させることで、位相調整回路の出力の位相を調整することができる。ただし、信号周波数と伝送線路4の長さの組み合わせのうち、tanBL=0が成立する組み合わせを除く必要がある。 From equation (7), it can be seen that the argument of the impedance Zout changes by changing the impedance ZT of the load circuit 5. In other words, the phase of the output of the phase adjustment circuit can be adjusted by changing the impedance ZT . However, among the combinations of the signal frequency and the length of the transmission line 4, it is necessary to exclude combinations where tanBL=0 holds.
 本実施例の位相調整回路によって正弦波の位相が変化することを回路シミュレーションによって確認した結果を図2に示す。20はクロック生成回路1から出力される正弦波を示し、21は本実施例の位相調整回路によって位相を変化させた正弦波を示す。正弦波の周波数は60GHzである。負荷回路5のインピーダンスZを変化させることにより、時間にして凡そ3ps分、正弦波の位相が変化していることが確認できる。 2 shows the results of confirming by circuit simulation that the phase of a sine wave is changed by the phase adjustment circuit of this embodiment. Reference numeral 20 denotes a sine wave output from the clock generation circuit 1, and reference numeral 21 denotes a sine wave whose phase has been changed by the phase adjustment circuit of this embodiment. The frequency of the sine wave is 60 GHz. It can be confirmed that by changing the impedance ZT of the load circuit 5, the phase of the sine wave changes by approximately 3 ps in time.
 なお、上記の数値解析のとおり、インピーダンスZの範囲は実数に留まらず、複素数としてもよい。また、伝送線路4の多重反射を防ぐために、伝送線路4の特性インピーダンスZと増幅回路2の出力インピーダンスrとを一致させてもよい。 As shown in the above numerical analysis, the range of the impedance ZT is not limited to real numbers, but may be complex numbers. In order to prevent multiple reflections in the transmission line 4, the characteristic impedance Z0 of the transmission line 4 and the output impedance r0 of the amplifier circuit 2 may be made to match each other.
[第2の実施例]
 図3は本発明の第2の実施例に係る位相調整回路の構成を示すブロック図である。本実施例の位相調整回路は、正弦波状の差動クロック信号を生成する差動出力型のクロック生成回路1aと、非反転入力端子がクロック生成回路1aの非反転出力端子と接続され、反転入力端子がクロック生成回路1aの反転出力端子と接続された差動入力差動出力型の増幅回路2aと、非反転入力端子が増幅回路2aの非反転出力端子と接続され、反転入力端子が増幅回路2aの反転出力端子と接続された差動入力差動出力型の増幅回路3aと、入力端が増幅回路2aの非反転出力端子に接続された伝送線路4pと、入力端が増幅回路2aの反転出力端子に接続された伝送線路4nと、伝送線路4pの終端に接続された、外部からインピーダンスの調整が可能な負荷回路5pと、伝送線路4nの終端に接続された、外部からインピーダンスの調整が可能な負荷回路5nとを備えている。
[Second embodiment]
3 is a block diagram showing the configuration of a phase adjustment circuit according to a second embodiment of the present invention. The phase adjustment circuit of this embodiment includes a differential output type clock generation circuit 1a that generates a sine wave differential clock signal, a differential input/differential output type amplifier circuit 2a whose non-inverting input terminal is connected to the non-inverting output terminal of the clock generation circuit 1a and whose inverting input terminal is connected to the inverting output terminal of the clock generation circuit 1a, a differential input/differential output type amplifier circuit 3a whose non-inverting input terminal is connected to the non-inverting output terminal of the amplifier circuit 2a and whose inverting input terminal is connected to the inverting output terminal of the amplifier circuit 2a, a transmission line 4p whose input terminal is connected to the non-inverting output terminal of the amplifier circuit 2a, a transmission line 4n whose input terminal is connected to the inverting output terminal of the amplifier circuit 2a, a load circuit 5p whose impedance can be adjusted from the outside and connected to the end of the transmission line 4p, and a load circuit 5n whose impedance can be adjusted from the outside and connected to the end of the transmission line 4n.
 伝送線路4p,4nは、長さLが同一であり、また特性インピーダンスZが同一の線路である。負荷回路5p,5nは、インピーダンスZが同一の回路である。ただし、後述のように、負荷回路5p,5nのインピーダンスZを異なる値に調整してもよい。
 増幅回路2a,3aとしては、典型的な差動増幅回路である図4の構成を用いることができる。
The transmission lines 4p, 4n are lines having the same length L and the same characteristic impedance Z0 . The load circuits 5p, 5n are circuits having the same impedance ZT . However, as described later, the impedances ZT of the load circuits 5p, 5n may be adjusted to different values.
The amplifier circuits 2a and 3a may have the configuration shown in FIG. 4, which is a typical differential amplifier circuit.
 増幅回路2aは、クロック生成回路1aから出力された逆相側のクロック信号IN2nがベース(増幅回路2aの反転入力端子)に入力され、コレクタ(増幅回路2aの非反転出力端子)から正相側の出力信号OUT2pを出力するNPNバイポーラトランジスタQ1と、クロック生成回路1aから出力された正相側のクロック信号IN2pがベース(増幅回路2aの非反転入力端子)に入力され、コレクタ(増幅回路2aの反転出力端子)から逆相側の出力信号OUT2nを出力するNPNバイポーラトランジスタQ2と、ベースにバイアス電圧Vbが与えられたNPNバイポーラトランジスタQ3と、一端が電源電圧VCCに接続され、他端がトランジスタQ1のコレクタに接続された抵抗R1と、一端が電源電圧VCCに接続され、他端がトランジスタQ2のコレクタに接続された抵抗R2と、一端がトランジスタQ1のエミッタに接続され、他端がトランジスタQ3のコレクタに接続された抵抗R3と、一端がトランジスタQ2のエミッタに接続され、他端がトランジスタQ3のコレクタに接続された抵抗R4と、一端がトランジスタQ3のエミッタに接続され、他端がグラウンドに接続された抵抗R5とから構成される。 The amplifier circuit 2a is an NPN bipolar transistor Q1 that receives the negative phase clock signal IN2n output from the clock generation circuit 1a at its base (the inverting input terminal of the amplifier circuit 2a) and outputs the positive phase output signal OUT2p from its collector (the non-inverting output terminal of the amplifier circuit 2a), an NPN bipolar transistor Q2 that receives the positive phase clock signal IN2p output from the clock generation circuit 1a at its base (the non-inverting input terminal of the amplifier circuit 2a) and outputs the negative phase output signal OUT2n from its collector (the inverting output terminal of the amplifier circuit 2a), and a bias voltage Vb is applied to the base. It is composed of an NPN bipolar transistor Q3, a resistor R1 connected to the power supply voltage VCC at one end and the collector of transistor Q1 at the other end, a resistor R2 connected to the power supply voltage VCC at one end and the collector of transistor Q2 at the other end, a resistor R3 connected to the emitter of transistor Q1 at one end and the collector of transistor Q3 at the other end, a resistor R4 connected to the emitter of transistor Q2 at one end and the collector of transistor Q3 at the other end, and a resistor R5 connected to the emitter of transistor Q3 at one end and the ground at the other end.
 増幅回路3aの構成は増幅回路2aと同様である。第1の実施例と同様に、増幅回路2a,3aの増幅度は1でもよいし、1より高くてもよいし、0より高く1より低くてもよい。 The configuration of amplifier circuit 3a is the same as that of amplifier circuit 2a. As in the first embodiment, the amplification degree of amplifier circuits 2a and 3a may be 1, may be higher than 1, or may be higher than 0 and lower than 1.
[第3の実施例]
 第1、第2の実施例において、2段目の増幅回路の代わりに任意のアクティブ回路を用いてもよい。図5は本発明の第3の実施例に係る位相調整回路の構成を示すブロック図である。本実施例の位相調整回路は、クロック生成回路1aと、増幅回路2aと、伝送線路4p,4nと、負荷回路5p,5nと、増幅回路2aの出力信号と伝送線路4p,4nからの戻り信号との加算信号IN6p,IN6nと、外部から入力された搬送波信号IN7p,IN7nとを混合する差動入力差動出力型のミキサ6と、ミキサ6の出力信号をろ波して、所望の周波数の差動信号OUTp,OUTnを通過させる差動入力差動出力型のフィルタ7とを備えている。
[Third Example]
In the first and second embodiments, an arbitrary active circuit may be used instead of the second stage amplifier circuit. Fig. 5 is a block diagram showing the configuration of a phase adjustment circuit according to a third embodiment of the present invention. The phase adjustment circuit of this embodiment includes a clock generation circuit 1a, an amplifier circuit 2a, transmission lines 4p, 4n, load circuits 5p, 5n, a differential input/differential output type mixer 6 that mixes sum signals IN6p, IN6n of the output signal of the amplifier circuit 2a and the return signal from the transmission lines 4p, 4n, and carrier signals IN7p, IN7n input from the outside, and a differential input/differential output type filter 7 that filters the output signal of the mixer 6 and passes differential signals OUTp, OUTn of a desired frequency.
 加算信号IN6p,IN6nの周波数をf1、搬送波信号IN7p,IN7nの周波数をf2とする。加算信号IN6p,IN6nと搬送波信号IN7p,IN7nとをミキサ6によって混合すると、和と差の周波数f1±f2の信号がミキサ6から出力される。
 フィルタ7は、ミキサ6の出力信号をろ波して、例えば周波数f1+f2の信号を通過させる。こうして、ミキサ6に入力される加算信号IN6p,IN6nをさらに高い周波数の信号OUTp,OUTnに変換して出力することができる。
The frequency of the sum signals IN6p, IN6n is f1, and the frequency of the carrier signals IN7p, IN7n is f2. When the sum signals IN6p, IN6n and the carrier signals IN7p, IN7n are mixed by the mixer 6, a signal having the sum and difference frequencies f1±f2 is output from the mixer 6.
The filter 7 filters the output signal of the mixer 6, for example, to pass a signal of frequency f1+f2. In this way, the sum signals IN6p and IN6n input to the mixer 6 can be converted to signals OUTp and OUTn of higher frequencies and output.
 乗算器として機能するミキサ6としては、図6に示すギルバートセル回路を用いることができる。ミキサ6は、ベースに逆相側の加算信号IN6nが入力され、コレクタからミキサ6の正相側の出力信号OUT6pを出力するNPNバイポーラトランジスタQ4と、ベースに正相側の加算信号IN6pが入力され、コレクタからミキサ6の逆相側の出力信号OUT6nを出力するNPNバイポーラトランジスタQ5と、ベースに加算信号IN6nが入力され、コレクタから出力信号OUT6nを出力するNPNバイポーラトランジスタQ6と、ベースに加算信号IN6pが入力され、コレクタから出力信号OUT6pを出力するNPNバイポーラトランジスタQ7と、ベースに正相側の搬送波信号IN7pが入力され、コレクタがトランジスタQ4,Q5のエミッタに接続されたNPNバイポーラトランジスタQ8と、ベースに逆相側の搬送波信号IN7nが入力され、コレクタがトランジスタQ6,Q7のエミッタに接続されたNPNバイポーラトランジスタQ9と、ベースにバイアス電圧VBが与えられたNPNバイポーラトランジスタQ10と、一端が電源電圧VCCに接続され、他端がトランジスタQ4,Q7のコレクタに接続された抵抗R6と、一端が電源電圧VCCに接続され、他端がトランジスタQ5,Q6のコレクタに接続された抵抗R7と、一端がトランジスタQ8のエミッタに接続され、他端がトランジスタQ10のコレクタに接続された抵抗R8と、一端がトランジスタQ9のエミッタに接続され、他端がトランジスタQ10のコレクタに接続された抵抗R9と、一端がトランジスタQ10のエミッタに接続され、他端がグラウンドに接続された抵抗R10とから構成される。 The Gilbert cell circuit shown in Figure 6 can be used as the mixer 6 that functions as a multiplier. The mixer 6 is made up of an NPN bipolar transistor Q4, which receives the negative-phase addition signal IN6n at its base and outputs the positive-phase output signal OUT6p of the mixer 6 from its collector, an NPN bipolar transistor Q5, which receives the positive-phase addition signal IN6p at its base and outputs the negative-phase output signal OUT6n of the mixer 6 from its collector, an NPN bipolar transistor Q6, which receives the addition signal IN6n at its base and outputs the output signal OUT6n from its collector, an NPN bipolar transistor Q7, which receives the addition signal IN6p at its base and outputs the output signal OUT6p from its collector, an NPN bipolar transistor Q8, which receives the positive-phase carrier signal IN7p at its base and has its collector connected to the emitters of the transistors Q4 and Q5, and an NPN bipolar transistor Q9, which receives the negative-phase carrier signal I N7n is input, and the collector of the NPN bipolar transistor Q9 is connected to the emitters of the transistors Q6 and Q7; the base of the NPN bipolar transistor Q10 is given a bias voltage VB; one end of the resistor R6 is connected to the power supply voltage VCC and the other end is connected to the collectors of the transistors Q4 and Q7; one end of the resistor R7 is connected to the power supply voltage VCC and the other end is connected to the collectors of the transistors Q5 and Q6; one end of the resistor R8 is connected to the emitter of the transistor Q8 and the other end is connected to the collector of the transistor Q10; one end of the resistor R9 is connected to the emitter of the transistor Q9 and the other end is connected to the collector of the transistor Q10; and one end of the resistor R10 is connected to the emitter of the transistor Q10 and the other end is connected to the ground.
 図5の例では、差動構成の回路を示しているが、図1に示したような単相の構成において、増幅回路3の代わりに単相入力単相出力型のミキサと単相入力単相出力型のフィルタとを設けるようにしてもよい。 In the example of FIG. 5, a differential circuit configuration is shown, but in a single-phase configuration as shown in FIG. 1, a single-phase input/single-phase output mixer and a single-phase input/single-phase output filter may be provided instead of the amplifier circuit 3.
[第4の実施例]
 図7は本発明の第4の実施例に係る位相調整回路の構成を示すブロック図である。本実施例の位相調整回路は、クロック生成回路1aと、非反転入力端子がクロック生成回路1aの非反転出力端子と接続され、反転入力端子がクロック生成回路1aの反転出力端子と接続された差動入力差動出力型の可変利得増幅回路2bと、非反転入力端子が可変利得増幅回路2bの非反転出力端子と接続され、反転入力端子が可変利得増幅回路2bの反転出力端子と接続された差動入力差動出力型の増幅回路3aと、伝送線路4p,4nと、負荷回路5p,5nとを備えている。
[Fourth embodiment]
7 is a block diagram showing the configuration of a phase adjustment circuit according to a fourth embodiment of the present invention. The phase adjustment circuit of this embodiment includes a clock generation circuit 1a, a differential input/differential output type variable gain amplifier circuit 2b having a non-inverting input terminal connected to the non-inverting output terminal of the clock generation circuit 1a and an inverting input terminal connected to the inverting output terminal of the clock generation circuit 1a, a differential input/differential output type amplifier circuit 3a having a non-inverting input terminal connected to the non-inverting output terminal of the variable gain amplifier circuit 2b and an inverting input terminal connected to the inverting output terminal of the variable gain amplifier circuit 2b, transmission lines 4p, 4n, and load circuits 5p, 5n.
 本実施例では、増幅回路3aから出力される差動信号OUTp,OUTnの振幅調整を行うために、第2の実施例の増幅回路2aの代わりに可変利得増幅回路2bを設けている。可変利得増幅回路2bの構成は問わないが、例えば図6に示したギルバートセル回路を用いることもできる。 In this embodiment, a variable gain amplifier circuit 2b is provided instead of the amplifier circuit 2a in the second embodiment in order to adjust the amplitude of the differential signals OUTp and OUTn output from the amplifier circuit 3a. The configuration of the variable gain amplifier circuit 2b is not important, but for example, the Gilbert cell circuit shown in FIG. 6 can be used.
 可変利得増幅回路2bとしてギルバートセル回路を用いる場合、図6のIN6pの代わりに正相側の利得制御信号を入力し、IN6nの代わりに逆相側の利得制御信号を入力し、IN7pの代わりにクロック生成回路1aから出力された正相側のクロック信号を入力し、IN7nの代わりにクロック生成回路1aから出力された逆相側のクロック信号を入力すればよい。正相側の利得制御信号と逆相側の利得制御信号の電圧差によって可変利得増幅回路2bの利得を制御することができる。 When a Gilbert cell circuit is used as the variable gain amplifier circuit 2b, the positive phase gain control signal is input instead of IN6p in FIG. 6, the negative phase gain control signal is input instead of IN6n, the positive phase clock signal output from the clock generation circuit 1a is input instead of IN7p, and the negative phase clock signal output from the clock generation circuit 1a is input instead of IN7n. The gain of the variable gain amplifier circuit 2b can be controlled by the voltage difference between the positive phase gain control signal and the negative phase gain control signal.
[第5の実施例]
 図8は本発明の第5の実施例に係る位相調整回路の構成を示すブロック図である。本実施例の位相調整回路は、クロック生成回路1aと、可変利得増幅回路2bと、増幅回路3aと、伝送線路4p,4nと、負荷回路5p,5nと、振幅制御回路8とを備えている。
[Fifth Example]
8 is a block diagram showing the configuration of a phase adjustment circuit according to a fifth embodiment of the present invention. The phase adjustment circuit of this embodiment includes a clock generation circuit 1a, a variable gain amplifier circuit 2b, an amplifier circuit 3a, transmission lines 4p and 4n, load circuits 5p and 5n, and an amplitude control circuit 8.
 振幅制御回路8は、増幅回路3aの出力信号OUTp,OUTnの振幅が一定になるように可変利得増幅回路2bに対して利得制御信号を出力する。
 こうして、出力信号OUTp,OUTnの振幅を検出して可変利得増幅回路2bの利得を調整するフィードバック制御を行うことにより、出力信号OUTp,OUTnの振幅を一定にすることができる。
The amplitude control circuit 8 outputs a gain control signal to the variable gain amplifier circuit 2b so that the amplitudes of the output signals OUTp, OUTn of the amplifier circuit 3a are constant.
In this way, by performing feedback control in which the amplitude of the output signals OUTp, OUTn is detected and the gain of the variable gain amplifier circuit 2b is adjusted, the amplitude of the output signals OUTp, OUTn can be made constant.
[第6の実施例]
 図9は本発明の第6の実施例に係る位相調整回路の構成を示すブロック図である。本実施例の位相調整回路は、クロック生成回路1aと、増幅回路2a,3aと、伝送線路4p,4nと、負荷回路5p,5nと、インピーダンス制御回路9とを備えている。
[Sixth Example]
9 is a block diagram showing the configuration of a phase adjustment circuit according to a sixth embodiment of the present invention. The phase adjustment circuit of this embodiment includes a clock generation circuit 1a, amplifier circuits 2a and 3a, transmission lines 4p and 4n, load circuits 5p and 5n, and an impedance control circuit 9.
 差動構成の伝送線路4p,4nにおいては、差動信号の品質が問題となる。本実施例では、差動信号の信号品質を維持するために、インピーダンス制御回路9を用いる。インピーダンス制御回路9は、増幅回路3aから出力された差動信号OUTp,OUTnの信号品質を評価し、評価結果に基づいて負荷回路5p,5nのそれぞれのインピーダンスを個別に制御する。 In the differential transmission lines 4p, 4n, the quality of the differential signal becomes an issue. In this embodiment, an impedance control circuit 9 is used to maintain the signal quality of the differential signal. The impedance control circuit 9 evaluates the signal quality of the differential signals OUTp, OUTn output from the amplifier circuit 3a, and individually controls the impedance of each of the load circuits 5p, 5n based on the evaluation results.
 信号品質は、正相側の出力信号OUTpと逆相側の出力信号OUTnの和が0であることに着目することで評価できる。図10はインピーダンス制御回路9内の信号品質評価回路10の構成を示す回路図である。信号品質評価回路10は、増幅回路3aから出力された正相側の出力信号OUTpがベースに入力され、コレクタから逆相側の出力信号OUT10nを出力するNPNバイポーラトランジスタQ11と、増幅回路3aから出力された逆相側の出力信号OUTnがベースに入力され、コレクタから正相側の出力信号OUT10pを出力するNPNバイポーラトランジスタQ12と、ベースにバイアス電圧Vbが与えられたNPNバイポーラトランジスタQ13と、一端が電源電圧VCCに接続され、他端がトランジスタQ11のコレクタに接続された抵抗R11と、一端が電源電圧VCCに接続され、他端がトランジスタQ12のコレクタに接続された抵抗R12と、一端がトランジスタQ11のエミッタに接続され、他端がトランジスタQ13のコレクタに接続された抵抗R13と、一端がトランジスタQ12のエミッタに接続され、他端がトランジスタQ13のコレクタに接続された抵抗R14と、一端がトランジスタQ13のエミッタに接続され、他端がグラウンドに接続された抵抗R15とから構成される。 The signal quality can be evaluated by noting that the sum of the positive phase output signal OUTp and the negative phase output signal OUTn is 0. FIG. 10 is a circuit diagram showing the configuration of a signal quality evaluation circuit 10 in the impedance control circuit 9. The signal quality evaluation circuit 10 comprises an NPN bipolar transistor Q11, which receives the positive phase output signal OUTp output from the amplifier circuit 3a at its base and outputs the negative phase output signal OUT10n from its collector, an NPN bipolar transistor Q12, which receives the negative phase output signal OUTn output from the amplifier circuit 3a at its base and outputs the positive phase output signal OUT10p from its collector, an NPN bipolar transistor Q13, whose base is given a bias voltage Vb, and an NPN bipolar transistor Q14, which has one end connected to the power supply voltage VCC and the other end connected to the transistor 12. It is composed of a resistor R11 connected to the collector of transistor Q11, a resistor R12 having one end connected to the power supply voltage VCC and the other end connected to the collector of transistor Q12, a resistor R13 having one end connected to the emitter of transistor Q11 and the other end connected to the collector of transistor Q13, a resistor R14 having one end connected to the emitter of transistor Q12 and the other end connected to the collector of transistor Q13, and a resistor R15 having one end connected to the emitter of transistor Q13 and the other end connected to ground.
 差動信号OUTp,OUTnの和が0の場合、信号品質評価回路10の出力信号OUT10p,OUT10nの差が0となる。差動信号OUTp,OUTnの和が0となるように(出力信号OUT10p,OUT10nの差が0となるように)、負荷回路5p,5nのインピーダンスを制御することで、差動信号OUTp,OUTnの品質を高めることができる。 When the sum of the differential signals OUTp, OUTn is 0, the difference between the output signals OUT10p, OUT10n of the signal quality evaluation circuit 10 is 0. By controlling the impedance of the load circuits 5p, 5n so that the sum of the differential signals OUTp, OUTn is 0 (so that the difference between the output signals OUT10p, OUT10n is 0), the quality of the differential signals OUTp, OUTn can be improved.
 差動信号OUTp,OUTnの和が時間によって変化するため、インピーダンス制御回路9内において信号品質評価回路10の後段に、デジタル信号処理を行うプロセッサ等を設け、信号品質評価回路10の出力信号OUT10p,OUT10nに基づいて、差動信号OUTp,OUTnの和の時間平均が0となるように、負荷回路5p,5nのインピーダンスを制御すればよい。 Since the sum of the differential signals OUTp, OUTn changes over time, a processor or the like that performs digital signal processing is provided after the signal quality evaluation circuit 10 in the impedance control circuit 9, and the impedance of the load circuits 5p, 5n is controlled based on the output signals OUT10p, OUT10n of the signal quality evaluation circuit 10 so that the time average of the sum of the differential signals OUTp, OUTn becomes 0.
 信号品質評価回路10は、図10に示した構成に限るものではなく、パッシブな合波回路によって実現してもよい。
 なお、第3、第6の実施例において、増幅回路2aの代わりに可変利得増幅回路2bを設けるようにしてもよい。また、第4~第6の実施例において、増幅回路3aの代わりに第3の実施例で説明したミキサ6とフィルタ7とを設けるようにしてもよい。
The signal quality evaluation circuit 10 is not limited to the configuration shown in FIG. 10, and may be realized by a passive multiplexing circuit.
In the third and sixth embodiments, the amplifier circuit 2a may be replaced by a variable gain amplifier circuit 2b, and in the fourth to sixth embodiments, the mixer 6 and filter 7 described in the third embodiment may be replaced by the amplifier circuit 3a.
[第7の実施例]
 第1~第6の実施例における負荷回路5,5p,5nとして、直流成分を遮断するための容量と可変抵抗とからなる図11のような回路を用いることができる。容量C1の一端は伝送線路4,4p,4nの終端に接続され、容量C1の他端は可変抵抗VR1の一端に接続される。可変抵抗VR1の他端はグラウンドに接続される。
[Seventh Example]
The load circuits 5, 5p, and 5n in the first to sixth embodiments may be a circuit as shown in Fig. 11, which is made up of a capacitance for blocking DC components and a variable resistor. One end of the capacitance C1 is connected to the end of the transmission line 4, 4p, or 4n, and the other end of the capacitance C1 is connected to one end of the variable resistor VR1. The other end of the variable resistor VR1 is connected to ground.
 実際の回路においては、可変抵抗VR1として、図12、図13に示した構成を採用することもできる。図12の構成では、可変抵抗VR1は、ベースに制御電圧Vctrlが入力され、コレクタが電源電圧VCCに接続され、エミッタが容量C1の他端に接続されたNPNバイポーラトランジスタQ14と、一端がトランジスタQ14のエミッタに接続され、他端がグラウンドに接続された抵抗R16とから構成される。 In an actual circuit, the configuration shown in Figures 12 and 13 can also be used for variable resistor VR1. In the configuration in Figure 12, variable resistor VR1 is composed of an NPN bipolar transistor Q14, whose base receives a control voltage Vctrl, whose collector is connected to the power supply voltage VCC, and whose emitter is connected to the other end of capacitor C1, and a resistor R16, whose one end is connected to the emitter of transistor Q14 and whose other end is connected to ground.
 図13の構成では、可変抵抗VR1は、ベースに制御電圧Vctrlが入力され、コレクタが電源電圧VCCに接続され、エミッタが容量C1の他端に接続されたNPNバイポーラトランジスタQ15と、ベースにバイアス電圧Vbが与えられ、コレクタがトランジスタQ15のエミッタに接続され、エミッタがグラウンドに接続されたNPNバイポーラトランジスタQ16とから構成される。 In the configuration of Figure 13, variable resistor VR1 is composed of an NPN bipolar transistor Q15, whose base receives a control voltage Vctrl, whose collector is connected to the power supply voltage VCC, and whose emitter is connected to the other end of capacitance C1, and an NPN bipolar transistor Q16, whose base receives a bias voltage Vb, whose collector is connected to the emitter of transistor Q15, and whose emitter is connected to ground.
 図12、図13のいずれの構成においても、制御電圧Vctrlを変化させることにより、負荷回路5のインピーダンスを変化させることができる。図12、図13の例では、制御電圧Vctrlを上昇させると負荷回路5のインピーダンスが増大し、制御電圧Vctrlを低下させると負荷回路5のインピーダンスが減少する。 In either of the configurations shown in FIG. 12 and FIG. 13, the impedance of the load circuit 5 can be changed by changing the control voltage Vctrl. In the examples shown in FIG. 12 and FIG. 13, increasing the control voltage Vctrl increases the impedance of the load circuit 5, and decreasing the control voltage Vctrl decreases the impedance of the load circuit 5.
 また、図14に示すように可変利得増幅回路を用いたフィードバック構成により、負荷回路5を実現してもよい。図14の構成では、可変抵抗VR1は、非反転入力端子に基準電圧VRefが入力され、反転入力端子が容量C1の他端に接続された可変利得増幅回路A1と、一端が可変利得増幅回路A1の出力端子に接続され、他端が可変利得増幅回路A1の反転入力端子に接続された抵抗R17とから構成される。図14の構成の場合、可変利得増幅回路A1の利得を上昇させると負荷回路5のインピーダンスが減少し、可変利得増幅回路A1の利得を低下させると負荷回路5のインピーダンスが増大する。 Furthermore, the load circuit 5 may be realized by a feedback configuration using a variable gain amplifier circuit as shown in FIG. 14. In the configuration of FIG. 14, the variable resistor VR1 is composed of a variable gain amplifier circuit A1 having a reference voltage VRef input to its non-inverting input terminal and an inverting input terminal connected to the other end of the capacitor C1, and a resistor R17 having one end connected to the output terminal of the variable gain amplifier circuit A1 and the other end connected to the inverting input terminal of the variable gain amplifier circuit A1. In the configuration of FIG. 14, increasing the gain of the variable gain amplifier circuit A1 reduces the impedance of the load circuit 5, and decreasing the gain of the variable gain amplifier circuit A1 increases the impedance of the load circuit 5.
 制御電圧Vctrlによって可変利得増幅回路A1の利得を変化させることにより、負荷回路5のインピーダンスを変化させることができる。可変利得増幅回路A1としては、上記と同様にギルバートセル回路を用いることができる。
 図11~図14の例では、バイアス点の兼ね合いから、容量C1を挿入しているが、設計によっては容量C1を挿入せずに、伝送線路4,4p,4nの終端と可変抵抗VR1とを直接接続してもよい。
The gain of the variable gain amplifier circuit A1 can be changed by the control voltage Vctrl, thereby changing the impedance of the load circuit 5. As the variable gain amplifier circuit A1, a Gilbert cell circuit can be used in the same manner as above.
In the examples of Figures 11 to 14, the capacitance C1 is inserted to consider the bias point, but depending on the design, the capacitance C1 may not be inserted and the ends of the transmission lines 4, 4p, and 4n may be directly connected to the variable resistor VR1.
 第1~第6の実施例における負荷回路5,5p,5nとして、図15に示すような可変容量VC1を用いることも可能である。可変容量VC1の一端は伝送線路4,4p,4nの終端に接続され、可変容量VC1の他端はグラウンドに接続される。 As the load circuits 5, 5p, and 5n in the first to sixth embodiments, it is also possible to use a variable capacitance VC1 as shown in FIG. 15. One end of the variable capacitance VC1 is connected to the end of the transmission line 4, 4p, and 4n, and the other end of the variable capacitance VC1 is connected to ground.
 実際の回路においては、可変容量VC1として、図16、図17に示した構成を採用することもできる。図16の構成では、可変容量VC1は、一端が伝送線路4,4p,4nの終端に接続された容量C2と、アノードに制御電圧Vctrlが入力され、カソードが容量C2の他端に接続されたダイオードD1と、一端がダイオードD1のカソードに接続され、他端がグラウンドに接続された抵抗R18とから構成される。 In an actual circuit, the configuration shown in Figures 16 and 17 can also be used for the variable capacitance VC1. In the configuration in Figure 16, the variable capacitance VC1 is composed of a capacitance C2, one end of which is connected to the end of the transmission lines 4, 4p, and 4n, a diode D1, the anode of which receives the control voltage Vctrl and the cathode of which is connected to the other end of the capacitance C2, and a resistor R18, one end of which is connected to the cathode of the diode D1 and the other end of which is connected to ground.
 図17の構成では、可変容量VC1は、一端が伝送線路4,4p,4nの終端に接続された容量C3と、アノードに制御電圧Vctrlが入力され、カソードが容量C3の他端に接続されたダイオードD2と、ベースにバイアス電圧Vbが与えられ、コレクタがダイオードD2のカソードに接続され、エミッタがグラウンドに接続されたNPNバイポーラトランジスタQ17とから構成される。 In the configuration of FIG. 17, the variable capacitance VC1 is composed of a capacitance C3, one end of which is connected to the end of the transmission lines 4, 4p, and 4n; a diode D2, whose anode receives a control voltage Vctrl and whose cathode is connected to the other end of the capacitance C3; and an NPN bipolar transistor Q17, whose base is supplied with a bias voltage Vb, whose collector is connected to the cathode of the diode D2, and whose emitter is connected to ground.
 図16、図17のいずれの構成においても、制御電圧Vctrlを変化させることにより、負荷回路5のインピーダンスを変化させることができる。図16、図17の例では、制御電圧Vctrlを上昇させると負荷回路5のインピーダンスが増大し、制御電圧Vctrlを低下させると負荷回路5のインピーダンスが減少する。 In either of the configurations shown in Figures 16 and 17, the impedance of the load circuit 5 can be changed by changing the control voltage Vctrl. In the examples shown in Figures 16 and 17, increasing the control voltage Vctrl increases the impedance of the load circuit 5, and decreasing the control voltage Vctrl decreases the impedance of the load circuit 5.
 また、図18に示すように可変利得増幅回路を用いたフィードバック構成により、可変容量VC1を実現してもよい。図18の構成では、可変容量VC1は、一端が伝送線路4,4p,4nの終端に接続された容量C4と、非反転入力端子に基準電圧VRefが入力され、反転入力端子が容量C4の他端に接続された可変利得増幅回路A2と、一端が可変利得増幅回路A2の出力端子に接続され、他端が可変利得増幅回路A2の反転入力端子に接続された容量C5とから構成される。図18の構成の場合、可変利得増幅回路A2の利得を上昇させると負荷回路5のインピーダンスが減少し、可変利得増幅回路A2の利得を低下させると負荷回路5のインピーダンスが増大する。 Also, as shown in FIG. 18, the variable capacitance VC1 may be realized by a feedback configuration using a variable gain amplifier circuit. In the configuration of FIG. 18, the variable capacitance VC1 is composed of a capacitance C4 having one end connected to the end of the transmission line 4, 4p, 4n, a variable gain amplifier circuit A2 having a non-inverting input terminal to which a reference voltage VRef is input and an inverting input terminal connected to the other end of the capacitance C4, and a capacitance C5 having one end connected to the output terminal of the variable gain amplifier circuit A2 and the other end connected to the inverting input terminal of the variable gain amplifier circuit A2. In the configuration of FIG. 18, increasing the gain of the variable gain amplifier circuit A2 reduces the impedance of the load circuit 5, and decreasing the gain of the variable gain amplifier circuit A2 increases the impedance of the load circuit 5.
 制御電圧Vctrlによって可変利得増幅回路A2の利得を変化させることにより、負荷回路5のインピーダンスを変化させることができる。可変利得増幅回路A2としては、上記と同様にギルバートセル回路を用いることができる。 The impedance of the load circuit 5 can be changed by changing the gain of the variable gain amplifier circuit A2 using the control voltage Vctrl. As with the above, a Gilbert cell circuit can be used as the variable gain amplifier circuit A2.
 第1~第6の実施例における負荷回路5,5p,5nとして、図19に示すように可変抵抗VR1と可変容量VC1とを組み合わせた回路を用いることも可能である。実際の回路においては、負荷回路5,5p,5nとして、図20~図22に示した構成を採用することができる。 As the load circuits 5, 5p, and 5n in the first to sixth embodiments, it is also possible to use a circuit that combines a variable resistor VR1 and a variable capacitor VC1 as shown in FIG. 19. In an actual circuit, the configurations shown in FIGS. 20 to 22 can be used as the load circuits 5, 5p, and 5n.
 図20の構成では、負荷回路5は、一端が伝送線路4,4p,4nの終端に接続された容量C1と、ベースに制御電圧Vctrlが入力され、コレクタが電源電圧VCCに接続され、エミッタが容量C1の他端に接続されたNPNバイポーラトランジスタQ14と、一端がトランジスタQ14のエミッタに接続され、他端がグラウンドに接続された抵抗R16と、アノードに制御電圧Vctrlcが入力され、カソードが容量C1の他端に接続されたダイオードD1とから構成される。 In the configuration of FIG. 20, the load circuit 5 is composed of a capacitor C1, one end of which is connected to the end of the transmission lines 4, 4p, and 4n; an NPN bipolar transistor Q14, the base of which receives a control voltage Vctrl, the collector of which is connected to the power supply voltage VCC, and the emitter of which is connected to the other end of the capacitor C1; a resistor R16, the one end of which is connected to the emitter of the transistor Q14 and the other end of which is connected to ground; and a diode D1, the anode of which receives a control voltage Vctrlc, and the cathode of which is connected to the other end of the capacitor C1.
 図21の構成では、負荷回路5は、一端が伝送線路4,4p,4nの終端に接続された容量C1と、ベースに制御電圧Vctrlが入力され、コレクタが電源電圧VCCに接続され、エミッタが容量C1の他端に接続されたNPNバイポーラトランジスタQ15と、ベースにバイアス電圧Vbが与えられ、コレクタがトランジスタQ15のエミッタに接続され、エミッタがグラウンドに接続されたNPNバイポーラトランジスタQ16と、アノードに制御電圧Vctrlcが入力され、カソードが容量C1の他端に接続されたダイオードD2とから構成される。 In the configuration of FIG. 21, the load circuit 5 is composed of a capacitor C1, one end of which is connected to the end of the transmission lines 4, 4p, and 4n; an NPN bipolar transistor Q15, whose base receives a control voltage Vctrl, whose collector is connected to the power supply voltage VCC, and whose emitter is connected to the other end of the capacitor C1; an NPN bipolar transistor Q16, whose base receives a bias voltage Vb, whose collector is connected to the emitter of the transistor Q15, and whose emitter is connected to ground; and a diode D2, whose anode receives a control voltage Vctrlc, and whose cathode is connected to the other end of the capacitor C1.
 図20、図21の例では、制御電圧Vctrl,Vctrlcを上昇させると負荷回路5のインピーダンスが増大し、制御電圧Vctrl,Vctrlcを低下させると負荷回路5のインピーダンスが減少する。 In the examples of Figures 20 and 21, increasing the control voltages Vctrl and Vctrlc increases the impedance of the load circuit 5, and decreasing the control voltages Vctrl and Vctrlc decreases the impedance of the load circuit 5.
 図22の構成では、負荷回路5は、一端が伝送線路4,4p,4nの終端に接続された容量C1と、非反転入力端子に基準電圧VRefが入力され、反転入力端子が容量C1の他端に接続された可変利得増幅回路A1と、一端が可変利得増幅回路A1の出力端子に接続され、他端が可変利得増幅回路A1の反転入力端子に接続された抵抗R17と、非反転入力端子に基準電圧VRefが入力され、反転入力端子が容量C1の他端に接続された可変利得増幅回路A2と、一端が可変利得増幅回路A2の出力端子に接続され、他端が可変利得増幅回路A2の反転入力端子に接続された容量C5とから構成される。 In the configuration of FIG. 22, the load circuit 5 is composed of a capacitor C1 having one end connected to the end of the transmission line 4, 4p, 4n, a variable gain amplifier circuit A1 having a non-inverting input terminal to which a reference voltage VRef is input and an inverting input terminal connected to the other end of the capacitor C1, a resistor R17 having one end connected to the output terminal of the variable gain amplifier circuit A1 and the other end connected to the inverting input terminal of the variable gain amplifier circuit A1, a variable gain amplifier circuit A2 having a non-inverting input terminal to which a reference voltage VRef is input and an inverting input terminal connected to the other end of the capacitor C1, and a capacitor C5 having one end connected to the output terminal of the variable gain amplifier circuit A2 and the other end connected to the inverting input terminal of the variable gain amplifier circuit A2.
 図22の構成の場合、可変利得増幅回路A1,A2の利得を上昇させると負荷回路5のインピーダンスが減少し、可変利得増幅回路A1,A2の利得を低下させると負荷回路5のインピーダンスが増大する。制御電圧Vctrl,Vctrlcによって可変利得増幅回路A1,A2の利得を変化させることにより、負荷回路5のインピーダンスを変化させることができる。 In the configuration of FIG. 22, increasing the gain of the variable gain amplifier circuits A1 and A2 reduces the impedance of the load circuit 5, and decreasing the gain of the variable gain amplifier circuits A1 and A2 increases the impedance of the load circuit 5. The impedance of the load circuit 5 can be changed by changing the gain of the variable gain amplifier circuits A1 and A2 with the control voltages Vctrl and Vctrlc.
 第1~第6の実施例における負荷回路5,5p,5nとして、図23に示すような可変インダクタVL1を用いることも可能である。容量C1の一端は伝送線路4,4p,4nの終端に接続され、容量C1の他端は可変インダクタVL1の一端に接続される。可変インダクタVL1の他端はグラウンドに接続される。 As the load circuits 5, 5p, 5n in the first to sixth embodiments, it is also possible to use a variable inductor VL1 as shown in FIG. 23. One end of the capacitance C1 is connected to the termination of the transmission line 4, 4p, 4n, and the other end of the capacitance C1 is connected to one end of the variable inductor VL1. The other end of the variable inductor VL1 is connected to ground.
 第1~第6の実施例における負荷回路5,5p,5nとして、図24に示すように可変抵抗VR1と可変容量VC1と可変インダクタVL1とを組み合わせた回路を用いることも可能である。また、可変抵抗VR1と可変インダクタVL1とを組み合わせてもよいし、可変容量VC1と可変インダクタVL1とを組み合わせてもよい。 As the load circuits 5, 5p, 5n in the first to sixth embodiments, it is also possible to use a circuit that combines a variable resistor VR1, a variable capacitance VC1, and a variable inductor VL1, as shown in FIG. 24. It is also possible to combine a variable resistor VR1 with a variable inductor VL1, or to combine a variable capacitance VC1 with a variable inductor VL1.
 図11~図24では、負荷回路5の構成を例に挙げて説明しているが、負荷回路5p,5nの構成も負荷回路5と同様である。
 第6の実施例で説明したように、負荷回路5p,5nとインピーダンス制御回路9とを組み合わせる場合、差動信号OUTp,OUTnの和が正の場合、負荷回路5nのインピーダンスを上昇させて、負荷回路5pのインピーダンスを低下させる。また、差動信号OUTp,OUTnの和が負の場合、負荷回路5pのインピーダンスを上昇させて、負荷回路5nのインピーダンスを低下させる。
11 to 24, the configuration of the load circuit 5 is taken as an example for explanation, but the configuration of the load circuits 5p and 5n is also similar to that of the load circuit 5.
As described in the sixth embodiment, when the load circuits 5p, 5n are combined with the impedance control circuit 9, if the sum of the differential signals OUTp, OUTn is positive, the impedance of the load circuit 5n is increased and the impedance of the load circuit 5p is decreased. Also, if the sum of the differential signals OUTp, OUTn is negative, the impedance of the load circuit 5p is increased and the impedance of the load circuit 5n is decreased.
[第8の実施例]
 次に、本発明の第8の実施例について説明する。本実施例は、第1~第7の実施例の伝送線路4,4p,4nの具体例を示すものである。伝送線路4p,4nの断面図を図25~図27に示す。図25の例は、マイクロストリップ線路の例を示している。伝送線路4pは、誘電体400と、誘電体400の表面に形成された導体からなる信号線路401と、誘電体400の裏面に形成された導体からなるグラウンドプレーン403とから構成される。伝送線路4nは、誘電体400と、誘電体400の表面に形成された導体からなる信号線路402と、グラウンドプレーン403とから構成される。
[Eighth embodiment]
Next, an eighth embodiment of the present invention will be described. This embodiment shows a specific example of the transmission lines 4, 4p, and 4n of the first to seventh embodiments. Cross-sectional views of the transmission lines 4p and 4n are shown in Figs. 25 to 27. The example in Fig. 25 shows an example of a microstrip line. The transmission line 4p is composed of a dielectric 400, a signal line 401 made of a conductor formed on the surface of the dielectric 400, and a ground plane 403 made of a conductor formed on the back surface of the dielectric 400. The transmission line 4n is composed of a dielectric 400, a signal line 402 made of a conductor formed on the surface of the dielectric 400, and a ground plane 403.
 図26の例は、コプレーナ線路の例を示している。伝送線路4pは、誘電体400と、信号線路401と、信号線路401を間に挟んで信号線路402と反対側の誘電体400の表面に形成された導体からなるグラウンドプレーン404とから構成される。伝送線路4nは、誘電体400と、信号線路402と、信号線路402を間に挟んで信号線路401と反対側の誘電体400の表面に形成された導体からなるグラウンドプレーン405とから構成される。 The example in FIG. 26 shows an example of a coplanar line. The transmission line 4p is composed of a dielectric 400, a signal line 401, and a ground plane 404 made of a conductor formed on the surface of the dielectric 400 on the side opposite the signal line 402, with the signal line 401 in between. The transmission line 4n is composed of a dielectric 400, a signal line 402, and a ground plane 405 made of a conductor formed on the surface of the dielectric 400 on the side opposite the signal line 401, with the signal line 402 in between.
 本発明においては、実装面積を削減するため、特にコプレーナ線路とマイクロストリップ線路とを組み合わせた複合型の構造を採用してもよい。図27の例は、複合型の裏面グラウンド付きコプレーナ線路の例を示している。伝送線路4pは、誘電体400と、信号線路401と、グラウンドプレーン403,404とから構成される。伝送線路4nは、誘電体400と、信号線路402と、グラウンドプレーン403,405とから構成される。 In the present invention, in order to reduce the mounting area, a hybrid structure that combines a coplanar line and a microstrip line may be adopted. The example in FIG. 27 shows an example of a hybrid coplanar line with a back-side ground. Transmission line 4p is composed of a dielectric 400, a signal line 401, and ground planes 403 and 404. Transmission line 4n is composed of a dielectric 400, a signal line 402, and ground planes 403 and 405.
 図25~図27では、伝送線路4p,4nの構成を例に挙げて説明しているが、伝送線路4の場合には、信号線路401と402のうちどちらか一方のみを設けるようにすればよい。
 伝送線路4,4p,4nの構造は、図25~図27に示した断面構造のみに制限されるものではなく、特性インピーダンスが定義できる構造であれば、他の構造であってもよい。
25 to 27, the configuration of the transmission lines 4p and 4n is taken as an example for explanation, but in the case of the transmission line 4, it is sufficient to provide only one of the signal lines 401 and 402.
The structures of the transmission lines 4, 4p, 4n are not limited to the cross-sectional structures shown in FIGS. 25 to 27, but may be other structures as long as the characteristic impedance can be defined.
 図4、図6、図10、図12、図13、図17、図20、図21では、トランジスタQ1~Q17としてバイポーラトランジスタを使用した例を示しているが、MOSトランジスタを使用してもよい。MOSトランジスタを使用する場合には、上記の説明において、ベースをゲートに置き換え、コレクタをドレインに置き換え、エミッタをソースに置き換えるようにすればよい。 In Figures 4, 6, 10, 12, 13, 17, 20, and 21, bipolar transistors are used as transistors Q1 to Q17, but MOS transistors may also be used. When using MOS transistors, simply replace the base with the gate, the collector with the drain, and the emitter with the source in the above explanation.
 上記の実施例の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above examples may be described as follows, but are not limited to the following:
 (付記1)本発明の位相調整回路は、正弦波状のクロック信号を生成するように構成されたクロック生成回路と、前記クロック生成回路から出力されたクロック信号を増幅するように構成された増幅回路と、入力端が前記増幅回路の出力端子に接続された伝送線路と、前記伝送線路の終端に接続された、外部からインピーダンスの調整が可能な負荷回路と、前記増幅回路の出力信号と前記伝送線路からの戻り信号とが前記増幅回路の出力端子において加算された信号を入力とする出力回路とを備える。 (Note 1) The phase adjustment circuit of the present invention comprises a clock generation circuit configured to generate a sine wave clock signal, an amplifier circuit configured to amplify the clock signal output from the clock generation circuit, a transmission line whose input end is connected to the output terminal of the amplifier circuit, a load circuit whose impedance can be adjusted externally and connected to the end of the transmission line, and an output circuit whose input is a signal obtained by adding the output signal of the amplifier circuit and a return signal from the transmission line at the output terminal of the amplifier circuit.
 (付記2)付記1記載の位相調整回路において、前記負荷回路は、外部からインピーダンスの調整が可能な可変抵抗からなる。 (Note 2) In the phase adjustment circuit described in Note 1, the load circuit is made of a variable resistor whose impedance can be adjusted externally.
 (付記3)付記1記載の位相調整回路において、前記負荷回路は、外部からインピーダンスの調整が可能な可変容量からなる。 (Appendix 3) In the phase adjustment circuit described in Appendix 1, the load circuit is made of a variable capacitance whose impedance can be adjusted externally.
 (付記4)付記1記載の位相調整回路において、前記負荷回路は、外部からインピーダンスの調整が可能な可変インダクタからなる。 (Note 4) In the phase adjustment circuit described in Note 1, the load circuit is made of a variable inductor whose impedance can be adjusted externally.
 (付記5)付記1記載の位相調整回路において、前記負荷回路は、外部からインピーダンスの調整が可能な可変抵抗と可変容量と可変インダクタのうち少なくとも2つの組み合わせからなる。 (Appendix 5) In the phase adjustment circuit described in Appendix 1, the load circuit is composed of a combination of at least two of a variable resistor, a variable capacitor, and a variable inductor whose impedance can be adjusted externally.
 (付記6)付記1記載の位相調整回路において、前記クロック生成回路は、正弦波状の差動クロック信号を生成し、前記増幅回路は、前記差動クロック信号を増幅する差動入力差動出力型の回路であり、前記伝送線路は、入力端が前記増幅回路の非反転出力端子に接続された第1の伝送線路と、入力端が前記増幅回路の反転出力端子に接続された第2の伝送線路とからなり、前記負荷回路は、前記第1の伝送線路の終端に接続された、外部からインピーダンスの調整が可能な第1の負荷回路と、前記第2の伝送線路の終端に接続された、外部からインピーダンスの調整が可能な第2の負荷回路とからなり、前記出力回路は、前記増幅回路の正相側の出力信号と前記第1の伝送線路からの戻り信号とが前記増幅回路の非反転出力端子において加算された信号と、前記増幅回路の逆相側の出力信号と前記第2の伝送線路からの戻り信号とが前記増幅回路の反転出力端子において加算された信号とを入力とする差動入力差動出力型の回路であり、前記出力回路から出力された差動信号の和が0となるように、前記第1、第2の負荷回路のインピーダンスを制御するように構成されたインピーダンス制御回路をさらに備える。 (Appendix 6) In the phase adjustment circuit described in Appendix 1, the clock generation circuit generates a sine wave differential clock signal, the amplifier circuit is a differential input/differential output type circuit that amplifies the differential clock signal, the transmission line is composed of a first transmission line whose input end is connected to the non-inverting output terminal of the amplifier circuit and a second transmission line whose input end is connected to the inverting output terminal of the amplifier circuit, and the load circuit is composed of a first load circuit connected to the end of the first transmission line and capable of adjusting impedance from the outside, and a second load circuit connected to the end of the second transmission line and capable of adjusting impedance from the outside. The output circuit is a differential input/differential output type circuit that receives as input a signal obtained by adding the positive-phase output signal of the amplifier circuit and the return signal from the first transmission line at the non-inverting output terminal of the amplifier circuit, and a signal obtained by adding the negative-phase output signal of the amplifier circuit and the return signal from the second transmission line at the inverting output terminal of the amplifier circuit, and further includes an impedance control circuit configured to control the impedances of the first and second load circuits so that the sum of the differential signals output from the output circuit is 0.
 (付記7)付記1記載の位相調整回路において、前記出力回路は、前記増幅回路の出力端子において加算された信号を増幅するように構成された増幅回路である。 (Appendix 7) In the phase adjustment circuit described in Appendix 1, the output circuit is an amplifier circuit configured to amplify the signal added at the output terminal of the amplifier circuit.
 (付記8)付記1記載の位相調整回路において、前記出力回路は、前記増幅回路の出力端子において加算された信号と外部から入力された搬送波信号とを混合するように構成されたミキサと、前記ミキサの出力信号をろ波して、所望の周波数の信号を通過させるように構成されたフィルタとから構成される。 (Appendix 8) In the phase adjustment circuit described in Appendix 1, the output circuit is composed of a mixer configured to mix the signal added at the output terminal of the amplifier circuit with an externally input carrier signal, and a filter configured to filter the output signal of the mixer and pass a signal of a desired frequency.
 本発明は、正弦波の位相を調整する技術に適用することができる。 The present invention can be applied to technology for adjusting the phase of a sine wave.
 1,1a…クロック生成回路、2,2a,3,3a…増幅回路、2b,A1,A2…可変利得増幅回路、4,4p,4n…伝送線路、5,5p,5n…負荷回路、6…ミキサ、7…フィルタ、8…振幅制御回路、9…インピーダンス制御回路、10…信号品質評価回路、400…誘電体、401,402…信号線路、403~405…グラウンドプレーン、Q1~Q17…NPNトランジスタ、D1,D2…ダイオード、R1~R18…抵抗、C1~C5…容量、VR1…可変抵抗、VC1…可変容量、VL1…可変インダクタ。
 
 
1, 1a...clock generation circuit, 2, 2a, 3, 3a...amplification circuit, 2b, A1, A2...variable gain amplifier circuit, 4, 4p, 4n...transmission line, 5, 5p, 5n...load circuit, 6...mixer, 7...filter, 8...amplitude control circuit, 9...impedance control circuit, 10...signal quality evaluation circuit, 400...dielectric, 401, 402...signal line, 403-405...ground plane, Q1-Q17...NPN transistor, D1, D2...diode, R1-R18...resistor, C1-C5...capacitance, VR1...variable resistor, VC1...variable capacitance, VL1...variable inductor.

Claims (8)

  1.  正弦波状のクロック信号を生成するように構成されたクロック生成回路と、
     前記クロック生成回路から出力されたクロック信号を増幅するように構成された増幅回路と、
     入力端が前記増幅回路の出力端子に接続された伝送線路と、
     前記伝送線路の終端に接続された、外部からインピーダンスの調整が可能な負荷回路と、
     前記増幅回路の出力信号と前記伝送線路からの戻り信号とが前記増幅回路の出力端子において加算された信号を入力とする出力回路とを備えることを特徴とする位相調整回路。
    a clock generation circuit configured to generate a sinusoidal clock signal;
    an amplifier circuit configured to amplify the clock signal output from the clock generation circuit;
    a transmission line having an input end connected to an output terminal of the amplifier circuit;
    a load circuit whose impedance can be adjusted externally and which is connected to an end of the transmission line;
    a phase adjustment circuit comprising: an output circuit which receives as its input a signal obtained by adding an output signal of said amplifier circuit and a return signal from said transmission line at an output terminal of said amplifier circuit;
  2.  請求項1記載の位相調整回路において、
     前記負荷回路は、外部からインピーダンスの調整が可能な可変抵抗からなることを特徴とする位相調整回路。
    2. The phase adjustment circuit according to claim 1,
    13. A phase adjustment circuit, comprising: a load circuit including a variable resistor capable of adjusting impedance from outside;
  3.  請求項1記載の位相調整回路において、
     前記負荷回路は、外部からインピーダンスの調整が可能な可変容量からなることを特徴とする位相調整回路。
    2. The phase adjustment circuit according to claim 1,
    11. A phase adjustment circuit, comprising: a load circuit including a variable capacitance having an externally adjustable impedance.
  4.  請求項1記載の位相調整回路において、
     前記負荷回路は、外部からインピーダンスの調整が可能な可変インダクタからなることを特徴とする位相調整回路。
    2. The phase adjustment circuit according to claim 1,
    1 is a circuit diagram showing a phase adjustment circuit according to the first embodiment of the present invention;
  5.  請求項1記載の位相調整回路において、
     前記負荷回路は、外部からインピーダンスの調整が可能な可変抵抗と可変容量と可変インダクタのうち少なくとも2つの組み合わせからなることを特徴とする位相調整回路。
    2. The phase adjustment circuit according to claim 1,
    The load circuit is a phase adjustment circuit comprising a combination of at least two of a variable resistor, a variable capacitor, and a variable inductor, each of which has an externally adjustable impedance.
  6.  請求項1記載の位相調整回路において、
     前記クロック生成回路は、正弦波状の差動クロック信号を生成し、
     前記増幅回路は、前記差動クロック信号を増幅する差動入力差動出力型の回路であり、
     前記伝送線路は、
     入力端が前記増幅回路の非反転出力端子に接続された第1の伝送線路と、
     入力端が前記増幅回路の反転出力端子に接続された第2の伝送線路とからなり、
     前記負荷回路は、
     前記第1の伝送線路の終端に接続された、外部からインピーダンスの調整が可能な第1の負荷回路と、
     前記第2の伝送線路の終端に接続された、外部からインピーダンスの調整が可能な第2の負荷回路とからなり、
     前記出力回路は、前記増幅回路の正相側の出力信号と前記第1の伝送線路からの戻り信号とが前記増幅回路の非反転出力端子において加算された信号と、前記増幅回路の逆相側の出力信号と前記第2の伝送線路からの戻り信号とが前記増幅回路の反転出力端子において加算された信号とを入力とする差動入力差動出力型の回路であり、
     前記出力回路から出力された差動信号の和が0となるように、前記第1、第2の負荷回路のインピーダンスを制御するように構成されたインピーダンス制御回路をさらに備えることを特徴とする位相調整回路。
    2. The phase adjustment circuit according to claim 1,
    the clock generation circuit generates a sinusoidal differential clock signal;
    the amplifier circuit is a differential input/differential output type circuit that amplifies the differential clock signal,
    The transmission line is
    a first transmission line having an input end connected to a non-inverting output terminal of the amplifier circuit;
    a second transmission line having an input end connected to an inverting output terminal of the amplifier circuit;
    The load circuit includes:
    a first load circuit, the first load circuit having an externally adjustable impedance, connected to an end of the first transmission line;
    a second load circuit connected to an end of the second transmission line and having an externally adjustable impedance;
    the output circuit is a differential input/differential output type circuit which receives as inputs a signal obtained by adding, at a non-inverting output terminal of the amplifier circuit, an output signal on the positive phase side of the amplifier circuit and a return signal from the first transmission line, and a signal obtained by adding, at an inverting output terminal of the amplifier circuit, an output signal on the negative phase side of the amplifier circuit and a return signal from the second transmission line,
    13. A phase adjustment circuit comprising: an impedance control circuit configured to control impedances of the first and second load circuits so that a sum of differential signals output from the output circuit becomes zero.
  7.  請求項1記載の位相調整回路において、
     前記出力回路は、前記増幅回路の出力端子において加算された信号を増幅するように構成された増幅回路であることを特徴とする位相調整回路。
    2. The phase adjustment circuit according to claim 1,
    11. A phase adjustment circuit, wherein the output circuit is an amplifier circuit configured to amplify the added signal at an output terminal of the amplifier circuit.
  8.  請求項1記載の位相調整回路において、
     前記出力回路は、
     前記増幅回路の出力端子において加算された信号と外部から入力された搬送波信号とを混合するように構成されたミキサと、
     前記ミキサの出力信号をろ波して、所望の周波数の信号を通過させるように構成されたフィルタとから構成されることを特徴とする位相調整回路。
    2. The phase adjustment circuit according to claim 1,
    The output circuit includes:
    a mixer configured to mix the signal added at the output terminal of the amplifier circuit with an externally input carrier signal;
    a filter configured to filter the output signal of the mixer to pass a signal of a desired frequency.
PCT/JP2022/046188 2022-12-15 2022-12-15 Phase adjusting circuit WO2024127580A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046188 WO2024127580A1 (en) 2022-12-15 2022-12-15 Phase adjusting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/046188 WO2024127580A1 (en) 2022-12-15 2022-12-15 Phase adjusting circuit

Publications (1)

Publication Number Publication Date
WO2024127580A1 true WO2024127580A1 (en) 2024-06-20

Family

ID=91484612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046188 WO2024127580A1 (en) 2022-12-15 2022-12-15 Phase adjusting circuit

Country Status (1)

Country Link
WO (1) WO2024127580A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223945A (en) * 1996-02-16 1997-08-26 Nec Eng Ltd Phase adjustment device
JP2003168956A (en) * 2001-11-30 2003-06-13 Fujitsu Ltd Variable phase shifter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09223945A (en) * 1996-02-16 1997-08-26 Nec Eng Ltd Phase adjustment device
JP2003168956A (en) * 2001-11-30 2003-06-13 Fujitsu Ltd Variable phase shifter

Similar Documents

Publication Publication Date Title
US6211708B1 (en) Frequency doubling circuits, method, and systems including quadrature phase generators
US5945857A (en) Method and apparatus for duty-cycle correction
JPH05505069A (en) Image rejection mixer circuit on integrated circuit chip
EP2308168B1 (en) Frequency multiplier
US6417712B1 (en) Phase shifter using sine and cosine weighting functions
US7298205B2 (en) Amplifier and frequency converter
CN107493072B (en) Buffer with enhanced headroom
US6400200B2 (en) Semiconductor integrated circuit which generates waveforms which are out of phase with each other
US4879530A (en) Monolithically integratable phase shifter VCO
WO2024127580A1 (en) Phase adjusting circuit
JP2019041155A (en) OTA circuit and filter
CN108494368A (en) A kind of passive frequency mixer
Gupta et al. Various applications of analog signal processing employing voltage differencing current conveyor and only grounded passive elements: a re-convertible approach
JP4083840B2 (en) Transconductance amplifier and voltage controlled oscillator
US6124742A (en) Wide bandwidth frequency multiplier
Prokopenko et al. The Advanced Circuitry of the Precision Super Capacitances Based on the Classical and Differential Difference Operational Amplifiers
WO2024013883A1 (en) Phase adjustment circuit
WO2023112249A1 (en) Phase adjustment circuit
EP1510001A1 (en) An amplifier circuit, gyrator circuit, filter device and method for amplifying a signal
WO2023112250A1 (en) Phase adjustment circuit
Avireni et al. Operational Transconductance Amplifier-based Sinusoidal Oscillator with Grounded Capacitors
WO2023100225A1 (en) Single-phase differential conversion circuit
KR100465912B1 (en) Quadrature signal generator
FI102227B (en) Circuit device for providing signals with different phases
WO2021240813A1 (en) Phase shifter and distortion compensation circuit