WO2021240711A1 - Rotation accuracy measurement method, rotation accuracy measurement device, three-dimensional shape measurement method, three-dimensional shape measurement device, and optical device - Google Patents

Rotation accuracy measurement method, rotation accuracy measurement device, three-dimensional shape measurement method, three-dimensional shape measurement device, and optical device Download PDF

Info

Publication number
WO2021240711A1
WO2021240711A1 PCT/JP2020/021065 JP2020021065W WO2021240711A1 WO 2021240711 A1 WO2021240711 A1 WO 2021240711A1 JP 2020021065 W JP2020021065 W JP 2020021065W WO 2021240711 A1 WO2021240711 A1 WO 2021240711A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
similarity
displacement meter
rotation
rotation accuracy
Prior art date
Application number
PCT/JP2020/021065
Other languages
French (fr)
Japanese (ja)
Inventor
智丈 寺沢
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2020/021065 priority Critical patent/WO2021240711A1/en
Publication of WO2021240711A1 publication Critical patent/WO2021240711A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant

Definitions

  • the present invention relates to a rotation accuracy measuring method, a rotation accuracy measuring device, a three-dimensional shape measuring method, a three-dimensional shape measuring device, an optical instrument, and the like.
  • Patent Document 1 and Patent Document 2 the three-dimensional shape of the surface of the test object is measured by measuring the displacement of the surface of the test object while rotationally scanning the test object such as an optical element or an optical element molding mold.
  • a rotary scanning type shape measuring machine is disclosed. In such a rotary scanning type shape measuring machine, a rotation error occurs due to the rotation axis being shaken during the rotary scanning, and the rotation error lowers the accuracy of the shape measurement.
  • a measurement object having a measurement target surface is installed on a rotary scanning axis of a shape measuring machine, the displacement of the measurement target surface during rotation is detected by a plurality of displacement meters, and measurement is performed from the detected displacement.
  • a method is disclosed in which the rotation accuracy is measured by separating the shape error and the rotation error of the target surface, and the shape measurement result of the subject is corrected by using the measured rotation accuracy.
  • the method of adjusting the detection positions of a plurality of displacement meters using the marks as described above has a problem that there is a limit in improving the degree of coincidence of the detection positions.
  • the edge is physically formed on the surface to be measured, and the degree of coincidence of the detection positions is limited by the sharpness of the edge formation or the detection accuracy of the edge.
  • the S / N of the signal output by the displacement meter decreases, and the degree of coincidence of the detection positions is limited by the decrease in the signal accuracy. ..
  • One aspect of the present disclosure is to rotate the measurement object in a rotation accuracy measuring method for measuring the rotation accuracy component by separating the shape error and the rotation accuracy component of the measurement object by using a plurality of displacement meters.
  • Rotation accuracy including a second step of quantitatively evaluating the similarity between the two steps and a third step of adjusting the positions of the displacement meters included in the plurality of displacement meters so that the similarity is equal to or higher than a predetermined value. It is related to the measurement method.
  • Another aspect of the present disclosure is a processing apparatus that measures the rotation accuracy component by separating the shape error and the rotation accuracy component of the object to be measured by using a plurality of displacement meters and the plurality of displacement meters.
  • the processing apparatus measures the displacement of the distance between the plurality of displacement meters and the object to be measured using the plurality of displacement meters while rotating the object to be measured, and the processing apparatus measures the displacement of the distance between the plurality of displacement meters and the object to be measured.
  • the first process of acquiring the waveform signal, the second process of quantitatively evaluating the similarity between the plurality of waveform signals, and the positions of the plurality of displacement meters are adjusted so that the similarity is equal to or higher than a predetermined value.
  • the present invention relates to a rotation accuracy measuring device that performs a third process of acquiring the plurality of waveform signals at the time of the event.
  • Still another aspect of the present disclosure is a shape measuring step of measuring the three-dimensional shape of the subject using a displacement meter for shape measurement in a three-dimensional shape measuring method for measuring the three-dimensional shape of the subject.
  • the present invention relates to a three-dimensional shape measuring method including a calibration step of calibrating a measurement result of the three-dimensional shape using the rotation accuracy component obtained by the rotation accuracy measuring method described above.
  • another aspect of the present disclosure is a shape measuring displacement meter for measuring the three-dimensional shape of the test object and a processing device in the three-dimensional shape measuring device for measuring the three-dimensional shape of the test object.
  • the processing apparatus uses the shape measuring process for measuring the three-dimensional shape using the shape measuring displacement meter and the rotational accuracy component acquired by the rotational accuracy measuring apparatus described above.
  • the present invention relates to a three-dimensional shape measuring device that performs a calibration process for calibrating the measurement result of the three-dimensional shape.
  • Yet another aspect of the present disclosure relates to an optical device equipped with an optical element selected by measuring the three-dimensional shape using the three-dimensional shape measuring device described above.
  • a first configuration example of a rotation accuracy measuring device The figure explaining the rotation error in a radial direction.
  • the flowchart which shows the procedure of rotation accuracy measurement using a rotation accuracy measuring apparatus, and the procedure of processing performed by a rotation accuracy measuring apparatus.
  • the figure explaining the installation angle of the displacement meter Example of shape error and waveform signal of the surface to be measured.
  • the flowchart which shows the detailed procedure of the displacement meter position adjustment process.
  • An example of similarity and waveform signal when using the conventional marking adjustment method An example of similarity and waveform signal when the adjustment method of this embodiment is used.
  • the flowchart which shows the procedure of rotation accuracy measurement using a rotation accuracy measuring apparatus, and the procedure of processing performed by a rotation accuracy measuring apparatus.
  • a third configuration example of the rotation accuracy measuring device A fourth configuration example of the rotation accuracy measuring device.
  • Configuration example of 3D shape measuring device The flowchart which shows the procedure of 3D shape measurement. An example of an optical instrument.
  • FIG. 1 is a first configuration example of the rotation accuracy measuring device 200 according to the present embodiment.
  • the three-dimensional shape measuring device 100 described later in FIG. 18 rotates and scans the surface shape of the object 110, while the rotation accuracy measuring device 200 rotates and scans the measurement object 210 installed coaxially with the rotation axis of the rotation scanning. By measuring the rotation accuracy, the rotation accuracy of the rotation scanning is measured.
  • the rotation error in the radial direction is detected as shown in FIG.
  • the direction parallel to the ideal rotation axis 192 is the z direction, and the directions orthogonal to the z direction and orthogonal to each other are the x direction and the y direction.
  • the radial direction is the radial direction of rotation about the ideal rotation axis 192, and the rotation error in the radial direction indicates the deviation of the rotation axis 190 with respect to the ideal rotation axis 192 in the xy plane.
  • the direction orthogonal to the radial direction in the xy plane is referred to as a rotation direction Drot.
  • Drot the direction orthogonal to the radial direction in the xy plane
  • the rotation accuracy measuring device 200 of FIG. 1 includes a stage 285, a rotating body 280, a measuring object 210, position adjusting devices 231 to 233, displacement meters 221 to 223, and a processing device 270.
  • the rotation accuracy measuring device 200 may include a plurality of displacement meters. ..
  • the three-point displacement method is a kind of multi-probe method, but an algorithm using four or more displacement meters may be adopted as the multi-probe method. In that case, the number of displacement meters corresponding to the algorithm may be installed.
  • the stage 285 is installed so that the flat upper surface is horizontal, and the stage 285 is provided with a rotating body 280 and position adjusting devices 231 to 233.
  • the rotation axis 190 of the rotating body 280 is parallel to the upper surface of the stage 285 in the height direction, that is, perpendicular to the upper surface of the stage 285. This height direction corresponds to the z direction, and the upper surface of the stage 285 is parallel to the xy plane.
  • the y-direction is a direction perpendicular to the x-direction and the z-direction.
  • the rotating shaft 190 does not have to be exactly perpendicular to the height direction due to the installation tolerance of the rotating body 280 or the rotation error described above.
  • the upper surface of the stage 285 is not limited to horizontal. That is, the height means the distance in the direction perpendicular to the upper surface of the stage 285, and is not limited to the distance in the vertical direction.
  • the top and bottom shall mean the direction perpendicular to the upper surface of the stage 285, and are not limited to the vertical direction.
  • the object to be measured 210 is an object that is rotationally symmetric with respect to the central axis, and is, for example, a disk, a cylinder, a donut ring, or the like.
  • the object to be measured 210 has an upper surface, a lower surface, and a side surface.
  • the upper surface and the lower surface are circular planes having the same radius, and are planes perpendicular to the rotation axis 190.
  • the side surface is a cylindrical surface such that the cross section perpendicular to the rotation axis 190 is a circle having the same radius as the upper surface.
  • the boundary between the upper surface and the side surface and the side surface and the lower surface may be arbitrary, but for example, the range visible from the side with respect to the rotation axis is the side surface and rotates.
  • the range that can be seen from above parallel to the axis is the upper surface, and the range that can be seen from below parallel to the axis of rotation is the lower surface.
  • the object to be measured 210 is installed on the rotating body 280 so that the central axis of the disk cylinder or the donut ring shape coincides with the rotating axis 190 of the rotating body 280. That is, the rotation of the rotating body 280 causes the measurement object 210 to rotate about the central axis.
  • the side surface of the measurement target object 210 is the measurement target surface MSFA whose displacement is measured by the displacement meters 221 to 223.
  • one of the upper surface and the lower surface is the measurement target surface MSFB.
  • Measurement target surfaces The surfaces of MSFA and MSFB are mirror-polished so that the displacement meters 221 to 223 can measure the displacement with high accuracy. Specifically, the surface accuracy of the measurement target surface MSFA is about several hundred nm to 1 ⁇ m.
  • each position adjusting device 231 to 233 support the displacement meters 221 to 223, and the position adjusting devices 231 to 233 move up and down in the height direction with respect to the upper surface of the stage 285 to increase the height of the displacement meters 221 to 223. Change. By changing the height of the displacement meters 221 to 223, the position where the displacement is measured by the displacement meters 221 to 223 on the measurement target surface MSFA changes in the direction Dud orthogonal to the rotation direction Drot.
  • Various configurations of the position adjusting devices 231 to 233 can be considered.
  • each position adjusting device includes a support column that supports the displacement meter and extends in the height direction, and a mechanism for raising and lowering the support column.
  • each position adjusting device may further include an encoder for detecting the vertical position of the displacement meter.
  • the mechanism for moving the support column up and down is electric, or when it is automated as in the second configuration example, the mechanism for moving the column up and down is an actuator such as a stepping motor.
  • the displacement meters 221 to 223 measure the displacement of the measurement target surface MSFA in the radial direction, that is, the displacement of the distance between the displacement meters 221 to 223 and the measurement target surface MSFA in the radial direction.
  • the displacement meters 221 to 223 are arranged around the measurement target surface MSFA when viewed from the + z side in the ⁇ z direction, and the measurement direction of the distance faces the radial direction.
  • the displacement meters 221 to 223 are non-contact type displacement meters in which the probe does not contact the measurement target surface MSFA, for example, a TOF type displacement meter, a laser interference type displacement meter, an optical color confocal type displacement meter, and a capacitance type displacement.
  • the TOF type displacement meter measures the distance to an object by measuring the time from the emission of light to the return of reflected light.
  • the laser interference type displacement meter measures the distance to the object by measuring the change in the interference between the laser reflected light from the object and the laser reflected light from another fixed reflecting surface.
  • contact-type displacement meters may be used as the displacement meters 221 to 223, it is desirable to use non-contact type displacement meters.
  • the displacement meter 221 measures the distance to one point of the measurement target surface MSFA, and when the measurement target object 210 rotates, the displacement of the measurement target surface MSFA on the line A is measured.
  • the line A is a line that goes around the measurement target surface MSFA in the rotation direction Drot.
  • the displacement meter 221 outputs a waveform signal SGA indicating the displacement on the line A.
  • the waveform signal SGA is a signal in which the displacement due to the fine unevenness on the line A of the measurement target surface MSFA and the displacement due to the rotation error are mixed. Since the height of the line A changes as the displacement meter 221 moves up and down, the displacement measured by the displacement meter 221 changes, and the waveform of the waveform signal SGA changes.
  • the displacement meters 222 and 223 measure the displacement of the measurement target surface MSFA on the lines B and C.
  • the displacement meters 222 and 223 output waveform signals SGB and SGC indicating displacements on the lines B and C.
  • the waveform signals SGB and SGC are signals in which displacement due to fine irregularities on lines B and C of the measurement target surface MSFA and displacement due to rotation error are mixed.
  • the processing device 270 separates the shape error and the rotation accuracy component of the measurement object 210 based on the waveform signals SGA to SGC.
  • the shape error is a displacement due to fine unevenness of the measurement target surface MSFA among the displacements included in the waveform signals SGA to SGC.
  • the rotation accuracy component is the displacement of the measurement target surface MSFA due to the rotation error among the displacements included in the waveform signals SGA to SGC.
  • the processing device 270 includes a displacement meter waveform reading device 271, a similarity quantitative value acquisition device 272, and an error separation calculation device 273.
  • the processing device 270 includes a controller that functions as a displacement meter waveform reader 271, an information processing device that functions as a similarity quantitative value acquisition device 272 and an error separation calculation device 273.
  • the controller is connected to the displacement meters 221 to 223 by a cable or the like, performs processing such as waveform shaping on the waveform signals SGA to SGC, and outputs the processed waveform signals SGA to SGC to the information processing apparatus.
  • the controller and the information processing device are connected by a cable or a network.
  • the information processing device includes a memory for storing a program in which the functions of the similarity quantitative value acquisition device 272 and the error separation calculation device 273 are described, and a processor.
  • the processor executes the program read from the memory, the functions of the similarity quantitative value acquisition device 272 and the error separation calculation device 273 are realized. Details of the processing performed by the processing device 270 will be described later.
  • FIG. 3 is a flowchart showing a procedure of rotation accuracy measurement using the rotation accuracy measuring device 200 and a procedure of processing performed by the rotation accuracy measuring device 200.
  • the user installs the measurement object 210 coaxially with the rotation shaft 190 of the rotating body 280.
  • the user installs the displacement meters 221 to 223 in the position adjusting devices 231 to 233.
  • the displacement meters 221 to 223 are installed at different positions in the rotation direction Drot. Let ⁇ be the difference in the relative installation angles of the displacement meters 221 and 222 in the rotation direction Drot, and let ⁇ be the difference in the relative installation angles of the displacement meters 221 and 223 in the rotation direction Drot.
  • the object to be measured 210 rotates together with the rotating body 280, the displacement meters 221 to 223 measure the displacement on the lines A to C, and the displacement meter waveform reader 271 outputs the waveform signals SGA to SGC. get.
  • the rotating body 280 includes an actuator such as a motor, and the processing device 270 drives the actuator to rotate the rotating body 280.
  • the displacement meter waveform reader 271 is a device that reads the waveform signals SGA to SGC output by the displacement meters 221 to 223.
  • the displacement meter waveform reader 271 acquires the waveform signals SGA to SGC corresponding to one round of lines A to C on the measurement target surface MSFA, and performs processing such as waveform shaping on the waveform signals SGA to SGC. ..
  • FIG. 1 An example of the shape error of the measurement target surface MSFA is shown in the upper part of FIG. This figure is a developed view of the measurement target surface MSFA, and the shape error is shown by contour lines. Dotted lines with "+ 1t" and the like indicate contour lines with t as an arbitrary height interval. Lines A to C show lines on the measurement target surface MSFA where the displacement meters 221 to 223 measure the displacement as described above.
  • the lower part of FIG. 5 shows the waveform signals SGA to SGC corresponding to one round of lines A to C on the measurement target surface MSFA.
  • the values of the waveform signals SGA to SGC indicate the displacement of the measurement target surface MSFA.
  • the phases of the waveform signals SGA to SGC are different. That is, the phases of the waveform signals SGA and SGB are different by ⁇ , and the phases of the waveform signals SGA and SGC are different by ⁇ .
  • the shape error measured by the displacement meters 221 to 223 is different. That is, the shape errors included in the waveform signals SGA to SGC are different from each other.
  • the shape errors of the waveform signals SGA to SGC are the same except for the phase, so that the heights of the lines A to C are different.
  • the calculation accuracy of the rotation accuracy component is lowered.
  • the calculation accuracy of the rotation accuracy component is improved by aligning the heights of the lines A to C using the similarity of the waveform signals SGA to SGC in S4 to S6 described below.
  • the similarity quantitative value acquisition device 272 corrects the phase difference of the waveform signals SGA to SGC to match the phases of the waveform signals SGA to SGC.
  • the corrected waveform signal is SGA'to SGC'.
  • the similarity quantitative value acquisition device 272 acquires the similarity for all combinations of the two waveform signals of the waveform signals SGA'to SGC'.
  • FIG. 6 shows an explanatory diagram of the phase difference correction waveform acquisition step S4 and the similarity quantitative value acquisition step S5.
  • the similarity quantitative value acquisition device 272 acquires the waveform signal SGB'by shifting the phase of the waveform signal SGB by - ⁇ degree, and shifts the phase of the waveform signal SGC by - ⁇ degree to obtain the waveform signal SGC. 'Get.
  • the waveform signal SGA' is the same as the waveform signal SGA.
  • the similarity quantitative value acquisition device 272 may use known values as the phase differences ⁇ and ⁇ , or may obtain the phase differences ⁇ and ⁇ by matching processing of the waveform signals SGA to SGC.
  • the similarity quantitative value acquisition device 272 obtains the similarity RAB of the waveform signals SGA and SGB, the similarity RBC of the waveform signals SGB and SGC, and the similarity RCA of the waveform signals SGC and SGA.
  • the degree of similarity is a degree indicating how similar the two waveforms are, and the higher the similarity, the larger the value.
  • an index having a larger value as the similarity is higher and an index having a smaller value as the similarity is higher can be used. In the latter case, the smaller the index, the higher the similarity.
  • the similarity quantitative value acquisition device 272 uses, for example, SSD (Sum of Squared Difference) or SAD (Sum of Absolute Difference) as an index indicating the similarity.
  • the displacement meter position adjustment step S6 the heights of the lines A to C measured by the displacement meters 221 to 223 are aligned by adjusting the positions of the displacement meters 221 to 223 based on the similarity of the waveform signals SGA to SGC. Details of this step will be described later.
  • the object to be measured 210 rotates together with the rotating body 280, and the displacement meters 221 to 223 measure the displacement.
  • the displacement meter waveform reader 271 acquires waveform signals SGA to SGC in which the heights of the lines A to C are aligned in the displacement meter position adjustment step S6.
  • the error separation calculation device 273 separates the shape error and the rotation accuracy component from the waveform signals SGA to SGC acquired in the second waveform acquisition step S7.
  • the waveform signals SGA to SGC are expressed by the following equations (1) to (3).
  • is the rotation angle of the object to be measured 210 in the rotation direction Drot.
  • ⁇ and ⁇ are the installation angles of the displacement gauge described in FIG.
  • r ( ⁇ ) is a shape error of the measurement target surface MSFA.
  • ex ( ⁇ ) and ey ( ⁇ ) are the x component and the y component of the rotation error in the radial direction described with reference to FIG.
  • the error separation calculation device 273 obtains the shape error r ( ⁇ ) and the rotation errors ex ( ⁇ ) and ey ( ⁇ ) by solving the simultaneous equations according to the above equations (1) to (3) by the inverse filtering method.
  • the rotation errors ex ( ⁇ ) and ey ( ⁇ ) correspond to the separated rotation accuracy components.
  • FIG. 7 is a flowchart showing a detailed procedure of the displacement meter position adjusting step S6.
  • the displacement meter 221 to 223 is set as the reference displacement meter.
  • the displacement meter obtained with a large degree of similarity in the similarity quantitative value acquisition step S5 is set as the reference displacement meter.
  • the similarity RAB, RCA, and RBC acquired in the similarity quantitative value acquisition step S5 have the largest values in this order.
  • the displacement meter 221 that corresponds to both RAB and RCA is set as the reference displacement meter.
  • the user may select a reference displacement meter, or the similarity quantitative value acquisition device 272 may automatically select a reference displacement meter based on the similarity.
  • the displacement meter 221 is set as the reference displacement meter.
  • the displacement meter position information acquisition step S12 the height of the displacement meter 221 which is the reference displacement meter is fixed, and the displacement meters 222 and 223 other than the reference displacement meter are changed in the height direction, and the object to be measured is measured at each position.
  • the displacement meter waveform reader 271 acquires the waveform signals SGB and SGC at each position, and the similarity quantitative value acquisition device 272 acquires the similarity RAB and RCA at each position.
  • FIG. 8 shows an example of the degree of similarity acquired while changing the position of the displacement meter.
  • the similarity is normalized and can take a range of 0 or more and 1 or less.
  • Each point shown in the PTM is the similarity measured at each position.
  • LAP is an approximate curve of the point PTM.
  • a waveform as shown in FIG. 8 is obtained for each of the displacement meters 222 and 223.
  • the position where the similarity is maximum is estimated based on the similarity obtained at each position while moving the position of the displacement meter.
  • the user may determine the position where the similarity is maximum from the waveform of FIG. 8, or the similarity quantitative value acquisition device 272 may infer the position where the similarity is maximum from the waveform of FIG. good.
  • the position of the displacement meter whose similarity is equal to or higher than a predetermined value may be estimated.
  • the predetermined value is smaller than the maximum value of the similarity, but the larger the predetermined value is, the more desirable it is from the viewpoint of improving the measurement accuracy of the rotation error. For example, there is an error between the actual maximum position and the estimated maximum position due to the measurement error of the similarity or the approximation error of the approximate curve LAP.
  • a predetermined value is set in anticipation of this error.
  • a degree of similarity that can obtain an acceptable accuracy as the measurement accuracy of the rotation error may be set as a predetermined value.
  • the method for determining the position where the similarity is maximum is not limited to this.
  • a method of measuring the similarity while changing the height of the displacement meter and estimating the maximum position at the position where the similarity exceeds a predetermined value can be considered.
  • the displacement meters 222 and 223 are moved to the positions estimated in the similarity maximum position estimation step S13.
  • the user may manually move the displacement meters 222 and 223, or the processing device 270 may move the displacement meters 222 and 223 by driving the actuators of the position adjusting devices 231 to 233.
  • the determination step S15 it is determined whether or not the similarity in the position of the displacement meter corrected in the displacement meter position correction step S14 is equal to or higher than a predetermined value. That is, the displacement meter waveform reader 271 acquires the waveform signals SGA to SGC at the position of the displacement meter corrected in the displacement meter position correction step S14, and the similarity quantitative value acquisition device 272 between the waveform signals SGA and SGC. Obtain the similarity RAB, RBA, and RCA. The similarity quantitative value acquisition device 272 ends the displacement meter position adjustment step S6 when the similarity RAB, RBA, and RCA are all equal to or higher than a predetermined value.
  • FIG. 9 is an example of waveform signals SGA'to SGC' acquired in the second waveform acquisition step S7 after the displacement meter position is adjusted by the displacement meter position adjustment step S6. Here, the waveform signal after phase correction is shown.
  • the upper part of FIG. 9 shows the contour lines of the shape error of the measurement target surface MSFA as in the upper part of FIG.
  • FIG. 10 is an example of similarity and rotation error when the adjustment method by marking, which is a conventional technique, is used
  • FIG. 11 is an example of similarity and rotation error when the adjustment method of the present embodiment is used. be.
  • the similarity RAB and RBA are lower than 0.990, and it is presumed that there is a non-negligible deviation in the measurement position on the measurement target surface MSFA.
  • the similarity RAB and RBA exceed 0.990, and it can be seen that the similarity between the waveform signals can be improved. That is, the heights measured by the three displacement meters on the measurement target surface MSFA are the same, and the three displacement meters measure substantially the same shape error.
  • the EST shown in the lower part of FIGS. 10 and 11 is a rotation error estimated by a method different from that of the present embodiment.
  • the rotation error MESB when the adjustment method of the present embodiment is used is the rotation estimated by a method different from the present embodiment. It can be seen that it is close to the error waveform.
  • the mutual correlation coefficient varies depending on the rotation accuracy and the surface accuracy of the surface to be measured, it is basically desirable that the value is 0.990 or more, and the value is 0.995 or more. desirable.
  • the rotation accuracy component is measured by separating the shape error and the rotation accuracy component of the object to be measured 210 by using a plurality of displacement meters 221 to 223. do.
  • the rotation accuracy measuring method includes a first step, a second step, and a third step.
  • the first step while rotating the object to be measured 210, the displacement of the distance between the plurality of displacement meters 221 to 223 and the object to be measured 210 is measured using a plurality of displacement meters 221 to 223, and the displacement is shown.
  • the second step quantitatively evaluates the similarity RAB, RBA, and RCA between the plurality of waveform signals SGA to SGC.
  • the positions of the displacement meters included in the plurality of displacement meters 221 to 223 are adjusted so that the similarity RAB, RBA, and RCA become equal to or higher than a predetermined value.
  • the first step corresponds to the first waveform acquisition step S3 in FIG. 3
  • the second step corresponds to the phase difference correction waveform acquisition step S4 and the similarity quantitative value acquisition step S5 in FIG.
  • the third step corresponds to the displacement meter position adjusting step S6 of FIGS. 3 and 7.
  • the rotation accuracy measuring device 200 of the present embodiment includes a plurality of displacement meters 221 to 223 and a processing device 270.
  • the processing device 270 measures the rotation accuracy component by separating the shape error and the rotation accuracy component of the object to be measured 210 by using a plurality of displacement meters 221 to 223.
  • the processing device 270 performs the first processing, the second processing, and the third processing.
  • the first process while rotating the object to be measured 210, the displacement of the distance between the plurality of displacement meters 221 to 223 and the object to be measured 210 is measured using a plurality of displacement meters 221 to 223, and the displacement is shown.
  • the second process quantitatively evaluates the similarity RAB, RBA, and RCA between the plurality of waveform signals SGA to SGC.
  • the third process acquires a plurality of waveform signals SGA to SGC when the positions of the plurality of displacement meters 221 to 223 are adjusted so that the similarity RAB, RBA, and RCA become equal to or higher than a predetermined value.
  • the first process corresponds to the first waveform acquisition step S3 in FIG. 3
  • the second process corresponds to the similarity quantitative value acquisition step S5 in FIG. 3
  • the third process corresponds to FIG. Corresponds to the second waveform acquisition step S7.
  • the phrase "adjusting the position of the displacement meter so that the degree of similarity is equal to or higher than a predetermined value" includes, for example, the following two. The first is to move the displacement meter and stop the displacement meter at that position when the similarity exceeds the threshold value.
  • the threshold value corresponds to a predetermined value.
  • the second is to search for the maximum value of similarity as in the hill climbing method, and stop the displacement meter at the position determined to be the maximum value.
  • the maximum value cannot always be determined exactly, so there is some variation. That is, the range of error associated with the maximum value determination corresponds to a predetermined value.
  • the rotation accuracy measuring method includes the measurement object installation process S1 and the displacement meter installation process S2.
  • the measurement object installation step S1 the measurement object 210 having the measurement object surface MSFA is installed coaxially with the rotation shaft 190 of the rotating body 280.
  • the displacement meter installation step S2 a plurality of displacement meters 221 to 223 are arranged around the object to be measured 210.
  • a plurality of waveform signals SGA to SGC are acquired while rotating the measurement object 210 on the rotation shaft 190.
  • the rotation accuracy component is a component used for calibrating the rotation accuracy of the rotating body 280 on which the measurement object 210 is installed.
  • the rotation accuracy component can be detected with high accuracy by using the similarity of the waveform signal, the rotation accuracy can be calibrated with high accuracy using the rotation accuracy component.
  • the rotational accuracy can be calibrated with high accuracy in the three-dimensional shape measuring method described later and the rotary scanning shape measurement in the three-dimensional shape measuring device 100.
  • a plurality of displacement meters 221 to 223 are installed at different installation angles along the rotation direction Drot of the rotating body 280.
  • a plurality of waveform signals SGA to SGC are acquired while rotating the measurement object 210.
  • the phase difference between the plurality of waveform signals SGA to SGC caused by the difference in the installation angle and the quantitative value of the degree of similarity between the plurality of waveform signals SGA'to SGC' in which the phase difference is corrected are obtained. By finding it, the similarity is quantitatively evaluated.
  • the rotation error can be measured by using a multi-probe method such as the displacement 3-point method. That is, by using a plurality of displacement meters having different installation angles, the displacement due to the rotation error is measured from different positions. By using the displacements measured from these different positions, the rotation accuracy component can be separated from the waveform signal.
  • the rotation accuracy measuring method includes a fourth step of performing an error separation calculation for separating the shape error and the rotation accuracy component from the plurality of waveform signals SGA to SGC.
  • the error separation calculation is performed using the plurality of waveform signals SGA to SGC acquired at the positions of the displacement meters adjusted so that the similarity becomes equal to or higher than the predetermined value in the third step.
  • the fourth step corresponds to the error separation calculation step of FIG.
  • the positions where the plurality of displacement meters measure the displacement can be almost matched.
  • the shape errors included in the plurality of waveform signals are almost the same, so that the rotation accuracy components can be accurately separated.
  • the third step of the rotation accuracy measuring method includes a reference displacement meter setting step S11, a displacement meter position information acquisition step S12, a similarity maximum position estimation step S13, and a displacement meter position correction step S14.
  • the reference displacement meter setting step S11 determines a reference displacement meter 221 as a reference for position adjustment from a plurality of displacement meters 221 to 223.
  • the displacement meters 222 and 223 different from the reference displacement meter 221 are moved to a plurality of positions in the rotation axis direction of the measurement object 210, and a plurality of waveform signals SGA to SGC are transmitted at each position.
  • the degree of similarity RAB and RBA between the waveform signal SGA obtained by the reference displacement meter 221 and the waveform signals SGB and SGC obtained by the displacement meters 222 and 223 are obtained at each position.
  • the maximum similarity position estimation step S13 estimates the positions of the displacement meters 222 and 223 that can obtain the similarity of a predetermined value or more based on the plurality of similarities obtained corresponding to the plurality of positions.
  • the displacement meter position correction step S14 moves the displacement meters 222 and 223 to the positions estimated in the similarity maximum position estimation step S13.
  • the reference displacement meter may be any one of the plurality of displacement meters 221 to 223.
  • the plurality of displacement meters are displacement meters 241 to 244, and in the displacement meter position information acquisition step S12, a displacement meter different from the reference displacement meter is used as a radial with respect to the rotation axis 190 of the measurement object 210. Move to multiple positions in the direction.
  • the similarity of the waveform signals at each position of the displacement meter can be obtained. This corresponds to the change tendency of the movement amount and the degree of similarity with respect to the movement direction due to the position adjustment of the displacement meter.
  • the similarity maximum position estimation step S13 the position of the displacement meter that can obtain the similarity of a predetermined value or more can be estimated based on the movement amount due to the position adjustment of the displacement meter and the change tendency of the similarity with respect to the movement direction.
  • the displacement r ( ⁇ ) due to the shape error of the measurement target surface MSFA is four times or more the displacement e ( ⁇ ) due to the rotation accuracy component of the measurement target object 210. It is desirable that it is 200 times or less. That is, the difference Wr between the maximum value and the minimum value of the displacement r ( ⁇ ) due to the shape error is the maximum value of the displacement e ( ⁇ ) due to the rotation accuracy component while the object to be measured 210 rotates once. It is desirable that the difference between the value and the minimum value is 4 times or more and 200 times or less of We.
  • the Wr / We value is preferably 4 times or more and 200 times or less, and more preferably 4 times or more and 90 times or less. Further, the range of 8 times or more and 15 times or less is most preferable.
  • the rotation error with respect to the shape error becomes too small, and the rotation error cannot be separated accurately.
  • Wr / We is too small, the rotation error with respect to the shape error becomes relatively large, so that the shape error cannot be separated accurately, and as a result, the rotation error cannot be separated accurately.
  • the Wr / We value is in the range of 4 times or more and 90 times or less, it is possible to separate the shape error and the rotation error with sufficient accuracy, although the shape error is slightly large. Further, especially when it is 8 times or more and 15 times or less, it is possible to separate the rotation error and the shape error with very high accuracy.
  • FIG. 13 is a flowchart showing a procedure of rotation accuracy measurement using the rotation accuracy measuring device 200 and a procedure of processing performed by the rotation accuracy measuring device 200 in the second configuration example.
  • the parts different from the first configuration example will be mainly described, and the parts similar to the first configuration example such as the configuration of the rotation accuracy measuring device 200 will be appropriately omitted.
  • the similarity quantitative value acquisition device 272 obtains the mutual correlation coefficient as the similarity RAB, RBC, and RCA.
  • the mutual correlation coefficient calculation step S9 corresponds to the phase difference correction waveform acquisition step S4 and the similarity quantitative value acquisition step S5 in FIG. 3, but the phase difference and the similarity are simultaneously obtained when the mutual correlation coefficient is obtained.
  • the similarity quantitative value acquisition device 272 adopts the maximum value of RAB (k) obtained for each k value as the similarity. Further, the phase difference corresponding to k at which the maximum value is obtained is the phase difference between the waveform signals SGA and SGB.
  • RAB has been described as an example, RBC and RCA are also calculated by the same formula.
  • the first waveform signal and the second waveform are obtained by calculating the mutual correlation coefficient RAB (k) represented by the above equation (7). Obtain the quantitative value of the phase difference and similarity of the signal.
  • the first waveform signal corresponds to the waveform signal SGA
  • the second waveform signal corresponds to the waveform signal SGB.
  • the first and second waveform signals may be any two of the waveform signals SGA to SGC.
  • the processing apparatus 270 of the present embodiment calculates the mutual correlation coefficient RAB (k) represented by the above equation (7) in the second processing to obtain the phase difference between the first waveform signal and the second waveform signal. Obtain a quantitative value of similarity.
  • the phase difference and similarity of the waveform signal can be obtained at the same time, so the similarity can be calculated in one step. Further, since the phase difference is obtained in the calculation of the mutual correlation coefficient, the degree of similarity can be calculated even if the installation angle of the displacement meters 221 to 223 is unknown. As a result, the calculation of the degree of similarity can be simplified and the position adjustment can be made more efficient.
  • FIG. 14 is a third configuration example of the rotation accuracy measuring device 200.
  • the processing device 270 includes the displacement meter position automatic control device 274. It should be noted that the parts different from the first configuration example or the second configuration example will be mainly described, and the description of the parts similar to the first configuration example or the second configuration example such as the procedure for measuring the rotation accuracy will be omitted as appropriate. ..
  • the processing device 270 functions as, for example, a first controller that functions as a displacement meter waveform reader 271, a second controller that functions as a displacement meter position automatic control device 274, a similarity quantitative value acquisition device 272, and an error separation calculation device 273. It is composed of an information processing device and an information processing device.
  • the second controller is connected to the position adjusting devices 231 to 233 by a cable or the like, and is connected to the information processing device by a cable or a network.
  • the displacement meter position automatic control device 274 moves the displacement meters 221 to 223 up and down by driving the actuators of the position adjustment devices 231 to 233 based on the instruction from the similarity quantitative value acquisition device 272.
  • the rotation accuracy measuring device 200 automatically adjusts the positions of the displacement meters 221 to 223 in the displacement meter position adjusting step S6 of FIG.
  • the similarity quantitative value acquisition device 272 instructs the displacement meter position automatic control device 274 to move the positions of the displacement meters 221 to 223, and each position.
  • the waveform signals SGA to SGC are read by the displacement meter waveform reader 271.
  • the similarity quantitative value acquisition device 272 estimates the position of the displacement meter whose similarity is equal to or higher than the predetermined value in the similarity maximum position estimation step S13, and in the displacement meter position correction step S14, the displacement meter position automatic control device 274 is used. Instruct to move the positions of the displacement meters 221 to 223 to the estimated positions.
  • the third step of the rotation accuracy measuring method includes the maximum similarity position estimation step S13, the displacement meter position correction step S14, and the determination step S15.
  • the similarity maximum position estimation step S13 the displacement at which the similarity RAB, RBA, and RCA become equal to or higher than a predetermined value based on the change tendency of the similarity RAB, RBA, and RCA with respect to the movement amount and the movement direction by adjusting the position of the displacement meter. Guess the position of the meter.
  • the displacement meter position correction step S14 corrects the position of the displacement meter based on the result of the similarity maximum position estimation step S13.
  • the determination step S15 determines whether or not the position of the displacement meter has been adjusted so that the similarity RAB, RBA, and RCA are equal to or higher than a predetermined value.
  • the "change tendency of the movement amount and the degree of similarity with respect to the movement direction due to the position adjustment of the displacement meter” is the degree of similarity with respect to the movement amount and the movement direction when the displacement meter is moved in the direction perpendicular to the rotation direction Drot. It means how much it changes to positive or negative.
  • the waveform showing the relationship between the displacement meter position and the degree of similarity described in FIG. 8 corresponds to the above-mentioned change tendency.
  • the processing device 270 performs the similarity maximum position estimation process, the displacement meter position correction process, and the determination process in the third process.
  • the similarity maximum position estimation process is based on the change tendency of the similarity RAB, RBA, and RCA with respect to the movement amount and the movement direction by the position adjustment of the displacement meters included in the plurality of displacement meters 221 to 223, and the similarity degree RAB, RBA. , Estimate the position of the displacement meter whose RCA is equal to or higher than the predetermined value.
  • the displacement meter position correction process adjusts the positions of the displacement meters 221 to 223 based on the result of the similarity maximum position estimation process.
  • the determination process determines whether or not the position of the displacement meter has been adjusted so that the similarity RAB, RBA, and RCA are equal to or higher than a predetermined value.
  • the similarity RAB, RBA, and RCA are equal to or higher than the predetermined values. Adjusted to the position of the displacement meter. Further, when it is determined that the similarity RAB, RBA, RCA is not equal to or higher than the predetermined value, the similarity RAB, RBA, RCA can be increased to be equal to or higher than the predetermined value by repeating the position adjustment of the displacement meter. This makes it possible to provide highly accurate rotation accuracy measurement. Further, since the rotation accuracy measuring device 200 can automatically perform the displacement meter position adjustment, the displacement meter position adjustment can be made more efficient.
  • FIG. 15 is a fourth configuration example of the rotation accuracy measuring device 200.
  • the rotation accuracy measuring device 200 includes a stage 285, a rotating body 280, a measuring object 210, position adjusting devices 251 to 254, displacement meters 241 to 244, and a processing device 270.
  • the parts different from the first to third configuration examples will be mainly described, and the parts similar to the first to third configuration examples such as the procedure for measuring the rotation accuracy will be omitted as appropriate.
  • the tilt direction is the inclination of the upper surface of the object to be measured 210, that is, the inclination of the rotation axis 190 with respect to the ideal rotation axis 192.
  • the rotation error in the tilt direction indicates the tilt angle of the rotation axis 190 with respect to the z-axis and the direction in which the tilt is oriented with respect to the x-axis and the y-axis.
  • the axial direction is the vertical direction along the rotation axis 190.
  • the rotational error in the axial direction indicates the deviation of the object to be measured 210 in the vertical direction along the z-axis.
  • the upper surface of the measurement target object 210 is the measurement target surface MSFB whose displacement is measured by the displacement meters 241 to 244.
  • the surface of the measurement target surface MSFB is mirror-polished so that the displacement meters 241 to 244 can measure the displacement with high accuracy.
  • the surface accuracy of the measurement target surface MSFB is several hundred nm to 1 ⁇ m.
  • the position adjusting devices 251 to 254 support the displacement meters 241 to 244, and the position adjusting devices 251 to 254 move in the radial direction with respect to the rotation axis 190 so that the positions of the displacement meters 241 to 244 in the radial direction can be changed. Change. By changing the positions of the displacement meters 241 to 244, the positions where the displacements are measured by the displacement meters 241 to 244 on the measurement target surface MSFB change in the direction orthogonal to the rotation direction Dolot.
  • Various configurations of the position adjusting devices 251 to 254 can be considered.
  • each position adjusting device includes a support column that supports the displacement meter and extends in the radial direction, and a mechanism for moving the support column.
  • each position adjusting device may further include an encoder for detecting the position of the displacement meter in the radial direction.
  • the user may move the stanchion as in the first configuration example, or the stanchion movement may be automated as in the second configuration example.
  • the mechanism for raising and lowering the columns is an actuator such as a stepping motor.
  • the displacement meters 241 to 244 measure the displacement of the measurement target surface MSFB in the tilt direction and the axial direction, that is, the displacement of the distance between the displacement meters 241 to 244 in the tilt direction and the axial direction and the measurement target surface MSFB.
  • the displacement meters 241 to 244 are arranged around the rotation axis 190 and on the measurement target surface MSFB when viewed from the + z side in the ⁇ z direction, and the measurement direction of the distance faces the ⁇ z direction.
  • the displacement meters 241 to 244 are non-contact type displacement meters, a contact type displacement meter may be adopted. However, it is desirable to use a non-contact type displacement meter.
  • the displacement meter 241 measures the distance to one point of the measurement target surface MSFB, and when the measurement target object 210 rotates, the displacement of the measurement target surface MSFB on the line D is measured.
  • the line D is a line that goes around the measurement target surface MSFB in the rotation direction Drot.
  • the displacement meter 241 outputs a waveform signal SGD indicating the displacement on the line D.
  • the waveform signal SGD is a signal in which the displacement due to the shape error on the line D of the measurement target surface MSFB and the displacement due to the rotation error are mixed. Since the position of the line D changes as the displacement meter 241 moves in the radial direction, the displacement measured by the displacement meter 241 changes, and the waveform of the waveform signal SGD changes.
  • the displacement meters 242 to 244 measure the displacement of the measurement target surface MSFB on the lines E to G.
  • the displacement meters 242 to 244 output waveform signals SGE to SGG indicating displacements on the lines E to G.
  • the waveform signals SGE to SGG are signals in which the displacement due to the shape error on the lines E to G of the measurement target surface MSFB and the displacement due to the rotation error are mixed.
  • the processing device 270 separates the shape error and the rotation accuracy component of the measurement object 210 based on the waveform signals SGD to SGG.
  • the processing device 270 includes a displacement meter waveform reading device 271, a similarity quantitative value acquisition device 272, and an error separation calculation device 273.
  • the procedure for measuring the rotation accuracy is the same as that of the first to third configuration examples, but the moving direction of the displacement meter is the radial direction.
  • the rotation accuracy components in the tilt direction and the axial direction are separated.
  • FIG. 17 shows contour lines of the shape error of the measurement target surface MSFB and lines D to G on the measurement target surface MSFB on which the displacement meters 241 to 244 measure the displacement.
  • the left figure of FIG. 17 is before the position adjustment of the displacement meter, and the right figure is after the position adjustment of the displacement meter.
  • the positions of the lines D to G in the radial direction are substantially the same, and the shape errors measured by the displacement meters 241 to 244 are substantially the same.
  • the waveforms of the waveform signals SGD to SGG are almost the same except for the rotation accuracy component, so that the waveform signals SGD to SGG having very high similarity can be obtained.
  • FIG. 18 is a configuration example of a three-dimensional shape measuring device 100 including a rotation accuracy measuring device 200.
  • the three-dimensional shape measuring device 100 includes an object 110, a displacement meter 120 for shape measurement, a position adjusting device 130, a shape measuring data reading device 275, and a rotation accuracy measuring device 200.
  • the rotation accuracy measuring device 200 may be any of the first to fourth configuration examples, or may be a combination of two or more of them.
  • FIG. 18 shows an example in which the first configuration example and the fourth configuration example are combined.
  • the three-dimensional shape measuring device 100 is also called a rotary scanning type shape measuring machine, and measures the three-dimensional shape of the test object 110 by rotationally scanning the surface displacement of the test object 110.
  • the test object 110 is an optical element such as a lens, or a molding die for molding the optical element. However, the test object 110 may be an object that is rotationally symmetric with respect to the central axis.
  • the test object 110 is installed on the measurement object 210 so that its central axis is coaxial with the rotation axis 190.
  • the displacement meter 120 for shape measurement is a non-contact type displacement meter.
  • a contact type displacement meter may be adopted as the shape measurement displacement meter 120, but it is desirable to adopt a non-contact type displacement meter.
  • As the non-contact type displacement meter various displacement meters mentioned in the first configuration example can be adopted.
  • the position adjusting device 130 is a device that supports the shape measuring displacement meter 120 and moves the position of the shape measuring displacement meter 120.
  • the position adjusting device 130 includes, for example, a first strut extending in the x direction, a second strut extending in the z direction, a first actuator for moving the second strut along the first strut in the x direction, and a second strut.
  • a second actuator for connecting the displacement meter 120 for measurement and rotating the displacement meter 120 for shape measurement on a rotation axis perpendicular to the z-axis is included.
  • the position adjusting device 130 has a first encoder that detects the position of the shape measuring displacement meter 120 in the x direction and a second encoder that detects the rotation angle of the shape measuring displacement meter 120 on the rotation axis perpendicular to the z axis. And may be included.
  • the position adjusting device 130 scans the displacement meter 120 for shape measurement, so that the displacement measurement points are spirally scanned on the surface of the test object 110. As a result, the three-dimensional shape of the surface of the test object 110 is measured.
  • the shape measurement data reading device 275 is a device that reads the waveform signal output by the displacement meter 120 for shape measurement. That is, the shape measurement data reader 275 acquires a waveform signal when the shape measurement displacement meter 120 spirally scans the surface of the test object 110, and performs processing such as waveform shaping on the waveform signal. ..
  • FIG. 18 shows an example in which the shape measurement data reading device 275 is provided separately from the processing device 270 as a controller, and the controller is connected to the processing device 270 by a cable or the like. However, the shape measurement data reading device 275 may be included in the processing device 270.
  • FIG. 19 is a flowchart showing the procedure of three-dimensional shape measurement.
  • the rotation accuracy measuring device 200 described in the first to fourth configuration examples measures the rotation accuracy of the object to be measured 210.
  • the shape measuring step S52 the three-dimensional shape measuring device 100 measures the three-dimensional shape of the surface of the test object 110.
  • the rotation accuracy measuring step S51 and the shape measuring step S52 are executed at the same time while rotating the measurement target object 210 and the test object 110. That is, the rotation accuracy measuring device 200 detects the rotation accuracy component during the measurement operation of the three-dimensional shape measuring device 100.
  • the measurement error in the three-dimensional shape measurement is calibrated using the rotation accuracy component acquired in S51.
  • the processing device 270 converts the rotation accuracy component acquired in S51 into a rotation error in the displacement measurement of the test object 110, and corrects the three-dimensional shape measurement result so that the rotation error is canceled. do.
  • the processing apparatus 270 measures the base point of the inclination of the rotating shaft 190, the height from the base point to the measurement points of the displacement meters 221 to 223 and 241 to 244, and the measurement of the displacement meter 120 for shape measurement from the base point. The height to the point is detected from the output of the encoder or the like.
  • the processing apparatus 270 uses these parameters to convert the rotation accuracy component detected by the measurement object 210 into the rotation accuracy component in the test object 110.
  • the processing device 270 corrects the waveform signal output from the shape measuring displacement meter 120 so as to cancel the rotation accuracy component in the test object 110.
  • the three-dimensional shape measuring method of the present embodiment described above is described in the shape measuring step S52 for measuring the three-dimensional shape of the test object 110 using the shape measuring displacement meter 120, and the first to fourth configuration examples. It includes a calibration step S53 for calibrating the measurement result of the three-dimensional shape using the rotation accuracy component obtained by the rotation accuracy measurement method.
  • the three-dimensional shape measuring device 100 of the present embodiment includes a displacement meter 120 for shape measurement for measuring the three-dimensional shape of the test object 110, and a processing device 270.
  • the processing device 270 uses a shape measurement process for measuring a three-dimensional shape using a shape measurement displacement meter 120 and a rotation accuracy component acquired by the rotation accuracy measurement methods described in the first to fourth configuration examples.
  • a calibration process for calibrating the measurement result of the three-dimensional shape is performed.
  • the measurement data of the three-dimensional shape obtained by the three-dimensional shape measuring device 100 can be corrected with high accuracy by using the measurement data of the rotation accuracy component obtained by the rotation accuracy measuring device 200, and as a result, the measurement data has high accuracy.
  • the shape of the test object can be measured with.
  • the rotation accuracy includes "repeated rotation error” that is repeatedly reproduced for each rotation and “non-repeated rotation error” that is not repeatedly reproduced.
  • the "repeated rotation error” that is repeatedly reproduced for each rotation can be estimated by a method different from that of the present embodiment. Another method is, for example, a method of measuring a high-precision plane and a high-precision spherical surface having a known shape on a three-dimensional shape measuring device and evaluating a shape measurement error occurring in the shape measurement result.
  • the magnitude of the "non-repetitive rotation error” is sufficiently smaller than the “repeated rotation error", so that the “repeated rotation error” estimated from the shape measurement error and the rotation accuracy measuring method or rotation of the present embodiment are used.
  • the accuracy measuring device By comparing the “total rotation accuracy” measured by the accuracy measuring device, the effectiveness before and after the application of this embodiment can be explained.
  • the “total rotation accuracy” measured by the method using a plurality of displacement meters greatly deviates from the “repeated rotation error” estimated from the shape measurement error.
  • FIG. 20 is an example of an optical equipment equipped with an optical element selected by measuring a three-dimensional shape using a three-dimensional shape measuring device 100.
  • FIG. 20 shows an endoscope device 300 as an example of an optical device, but the optical device may be a device equipped with an optical element, and is mounted on, for example, a steel camera, an interchangeable lens of an interchangeable lens camera, or an information terminal. It may be a camera unit, a video camera, or the like.
  • the endoscope device 300 includes a connector 320 connected to a control device which is a main body of the endoscope, a universal cable 340 having one end connected to the connector 320, and an operating device 330 connected to the other end of the universal cable 340. Includes an insertion unit 350, one end of which is connected to the operating device 330, and an image pickup device 310 provided at the other end of the insertion unit 350.
  • the endoscope device 300 may be further provided with a lighting lens for irradiating the illumination light, a treatment tool such as forceps, a water supply port, or the like.
  • the image pickup apparatus 310 includes an objective lens that forms an image of a subject and an image sensor that captures the image formation.
  • the objective lens includes a plurality of lenses, and one or more of them is an optical element selected by measuring a three-dimensional shape using a three-dimensional shape measuring device 100.
  • the rotation accuracy component can be detected with high accuracy
  • the three-dimensional shape of the optical element can be measured with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

This rotation accuracy measurement method is for measuring a rotation accuracy component by separating a shape error of an object to be measured and the rotation accuracy component through use of a plurality of displacement meters. In a first step (S3), a plurality of waveform signals indicating displacement are acquired by measuring, while rotating the object to be measured, displacement in distances between the displacement meters and the object to be measured by using the displacement meters. In a second step (S5), a similarity between the waveform signals is quantitatively assessed. In a third step (S6), the position of a displacement meter included in the displacement meters is adjusted so that the similarity becomes equal to or a higher than a prescribed value.

Description

回転精度測定方法、回転精度測定装置、3次元形状測定方法、3次元形状測定装置及び光学機器Rotation accuracy measurement method, rotation accuracy measurement device, 3D shape measurement method, 3D shape measurement device and optical equipment
 本発明は、回転精度測定方法、回転精度測定装置、3次元形状測定方法、3次元形状測定装置及び光学機器等に関する。 The present invention relates to a rotation accuracy measuring method, a rotation accuracy measuring device, a three-dimensional shape measuring method, a three-dimensional shape measuring device, an optical instrument, and the like.
 特許文献1及び特許文献2には、光学素子又は光学素子成形型等の被検物を回転走査しながら被検物表面の変位を測定することで、被検物の表面3次元形状を測定する回転走査型形状測定機が開示されている。このような回転走査型形状測定機において、回転走査中に回転軸がブレることで回転誤差が生じ、その回転誤差が形状測定の精度を低下させる。特許文献2には、測定対象面を有する測定対象物を形状測定機の回転走査軸上に設置し、回転中の測定対象面の変位を複数の変位計で検出し、その検出した変位から測定対象面の形状誤差と回転誤差を分離することで回転精度を測定し、その測定した回転精度を用いて被検体の形状測定結果を補正する手法が開示されている。 In Patent Document 1 and Patent Document 2, the three-dimensional shape of the surface of the test object is measured by measuring the displacement of the surface of the test object while rotationally scanning the test object such as an optical element or an optical element molding mold. A rotary scanning type shape measuring machine is disclosed. In such a rotary scanning type shape measuring machine, a rotation error occurs due to the rotation axis being shaken during the rotary scanning, and the rotation error lowers the accuracy of the shape measurement. In Patent Document 2, a measurement object having a measurement target surface is installed on a rotary scanning axis of a shape measuring machine, the displacement of the measurement target surface during rotation is detected by a plurality of displacement meters, and measurement is performed from the detected displacement. A method is disclosed in which the rotation accuracy is measured by separating the shape error and the rotation error of the target surface, and the shape measurement result of the subject is corrected by using the measured rotation accuracy.
 このような回転精度測定手法において、高精度な測定を実現するためには、複数の変位計の検出位置を測定対象面の同一線上で、より一致させることが重要である。特許文献3には、測定対象面上にマークを付け、そのマークのエッジを変位計で検出し、その検出結果により変位計の検出位置を把握し、その把握した検出位置に基づいて複数の変位計の位置を調整する手法が開示されている。 In such a rotation accuracy measurement method, in order to realize high-precision measurement, it is important to make the detection positions of a plurality of displacement meters more consistent on the same line of the measurement target surface. In Patent Document 3, a mark is marked on the surface to be measured, the edge of the mark is detected by a displacement meter, the detection position of the displacement meter is grasped from the detection result, and a plurality of displacements are displaced based on the grasped detection position. A method for adjusting the position of the meter is disclosed.
米国特許出願公開第2013/0308139号明細書U.S. Patent Application Publication No. 2013/0308139 特開2005-326344号公報Japanese Unexamined Patent Publication No. 2005-326344 特開2007-86034号公報Japanese Unexamined Patent Publication No. 2007-86034
 上記のようなマークを用いて複数の変位計の検出位置を調整する手法では、検出位置の一致度を向上させるのに限界があるという課題がある。例えば、エッジは測定対象面に物理的に形成されており、そのエッジ形成のシャープさ、又はエッジの検出精度によって、検出位置の一致度が制限される。或いは、マーキングした箇所では測定対象面の形状や反射輝度が急峻に変化するため、変位計が出力する信号のS/Nが低下し、その信号精度の低下によって検出位置の一致度が制限される。 The method of adjusting the detection positions of a plurality of displacement meters using the marks as described above has a problem that there is a limit in improving the degree of coincidence of the detection positions. For example, the edge is physically formed on the surface to be measured, and the degree of coincidence of the detection positions is limited by the sharpness of the edge formation or the detection accuracy of the edge. Alternatively, since the shape of the measurement target surface and the reflected brightness change sharply at the marked portion, the S / N of the signal output by the displacement meter decreases, and the degree of coincidence of the detection positions is limited by the decrease in the signal accuracy. ..
 本開示の一態様は、複数の変位計を用いて、測定対象物の形状誤差と回転精度成分を分離することで、前記回転精度成分を測定する回転精度測定方法において、前記測定対象物を回転させながら、前記複数の変位計を用いて前記複数の変位計と前記測定対象物との距離の変位を測定し、前記変位を示す複数の波形信号を得る第1工程と、前記複数の波形信号の間の類似度を定量評価する第2工程と、前記類似度が所定値以上になるように、前記複数の変位計に含まれる変位計の位置を調整する第3工程と、を含む回転精度測定方法に関係する。 One aspect of the present disclosure is to rotate the measurement object in a rotation accuracy measuring method for measuring the rotation accuracy component by separating the shape error and the rotation accuracy component of the measurement object by using a plurality of displacement meters. The first step of measuring the displacement of the distance between the plurality of displacement meters and the object to be measured using the plurality of displacement meters to obtain a plurality of waveform signals indicating the displacement, and the plurality of waveform signals. Rotation accuracy including a second step of quantitatively evaluating the similarity between the two steps and a third step of adjusting the positions of the displacement meters included in the plurality of displacement meters so that the similarity is equal to or higher than a predetermined value. It is related to the measurement method.
 本開示の他の態様は、複数の変位計と、前記複数の変位計を用いて、測定対象物の形状誤差と回転精度成分を分離することで、前記回転精度成分を測定する処理装置と、を含み、前記処理装置は、前記測定対象物を回転させながら、前記複数の変位計を用いて前記複数の変位計と前記測定対象物との距離の変位を測定し、前記変位を示す複数の波形信号を取得する第1処理と、前記複数の波形信号の間の類似度を定量評価する第2処理と、前記類似度が所定値以上となるように前記複数の変位計の位置が調整されたときの前記複数の波形信号を取得する第3処理と、を行う回転精度測定装置に関係する。 Another aspect of the present disclosure is a processing apparatus that measures the rotation accuracy component by separating the shape error and the rotation accuracy component of the object to be measured by using a plurality of displacement meters and the plurality of displacement meters. The processing apparatus measures the displacement of the distance between the plurality of displacement meters and the object to be measured using the plurality of displacement meters while rotating the object to be measured, and the processing apparatus measures the displacement of the distance between the plurality of displacement meters and the object to be measured. The first process of acquiring the waveform signal, the second process of quantitatively evaluating the similarity between the plurality of waveform signals, and the positions of the plurality of displacement meters are adjusted so that the similarity is equal to or higher than a predetermined value. The present invention relates to a rotation accuracy measuring device that performs a third process of acquiring the plurality of waveform signals at the time of the event.
 また本開示の更に他の態様は、被検物の3次元形状を測定する3次元形状測定方法において、形状測定用変位計を用いて前記被検物の前記3次元形状を測定する形状測定工程と、上記に記載された回転精度測定方法により取得される前記回転精度成分を用いて、前記3次元形状の測定結果を校正する校正工程と、を含む3次元形状測定方法に関係する。 Still another aspect of the present disclosure is a shape measuring step of measuring the three-dimensional shape of the subject using a displacement meter for shape measurement in a three-dimensional shape measuring method for measuring the three-dimensional shape of the subject. The present invention relates to a three-dimensional shape measuring method including a calibration step of calibrating a measurement result of the three-dimensional shape using the rotation accuracy component obtained by the rotation accuracy measuring method described above.
 また本開示の更に他の態様は、被検物の3次元形状を測定する3次元形状測定装置において、前記被検物の前記3次元形状を測定するための形状測定用変位計と、処理装置と、を含み、前記処理装置は、前記形状測定用変位計を用いて前記3次元形状を測定する形状測定処理と、上記に記載された回転精度測定装置により取得される前記回転精度成分を用いて、前記3次元形状の測定結果を校正する校正処理と、を行う3次元形状測定装置に関係する。 Further, another aspect of the present disclosure is a shape measuring displacement meter for measuring the three-dimensional shape of the test object and a processing device in the three-dimensional shape measuring device for measuring the three-dimensional shape of the test object. The processing apparatus uses the shape measuring process for measuring the three-dimensional shape using the shape measuring displacement meter and the rotational accuracy component acquired by the rotational accuracy measuring apparatus described above. The present invention relates to a three-dimensional shape measuring device that performs a calibration process for calibrating the measurement result of the three-dimensional shape.
 また本開示の更に他の態様は、上記に記載の3次元形状測定装置を用いて前記3次元形状の測定を行うことで選ばれた光学素子を搭載する光学機器に関係する。 Yet another aspect of the present disclosure relates to an optical device equipped with an optical element selected by measuring the three-dimensional shape using the three-dimensional shape measuring device described above.
回転精度測定装置の第1構成例。A first configuration example of a rotation accuracy measuring device. ラディアル方向の回転誤差を説明する図。The figure explaining the rotation error in a radial direction. 回転精度測定装置を用いた回転精度測定の手順、及び回転精度測定装置が行う処理の手順を示すフローチャート。The flowchart which shows the procedure of rotation accuracy measurement using a rotation accuracy measuring apparatus, and the procedure of processing performed by a rotation accuracy measuring apparatus. 変位計の設置角度を説明する図。The figure explaining the installation angle of the displacement meter. 測定対象面の形状誤差と波形信号の例。Example of shape error and waveform signal of the surface to be measured. 位相差補正波形取得工程と類似度定量値取得工程の説明図。Explanatory drawing of the phase difference correction waveform acquisition process and the similarity quantitative value acquisition process. 変位計位置調整工程の詳細な手順を示すフローチャート。The flowchart which shows the detailed procedure of the displacement meter position adjustment process. 変位計の位置を変えながら取得された類似度の例。An example of the degree of similarity obtained while changing the position of the displacement gauge. 変位計位置調整工程により変位計の位置が調整された後の第2の波形取得工程において取得される波形信号の例。An example of a waveform signal acquired in a second waveform acquisition step after the displacement meter position is adjusted by the displacement meter position adjustment step. 従来技術であるマーキングによる調整手法を用いた場合における類似度と波形信号の例。An example of similarity and waveform signal when using the conventional marking adjustment method. 本実施形態の調整手法を用いた場合における類似度と波形信号の例。An example of similarity and waveform signal when the adjustment method of this embodiment is used. 形状誤差に起因する変位と回転精度成分に起因する変位の関係を説明する図。The figure explaining the relationship between the displacement caused by a shape error and the displacement caused by a rotation accuracy component. 第2構成例において、回転精度測定装置を用いた回転精度測定の手順、及び回転精度測定装置が行う処理の手順を示すフローチャート。In the second configuration example, the flowchart which shows the procedure of rotation accuracy measurement using a rotation accuracy measuring apparatus, and the procedure of processing performed by a rotation accuracy measuring apparatus. 回転精度測定装置の第3構成例。A third configuration example of the rotation accuracy measuring device. 回転精度測定装置の第4構成例。A fourth configuration example of the rotation accuracy measuring device. ティルト方向の回転誤差とアキシャル方向の回転誤差を説明する図。The figure explaining the rotation error in the tilt direction and the rotation error in the axial direction. 測定対象面の形状誤差の例。An example of the shape error of the surface to be measured. 3次元形状測定装置の構成例。Configuration example of 3D shape measuring device. 3次元形状測定の手順を示すフローチャート。The flowchart which shows the procedure of 3D shape measurement. 光学機器の例。An example of an optical instrument.
 以下、本実施形態について説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本開示の必須構成要件であるとは限らない。 Hereinafter, this embodiment will be described. It should be noted that the present embodiment described below does not unreasonably limit the contents described in the claims. Further, not all of the configurations described in the present embodiment are essential constituent requirements of the present disclosure.
 1.第1構成例
 図1は、本実施形態における回転精度測定装置200の第1構成例である。図18で後述する3次元形状測定装置100は被検物110の表面形状を回転走査するが、回転精度測定装置200は、その回転走査の回転軸と同軸上に設置された測定対象物210の回転精度を測定することで、回転走査の回転精度を測定する。
1. 1. First Configuration Example FIG. 1 is a first configuration example of the rotation accuracy measuring device 200 according to the present embodiment. The three-dimensional shape measuring device 100 described later in FIG. 18 rotates and scans the surface shape of the object 110, while the rotation accuracy measuring device 200 rotates and scans the measurement object 210 installed coaxially with the rotation axis of the rotation scanning. By measuring the rotation accuracy, the rotation accuracy of the rotation scanning is measured.
 第1構成例においては、図2に示すようにラディアル方向の回転誤差を検出する。理想的な回転軸192に平行な方向をz方向とし、z方向に直交し且つ互いに直交する方向をx方向及びy方向とする。ラディアル方向は、理想的な回転軸192を中心とする回転の半径方向であり、ラディアル方向の回転誤差は、xy平面内において、理想的な回転軸192に対する回転軸190のずれを示す。なお以下では、xy平面内においてラディアル方向に直行する方向を回転方向Drotと呼ぶ。以下では、+z側から-z方向に見た時に測定対象物210が時計回りに回転するものとするが、反時計回りに回転してもよい。 In the first configuration example, the rotation error in the radial direction is detected as shown in FIG. The direction parallel to the ideal rotation axis 192 is the z direction, and the directions orthogonal to the z direction and orthogonal to each other are the x direction and the y direction. The radial direction is the radial direction of rotation about the ideal rotation axis 192, and the rotation error in the radial direction indicates the deviation of the rotation axis 190 with respect to the ideal rotation axis 192 in the xy plane. In the following, the direction orthogonal to the radial direction in the xy plane is referred to as a rotation direction Drot. In the following, it is assumed that the object to be measured 210 rotates clockwise when viewed from the + z side in the −z direction, but it may rotate counterclockwise.
 図1の回転精度測定装置200は、ステージ285と回転体280と測定対象物210と位置調整装置231~233と変位計221~223と処理装置270とを含む。以下では回転精度測定装置200が3つの変位計を含み、変位3点法を用いて回転精度成分を分離する例を説明するが、回転精度測定装置200は複数の変位計を含んでいればよい。変位3点法はマルチプローブ法の一種であるが、マルチプローブ法として4以上の変位計を用いるアルゴリズムを採用してもよい。その場合、アルゴリズムに応じた数の変位計を設置すればよい。 The rotation accuracy measuring device 200 of FIG. 1 includes a stage 285, a rotating body 280, a measuring object 210, position adjusting devices 231 to 233, displacement meters 221 to 223, and a processing device 270. Hereinafter, an example in which the rotation accuracy measuring device 200 includes three displacement meters and the rotation accuracy components are separated by using the three-point displacement method will be described, but the rotation accuracy measuring device 200 may include a plurality of displacement meters. .. The three-point displacement method is a kind of multi-probe method, but an algorithm using four or more displacement meters may be adopted as the multi-probe method. In that case, the number of displacement meters corresponding to the algorithm may be installed.
 ステージ285は、平らな上面が水平となるように設置されており、ステージ285には回転体280と位置調整装置231~233とが設けられる。回転体280の回転軸190は、ステージ285の上面に対する高さ方向に平行である、即ちステージ285の上面に対して垂直である。この高さ方向はz方向に相当し、ステージ285の上面はxy平面に平行である。図1ではx方向とz方向のみ示すが、y方向はx方向とz方向に垂直な方向である。なお、回転体280の設置公差、又は上述した回転誤差があるため、回転軸190は高さ方向に対して厳密に垂直でなくてもよい。またステージ285の上面は水平に限定されない。即ち、高さは、ステージ285の上面に対して垂直な方向における距離を意味するものであり、鉛直方向における距離に限定されない。同様に、上下は、ステージ285の上面に対して垂直な方向を意味するものとし、鉛直方向に限定されない。 The stage 285 is installed so that the flat upper surface is horizontal, and the stage 285 is provided with a rotating body 280 and position adjusting devices 231 to 233. The rotation axis 190 of the rotating body 280 is parallel to the upper surface of the stage 285 in the height direction, that is, perpendicular to the upper surface of the stage 285. This height direction corresponds to the z direction, and the upper surface of the stage 285 is parallel to the xy plane. Although only the x-direction and the z-direction are shown in FIG. 1, the y-direction is a direction perpendicular to the x-direction and the z-direction. The rotating shaft 190 does not have to be exactly perpendicular to the height direction due to the installation tolerance of the rotating body 280 or the rotation error described above. Further, the upper surface of the stage 285 is not limited to horizontal. That is, the height means the distance in the direction perpendicular to the upper surface of the stage 285, and is not limited to the distance in the vertical direction. Similarly, the top and bottom shall mean the direction perpendicular to the upper surface of the stage 285, and are not limited to the vertical direction.
 測定対象物210は、中心軸に対して回転対称な物体であり、例えば円盤、円筒又はドーナツリング状等である。測定対象物210が円盤又は円筒である場合、測定対象物210は上面と下面と側面とを有する。上面と下面は同一半径の円形平面であり、回転軸190に垂直な面である。側面は、回転軸190に垂直な断面が上面と同一半径の円となるような円筒面である。測定対象物210がドーナツリング状である場合には上面と側面、側面と下面の境界は任意であってよいが、例えば回転軸に対して横から見たときに見える範囲が側面であり、回転軸に平行に上から見たときに見える範囲が上面であり、回転軸に平行に下から見たときに見える範囲が下面である。測定対象物210は、円盤円筒又はドーナツリング状の中心軸が回転体280の回転軸190に一致するように回転体280上に設置される。即ち、回転体280が回転することで、測定対象物210が中心軸を中心として回転することになる。第1構成例では、測定対象物210の側面が、変位計221~223によって変位が測定される測定対象面MSFAとなる。後述する第4構成例では、上面又は下面の一方が測定対象面MSFBとなる。測定対象面MSFA、MSFBの表面は、変位計221~223が変位を高精度に測定できるように、鏡面状に研磨されている。具体的には、測定対象面MSFAの面精度は数百nm~1μm程度である。 The object to be measured 210 is an object that is rotationally symmetric with respect to the central axis, and is, for example, a disk, a cylinder, a donut ring, or the like. When the object to be measured 210 is a disk or a cylinder, the object to be measured 210 has an upper surface, a lower surface, and a side surface. The upper surface and the lower surface are circular planes having the same radius, and are planes perpendicular to the rotation axis 190. The side surface is a cylindrical surface such that the cross section perpendicular to the rotation axis 190 is a circle having the same radius as the upper surface. When the object to be measured 210 has a donut ring shape, the boundary between the upper surface and the side surface and the side surface and the lower surface may be arbitrary, but for example, the range visible from the side with respect to the rotation axis is the side surface and rotates. The range that can be seen from above parallel to the axis is the upper surface, and the range that can be seen from below parallel to the axis of rotation is the lower surface. The object to be measured 210 is installed on the rotating body 280 so that the central axis of the disk cylinder or the donut ring shape coincides with the rotating axis 190 of the rotating body 280. That is, the rotation of the rotating body 280 causes the measurement object 210 to rotate about the central axis. In the first configuration example, the side surface of the measurement target object 210 is the measurement target surface MSFA whose displacement is measured by the displacement meters 221 to 223. In the fourth configuration example described later, one of the upper surface and the lower surface is the measurement target surface MSFB. Measurement target surfaces The surfaces of MSFA and MSFB are mirror-polished so that the displacement meters 221 to 223 can measure the displacement with high accuracy. Specifically, the surface accuracy of the measurement target surface MSFA is about several hundred nm to 1 μm.
 位置調整装置231~233は変位計221~223を支持しており、位置調整装置231~233がステージ285の上面に対して高さ方向に上下することで、変位計221~223の高さが変化する。変位計221~223の高さが変化することで、測定対象面MSFAにおいて変位計221~223により変位が測定される位置は、回転方向Drotに直交する方向Dudに変化することになる。位置調整装置231~233の構成としては種々考えられるが、例えば、各位置調整装置は、変位計を支持し且つ高さ方向に延びる支柱と、支柱を上下させる機構とを含む。また各位置調整装置は、変位計の上下位置を検出するエンコーダを更に含んでもよい。第1構成例では、ユーザが、支柱を上下させる機構を操作することで変位計を上下させることを想定している。支柱を上下させる機構が電動である場合や、或いは第2構成例のように自動化される場合には、支柱を上下させる機構は、ステッピングモーター等のアクチュエータである。 The position adjusting devices 231 to 233 support the displacement meters 221 to 223, and the position adjusting devices 231 to 233 move up and down in the height direction with respect to the upper surface of the stage 285 to increase the height of the displacement meters 221 to 223. Change. By changing the height of the displacement meters 221 to 223, the position where the displacement is measured by the displacement meters 221 to 223 on the measurement target surface MSFA changes in the direction Dud orthogonal to the rotation direction Drot. Various configurations of the position adjusting devices 231 to 233 can be considered. For example, each position adjusting device includes a support column that supports the displacement meter and extends in the height direction, and a mechanism for raising and lowering the support column. Further, each position adjusting device may further include an encoder for detecting the vertical position of the displacement meter. In the first configuration example, it is assumed that the user moves the displacement meter up and down by operating the mechanism for moving the support column up and down. When the mechanism for moving the column up and down is electric, or when it is automated as in the second configuration example, the mechanism for moving the column up and down is an actuator such as a stepping motor.
 変位計221~223は、ラディアル方向における測定対象面MSFAの変位、即ちラディアル方向における変位計221~223と測定対象面MSFAの距離の変位を測定する。変位計221~223は、+z側から-z方向に見た時に、測定対象面MSFAの周囲に配置されており、その距離の測定方向はラディアル方向を向いている。変位計221~223は、プローブが測定対象面MSFAに接触しない非接触型の変位計であり、例えばTOF式変位計、レーザ干渉式変位計、光学色共焦点式変位計、静電容量型変位計、又は渦電流式変位計等である。一例として、TOF式変位計は、光を出射してから反射光が戻るまでの時間を測定することで、対象物までの距離を測定する。レーザ干渉式変位計は、対象物からのレーザ反射光と、それとは別の固定反射面からのレーザ反射光との干渉の変化を測定することで、対象物までの距離を測定する。なお、変位計221~223として接触型の変位計を採用してもよいが、非接触型の変位計を採用することが望ましい。 The displacement meters 221 to 223 measure the displacement of the measurement target surface MSFA in the radial direction, that is, the displacement of the distance between the displacement meters 221 to 223 and the measurement target surface MSFA in the radial direction. The displacement meters 221 to 223 are arranged around the measurement target surface MSFA when viewed from the + z side in the −z direction, and the measurement direction of the distance faces the radial direction. The displacement meters 221 to 223 are non-contact type displacement meters in which the probe does not contact the measurement target surface MSFA, for example, a TOF type displacement meter, a laser interference type displacement meter, an optical color confocal type displacement meter, and a capacitance type displacement. It is a meter, a vortex current type displacement meter, or the like. As an example, the TOF type displacement meter measures the distance to an object by measuring the time from the emission of light to the return of reflected light. The laser interference type displacement meter measures the distance to the object by measuring the change in the interference between the laser reflected light from the object and the laser reflected light from another fixed reflecting surface. Although contact-type displacement meters may be used as the displacement meters 221 to 223, it is desirable to use non-contact type displacement meters.
 変位計221は、測定対象面MSFAの1点までの距離を測定するが、測定対象物210が回転することで、測定対象面MSFAの線A上における変位を測定することになる。線Aは、測定対象面MSFAを回転方向Drotに一周する線である。変位計221は、線A上における変位を示す波形信号SGAを出力する。波形信号SGAは、測定対象面MSFAの線A上の微細な凹凸による変位と、回転誤差による変位とが混合された信号となっている。変位計221が上下することで線Aの高さが変化するため、変位計221が測定する変位が変わり、波形信号SGAの波形が変化する。同様に、変位計222、223は、測定対象面MSFAの線B、C上における変位を測定する。変位計222、223は、線B、C上における変位を示す波形信号SGB、SGCを出力する。波形信号SGB、SGCは、測定対象面MSFAの線B、C上の微細な凹凸による変位と、回転誤差による変位とが混合された信号となっている。 The displacement meter 221 measures the distance to one point of the measurement target surface MSFA, and when the measurement target object 210 rotates, the displacement of the measurement target surface MSFA on the line A is measured. The line A is a line that goes around the measurement target surface MSFA in the rotation direction Drot. The displacement meter 221 outputs a waveform signal SGA indicating the displacement on the line A. The waveform signal SGA is a signal in which the displacement due to the fine unevenness on the line A of the measurement target surface MSFA and the displacement due to the rotation error are mixed. Since the height of the line A changes as the displacement meter 221 moves up and down, the displacement measured by the displacement meter 221 changes, and the waveform of the waveform signal SGA changes. Similarly, the displacement meters 222 and 223 measure the displacement of the measurement target surface MSFA on the lines B and C. The displacement meters 222 and 223 output waveform signals SGB and SGC indicating displacements on the lines B and C. The waveform signals SGB and SGC are signals in which displacement due to fine irregularities on lines B and C of the measurement target surface MSFA and displacement due to rotation error are mixed.
 処理装置270は、波形信号SGA~SGCに基づいて測定対象物210の形状誤差と回転精度成分を分離する。形状誤差は、波形信号SGA~SGCに含まれる変位のうち、測定対象面MSFAの微細な凹凸による変位のことである。回転精度成分とは、波形信号SGA~SGCに含まれる変位のうち、回転誤差による測定対象面MSFAの変位のことである。 The processing device 270 separates the shape error and the rotation accuracy component of the measurement object 210 based on the waveform signals SGA to SGC. The shape error is a displacement due to fine unevenness of the measurement target surface MSFA among the displacements included in the waveform signals SGA to SGC. The rotation accuracy component is the displacement of the measurement target surface MSFA due to the rotation error among the displacements included in the waveform signals SGA to SGC.
 処理装置270は、変位計波形読取装置271と類似度定量値取得装置272と誤差分離計算装置273とを含む。例えば、処理装置270は、変位計波形読取装置271として機能するコントローラと、類似度定量値取得装置272及び誤差分離計算装置273として機能する情報処理装置と、により構成される。コントローラはケーブル等によって変位計221~223と接続されており、波形信号SGA~SGCに対して波形成形等の処理を行い、処理後の波形信号SGA~SGCを情報処理装置に出力する。コントローラと情報処理装置はケーブル又はネットワークによって接続される。情報処理装置は、類似度定量値取得装置272及び誤差分離計算装置273の機能が記述されたプログラムを記憶するメモリと、プロセッサとを含む。プロセッサが、メモリから読み出したプログラムを実行することで、類似度定量値取得装置272及び誤差分離計算装置273の機能が実現される。処理装置270が行う処理の詳細は後述する。 The processing device 270 includes a displacement meter waveform reading device 271, a similarity quantitative value acquisition device 272, and an error separation calculation device 273. For example, the processing device 270 includes a controller that functions as a displacement meter waveform reader 271, an information processing device that functions as a similarity quantitative value acquisition device 272 and an error separation calculation device 273. The controller is connected to the displacement meters 221 to 223 by a cable or the like, performs processing such as waveform shaping on the waveform signals SGA to SGC, and outputs the processed waveform signals SGA to SGC to the information processing apparatus. The controller and the information processing device are connected by a cable or a network. The information processing device includes a memory for storing a program in which the functions of the similarity quantitative value acquisition device 272 and the error separation calculation device 273 are described, and a processor. When the processor executes the program read from the memory, the functions of the similarity quantitative value acquisition device 272 and the error separation calculation device 273 are realized. Details of the processing performed by the processing device 270 will be described later.
 図3は、回転精度測定装置200を用いた回転精度測定の手順、及び回転精度測定装置200が行う処理の手順を示すフローチャートである。 FIG. 3 is a flowchart showing a procedure of rotation accuracy measurement using the rotation accuracy measuring device 200 and a procedure of processing performed by the rotation accuracy measuring device 200.
 測定対象物設置工程S1において、ユーザが、回転体280の回転軸190と同軸上に測定対象物210を設置する。変位計設置工程S2において、ユーザが変位計221~223を位置調整装置231~233に設置する。図4に示すように、回転方向Drotにおいて互いに異なる位置に変位計221~223が設置される。回転方向Drotにおける変位計221と222の相対的な設置角度の差をφとし、回転方向Drotにおける変位計221と223の相対的な設置角度の差をτとする。 In the measurement object installation step S1, the user installs the measurement object 210 coaxially with the rotation shaft 190 of the rotating body 280. In the displacement meter installation step S2, the user installs the displacement meters 221 to 223 in the position adjusting devices 231 to 233. As shown in FIG. 4, the displacement meters 221 to 223 are installed at different positions in the rotation direction Drot. Let φ be the difference in the relative installation angles of the displacement meters 221 and 222 in the rotation direction Drot, and let τ be the difference in the relative installation angles of the displacement meters 221 and 223 in the rotation direction Drot.
 第1の波形取得工程S3において、回転体280と共に測定対象物210が回転し、変位計221~223が線A~Cにおける変位を測定し、変位計波形読取装置271が波形信号SGA~SGCを取得する。回転体280は例えばモーター等のアクチュエータを備えており、処理装置270がアクチュエータを駆動することで回転体280を回転させる。変位計波形読取装置271は、変位計221~223が出力する波形信号SGA~SGCを読み取る装置である。即ち、変位計波形読取装置271は、測定対象面MSFAにおける線A~Cの一周分に対応した波形信号SGA~SGCを取得し、その波形信号SGA~SGCに対して波形成形等の処理を行う。 In the first waveform acquisition step S3, the object to be measured 210 rotates together with the rotating body 280, the displacement meters 221 to 223 measure the displacement on the lines A to C, and the displacement meter waveform reader 271 outputs the waveform signals SGA to SGC. get. The rotating body 280 includes an actuator such as a motor, and the processing device 270 drives the actuator to rotate the rotating body 280. The displacement meter waveform reader 271 is a device that reads the waveform signals SGA to SGC output by the displacement meters 221 to 223. That is, the displacement meter waveform reader 271 acquires the waveform signals SGA to SGC corresponding to one round of lines A to C on the measurement target surface MSFA, and performs processing such as waveform shaping on the waveform signals SGA to SGC. ..
 図5の上段に測定対象面MSFAの形状誤差の例を示す。この図は、測定対象面MSFAの展開図であり、等高線により形状誤差を示している。“+1t”等を付した点線が、tを任意の高さ間隔とした等高線を示している。線A~Cは、上述のように変位計221~223が変位を測定する測定対象面MSFA上の線を示している。 An example of the shape error of the measurement target surface MSFA is shown in the upper part of FIG. This figure is a developed view of the measurement target surface MSFA, and the shape error is shown by contour lines. Dotted lines with "+ 1t" and the like indicate contour lines with t as an arbitrary height interval. Lines A to C show lines on the measurement target surface MSFA where the displacement meters 221 to 223 measure the displacement as described above.
 図5の下段に、測定対象面MSFAにおける線A~Cの一周分に対応した波形信号SGA~SGCを示す。波形信号SGA~SGCの値が測定対象面MSFAの変位を示す。図4で説明したように、変位計221~223は回転方向Drotにおける異なる位置に配置されるので、波形信号SGA~SGCの位相は異なっている。即ち、波形信号SGAとSGBの位相はφ異なっており、波形信号SGAとSGCの位相はτ異なっている。 The lower part of FIG. 5 shows the waveform signals SGA to SGC corresponding to one round of lines A to C on the measurement target surface MSFA. The values of the waveform signals SGA to SGC indicate the displacement of the measurement target surface MSFA. As described with reference to FIG. 4, since the displacement meters 221 to 223 are arranged at different positions in the rotation direction Drot, the phases of the waveform signals SGA to SGC are different. That is, the phases of the waveform signals SGA and SGB are different by φ, and the phases of the waveform signals SGA and SGC are different by τ.
 図5の上段に示すように、変位計221~223が測定する線A~Cの高さが異なると、変位計221~223が測定する形状誤差が異なる。即ち、波形信号SGA~SGCに含まれる形状誤差は互いに異なっている。波形信号SGA~SGCから回転精度成分を分離する際には、位相を除いて波形信号SGA~SGCの形状誤差が同じであることが仮定されているため、線A~Cの高さが異なると回転精度成分の算出精度が低下してしまう。本実施形態では、以下に説明するS4~S6において波形信号SGA~SGCの類似度を用いて線A~Cの高さを揃えることで、回転精度成分の算出精度を向上させる。 As shown in the upper part of FIG. 5, if the heights of the lines A to C measured by the displacement meters 221 to 223 are different, the shape error measured by the displacement meters 221 to 223 is different. That is, the shape errors included in the waveform signals SGA to SGC are different from each other. When separating the rotation accuracy component from the waveform signals SGA to SGC, it is assumed that the shape errors of the waveform signals SGA to SGC are the same except for the phase, so that the heights of the lines A to C are different. The calculation accuracy of the rotation accuracy component is lowered. In the present embodiment, the calculation accuracy of the rotation accuracy component is improved by aligning the heights of the lines A to C using the similarity of the waveform signals SGA to SGC in S4 to S6 described below.
 位相差補正波形取得工程S4において、類似度定量値取得装置272は、波形信号SGA~SGCの位相差を補正することで、波形信号SGA~SGCの位相を合わせる。補正後の波形信号をSGA’~SGC’とする。類似度定量値取得工程S5において、類似度定量値取得装置272は、波形信号SGA’~SGC’のうち2つの波形信号の全ての組み合わせについて類似度を取得する。 Phase difference correction In the waveform acquisition step S4, the similarity quantitative value acquisition device 272 corrects the phase difference of the waveform signals SGA to SGC to match the phases of the waveform signals SGA to SGC. The corrected waveform signal is SGA'to SGC'. In the similarity quantitative value acquisition step S5, the similarity quantitative value acquisition device 272 acquires the similarity for all combinations of the two waveform signals of the waveform signals SGA'to SGC'.
 図6に位相差補正波形取得工程S4と類似度定量値取得工程S5の説明図を示す。ここでは波形信号SGAを基準に位相を合わせる例を説明する。類似度定量値取得装置272は、波形信号SGBの位相を-φ度だけシフトさせることで、波形信号SGB’を取得し、波形信号SGCの位相を-τ度だけシフトさせることで、波形信号SGC’を取得する。波形信号SGA’は波形信号SGAと同じである。類似度定量値取得装置272は、位相差φ、τとして既知の値を用いてもよいし、波形信号SGA~SGCのマッチング処理によって位相差φ、τを求めてもよい。 FIG. 6 shows an explanatory diagram of the phase difference correction waveform acquisition step S4 and the similarity quantitative value acquisition step S5. Here, an example of matching the phase with the waveform signal SGA as a reference will be described. The similarity quantitative value acquisition device 272 acquires the waveform signal SGB'by shifting the phase of the waveform signal SGB by -φ degree, and shifts the phase of the waveform signal SGC by -τ degree to obtain the waveform signal SGC. 'Get. The waveform signal SGA'is the same as the waveform signal SGA. The similarity quantitative value acquisition device 272 may use known values as the phase differences φ and τ, or may obtain the phase differences φ and τ by matching processing of the waveform signals SGA to SGC.
 類似度定量値取得装置272は、波形信号SGAとSGBの類似度RABと、波形信号SGBとSGCの類似度RBCと、波形信号SGCとSGAの類似度RCAと、を求める。類似度は、2つの波形がどれくらい類似するかを示す度合いであり、類似性が高いほど値が大きくなるものとする。但し、実際に類似性を測る指標としては、類似性が高いほど値が大きい指標も、類似性が高いほど値が小さい指標も、いずれも用いることが可能である。後者の場合、指標が小さいほど類似度が高いことになる。第1構成例では、類似度定量値取得装置272は、類似度を示す指標として、例えばSSD(Sum of Squared Difference)又はSAD(Sum of Absolute Difference)等を用いる。 The similarity quantitative value acquisition device 272 obtains the similarity RAB of the waveform signals SGA and SGB, the similarity RBC of the waveform signals SGB and SGC, and the similarity RCA of the waveform signals SGC and SGA. The degree of similarity is a degree indicating how similar the two waveforms are, and the higher the similarity, the larger the value. However, as an index for actually measuring the similarity, an index having a larger value as the similarity is higher and an index having a smaller value as the similarity is higher can be used. In the latter case, the smaller the index, the higher the similarity. In the first configuration example, the similarity quantitative value acquisition device 272 uses, for example, SSD (Sum of Squared Difference) or SAD (Sum of Absolute Difference) as an index indicating the similarity.
 変位計位置調整工程S6において、波形信号SGA~SGCの類似度に基づいて変位計221~223の位置を調整することで、変位計221~223が測定する線A~Cの高さを揃える。この工程の詳細については後述する。 In the displacement meter position adjustment step S6, the heights of the lines A to C measured by the displacement meters 221 to 223 are aligned by adjusting the positions of the displacement meters 221 to 223 based on the similarity of the waveform signals SGA to SGC. Details of this step will be described later.
 第2の波形取得工程S7において、回転体280と共に測定対象物210が回転し、変位計221~223が変位を測定する。変位計波形読取装置271は、変位計位置調整工程S6において線A~Cの高さが揃えられた波形信号SGA~SGCを取得する。 In the second waveform acquisition step S7, the object to be measured 210 rotates together with the rotating body 280, and the displacement meters 221 to 223 measure the displacement. The displacement meter waveform reader 271 acquires waveform signals SGA to SGC in which the heights of the lines A to C are aligned in the displacement meter position adjustment step S6.
 誤差分離計算工程S8において、誤差分離計算装置273は、第2の波形取得工程S7において取得された波形信号SGA~SGCから形状誤差と回転精度成分を分離する。具体的には、波形信号SGA~SGCは下式(1)~(3)のように表される。θは、測定対象物210の回転方向Drotにおける回転角度である。φ、τは図4で説明した変位計の設置角度である。r(θ)は、測定対象面MSFAの形状誤差である。ex(θ)、ey(θ)は、図2で説明したラディアル方向における回転誤差のx成分、y成分である。 In the error separation calculation step S8, the error separation calculation device 273 separates the shape error and the rotation accuracy component from the waveform signals SGA to SGC acquired in the second waveform acquisition step S7. Specifically, the waveform signals SGA to SGC are expressed by the following equations (1) to (3). θ is the rotation angle of the object to be measured 210 in the rotation direction Drot. φ and τ are the installation angles of the displacement gauge described in FIG. r (θ) is a shape error of the measurement target surface MSFA. ex (θ) and ey (θ) are the x component and the y component of the rotation error in the radial direction described with reference to FIG.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 誤差分離計算装置273は、上式(1)~(3)による連立方程式を逆フィルタリング法により解くことで、形状誤差r(θ)と回転誤差ex(θ)、ey(θ)を求める。この回転誤差ex(θ)、ey(θ)が、分離された回転精度成分に相当する。変位3点法の詳細は、例えば「形状誤差と運動誤差の分離による回転精度のナノ計測」精密工学会誌,Vol.67,No.7,2001,p1067-p1071に記載されている。 The error separation calculation device 273 obtains the shape error r (θ) and the rotation errors ex (θ) and ey (θ) by solving the simultaneous equations according to the above equations (1) to (3) by the inverse filtering method. The rotation errors ex (θ) and ey (θ) correspond to the separated rotation accuracy components. For details of the three-point displacement method, see, for example, "Nanomeasurement of rotational accuracy by separating shape error and motion error", Journal of Precision Engineering, Vol. 67, No. 7,2001, p1067-p1071.
 図7は、変位計位置調整工程S6の詳細な手順を示すフローチャートである。 FIG. 7 is a flowchart showing a detailed procedure of the displacement meter position adjusting step S6.
 基準変位計設定工程S11において、変位計221~223のうち1つの変位計を基準変位計に設定する。具体的には、類似度定量値取得工程S5において大きな類似度が得られた変位計を基準変位計に設定する。例えば、類似度定量値取得工程S5において取得された類似度RAB、RCA、RBCが、この順に値が大きいとする。このとき、RABとRCAに共通に対応した変位計221を基準変位計に設定する。ユーザが基準変位計を選択してもよいし、或いは類似度定量値取得装置272が類似度に基づいて自動的に基準変位計を選択してもよい。以下、変位計221を基準変位計に設定したとする。 In the reference displacement meter setting step S11, one of the displacement meters 221 to 223 is set as the reference displacement meter. Specifically, the displacement meter obtained with a large degree of similarity in the similarity quantitative value acquisition step S5 is set as the reference displacement meter. For example, it is assumed that the similarity RAB, RCA, and RBC acquired in the similarity quantitative value acquisition step S5 have the largest values in this order. At this time, the displacement meter 221 that corresponds to both RAB and RCA is set as the reference displacement meter. The user may select a reference displacement meter, or the similarity quantitative value acquisition device 272 may automatically select a reference displacement meter based on the similarity. Hereinafter, it is assumed that the displacement meter 221 is set as the reference displacement meter.
 変位計位置情報取得工程S12において、基準変位計である変位計221の高さを固定し、基準変位計以外の変位計222、223を高さ方向に位置を変えながら、各位置において測定対象物210を回転させる。変位計波形読取装置271は、各位置における波形信号SGB、SGCを取得し、類似度定量値取得装置272は、各位置における類似度RABとRCAを取得する。 In the displacement meter position information acquisition step S12, the height of the displacement meter 221 which is the reference displacement meter is fixed, and the displacement meters 222 and 223 other than the reference displacement meter are changed in the height direction, and the object to be measured is measured at each position. Rotate 210. The displacement meter waveform reader 271 acquires the waveform signals SGB and SGC at each position, and the similarity quantitative value acquisition device 272 acquires the similarity RAB and RCA at each position.
 図8に、変位計の位置を変えながら取得された類似度の例を示す。ここでは類似度が正規化されたおり、0以上1以下の範囲をとり得るとする。PTMに示す各点は、各位置で測定された類似度である。LAPは、点PTMの近似曲線である。変位計222、223の各々について、図8のような波形が得られる。 FIG. 8 shows an example of the degree of similarity acquired while changing the position of the displacement meter. Here, it is assumed that the similarity is normalized and can take a range of 0 or more and 1 or less. Each point shown in the PTM is the similarity measured at each position. LAP is an approximate curve of the point PTM. A waveform as shown in FIG. 8 is obtained for each of the displacement meters 222 and 223.
 類似度最大位置推測工程S13において、変位計の位置を動かしながら各位置で得られた類似度に基づいて、類似度が最大となる位置を推測する。ユーザが図8の波形から、類似度が最大となる位置を決定してもよいし、或いは類似度定量値取得装置272が図8の波形から、類似度が最大となる位置を推測してもよい。 In the similarity maximum position estimation step S13, the position where the similarity is maximum is estimated based on the similarity obtained at each position while moving the position of the displacement meter. The user may determine the position where the similarity is maximum from the waveform of FIG. 8, or the similarity quantitative value acquisition device 272 may infer the position where the similarity is maximum from the waveform of FIG. good.
 なお、類似度最大位置推測工程S13において、類似度が所定値以上となる変位計の位置が推測されればよい。所定値は類似度の最大値より小さい値であるが、回転誤差の測定精度を高める点からは、所定値は大きいほど望ましい。例えば、類似度の測定誤差又は近似曲線LAPの近似誤差等により、実際の最大位置と、推測された最大位置との間に誤差がある。この誤差を見込んで所定値が設定される。或いは、回転誤差の測定精度として許容できる精度が得られる類似度を、所定値として設定しておいてもよい。 In the maximum similarity position estimation step S13, the position of the displacement meter whose similarity is equal to or higher than a predetermined value may be estimated. The predetermined value is smaller than the maximum value of the similarity, but the larger the predetermined value is, the more desirable it is from the viewpoint of improving the measurement accuracy of the rotation error. For example, there is an error between the actual maximum position and the estimated maximum position due to the measurement error of the similarity or the approximation error of the approximate curve LAP. A predetermined value is set in anticipation of this error. Alternatively, a degree of similarity that can obtain an acceptable accuracy as the measurement accuracy of the rotation error may be set as a predetermined value.
 なお、以上では波形を取得した後に類似度が最大となる位置を決定する例を説明したが、類似度が最大となる位置を決定する手法はこれに限定されない。例えば、変位計の高さを変えながら類似度を測定していき、類似度が所定値を超えた位置を、最大位置を推測するような手法も考えられる。 Although the example of determining the position where the similarity is maximum after acquiring the waveform has been described above, the method for determining the position where the similarity is maximum is not limited to this. For example, a method of measuring the similarity while changing the height of the displacement meter and estimating the maximum position at the position where the similarity exceeds a predetermined value can be considered.
 変位計位置修正工程S14において、類似度最大位置推測工程S13において推測された位置に変位計222、223を移動させる。ユーザが手動で変位計222、223を移動させてもよいし、処理装置270が位置調整装置231~233のアクチュエータを駆動することで変位計222、223を移動させてもよい。 In the displacement meter position correction step S14, the displacement meters 222 and 223 are moved to the positions estimated in the similarity maximum position estimation step S13. The user may manually move the displacement meters 222 and 223, or the processing device 270 may move the displacement meters 222 and 223 by driving the actuators of the position adjusting devices 231 to 233.
 判定工程S15において、変位計位置修正工程S14において修正された変位計の位置における類似度が所定値以上であるか否かを判定する。即ち、変位計波形読取装置271は、変位計位置修正工程S14において修正された変位計の位置における波形信号SGA~SGCを取得し、類似度定量値取得装置272は、波形信号SGA~SGC間の類似度RAB、RBA、RCAを取得する。類似度定量値取得装置272は、類似度RAB、RBA、RCAがいずれも所定値以上である場合には変位計位置調整工程S6を終了する。類似度RAB、RBA、RCAのいずれかが所定値以上でない場合には、類似度RAB、RBA、RCAがいずれも所定値以上となるまでS11~S15が繰り返される。 In the determination step S15, it is determined whether or not the similarity in the position of the displacement meter corrected in the displacement meter position correction step S14 is equal to or higher than a predetermined value. That is, the displacement meter waveform reader 271 acquires the waveform signals SGA to SGC at the position of the displacement meter corrected in the displacement meter position correction step S14, and the similarity quantitative value acquisition device 272 between the waveform signals SGA and SGC. Obtain the similarity RAB, RBA, and RCA. The similarity quantitative value acquisition device 272 ends the displacement meter position adjustment step S6 when the similarity RAB, RBA, and RCA are all equal to or higher than a predetermined value. If any of the similarity RABs, RBAs, and RCAs is not equal to or higher than a predetermined value, S11 to S15 are repeated until all of the similarities RAB, RBA, and RCA are equal to or higher than a predetermined value.
 図9は、変位計位置調整工程S6により変位計の位置が調整された後の第2の波形取得工程S7において取得される波形信号SGA’~SGC’の例である。ここでは位相補正後の波形信号を示す。 FIG. 9 is an example of waveform signals SGA'to SGC' acquired in the second waveform acquisition step S7 after the displacement meter position is adjusted by the displacement meter position adjustment step S6. Here, the waveform signal after phase correction is shown.
 図9の上段は図6の上段と同様に測定対象面MSFAの形状誤差の等高線を示している。変位計221~223の位置が調整されたことで、変位計221~223が変位を測定する線A~Cの高さがほぼ同一となり、変位計221~223が測定する形状誤差がほぼ同一となる。これにより、図9の下段に示すように、波形信号SGA’~SGC’の波形がほぼ一致するため、類似性が非常に高い波形信号SGA’~SGC’が得られる。なお、図9の下段では波形信号SGA’~SGC’の波形が一致して見えるが、実際には変位計221~223の設置角度の違いによって回転精度成分が異なっており、その回転精度成分を除いて波形信号SGA’~SGC’の波形がほぼ一致している。 The upper part of FIG. 9 shows the contour lines of the shape error of the measurement target surface MSFA as in the upper part of FIG. By adjusting the positions of the displacement meters 221 to 223, the heights of the lines A to C where the displacement meters 221 to 223 measure the displacement are almost the same, and the shape errors measured by the displacement meters 221 to 223 are almost the same. Become. As a result, as shown in the lower part of FIG. 9, since the waveforms of the waveform signals SGA'to SGC' are almost the same, the waveform signals SGA'to SGC'with very high similarity can be obtained. In the lower part of FIG. 9, the waveforms of the waveform signals SGA'to SGC' appear to match, but in reality, the rotation accuracy component differs depending on the installation angle of the displacement meters 221 to 223, and the rotation accuracy component is used. Except for this, the waveforms of the waveform signals SGA'to SGC' are almost the same.
 図10は、従来技術であるマーキングによる調整手法を用いた場合における類似度と回転誤差の例であり、図11は、本実施形態の調整手法を用いた場合における類似度と回転誤差の例である。 FIG. 10 is an example of similarity and rotation error when the adjustment method by marking, which is a conventional technique, is used, and FIG. 11 is an example of similarity and rotation error when the adjustment method of the present embodiment is used. be.
 図10の上段に示すように、従来技術では類似度RABとRBAが0.990を下回っており、測定対象面MSFA上の測定位置に無視できないずれがあることが推測される。一方、図11の上段に示すように、本実施形態では類似度RABとRBAが0.990を上回っており、波形信号間の類似度を向上できことが分かる。即ち、測定対象面MSFAにおいて3つの変位計が測定する高さが揃い、3つの変位計がほぼ同じ形状誤差を測定していることになる。図10及び図11の下段に示すESTは、本実施形態とは別の手法によって見積もられた回転誤差である。本実施形態の調整手法を用いない場合における回転誤差MESAに比べて、本実施形態の調整手法を用いた場合における回転誤差MESBの方が、本実施形態とは別の手法によって見積もられた回転誤差の波形に近いことが分かる。 As shown in the upper part of FIG. 10, in the conventional technique, the similarity RAB and RBA are lower than 0.990, and it is presumed that there is a non-negligible deviation in the measurement position on the measurement target surface MSFA. On the other hand, as shown in the upper part of FIG. 11, in the present embodiment, the similarity RAB and RBA exceed 0.990, and it can be seen that the similarity between the waveform signals can be improved. That is, the heights measured by the three displacement meters on the measurement target surface MSFA are the same, and the three displacement meters measure substantially the same shape error. The EST shown in the lower part of FIGS. 10 and 11 is a rotation error estimated by a method different from that of the present embodiment. Compared with the rotation error MESA when the adjustment method of the present embodiment is not used, the rotation error MESB when the adjustment method of the present embodiment is used is the rotation estimated by a method different from the present embodiment. It can be seen that it is close to the error waveform.
 なお、相互相関係数は、回転精度や測定対象面の面精度の状況によって変わるものの、基本的には0.990以上の値となることが望ましく、0.995以上の値となることがより望ましい。 Although the mutual correlation coefficient varies depending on the rotation accuracy and the surface accuracy of the surface to be measured, it is basically desirable that the value is 0.990 or more, and the value is 0.995 or more. desirable.
 以上に説明したように、本実施形態の回転精度測定方法は、複数の変位計221~223を用いて、測定対象物210の形状誤差と回転精度成分を分離することで、回転精度成分を測定する。回転精度測定方法は、第1工程と第2工程と第3工程とを含む。第1工程は、測定対象物210を回転させながら、複数の変位計221~223を用いて、複数の変位計221~223と測定対象物210との距離の変位を測定し、その変位を示す複数の波形信号SGA~SGCを得る。第2工程は、複数の波形信号SGA~SGCの間の類似度RAB、RBA、RCAを定量評価する。第3工程は、類似度RAB、RBA、RCAが所定値以上になるように、複数の変位計221~223に含まれる変位計の位置を調整する。なお、第1構成例において第1工程は図3の第1の波形取得工程S3に対応し、第2工程は図3の位相差補正波形取得工程S4と類似度定量値取得工程S5に対応し、第3工程は図3と図7の変位計位置調整工程S6に対応する。 As described above, in the rotation accuracy measuring method of the present embodiment, the rotation accuracy component is measured by separating the shape error and the rotation accuracy component of the object to be measured 210 by using a plurality of displacement meters 221 to 223. do. The rotation accuracy measuring method includes a first step, a second step, and a third step. In the first step, while rotating the object to be measured 210, the displacement of the distance between the plurality of displacement meters 221 to 223 and the object to be measured 210 is measured using a plurality of displacement meters 221 to 223, and the displacement is shown. Obtain a plurality of waveform signals SGA to SGC. The second step quantitatively evaluates the similarity RAB, RBA, and RCA between the plurality of waveform signals SGA to SGC. In the third step, the positions of the displacement meters included in the plurality of displacement meters 221 to 223 are adjusted so that the similarity RAB, RBA, and RCA become equal to or higher than a predetermined value. In the first configuration example, the first step corresponds to the first waveform acquisition step S3 in FIG. 3, and the second step corresponds to the phase difference correction waveform acquisition step S4 and the similarity quantitative value acquisition step S5 in FIG. The third step corresponds to the displacement meter position adjusting step S6 of FIGS. 3 and 7.
 また本実施形態の回転精度測定装置200は、複数の変位計221~223と処理装置270とを含む。処理装置270は、複数の変位計221~223を用いて、測定対象物210の形状誤差と回転精度成分を分離することで、回転精度成分を測定する。処理装置270は、第1処理と第2処理と第3処理とを行う。第1処理は、測定対象物210を回転させながら、複数の変位計221~223を用いて、複数の変位計221~223と測定対象物210との距離の変位を測定し、その変位を示す複数の波形信号SGA~SGCを取得する。第2処理は、複数の波形信号SGA~SGCの間の類似度RAB、RBA、RCAを定量評価する。第3処理は、類似度RAB、RBA、RCAが所定値以上となるように複数の変位計221~223の位置が調整されたときの複数の波形信号SGA~SGCを取得する。なお、第1構成例において第1処理は図3の第1の波形取得工程S3に対応し、第2工程は図3の類似度定量値取得工程S5に対応し、第3処理は図3の第2の波形取得工程S7に対応する。 Further, the rotation accuracy measuring device 200 of the present embodiment includes a plurality of displacement meters 221 to 223 and a processing device 270. The processing device 270 measures the rotation accuracy component by separating the shape error and the rotation accuracy component of the object to be measured 210 by using a plurality of displacement meters 221 to 223. The processing device 270 performs the first processing, the second processing, and the third processing. In the first process, while rotating the object to be measured 210, the displacement of the distance between the plurality of displacement meters 221 to 223 and the object to be measured 210 is measured using a plurality of displacement meters 221 to 223, and the displacement is shown. Acquire a plurality of waveform signals SGA to SGC. The second process quantitatively evaluates the similarity RAB, RBA, and RCA between the plurality of waveform signals SGA to SGC. The third process acquires a plurality of waveform signals SGA to SGC when the positions of the plurality of displacement meters 221 to 223 are adjusted so that the similarity RAB, RBA, and RCA become equal to or higher than a predetermined value. In the first configuration example, the first process corresponds to the first waveform acquisition step S3 in FIG. 3, the second process corresponds to the similarity quantitative value acquisition step S5 in FIG. 3, and the third process corresponds to FIG. Corresponds to the second waveform acquisition step S7.
 このようにすれば、変位を示す波形信号の類似度を用いて、複数の変位計が変位を測定する検出位置を揃えることができる。マーキングを用いた場合には、測定対象面の形状や反射輝度が急峻に変化するため、回転誤差の測定精度に限界があるが、本実施形態のように波形信号の類似度を用いることで、その問題を回避できる。これにより、高精度な回転精度測定が可能となり、その回転精度成分を用いて3次元形状測定の測定精度を向上できる。なお、「類似度が所定値以上となるように変位計の位置を調整する」とは、例えば以下の2つを含む。第1は、変位計を動かしていき、類似度がしきい値以上になったら、その位置で変位計を止めることである。この場合、しきい値が所定値に相当する。また第2は、山登り法のように類似度の最大値を探し、最大値と判定された位置で変位計を止めることである。この場合、厳密に最大値を判定できるとは限らないので、ある程度のばらつきがある。即ち、最大値判定にともなう誤差の範囲が所定値に相当する。 By doing so, it is possible to align the detection positions where a plurality of displacement meters measure the displacement by using the similarity of the waveform signals indicating the displacement. When marking is used, the shape of the surface to be measured and the reflected brightness change sharply, so that the measurement accuracy of the rotation error is limited. You can avoid that problem. As a result, highly accurate rotation accuracy measurement becomes possible, and the measurement accuracy of the three-dimensional shape measurement can be improved by using the rotation accuracy component. The phrase "adjusting the position of the displacement meter so that the degree of similarity is equal to or higher than a predetermined value" includes, for example, the following two. The first is to move the displacement meter and stop the displacement meter at that position when the similarity exceeds the threshold value. In this case, the threshold value corresponds to a predetermined value. The second is to search for the maximum value of similarity as in the hill climbing method, and stop the displacement meter at the position determined to be the maximum value. In this case, the maximum value cannot always be determined exactly, so there is some variation. That is, the range of error associated with the maximum value determination corresponds to a predetermined value.
 また本実施形態では、回転精度測定方法は測定対象物設置工程S1と変位計設置工程S2とを含む。測定対象物設置工程S1は、測定対象面MSFAを有する測定対象物210を、回転体280の回転軸190と同軸上に設置する。変位計設置工程S2は、測定対象物210の周囲に複数の変位計221~223を配置する。第1工程において、測定対象物210を回転軸190上で回転させながら、複数の波形信号SGA~SGCを取得する。回転精度成分は、測定対象物210が設置される回転体280の回転精度を校正するために用いられる成分である。 Further, in the present embodiment, the rotation accuracy measuring method includes the measurement object installation process S1 and the displacement meter installation process S2. In the measurement object installation step S1, the measurement object 210 having the measurement object surface MSFA is installed coaxially with the rotation shaft 190 of the rotating body 280. In the displacement meter installation step S2, a plurality of displacement meters 221 to 223 are arranged around the object to be measured 210. In the first step, a plurality of waveform signals SGA to SGC are acquired while rotating the measurement object 210 on the rotation shaft 190. The rotation accuracy component is a component used for calibrating the rotation accuracy of the rotating body 280 on which the measurement object 210 is installed.
 上述したように、波形信号の類似度を用いることで回転精度成分を高精度に検出できるため、その回転精度成分を用いて回転精度を高精度に校正できるようになる。例えば、後述する3次元形状測定方法及び3次元形状測定装置100における回転走査形状測定において、高精度に回転精度を校正できる。 As described above, since the rotation accuracy component can be detected with high accuracy by using the similarity of the waveform signal, the rotation accuracy can be calibrated with high accuracy using the rotation accuracy component. For example, in the three-dimensional shape measuring method described later and the rotary scanning shape measurement in the three-dimensional shape measuring device 100, the rotational accuracy can be calibrated with high accuracy.
 また本実施形態では、変位計設置工程S2において、回転体280の回転方向Drotに沿って、互いに異なる設置角度で複数の変位計221~223を設置する。第1工程において、測定対象物210を回転させながら複数の波形信号SGA~SGCを取得する。第2工程において、設置角度の違いで生じる複数の波形信号SGA~SGCの間の位相差と、位相差が補正された複数の波形信号SGA’~SGC’の間の類似度の定量値とを求めることで、類似度を定量評価する。 Further, in the present embodiment, in the displacement meter installation step S2, a plurality of displacement meters 221 to 223 are installed at different installation angles along the rotation direction Drot of the rotating body 280. In the first step, a plurality of waveform signals SGA to SGC are acquired while rotating the measurement object 210. In the second step, the phase difference between the plurality of waveform signals SGA to SGC caused by the difference in the installation angle and the quantitative value of the degree of similarity between the plurality of waveform signals SGA'to SGC' in which the phase difference is corrected are obtained. By finding it, the similarity is quantitatively evaluated.
 このようにすれば、変位3点法等のマルチプローブ法を用いて回転誤差を測定できる。即ち、互いに設置角度が異なる複数の変位計を用いることで、互いに異なる位置から回転誤差による変位が測定される。この互いに異なる位置から測定された変位を用いることで、波形信号から回転精度成分を分離できる。 By doing so, the rotation error can be measured by using a multi-probe method such as the displacement 3-point method. That is, by using a plurality of displacement meters having different installation angles, the displacement due to the rotation error is measured from different positions. By using the displacements measured from these different positions, the rotation accuracy component can be separated from the waveform signal.
 また本実施形態では、回転精度測定方法は、複数の波形信号SGA~SGCから形状誤差と回転精度成分を分離する誤差分離計算を行なう第4工程を含む。第4工程において、第3工程において類似度が所定値以上になるように調整された変位計の位置で取得された複数の波形信号SGA~SGCを用いて、誤差分離計算を行う。第1構成例では、第4工程は図3の誤差分離計算工程に対応する。 Further, in the present embodiment, the rotation accuracy measuring method includes a fourth step of performing an error separation calculation for separating the shape error and the rotation accuracy component from the plurality of waveform signals SGA to SGC. In the fourth step, the error separation calculation is performed using the plurality of waveform signals SGA to SGC acquired at the positions of the displacement meters adjusted so that the similarity becomes equal to or higher than the predetermined value in the third step. In the first configuration example, the fourth step corresponds to the error separation calculation step of FIG.
 波形信号の類似度が所定値以上となるように変位計の位置が調整されることで、複数の変位計が変位を測定する位置を、ほぼ一致させることができる。これにより、複数の波形信号に含まれる形状誤差がほぼ一致するため、正確に回転精度成分を分離できる。 By adjusting the position of the displacement meter so that the similarity of the waveform signals is equal to or higher than the predetermined value, the positions where the plurality of displacement meters measure the displacement can be almost matched. As a result, the shape errors included in the plurality of waveform signals are almost the same, so that the rotation accuracy components can be accurately separated.
 また本実施形態では、回転精度測定方法の第3工程は基準変位計設定工程S11と変位計位置情報取得工程S12と類似度最大位置推測工程S13と変位計位置修正工程S14とを含む。基準変位計設定工程S11は、複数の変位計221~223の中から、位置調整の基準となる基準変位計221を定める。変位計位置情報取得工程S12は、基準変位計221とは異なる変位計222、223を、測定対象物210の回転軸方向における複数の位置に動かし、その各位置において複数の波形信号SGA~SGCを取得し、基準変位計221により得られた波形信号SGAと変位計222、223により得られた波形信号SGB、SGCとの、各位置における類似度RAB、RBAを求める。類似度最大位置推測工程S13は、複数の位置に対応して得られた複数の類似度に基づいて、所定値以上である類似度が得られる変位計222、223の位置を推測する。変位計位置修正工程S14は、類似度最大位置推測工程S13において推測された位置に変位計222、223を移動させる。なお、基準変位計は複数の変位計221~223のうち任意の1つであってよい。後述する第4構成例では、複数の変位計は変位計241~244であり、変位計位置情報取得工程S12において、基準変位計とは異なる変位計を、測定対象物210の回転軸190に対するラディアル方向における複数の位置に動かす。 Further, in the present embodiment, the third step of the rotation accuracy measuring method includes a reference displacement meter setting step S11, a displacement meter position information acquisition step S12, a similarity maximum position estimation step S13, and a displacement meter position correction step S14. The reference displacement meter setting step S11 determines a reference displacement meter 221 as a reference for position adjustment from a plurality of displacement meters 221 to 223. In the displacement meter position information acquisition step S12, the displacement meters 222 and 223 different from the reference displacement meter 221 are moved to a plurality of positions in the rotation axis direction of the measurement object 210, and a plurality of waveform signals SGA to SGC are transmitted at each position. The degree of similarity RAB and RBA between the waveform signal SGA obtained by the reference displacement meter 221 and the waveform signals SGB and SGC obtained by the displacement meters 222 and 223 are obtained at each position. The maximum similarity position estimation step S13 estimates the positions of the displacement meters 222 and 223 that can obtain the similarity of a predetermined value or more based on the plurality of similarities obtained corresponding to the plurality of positions. The displacement meter position correction step S14 moves the displacement meters 222 and 223 to the positions estimated in the similarity maximum position estimation step S13. The reference displacement meter may be any one of the plurality of displacement meters 221 to 223. In the fourth configuration example described later, the plurality of displacement meters are displacement meters 241 to 244, and in the displacement meter position information acquisition step S12, a displacement meter different from the reference displacement meter is used as a radial with respect to the rotation axis 190 of the measurement object 210. Move to multiple positions in the direction.
 このようにすれば、変位計位置情報取得工程S12において、変位計の各位置における波形信号の類似度が得られる。これは、変位計の位置調整による移動量と移動方向に対する類似度の変化傾向に相当する。そして、類似度最大位置推測工程S13において、変位計の位置調整による移動量と移動方向に対する類似度の変化傾向に基づいて、所定値以上である類似度が得られる変位計の位置を推測できる。 By doing so, in the displacement meter position information acquisition step S12, the similarity of the waveform signals at each position of the displacement meter can be obtained. This corresponds to the change tendency of the movement amount and the degree of similarity with respect to the movement direction due to the position adjustment of the displacement meter. Then, in the similarity maximum position estimation step S13, the position of the displacement meter that can obtain the similarity of a predetermined value or more can be estimated based on the movement amount due to the position adjustment of the displacement meter and the change tendency of the similarity with respect to the movement direction.
 また本実施形態では、図12に示すように、測定対象面MSFAの形状誤差に起因する変位r(θ)は、測定対象物210の回転精度成分に起因する変位e(θ)の4倍以上200倍以下であることが望ましい。即ち、測定対象物210が1周回転する間において、形状誤差に起因する変位r(θ)の最大値と最小値との差Wrは、回転精度成分に起因する変位e(θ)の最大値と最小値との差Weの4倍以上200倍以下であることが望ましい。なお、Wr/Weの値は、4倍以上200倍以下であることが望ましく、4倍以上90倍であることがより望ましい。またさらには8倍以上15倍以下の範囲が最も好適である。 Further, in the present embodiment, as shown in FIG. 12, the displacement r (θ) due to the shape error of the measurement target surface MSFA is four times or more the displacement e (θ) due to the rotation accuracy component of the measurement target object 210. It is desirable that it is 200 times or less. That is, the difference Wr between the maximum value and the minimum value of the displacement r (θ) due to the shape error is the maximum value of the displacement e (θ) due to the rotation accuracy component while the object to be measured 210 rotates once. It is desirable that the difference between the value and the minimum value is 4 times or more and 200 times or less of We. The Wr / We value is preferably 4 times or more and 200 times or less, and more preferably 4 times or more and 90 times or less. Further, the range of 8 times or more and 15 times or less is most preferable.
 Wr/Weが大きすぎると、形状誤差に対する回転誤差が相対的に小さくなりすぎるため、回転誤差を精度良く分離できなくなる。一方、Wr/Weが小さすぎると、形状誤差に対する回転誤差が相対的に大きくなりすぎるため、形状誤差を精度良く分離できなくなり、その結果として回転誤差を精度良く分離できなくなる。具体的には、Wr/Weの値が4倍以上90倍以下の範囲であれば、形状誤差がやや大きいものの形状誤差と回転誤差を充分な精度で分離すること可能である。また特に8倍以上15倍以下であれば、非常に高精度に回転誤差と形状誤差の分離が可能である。 If Wr / We is too large, the rotation error with respect to the shape error becomes too small, and the rotation error cannot be separated accurately. On the other hand, if Wr / We is too small, the rotation error with respect to the shape error becomes relatively large, so that the shape error cannot be separated accurately, and as a result, the rotation error cannot be separated accurately. Specifically, if the Wr / We value is in the range of 4 times or more and 90 times or less, it is possible to separate the shape error and the rotation error with sufficient accuracy, although the shape error is slightly large. Further, especially when it is 8 times or more and 15 times or less, it is possible to separate the rotation error and the shape error with very high accuracy.
 2.第2構成例
 図13は、第2構成例において、回転精度測定装置200を用いた回転精度測定の手順、及び回転精度測定装置200が行う処理の手順を示すフローチャートである。なお、第1構成例と異なる部分について主に説明し、回転精度測定装置200の構成等の、第1構成例と同様な部分については適宜に説明を省略する。
2. 2. 2nd Configuration Example FIG. 13 is a flowchart showing a procedure of rotation accuracy measurement using the rotation accuracy measuring device 200 and a procedure of processing performed by the rotation accuracy measuring device 200 in the second configuration example. The parts different from the first configuration example will be mainly described, and the parts similar to the first configuration example such as the configuration of the rotation accuracy measuring device 200 will be appropriately omitted.
 図13に示すように、相互相関係数演算工程S9において、類似度定量値取得装置272は、類似度RAB、RBC、RCAとして相互相関係数を求める。相互相関係数演算工程S9は、図3の位相差補正波形取得工程S4と類似度定量値取得工程S5に対応するが、相互相関係数を求める際に位相差と類似度が同時に求められる。 As shown in FIG. 13, in the mutual correlation coefficient calculation step S9, the similarity quantitative value acquisition device 272 obtains the mutual correlation coefficient as the similarity RAB, RBC, and RCA. The mutual correlation coefficient calculation step S9 corresponds to the phase difference correction waveform acquisition step S4 and the similarity quantitative value acquisition step S5 in FIG. 3, but the phase difference and the similarity are simultaneously obtained when the mutual correlation coefficient is obtained.
 類似度定量値取得装置272は、下式(4)~(7)により相互相関係数RABを求める。波形信号SGAは、N個の離散的な数値列として得られているとする。SGA(m)は、そのm番目の数値を示す。kは相関関数におけるずらし量であり、k=0、1、2、・・・、Nである。CA(k)はSGAの自己相関関数であり、CB(k)はSGBの自己相関関数であり、CAB(k)はSGAとSGBの相互相関関数である。類似度定量値取得装置272は、各kの値に対して得られるRAB(k)のうち最大値を類似度として採用する。また、その最大値が得られるkに対応した位相差が、波形信号SGAとSGBの位相差となる。なお、RABを例に説明したが、RBC、RCAも同様な式により演算される。 The similarity quantitative value acquisition device 272 obtains the mutual correlation coefficient RAB by the following equations (4) to (7). It is assumed that the waveform signal SGA is obtained as N discrete numerical strings. SGA (m) indicates the m-th numerical value. k is a shift amount in the correlation function, and k = 0, 1, 2, ..., N. CA (k) is the autocorrelation function of SGA, CB (k) is the autocorrelation function of SGB, and CAB (k) is the cross-correlation function of SGA and SGB. The similarity quantitative value acquisition device 272 adopts the maximum value of RAB (k) obtained for each k value as the similarity. Further, the phase difference corresponding to k at which the maximum value is obtained is the phase difference between the waveform signals SGA and SGB. Although RAB has been described as an example, RBC and RCA are also calculated by the same formula.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 以上に説明した実施形態によれば、回転精度測定方法の第2工程において、上式(7)で示される相互相関係数RAB(k)を演算することで、第1波形信号と第2波形信号の位相差と類似度の定量値を取得する。第1波形信号は波形信号SGAに対応し、第2波形信号は波形信号SGBに対応する。但し、第1、第2波形信号は、波形信号SGA~SGCのうちの任意の2つであってよい。 According to the embodiment described above, in the second step of the rotation accuracy measuring method, the first waveform signal and the second waveform are obtained by calculating the mutual correlation coefficient RAB (k) represented by the above equation (7). Obtain the quantitative value of the phase difference and similarity of the signal. The first waveform signal corresponds to the waveform signal SGA, and the second waveform signal corresponds to the waveform signal SGB. However, the first and second waveform signals may be any two of the waveform signals SGA to SGC.
 また本実施形態の処理装置270は、第2処理において、上式(7)で示される相互相関係数RAB(k)を演算することで、第1波形信号と第2波形信号の位相差と類似度の定量値を取得する。 Further, the processing apparatus 270 of the present embodiment calculates the mutual correlation coefficient RAB (k) represented by the above equation (7) in the second processing to obtain the phase difference between the first waveform signal and the second waveform signal. Obtain a quantitative value of similarity.
 相互相関係数を用いることで、波形信号の位相差と類似度が同時に得られるので、類似度算出を1つの工程で実現できる。また、相互相関係数の演算において位相差が得られるので、変位計221~223の設置角度が未知であっても類似度を算出できる。これらにより、類似度の算出を簡素化し、位置調整を効率化できる。 By using the mutual correlation coefficient, the phase difference and similarity of the waveform signal can be obtained at the same time, so the similarity can be calculated in one step. Further, since the phase difference is obtained in the calculation of the mutual correlation coefficient, the degree of similarity can be calculated even if the installation angle of the displacement meters 221 to 223 is unknown. As a result, the calculation of the degree of similarity can be simplified and the position adjustment can be made more efficient.
 3.第3構成例
 図14は、回転精度測定装置200の第3構成例である。第3構成例では、処理装置270が変位計位置自動制御装置274を含む。なお、第1構成例又は第2構成例と異なる部分について主に説明し、回転精度を測定する手順等の、第1構成例又は第2構成例と同様な部分については適宜に説明を省略する。
3. 3. Third Configuration Example FIG. 14 is a third configuration example of the rotation accuracy measuring device 200. In the third configuration example, the processing device 270 includes the displacement meter position automatic control device 274. It should be noted that the parts different from the first configuration example or the second configuration example will be mainly described, and the description of the parts similar to the first configuration example or the second configuration example such as the procedure for measuring the rotation accuracy will be omitted as appropriate. ..
 処理装置270は、例えば変位計波形読取装置271として機能する第1コントローラと、変位計位置自動制御装置274として機能する第2コントローラと、類似度定量値取得装置272及び誤差分離計算装置273として機能する情報処理装置と、により構成される。第2コントローラはケーブル等によって位置調整装置231~233に接続され、ケーブル又はネットワークによって情報処理装置と接続される。変位計位置自動制御装置274は、類似度定量値取得装置272からの指示に基づいて位置調整装置231~233のアクチュエータを駆動することで、変位計221~223を上下に移動させる。 The processing device 270 functions as, for example, a first controller that functions as a displacement meter waveform reader 271, a second controller that functions as a displacement meter position automatic control device 274, a similarity quantitative value acquisition device 272, and an error separation calculation device 273. It is composed of an information processing device and an information processing device. The second controller is connected to the position adjusting devices 231 to 233 by a cable or the like, and is connected to the information processing device by a cable or a network. The displacement meter position automatic control device 274 moves the displacement meters 221 to 223 up and down by driving the actuators of the position adjustment devices 231 to 233 based on the instruction from the similarity quantitative value acquisition device 272.
 第1構成例ではユーザが変位計221~223を上下に移動させることを想定したが、第3構成例では変位計221~223の位置調整が自動化される。即ち、第3構成例では、図3の変位計位置調整工程S6における変位計221~223の位置調整を、回転精度測定装置200が自動で行う。具体的には、図7の変位計位置情報取得工程S12において、類似度定量値取得装置272が変位計位置自動制御装置274に指示して変位計221~223の位置を移動させると共に、各位置において波形信号SGA~SGCを変位計波形読取装置271に読み取らせる。類似度定量値取得装置272は、類似度最大位置推測工程S13において、類似度が所定値以上となる変位計の位置を推測し、変位計位置修正工程S14において、変位計位置自動制御装置274に指示して変位計221~223の位置を、推測した位置に移動させる。 In the first configuration example, it is assumed that the user moves the displacement meters 221 to 223 up and down, but in the third configuration example, the position adjustment of the displacement meters 221 to 223 is automated. That is, in the third configuration example, the rotation accuracy measuring device 200 automatically adjusts the positions of the displacement meters 221 to 223 in the displacement meter position adjusting step S6 of FIG. Specifically, in the displacement meter position information acquisition step S12 of FIG. 7, the similarity quantitative value acquisition device 272 instructs the displacement meter position automatic control device 274 to move the positions of the displacement meters 221 to 223, and each position. The waveform signals SGA to SGC are read by the displacement meter waveform reader 271. The similarity quantitative value acquisition device 272 estimates the position of the displacement meter whose similarity is equal to or higher than the predetermined value in the similarity maximum position estimation step S13, and in the displacement meter position correction step S14, the displacement meter position automatic control device 274 is used. Instruct to move the positions of the displacement meters 221 to 223 to the estimated positions.
 以上に説明した実施形態によれば、回転精度測定方法の第3工程は、類似度最大位置推測工程S13と変位計位置修正工程S14と判定工程S15とを含む。類似度最大位置推測工程S13は、変位計の位置調整による移動量と移動方向に対する、類似度RAB、RBA、RCAの変化傾向に基づいて、類似度RAB、RBA、RCAが所定値以上となる変位計の位置を推測する。変位計位置修正工程S14は、類似度最大位置推測工程S13の結果に基づいて変位計の位置を修正する。判定工程S15は、類似度RAB、RBA、RCAが所定値以上になるように変位計の位置が調整されたか否かを判定する。なお、「変位計の位置調整による移動量と移動方向に対する類似度の変化傾向」は、回転方向Drotに垂直な方向に変位計を移動させたときの移動量と移動方向に対して、類似度が正負どちらにどれだけ変化するか、を意味している。例えば、図8で説明した変位計位置と類似度の関係を示す波形が、上記変化傾向に相当する。 According to the embodiment described above, the third step of the rotation accuracy measuring method includes the maximum similarity position estimation step S13, the displacement meter position correction step S14, and the determination step S15. In the similarity maximum position estimation step S13, the displacement at which the similarity RAB, RBA, and RCA become equal to or higher than a predetermined value based on the change tendency of the similarity RAB, RBA, and RCA with respect to the movement amount and the movement direction by adjusting the position of the displacement meter. Guess the position of the meter. The displacement meter position correction step S14 corrects the position of the displacement meter based on the result of the similarity maximum position estimation step S13. The determination step S15 determines whether or not the position of the displacement meter has been adjusted so that the similarity RAB, RBA, and RCA are equal to or higher than a predetermined value. The "change tendency of the movement amount and the degree of similarity with respect to the movement direction due to the position adjustment of the displacement meter" is the degree of similarity with respect to the movement amount and the movement direction when the displacement meter is moved in the direction perpendicular to the rotation direction Drot. It means how much it changes to positive or negative. For example, the waveform showing the relationship between the displacement meter position and the degree of similarity described in FIG. 8 corresponds to the above-mentioned change tendency.
 また本実施形態では、処理装置270は、第3処理において類似度最大位置推測処理と変位計位置修正処理と判定処理とを行う。類似度最大位置推測処理は、複数の変位計221~223に含まれる変位計の位置調整による移動量と移動方向に対する、類似度RAB、RBA、RCAの変化傾向に基づいて、類似度RAB、RBA、RCAが所定値以上となる変位計の位置を推測する。変位計位置修正処理は、類似度最大位置推測処理の結果に基づいて変位計221~223の位置を調整する。判定処理は、類似度RAB、RBA、RCAが所定値以上になるように変位計の位置が調整されたか否かを判定する。 Further, in the present embodiment, the processing device 270 performs the similarity maximum position estimation process, the displacement meter position correction process, and the determination process in the third process. The similarity maximum position estimation process is based on the change tendency of the similarity RAB, RBA, and RCA with respect to the movement amount and the movement direction by the position adjustment of the displacement meters included in the plurality of displacement meters 221 to 223, and the similarity degree RAB, RBA. , Estimate the position of the displacement meter whose RCA is equal to or higher than the predetermined value. The displacement meter position correction process adjusts the positions of the displacement meters 221 to 223 based on the result of the similarity maximum position estimation process. The determination process determines whether or not the position of the displacement meter has been adjusted so that the similarity RAB, RBA, and RCA are equal to or higher than a predetermined value.
 このようにすれば、類似度RAB、RBA、RCAが所定値以上になるように変位計の位置が調整されたか否かを判定されるので、類似度RAB、RBA、RCAが所定値以上になるような変位計の位置に調整される。また、類似度RAB、RBA、RCAが所定値以上でないと判定されたときに、変位計の位置調整を繰り返すことで、類似度RAB、RBA、RCAを高めて所定値以上にすることができる。これにより、高精度な回転精度測定を提供できる。また回転精度測定装置200が変位計位置調整を自動で実行できるので、変位計位置調整を効率化できる。 By doing so, it is determined whether or not the position of the displacement meter has been adjusted so that the similarity RAB, RBA, and RCA are equal to or higher than the predetermined values. Therefore, the similarity RAB, RBA, and RCA are equal to or higher than the predetermined values. Adjusted to the position of the displacement meter. Further, when it is determined that the similarity RAB, RBA, RCA is not equal to or higher than the predetermined value, the similarity RAB, RBA, RCA can be increased to be equal to or higher than the predetermined value by repeating the position adjustment of the displacement meter. This makes it possible to provide highly accurate rotation accuracy measurement. Further, since the rotation accuracy measuring device 200 can automatically perform the displacement meter position adjustment, the displacement meter position adjustment can be made more efficient.
 4.第4構成例
 図15は、回転精度測定装置200の第4構成例である。回転精度測定装置200は、ステージ285と回転体280と測定対象物210と位置調整装置251~254と変位計241~244と処理装置270とを含む。なお、第1~第3構成例と異なる部分について主に説明し、回転精度を測定する手順等の、第1~第3構成例と同様な部分については適宜に説明を省略する。
4. Fourth Configuration Example FIG. 15 is a fourth configuration example of the rotation accuracy measuring device 200. The rotation accuracy measuring device 200 includes a stage 285, a rotating body 280, a measuring object 210, position adjusting devices 251 to 254, displacement meters 241 to 244, and a processing device 270. The parts different from the first to third configuration examples will be mainly described, and the parts similar to the first to third configuration examples such as the procedure for measuring the rotation accuracy will be omitted as appropriate.
 第4構成例においては、図16に示すようにティルト方向の回転誤差とアキシャル方向の回転誤差を検出する。ティルト方向は、測定対象物210の上面の傾き、即ち理想的な回転軸192に対する回転軸190の傾きである。ティルト方向の回転誤差は、z軸に対する回転軸190の傾き角度と、その傾きがx軸及びy軸に対してどの方向を向いているか、を示す。アキシャル方向は、回転軸190に沿った上下方向である。アキシャル方向の回転誤差は、z軸に沿った上下方向における測定対象物210のずれを示す。 In the fourth configuration example, as shown in FIG. 16, the rotation error in the tilt direction and the rotation error in the axial direction are detected. The tilt direction is the inclination of the upper surface of the object to be measured 210, that is, the inclination of the rotation axis 190 with respect to the ideal rotation axis 192. The rotation error in the tilt direction indicates the tilt angle of the rotation axis 190 with respect to the z-axis and the direction in which the tilt is oriented with respect to the x-axis and the y-axis. The axial direction is the vertical direction along the rotation axis 190. The rotational error in the axial direction indicates the deviation of the object to be measured 210 in the vertical direction along the z-axis.
 第4構成例では、測定対象物210の上面が、変位計241~244によって変位が測定される測定対象面MSFBとなる。測定対象面MSFBの表面は、変位計241~244が変位を高精度に測定できるように、鏡面状に研磨されている。測定対象面MSFBの面精度は数百nm~1μmである。 In the fourth configuration example, the upper surface of the measurement target object 210 is the measurement target surface MSFB whose displacement is measured by the displacement meters 241 to 244. The surface of the measurement target surface MSFB is mirror-polished so that the displacement meters 241 to 244 can measure the displacement with high accuracy. The surface accuracy of the measurement target surface MSFB is several hundred nm to 1 μm.
 位置調整装置251~254は変位計241~244を支持しており、位置調整装置251~254が回転軸190に対してラディアル方向に移動することで、ラディアル方向における変位計241~244の位置が変化する。変位計241~244の位置が変化することで、測定対象面MSFBにおいて変位計241~244により変位が測定される位置は、回転方向Drotに直交する方向に変化することになる。位置調整装置251~254の構成としては種々考えられるが、例えば、各位置調整装置は、変位計を支持し且つラディアル方向に延びる支柱と、支柱を移動させる機構とを含む。また各位置調整装置は、ラディアル方向における変位計の位置を検出するエンコーダを更に含んでもよい。第1構成例のようにユーザが支柱を移動させてもよいし、第2構成例のように支柱移動が自動化されてもよい。自動化される場合、支柱を上下させる機構は、ステッピングモーター等のアクチュエータである。 The position adjusting devices 251 to 254 support the displacement meters 241 to 244, and the position adjusting devices 251 to 254 move in the radial direction with respect to the rotation axis 190 so that the positions of the displacement meters 241 to 244 in the radial direction can be changed. Change. By changing the positions of the displacement meters 241 to 244, the positions where the displacements are measured by the displacement meters 241 to 244 on the measurement target surface MSFB change in the direction orthogonal to the rotation direction Dolot. Various configurations of the position adjusting devices 251 to 254 can be considered. For example, each position adjusting device includes a support column that supports the displacement meter and extends in the radial direction, and a mechanism for moving the support column. Further, each position adjusting device may further include an encoder for detecting the position of the displacement meter in the radial direction. The user may move the stanchion as in the first configuration example, or the stanchion movement may be automated as in the second configuration example. When automated, the mechanism for raising and lowering the columns is an actuator such as a stepping motor.
 変位計241~244は、ティルト方向及びアキシャル方向における測定対象面MSFBの変位、即ちティルト方向及びアキシャル方向における変位計241~244と測定対象面MSFBの距離の変位を測定する。変位計241~244は、+z側から-z方向に見た時に、回転軸190の周囲且つ測定対象面MSFBの上に配置されており、その距離の測定方向は-z方向を向いている。変位計241~244は非接触型の変位計であるが、接触型の変位計を採用してもよい。但し、非接触型の変位計を採用することが望ましい。 The displacement meters 241 to 244 measure the displacement of the measurement target surface MSFB in the tilt direction and the axial direction, that is, the displacement of the distance between the displacement meters 241 to 244 in the tilt direction and the axial direction and the measurement target surface MSFB. The displacement meters 241 to 244 are arranged around the rotation axis 190 and on the measurement target surface MSFB when viewed from the + z side in the −z direction, and the measurement direction of the distance faces the −z direction. Although the displacement meters 241 to 244 are non-contact type displacement meters, a contact type displacement meter may be adopted. However, it is desirable to use a non-contact type displacement meter.
 変位計241は、測定対象面MSFBの1点までの距離を測定するが、測定対象物210が回転することで、測定対象面MSFBの線D上における変位を測定することになる。線Dは、測定対象面MSFBを回転方向Drotに一周する線である。変位計241は、線D上における変位を示す波形信号SGDを出力する。波形信号SGDは、測定対象面MSFBの線D上の形状誤差による変位と、回転誤差による変位とが混合された信号となっている。変位計241がラディアル方向に移動することで線Dの位置が変化するため、変位計241が測定する変位が変わり、波形信号SGDの波形が変化する。同様に、変位計242~244は、測定対象面MSFBの線E~G上における変位を測定する。変位計242~244は、線E~G上における変位を示す波形信号SGE~SGGを出力する。波形信号SGE~SGGは、測定対象面MSFBの線E~G上の形状誤差による変位と、回転誤差による変位とが混合された信号となっている。 The displacement meter 241 measures the distance to one point of the measurement target surface MSFB, and when the measurement target object 210 rotates, the displacement of the measurement target surface MSFB on the line D is measured. The line D is a line that goes around the measurement target surface MSFB in the rotation direction Drot. The displacement meter 241 outputs a waveform signal SGD indicating the displacement on the line D. The waveform signal SGD is a signal in which the displacement due to the shape error on the line D of the measurement target surface MSFB and the displacement due to the rotation error are mixed. Since the position of the line D changes as the displacement meter 241 moves in the radial direction, the displacement measured by the displacement meter 241 changes, and the waveform of the waveform signal SGD changes. Similarly, the displacement meters 242 to 244 measure the displacement of the measurement target surface MSFB on the lines E to G. The displacement meters 242 to 244 output waveform signals SGE to SGG indicating displacements on the lines E to G. The waveform signals SGE to SGG are signals in which the displacement due to the shape error on the lines E to G of the measurement target surface MSFB and the displacement due to the rotation error are mixed.
 処理装置270は、波形信号SGD~SGGに基づいて測定対象物210の形状誤差と回転精度成分を分離する。処理装置270は、変位計波形読取装置271と類似度定量値取得装置272と誤差分離計算装置273とを含む。回転精度測定の手順は第1~第3構成例と同様であるが、変位計の移動方向がラディアル方向となる。また第4構成例では、ティルト方向及びアキシャル方向の回転精度成分を分離するが、その手法については、例えば「多点法による工作機械回転主軸のアキシャルおよびアンギュラモーションエラーの精密測定に関する研究」精密工学会誌,Vol.67,No.7,2001,p1120-p1124に記載されている。 The processing device 270 separates the shape error and the rotation accuracy component of the measurement object 210 based on the waveform signals SGD to SGG. The processing device 270 includes a displacement meter waveform reading device 271, a similarity quantitative value acquisition device 272, and an error separation calculation device 273. The procedure for measuring the rotation accuracy is the same as that of the first to third configuration examples, but the moving direction of the displacement meter is the radial direction. In the fourth configuration example, the rotation accuracy components in the tilt direction and the axial direction are separated. For the method, for example, "Study on precise measurement of axial and angular motion error of machine tool rotation spindle by multi-point method" Precision Engineering Journal, Vol. 67, No. 7,2001, p1120-p1124.
 図17に、測定対象面MSFBの形状誤差の等高線と、変位計241~244が変位を測定する測定対象面MSFB上の線D~Gを示す。図17の左図は、変位計の位置調整前であり、右図は変位計の位置調整後である。変位計の位置が調整されたことで、ラディアル方向における線D~Gの位置がほぼ一致し、変位計241~244が測定する形状誤差がほぼ同一となる。これにより、回転精度成分を除いて波形信号SGD~SGGの波形がほぼ一致するため、類似性が非常に高い波形信号SGD~SGGが得られる。 FIG. 17 shows contour lines of the shape error of the measurement target surface MSFB and lines D to G on the measurement target surface MSFB on which the displacement meters 241 to 244 measure the displacement. The left figure of FIG. 17 is before the position adjustment of the displacement meter, and the right figure is after the position adjustment of the displacement meter. By adjusting the position of the displacement meter, the positions of the lines D to G in the radial direction are substantially the same, and the shape errors measured by the displacement meters 241 to 244 are substantially the same. As a result, the waveforms of the waveform signals SGD to SGG are almost the same except for the rotation accuracy component, so that the waveform signals SGD to SGG having very high similarity can be obtained.
 5.3次元形状測定装置、及び3次元形状測定方法
 図18は、回転精度測定装置200を含む3次元形状測定装置100の構成例である。3次元形状測定装置100は、被検物110と形状測定用変位計120と位置調整装置130と形状測定データ読取装置275と回転精度測定装置200とを含む。回転精度測定装置200は、第1~第4構成例のいずれであってもよいし、或いはそれらのうち2以上の構成例の組み合わせであってもよい。図18には第1構成例と第4構成例を組み合わせた例を示す。
5. Three-dimensional shape measuring device and three-dimensional shape measuring method FIG. 18 is a configuration example of a three-dimensional shape measuring device 100 including a rotation accuracy measuring device 200. The three-dimensional shape measuring device 100 includes an object 110, a displacement meter 120 for shape measurement, a position adjusting device 130, a shape measuring data reading device 275, and a rotation accuracy measuring device 200. The rotation accuracy measuring device 200 may be any of the first to fourth configuration examples, or may be a combination of two or more of them. FIG. 18 shows an example in which the first configuration example and the fourth configuration example are combined.
 3次元形状測定装置100は、回転走査型形状測定機とも呼ばれ、被検物110の表面変位を回転走査することで被検物110の3次元形状を測定する。被検物110は、レンズ等の光学素子、又は光学素子を成形するための成形型である。但し、被検物110は、中心軸に対して回転対称な物体であればよい。被検物110は、その中心軸が回転軸190と同軸となるように、測定対象物210の上に設置される。 The three-dimensional shape measuring device 100 is also called a rotary scanning type shape measuring machine, and measures the three-dimensional shape of the test object 110 by rotationally scanning the surface displacement of the test object 110. The test object 110 is an optical element such as a lens, or a molding die for molding the optical element. However, the test object 110 may be an object that is rotationally symmetric with respect to the central axis. The test object 110 is installed on the measurement object 210 so that its central axis is coaxial with the rotation axis 190.
 形状測定用変位計120は、非接触型の変位計である。形状測定用変位計120として接触型の変位計を採用してもよいが、非接触型の変位計を採用することが望ましい。非接触型の変位計としては、第1構成例で挙げた種々の変位計を採用できる。 The displacement meter 120 for shape measurement is a non-contact type displacement meter. A contact type displacement meter may be adopted as the shape measurement displacement meter 120, but it is desirable to adopt a non-contact type displacement meter. As the non-contact type displacement meter, various displacement meters mentioned in the first configuration example can be adopted.
 位置調整装置130は、形状測定用変位計120を支持すると共に、形状測定用変位計120の位置を移動させる装置である。位置調整装置130は、例えばx方向に延びる第1支柱と、z方向に延びる第2支柱と、第1支柱に沿って第2支柱をx方向に移動させる第1アクチュエータと、第2支柱と形状測定用変位計120を接続し且つz軸に垂直な回転軸で形状測定用変位計120を回転させる第2アクチュエータと、を含む。また、位置調整装置130は、x方向における形状測定用変位計120の位置を検出する第1エンコーダと、z軸に垂直な回転軸における形状測定用変位計120の回転角度を検出する第2エンコーダと、を含んでもよい。 The position adjusting device 130 is a device that supports the shape measuring displacement meter 120 and moves the position of the shape measuring displacement meter 120. The position adjusting device 130 includes, for example, a first strut extending in the x direction, a second strut extending in the z direction, a first actuator for moving the second strut along the first strut in the x direction, and a second strut. A second actuator for connecting the displacement meter 120 for measurement and rotating the displacement meter 120 for shape measurement on a rotation axis perpendicular to the z-axis is included. Further, the position adjusting device 130 has a first encoder that detects the position of the shape measuring displacement meter 120 in the x direction and a second encoder that detects the rotation angle of the shape measuring displacement meter 120 on the rotation axis perpendicular to the z axis. And may be included.
 回転体280が回転することで、回転軸190を中心に被検物110が回転する。その状態で位置調整装置130が形状測定用変位計120を走査することで、変位の測定点が被検物110の表面をらせん状に走査される。これにより、被検物110の表面の3次元形状が測定される。 By rotating the rotating body 280, the subject 110 rotates around the rotating shaft 190. In this state, the position adjusting device 130 scans the displacement meter 120 for shape measurement, so that the displacement measurement points are spirally scanned on the surface of the test object 110. As a result, the three-dimensional shape of the surface of the test object 110 is measured.
 形状測定データ読取装置275は、形状測定用変位計120が出力する波形信号を読み取る装置である。即ち、形状測定データ読取装置275は、形状測定用変位計120が被検物110の表面をらせん状に走査したときの波形信号を取得し、その波形信号に対して波形成形等の処理を行う。図18には、形状測定データ読取装置275がコントローラとして処理装置270と別に設けられ、そのコントローラがケーブル等により処理装置270に接続される例を示す。但し、形状測定データ読取装置275は処理装置270に含まれてもよい。 The shape measurement data reading device 275 is a device that reads the waveform signal output by the displacement meter 120 for shape measurement. That is, the shape measurement data reader 275 acquires a waveform signal when the shape measurement displacement meter 120 spirally scans the surface of the test object 110, and performs processing such as waveform shaping on the waveform signal. .. FIG. 18 shows an example in which the shape measurement data reading device 275 is provided separately from the processing device 270 as a controller, and the controller is connected to the processing device 270 by a cable or the like. However, the shape measurement data reading device 275 may be included in the processing device 270.
 図19は、3次元形状測定の手順を示すフローチャートである。 FIG. 19 is a flowchart showing the procedure of three-dimensional shape measurement.
 回転精度測定工程S51において、第1~第4構成例で説明した回転精度測定装置200が測定対象物210の回転精度を測定する。形状測定工程S52において、3次元形状測定装置100が被検物110の表面の3次元形状を測定する。回転精度測定工程S51と形状測定工程S52は、測定対象物210及び被検物110を回転させながら、同時に実行される。即ち、回転精度測定装置200は、3次元形状測定装置100の測定動作中における回転精度成分を検出する。 In the rotation accuracy measuring step S51, the rotation accuracy measuring device 200 described in the first to fourth configuration examples measures the rotation accuracy of the object to be measured 210. In the shape measuring step S52, the three-dimensional shape measuring device 100 measures the three-dimensional shape of the surface of the test object 110. The rotation accuracy measuring step S51 and the shape measuring step S52 are executed at the same time while rotating the measurement target object 210 and the test object 110. That is, the rotation accuracy measuring device 200 detects the rotation accuracy component during the measurement operation of the three-dimensional shape measuring device 100.
 校正工程S53において、S51で取得された回転精度成分を用いて、3次元形状測における測定誤差を校正する。具体的には、処理装置270は、S51で取得された回転精度成分を、被検物110の変位測定における回転誤差に変換し、その回転誤差がキャンセルされるように3次元形状測定結果を補正する。より具体的には、処理装置270は、回転軸190の傾きの基点と、その基点から変位計221~223、241~244の測定点までの高さと、基点から形状測定用変位計120の測定点までの高さを、エンコーダの出力等から検出する。処理装置270は、これらのパラメータを用いて、測定対象物210を用いて検出した回転精度成分を、被検物110における回転精度成分に変換する。処理装置270は、形状測定用変位計120から出力される波形信号を、被検物110における回転精度成分をキャンセルするように、補正する。 In the calibration step S53, the measurement error in the three-dimensional shape measurement is calibrated using the rotation accuracy component acquired in S51. Specifically, the processing device 270 converts the rotation accuracy component acquired in S51 into a rotation error in the displacement measurement of the test object 110, and corrects the three-dimensional shape measurement result so that the rotation error is canceled. do. More specifically, the processing apparatus 270 measures the base point of the inclination of the rotating shaft 190, the height from the base point to the measurement points of the displacement meters 221 to 223 and 241 to 244, and the measurement of the displacement meter 120 for shape measurement from the base point. The height to the point is detected from the output of the encoder or the like. The processing apparatus 270 uses these parameters to convert the rotation accuracy component detected by the measurement object 210 into the rotation accuracy component in the test object 110. The processing device 270 corrects the waveform signal output from the shape measuring displacement meter 120 so as to cancel the rotation accuracy component in the test object 110.
 以上に説明した本実施形態の3次元形状測定方法は、形状測定用変位計120を用いて被検物110の3次元形状を測定する形状測定工程S52と、第1~第4構成例に記載された回転精度測定方法により取得される回転精度成分を用いて3次元形状の測定結果を校正する校正工程S53と、を含む。 The three-dimensional shape measuring method of the present embodiment described above is described in the shape measuring step S52 for measuring the three-dimensional shape of the test object 110 using the shape measuring displacement meter 120, and the first to fourth configuration examples. It includes a calibration step S53 for calibrating the measurement result of the three-dimensional shape using the rotation accuracy component obtained by the rotation accuracy measurement method.
 また本実施形態の3次元形状測定装置100は、被検物110の3次元形状を測定するための形状測定用変位計120と、処理装置270と、を含む。処理装置270は、形状測定用変位計120を用いて3次元形状を測定する形状測定処理と、第1~第4構成例に記載された回転精度測定方法により取得される回転精度成分を用いて3次元形状の測定結果を校正する校正処理と、を行う。 Further, the three-dimensional shape measuring device 100 of the present embodiment includes a displacement meter 120 for shape measurement for measuring the three-dimensional shape of the test object 110, and a processing device 270. The processing device 270 uses a shape measurement process for measuring a three-dimensional shape using a shape measurement displacement meter 120 and a rotation accuracy component acquired by the rotation accuracy measurement methods described in the first to fourth configuration examples. A calibration process for calibrating the measurement result of the three-dimensional shape is performed.
 このようにすれば、3次元形状と回転精度成分の測定データを同時または連携させて取得することができる。これにより、回転精度測定装置200によって得られる回転精度成分の測定データを用いて、3次元形状測定装置100によって得られる3次元形状の測定データを高精度に補正することができ、結果、高い精度で被検物の形状測定を行うことができる。 By doing so, it is possible to acquire the measurement data of the three-dimensional shape and the rotation accuracy component at the same time or in cooperation with each other. As a result, the measurement data of the three-dimensional shape obtained by the three-dimensional shape measuring device 100 can be corrected with high accuracy by using the measurement data of the rotation accuracy component obtained by the rotation accuracy measuring device 200, and as a result, the measurement data has high accuracy. The shape of the test object can be measured with.
 また回転精度には、1回転毎に繰り返し再現する「繰り返し回転誤差」と、繰り返し再現しない「非繰り返し回転誤差」、が含まれる。1回転毎に繰り返し再現する「繰り返し回転誤差」は、本実施形態とは別手法によっても見積もることができる。別手法は、例えば、3次元形状測定装置上で、形状が既知の高精度平面及び高精度球面を測定し、形状測定結果に生じる形状測定誤差を評価する手法である。一方、本実施形態で採用する複数の変位計を用いる方式の回転精度測定方法又は回転精度測定装置では、1回転毎に繰り返し再現する「繰り返し回転誤差」だけでなく、再現しない「非繰り返し回転誤差」も含めて、「トータルの回転精度」を測定可能である。 Further, the rotation accuracy includes "repeated rotation error" that is repeatedly reproduced for each rotation and "non-repeated rotation error" that is not repeatedly reproduced. The "repeated rotation error" that is repeatedly reproduced for each rotation can be estimated by a method different from that of the present embodiment. Another method is, for example, a method of measuring a high-precision plane and a high-precision spherical surface having a known shape on a three-dimensional shape measuring device and evaluating a shape measurement error occurring in the shape measurement result. On the other hand, in the rotation accuracy measuring method or the rotation accuracy measuring device of the method using a plurality of displacement meters adopted in this embodiment, not only the "repeated rotation error" that is repeatedly reproduced for each rotation but also the "non-repetitive rotation error" that is not reproduced is not reproduced. It is possible to measure "total rotation accuracy" including "".
 一般に、「繰り返し回転誤差」に対して、「非繰り返し回転誤差」の大きさは、十分小さいので、形状測定誤差から見積もった、「繰り返し回転誤差」と、本実施形態の回転精度測定方法又は回転精度測定装置で測定した「トータルの回転精度」を比較することによって、本実施形態の適用の前後での有効性を説明できる。本実施形態を適用しない場合、形状測定誤差から見積もった「繰り返し回転誤差」に対し、複数の変位計を用いる方式で測定した「トータルの回転精度」が大きく乖離してしまう。これに対し、本実施形態を適用した場合は、形状測定誤差から見積もった「繰り返し回転誤差」と、本実施形態の方式で測定した「トータルの回転精度」が概略一致しており、本実施形態が有効であることが分かる。この点は、図10及び図11で説明した通りである。 In general, the magnitude of the "non-repetitive rotation error" is sufficiently smaller than the "repeated rotation error", so that the "repeated rotation error" estimated from the shape measurement error and the rotation accuracy measuring method or rotation of the present embodiment are used. By comparing the "total rotation accuracy" measured by the accuracy measuring device, the effectiveness before and after the application of this embodiment can be explained. When this embodiment is not applied, the "total rotation accuracy" measured by the method using a plurality of displacement meters greatly deviates from the "repeated rotation error" estimated from the shape measurement error. On the other hand, when the present embodiment is applied, the "repeated rotation error" estimated from the shape measurement error and the "total rotation accuracy" measured by the method of the present embodiment are substantially the same, and the present embodiment Turns out to be valid. This point is as described with reference to FIGS. 10 and 11.
 6.光学機器
 図20は、3次元形状測定装置100を用いて3次元形状の測定を行うことで選ばれた光学素子を搭載する光学機器の例である。図20には光学機器の一例として内視鏡装置300を示すが、光学機器は光学素子を搭載する機器であればよく、例えばスチールカメラ、レンズ交換式カメラの交換レンズ、情報端末に搭載されるカメラユニット、又はビデオカメラ等であってもよい。
6. Optical equipment FIG. 20 is an example of an optical equipment equipped with an optical element selected by measuring a three-dimensional shape using a three-dimensional shape measuring device 100. FIG. 20 shows an endoscope device 300 as an example of an optical device, but the optical device may be a device equipped with an optical element, and is mounted on, for example, a steel camera, an interchangeable lens of an interchangeable lens camera, or an information terminal. It may be a camera unit, a video camera, or the like.
 内視鏡装置300は、内視鏡本体である制御装置に接続されるコネクタ320と、一端がコネクタ320に接続されたユニバーサルケーブル340と、ユニバーサルケーブル340の他端に接続された操作装置330と、一端が操作装置330に接続された挿入部350と、挿入部350の他端に設けられる撮像装置310と、を含む。内視鏡装置300には、照明光を照射する照明レンズ、鉗子等の処置具、又は送水口等が更に設けられてもよい。 The endoscope device 300 includes a connector 320 connected to a control device which is a main body of the endoscope, a universal cable 340 having one end connected to the connector 320, and an operating device 330 connected to the other end of the universal cable 340. Includes an insertion unit 350, one end of which is connected to the operating device 330, and an image pickup device 310 provided at the other end of the insertion unit 350. The endoscope device 300 may be further provided with a lighting lens for irradiating the illumination light, a treatment tool such as forceps, a water supply port, or the like.
 撮像装置310は、被写体を結像する対物レンズと、その結像を撮影するイメージセンサと、を含む。対物レンズは複数のレンズを含むが、そのうちの1以上のレンズが、3次元形状測定装置100を用いて3次元形状の測定を行うことで選ばれた光学素子である。本実施形態では、回転精度成分を高精度に検出できるため、光学素子の3次元形状を高精度に測定できる。その光学素子を用いて光学機器を構成することで、高解像な画像又は映像を撮影できる。 The image pickup apparatus 310 includes an objective lens that forms an image of a subject and an image sensor that captures the image formation. The objective lens includes a plurality of lenses, and one or more of them is an optical element selected by measuring a three-dimensional shape using a three-dimensional shape measuring device 100. In the present embodiment, since the rotation accuracy component can be detected with high accuracy, the three-dimensional shape of the optical element can be measured with high accuracy. By constructing an optical device using the optical element, a high-resolution image or video can be taken.
 以上、本実施形態およびその変形例について説明したが、本開示は、各実施形態やその変形例そのままに限定されるものではなく、実施段階では、要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上記した各実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることができる。例えば、各実施形態や変形例に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態や変形例で説明した構成要素を適宜組み合わせてもよい。このように、本開示の主旨を逸脱しない範囲内において種々の変形や応用が可能である。また、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。 Although the present embodiment and its modifications have been described above, the present disclosure is not limited to each embodiment and its modifications as they are, and at the implementation stage, the components are modified within a range that does not deviate from the gist. Can be embodied. In addition, a plurality of components disclosed in the above-described embodiments and modifications can be appropriately combined. For example, some components may be deleted from all the components described in each embodiment or modification. Further, the components described in different embodiments and modifications may be combined as appropriate. As described above, various modifications and applications are possible without departing from the gist of the present disclosure. Also, in the specification or drawings, a term described at least once with a different term having a broader meaning or a synonym may be replaced with the different term in any part of the specification or the drawing.
100 3次元形状測定装置、110 被検物、120 形状測定用変位計、130 位置調整装置、190 回転軸、192 理想的な回転軸、200 回転精度測定装置、210 測定対象物、221~223 変位計、231~233 位置調整装置、241~244 変位計、251~254 位置調整装置、270 処理装置、271 変位計波形読取装置、272 類似度定量値取得装置、273 誤差分離計算装置、274 変位計位置自動制御装置、275 形状測定データ読取装置、280 回転体、285 ステージ、300 内視鏡装置、310 撮像装置、320 コネクタ、330 操作装置、340 ユニバーサルケーブル、350 挿入部、Drot 回転方向、MSFA,MSFB 測定対象面、RBA,RBC,RCA 類似度、SGA~SGE 波形信号 100 3D shape measuring device, 110 test object, 120 shape measurement displacement meter, 130 position adjustment device, 190 rotation axis, 192 ideal rotation axis, 200 rotation accuracy measurement device, 210 measurement object, 221 to 223 displacement Total, 231 to 233 position adjustment device, 241 to 244 displacement meter, 251 to 254 position adjustment device, 270 processing device, 271 displacement meter waveform reader, 272 similarity quantitative value acquisition device, 273 error separation calculation device, 274 displacement meter Automatic position control device, 275 shape measurement data reader, 280 rotating body, 285 stage, 300 endoscope device, 310 imaging device, 320 connector, 330 operating device, 340 universal cable, 350 insertion part, Dot rotation direction, MSFA, MSFB measurement target surface, RBA, RBC, RCA similarity, SGA to SGE waveform signal

Claims (14)

  1.  複数の変位計を用いて、測定対象物の形状誤差と回転精度成分を分離することで、前記回転精度成分を測定する回転精度測定方法において、
     前記測定対象物を回転させながら、前記複数の変位計を用いて前記複数の変位計と前記測定対象物との距離の変位を測定し、前記変位を示す複数の波形信号を得る第1工程と、
     前記複数の波形信号の間の類似度を定量評価する第2工程と、
     前記類似度が所定値以上になるように、前記複数の変位計に含まれる変位計の位置を調整する第3工程と、
     を含むことを特徴とする回転精度測定方法。
    In the rotation accuracy measurement method for measuring the rotation accuracy component by separating the shape error of the object to be measured and the rotation accuracy component using a plurality of displacement meters.
    The first step of measuring the displacement of the distance between the plurality of displacement meters and the object to be measured using the plurality of displacement meters while rotating the object to be measured, and obtaining a plurality of waveform signals indicating the displacement. ,
    The second step of quantitatively evaluating the similarity between the plurality of waveform signals, and
    The third step of adjusting the positions of the displacement meters included in the plurality of displacement meters so that the similarity becomes equal to or higher than a predetermined value, and
    A method for measuring rotational accuracy, which comprises.
  2.  請求項1において、
     前記第3工程は、
     前記変位計の位置調整による移動量と移動方向に対する、前記類似度の変化傾向に基づいて、前記類似度が前記所定値以上となる前記変位計の位置を推測する類似度最大位置推測工程と、
     前記類似度最大位置推測工程の結果に基づいて前記変位計の位置を修正する変位計位置修正工程と、
     前記類似度が前記所定値以上になるように前記変位計の位置が調整されたか否かを判定する判定工程と、
     を含むことを特徴とする回転精度測定方法。
    In claim 1,
    The third step is
    The maximum similarity position estimation step of estimating the position of the displacement meter whose similarity is equal to or higher than the predetermined value based on the change tendency of the similarity with respect to the movement amount and the movement direction due to the position adjustment of the displacement meter.
    A displacement meter position correction step of correcting the position of the displacement meter based on the result of the similarity maximum position estimation step, and a displacement meter position correction step.
    A determination step for determining whether or not the position of the displacement meter has been adjusted so that the similarity is equal to or higher than the predetermined value.
    A method for measuring rotational accuracy, which comprises.
  3.  請求項1において、
     前記第2工程において、
     前記複数の波形信号のうち第1波形信号の自己相関関数がCA(k)であり、前記複数の波形信号のうち第2波形信号の自己相関関数がCB(k)であり、前記第1波形信号と前記第2波形信号の相互相関関数がCAB(k)であり、kが相関演算におけるずらし量であるとき、
    Figure JPOXMLDOC01-appb-M000001
    で示される相互相関係数RAB(k)を演算することで、前記第1波形信号と前記第2波形信号の位相差と前記類似度の定量値を取得することを特徴とする回転精度測定方法。
    In claim 1,
    In the second step,
    The autocorrelation function of the first waveform signal among the plurality of waveform signals is CA (k), the autocorrelation function of the second waveform signal among the plurality of waveform signals is CB (k), and the first waveform. When the cross-correlation function of the signal and the second waveform signal is CAB (k), and k is the amount of shift in the correlation calculation,
    Figure JPOXMLDOC01-appb-M000001
    A rotation accuracy measuring method characterized in that the phase difference between the first waveform signal and the second waveform signal and the quantitative value of the similarity are obtained by calculating the mutual correlation coefficient RAB (k) shown by. ..
  4.  請求項1において、
     測定対象面を有する前記測定対象物を、回転体の回転軸と同軸上に設置する測定対象物設置工程と、
     前記測定対象物の周囲に前記複数の変位計を配置する変位計設置工程と、
     を含み、
     前記第1工程において、前記測定対象物を前記回転軸上で回転させながら、前記複数の波形信号を取得し、
     前記回転精度成分は、前記測定対象物が設置される前記回転体の回転精度を校正するために用いられる成分であることを特徴とする回転精度測定方法。
    In claim 1,
    The measurement object installation process in which the measurement object having the measurement object surface is installed coaxially with the rotation axis of the rotating body,
    A displacement meter installation process in which the plurality of displacement meters are arranged around the measurement object, and
    Including
    In the first step, the plurality of waveform signals are acquired while rotating the measurement object on the rotation axis.
    The rotation accuracy measuring method, characterized in that the rotation accuracy component is a component used for calibrating the rotation accuracy of the rotating body on which the measurement object is installed.
  5.  請求項4において、
     前記変位計設置工程において、
     前記回転体の回転方向に沿って、互いに異なる設置角度で前記複数の変位計を設置し、
     前記第1工程において、
     前記測定対象物を回転させながら前記複数の波形信号を取得し、
     前記第2工程において、
     前記設置角度の違いで生じる前記複数の波形信号の間の位相差と、前記位相差が補正された前記複数の波形信号の間の類似度の定量値とを求めることで、前記類似度を定量評価することを特徴とする回転精度測定方法。
    In claim 4,
    In the displacement meter installation process,
    The plurality of displacement meters are installed at different installation angles along the rotation direction of the rotating body.
    In the first step,
    Acquiring the plurality of waveform signals while rotating the measurement object,
    In the second step,
    The degree of similarity is quantified by obtaining the phase difference between the plurality of waveform signals caused by the difference in the installation angle and the quantitative value of the degree of similarity between the plurality of waveform signals corrected for the phase difference. A rotation accuracy measuring method characterized by evaluation.
  6.  請求項4において、
     前記複数の波形信号から前記形状誤差と前記回転精度成分を分離する誤差分離計算を行なう第4工程を含み、
     前記第4工程において、
     前記第3工程において前記類似度が前記所定値以上になるように調整された前記変位計の位置で取得された前記複数の波形信号を用いて、前記誤差分離計算を行うことを特徴とする回転精度測定方法。
    In claim 4,
    A fourth step of performing an error separation calculation for separating the shape error and the rotation accuracy component from the plurality of waveform signals is included.
    In the fourth step,
    Rotation characterized in that the error separation calculation is performed using the plurality of waveform signals acquired at the positions of the displacement meters adjusted so that the similarity is equal to or higher than the predetermined value in the third step. Accuracy measurement method.
  7.  請求項4において、
     前記第3工程は、
     前記複数の変位計の中から、位置調整の基準となる基準変位計を定める基準変位計設定工程と、
     前記基準変位計とは異なる前記変位計を、前記測定対象物の回転軸方向又は前記回転軸に対するラディアル方向における複数の位置に動かし、前記複数の位置の各位置において前記複数の波形信号を取得し、前記基準変位計により得られた波形信号と前記変位計により得られた波形信号との、前記各位置における前記類似度を求める変位計位置情報取得工程と、
     前記複数の位置に対応して得られた複数の前記類似度に基づいて、前記所定値以上である前記類似度が得られる前記変位計の位置を推測する類似度最大位置推測工程と、
     前記類似度最大位置推測工程において推測された位置に前記変位計を移動させる変位計位置修正工程と、
     を含むことを特徴とする回転精度測定方法。
    In claim 4,
    The third step is
    From the plurality of displacement meters, a reference displacement meter setting process for determining a reference displacement meter as a reference for position adjustment, and
    The displacement meter different from the reference displacement meter is moved to a plurality of positions in the rotation axis direction of the measurement object or the radial direction with respect to the rotation axis, and the plurality of waveform signals are acquired at each position of the plurality of positions. , A displacement meter position information acquisition step for obtaining the similarity between the waveform signal obtained by the reference displacement meter and the waveform signal obtained by the displacement meter at each position.
    A similarity maximum position estimation step of estimating the position of the displacement meter from which the similarity of the predetermined value or more is obtained based on the plurality of similarity obtained corresponding to the plurality of positions.
    A displacement meter position correction step of moving the displacement meter to the position estimated in the similarity maximum position estimation step, and a displacement meter position correction step.
    A method for measuring rotational accuracy, which comprises.
  8.  請求項1において、
     前記形状誤差に起因する変位は、前記回転精度成分に起因する変位の4倍以上200倍以下であることを特徴とする回転精度測定方法。
    In claim 1,
    A rotation accuracy measuring method, characterized in that the displacement caused by the shape error is 4 times or more and 200 times or less the displacement caused by the rotation accuracy component.
  9.  複数の変位計と、
     前記複数の変位計を用いて、測定対象物の形状誤差と回転精度成分を分離することで、前記回転精度成分を測定する処理装置と、
     を含み、
     前記処理装置は、
     前記測定対象物を回転させながら、前記複数の変位計を用いて前記複数の変位計と前記測定対象物との距離の変位を測定し、前記変位を示す複数の波形信号を取得する第1処理と、
     前記複数の波形信号の間の類似度を定量評価する第2処理と、
     前記類似度が所定値以上となるように前記複数の変位計の位置が調整されたときの前記複数の波形信号を取得する第3処理と、
     を行うことを特徴とする回転精度測定装置。
    With multiple displacement meters,
    A processing device that measures the rotation accuracy component by separating the shape error of the object to be measured and the rotation accuracy component using the plurality of displacement meters.
    Including
    The processing device is
    The first process of measuring the displacement of the distance between the plurality of displacement meters and the object to be measured by using the plurality of displacement meters while rotating the object to be measured, and acquiring a plurality of waveform signals indicating the displacement. When,
    The second process of quantitatively evaluating the similarity between the plurality of waveform signals, and
    A third process of acquiring the plurality of waveform signals when the positions of the plurality of displacement meters are adjusted so that the similarity becomes equal to or higher than a predetermined value.
    A rotation accuracy measuring device characterized by performing.
  10.  請求項9において、
     前記処理装置は、
     前記第3処理において、
     前記複数の変位計に含まれる変位計の位置調整による移動量と移動方向に対する、前記類似度の変化傾向に基づいて、前記類似度が前記所定値以上となる前記変位計の位置を推測する類似度最大位置推測処理と、
     前記類似度最大位置推測処理の結果に基づいて前記変位計の位置を修正する変位計位置修正処理と、
     前記類似度が前記所定値以上になるように前記変位計の位置が調整されたか否かを判定する判定処理と、
     を行うことを特徴とする回転精度測定装置。
    In claim 9.
    The processing device is
    In the third process,
    Similarity in which the position of the displacement meter whose similarity is equal to or higher than the predetermined value is estimated based on the change tendency of the similarity with respect to the movement amount and the movement direction of the displacement gauges included in the plurality of displacement meters. Maximum position estimation process and
    Displacement meter position correction processing that corrects the position of the displacement meter based on the result of the similarity maximum position estimation processing, and
    Judgment processing for determining whether or not the position of the displacement meter has been adjusted so that the similarity is equal to or higher than the predetermined value.
    A rotation accuracy measuring device characterized by performing.
  11.  請求項9において、
     前記処理装置は、
     前記第2処理において、
     前記複数の波形信号のうち第1波形信号の自己相関関数がCA(k)であり、前記複数の波形信号のうち第2波形信号の自己相関関数がCB(k)であり、前記第1波形信号と前記第2波形信号の相互相関関数がCAB(k)であり、kが相関演算におけるずらし量であるとき、
    Figure JPOXMLDOC01-appb-M000002
    で示される相互相関係数RAB(k)を演算することで、前記第1波形信号と前記第2波形信号の位相差と類似度の定量値を取得することを特徴とする回転精度測定装置。
    In claim 9.
    The processing device is
    In the second process,
    The autocorrelation function of the first waveform signal among the plurality of waveform signals is CA (k), the autocorrelation function of the second waveform signal among the plurality of waveform signals is CB (k), and the first waveform. When the cross-correlation function of the signal and the second waveform signal is CAB (k), and k is the amount of shift in the correlation calculation,
    Figure JPOXMLDOC01-appb-M000002
    A rotation accuracy measuring device, characterized in that a quantitative value of a phase difference and a degree of similarity between the first waveform signal and the second waveform signal is obtained by calculating the mutual correlation coefficient RAB (k) shown by.
  12.  被検物の3次元形状を測定する3次元形状測定方法において、
     形状測定用変位計を用いて前記被検物の前記3次元形状を測定する形状測定工程と、
     請求項1に記載された回転精度測定方法により取得される前記回転精度成分を用いて、前記3次元形状の測定結果を校正する校正工程と、
     を含むことを特徴とする3次元形状測定方法。
    In the three-dimensional shape measuring method for measuring the three-dimensional shape of a test object,
    A shape measurement step of measuring the three-dimensional shape of the test object using a displacement meter for shape measurement, and a shape measurement step.
    A calibration step of calibrating the measurement result of the three-dimensional shape using the rotation accuracy component obtained by the rotation accuracy measurement method according to claim 1.
    A three-dimensional shape measuring method comprising.
  13.  被検物の3次元形状を測定する3次元形状測定装置において、
     前記被検物の前記3次元形状を測定するための形状測定用変位計と、
     処理装置と、
     を含み、
     前記処理装置は、
     前記形状測定用変位計を用いて前記3次元形状を測定する形状測定処理と、
     請求項9に記載された回転精度測定装置により取得される前記回転精度成分を用いて、前記3次元形状の測定結果を校正する校正処理と、
     を行うことを特徴とする3次元形状測定装置。
    In a three-dimensional shape measuring device that measures the three-dimensional shape of a test object
    A displacement meter for shape measurement for measuring the three-dimensional shape of the test object,
    With the processing equipment
    Including
    The processing device is
    The shape measurement process for measuring the three-dimensional shape using the shape measurement displacement meter, and
    A calibration process for calibrating the measurement result of the three-dimensional shape using the rotation accuracy component acquired by the rotation accuracy measuring device according to claim 9.
    A three-dimensional shape measuring device characterized by performing.
  14.  請求項13に記載の3次元形状測定装置を用いて前記3次元形状の測定を行うことで選ばれた光学素子を搭載することを特徴とする光学機器。 An optical device characterized by mounting an optical element selected by measuring the three-dimensional shape using the three-dimensional shape measuring device according to claim 13.
PCT/JP2020/021065 2020-05-28 2020-05-28 Rotation accuracy measurement method, rotation accuracy measurement device, three-dimensional shape measurement method, three-dimensional shape measurement device, and optical device WO2021240711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021065 WO2021240711A1 (en) 2020-05-28 2020-05-28 Rotation accuracy measurement method, rotation accuracy measurement device, three-dimensional shape measurement method, three-dimensional shape measurement device, and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021065 WO2021240711A1 (en) 2020-05-28 2020-05-28 Rotation accuracy measurement method, rotation accuracy measurement device, three-dimensional shape measurement method, three-dimensional shape measurement device, and optical device

Publications (1)

Publication Number Publication Date
WO2021240711A1 true WO2021240711A1 (en) 2021-12-02

Family

ID=78723123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021065 WO2021240711A1 (en) 2020-05-28 2020-05-28 Rotation accuracy measurement method, rotation accuracy measurement device, three-dimensional shape measurement method, three-dimensional shape measurement device, and optical device

Country Status (1)

Country Link
WO (1) WO2021240711A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326344A (en) * 2004-05-17 2005-11-24 Olympus Corp Three-dimensional shape measuring method
JP2007086034A (en) * 2005-09-26 2007-04-05 Keio Gijuku Method for measuring rotational accuracy
JP2008158855A (en) * 2006-12-25 2008-07-10 Oki Electric Ind Co Ltd Correlation computing element and correlation computing method
JP2015184079A (en) * 2014-03-21 2015-10-22 日本精工株式会社 Apparatus and method for shape measurement
JP2018165688A (en) * 2017-03-28 2018-10-25 株式会社東京精密 Shape measurement device and shape measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326344A (en) * 2004-05-17 2005-11-24 Olympus Corp Three-dimensional shape measuring method
JP2007086034A (en) * 2005-09-26 2007-04-05 Keio Gijuku Method for measuring rotational accuracy
JP2008158855A (en) * 2006-12-25 2008-07-10 Oki Electric Ind Co Ltd Correlation computing element and correlation computing method
JP2015184079A (en) * 2014-03-21 2015-10-22 日本精工株式会社 Apparatus and method for shape measurement
JP2018165688A (en) * 2017-03-28 2018-10-25 株式会社東京精密 Shape measurement device and shape measurement method

Similar Documents

Publication Publication Date Title
JP3511450B2 (en) Position calibration method for optical measuring device
JP4418841B2 (en) Working device and calibration method thereof
JP4825598B2 (en) Calibration method for image measuring device
KR101629545B1 (en) Shape measuring device, shape measuring method, structure manufacturing method, and program
WO2007018118A1 (en) Method for measuring decentralization of optical axis on the front and the rear surface of lens
JP3678915B2 (en) Non-contact 3D measuring device
WO2009024758A1 (en) Non-contact probe
US9372079B1 (en) Optical plate for calibration of coordinate measuring machines
US20090141131A1 (en) Calibrating method of image measuring instrument
JP5001521B2 (en) Tool shape measuring device
JP5383853B2 (en) Tool shape measuring apparatus and tool shape measuring method
JP4695374B2 (en) Surface scanning measuring device and scanning probe correction table creation method
JP7353757B2 (en) Methods for measuring artifacts
JP3678916B2 (en) Non-contact 3D measurement method
WO2021240711A1 (en) Rotation accuracy measurement method, rotation accuracy measurement device, three-dimensional shape measurement method, three-dimensional shape measurement device, and optical device
US20210156669A1 (en) Measuring Device for Examining a Specimen and Method for Determining a Topographic Map of a Specimen
KR101738257B1 (en) Probe alignment measurement method for probe rotary type atomic force microscope
JP6203502B2 (en) Structure and method for positioning a machining tool relative to a workpiece
CN113670280B (en) Verticality measuring device and measuring method
JPH11351840A (en) Noncontact type three-dimensional measuring method
JP6565367B2 (en) Position correction system
US7277818B2 (en) Method and program for leveling aspherical workpieces
JP5483554B2 (en) Tool coordinate system calibration apparatus and calibration method
JP4274868B2 (en) Height measurement method
JP2005090962A (en) Measuring method and measuring device of optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP