WO2021240605A1 - Two-stage single-screw compressor, and refrigeration and air-conditioning device - Google Patents

Two-stage single-screw compressor, and refrigeration and air-conditioning device Download PDF

Info

Publication number
WO2021240605A1
WO2021240605A1 PCT/JP2020/020556 JP2020020556W WO2021240605A1 WO 2021240605 A1 WO2021240605 A1 WO 2021240605A1 JP 2020020556 W JP2020020556 W JP 2020020556W WO 2021240605 A1 WO2021240605 A1 WO 2021240605A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
compression
rotor
refrigerant
injection port
Prior art date
Application number
PCT/JP2020/020556
Other languages
French (fr)
Japanese (ja)
Inventor
慎 栗田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/020556 priority Critical patent/WO2021240605A1/en
Publication of WO2021240605A1 publication Critical patent/WO2021240605A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing

Definitions

  • the present disclosure relates to a two-stage single-screw compressor for refrigerating and air-conditioning, and a refrigerating and air-conditioning device equipped with a two-stage single-screw compressor.
  • a single screw compressor having a configuration in which a screw rotor and a gate rotor are housed in a casing is known.
  • the low-temperature low-pressure gas refrigerant sucked into the single-screw compressor is compressed in the compression chamber, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the single-screw compressor. If the compression process of the refrigerant in the compression chamber is continued during the operation of the single screw compressor, the temperature of the refrigerant in the compression chamber rises. Therefore, the temperature of the inner peripheral surface of the screw rotor and the casing also rises, and the screw rotor and the casing thermally expand.
  • a two-stage single screw compressor is known as a type of single screw compressor.
  • the two-stage single-screw compressor compresses the refrigerant to a high compression ratio with a multi-stage compression unit.
  • the first-stage compression section compresses the refrigerant from the suction pressure to the intermediate pressure
  • the second-stage compression section compresses the refrigerant from the intermediate pressure to the discharge pressure.
  • a twin gate rotor method is a method in which two gate rotors are fitted to a screw rotor.
  • twin gate rotor type compression unit two gate rotors are arranged at symmetrical positions across the rotation axis of the screw rotor, and two compression chambers are formed at symmetrical positions across the rotation axis of the screw rotor.
  • the monogate rotor method is a method in which one gate rotor is fitted to a screw rotor.
  • one compression chamber is formed according to the position of the gate rotor.
  • the first-stage screw rotor and the second-stage screw rotor are provided in series with the rotating shaft.
  • the internal pressure differs between the side where the gate rotor is provided across the rotating shaft and the side where the gate rotor is not provided.
  • the space on the side where the gate rotor is not provided is the atmosphere of the intermediate pressure refrigerant gas discharged from the compression section of the first stage, and the internal pressure of the space on the side where the gate rotor is provided forms a compression chamber. This is because the discharge pressure has risen. Therefore, in the second stage compression section, the differential pressure between the intermediate pressure and the discharge pressure acts on the rotary shaft, and the gas load due to the differential pressure may cause the rotary shaft to bend to the side where the gate rotor is not provided. ..
  • the deformation of the rotating shaft in the second stage compression portion may become more remarkable. Since the screw rotor of the first-stage compression part and the screw rotor of the second-stage compression part are provided in series with the rotation shaft, the deformation of the rotation shaft that occurs in the second-stage compression part is the compression of the first stage. It also affects the department. That is, when the rotation axis is deformed, the internal spaces of the two compression chambers of the first-stage compression section become non-uniform, and the transition of the internal pressures of the two compression chambers becomes different. There is a possibility that a load will be applied in the radial direction.
  • Patent Document 1 when the configuration of the compressor described in Patent Document 1 is adopted for the first-stage compression unit, the injection mechanism of Patent Document 1 is not configured to execute the injection process in consideration of the deformation of the rotating shaft. Deformation of the rotating shaft cannot be suppressed.
  • the present disclosure has been made against the background of the above-mentioned problems, and is a two-stage single-screw compressor with improved reliability by suppressing deformation of the rotating shaft and reducing the load on the bearing of the rotating shaft. And a refrigerating air conditioner equipped with a two-stage single screw compressor.
  • the two-stage single screw compressor includes a first compression unit that compresses the refrigerant, a second compression unit that further compresses the refrigerant compressed by the first compression unit, the first compression unit, and the first compression unit.
  • a two-stage single-screw compressor having the first compression portion, the first screw rotor attached to the rotating shaft and having a spiral groove formed therein, so as to be fitted with the spiral groove of the first screw rotor.
  • a first compression chamber is formed by the spiral groove of the first gate rotor and the first screw rotor, and the spiral groove of the second gate rotor and the first screw rotor is arranged so as to face each other with a shaft interposed therebetween.
  • a second compression chamber is formed by the above, and at least one first injection port that opens into the first compression chamber and injects the refrigerant, and at least one that opens into the second compression chamber and injects the refrigerant.
  • a second injection port is formed, and the second compression portion is provided so as to be fitted to the spiral groove of the second screw rotor and the second screw rotor which is attached to the rotating shaft and has a spiral groove formed therein.
  • a third compression chamber is formed by the third gate rotor and the spiral groove of the second screw rotor, and the second compression chamber and the third compression chamber are formed. It is formed inside the casing on the same side with respect to the rotation axis, and the total opening area of the first injection port is larger than the total opening area of the second injection port.
  • the total opening area of the second injection port of the second compression chamber formed on the same side as the side where the third compression chamber of the second compression portion is formed with respect to the rotation shaft is the rotation shaft.
  • it is larger than the total opening area of the first injection port of the first compression chamber formed on the side different from the side where the third compression chamber is formed. That is, the amount of the refrigerant injected into the first compression chamber is larger than the amount of the refrigerant injected into the second compression chamber. Therefore, it is possible to cancel the load on the rotating shaft from the radial direction from the second compression chamber to the first compression chamber, which is generated in the first compression portion due to the deformation of the rotating shaft generated in the second compression portion. can. As a result, deformation of the rotating shaft is suppressed, the load on the bearing of the rotating shaft is reduced, the life of the bearing can be shortened, and the reliability of the two-stage single screw compressor can be improved. .
  • FIG. 1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus provided with a single-screw compressor according to an embodiment of the present disclosure.
  • a refrigerant circuit 200 is formed in the refrigerating and air-conditioning device 100.
  • the refrigerant circuit 200 has a configuration in which a single screw compressor 10, an evaporator 201, a liquid reservoir (not shown), an expansion valve 202, a condenser 203, and the like are connected by a refrigerant pipe to form a closed loop.
  • the single screw compressor 10 compresses and discharges the refrigerant, and is a two-stage single screw compressor as described later.
  • the refrigerant discharged from the single screw compressor 10 is condensed by the condenser 203, depressurized by the expansion valve 202, and evaporated by the evaporator 201.
  • R410 refrigerant which is a high-pressure refrigerant, is used.
  • An injection tube 204 is provided between the expansion valve 202 and the condenser 203.
  • the injection pipe 204 branches from the pipe connecting the expansion valve 202 and the condenser 203, and is connected to the single screw compressor 10.
  • the liquid refrigerant is injected into the single screw compressor 10 via the injection pipe 204.
  • FIG. 2 is a schematic cross-sectional view of the single screw compressor according to the embodiment of the present disclosure.
  • the single screw compressor 10 of the first embodiment has a cylindrical casing 11.
  • the single screw compressor 10 has a compression unit 20 housed in a casing 11, an electric motor 50, and a rotating shaft 60.
  • the rotating shaft 60 is provided on the central shaft portion of the casing 11, and one end thereof is supported by a bearing (not shown).
  • a motor rotor 51 of the motor 50 is provided at one end of the rotating shaft 60.
  • the motor rotor 51 is rotated by the drive of the electric motor 50, and the rotation shaft 60 is rotated by the rotation of the motor rotor 51.
  • the electric motor 50 can have a variable speed by using an inverter (not shown).
  • the compression unit 20 is divided into a first compression unit 20A and a second compression unit 20B inside the casing 11. That is, the single screw compressor 10 is a two-stage single screw compressor.
  • the rotating shaft 60 inserts the first compression unit 20A and the second compression unit 20B.
  • the first compression unit 20A is the first stage in the two-stage single screw compressor, and is on the lower stage side.
  • the second compression unit 20B is the second stage in the two-stage single screw compressor, and is on the higher stage side.
  • the first compression unit 20A is configured by a twin gate rotor system
  • the second compression unit 20B is configured by a monogate rotor system.
  • FIG. 3 is a cross-sectional view of the first compression portion of the single screw compressor according to the embodiment of the present disclosure.
  • FIG. 3 cuts the single screw compressor 10 at the position of lines AA of FIG. 2 and is shown from the left side of FIG.
  • the first compression unit 20A will be described with reference to FIGS. 2 and 3.
  • the first compression unit 20A includes a first screw rotor 30, a first gate rotor 31, and a second gate rotor 32.
  • the first screw rotor 30, the first gate rotor 31, and the second gate rotor 32 are provided inside a cylindrical cylinder 205 (see FIG. 5) provided in the casing 11.
  • the first gate rotor 31 and the second gate rotor 32 are fitted to the first screw rotor 30.
  • the first screw rotor 30 is attached to the rotating shaft 60.
  • a screw groove 30A which is a plurality of spiral grooves, is formed on the outer peripheral surface of the first screw rotor 30.
  • the first gate rotor 31 and the screw groove 30A mesh with each other, and the first compression chamber 33 is formed in the space between the inner wall of the casing 11.
  • the second gate rotor 32 and the screw groove 30A mesh with each other, and the second compression chamber 34 is formed in the space between the inner wall of the casing 11.
  • the first screw rotor 30 rotates with the rotation of the rotary shaft 60, the volume of the first compression chamber 33 is reduced, the working refrigerant is compressed, and the first screw rotor 30 rotates with the rotation of the rotary shaft 60. 2
  • the volume of the compression chamber 34 is reduced, and the working refrigerant is compressed.
  • the first slide valve 35 adjusts the internal volume ratio of the first compression chamber 33.
  • the second slide valve 36 adjusts the internal volume ratio of the second compression chamber 34.
  • the first slide valve 35 and the second slide valve 36 are configured to be driven along the rotation shaft 60 by a slide mechanism (not shown). In FIG. 2, the first slide valve 35 and the second slide valve 36 are omitted.
  • FIG. 4 is a cross-sectional view of a second compression portion of the single screw compressor according to the embodiment of the present disclosure.
  • FIG. 4 cuts the single screw compressor 10 at the position of line BB in FIG. 2 and is shown from the left side of FIG.
  • the second compression unit 20B will be described with reference to FIGS. 2 and 4.
  • the second compression unit 20B has a second screw rotor 40 and a third gate rotor 41.
  • a third gate rotor 41 is fitted to the second screw rotor 40.
  • a screw groove 40A which is a plurality of spiral grooves, is formed on the outer peripheral surface of the second screw rotor 40.
  • the third gate rotor 41 and the screw groove 40A mesh with each other, and the third compression chamber 43 is formed in the space between the inner wall of the casing 11.
  • the second screw rotor 40 rotates, the volume of the third compression chamber 43 is reduced, and the working refrigerant is compressed.
  • the third slide valve 44 adjusts the internal volume ratio of the third compression chamber 43.
  • the third slide valve 44 is configured to be driven along the rotation shaft 60 by a slide mechanism (not shown). In FIG. 2, the third slide valve 44 is omitted.
  • the first gate rotor 31 is arranged below the rotating shaft 60
  • the second gate rotor 32 is arranged above the rotating shaft 60
  • the third gate rotor 41 is arranged above the rotating shaft 60. It is located above 60. That is, inside the casing 11, the third gate rotor 41 is arranged on the side where the second gate rotor 32 is arranged with respect to the rotating shaft 60.
  • the third compression chamber 43 is formed on the same side as the side on which the second compression chamber 34 is formed with respect to the rotating shaft 60.
  • the first compression chamber 33 and the second compression chamber 34 are formed so as to face each other at positions symmetrical with each other by 180 degrees with the rotation axis 60 interposed therebetween. Therefore, since the first compression chamber 33 and the second compression chamber 34 face each other at a position of 180 degrees with respect to the rotation shaft 60, there is an advantage that the gas load of the refrigerant acting in the radial direction with respect to the rotation shaft 60 can be reduced. be.
  • FIG. 5 is a diagram conceptually showing the injection port of the single screw compressor according to the embodiment of the present disclosure.
  • FIG. 5A shows a second injection port 38 that opens into the second compression chamber 34.
  • FIG. 5B shows a first injection port 37 that opens into the first compression chamber 33.
  • the injection pipe 204 shown in FIG. 1 is connected to the side surface of the casing 11.
  • a second refrigerant passage 207 communicating the injection pipe 204 and the second compression chamber 34 is formed in the cylinder 205.
  • the end of the second refrigerant passage 207 is the second injection port 38.
  • a first refrigerant passage 206 communicating the injection pipe 204 and the first compression chamber 33 is formed in the cylinder 205 described above.
  • the end of the first refrigerant passage 206 is the first injection port 37.
  • the first injection port 37 is formed so that the cross-sectional shape cut along the plane orthogonal to the flow direction of the refrigerant in the first refrigerant passage 206 is circular. Further, the second injection port 38 is formed so that the cross-sectional shape cut along the plane orthogonal to the flow direction of the refrigerant in the second refrigerant passage 207 is circular. Then, as shown in FIGS. 5A and 5B, the diameter ⁇ D1 of the second injection port 38 is smaller than the diameter ⁇ D2 of the first injection port 37.
  • the electric motor 50 for driving the single screw compressor 10 is activated by receiving a signal from an inverter (not shown).
  • the drive of the single screw compressor 10 is started by starting the electric motor 50, the operating refrigerant circulating in the refrigerant circuit 200 is sucked into the first compression chamber 33 and the second compression chamber 34 of the first compression unit 20A.
  • the suction of the operating refrigerant into the first compression chamber 33 and the second compression chamber 34 is completed at the same timing, and the refrigerant having substantially the same mass is sucked into the first compression chamber 33 and the second compression chamber 34.
  • the volumes of the first compression chamber 33 and the second compression chamber 34 are reduced by the rotation of the first screw rotor 30 due to the rotation of the rotating shaft 60, and the internal pressure is increased.
  • the timing at which the operating refrigerant is discharged from the first compression chamber 33 is adjusted by changing the axial position of the first screw rotor 30 of the first slide valve 35.
  • the timing at which the operating refrigerant is discharged from the second compression chamber 34 is adjusted by changing the axial position of the first screw rotor 30 of the second slide valve 36.
  • the liquid refrigerant guided from the injection pipe 204 passes through the first injection port 37 and the second injection port 38, and the first compression chamber 33 and the second are used. It is injected into the compression chamber 34.
  • the diameter of the second injection port 38 opened in the second compression chamber 34 is larger than the diameter of the first injection port 37 opened in the first compression chamber 33.
  • the amount of the liquid refrigerant injected into the second compression chamber 34 is larger than the amount of the refrigerant injected into the first compression chamber 33. That is, when the liquid refrigerant is injected, the second compression chamber 34 acts to allow more liquid refrigerant to flow in than the first compression chamber 33.
  • the operating refrigerant discharged from the first compression chamber 33 and the second compression chamber 34 is sucked into the third compression chamber 43 of the second compression unit 20B.
  • the operating refrigerant sucked into the third compression chamber 43 is further compressed in the third compression chamber 43, discharged to the refrigerant circuit 200 shown in FIG. 1, and circulates in the refrigerant circuit 200.
  • FIG. 6 is a diagram showing pressure transitions between the first compression chamber and the second compression chamber of the first compression portion of the single screw compressor of the comparative example.
  • FIG. 7 is a diagram showing pressure transitions between the first compression chamber and the second compression chamber of the first compression portion of the single screw compressor according to the embodiment of the present disclosure.
  • the horizontal axis is the volume of the compression chamber, and the vertical axis is the pressure in the compression chamber.
  • the second compression section 20B of the single screw compressor 10 is a monogate rotor system, and an intermediate pressure operating refrigerant is sucked into the third compression chamber 43 from the first compression section 20A.
  • the lower side of the rotating shaft 60 of the second compression unit 20B is a refrigerant atmosphere with an intermediate pressure. Therefore, a pressure difference is generated between the upper side and the lower side of the rotary shaft 60, and the load of the gas refrigerant due to this differential pressure, that is, the gas load is applied in the radial direction from the upper side of the rotary shaft 60. As a result, the rotating shaft 60 bends downward and deforms.
  • a refrigerant having a high saturation pressure for example, R410A
  • the rotating shaft 60 is also deformed in the first compression portion 20A on the lower stage side due to the gas load acting on the rotating shaft 60 from the radial direction in the second compression portion 20B on the higher stage side.
  • first compression unit 20A two first compression chambers 33 and a second compression chamber 34 are formed in the vertical direction with the rotation shaft 60 interposed therebetween.
  • the gap between the first screw rotor 30 and the casing 11 in the first compression chamber 33 above the rotary shaft 60 is expanded, and the second compression chamber below the rotary shaft 60 is expanded.
  • the gap between the first screw rotor 30 and the casing 11 in 34 is reduced. Since the internal leakage of the refrigerant increases in the first compression chamber 33 in which the gap is expanded as in the second compression chamber 34 in which the gap is reduced, the internal pressure of the first compression chamber 33 is higher than the internal pressure of the second compression chamber 34.
  • the inflow amount of the liquid refrigerant flowing into the first compression chamber 33 and the second compression chamber 34 is the same.
  • the internal pressure of the second compression chamber 34 in which the gap is expanded is higher than the internal pressure of the first compression chamber 33 in which the gap is reduced. It will change with pressure. That is, as shown in FIG. 5, the acupressure diagram of the second compression chamber 34 in which the above-mentioned gap is expanded has a shape bulging more than the acupressure diagram of the first compression chamber 33 in which the above-mentioned gap is reduced. Will be shown.
  • the gas load applied in the radial direction from above to the rotary shaft 60 is maintained, the rotary shaft 60 remains deformed downward, and the bearing of the rotary shaft 60 may deteriorate.
  • the diameter of the first injection port 37 is set to be larger than the diameter of the second injection port 38. Therefore, according to the present embodiment, the inflow amount of the liquid refrigerant flowing into the first compression chamber 33 below the rotary shaft 60 is the inflow amount of the liquid refrigerant flowing into the second compression chamber 34 above the rotary shaft 60. Can be larger than. Therefore, since the density in the first compression chamber 33 rises as compared with the second compression chamber 34 and the pressure rises, the transition of the internal pressure in the first compression chamber 33 is brought closer to the transition of the internal pressure in the second compression chamber 34. Can be done. That is, as shown in FIG.
  • the acupressure diagram of the first compression chamber 33 can be brought closer to the acupressure diagram of the second compression chamber 34.
  • the gas load on the rotating shaft 60 from the radial direction from the second compression chamber 34 to the first compression chamber 33 is cancelled. Therefore, the downward deformation of the rotating shaft 60 is suppressed, the load on the bearing is reduced, and the life of the bearing can be shortened. That is, according to the present embodiment, the reliability of the two-stage single screw compressor can be improved.
  • one first injection port 37 is formed in the first compression chamber 33, and one second injection port 38 is formed in the second compression chamber 34, but the number of injection ports is limited to this. is not it.
  • a plurality of injection ports may be formed in both or one of the first compression chamber 33 and the second compression chamber 34.
  • the total opening area of the injection ports formed in the first compression chamber 33 that is, the total opening area is set to be larger than the total opening area of the injection ports formed in the second compression chamber 34.

Abstract

A two-stage single-screw compressor having: a second compression unit for further compressing a refrigerant compressed by a first compression unit; and a rotary shaft inserted into the first compression unit and the second compression unit, and provided with a first screw rotor and a second screw rotor. In the first compression unit, a first compression chamber is formed by a helical structure of a first gate rotor and the first screw rotor, and a second compression chamber is formed by a helical structure of a second gate rotor and the first screw rotor. The first gate rotor and the second gate rotor are arranged facing one another with the rotary shaft therebetween. A first injection port and a second injection port through which a refrigerant is injected are formed respectively opening into the first compression chamber and the second compression chamber. In the second compression unit, a third compression chamber is formed by a helical structure of a third gate rotor and the second screw rotor. The second compression chamber and the third compression chamber are formed on the same side relative to the rotary shaft. The total opening area of the first injection port is larger than the total opening area of the second injection port.

Description

二段シングルスクリュー圧縮機及び冷凍空調装置Two-stage single screw compressor and refrigerating air conditioner
 本開示は、冷凍空調用の二段シングルスクリュー圧縮機、及び二段シングルスクリュー圧縮機を備えた冷凍空調装置に関する。 The present disclosure relates to a two-stage single-screw compressor for refrigerating and air-conditioning, and a refrigerating and air-conditioning device equipped with a two-stage single-screw compressor.
 従来、冷凍空調システムで循環する冷媒を圧縮する圧縮機として、スクリューロータとゲートロータとがケーシングに収容された構成を有するシングルスクリュー圧縮機が知られている。シングルスクリュー圧縮機に吸入される低温低圧のガス冷媒は、圧縮室で圧縮され、高温高圧のガス冷媒となってシングルスクリュー圧縮機から吐出される。シングルスクリュー圧縮機の運転中、圧縮室での冷媒の圧縮処理が継続されると、圧縮室内の冷媒温度は上昇する。そのため、スクリューロータ及びケーシングの内周面の温度も上昇し、スクリューロータ及びケーシングは熱膨張する。 Conventionally, as a compressor that compresses the refrigerant circulated in the refrigerating and air-conditioning system, a single screw compressor having a configuration in which a screw rotor and a gate rotor are housed in a casing is known. The low-temperature low-pressure gas refrigerant sucked into the single-screw compressor is compressed in the compression chamber, becomes a high-temperature and high-pressure gas refrigerant, and is discharged from the single-screw compressor. If the compression process of the refrigerant in the compression chamber is continued during the operation of the single screw compressor, the temperature of the refrigerant in the compression chamber rises. Therefore, the temperature of the inner peripheral surface of the screw rotor and the casing also rises, and the screw rotor and the casing thermally expand.
 圧縮室内の冷媒温度上昇が過度状態になると、スクリューロータの外周とケーシングの内周とが接触し、スクリューロータの焼き付きが発生する場合がある。また、スクリューロータの外周とケーシングの内周とが接触することにより、スクリューロータの回転軸が変形する可能性がある。そのため、圧縮室から吐出される冷媒の温度が予め設定された温度以上になった場合、液冷媒を圧縮室内にインジェクションし、圧縮室から吐出される冷媒を冷却し、冷媒温度の上昇を抑制させる技術が知られている(例えば、特許文献1)。 If the temperature of the refrigerant in the compression chamber rises excessively, the outer circumference of the screw rotor and the inner circumference of the casing may come into contact with each other, causing seizure of the screw rotor. Further, the rotation shaft of the screw rotor may be deformed due to the contact between the outer circumference of the screw rotor and the inner circumference of the casing. Therefore, when the temperature of the refrigerant discharged from the compression chamber becomes higher than the preset temperature, the liquid refrigerant is injected into the compression chamber to cool the refrigerant discharged from the compression chamber and suppress the rise in the refrigerant temperature. The technique is known (for example, Patent Document 1).
特開2013-64331号公報Japanese Unexamined Patent Publication No. 2013-64331
 シングルスクリュー圧縮機の一種として、二段シングルスクリュー圧縮機が知られている。二段シングルスクリュー圧縮機は、多段の圧縮部で冷媒を高圧縮比まで圧縮させるものである。二段シングルスクリュー圧縮機では、一段目の圧縮部で冷媒を吸入圧力から中間圧力まで圧縮し、二段目の圧縮部で冷媒を中間圧力から吐出圧力まで圧縮する。二段シングルスクリュー圧縮機として、一段目の圧縮部をツインゲートロータ方式で構成し、二段目の圧縮部をモノゲートロータ方式で構成したものが知られている。ツインゲートロータ方式とは、スクリューロータに2枚のゲートロータを嵌め合わせる方式である。ツインゲートロータ方式の圧縮部では、スクリューロータの回転軸を挟んで対称の位置に2枚のゲートロータが配置され、2つの圧縮室がスクリューロータの回転軸を挟んで対称の位置に形成されている。モノゲートロータ方式とは、スクリューロータに1枚のゲートロータを嵌め合わせる方式である。モノゲートロータ方式の圧縮部では、ゲートロータの位置に応じて1つの圧縮室が形成されている。一段目のスクリューロータと二段目のスクリューロータは、回転軸に直列に設けられている。 A two-stage single screw compressor is known as a type of single screw compressor. The two-stage single-screw compressor compresses the refrigerant to a high compression ratio with a multi-stage compression unit. In the two-stage single screw compressor, the first-stage compression section compresses the refrigerant from the suction pressure to the intermediate pressure, and the second-stage compression section compresses the refrigerant from the intermediate pressure to the discharge pressure. As a two-stage single screw compressor, a one in which the first-stage compression unit is configured by a twin gate rotor system and the second-stage compression unit is configured by a monogate rotor system is known. The twin gate rotor method is a method in which two gate rotors are fitted to a screw rotor. In the twin gate rotor type compression unit, two gate rotors are arranged at symmetrical positions across the rotation axis of the screw rotor, and two compression chambers are formed at symmetrical positions across the rotation axis of the screw rotor. There is. The monogate rotor method is a method in which one gate rotor is fitted to a screw rotor. In the monogate rotor type compression unit, one compression chamber is formed according to the position of the gate rotor. The first-stage screw rotor and the second-stage screw rotor are provided in series with the rotating shaft.
 モノゲートロータ方式で構成された二段目の圧縮部では、回転軸を挟んでゲートロータが設けられている側と、ゲートロータが設けられていない側とで、内圧が異なる。ゲートロータが設けられていない側の空間は、一段目の圧縮部から吐出された中間圧力の冷媒ガスの雰囲気であり、ゲートロータが設けられている側の空間の内圧は、圧縮室が形成されているため吐出圧力まで上昇しているからである。そのため、二段目の圧縮部では、中間圧力と吐出圧力の差圧が回転軸に作用し、差圧によるガス荷重によって、回転軸はゲートロータが設けられていない側へ撓む可能性がある。上述のように、冷媒の吐出温度が所定の温度以上に上昇すると、二段目の圧縮部における回転軸の変形はより顕著となる可能性がある。一段目の圧縮部のスクリューロータと二段目の圧縮部のスクリューロータは、回転軸に直列に設けられているため、二段目の圧縮部で発生する回転軸の変形は、一段目の圧縮部にも影響を及ぼす。すなわち、回転軸が変形すると、一段目の圧縮部の2つの圧縮室の内部空間が不均一となり、2つの圧縮室の内圧の推移が異なってしまい、一段目の圧縮部においても回転軸に対して径方向に荷重がかかる可能性がある。その結果、ケーシングに設けられている回転軸の軸受に負荷が掛かり寿命が短命となる可能性がある。そのため、吐出冷媒の温度が上昇した場合に回転軸の変形を抑制することが要求される。しかしながら、一段目の圧縮部に特許文献1に記載の圧縮機の構成を採用した場合、特許文献1のインジェクション機構は回転軸の変形を考慮してインジェクション処理を実行するよう構成されていないため、回転軸の変形を抑制することができない。 In the second stage compression unit configured by the monogate rotor method, the internal pressure differs between the side where the gate rotor is provided across the rotating shaft and the side where the gate rotor is not provided. The space on the side where the gate rotor is not provided is the atmosphere of the intermediate pressure refrigerant gas discharged from the compression section of the first stage, and the internal pressure of the space on the side where the gate rotor is provided forms a compression chamber. This is because the discharge pressure has risen. Therefore, in the second stage compression section, the differential pressure between the intermediate pressure and the discharge pressure acts on the rotary shaft, and the gas load due to the differential pressure may cause the rotary shaft to bend to the side where the gate rotor is not provided. .. As described above, when the discharge temperature of the refrigerant rises above a predetermined temperature, the deformation of the rotating shaft in the second stage compression portion may become more remarkable. Since the screw rotor of the first-stage compression part and the screw rotor of the second-stage compression part are provided in series with the rotation shaft, the deformation of the rotation shaft that occurs in the second-stage compression part is the compression of the first stage. It also affects the department. That is, when the rotation axis is deformed, the internal spaces of the two compression chambers of the first-stage compression section become non-uniform, and the transition of the internal pressures of the two compression chambers becomes different. There is a possibility that a load will be applied in the radial direction. As a result, a load may be applied to the bearing of the rotating shaft provided in the casing, and the life may be shortened. Therefore, it is required to suppress the deformation of the rotating shaft when the temperature of the discharged refrigerant rises. However, when the configuration of the compressor described in Patent Document 1 is adopted for the first-stage compression unit, the injection mechanism of Patent Document 1 is not configured to execute the injection process in consideration of the deformation of the rotating shaft. Deformation of the rotating shaft cannot be suppressed.
 本開示は、上記のような課題を背景としてなされたものであり、回転軸の変形を抑制し、回転軸の軸受への負荷を軽減することにより信頼性の向上した二段シングルスクリュー圧縮機、及び二段シングルスクリュー圧縮機を備えた冷凍空調装置を提供するものである。 The present disclosure has been made against the background of the above-mentioned problems, and is a two-stage single-screw compressor with improved reliability by suppressing deformation of the rotating shaft and reducing the load on the bearing of the rotating shaft. And a refrigerating air conditioner equipped with a two-stage single screw compressor.
 本開示に係る二段シングルスクリュー圧縮機は、冷媒を圧縮する第1圧縮部と、前記第1圧縮部で圧縮された冷媒をさらに圧縮する第2圧縮部と、前記第1圧縮部及び前記第2圧縮部を挿通する回転軸と、前記回転軸の一方の端部を受ける軸受と、前記第1圧縮部、前記第2圧縮部、前記回転軸、及び前記軸受が収容されるケーシングと、を有する二段シングルスクリュー圧縮機であって、前記第1圧縮部は、前記回転軸に取り付けられ、螺旋溝が形成された第1スクリューロータと、前記第1スクリューロータの前記螺旋溝と嵌め合うよう設けられた第1ゲートロータと、前記第1スクリューロータの前記螺旋溝と嵌め合うよう設けられた第2ゲートロータと、を有し、前記第1ゲートロータと前記第2ゲートロータとは前記回転軸を挟んで対向するよう配置され、前記第1ゲートロータと前記第1スクリューロータの前記螺旋溝とで第1圧縮室が形成され、前記第2ゲートロータと前記第1スクリューロータの前記螺旋溝とで第2圧縮室が形成され、前記第1圧縮室に開口し、冷媒がインジェクションされる少なくとも1つの第1インジェクションポートと、前記第2圧縮室に開口し、冷媒がインジェクションされる少なくとも1つの第2インジェクションポートと、が形成され、前記第2圧縮部は、前記回転軸に取り付けられ、螺旋溝が形成された第2スクリューロータと、前記第2スクリューロータの前記螺旋溝と嵌め合うよう設けられた第3ゲートロータと、を有し、前記第3ゲートロータと前記第2スクリューロータの前記螺旋溝とで第3圧縮室が形成され、前記第2圧縮室と前記第3圧縮室は、前記ケーシングの内部において前記回転軸に対して同じ側に形成されており、前記第1インジェクションポートの総開口面積は前記第2インジェクションポートの総開口面積よりも大きくなっている。 The two-stage single screw compressor according to the present disclosure includes a first compression unit that compresses the refrigerant, a second compression unit that further compresses the refrigerant compressed by the first compression unit, the first compression unit, and the first compression unit. 2 A rotating shaft through which a compression portion is inserted, a screw that receives one end of the rotating shaft, and a casing in which the first compression portion, the second compression portion, the rotating shaft, and the bearing are housed. A two-stage single-screw compressor having the first compression portion, the first screw rotor attached to the rotating shaft and having a spiral groove formed therein, so as to be fitted with the spiral groove of the first screw rotor. It has a first gate rotor provided and a second gate rotor provided so as to be fitted with the spiral groove of the first screw rotor, and the first gate rotor and the second gate rotor are rotated. A first compression chamber is formed by the spiral groove of the first gate rotor and the first screw rotor, and the spiral groove of the second gate rotor and the first screw rotor is arranged so as to face each other with a shaft interposed therebetween. A second compression chamber is formed by the above, and at least one first injection port that opens into the first compression chamber and injects the refrigerant, and at least one that opens into the second compression chamber and injects the refrigerant. A second injection port is formed, and the second compression portion is provided so as to be fitted to the spiral groove of the second screw rotor and the second screw rotor which is attached to the rotating shaft and has a spiral groove formed therein. A third compression chamber is formed by the third gate rotor and the spiral groove of the second screw rotor, and the second compression chamber and the third compression chamber are formed. It is formed inside the casing on the same side with respect to the rotation axis, and the total opening area of the first injection port is larger than the total opening area of the second injection port.
 本開示によれば、回転軸に対し第2圧縮部の第3圧縮室が形成されている側と同じ側に形成されている第2圧縮室の第2インジェクションポートの総開口面積が、回転軸に対し第3圧縮室が形成されている側とは異なる側に形成されている第1圧縮室の第1インジェクションポートの総開口面積よりも大きい。すなわち、第1圧縮室への冷媒のインジェクション量は第2圧縮室への冷媒のインジェクション量より大きい。そのため、第2圧縮部で発生する回転軸の変形に起因して第1圧縮部において発生する、第2圧縮室から第1圧縮室へ向かう径方向からの回転軸への荷重をキャンセルすることができる。その結果、回転軸の変形が抑制され、回転軸の軸受への負荷が低減され、軸受の寿命の短命化を抑制することができ、二段シングルスクリュー圧縮機の信頼性を向上することができる。 According to the present disclosure, the total opening area of the second injection port of the second compression chamber formed on the same side as the side where the third compression chamber of the second compression portion is formed with respect to the rotation shaft is the rotation shaft. On the other hand, it is larger than the total opening area of the first injection port of the first compression chamber formed on the side different from the side where the third compression chamber is formed. That is, the amount of the refrigerant injected into the first compression chamber is larger than the amount of the refrigerant injected into the second compression chamber. Therefore, it is possible to cancel the load on the rotating shaft from the radial direction from the second compression chamber to the first compression chamber, which is generated in the first compression portion due to the deformation of the rotating shaft generated in the second compression portion. can. As a result, deformation of the rotating shaft is suppressed, the load on the bearing of the rotating shaft is reduced, the life of the bearing can be shortened, and the reliability of the two-stage single screw compressor can be improved. ..
本開示の実施の形態に係る二段シングルスクリュー圧縮機を備えた冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus provided with the two-stage single screw compressor which concerns on embodiment of this disclosure. 本開示の実施の形態に係る二段シングルスクリュー圧縮機の概略断面図である。It is the schematic sectional drawing of the two-stage single screw compressor which concerns on embodiment of this disclosure. 本開示の実施の形態に係る二段シングルスクリュー圧縮機の第1圧縮部の断面図である。It is sectional drawing of the 1st compression part of the two-stage single screw compressor which concerns on embodiment of this disclosure. 本開示の実施の形態に係る二段シングルスクリュー圧縮機の第2圧縮部の断面図である。It is sectional drawing of the 2nd compression part of the two-stage single screw compressor which concerns on embodiment of this disclosure. 本開示の実施の形態に係る二段シングルスクリュー圧縮機のインジェクションポートを概念的に示す図である。It is a figure which conceptually shows the injection port of the two-stage single screw compressor which concerns on embodiment of this disclosure. 比較例の二段シングルスクリュー圧縮機の第1圧縮部の第1圧縮室と第2圧縮室の圧力推移を示す図である。It is a figure which shows the pressure transition of the 1st compression chamber and the 2nd compression chamber of the 1st compression part of the two-stage single screw compressor of the comparative example. 本開示の実施の形態に係る二段シングルスクリュー圧縮機の第1圧縮部の第1圧縮室と第2圧縮室の圧力推移を示す図である。It is a figure which shows the pressure transition of the 1st compression chamber and the 2nd compression chamber of the 1st compression part of the two-stage single screw compressor which concerns on embodiment of this disclosure.
 以下、本開示に係る二段シングルスクリュー圧縮機の実施の形態を、図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、図面に示す圧縮機は、本開示の圧縮機が適用される機器の一例を示すものであり、図面に示された圧縮機によって本開示の適用機器が限定されるものではない。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これらは説明のためのものであって、本開示を限定するものではない。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。尚、各図面では、各構成部材の相対的な寸法関係又は形状等が実際のものとは異なる場合がある。 Hereinafter, embodiments of the two-stage single screw compressor according to the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments, and can be variously modified without departing from the gist of the present disclosure. In addition, the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments. Further, the compressor shown in the drawings shows an example of equipment to which the compressor of the present disclosure is applied, and the compressors shown in the drawings do not limit the equipment to which the present disclosure is applied. Further, in the following description, terms indicating directions (for example, "top", "bottom", "right", "left", "front", "rear", etc.) are appropriately used for ease of understanding. These are for illustration purposes only and are not intended to limit this disclosure. Further, in each figure, those having the same reference numerals are the same or equivalent thereof, which are common to the whole text of the specification. In each drawing, the relative dimensional relationship or shape of each component may differ from the actual one.
実施の形態1.
 図1は、本開示の実施の形態に係るシングルスクリュー圧縮機を備えた冷凍空調装置の冷媒回路図である。冷凍空調装置100には冷媒回路200が形成されている。冷媒回路200は、シングルスクリュー圧縮機10、蒸発器201、液溜め(図示省略)、膨張弁202、及び凝縮器203等を冷媒配管で接続し、閉ループとした構成を有している。シングルスクリュー圧縮機10は、冷媒を圧縮して吐出するものであり、後述するように、二段シングルスクリュー圧縮機である。シングルスクリュー圧縮機10から吐出される冷媒は、凝縮器203で凝縮され、膨張弁202で減圧され、蒸発器201で蒸発される。冷媒回路200を流れる作動冷媒として、例えば、高圧冷媒であるR410冷媒が使用されている。
Embodiment 1.
FIG. 1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus provided with a single-screw compressor according to an embodiment of the present disclosure. A refrigerant circuit 200 is formed in the refrigerating and air-conditioning device 100. The refrigerant circuit 200 has a configuration in which a single screw compressor 10, an evaporator 201, a liquid reservoir (not shown), an expansion valve 202, a condenser 203, and the like are connected by a refrigerant pipe to form a closed loop. The single screw compressor 10 compresses and discharges the refrigerant, and is a two-stage single screw compressor as described later. The refrigerant discharged from the single screw compressor 10 is condensed by the condenser 203, depressurized by the expansion valve 202, and evaporated by the evaporator 201. As the working refrigerant flowing through the refrigerant circuit 200, for example, R410 refrigerant, which is a high-pressure refrigerant, is used.
 膨張弁202と凝縮器203との間にはインジェクション管204が設けられている。 インジェクション管204は、膨張弁202と凝縮器203とを接続する配管から分岐し、シングルスクリュー圧縮機10に接続されている。インジェクション管204を介してシングルスクリュー圧縮機10に液冷媒がインジェクションされる。 An injection tube 204 is provided between the expansion valve 202 and the condenser 203. The injection pipe 204 branches from the pipe connecting the expansion valve 202 and the condenser 203, and is connected to the single screw compressor 10. The liquid refrigerant is injected into the single screw compressor 10 via the injection pipe 204.
 図2は、本開示の実施の形態に係るシングルスクリュー圧縮機の概略断面図である。本実施の形態1のシングルスクリュー圧縮機10は、円筒状のケーシング11を有している。シングルスクリュー圧縮機10は、ケーシング11に収容されている圧縮部20と電動機50と、回転軸60と、を有している。回転軸60は、ケーシング11の中心軸部分に設けられており、一方の端部が軸受(図示省略)に支持されている。 FIG. 2 is a schematic cross-sectional view of the single screw compressor according to the embodiment of the present disclosure. The single screw compressor 10 of the first embodiment has a cylindrical casing 11. The single screw compressor 10 has a compression unit 20 housed in a casing 11, an electric motor 50, and a rotating shaft 60. The rotating shaft 60 is provided on the central shaft portion of the casing 11, and one end thereof is supported by a bearing (not shown).
 回転軸60の一端に電動機50のモーターローター51が設けられている。電動機50の駆動によりモーターローター51が回転し、モーターローター51の回転により回転軸60が回転される。電動機50は、図示していないインバータにより可変速が可能である。 A motor rotor 51 of the motor 50 is provided at one end of the rotating shaft 60. The motor rotor 51 is rotated by the drive of the electric motor 50, and the rotation shaft 60 is rotated by the rotation of the motor rotor 51. The electric motor 50 can have a variable speed by using an inverter (not shown).
 圧縮部20は、ケーシング11の内部において、第1圧縮部20Aと第2圧縮部20Bとに仕切られている。すなわち、シングルスクリュー圧縮機10は、二段シングルスクリュー圧縮機である。回転軸60は第1圧縮部20Aと第2圧縮部20Bを挿通している。第1圧縮部20Aは、二段シングルスクリュー圧縮機における一段目であり、低段側である。第2圧縮部20Bは、二段シングルスクリュー圧縮機における二段目であり、高段側である。第1圧縮部20Aはツインゲートロータ方式で構成され、第2圧縮部20Bはモノゲートロータ方式で構成されている。 The compression unit 20 is divided into a first compression unit 20A and a second compression unit 20B inside the casing 11. That is, the single screw compressor 10 is a two-stage single screw compressor. The rotating shaft 60 inserts the first compression unit 20A and the second compression unit 20B. The first compression unit 20A is the first stage in the two-stage single screw compressor, and is on the lower stage side. The second compression unit 20B is the second stage in the two-stage single screw compressor, and is on the higher stage side. The first compression unit 20A is configured by a twin gate rotor system, and the second compression unit 20B is configured by a monogate rotor system.
 図3は、本開示の実施の形態に係るシングルスクリュー圧縮機の第1圧縮部の断面図である。図3は、シングルスクリュー圧縮機10を図2の線A-Aの位置で切断し、図2の左側から示している。図2及び図3を参照しながら第1圧縮部20Aについて説明する。第1圧縮部20Aは、第1スクリューロータ30と、第1ゲートロータ31と、第2ゲートロータ32と、を有している。第1スクリューロータ30、第1ゲートロータ31、及び第2ゲートロータ32は、ケーシング11内に設けられた円筒状のシリンダ205(図5参照)の内部に設けられている。第1スクリューロータ30に、第1ゲートロータ31と、第2ゲートロータ32とが嵌め合わされている。第1スクリューロータ30は、回転軸60に取り付けられている。第1スクリューロータ30の外周面には、複数の螺旋溝であるスクリュー溝30Aが形成されている。第1ゲートロータ31とスクリュー溝30Aとが噛み合い、ケーシング11の内壁との間の空間に第1圧縮室33が形成されている。第2ゲートロータ32とスクリュー溝30Aとが噛み合い、ケーシング11の内壁との間の空間に第2圧縮室34が形成されている。回転軸60の回転に伴い第1スクリューロータ30が回転し、第1圧縮室33の容積が減じられ、作動冷媒が圧縮され、回転軸60の回転に伴い第1スクリューロータ30が回転し、第2圧縮室34の容積が減じられ、作動冷媒が圧縮される。 FIG. 3 is a cross-sectional view of the first compression portion of the single screw compressor according to the embodiment of the present disclosure. FIG. 3 cuts the single screw compressor 10 at the position of lines AA of FIG. 2 and is shown from the left side of FIG. The first compression unit 20A will be described with reference to FIGS. 2 and 3. The first compression unit 20A includes a first screw rotor 30, a first gate rotor 31, and a second gate rotor 32. The first screw rotor 30, the first gate rotor 31, and the second gate rotor 32 are provided inside a cylindrical cylinder 205 (see FIG. 5) provided in the casing 11. The first gate rotor 31 and the second gate rotor 32 are fitted to the first screw rotor 30. The first screw rotor 30 is attached to the rotating shaft 60. A screw groove 30A, which is a plurality of spiral grooves, is formed on the outer peripheral surface of the first screw rotor 30. The first gate rotor 31 and the screw groove 30A mesh with each other, and the first compression chamber 33 is formed in the space between the inner wall of the casing 11. The second gate rotor 32 and the screw groove 30A mesh with each other, and the second compression chamber 34 is formed in the space between the inner wall of the casing 11. The first screw rotor 30 rotates with the rotation of the rotary shaft 60, the volume of the first compression chamber 33 is reduced, the working refrigerant is compressed, and the first screw rotor 30 rotates with the rotation of the rotary shaft 60. 2 The volume of the compression chamber 34 is reduced, and the working refrigerant is compressed.
 第1スライドバルブ35は、第1圧縮室33の内部容積比を調整するものである。第2スライドバルブ36は、第2圧縮室34の内部容積比を調整するものである。第1スライドバルブ35及び第2スライドバルブ36は、図示しないスライド機構により、回転軸60に沿って駆動されるよう構成されている。尚、図2において、第1スライドバルブ35及び第2スライドバルブ36は省略されている。 The first slide valve 35 adjusts the internal volume ratio of the first compression chamber 33. The second slide valve 36 adjusts the internal volume ratio of the second compression chamber 34. The first slide valve 35 and the second slide valve 36 are configured to be driven along the rotation shaft 60 by a slide mechanism (not shown). In FIG. 2, the first slide valve 35 and the second slide valve 36 are omitted.
 図4は、本開示の実施の形態に係るシングルスクリュー圧縮機の第2圧縮部の断面図である。図4は、シングルスクリュー圧縮機10を図2の線B-Bの位置で切断し、図2の左側から示している。図2及び図4を参照しながら第2圧縮部20Bについて説明する。第2圧縮部20Bは、第2スクリューロータ40と、第3ゲートロータ41と、を有している。第2スクリューロータ40に、第3ゲートロータ41が嵌め合わされている。第2スクリューロータ40の外周面には、複数の螺旋溝であるスクリュー溝40Aが形成されている。第3ゲートロータ41と、スクリュー溝40Aとが噛み合い、ケーシング11の内壁との間の空間に第3圧縮室43が形成されている。回転軸60の回転に伴い第2スクリューロータ40が回転し、第3圧縮室43の容積が減じられ、作動冷媒が圧縮される。 FIG. 4 is a cross-sectional view of a second compression portion of the single screw compressor according to the embodiment of the present disclosure. FIG. 4 cuts the single screw compressor 10 at the position of line BB in FIG. 2 and is shown from the left side of FIG. The second compression unit 20B will be described with reference to FIGS. 2 and 4. The second compression unit 20B has a second screw rotor 40 and a third gate rotor 41. A third gate rotor 41 is fitted to the second screw rotor 40. A screw groove 40A, which is a plurality of spiral grooves, is formed on the outer peripheral surface of the second screw rotor 40. The third gate rotor 41 and the screw groove 40A mesh with each other, and the third compression chamber 43 is formed in the space between the inner wall of the casing 11. Along with the rotation of the rotating shaft 60, the second screw rotor 40 rotates, the volume of the third compression chamber 43 is reduced, and the working refrigerant is compressed.
 第3スライドバルブ44は、第3圧縮室43の内部容積比を調整するものである。第3スライドバルブ44は、図示しないスライド機構により、回転軸60に沿って駆動されるよう構成されている。尚、図2において、第3スライドバルブ44は省略されている。 The third slide valve 44 adjusts the internal volume ratio of the third compression chamber 43. The third slide valve 44 is configured to be driven along the rotation shaft 60 by a slide mechanism (not shown). In FIG. 2, the third slide valve 44 is omitted.
 図2に示すように、ケーシング11内において、第1ゲートロータ31は回転軸60の下方に配置され、第2ゲートロータ32は回転軸60の上方に配置され、第3ゲートロータ41は回転軸60の上方に配置されている。すなわち、ケーシング11の内部において、第3ゲートロータ41は、回転軸60に対して第2ゲートロータ32が配置されている側に配置されている。換言すると、ケーシング11内において、第3圧縮室43は回転軸60に対して、第2圧縮室34が形成されている側と同じ側に形成されている。 As shown in FIG. 2, in the casing 11, the first gate rotor 31 is arranged below the rotating shaft 60, the second gate rotor 32 is arranged above the rotating shaft 60, and the third gate rotor 41 is arranged above the rotating shaft 60. It is located above 60. That is, inside the casing 11, the third gate rotor 41 is arranged on the side where the second gate rotor 32 is arranged with respect to the rotating shaft 60. In other words, in the casing 11, the third compression chamber 43 is formed on the same side as the side on which the second compression chamber 34 is formed with respect to the rotating shaft 60.
 また、図3に示すように、第1圧縮室33と第2圧縮室34は、回転軸60を挟んで180度対称な位置で対向するよう形成されている。そのため、第1圧縮室33と第2圧縮室34は、回転軸60を中心として180度の位置で対向するため、回転軸60に対して径方向に作用する冷媒のガス荷重を小さくできる利点がある。 Further, as shown in FIG. 3, the first compression chamber 33 and the second compression chamber 34 are formed so as to face each other at positions symmetrical with each other by 180 degrees with the rotation axis 60 interposed therebetween. Therefore, since the first compression chamber 33 and the second compression chamber 34 face each other at a position of 180 degrees with respect to the rotation shaft 60, there is an advantage that the gas load of the refrigerant acting in the radial direction with respect to the rotation shaft 60 can be reduced. be.
 図5は、本開示の実施の形態に係るシングルスクリュー圧縮機のインジェクションポートを概念的に示す図である。図5(a)は、第2圧縮室34に開口する第2インジェクションポート38を示している。図5(b)は、第1圧縮室33に開口する第1インジェクションポート37を示している。本実施の形態では、第1圧縮部20Aにおいて、ケーシング11の側面には、図1に示すインジェクション管204が接続されている。そして、図5(a)に示すように、インジェクション管204と第2圧縮室34とを連通する第2冷媒通路207がシリンダ205に形成されている。第2冷媒通路207の端部が第2インジェクションポート38となっている。また、図5(b)に示すように、インジェクション管204と第1圧縮室33とを連通する第1冷媒通路206が上述のシリンダ205に形成されている。第1冷媒通路206の端部が第1インジェクションポート37となっている。 FIG. 5 is a diagram conceptually showing the injection port of the single screw compressor according to the embodiment of the present disclosure. FIG. 5A shows a second injection port 38 that opens into the second compression chamber 34. FIG. 5B shows a first injection port 37 that opens into the first compression chamber 33. In the present embodiment, in the first compression unit 20A, the injection pipe 204 shown in FIG. 1 is connected to the side surface of the casing 11. Then, as shown in FIG. 5A, a second refrigerant passage 207 communicating the injection pipe 204 and the second compression chamber 34 is formed in the cylinder 205. The end of the second refrigerant passage 207 is the second injection port 38. Further, as shown in FIG. 5B, a first refrigerant passage 206 communicating the injection pipe 204 and the first compression chamber 33 is formed in the cylinder 205 described above. The end of the first refrigerant passage 206 is the first injection port 37.
 第1インジェクションポート37は、第1冷媒通路206における冷媒の流れ方向に直交する面で切断した断面形状が円形となるよう形成されている。また、第2インジェクションポート38は、第2冷媒通路207における冷媒の流れ方向に直交する面で切断した断面形状が円形となるよう形成されている。そして、図5(a)及び図5(b)に示すように、第2インジェクションポート38の直径ΦD1は、第1インジェクションポート37の直径ΦD2よりも小さくなっている。 The first injection port 37 is formed so that the cross-sectional shape cut along the plane orthogonal to the flow direction of the refrigerant in the first refrigerant passage 206 is circular. Further, the second injection port 38 is formed so that the cross-sectional shape cut along the plane orthogonal to the flow direction of the refrigerant in the second refrigerant passage 207 is circular. Then, as shown in FIGS. 5A and 5B, the diameter ΦD1 of the second injection port 38 is smaller than the diameter ΦD2 of the first injection port 37.
 ここで、シングルスクリュー圧縮機10の動作について説明する。シングルスクリュー圧縮機10を駆動する電動機50は、不図示のインバータから信号を受けて起動する。電動機50の起動によりシングルスクリュー圧縮機10の駆動が開始されると、冷媒回路200を循環する動作冷媒は、第1圧縮部20Aの第1圧縮室33と第2圧縮室34に吸入される。第1圧縮室33及び第2圧縮室34への動作冷媒の吸入は、同一のタイミングで完了し、第1圧縮室33及び第2圧縮室34には、ほぼ同一質量の冷媒が吸入される。動作冷媒の吸入完了後、回転軸60の回転による第1スクリューロータ30の回転により、第1圧縮室33及び第2圧縮室34の容積が減じられ、内圧が高められていく。第1圧縮室33から動作冷媒が吐出されるタイミングは、第1スライドバルブ35の第1スクリューロータ30の軸方向における位置を変化させることにより調整される。同様に、第2圧縮室34から動作冷媒が吐出されるタイミングは、第2スライドバルブ36の第1スクリューロータ30の軸方向における位置を変化させることにより調整される。 Here, the operation of the single screw compressor 10 will be described. The electric motor 50 for driving the single screw compressor 10 is activated by receiving a signal from an inverter (not shown). When the drive of the single screw compressor 10 is started by starting the electric motor 50, the operating refrigerant circulating in the refrigerant circuit 200 is sucked into the first compression chamber 33 and the second compression chamber 34 of the first compression unit 20A. The suction of the operating refrigerant into the first compression chamber 33 and the second compression chamber 34 is completed at the same timing, and the refrigerant having substantially the same mass is sucked into the first compression chamber 33 and the second compression chamber 34. After the suction of the operating refrigerant is completed, the volumes of the first compression chamber 33 and the second compression chamber 34 are reduced by the rotation of the first screw rotor 30 due to the rotation of the rotating shaft 60, and the internal pressure is increased. The timing at which the operating refrigerant is discharged from the first compression chamber 33 is adjusted by changing the axial position of the first screw rotor 30 of the first slide valve 35. Similarly, the timing at which the operating refrigerant is discharged from the second compression chamber 34 is adjusted by changing the axial position of the first screw rotor 30 of the second slide valve 36.
 動作冷媒の吐出ガス温度が予め設定された値より高くなった場合、インジェクション管204から導かれる液冷媒が第1インジェクションポート37及び第2インジェクションポート38を介して、第1圧縮室33及び第2圧縮室34にインジェクションされる。本実施の形態では、上述のように、第2圧縮室34に開口している第2インジェクションポート38の直径が第1圧縮室33に開口している第1インジェクションポート37の直径より大きくなっている。従って、第1圧縮室33への冷媒のインジェクション量より、第2圧縮室34への液冷媒のインジェクション量が多くなる。すなわち、液冷媒がインジェクションされると、第1圧縮室33より第2圧縮室34の方がより多くの液冷媒が流入するよう作用する。 When the discharge gas temperature of the operating refrigerant becomes higher than the preset value, the liquid refrigerant guided from the injection pipe 204 passes through the first injection port 37 and the second injection port 38, and the first compression chamber 33 and the second are used. It is injected into the compression chamber 34. In the present embodiment, as described above, the diameter of the second injection port 38 opened in the second compression chamber 34 is larger than the diameter of the first injection port 37 opened in the first compression chamber 33. There is. Therefore, the amount of the liquid refrigerant injected into the second compression chamber 34 is larger than the amount of the refrigerant injected into the first compression chamber 33. That is, when the liquid refrigerant is injected, the second compression chamber 34 acts to allow more liquid refrigerant to flow in than the first compression chamber 33.
 第1圧縮室33及び第2圧縮室34から吐出された動作冷媒は、第2圧縮部20Bの第3圧縮室43に吸入される。第3圧縮室43に吸入された動作冷媒は、第3圧縮室43でさらに圧縮され、図1に示す冷媒回路200に吐出され、冷媒回路200内を循環する。 The operating refrigerant discharged from the first compression chamber 33 and the second compression chamber 34 is sucked into the third compression chamber 43 of the second compression unit 20B. The operating refrigerant sucked into the third compression chamber 43 is further compressed in the third compression chamber 43, discharged to the refrigerant circuit 200 shown in FIG. 1, and circulates in the refrigerant circuit 200.
 本実施の形態の効果について図6及び図7を参照して説明する。図6は、比較例のシングルスクリュー圧縮機の第1圧縮部の第1圧縮室と第2圧縮室の圧力推移を示す図である。図7は、本開示の実施の形態に係るシングルスクリュー圧縮機の第1圧縮部の第1圧縮室と第2圧縮室の圧力推移を示す図である。図6及び図7において、横軸は圧縮室の容積であり、縦軸は圧縮室内の圧力である。 The effects of this embodiment will be described with reference to FIGS. 6 and 7. FIG. 6 is a diagram showing pressure transitions between the first compression chamber and the second compression chamber of the first compression portion of the single screw compressor of the comparative example. FIG. 7 is a diagram showing pressure transitions between the first compression chamber and the second compression chamber of the first compression portion of the single screw compressor according to the embodiment of the present disclosure. In FIGS. 6 and 7, the horizontal axis is the volume of the compression chamber, and the vertical axis is the pressure in the compression chamber.
 シングルスクリュー圧縮機10の第2圧縮部20Bはモノゲートロータ方式であり、第3圧縮室43内には、第1圧縮部20Aから中間圧力の動作冷媒が吸入される。第2スクリューロータ40の回転に伴い第3圧縮室43の内部容積が小さくなり、冷媒が圧縮されると、第3圧縮室43の内圧は上昇する。一方、第2圧縮部20Bの回転軸60の下側は、中間圧力の冷媒雰囲気である。そのため、回転軸60の上方と下方とに圧力差が生じ、この差圧に起因するガス冷媒の荷重、すなわちガス荷重が回転軸60の上方から径方向にかかる。その結果、回転軸60は下方に撓み、変形する。飽和圧力の高い冷媒、例えば、R410Aを使用する場合、このガス荷重はより大きくなり、回転軸60の変形はより大きくなる。 The second compression section 20B of the single screw compressor 10 is a monogate rotor system, and an intermediate pressure operating refrigerant is sucked into the third compression chamber 43 from the first compression section 20A. As the rotation of the second screw rotor 40 reduces the internal volume of the third compression chamber 43, and when the refrigerant is compressed, the internal pressure of the third compression chamber 43 increases. On the other hand, the lower side of the rotating shaft 60 of the second compression unit 20B is a refrigerant atmosphere with an intermediate pressure. Therefore, a pressure difference is generated between the upper side and the lower side of the rotary shaft 60, and the load of the gas refrigerant due to this differential pressure, that is, the gas load is applied in the radial direction from the upper side of the rotary shaft 60. As a result, the rotating shaft 60 bends downward and deforms. When a refrigerant having a high saturation pressure, for example, R410A, is used, this gas load becomes larger and the deformation of the rotating shaft 60 becomes larger.
 高段側である第2圧縮部20Bにおいて回転軸60に径方向から作用するガス荷重により、低段側である第1圧縮部20Aにおいても、回転軸60が変形する。上述のように、第1圧縮部20Aでは、回転軸60を挟んで上下方向に2つの第1圧縮室33と第2圧縮室34が形成されている。第2圧縮部20Bの影響により上述のように回転軸60が下方に変形すると、第1圧縮室33の内部隙間と第2圧縮室34の内部隙間とが不均一となる可能性がある。すなわち、回転軸60が下方に変形することにより、回転軸60の上方の第1圧縮室33における第1スクリューロータ30とケーシング11との隙間は拡大し、回転軸60の下方の第2圧縮室34における第1スクリューロータ30とケーシング11との隙間は縮小する。隙間が拡大した第1圧縮室33は、隙間が縮小する第2圧縮室34よりも冷媒の内部漏洩が増加するため、第1圧縮室33の内圧は第2圧縮室34の内圧よりも上昇して推移する。 The rotating shaft 60 is also deformed in the first compression portion 20A on the lower stage side due to the gas load acting on the rotating shaft 60 from the radial direction in the second compression portion 20B on the higher stage side. As described above, in the first compression unit 20A, two first compression chambers 33 and a second compression chamber 34 are formed in the vertical direction with the rotation shaft 60 interposed therebetween. When the rotating shaft 60 is deformed downward as described above due to the influence of the second compression unit 20B, the internal gap of the first compression chamber 33 and the internal gap of the second compression chamber 34 may become non-uniform. That is, as the rotary shaft 60 is deformed downward, the gap between the first screw rotor 30 and the casing 11 in the first compression chamber 33 above the rotary shaft 60 is expanded, and the second compression chamber below the rotary shaft 60 is expanded. The gap between the first screw rotor 30 and the casing 11 in 34 is reduced. Since the internal leakage of the refrigerant increases in the first compression chamber 33 in which the gap is expanded as in the second compression chamber 34 in which the gap is reduced, the internal pressure of the first compression chamber 33 is higher than the internal pressure of the second compression chamber 34. To change.
 このとき、第1インジェクションポート37の直径と第2インジェクションポート38が同一の場合、第1圧縮室33及び第2圧縮室34に流入する液冷媒の流入量は同一である。そうすると、液冷媒のインジェクションが行われても、上述のように、隙間が拡大している第2圧縮室34の内圧は、上述の隙間が縮小している第1圧縮室33の内圧よりも高い圧力で推移することになる。すなわち、図5に示すように、上述の隙間が拡大している第2圧縮室34の指圧線図は、上述の隙間が縮小している第1圧縮室33の指圧線図よりも膨らんだ形状を示すこととなる。その結果、回転軸60に対して上方から径方向にかかるガス荷重が維持され、回転軸60が下方へ変形したままとなってしまい、回転軸60の軸受が劣化する可能性がある。 At this time, when the diameter of the first injection port 37 and the second injection port 38 are the same, the inflow amount of the liquid refrigerant flowing into the first compression chamber 33 and the second compression chamber 34 is the same. Then, even if the injection of the liquid refrigerant is performed, as described above, the internal pressure of the second compression chamber 34 in which the gap is expanded is higher than the internal pressure of the first compression chamber 33 in which the gap is reduced. It will change with pressure. That is, as shown in FIG. 5, the acupressure diagram of the second compression chamber 34 in which the above-mentioned gap is expanded has a shape bulging more than the acupressure diagram of the first compression chamber 33 in which the above-mentioned gap is reduced. Will be shown. As a result, the gas load applied in the radial direction from above to the rotary shaft 60 is maintained, the rotary shaft 60 remains deformed downward, and the bearing of the rotary shaft 60 may deteriorate.
 これに対し、本実施の形態においては、第1インジェクションポート37の直径は第2インジェクションポート38の直径より大きく設定されている。従って、本実施の形態によれば、回転軸60の下方の第1圧縮室33に流入する液冷媒の流入量を、回転軸60の上方の第2圧縮室34に流入する液冷媒の流入量よりも大きくすることができる。従って、第1圧縮室33における密度が第2圧縮室34に比して上昇し、圧力が上昇するため、第1圧縮室33における内圧推移を、第2圧縮室34における内圧の推移に近づけることができる。すなわち、図7に示すように、第1圧縮室33の指圧線図を第2圧縮室34の指圧線図に近づけることができる。その結果、回転軸60に対して上方から径方向にかかるガス荷重をキャンセルさせることができる。換言すると、第2圧縮室34から第1圧縮室33へ向かう径方向からの回転軸60へのガス荷重がキャンセルされる。従って、回転軸60の下方向への変形が抑制され、軸受への負荷が軽減され、軸受の寿命の短命化を抑制することができる。すなわち、本実施の形態によれば、二段シングルスクリュー圧縮機の信頼性を向上させることができる。 On the other hand, in the present embodiment, the diameter of the first injection port 37 is set to be larger than the diameter of the second injection port 38. Therefore, according to the present embodiment, the inflow amount of the liquid refrigerant flowing into the first compression chamber 33 below the rotary shaft 60 is the inflow amount of the liquid refrigerant flowing into the second compression chamber 34 above the rotary shaft 60. Can be larger than. Therefore, since the density in the first compression chamber 33 rises as compared with the second compression chamber 34 and the pressure rises, the transition of the internal pressure in the first compression chamber 33 is brought closer to the transition of the internal pressure in the second compression chamber 34. Can be done. That is, as shown in FIG. 7, the acupressure diagram of the first compression chamber 33 can be brought closer to the acupressure diagram of the second compression chamber 34. As a result, it is possible to cancel the gas load applied in the radial direction from above with respect to the rotating shaft 60. In other words, the gas load on the rotating shaft 60 from the radial direction from the second compression chamber 34 to the first compression chamber 33 is cancelled. Therefore, the downward deformation of the rotating shaft 60 is suppressed, the load on the bearing is reduced, and the life of the bearing can be shortened. That is, according to the present embodiment, the reliability of the two-stage single screw compressor can be improved.
 本開示において、第1圧縮室33に1つの第1インジェクションポート37が形成され、第2圧縮室34に1つの第2インジェクションポート38が形成されているが、インジェクションポートの数はこれに限るものではない。例えば、第1圧縮室33及び第2圧縮室34の双方若しくはいずれか一方に、複数のインジェクションポートを形成してもよい。この場合、第1圧縮室33に形成されるインジェクションポートの開口面積の合計、すなわち総開口面積が、第2圧縮室34に形成されるインジェクションポートの総開口面積より大きくなるよう設定される。 In the present disclosure, one first injection port 37 is formed in the first compression chamber 33, and one second injection port 38 is formed in the second compression chamber 34, but the number of injection ports is limited to this. is not it. For example, a plurality of injection ports may be formed in both or one of the first compression chamber 33 and the second compression chamber 34. In this case, the total opening area of the injection ports formed in the first compression chamber 33, that is, the total opening area is set to be larger than the total opening area of the injection ports formed in the second compression chamber 34.
 10 シングルスクリュー圧縮機、11 ケーシング、20 圧縮部、20A 第1圧縮部、20B 第2圧縮部、30 第1スクリューロータ、30A スクリュー溝、31 第1ゲートロータ、32 第2ゲートロータ、33 第1圧縮室、34 第2圧縮室、35 第1スライドバルブ、36 第2スライドバルブ、37 第1インジェクションポート、38 第2インジェクションポート、40 第2スクリューロータ、40A スクリュー溝、41 第3ゲートロータ、43 第3圧縮室、44 第3スライドバルブ、50 電動機、51 モーターローター、60 回転軸、100 冷凍空調装置、200 冷媒回路、201 凝縮器、202 膨張弁、203 蒸発器、204 インジェクション管、205 シリンダ、206 第1冷媒通路、207 第2冷媒通路。 10 single screw compressor, 11 casing, 20 compression part, 20A first compression part, 20B second compression part, 30 first screw rotor, 30A screw groove, 31 first gate rotor, 32 second gate rotor, 33 first Compression chamber, 34 2nd compression chamber, 35 1st slide valve, 36 2nd slide valve, 37 1st injection port, 38 2nd injection port, 40 2nd screw rotor, 40A screw groove, 41 3rd gate rotor, 43 3rd compression chamber, 44th 3rd slide valve, 50 electric motor, 51 motor rotor, 60 rotary shaft, 100 refrigeration and air conditioning device, 200 refrigerant circuit, 201 condenser, 202 expansion valve, 203 evaporator, 204 injection pipe, 205 cylinder, 206 first refrigerant passage, 207 second refrigerant passage.

Claims (3)

  1.  冷媒を圧縮する第1圧縮部と、前記第1圧縮部で圧縮された冷媒をさらに圧縮する第2圧縮部と、前記第1圧縮部及び前記第2圧縮部を挿通する回転軸と、前記回転軸の一方の端部を受ける軸受と、前記第1圧縮部、前記第2圧縮部、前記回転軸、及び前記軸受が収容されるケーシングと、を有する二段シングルスクリュー圧縮機であって、
     前記第1圧縮部は、前記回転軸に取り付けられ、螺旋溝が形成された第1スクリューロータと、前記第1スクリューロータの前記螺旋溝と嵌め合うよう設けられた第1ゲートロータと、前記第1スクリューロータの前記螺旋溝と嵌め合うよう設けられた第2ゲートロータと、を有し、
     前記第1ゲートロータと前記第2ゲートロータとは前記回転軸を挟んで対向するよう配置され、
     前記第1ゲートロータと前記第1スクリューロータの前記螺旋溝とで第1圧縮室が形成され、
     前記第2ゲートロータと前記第1スクリューロータの前記螺旋溝とで第2圧縮室が形成され、
     前記第1圧縮室に開口し、冷媒がインジェクションされる少なくとも1つの第1インジェクションポートと、前記第2圧縮室に開口し、冷媒がインジェクションされる少なくとも1つの第2インジェクションポートと、が形成され、
     前記第2圧縮部は、前記回転軸に取り付けられ、螺旋溝が形成された第2スクリューロータと、前記第2スクリューロータの前記螺旋溝と嵌め合うよう設けられた第3ゲートロータと、を有し、
     前記第3ゲートロータと前記第2スクリューロータの前記螺旋溝とで第3圧縮室が形成され、
     前記第2圧縮室と前記第3圧縮室は、前記ケーシングの内部において前記回転軸に対して同じ側に形成されており、
     前記第1インジェクションポートの総開口面積は前記第2インジェクションポートの総開口面積よりも大きくなっている二段シングルスクリュー圧縮機。
    A first compression unit that compresses the refrigerant, a second compression unit that further compresses the refrigerant compressed by the first compression unit, a rotation shaft that inserts the first compression unit and the second compression unit, and the rotation. A two-stage single-screw compressor comprising a bearing that receives one end of a shaft, a first compression section, a second compression section, a rotating shaft, and a casing in which the bearing is housed.
    The first compression portion includes a first screw rotor attached to the rotating shaft and formed with a spiral groove, a first gate rotor provided so as to fit the spiral groove of the first screw rotor, and the first gate rotor. It has a second gate rotor provided to fit the spiral groove of the 1-screw rotor.
    The first gate rotor and the second gate rotor are arranged so as to face each other with the rotation axis interposed therebetween.
    A first compression chamber is formed by the first gate rotor and the spiral groove of the first screw rotor.
    A second compression chamber is formed by the second gate rotor and the spiral groove of the first screw rotor.
    At least one first injection port that opens into the first compression chamber and injects the refrigerant, and at least one second injection port that opens in the second compression chamber and injects the refrigerant are formed.
    The second compression portion includes a second screw rotor attached to the rotating shaft and formed with a spiral groove, and a third gate rotor provided so as to fit the spiral groove of the second screw rotor. death,
    A third compression chamber is formed by the third gate rotor and the spiral groove of the second screw rotor.
    The second compression chamber and the third compression chamber are formed inside the casing on the same side with respect to the rotation axis.
    A two-stage single screw compressor in which the total opening area of the first injection port is larger than the total opening area of the second injection port.
  2.  前記第1インジェクションポート及び前記第2インジェクションポートの断面形状は円形であり、前記第1インジェクションポートの直径は前記第2インジェクションポートよりも大きくなっている請求項1に記載の二段シングルスクリュー圧縮機。 The two-stage single screw compressor according to claim 1, wherein the first injection port and the second injection port have a circular cross-sectional shape, and the diameter of the first injection port is larger than that of the second injection port. ..
  3.  請求項1又は2に記載の二段シングルスクリュー圧縮機を備える冷凍空調装置。 A refrigerating air conditioner including the two-stage single screw compressor according to claim 1 or 2.
PCT/JP2020/020556 2020-05-25 2020-05-25 Two-stage single-screw compressor, and refrigeration and air-conditioning device WO2021240605A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020556 WO2021240605A1 (en) 2020-05-25 2020-05-25 Two-stage single-screw compressor, and refrigeration and air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020556 WO2021240605A1 (en) 2020-05-25 2020-05-25 Two-stage single-screw compressor, and refrigeration and air-conditioning device

Publications (1)

Publication Number Publication Date
WO2021240605A1 true WO2021240605A1 (en) 2021-12-02

Family

ID=78723232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020556 WO2021240605A1 (en) 2020-05-25 2020-05-25 Two-stage single-screw compressor, and refrigeration and air-conditioning device

Country Status (1)

Country Link
WO (1) WO2021240605A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255600A (en) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp Two-stage screw compressor
JP2011190777A (en) * 2010-03-16 2011-09-29 Mitsubishi Electric Corp Single screw compressor, and refrigeration cycle device loaded with the same
WO2016189648A1 (en) * 2015-05-26 2016-12-01 三菱電機株式会社 Screw compressor and refrigeration cycle device comprising screw compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255600A (en) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp Two-stage screw compressor
JP2011190777A (en) * 2010-03-16 2011-09-29 Mitsubishi Electric Corp Single screw compressor, and refrigeration cycle device loaded with the same
WO2016189648A1 (en) * 2015-05-26 2016-12-01 三菱電機株式会社 Screw compressor and refrigeration cycle device comprising screw compressor

Similar Documents

Publication Publication Date Title
US6273691B1 (en) Scroll gas compressor having asymmetric bypass holes
US7563080B2 (en) Rotary compressor
EP2634432B1 (en) Screw compressor
US20090007590A1 (en) Refrigeration System
US11732710B2 (en) Screw compressor, and refrigeration device
JPWO2011148453A1 (en) Two-stage rotary compressor and heat pump device
US11841020B2 (en) Variable volume ratio screw compressor
KR100725893B1 (en) Scroll-type fluid machine
JP5338314B2 (en) Compressor and refrigeration equipment
US7556485B2 (en) Rotary compressor with reduced refrigeration gas leaks during compression while preventing seizure
JP2012127565A (en) Refrigeration cycle device
WO2021240605A1 (en) Two-stage single-screw compressor, and refrigeration and air-conditioning device
KR102126815B1 (en) Refrigeration apparatus
KR101953616B1 (en) Refrigerant-scroll compressor for use within a heat pump
JP6259309B2 (en) Screw fluid machine and refrigeration cycle apparatus
US20220325715A1 (en) Scroll compressor with economizer injection
JPH07180917A (en) Screw tube refrigerator
US11136982B2 (en) Screw compressor
US7607900B2 (en) Multi-cylinder reciprocating compressor
CN107642487B (en) Sector step for scroll compressor
JP5727348B2 (en) Gas compressor
CN111868384B (en) Multistage compressor
WO2023182457A1 (en) Screw compressor and freezer
JP2015028313A (en) Axial vane type compressor
CN213066668U (en) Heating, ventilation, air conditioning and refrigeration system and compressor for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP