WO2021240600A1 - Blood sugar measuring device - Google Patents

Blood sugar measuring device Download PDF

Info

Publication number
WO2021240600A1
WO2021240600A1 PCT/JP2020/020545 JP2020020545W WO2021240600A1 WO 2021240600 A1 WO2021240600 A1 WO 2021240600A1 JP 2020020545 W JP2020020545 W JP 2020020545W WO 2021240600 A1 WO2021240600 A1 WO 2021240600A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
blood glucose
measuring device
glucose level
level measuring
Prior art date
Application number
PCT/JP2020/020545
Other languages
French (fr)
Japanese (ja)
Inventor
貴士 横山
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2020/020545 priority Critical patent/WO2021240600A1/en
Publication of WO2021240600A1 publication Critical patent/WO2021240600A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to a blood glucose level measuring device.
  • insulin injection is given. If insulin injections are given, blood glucose levels are measured. Blood glucose measurement is performed to understand the timing of insulin injection and the effect of treatment.
  • the needle When the blood glucose level is measured, the needle is pierced into the human body until the tip of the needle reaches the inside of the blood vessel, and blood is collected. In addition, the collected blood is brought into contact with the sample chip. Consumables such as needles and sample chips are discarded each time the blood glucose level is measured.
  • the act of sticking the needle into the human body until the tip of the needle reaches the inside of the blood vessel is invasive. For this reason, the practice carries the risk of suffering from pain and infection.
  • disposing of consumables such as needles and sample chips every time the blood glucose level is measured causes a problem that a large cost must be spent on consumables such as needles and sample chips. The cost of consumables such as needles and sample chips in one year reaches about 200,000 yen in Japan.
  • the blood glucose level can be measured non-invasively.
  • infrared rays are applied to the human body.
  • the intensity of infrared rays coming from the human body is detected while the infrared rays are radiated to the human body.
  • the glucose concentration in the interstitial fluid is calculated from the amount of infrared rays absorbed by the glucose in the interstitial fluid. If blood glucose measurements are made non-invasively, the risk of suffering from pain and infection can be eliminated. In addition, the cost spent on consumables can be eliminated. Therefore, when the blood glucose level can be measured non-invasively, the blood glucose level can be measured for the prevention of diabetes or the improvement of the blood glucose level.
  • Patent Document 1 discloses a glucose meter.
  • a laser beam of mid-infrared light is applied to the biological epithelium of the subject. Further, the diffusely reflected light of the laser light is detected by the photodetector. In addition, the glucose concentration in the interstitial fluid is measured from the absorption by glucose.
  • the light source that oscillates the laser beam includes a Q switch Nd: YAG laser or the like and an optical parametric oscillator (OPO) (paragraphs 0021-0023).
  • Patent Document 2 discloses a measuring device.
  • the infrared light output from the Fourier transform infrared spectroscopy (FTIR) device undergoes attenuation corresponding to the infrared light absorption spectrum of the sample. Also, the attenuated light is detected by the detector.
  • the blood glucose level is measured using the absorption spectrum of glucose (paragraph 0022-0023).
  • a blood glucose measuring device that measures blood glucose in a non-invasive manner has problems such as large size, high cost, difficulty in increasing the output of a light source, and difficulty in improving the accuracy of measurement. ..
  • the blood glucose meter disclosed in Patent Document 1 since the energy efficiency of the Q-switch Nd: YAG laser or the like is low, the size of the power supply that supplies power to the Q-switch Nd: YAG laser or the like becomes large, and the Q-switch Nd : A cooling system for cooling the YAG laser or the like is required, and a cooling mechanism is required. Therefore, the blood glucose meter has problems such as large size, high cost, and difficulty in increasing the output of the light source.
  • the size of the FTIR device is large, the energy efficiency of the FTIR device is low, and the cost of the FTIR device is high. Therefore, the measuring device has problems such as large size, high cost, and difficulty in increasing the output of the light source.
  • the present invention has been made in view of these problems.
  • the present invention reduces the size of the blood glucose measuring device that measures the blood glucose level in a non-invasive manner, lowers the cost of the blood glucose measuring device, and increases the output of the light source provided in the blood glucose measuring device. The purpose.
  • the present invention relates to a blood glucose level measuring device.
  • the blood glucose measuring device is equipped with an infrared radiator and a detector.
  • the infrared radiator has a radiating surface.
  • the infrared radiator comprises a metamaterial.
  • the infrared radiator radiates infrared rays from the radiation surface.
  • the peak wavelength of infrared rays is a wavelength according to the structure of the metamaterial.
  • the detector detects the amount that reflects the amount of infrared rays absorbed by glucose in the living body.
  • the amount of infrared rays absorbed by glucose is specified by using infrared rays radiated by an infrared radiator that does not require a cooling system and has high energy efficiency.
  • the size of the blood glucose measuring device that measures the blood glucose level in a non-invasive manner can be reduced.
  • the cost of the blood glucose level measuring device can be reduced.
  • the output of the light source provided in the blood glucose level measuring device can be increased.
  • FIG. 1 It is sectional drawing which shows schematically the infrared radiator provided in the blood glucose level measuring apparatus of 5th Embodiment. It is a top view schematically illustrating the infrared radiator provided in the blood glucose level measuring apparatus of 5th Embodiment. It is a perspective view which shows another example of the heat radiation plate provided in the blood glucose level measuring apparatus from 1st Embodiment to 5th Embodiment schematically. It is a perspective view which shows another example of the heat radiation plate provided in the blood glucose level measuring apparatus from 1st Embodiment to 5th Embodiment schematically. It is a perspective view which shows another example of the heat radiation plate provided in the blood glucose level measuring apparatus from 1st Embodiment to 5th Embodiment schematically.
  • FIG. 1 is a cross-sectional view schematically showing the blood glucose level measuring device of the first embodiment.
  • FIG. 2 is a cross-sectional view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the first embodiment.
  • FIG. 3 is a graph showing an example of an absorption spectrum of glucose and an infrared radiation intensity spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the first embodiment.
  • the vertical axis represents the absorbance and the radiant intensity.
  • the wave number is taken on the horizontal axis.
  • the blood glucose level measuring device 1 of the first embodiment shown in FIG. 1 is a wavelength-independent blood glucose level measuring device in which each of the infrared rays IR1 and IR2 irradiated to the living body LB has only one peak wavelength.
  • the blood glucose level measuring device 1 includes an infrared radiator 11, an infrared radiator 12, an optical system 21, an optical system 22, a shutter 31, a shutter 32, a detector 41, a controller 51, and a calculator. 61 is provided.
  • the infrared radiators 11 and 12 radiate infrared rays IR1 and IR2, respectively.
  • the infrared IR1 and IR2 have peak wavelengths ⁇ 1 and ⁇ 2, respectively.
  • the peak wavelengths ⁇ 1 and ⁇ 2 are different from each other. Therefore, the infrared IR1 and IR2 have different peak wavelengths from each other.
  • the optical systems 21 and 22 collect the heat-radiated infrared rays IR1 and IR2, respectively.
  • the shutters 31 and 32 open and close the optical paths of the heat-radiated infrared rays IR1 and IR2, respectively.
  • the detector 41 detects an amount D that reflects the amount of infrared rays IR1 and IR2 absorbed by glucose in the living body LB.
  • the detector 41 is an infrared detector.
  • the detected amount D is the intensity of the incoming infrared AIR that arrives from the living body LB while the infrared rays IR1 and IR2 are irradiated on the living body LB.
  • the infrared detector is a photodiode.
  • the infrared detector may be an infrared detector other than the photodiode.
  • the living body LB is a human body.
  • the living body LB may be a living body other than the human body.
  • the infrared rays IR1 and IR2 are irradiated to, for example, a finger or an ear. Further, the detector 41 detects the intensity of the incoming infrared AIR coming from, for example, a finger or an ear.
  • the calculator 61 calculates the blood glucose level from the detected amount D.
  • the controller 51 controls the infrared radiators 11 and 12 to radiate the infrared rays IR1 and IR2 to the infrared radiators 11 and 12, respectively. Further, the controller 51 controls the shutters 31 and 32 to open and close the optical paths of the infrared IR1 and IR2 to the shutters 31 and 32, respectively.
  • the infrared radiators 11 and 12 are two infrared radiators. Further, infrared rays IR1 and IR2 are two infrared rays. Further, the optical systems 21 and 22 are two optical systems. Further, the shutters 31 and 32 are two shutters. However, the number of infrared radiators, the number of infrared rays, the number of optical systems and the number of shutters may be increased or decreased.
  • the peak wavelength ⁇ 1 of the infrared IR1 is the wavelength at which the absorbance of glucose is minimized. Infrared IR1 is used for calibration. The peak wavelength ⁇ 1 may be a wavelength other than the wavelength at which the absorbance of glucose is minimized. Further, the peak wavelength ⁇ 2 of the infrared IR2 is a wavelength at which the absorbance of glucose is maximized. Infrared IR2 is used for measurement. The peak wavelength ⁇ 2 may be a wavelength other than the wavelength at which the absorbance of glucose is maximized.
  • the controller 51 causes the shutters 31 and 32 to close the optical paths of the infrared IR1 and IR2.
  • the controller 51 starts the infrared radiators 11 and 12 to thermally radiate the infrared rays IR1 and IR2 after the optical paths of the infrared IR1 and IR2 are closed.
  • the controller 51 causes the shutter 31 to open the optical path of the infrared IR1 after the infrared IR1 and IR2 are stabilized. As a result, the infrared IR1 is irradiated to the living body LB. At this time, the infrared IR1 is focused on the surface of the living body LB by the optical system 21.
  • the controller 51 causes the shutter 31 to close the optical path of the infrared IR1 when a set time has elapsed since the optical path of the infrared IR1 was opened. As a result, the infrared IR1 is not irradiated to the living body LB.
  • the detector 41 detects the intensity D of the incoming infrared IR coming from the living body LB while the infrared IR1 is irradiating the living body LB.
  • the controller 51 calibrates the blood glucose level measuring device 1 based on the detected intensity D.
  • the controller 51 causes the shutter 32 to open the optical path of the infrared IR2 after the blood glucose level measuring device 1 is calibrated. As a result, the infrared IR2 is irradiated to the living body LB. At this time, the infrared IR2 is focused on the surface of the living body LB by the optical system 22.
  • the controller 51 causes the shutter 32 to close the optical path of the infrared IR2 when a set time has elapsed since the optical path of the infrared IR2 was opened. As a result, the infrared IR2 is not irradiated to the living body LB.
  • controller 51 ends the thermal radiation of the infrared rays IR1 and IR2 to the infrared radiators 11 and 12 after the optical path of the infrared IR2 is closed.
  • the detector 41 detects the intensity D of the incoming infrared IR coming from the living body LB while the infrared IR2 is irradiating the living body LB.
  • the calculator 61 calculates the blood glucose level from the detected intensity D.
  • the infrared radiators 11 and 12 have radiation surfaces 11R and 12R, respectively.
  • the infrared radiators 11 and 12 thermally radiate infrared IR1 and IR2 from the radiation surfaces 11R and 12R, respectively.
  • the infrared radiators 11 and 12 include metamaterials 111 and 121, respectively.
  • the metamaterials 111 and 121 are arranged along the radial surfaces 11R and 12R, respectively.
  • Metamaterials 111 and 121 have different structures from each other.
  • the peak wavelengths ⁇ 1 and ⁇ 2 are wavelengths corresponding to the structures of the metamaterials 111 and 121, respectively. Therefore, the peak wavelengths ⁇ 1 and ⁇ 2 are different from each other.
  • the metamaterials 111 and 121 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 11R and 12R, respectively. Further, the peak wavelengths ⁇ 1 and ⁇ 2 are wavelengths corresponding to the patterns of the periodic structures 111 and 121, respectively.
  • the radial surfaces 11R and 12R are two groups of radial surfaces.
  • the metamaterials 111 and 121 are two groups of metamaterials.
  • the number of radiation surface groups and the number of metamaterial groups may be increased or decreased.
  • each of the infrared radiators 11 and 12 includes a heat radiation plate 71A, a heat radiation plate 71B, and a heater 81.
  • the heater 81 heats the heat radiating plates 71A and 71B to supply heat to the heat radiating plates 71A and 71B.
  • the heat radiating plates 71A and 71B convert the supplied heat into the infrared IRA and IRB shown in FIG. 1, respectively. Further, the heat radiating plates 71A and 71B radiate infrared rays IRA and IRB, respectively.
  • each of the infrared radiators 11 and 12 has radiation surfaces 71AR and 71BR. Further, each of the infrared radiators 11 and 12 thermally radiates infrared IRA and IRB from the radiation surfaces 71AR and 71BR, respectively.
  • the radiation surfaces 71AR and 71BR of the infrared radiator 11 constitute the radiation surface 11R.
  • the radiation surfaces 71AR and 71BR of the infrared radiator 12 constitute the radiation surface 12R.
  • the infrared IRA and IRB emitted by the infrared radiator 11 constitute the infrared IR1.
  • the infrared IRA and IRB emitted by the infrared radiator 12 constitute the infrared IR2.
  • the heat radiating plates 71A and 71B include metamaterials 71A1 and 71B1, respectively. Therefore, each of the infrared radiators 11 and 12 includes metamaterials 71A1 and 71B1.
  • the metamaterials 71A1 and 71B1 are arranged along the radial surfaces 71AR and 71BR, respectively.
  • the metamaterials 71A1 and 71B1 provided in the infrared radiator 11 constitute the metamaterial 111.
  • the metamaterials 71A1 and 71B1 provided in the infrared radiator 12 constitute the metamaterial 121.
  • Metamaterials 71A1 and 71B1 have the same structure.
  • the peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the structures of the metamaterials 71A1 and 71B1, respectively. Therefore, the peak wavelengths of the infrared IRA and IRB are the same wavelength.
  • the metamaterials 71A1 and 71B1 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 71AR and 71BR, respectively. Further, the peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the patterns of the periodic structures 71A1 and 71B1, respectively.
  • the heat radiating plates 71A and 71B provided in each of the infrared radiators 11 and 12 are two heat radiating plates. Further, the infrared rays IRA and IRB thermally radiated by each of the infrared radiators 11 and 12 are two infrared rays. Further, the radiation surfaces 71AR and 71BR of the infrared radiators 11 and 12, respectively, are two radiation surfaces. Further, the metamaterials 71A1 and 71B1 provided in each of the infrared radiators 11 and 12 are two metamaterials. Further, the heater 81 is sandwiched between two heat radiating plates 71A and 71B.
  • the optical systems 21 and 22 include parabolic mirrors 101 and 102, respectively. Further, the optical systems 21 and 22 include lenses 141 and 142, respectively.
  • the parabolic mirrors 101 and 102 have focal points 101F and 102F, respectively. Further, the parabolic mirrors 101 and 102 have reflective surfaces 101R and 102R, respectively. Further, the parabolic mirrors 101 and 102 have rotational symmetry axes 101S and 102S, respectively.
  • the reflective surfaces 101R and 102R are rotating paraboloids formed by rotating a parabola around the axes of rotational symmetry 101S and 102S, respectively.
  • Infrared radiators 11 and 12 are arranged at focal points 101F and 102F, respectively.
  • the reflecting surfaces 101R and 102R reflect the heat-radiated infrared rays IR1 and IR2, respectively. Since the infrared radiators 11 and 12 are arranged at the focal points 101F and 102F, respectively, the reflected infrared rays IR1 and IR2 become parallel light fluxes.
  • the lenses 141 and 142 collect the reflected infrared rays IR1 and IR2, respectively.
  • the optical systems 21 and 22 can collect the heat-radiated infrared rays IR1 and IR2, respectively.
  • the radiation surfaces 71AR and 71BR of the infrared radiator 11 face a direction perpendicular to the direction in which the rotational symmetry axis 101S extends, and face different directions from each other.
  • the radiation surfaces 71AR and 71BR of the infrared radiator 11 face 180 ° different directions from each other.
  • the radiation surfaces 71AR and 71BR of the infrared radiator 12 face in a direction perpendicular to the direction in which the rotational symmetry axis 102S extends, and face in different directions from each other.
  • the radiation surfaces 71AR and 71BR of the infrared radiator 12 face 180 ° different directions from each other.
  • FIG. 4 is a perspective view schematically showing a heat radiation plate provided in the blood glucose level measuring device of the first embodiment.
  • each of the heat radiating plates 71A and 71B includes a substrate 151, a conductor layer 152, a dielectric layer 153, and a conductor pattern 154.
  • the conductor layer 152, the dielectric layer 153, and the conductor pattern 154 are arranged on one main surface of the substrate 151.
  • the dielectric layer 153 is arranged on the conductor layer 152.
  • the conductor pattern 154 is arranged on the dielectric layer 153.
  • the conductor pattern 154 includes a plurality of pattern pieces 161.
  • the plurality of pattern pieces 161 are arranged in a matrix.
  • a plurality of pattern pieces 161 may be arranged in a non-matrix form.
  • the substrate 151 is composed of SiO 2.
  • the substrate 151 may be made of a material other than SiO 2.
  • the conductor layer 152 is made of Au.
  • the conductor layer 152 may be made of a material other than Au.
  • the dielectric layer 153 is composed of Al 2 O 3.
  • the dielectric layer 153 may be made of a material other than Al 2 O 3.
  • the conductor pattern 154 is composed of Au.
  • the conductor pattern 154 may be made of a material other than Au.
  • the conductor layer 152, the dielectric layer 153, and the conductor pattern 154 provided in the heat radiating plates 71A and 71B constitute the metamaterials 71A1 and 71B1, respectively.
  • the conductor layer 152, the dielectric layer 153, and the conductor pattern 154 provided in the heat radiating plates 71A and 71B have a surface fine structure having a period similar to the wavelengths of the infrared IRA and IRB, respectively.
  • the heater 81 heats the heat radiating plates 71A and 71B from the other main surface side of the substrate 151.
  • infrared IRA and IRB are thermally radiated from the radiation surfaces 71AR and 71BR on which the conductor pattern 154 is arranged, respectively.
  • the heat-radiated infrared IRA and IRB contain a large amount of specific wavelength components that resonate with the conductor pattern 154. Therefore, the heat-radiated infrared rays IRA and IRB have a peak wavelength corresponding to the conductor pattern 154. Therefore, the heat radiating plates 71A and 71B function as selective radiating plates that selectively radiate a specific wavelength component.
  • the specific wavelength component can be changed by changing the conductor pattern 154.
  • FIG. 5 shows an example of an infrared radiant energy spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the first embodiment and an infrared radiant energy spectrum thermally radiated by a normal infrared heater. It is a graph. In FIG. 5, radiant energy is taken on the vertical axis. Further, the wavelength is taken on the horizontal axis.
  • the width of the peak of the infrared radiant energy spectrum emitted by the infrared radiators 11 and 12 is significantly narrower than the width of the peak of the infrared radiant energy spectrum thermally emitted by a normal infrared heater. It has become.
  • the blood glucose level measuring device 1 can measure the blood glucose level non-invasively.
  • the heat radiating plates 71A and 71B convert the heat supplied by the heater 81 into infrared IRA and IRB. Therefore, the infrared radiators 11 and 12 do not require a cooling system. This is because if the temperatures of the infrared radiators 11 and 12 are too high, the heat supplied by the heater 81 may simply be reduced.
  • Infrared radiators 11 and 12 also have high energy efficiency.
  • the blood glucose level measuring device 1 the amount of infrared IR1 and IR2 absorbed by glucose using the infrared IR1 and IR2 heat-radiated by the infrared radiators 11 and 12 which do not require a cooling system and have high energy efficiency. Is identified. As a result, the size of the blood glucose level measuring device 1 that measures the blood glucose level in a non-invasive manner can be reduced. In addition, the cost of the blood glucose level measuring device 1 can be reduced. In addition, the output of the light source provided in the blood glucose level measuring device 1 can be increased.
  • the infrared radiators 11 and 12 have an advantage that the radiant energy of the infrared IR1 and IR2 that radiate heat can be easily increased by increasing the area of the radiation surfaces 11R and 12R.
  • the infrared radiators 11 and 12 have a characteristic that the thermal radiation of the infrared IR1 and IR2 cannot be started and stopped instantaneously.
  • the optical paths of the infrared IR1 and IR2 are opened and closed by the shutters 31 and 32, the heat radiation of the infrared IR1 and IR2 cannot be started and stopped instantaneously.
  • the irradiation of the infrared IR1 and IR2 to the living body LB can be started and stopped instantly.
  • the infrared rays IR1 and IR2 irradiated to the living body LB may be converted into pulsed infrared rays, and the intensity of the incoming infrared rays AIR may be detected in synchronization with the pulsed infrared rays.
  • FIG. 6 is a cross-sectional view schematically illustrating the blood glucose level measuring device of the second embodiment.
  • FIG. 7 is a cross-sectional view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the second embodiment.
  • FIG. 3 is also a graph showing an example of a glucose absorbance spectrum and an infrared radiation intensity spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the second embodiment.
  • FIG. 4 is also a perspective view schematically illustrating a heat radiation plate provided in the blood glucose level measuring device of the second embodiment.
  • the blood glucose level measuring device 2 of the second embodiment shown in FIG. 6 is different from the blood glucose level measuring device 1 of the first embodiment shown in FIG. Regarding the points not explained, the same configuration as that adopted in the blood glucose level measuring device 1 is also adopted in the blood glucose level measuring device 2.
  • the blood glucose level measuring device 2 of the second embodiment shown in FIG. 6 is a wavelength-independent blood glucose level measuring device in which each of the infrared rays IR1 and IR2 irradiated to the living body LB has only one peak wavelength.
  • each of the infrared radiators 11 and 12 includes a heat radiating plate 70 and a heater 81.
  • the heater 81 heats the heat radiating plate 70 and supplies heat to the heat radiating plate 70.
  • the heat radiating plate 70 converts the supplied heat into the infrared IR shown in FIG. Further, the heat radiating plate 70 radiates infrared IR heat.
  • the heat radiation plate 70 has a radiation surface 70R. Therefore, each of the infrared radiators 11 and 12 has a radiation surface 70R. Further, each of the infrared radiators 11 and 12 thermally radiates the infrared IR from the radiation surface 70R.
  • the radiation surface 70R of the infrared radiator 11 constitutes the radiation surface 11R.
  • the radiation surface 70R of the infrared radiator 12 constitutes the radiation surface 12R.
  • the infrared IR emitted by the infrared radiator 11 constitutes the infrared IR1.
  • the infrared IR emitted by the infrared radiator 12 constitutes the infrared IR2.
  • the heat radiation plate 70 includes a metamaterial 701. Therefore, each of the infrared radiators 11 and 12 includes a metamaterial 701.
  • the metamaterial 701 is arranged along the radial surface 70R.
  • the metamaterial 701 provided in the infrared radiator 11 constitutes the metamaterial 111.
  • the metamaterial 701 provided in the infrared radiator 12 constitutes the metamaterial 121.
  • the metamaterial 701 is a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radiation surface 70. Further, the peak wavelength of the infrared IR is a wavelength corresponding to the pattern of the periodic structure 701.
  • the heat radiating plate 70 provided in each of the infrared radiators 11 and 12 is one heat radiating plate. Further, the infrared IR thermally radiated by each of the infrared radiators 11 and 12 is one infrared ray. Further, each radiation surface 70R of the infrared radiators 11 and 12 is one radiation surface. Further, the metamaterial 701 provided in each of the infrared radiators 11 and 12 is one metamaterial.
  • the optical systems 21 and 22 include waveguides 201 and 202, respectively.
  • the waveguides 201 and 202 have reflective surfaces 201R and 202R, respectively. Further, the waveguides 201 and 202 have outlets 201E and 202E, respectively. Further, the waveguides 201 and 202 have in-tube spaces 201S and 202S, respectively.
  • the reflective surfaces 201R and 202R are the inner surfaces of the waveguides 201 and 202, respectively.
  • the in-pipe spaces 201S and 202S are surrounded by the reflective surfaces 201R and 202R, respectively.
  • the in-pipe spaces 201S and 202S reach the outlets 201E and 202E, respectively.
  • the in-pipe spaces 201S and 202S have diameters that decrease as they approach the outlets 201E and 202E, respectively.
  • the infrared radiators 11 and 12 are arranged in the pipe spaces 201S and 202S, respectively.
  • the radial surfaces 11R and 12R face toward the exits 201E and 202E.
  • the reflecting surfaces 201R and 202R reflect the heat-radiated infrared rays IR1 and IR2, respectively.
  • the outlet 201E emits the heat-radiated infrared IR1 and the heat-radiated and reflected infrared IR1.
  • the outlet 202E emits the heat-radiated infrared IR2 and the heat-radiated and reflected infrared IR2. Since the in-pipe spaces 201S and 202S have diameters that become smaller as they approach the exit ports 201E and 202E, the emitted infrared rays IR1 and IR2 are focused.
  • the size of the blood glucose level measuring device 2 that measures the blood glucose level in a non-invasive manner can be reduced as in the blood glucose level measuring device 1.
  • the cost of the blood glucose level measuring device 2 can be reduced.
  • the output of the light source provided in the blood glucose level measuring device 2 can be increased.
  • FIG. 8 is a cross-sectional view schematically illustrating the blood glucose level measuring device of the third embodiment.
  • FIG. 9 is a cross-sectional view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the third embodiment.
  • FIG. 10 is a graph showing an example of an absorption spectrum of glucose and an infrared radiation intensity spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the third embodiment.
  • the vertical axis represents the absorbance and the radiant intensity.
  • the wave number is taken on the horizontal axis.
  • FIG. 4 is also a perspective view schematically illustrating a heat radiation plate provided in the blood glucose level measuring device of the third embodiment.
  • the blood glucose level measuring device 3 of the third embodiment shown in FIG. 8 is different from the blood glucose level measuring device 1 of the first embodiment shown in FIG. Regarding the points not explained, the same configuration as that adopted in the blood glucose level measuring device 1 is also adopted in the blood glucose level measuring device 3.
  • the blood glucose level measuring device 3 of the third embodiment shown in FIG. 8 is a wavelength mixed type blood glucose level measuring device in which each of the infrared rays IR1 and IR2 irradiated to the living body LB has two or more peak wavelengths different from each other. ..
  • the infrared IR1 illustrated in FIG. 8 has peak wavelengths ⁇ 1 and ⁇ 2.
  • the infrared IR2 illustrated in FIG. 8 has peak wavelengths ⁇ 3 and ⁇ 4.
  • the peak wavelengths ⁇ 3 and ⁇ 4 are different from the peak wavelengths ⁇ 1 and ⁇ 2. Therefore, the infrared IR1 and IR2 have different peak wavelengths from each other.
  • Metamaterials 111 and 121 have different structures from each other.
  • the peak wavelengths ⁇ 1 and ⁇ 2 are wavelengths corresponding to the structure of the metamaterial 111.
  • the peak wavelengths ⁇ 3 and ⁇ 4 are wavelengths corresponding to the structure of the metamaterial 121. Therefore, the peak wavelengths ⁇ 3 and ⁇ 4 are different from the peak wavelengths ⁇ 1 and ⁇ 2.
  • the metamaterials 111 and 121 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 11R and 12R, respectively. Further, the peak wavelengths ⁇ 1 and ⁇ 2 are wavelengths corresponding to the pattern of the periodic structure 111. Further, the peak wavelengths ⁇ 3 and ⁇ 4 are wavelengths corresponding to the pattern of the periodic structure 121.
  • Each of the infrared radiators 11 and 12 thermally radiates infrared IRA and IRB.
  • the metamaterials 71A1 and 71B1 have different structures from each other.
  • the peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the structures of the metamaterials 71A1 and 71B1, respectively. Therefore, the peak wavelengths of the infrared IRA and IRB are different from each other.
  • the metamaterials 71A1 and 71B1 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 71AR and 71BR, respectively. Further, the peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the patterns of the periodic structures 71A1 and 71B1, respectively.
  • the size of the blood glucose level measuring device 3 that measures the blood glucose level in a non-invasive manner can be reduced as in the blood glucose level measuring device 1.
  • the cost of the blood glucose level measuring device 3 can be reduced.
  • the output of the light source provided in the blood glucose level measuring device 3 can be increased.
  • FIG. 11 is a cross-sectional view schematically illustrating the blood glucose level measuring device of the fourth embodiment.
  • FIG. 12 is a cross-sectional view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the fourth embodiment.
  • FIG. 13 is a plan view schematically showing an infrared radiator provided in the blood glucose level measuring device of the fourth embodiment.
  • FIG. 10 is also a graph showing an example of a glucose absorbance spectrum and an infrared radiation intensity spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the fourth embodiment.
  • FIG. 4 is also a perspective view schematically illustrating a heat radiation plate provided in the blood glucose level measuring device of the fourth embodiment.
  • the blood glucose level measuring device 4 of the fourth embodiment shown in FIG. 11 is different from the blood glucose level measuring device 2 of the second embodiment shown in FIG. Regarding the points not explained, the same configuration as that adopted in the blood glucose level measuring device 2 is also adopted in the blood glucose level measuring device 4.
  • the blood glucose level measuring device 4 of the fourth embodiment shown in FIG. 11 is a wavelength mixed type blood glucose level measuring device in which each of the infrared rays IR1 and IR2 irradiated to the living body LB has two or more peak wavelengths different from each other. ..
  • the infrared IR1 illustrated in FIG. 11 has peak wavelengths ⁇ 1 and ⁇ 2.
  • the infrared IR2 illustrated in FIG. 11 has peak wavelengths ⁇ 3 and ⁇ 4.
  • the peak wavelengths ⁇ 3 and ⁇ 4 are different from the peak wavelengths ⁇ 1 and ⁇ 2. Therefore, the infrared IR1 and IR2 have different peak wavelengths from each other.
  • Metamaterials 111 and 121 have different structures from each other.
  • the peak wavelengths ⁇ 1 and ⁇ 2 are wavelengths corresponding to the structure of the metamaterial 111.
  • the peak wavelengths ⁇ 3 and ⁇ 4 are wavelengths corresponding to the structure of the metamaterial 121. Therefore, the peak wavelengths ⁇ 3 and ⁇ 4 are different from the peak wavelengths ⁇ 1 and ⁇ 2.
  • the metamaterials 111 and 121 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 11R and 12R, respectively. Further, the peak wavelengths ⁇ 1 and ⁇ 2 are wavelengths corresponding to the patterns of the periodic structures 111 and 121, respectively.
  • the heat radiation plate 70 has radiation surfaces 71AR and 71BR. Therefore, each of the infrared radiators 11 and 12 has radiation surfaces 71AR and 71BR. Further, each of the infrared radiators 11 and 12 thermally radiates the infrared IRA and IRB shown in FIG. 11 from the radiation surfaces 71AR and 71BR, respectively.
  • the radiation surfaces 71AR and 71BR of the infrared radiator 11 constitute the radiation surface 11R.
  • the radiation surfaces 71AR and 71BR of the infrared radiator 12 constitute the radiation surface 12R.
  • the infrared IRA and IRB thermally radiated by the infrared radiator 11 constitute the infrared IR1.
  • the infrared IRA and IRB thermally radiated by the infrared radiator 12 constitute the infrared IR2.
  • the heat radiation plate 70 includes metamaterials 71A1 and 71B1, respectively. Therefore, each of the infrared radiators 11 and 12 includes metamaterials 71A1 and 71B1.
  • the metamaterials 71A1 and 71B1 are arranged along the radial surfaces 71AR and 71BR, respectively.
  • the metamaterials 71A1 and 71B1 provided in the infrared radiator 11 constitute the metamaterial 111.
  • the metamaterials 71A1 and 71B1 provided in the infrared radiator 12 constitute the metamaterial 121.
  • the metamaterials 71A1 and 71B1 have different structures from each other.
  • the peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the structures of the metamaterials 71A1 and 71B1, respectively. Therefore, the peak wavelengths of the infrared IRA and IRB are different from each other.
  • the metamaterials 71A1 and 71B1 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 71AR and 71BR, respectively. Further, the peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the patterns of the periodic structures 71A1 and 71B1, respectively.
  • the size of the blood glucose level measuring device 4 that measures the blood glucose level in a non-invasive manner can be reduced as in the blood glucose level measuring device 1.
  • the cost of the blood glucose level measuring device 4 can be reduced.
  • the output of the light source provided in the blood glucose level measuring device 4 can be increased.
  • FIG. 14 is a cross-sectional view schematically showing the blood glucose level measuring device of the fifth embodiment.
  • FIG. 15 is a cross-sectional view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the fifth embodiment.
  • FIG. 16 is also a plan view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the fifth embodiment.
  • FIG. 3 is also a graph showing an example of a glucose absorbance spectrum and an infrared radiation intensity spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the fifth embodiment.
  • FIG. 4 is also a perspective view schematically illustrating a heat radiation plate provided in the blood glucose level measuring device of the fifth embodiment.
  • the blood glucose level measuring device 5 of the fifth embodiment shown in FIG. 14 is different from the blood glucose level measuring device 1 of the first embodiment shown in FIG. Regarding the points not explained, the same configuration as that adopted in the blood glucose level measuring device 1 is also adopted in the blood glucose level measuring device 5.
  • the blood glucose level measuring device 5 of the fifth embodiment shown in FIG. 14 is a wavelength-independent blood glucose level measuring device in which each of the infrared rays IR1 and IR2 irradiated to the living body LB has only one peak wavelength.
  • the blood glucose level measuring device 5 of the fifth embodiment includes an infrared radiator 10, a shutter 31, a shutter 32, a detector 41, a controller 51, and a calculator 61.
  • the detector 41 detects an amount D that reflects the amount of infrared rays IR1 and IR2 absorbed by glucose in the living body LB.
  • the detector 41 is an acoustic wave detector.
  • the detected amount D is the intensity of the acoustic wave AW arriving from the living body LB while the infrared rays IR1 and IR2 are irradiated on the living body LB.
  • the acoustic wave detector is a microphone.
  • the acoustic wave detector may be an acoustic wave detector other than a microphone.
  • the acoustic wave AW is an acoustic wave generated by the photoacoustic effect when glucose absorbs infrared rays IR1 and IR2.
  • the infrared radiator 10 has a plurality of radiation surfaces 11R and 12R.
  • the infrared radiator 10 thermally radiates infrared IR1 and IR2 from the radiation surfaces 11R and 12R, respectively.
  • the radial surfaces 11R and 12R face the same direction.
  • the infrared radiator 10 includes metamaterials 111 and 121.
  • the metamaterials 111 and 121 are arranged along the radial surfaces 11R and 12R, respectively.
  • Metamaterials 111 and 121 have different structures from each other.
  • the peak wavelengths ⁇ 1 and ⁇ 2 are wavelengths corresponding to the structures of the metamaterials 111 and 121, respectively. Therefore, the peak wavelengths ⁇ 1 and ⁇ 2 are different from each other. Therefore, the infrared IR1 and IR2 have different peak wavelengths from each other.
  • the metamaterials 111 and 121 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 11R and 12R, respectively. Further, the peak wavelengths ⁇ 1 and ⁇ 2 are wavelengths corresponding to the patterns of the periodic structures 111 and 121, respectively.
  • the infrared radiator 10 includes a heat radiating plate 70 and a heater 81.
  • the heat radiation plate 70 has radiation surfaces 11R and 12R.
  • the size of the blood glucose level measuring device 5 that measures the blood glucose level in a non-invasive manner can be reduced as in the blood glucose level measuring device 1.
  • the cost of the blood glucose level measuring device 5 can be reduced.
  • the output of the light source provided in the blood glucose level measuring device 5 can be increased.
  • the intensity of the acoustic wave AW arriving from a wide range can be easily detected. Therefore, it is not necessary to collect the infrared rays IR1 and IR2, and the optical system that collects the infrared rays IR1 and IR2 can be omitted.
  • FIGS. 17 to 19 are perspective views schematically illustrating another example of the heat radiating plate provided in the blood glucose level measuring devices of the first to fifth embodiments.
  • Each of the heat radiating plates 71A, 71B and 70 may be a heat radiating plate other than the heat radiating plate shown in FIG.
  • each of the heat radiating plates 71A, 71B and 70 may be the heat radiating plate shown in FIG. 17, FIG. 18 or FIG.
  • Each of the heat radiating plates 71A, 71B and 70 illustrated in FIG. 17 includes a conductor layer 801.
  • a plurality of microcavities 802 are formed in the conductor layer 801.
  • the plurality of microcavities 802 are arranged in a matrix.
  • the conductor layer 801 provided in the heat radiating plates 71A, 71B and 70 constitutes the metamaterials 71A1, 71B1 and 701, respectively.
  • Each of the heat radiating plates 71A, 71B and 70 illustrated in FIG. 18 includes a conductor layer 811, a dielectric layer 812 and a conductor pattern 813.
  • the dielectric layer 812 is arranged on the conductor layer 811.
  • the conductor pattern 813 is arranged on the dielectric layer 812.
  • the conductor pattern 813 includes a plurality of split rings 814.
  • the plurality of split rings 814 are arranged in a matrix.
  • the conductor layer 811, the dielectric layer 812, and the conductor pattern 813 provided in the heat radiating plates 71A, 71B and 70 constitute the metamaterials 71A1, 71B1 and 701, respectively.
  • Each of the heat radiating plate 71A, 71B and 70, illustrated in FIG. 19 comprises a W layer 821, SiO 2 layer 822, Ge layer 823, SiO 2 layer 824, Ge layer 825, SiO 2 layer 826 and Ge layers 827 .
  • the W layer 821, the SiO 2 layer 822, the Ge layer 823, the SiO 2 layer 824, the Ge layer 825, the SiO 2 layer 826, and the Ge layer 827 are laminated from bottom to top in the order described.
  • the W layer 821, SiO 2 layer 822, Ge layer 823, SiO 2 layer 824, Ge layer 825, SiO 2 layer 828 and Ge layer 827 provided in the heat radiating plates 71A, 71B and 70 are metamaterials 71A1, 71B1 and 701. Are configured respectively.

Abstract

The present invention reduces the size of a blood sugar measuring device for noninvasively measuring the blood sugar level, reduces the cost of the blood sugar measuring device, and increases the output of a light source provided in the blood sugar measuring device. The blood sugar measuring device is provided with an infrared radiator and a detector. The infrared radiator has a radiation surface. The infrared radiator is provided with a metamaterial. The infrared radiator emits infrared heat from the radiation surface. The peak wavelength of infrared radiation depends on the structure of the metamaterial. The detector detects an amount that reflects the amount of infrared radiation absorbed by glucose in a living body.

Description

血糖値測定装置Glucose meter
 本発明は、血糖値測定装置に関する。 The present invention relates to a blood glucose level measuring device.
 糖尿病の治療が行われる場合は、インシュリン注射が行われる。インシュリン注射が行われる場合は、血糖値の測定が行われる。血糖値の測定は、インシュリン注射のタイミング及び治療の効果を把握するために行われる。 When diabetes is treated, insulin injection is given. If insulin injections are given, blood glucose levels are measured. Blood glucose measurement is performed to understand the timing of insulin injection and the effect of treatment.
 血糖値の測定が行われる際には、針の先端が血管内に達するまで針が人体に刺されて血液が採取される。また、採取された血液が検体チップに接触させられる。針、検体チップ等の消耗品は、血糖値の測定が行われるたびに廃棄される。しかし、針の先端が血管内に達するまで針を人体に刺す行為は、侵襲的である。このため、当該行為は、痛み及び感染症に罹患する危険を伴う。また、針、検体チップ等の消耗品を血糖値の測定が行われるたびに廃棄することは、針、検体チップ等の消耗品に大きな費用を費やさなければならないという問題を引き起こす。針、検体チップ等の消耗品に1年間で費やされるコストは、日本国においては、20万円程度に達する。これらの問題は、糖尿病の予防又は血糖値の改善のために血糖値の測定を行うことの障害ともなる。 When the blood glucose level is measured, the needle is pierced into the human body until the tip of the needle reaches the inside of the blood vessel, and blood is collected. In addition, the collected blood is brought into contact with the sample chip. Consumables such as needles and sample chips are discarded each time the blood glucose level is measured. However, the act of sticking the needle into the human body until the tip of the needle reaches the inside of the blood vessel is invasive. For this reason, the practice carries the risk of suffering from pain and infection. Further, disposing of consumables such as needles and sample chips every time the blood glucose level is measured causes a problem that a large cost must be spent on consumables such as needles and sample chips. The cost of consumables such as needles and sample chips in one year reaches about 200,000 yen in Japan. These problems also hinder the measurement of blood glucose levels for the prevention of diabetes or the improvement of blood glucose levels.
 血糖値の測定を低侵襲で行うことも検討されている。血糖値の測定が低侵襲で行われる場合は、針の先端が皮膚内に達するまで針が人体に刺されて間質液が採取される。針の先端は、血管内に達しなくてもよい。また、採取された間質液がパッチに取り入れられる。また、取り入れられた間質液中のグルコース濃度が測定される。針、パッチ等の消耗品は、約2週間で交換される。しかし、針の先端が皮膚内に達するまで針を人体に刺す行為も、感染症に罹患する危険を伴う。また、針、パッチ等の消耗品を約2週間で交換することは、針、パッチ等の消耗品費用を費やさなければならないという問題を引き起こす。これらの問題は、糖尿病の予防又は血糖値の改善のために血糖値の測定を行うことの障害ともなる。 It is also being considered to measure the blood glucose level with minimal invasiveness. When blood glucose measurement is performed with minimal invasiveness, the needle is pierced into the human body until the tip of the needle reaches the inside of the skin, and interstitial fluid is collected. The tip of the needle does not have to reach the inside of the blood vessel. In addition, the collected interstitial fluid is incorporated into the patch. In addition, the glucose concentration in the interstitial fluid taken in is measured. Consumables such as needles and patches are replaced in about 2 weeks. However, the act of sticking the needle into the human body until the tip of the needle reaches the inside of the skin also carries the risk of contracting an infection. In addition, replacing consumables such as needles and patches in about two weeks causes a problem that the cost of consumables such as needles and patches must be spent. These problems also hinder the measurement of blood glucose levels for the prevention of diabetes or the improvement of blood glucose levels.
 このため、血糖値の測定を非侵襲で行うことも検討されている。血糖値の測定が非侵襲で行われる場合は、赤外線が人体に照射される。また、赤外線が人体に照射されている間に人体から到来する赤外線の強度が検出される。また、間質液中のグルコースによる赤外線の吸収量から間質液中のグルコース濃度が算出される。血糖値の測定が非侵襲で行われた場合は、痛み及び感染症に罹患する危険を解消することができる。また、消耗品に費やされる費用をなくすことができる。このため、血糖値の測定を非侵襲で行うことができるようになった場合は、糖尿病の予防又は血糖値の改善のために血糖値の測定を行うこともできるようになる。 Therefore, it is also being considered to measure the blood glucose level non-invasively. When blood glucose measurement is performed non-invasively, infrared rays are applied to the human body. In addition, the intensity of infrared rays coming from the human body is detected while the infrared rays are radiated to the human body. In addition, the glucose concentration in the interstitial fluid is calculated from the amount of infrared rays absorbed by the glucose in the interstitial fluid. If blood glucose measurements are made non-invasively, the risk of suffering from pain and infection can be eliminated. In addition, the cost spent on consumables can be eliminated. Therefore, when the blood glucose level can be measured non-invasively, the blood glucose level can be measured for the prevention of diabetes or the improvement of the blood glucose level.
 特許文献1は、血糖計を開示する。血糖計においては、中赤外光のレーザー光が、被験者の生体上皮に対して照射される。また、レーザー光の拡散反射光が、光検出器で検出される。また、グルコースによる吸収から間質液中のグルコース濃度が測定される。レーザー光を発振する光源は、QスイッチNd:YAGレーザ等及び光パラメトリック発振器(OPO)を備える(段落0021-0023)。 Patent Document 1 discloses a glucose meter. In the glucose meter, a laser beam of mid-infrared light is applied to the biological epithelium of the subject. Further, the diffusely reflected light of the laser light is detected by the photodetector. In addition, the glucose concentration in the interstitial fluid is measured from the absorption by glucose. The light source that oscillates the laser beam includes a Q switch Nd: YAG laser or the like and an optical parametric oscillator (OPO) (paragraphs 0021-0023).
 特許文献2は、測定装置を開示する。測定装置においては、フーリエ変換赤外分光(FTIR)装置から出力される赤外光が、サンプルの赤外光吸収スペクトルに相当する減衰を受ける。また、減衰を受けた光が、検出器で検出される。また、グルコースの吸光スペクトルを用いて血糖値が測定される(段落0022-0023)。 Patent Document 2 discloses a measuring device. In the measuring device, the infrared light output from the Fourier transform infrared spectroscopy (FTIR) device undergoes attenuation corresponding to the infrared light absorption spectrum of the sample. Also, the attenuated light is detected by the detector. In addition, the blood glucose level is measured using the absorption spectrum of glucose (paragraph 0022-0023).
特開2018-199080号公報Japanese Unexamined Patent Publication No. 2018-199080 特開2019-37752号公報Japanese Unexamined Patent Publication No. 2019-37752
 非侵襲で血糖値の測定を行う血糖値測定装置は、サイズが大きい、コストが高い、光源の出力を大きくすることが困難であり測定の精度を高くすることが困難である等の問題を有する。 A blood glucose measuring device that measures blood glucose in a non-invasive manner has problems such as large size, high cost, difficulty in increasing the output of a light source, and difficulty in improving the accuracy of measurement. ..
 例えば、特許文献1に開示された血糖計においては、QスイッチNd:YAGレーザ等のエネルギー効率が低いため、QスイッチNd:YAGレーザ等に電力を供給する電源のサイズが大きくなり、QスイッチNd:YAGレーザ等を冷却するための冷却系が必要になり冷却機構が必要になる。このため、当該血糖計は、サイズが大きい、コストが高い、光源の出力を大きくすることが困難である等の問題を有する。 For example, in the blood glucose meter disclosed in Patent Document 1, since the energy efficiency of the Q-switch Nd: YAG laser or the like is low, the size of the power supply that supplies power to the Q-switch Nd: YAG laser or the like becomes large, and the Q-switch Nd : A cooling system for cooling the YAG laser or the like is required, and a cooling mechanism is required. Therefore, the blood glucose meter has problems such as large size, high cost, and difficulty in increasing the output of the light source.
 また、特許文献2に開示された測定装置においては、FTIR装置のサイズが大きく、FTIR装置のエネルギー効率が低く、FTIR装置のコストが高い。このため、当該測定装置は、サイズが大きい、コストが高い、光源の出力を大きくすることが困難である等の問題を有する。 Further, in the measuring device disclosed in Patent Document 2, the size of the FTIR device is large, the energy efficiency of the FTIR device is low, and the cost of the FTIR device is high. Therefore, the measuring device has problems such as large size, high cost, and difficulty in increasing the output of the light source.
 本発明は、これらの問題に鑑みてなされた。本発明は、非侵襲で血糖値の測定を行う血糖値測定装置のサイズを小さくし、当該血糖値測定装置のコストを低くし、当該血糖値測定装置に備えられる光源の出力を大きくすることを目的とする。 The present invention has been made in view of these problems. The present invention reduces the size of the blood glucose measuring device that measures the blood glucose level in a non-invasive manner, lowers the cost of the blood glucose measuring device, and increases the output of the light source provided in the blood glucose measuring device. The purpose.
 本発明は、血糖値測定装置に関する。 The present invention relates to a blood glucose level measuring device.
 血糖値測定装置は、赤外線放射器及び検出器を備える。 The blood glucose measuring device is equipped with an infrared radiator and a detector.
 赤外線放射器は、放射面を有する。赤外線放射器は、メタマテリアルを備える。赤外線放射器は、赤外線を放射面から熱放射する。赤外線のピーク波長は、メタマテリアルの構造に応じた波長である。 The infrared radiator has a radiating surface. The infrared radiator comprises a metamaterial. The infrared radiator radiates infrared rays from the radiation surface. The peak wavelength of infrared rays is a wavelength according to the structure of the metamaterial.
 検出器は、生体中のグルコースによる赤外線の吸収量を反映する量を検出する。 The detector detects the amount that reflects the amount of infrared rays absorbed by glucose in the living body.
 本発明によれば、冷却系を必要とせず高いエネルギー効率を有する赤外線放射器により熱放射された赤外線を用いてグルコースによる赤外線の吸収量が特定される。これにより、非侵襲で血糖値の測定を行う血糖測定装置のサイズを小さくすることができる。また、当該血糖値測定装置のコストを低くすることができる。また、当該血糖値測定装置に備えられる光源の出力を大きくすることができる。 According to the present invention, the amount of infrared rays absorbed by glucose is specified by using infrared rays radiated by an infrared radiator that does not require a cooling system and has high energy efficiency. As a result, the size of the blood glucose measuring device that measures the blood glucose level in a non-invasive manner can be reduced. In addition, the cost of the blood glucose level measuring device can be reduced. In addition, the output of the light source provided in the blood glucose level measuring device can be increased.
 この発明の目的、特徴、局面及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The purpose, features, aspects and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.
第1実施形態の血糖値測定装置を模式的に図示する断面図である。It is sectional drawing which shows schematically the blood glucose level measuring apparatus of 1st Embodiment. 第1実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する断面図である。It is sectional drawing which shows schematically the infrared radiator provided in the blood glucose level measuring apparatus of 1st Embodiment. グルコースの吸光度スペクトル、並びに第1実施形態、第2実施形態及び第5実施形態の血糖値測定装置に備えられる赤外線放射器により熱放射される赤外線の放射強度スペクトルの例を示すグラフである。It is a graph which shows the example of the absorbance spectrum of glucose, and the radiation intensity spectrum of the infrared ray which is thermally radiated by the infrared ray radiator provided in the blood glucose level measuring apparatus of 1st Embodiment, 2nd Embodiment and 5th Embodiment. 第1実施形態から第5実施形態までの血糖値測定装置に備えらえる熱放射板を模式的に図示する斜視図である。It is a perspective view which shows schematically the heat radiation plate provided in the blood glucose level measuring apparatus from 1st Embodiment to 5th Embodiment. 第1実施形態の血糖値測定装置に備えらえる赤外線放射器により熱放射される赤外線の放射エネルギースペクトル、及び通常の赤外線ヒーターにより熱放射される赤外線の放射エネルギースペクトルの例を示すグラフである。It is a graph which shows the example of the radiant energy spectrum of the infrared ray which is radiated by the infrared radiator provided in the blood glucose level measuring apparatus of 1st Embodiment, and the radiant energy spectrum of the infrared ray which is radiated by a normal infrared heater. 第2実施形態の血糖値測定装置を模式的に図示する断面図である。It is sectional drawing which shows schematically the blood glucose level measuring apparatus of 2nd Embodiment. 第2実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する断面図である。It is sectional drawing which shows schematically the infrared radiator provided in the blood glucose level measuring apparatus of 2nd Embodiment. 第3実施形態の血糖値測定装置を模式的に図示する断面図である。It is sectional drawing which shows schematically the blood glucose level measuring apparatus of 3rd Embodiment. 第3実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する断面図である。It is sectional drawing which shows schematically the infrared radiator provided in the blood glucose level measuring apparatus of 3rd Embodiment. グルコースの吸光度スペクトル、並びに第3実施形態及び第4実施形態の血糖値測定装置に備えられる赤外線放射器により熱放射される赤外線の放射強度スペクトルの例を示すグラフである。It is a graph which shows the example of the absorbance spectrum of glucose, and the radiation intensity spectrum of the infrared ray which is thermally radiated by the infrared ray radiator provided in the blood glucose level measuring apparatus of 3rd Embodiment and 4th Embodiment. 第4実施形態の血糖値測定装置を模式的に図示する断面図である。It is sectional drawing which shows schematically the blood glucose level measuring apparatus of 4th Embodiment. 第4実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する断面図である。It is sectional drawing which shows schematically the infrared radiator provided in the blood glucose level measuring apparatus of 4th Embodiment. 第4実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する平面図である。It is a top view schematically illustrating the infrared radiator provided in the blood glucose level measuring apparatus of 4th Embodiment. 第5実施形態の血糖値測定装置を模式的に図示する断面図である。It is sectional drawing which shows schematically the blood glucose level measuring apparatus of 5th Embodiment. 第5実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する断面図である。It is sectional drawing which shows schematically the infrared radiator provided in the blood glucose level measuring apparatus of 5th Embodiment. 第5実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する平面図である。It is a top view schematically illustrating the infrared radiator provided in the blood glucose level measuring apparatus of 5th Embodiment. 第1実施形態から第5実施形態までの血糖値測定装置に備えられる熱放射板の別例を模式的に図示する斜視図である。It is a perspective view which shows another example of the heat radiation plate provided in the blood glucose level measuring apparatus from 1st Embodiment to 5th Embodiment schematically. 第1実施形態から第5実施形態までの血糖値測定装置に備えられる熱放射板の別例を模式的に図示する斜視図である。It is a perspective view which shows another example of the heat radiation plate provided in the blood glucose level measuring apparatus from 1st Embodiment to 5th Embodiment schematically. 第1実施形態から第5実施形態までの血糖値測定装置に備えられる熱放射板の別例を模式的に図示する斜視図である。It is a perspective view which shows another example of the heat radiation plate provided in the blood glucose level measuring apparatus from 1st Embodiment to 5th Embodiment schematically.
 1 第1実施形態
 1.1 血糖値測定装置の構成
 図1は、第1実施形態の血糖値測定装置を模式的に図示する断面図である。図2は、第1実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する断面図である。図3は、グルコースの吸光度スペクトル及び第1実施形態の血糖値測定装置に備えられる赤外線放射器により熱放射される赤外線の放射強度スペクトルの例を示すグラフである。図3においては、縦軸に吸光度及び放射強度がとられている。また、横軸に波数がとられている。
1 First Embodiment 1.1 Configuration of Blood Glucose Meter Measuring Device FIG. 1 is a cross-sectional view schematically showing the blood glucose level measuring device of the first embodiment. FIG. 2 is a cross-sectional view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the first embodiment. FIG. 3 is a graph showing an example of an absorption spectrum of glucose and an infrared radiation intensity spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the first embodiment. In FIG. 3, the vertical axis represents the absorbance and the radiant intensity. In addition, the wave number is taken on the horizontal axis.
 図1に図示される第1実施形態の血糖値測定装置1は、生体LBに照射される赤外線IR1及びIR2の各々がひとつのピーク波長しか有しない波長独立型の血糖値測定装置である。 The blood glucose level measuring device 1 of the first embodiment shown in FIG. 1 is a wavelength-independent blood glucose level measuring device in which each of the infrared rays IR1 and IR2 irradiated to the living body LB has only one peak wavelength.
 図1に図示されるように、血糖値測定装置1は、赤外線放射器11、赤外線放射器12、光学系21、光学系22、シャッター31、シャッター32、検出器41、制御器51及び算出器61を備える。 As shown in FIG. 1, the blood glucose level measuring device 1 includes an infrared radiator 11, an infrared radiator 12, an optical system 21, an optical system 22, a shutter 31, a shutter 32, a detector 41, a controller 51, and a calculator. 61 is provided.
 赤外線放射器11及び12は、赤外線IR1及びIR2をそれぞれ熱放射する。赤外線IR1及びIR2は、ピーク波長λ1及びλ2をそれぞれ有する。ピーク波長λ1及びλ2は、互いに異なる。このため、赤外線IR1及びIR2は、互いに異なるピーク波長を有する。 The infrared radiators 11 and 12 radiate infrared rays IR1 and IR2, respectively. The infrared IR1 and IR2 have peak wavelengths λ1 and λ2, respectively. The peak wavelengths λ1 and λ2 are different from each other. Therefore, the infrared IR1 and IR2 have different peak wavelengths from each other.
 光学系21及び22は、熱放射された赤外線IR1及びIR2をそれぞれ集光する。 The optical systems 21 and 22 collect the heat-radiated infrared rays IR1 and IR2, respectively.
 シャッター31及び32は、熱放射された赤外線IR1及びIR2の光路をそれぞれ開閉する。 The shutters 31 and 32 open and close the optical paths of the heat-radiated infrared rays IR1 and IR2, respectively.
 検出器41は、生体LB中のグルコースによる赤外線IR1及びIR2の吸収量を反映する量Dを検出する。第1実施形態においては、検出器41は、赤外線検出器である。また、検出される量Dは、赤外線IR1及びIR2が生体LBに照射されている間に生体LBから到来する到来赤外線AIRの強度である。赤外線検出器は、フォトダイオードである。赤外線検出器が、フォトダイオード以外の赤外線検出器であってもよい。また、第1実施形態においては、生体LBは、人体である。生体LBが、人体以外の生体であってもよい。 The detector 41 detects an amount D that reflects the amount of infrared rays IR1 and IR2 absorbed by glucose in the living body LB. In the first embodiment, the detector 41 is an infrared detector. Further, the detected amount D is the intensity of the incoming infrared AIR that arrives from the living body LB while the infrared rays IR1 and IR2 are irradiated on the living body LB. The infrared detector is a photodiode. The infrared detector may be an infrared detector other than the photodiode. Further, in the first embodiment, the living body LB is a human body. The living body LB may be a living body other than the human body.
 第1実施形態においては、赤外線IR1及びIR2は、例えば指又は耳に照射される。また、検出器41は、例えば指又は耳から到来する到来赤外線AIRの強度を検出する。 In the first embodiment, the infrared rays IR1 and IR2 are irradiated to, for example, a finger or an ear. Further, the detector 41 detects the intensity of the incoming infrared AIR coming from, for example, a finger or an ear.
 算出器61は、検出された量Dから血糖値を算出する。 The calculator 61 calculates the blood glucose level from the detected amount D.
 赤外線IR1及びIR2は、皮膚内に浸透する。このため、検出された量Dからは、皮膚内の間質液中のグルコースの濃度を得ることができる。間質液中のグルコースの濃度は血糖値と相関を有する。このため、検出された量Dからは、血糖値を算出することができる。 Infrared IR1 and IR2 penetrate into the skin. Therefore, the concentration of glucose in the interstitial fluid in the skin can be obtained from the detected amount D. The concentration of glucose in the interstitial fluid correlates with the blood glucose level. Therefore, the blood glucose level can be calculated from the detected amount D.
 制御器51は、赤外線放射器11及び12を制御して赤外線放射器11及び12に赤外線IR1及びIR2をそれぞれ熱放射させる。また、制御器51は、シャッター31及び32を制御してシャッター31及び32に赤外線IR1及びIR2の光路をそれぞれ開閉させる。 The controller 51 controls the infrared radiators 11 and 12 to radiate the infrared rays IR1 and IR2 to the infrared radiators 11 and 12, respectively. Further, the controller 51 controls the shutters 31 and 32 to open and close the optical paths of the infrared IR1 and IR2 to the shutters 31 and 32, respectively.
 第1実施形態においては、赤外線放射器11及び12は、ふたつの赤外線放射器である。また、赤外線IR1及びIR2は、ふたつの赤外線である。また、光学系21及び22は、ふたつの光学系である。また、シャッター31及び32は、ふたつのシャッターである。しかし、赤外線放射器の数、赤外線の数、光学系の数及びシャッターの数が増減されてもよい。 In the first embodiment, the infrared radiators 11 and 12 are two infrared radiators. Further, infrared rays IR1 and IR2 are two infrared rays. Further, the optical systems 21 and 22 are two optical systems. Further, the shutters 31 and 32 are two shutters. However, the number of infrared radiators, the number of infrared rays, the number of optical systems and the number of shutters may be increased or decreased.
 1.2 赤外線のピーク波長
 図3に示されるように、赤外線IR1のピーク波長λ1は、グルコースの吸光度が最小となる波長である。赤外線IR1は、校正に用いられる。ピーク波長λ1が、グルコースの吸光度が最小となる波長以外の波長であってもよい。また、赤外線IR2のピーク波長λ2は、グルコースの吸光度が最大となる波長である。赤外線IR2は、測定に用いられる。ピーク波長λ2が、グルコースの吸光度が最大となる波長以外の波長であってもよい。
1.2 Infrared peak wavelength As shown in FIG. 3, the peak wavelength λ1 of the infrared IR1 is the wavelength at which the absorbance of glucose is minimized. Infrared IR1 is used for calibration. The peak wavelength λ1 may be a wavelength other than the wavelength at which the absorbance of glucose is minimized. Further, the peak wavelength λ2 of the infrared IR2 is a wavelength at which the absorbance of glucose is maximized. Infrared IR2 is used for measurement. The peak wavelength λ2 may be a wavelength other than the wavelength at which the absorbance of glucose is maximized.
 1.3 血糖値測定装置の動作
 血糖値測定装置1により血糖値が算出される場合は、制御器51が、シャッター31及び32に赤外線IR1及びIR2の光路を閉じさせる。
1.3 Operation of the blood glucose level measuring device When the blood glucose level is calculated by the blood glucose level measuring device 1, the controller 51 causes the shutters 31 and 32 to close the optical paths of the infrared IR1 and IR2.
 また、制御器51は、赤外線IR1及びIR2の光路が閉じられた後に、赤外線放射器11及び12に赤外線IR1及びIR2を熱放射することを開始させる。 Further, the controller 51 starts the infrared radiators 11 and 12 to thermally radiate the infrared rays IR1 and IR2 after the optical paths of the infrared IR1 and IR2 are closed.
 また、制御器51は、赤外線IR1及びIR2が安定した後に、シャッター31に赤外線IR1の光路を開かせる。これにより、赤外線IR1が生体LBに照射される。このとき、赤外線IR1は、光学系21により生体LBの表面に集光される。 Further, the controller 51 causes the shutter 31 to open the optical path of the infrared IR1 after the infrared IR1 and IR2 are stabilized. As a result, the infrared IR1 is irradiated to the living body LB. At this time, the infrared IR1 is focused on the surface of the living body LB by the optical system 21.
 また、制御器51は、赤外線IR1の光路が開かれてから設定された時間が経過した時に、シャッター31に赤外線IR1の光路を閉じさせる。これにより、赤外線IR1が生体LBに照射されなくなる。 Further, the controller 51 causes the shutter 31 to close the optical path of the infrared IR1 when a set time has elapsed since the optical path of the infrared IR1 was opened. As a result, the infrared IR1 is not irradiated to the living body LB.
 検出器41は、赤外線IR1が生体LBに照射されている間に、生体LBから到来する到来赤外線AIRの強度Dを検出する。 The detector 41 detects the intensity D of the incoming infrared IR coming from the living body LB while the infrared IR1 is irradiating the living body LB.
 制御器51は、検出された強度Dに基づいて血糖値測定装置1を校正する。 The controller 51 calibrates the blood glucose level measuring device 1 based on the detected intensity D.
 また、制御器51は、血糖値測定装置1が校正された後に、シャッター32に赤外線IR2の光路を開かせる。これにより、赤外線IR2が生体LBに照射される。このとき、赤外線IR2は、光学系22により生体LBの表面に集光される。 Further, the controller 51 causes the shutter 32 to open the optical path of the infrared IR2 after the blood glucose level measuring device 1 is calibrated. As a result, the infrared IR2 is irradiated to the living body LB. At this time, the infrared IR2 is focused on the surface of the living body LB by the optical system 22.
 また、制御器51は、赤外線IR2の光路が開かれてから設定された時間が経過した時に、シャッター32に赤外線IR2の光路を閉じさせる。これにより、赤外線IR2が生体LBに照射されなくなる。 Further, the controller 51 causes the shutter 32 to close the optical path of the infrared IR2 when a set time has elapsed since the optical path of the infrared IR2 was opened. As a result, the infrared IR2 is not irradiated to the living body LB.
 また、制御器51は、赤外線IR2の光路が閉じられた後に、赤外線放射器11及び12に赤外線IR1及びIR2を熱放射することを終了させる。 Further, the controller 51 ends the thermal radiation of the infrared rays IR1 and IR2 to the infrared radiators 11 and 12 after the optical path of the infrared IR2 is closed.
 検出器41は、赤外線IR2が生体LBに照射されている間に、生体LBから到来する到来赤外線AIRの強度Dを検出する。 The detector 41 detects the intensity D of the incoming infrared IR coming from the living body LB while the infrared IR2 is irradiating the living body LB.
 算出器61は、検出された強度Dから血糖値を算出する。 The calculator 61 calculates the blood glucose level from the detected intensity D.
 1.4 複数の赤外線放射器の構成の違い
 図1に図示されるように、赤外線放射器11及び12は、放射面11R及び12Rをそれぞれ有する。赤外線放射器11及び12は、赤外線IR1及びIR2を放射面11R及び12Rからそれぞれ熱放射する。
1.4 Differences in Configuration of Multiple Infrared Radiators As shown in FIG. 1, the infrared radiators 11 and 12 have radiation surfaces 11R and 12R, respectively. The infrared radiators 11 and 12 thermally radiate infrared IR1 and IR2 from the radiation surfaces 11R and 12R, respectively.
 また、図1に図示されるように、赤外線放射器11及び12は、メタマテリアル111及び121をそれぞれ備える。メタマテリアル111及び121は、放射面11R及び12Rに沿ってそれぞれ配置される。 Further, as shown in FIG. 1, the infrared radiators 11 and 12 include metamaterials 111 and 121, respectively. The metamaterials 111 and 121 are arranged along the radial surfaces 11R and 12R, respectively.
 メタマテリアル111及び121は、互いに異なる構造を有する。ピーク波長λ1及びλ2は、それぞれメタマテリアル111及び121の構造に応じた波長である。このため、ピーク波長λ1及びλ2は、互いに異なる。 Metamaterials 111 and 121 have different structures from each other. The peak wavelengths λ1 and λ2 are wavelengths corresponding to the structures of the metamaterials 111 and 121, respectively. Therefore, the peak wavelengths λ1 and λ2 are different from each other.
 第1実施形態においては、メタマテリアル111及び121は、それぞれ放射面11R及び12Rと平行をなす方向に周期的に配列される複数のパターン片を備える周期構造である。また、ピーク波長λ1及びλ2は、それぞれ周期構造111及び121のパターンに応じた波長である。 In the first embodiment, the metamaterials 111 and 121 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 11R and 12R, respectively. Further, the peak wavelengths λ1 and λ2 are wavelengths corresponding to the patterns of the periodic structures 111 and 121, respectively.
 第1実施形態においては、放射面11R及び12Rは、二群の放射面である。また、メタマテリアル111及び121は、二群のメタマテリアルである。しかし、放射面の群数及びメタマテリアルの群数が増減されてもよい。 In the first embodiment, the radial surfaces 11R and 12R are two groups of radial surfaces. Further, the metamaterials 111 and 121 are two groups of metamaterials. However, the number of radiation surface groups and the number of metamaterial groups may be increased or decreased.
 1.5 複数の赤外線放射器の各々の構成
 図2に図示されるように、赤外線放射器11及び12の各々は、熱放射板71A、熱放射板71B及びヒーター81を備える。
1.5 Configuration of each of the plurality of infrared radiators As shown in FIG. 2, each of the infrared radiators 11 and 12 includes a heat radiation plate 71A, a heat radiation plate 71B, and a heater 81.
 ヒーター81は、熱放射板71A及び71Bを加熱して熱放射板71A及び71Bに熱を供給する。 The heater 81 heats the heat radiating plates 71A and 71B to supply heat to the heat radiating plates 71A and 71B.
 熱放射板71A及び71Bは、供給された熱を図1に図示される赤外線IRA及びIRBにそれぞれ変換する。また、熱放射板71A及び71Bは、赤外線IRA及びIRBをそれぞれ熱放射する。 The heat radiating plates 71A and 71B convert the supplied heat into the infrared IRA and IRB shown in FIG. 1, respectively. Further, the heat radiating plates 71A and 71B radiate infrared rays IRA and IRB, respectively.
 図1及び図2に図示されるように、熱放射板71A及び71Bは、放射面71AR及び71BRをそれぞれ有する。このため、赤外線放射器11及び12の各々は、放射面71AR及び71BRを有する。また、赤外線放射器11及び12の各々は、赤外線IRA及びIRBを放射面71AR及び71BRからそれぞれ熱放射する。赤外線放射器11の放射面71AR及び71BRは、放射面11Rを構成する。赤外線放射器12の放射面71AR及び71BRは、放射面12Rを構成する。赤外線放射器11により放射される赤外線IRA及びIRBは、赤外線IR1を構成する。赤外線放射器12により放射される赤外線IRA及びIRBは、赤外線IR2を構成する。 As shown in FIGS. 1 and 2, the heat radiating plates 71A and 71B have radiating surfaces 71AR and 71BR, respectively. Therefore, each of the infrared radiators 11 and 12 has radiation surfaces 71AR and 71BR. Further, each of the infrared radiators 11 and 12 thermally radiates infrared IRA and IRB from the radiation surfaces 71AR and 71BR, respectively. The radiation surfaces 71AR and 71BR of the infrared radiator 11 constitute the radiation surface 11R. The radiation surfaces 71AR and 71BR of the infrared radiator 12 constitute the radiation surface 12R. The infrared IRA and IRB emitted by the infrared radiator 11 constitute the infrared IR1. The infrared IRA and IRB emitted by the infrared radiator 12 constitute the infrared IR2.
 また、図1及び図2に図示されるように、熱放射板71A及び71Bは、メタマテリアル71A1及び71B1をそれぞれ備える。このため、赤外線放射器11及び12の各々は、メタマテリアル71A1及び71B1を備える。メタマテリアル71A1及び71B1は、放射面71AR及び71BRに沿ってそれぞれ配置される。赤外線放射器11に備えられるメタマテリアル71A1及び71B1は、メタマテリアル111を構成する。赤外線放射器12に備えられるメタマテリアル71A1及び71B1は、メタマテリアル121を構成する。 Further, as shown in FIGS. 1 and 2, the heat radiating plates 71A and 71B include metamaterials 71A1 and 71B1, respectively. Therefore, each of the infrared radiators 11 and 12 includes metamaterials 71A1 and 71B1. The metamaterials 71A1 and 71B1 are arranged along the radial surfaces 71AR and 71BR, respectively. The metamaterials 71A1 and 71B1 provided in the infrared radiator 11 constitute the metamaterial 111. The metamaterials 71A1 and 71B1 provided in the infrared radiator 12 constitute the metamaterial 121.
 メタマテリアル71A1及び71B1は、同じ構造を有する。赤外線IRA及びIRBのピーク波長は、それぞれメタマテリアル71A1及び71B1の構造に応じた波長である。このため、赤外線IRA及びIRBのピーク波長は、同じ波長である。 Metamaterials 71A1 and 71B1 have the same structure. The peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the structures of the metamaterials 71A1 and 71B1, respectively. Therefore, the peak wavelengths of the infrared IRA and IRB are the same wavelength.
 第1実施形態においては、メタマテリアル71A1及び71B1は、それぞれ放射面71AR及び71BRと平行をなす方向に周期的に配列される複数のパターン片を備える周期構造である。また、赤外線IRA及びIRBのピーク波長は、それぞれ周期構造71A1及び71B1のパターンに応じた波長である。 In the first embodiment, the metamaterials 71A1 and 71B1 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 71AR and 71BR, respectively. Further, the peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the patterns of the periodic structures 71A1 and 71B1, respectively.
 第1実施形態においては、赤外線放射器11及び12の各々に備えられる熱放射板71A及び71Bは、ふたつの熱放射板である。また、赤外線放射器11及び12の各々により熱放射される赤外線IRA及びIRBは、ふたつの赤外線である。また、赤外線放射器11及び12の各々の放射面71AR及び71BRは、ふたつの放射面である。また、赤外線放射器11及び12の各々に備えられるメタマテリアル71A1及び71B1は、ふたつのメタマテリアルである。また、ヒーター81は、ふたつの熱放射板71A及び71Bに挟まれる。しかし、赤外線放射器11及び12の各々に備えられる熱放射板の数、赤外線放射器11及び12の各々により熱放射される赤外線の数、赤外線放射器11及び12の各々の放射面の数、並びに赤外線放射器11及び12の各々に備えられるメタマテリアルの数が増減されてもよい。 In the first embodiment, the heat radiating plates 71A and 71B provided in each of the infrared radiators 11 and 12 are two heat radiating plates. Further, the infrared rays IRA and IRB thermally radiated by each of the infrared radiators 11 and 12 are two infrared rays. Further, the radiation surfaces 71AR and 71BR of the infrared radiators 11 and 12, respectively, are two radiation surfaces. Further, the metamaterials 71A1 and 71B1 provided in each of the infrared radiators 11 and 12 are two metamaterials. Further, the heater 81 is sandwiched between two heat radiating plates 71A and 71B. However, the number of heat radiating plates provided in each of the infrared radiators 11 and 12, the number of infrared rays radiated by each of the infrared radiators 11 and 12, the number of radiation surfaces of each of the infrared radiators 11 and 12, Also, the number of metamaterials provided in each of the infrared radiators 11 and 12 may be increased or decreased.
 1.6 光学系
 図1に図示されるように、光学系21及び22は、放物面鏡101及び102をそれぞれ備える。また、光学系21及び22は、レンズ141及び142をそれぞれ備える。
1.6 Optical system As shown in FIG. 1, the optical systems 21 and 22 include parabolic mirrors 101 and 102, respectively. Further, the optical systems 21 and 22 include lenses 141 and 142, respectively.
 図1に図示されるように、放物面鏡101及び102は、焦点101F及び102Fをそれぞれ有する。また、放物面鏡101及び102は、反射面101R及び102Rをそれぞれ有する。また、放物面鏡101及び102は、回転対称軸101S及び102Sをそれぞれ有する。 As illustrated in FIG. 1, the parabolic mirrors 101 and 102 have focal points 101F and 102F, respectively. Further, the parabolic mirrors 101 and 102 have reflective surfaces 101R and 102R, respectively. Further, the parabolic mirrors 101 and 102 have rotational symmetry axes 101S and 102S, respectively.
 反射面101R及び102Rは、それぞれ放物線を回転対称軸101S及び102Sの周りに回転させることにより形成される回転放物面である。 The reflective surfaces 101R and 102R are rotating paraboloids formed by rotating a parabola around the axes of rotational symmetry 101S and 102S, respectively.
 赤外線放射器11及び12は、焦点101F及び102Fにそれぞれ配置される。 Infrared radiators 11 and 12 are arranged at focal points 101F and 102F, respectively.
 反射面101R及び102Rは、熱放射された赤外線IR1及びIR2をそれぞれ反射する。赤外線放射器11及び12は焦点101F及び102Fにそれぞれ配置されているため、反射された赤外線IR1及びIR2は、平行光束となる。 The reflecting surfaces 101R and 102R reflect the heat-radiated infrared rays IR1 and IR2, respectively. Since the infrared radiators 11 and 12 are arranged at the focal points 101F and 102F, respectively, the reflected infrared rays IR1 and IR2 become parallel light fluxes.
 レンズ141及び142は、反射された赤外線IR1及びIR2をそれぞれ集光する。 The lenses 141 and 142 collect the reflected infrared rays IR1 and IR2, respectively.
 これらにより、光学系21及び22は、熱放射された赤外線IR1及びIR2をそれぞれ集光することができる。 As a result, the optical systems 21 and 22 can collect the heat-radiated infrared rays IR1 and IR2, respectively.
 赤外線放射器11の放射面71AR及び71BRは、回転対称軸101Sが伸びる方向と垂直をなす方向を向き、互いに異なる方向を向く。第1実施形態においては、赤外線放射器11の放射面71AR及び71BRは、互いに180°異なる方向を向く。同様に、赤外線放射器12の放射面71AR及び71BRは、回転対称軸102Sが伸びる方向と垂直をなす方向を向き、互いに異なる方向を向く。第1実施形態においては、赤外線放射器12の放射面71AR及び71BRは、互いに180°異なる方向を向く。 The radiation surfaces 71AR and 71BR of the infrared radiator 11 face a direction perpendicular to the direction in which the rotational symmetry axis 101S extends, and face different directions from each other. In the first embodiment, the radiation surfaces 71AR and 71BR of the infrared radiator 11 face 180 ° different directions from each other. Similarly, the radiation surfaces 71AR and 71BR of the infrared radiator 12 face in a direction perpendicular to the direction in which the rotational symmetry axis 102S extends, and face in different directions from each other. In the first embodiment, the radiation surfaces 71AR and 71BR of the infrared radiator 12 face 180 ° different directions from each other.
 1.7 熱放射板
 図4は、第1実施形態の血糖値測定装置に備えらえる熱放射板を模式的に図示する斜視図である。
1.7 Thermal radiation plate FIG. 4 is a perspective view schematically showing a heat radiation plate provided in the blood glucose level measuring device of the first embodiment.
 図4に図示されるように、熱放射板71A及び71Bの各々は、基板151、導電体層152、誘電体層153及び導電体パターン154を備える。 As shown in FIG. 4, each of the heat radiating plates 71A and 71B includes a substrate 151, a conductor layer 152, a dielectric layer 153, and a conductor pattern 154.
 導電体層152、誘電体層153及び導電体パターン154は、基板151の一方の主面の上に配置される。誘電体層153は、導電体層152の上に配置される。導電体パターン154は、誘電体層153の上に配置される。 The conductor layer 152, the dielectric layer 153, and the conductor pattern 154 are arranged on one main surface of the substrate 151. The dielectric layer 153 is arranged on the conductor layer 152. The conductor pattern 154 is arranged on the dielectric layer 153.
 導電体パターン154は、複数のパターン片161を備える。複数のパターン片161は、マトリクス状に配列される。複数のパターン片161が、非マトリクス状に配置されてもよい。 The conductor pattern 154 includes a plurality of pattern pieces 161. The plurality of pattern pieces 161 are arranged in a matrix. A plurality of pattern pieces 161 may be arranged in a non-matrix form.
 基板151は、SiOにより構成される。基板151が、SiO以外の材料により構成されてもよい。導電体層152は、Auにより構成される。導電体層152が、Au以外の材料により構成されてもよい。誘電体層153は、Alにより構成される。誘電体層153が、Al以外の材料により構成されてもよい。導電体パターン154は、Auにより構成される。導電体パターン154が、Au以外の材料により構成されてもよい。 The substrate 151 is composed of SiO 2. The substrate 151 may be made of a material other than SiO 2. The conductor layer 152 is made of Au. The conductor layer 152 may be made of a material other than Au. The dielectric layer 153 is composed of Al 2 O 3. The dielectric layer 153 may be made of a material other than Al 2 O 3. The conductor pattern 154 is composed of Au. The conductor pattern 154 may be made of a material other than Au.
 熱放射板71A及び71Bに備えられる導電体層152、誘電体層153及び導電体パターン154は、メタマテリアル71A1及び71B1をそれぞれ構成する。熱放射板71A及び71Bに備えられる導電体層152、誘電体層153及び導電体パターン154は、それぞれ赤外線IRA及びIRBの波長と同程度の周期を有する表面微細構造である。 The conductor layer 152, the dielectric layer 153, and the conductor pattern 154 provided in the heat radiating plates 71A and 71B constitute the metamaterials 71A1 and 71B1, respectively. The conductor layer 152, the dielectric layer 153, and the conductor pattern 154 provided in the heat radiating plates 71A and 71B have a surface fine structure having a period similar to the wavelengths of the infrared IRA and IRB, respectively.
 ヒーター81は、基板151の他方の主面の側から熱放射板71A及び71Bを加熱する。これにより、導電体パターン154が配置される放射面71AR及び71BRから赤外線IRA及びIRBがそれぞれ熱放射される。熱放射される赤外線IRA及びIRBには、導電体パターン154と共振する特定の波長成分が多く含まれる。このため、熱放射される赤外線IRA及びIRBは、導電体パターン154に応じたピーク波長を有する。したがって、熱放射板71A及び71Bは、特定の波長成分を選択的に熱放射する選択放射板として機能する。当該特定の波長成分は、導電体パターン154を変更することにより変更することができる。 The heater 81 heats the heat radiating plates 71A and 71B from the other main surface side of the substrate 151. As a result, infrared IRA and IRB are thermally radiated from the radiation surfaces 71AR and 71BR on which the conductor pattern 154 is arranged, respectively. The heat-radiated infrared IRA and IRB contain a large amount of specific wavelength components that resonate with the conductor pattern 154. Therefore, the heat-radiated infrared rays IRA and IRB have a peak wavelength corresponding to the conductor pattern 154. Therefore, the heat radiating plates 71A and 71B function as selective radiating plates that selectively radiate a specific wavelength component. The specific wavelength component can be changed by changing the conductor pattern 154.
 図5は、第1実施形態の血糖値測定装置に備えらえる赤外線放射器により熱放射される赤外線の放射エネルギースペクトル、及び通常の赤外線ヒーターにより熱放射される赤外線の放射エネルギースペクトルの例を示すグラフである。図5においては、縦軸に放射エネルギーがとられている。また、横軸に波長がとられている。 FIG. 5 shows an example of an infrared radiant energy spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the first embodiment and an infrared radiant energy spectrum thermally radiated by a normal infrared heater. It is a graph. In FIG. 5, radiant energy is taken on the vertical axis. Further, the wavelength is taken on the horizontal axis.
 図5に示されるように、赤外線放射器11及び12により放射される赤外線の放射エネルギースペクトルのピークの幅は、通常の赤外線ヒーターにより熱放射される赤外線の放射エネルギースペクトルのピークの幅より著しく狭くなっている。 As shown in FIG. 5, the width of the peak of the infrared radiant energy spectrum emitted by the infrared radiators 11 and 12 is significantly narrower than the width of the peak of the infrared radiant energy spectrum thermally emitted by a normal infrared heater. It has become.
 1.8 効果
 血糖値測定装置1は、非侵襲で血糖値を測定することができる。
1.8 Effect The blood glucose level measuring device 1 can measure the blood glucose level non-invasively.
 また、熱放射板71A及び71Bは、ヒーター81により供給された熱を赤外線IRA及びIRBに変換する。このため、赤外線放射器11及び12は、冷却系を必要としない。なぜならば、赤外線放射器11及び12の温度が高すぎる場合は、単にヒーター81により供給される熱を少なくすればよいからである。 Further, the heat radiating plates 71A and 71B convert the heat supplied by the heater 81 into infrared IRA and IRB. Therefore, the infrared radiators 11 and 12 do not require a cooling system. This is because if the temperatures of the infrared radiators 11 and 12 are too high, the heat supplied by the heater 81 may simply be reduced.
 また、赤外線放射器11及び12は、高いエネルギー効率を有する。 Infrared radiators 11 and 12 also have high energy efficiency.
 このため、血糖値測定装置1によれば、冷却系を必要とせず高いエネルギー効率を有する赤外線放射器11及び12により熱放射された赤外線IR1及びIR2を用いてグルコースによる赤外線IR1及びIR2の吸収量が特定される。これにより、非侵襲で血糖値の測定を行う血糖値測定装置1のサイズを小さくすることができる。また、当該血糖値測定装置1のコストを低くすることができる。また、当該血糖値測定装置1に備えられる光源の出力を大きくすることができる。 Therefore, according to the blood glucose level measuring device 1, the amount of infrared IR1 and IR2 absorbed by glucose using the infrared IR1 and IR2 heat-radiated by the infrared radiators 11 and 12 which do not require a cooling system and have high energy efficiency. Is identified. As a result, the size of the blood glucose level measuring device 1 that measures the blood glucose level in a non-invasive manner can be reduced. In addition, the cost of the blood glucose level measuring device 1 can be reduced. In addition, the output of the light source provided in the blood glucose level measuring device 1 can be increased.
 赤外線放射器11及び12は、放射面11R及び12Rの面積を広くすることにより熱放射する赤外線IR1及びIR2の放射エネルギーを容易に大きくすることができるという利点を有する。 The infrared radiators 11 and 12 have an advantage that the radiant energy of the infrared IR1 and IR2 that radiate heat can be easily increased by increasing the area of the radiation surfaces 11R and 12R.
 また、赤外線放射器11及び12は、赤外線IR1及びIR2の熱放射の開始及び終了を瞬時に行うことができないという特性を有する。しかし、血糖値測定装置1においては、シャッター31及び32により赤外線IR1及びIR2の光路が開閉されるため、赤外線IR1及びIR2の熱放射の開始及び終了を瞬時に行うことができないにもかかわらず、赤外線IR1及びIR2の生体LBへの照射の開始及び終了を瞬時に行うことができる。この特徴を利用して、生体LBに照射される赤外線IR1及びIR2をパルス状の赤外線とし、パルス状の赤外線に同期して到来赤外線AIRの強度が検出されてもよい。 Further, the infrared radiators 11 and 12 have a characteristic that the thermal radiation of the infrared IR1 and IR2 cannot be started and stopped instantaneously. However, in the blood glucose level measuring device 1, since the optical paths of the infrared IR1 and IR2 are opened and closed by the shutters 31 and 32, the heat radiation of the infrared IR1 and IR2 cannot be started and stopped instantaneously. The irradiation of the infrared IR1 and IR2 to the living body LB can be started and stopped instantly. Taking advantage of this feature, the infrared rays IR1 and IR2 irradiated to the living body LB may be converted into pulsed infrared rays, and the intensity of the incoming infrared rays AIR may be detected in synchronization with the pulsed infrared rays.
 2 第2実施形態
 図6は、第2実施形態の血糖値測定装置を模式的に図示する断面図である。図7は、第2実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する断面図である。図3は、グルコースの吸光度スペクトル及び第2実施形態の血糖値測定装置に備えられる赤外線放射器により熱放射される赤外線の放射強度スペクトルの例を示すグラフでもある。図4は、第2実施形態の血糖値測定装置に備えらえる熱放射板を模式的に図示する斜視図でもある。
2 Second Embodiment FIG. 6 is a cross-sectional view schematically illustrating the blood glucose level measuring device of the second embodiment. FIG. 7 is a cross-sectional view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the second embodiment. FIG. 3 is also a graph showing an example of a glucose absorbance spectrum and an infrared radiation intensity spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the second embodiment. FIG. 4 is also a perspective view schematically illustrating a heat radiation plate provided in the blood glucose level measuring device of the second embodiment.
 以下では、主に、図6に図示される第2実施形態の血糖値測定装置2が図1に図示される第1実施形態の血糖値測定装置1と相違する点が説明される。説明されない点については、血糖値測定装置1において採用される構成と同様の構成が血糖値測定装置2においても採用される。 In the following, it will be mainly described that the blood glucose level measuring device 2 of the second embodiment shown in FIG. 6 is different from the blood glucose level measuring device 1 of the first embodiment shown in FIG. Regarding the points not explained, the same configuration as that adopted in the blood glucose level measuring device 1 is also adopted in the blood glucose level measuring device 2.
 図6に図示される第2実施形態の血糖値測定装置2は、生体LBに照射される赤外線IR1及びIR2の各々がひとつのピーク波長しか有しない波長独立型の血糖値測定装置である。 The blood glucose level measuring device 2 of the second embodiment shown in FIG. 6 is a wavelength-independent blood glucose level measuring device in which each of the infrared rays IR1 and IR2 irradiated to the living body LB has only one peak wavelength.
 図7に図示されるように、赤外線放射器11及び12の各々は、熱放射板70及びヒーター81を備える。 As shown in FIG. 7, each of the infrared radiators 11 and 12 includes a heat radiating plate 70 and a heater 81.
 ヒーター81は、熱放射板70を加熱して熱放射板70に熱を供給する。 The heater 81 heats the heat radiating plate 70 and supplies heat to the heat radiating plate 70.
 熱放射板70は、供給された熱を図6に図示される赤外線IRに変換する。また、熱放射板70は、赤外線IRを熱放射する。 The heat radiating plate 70 converts the supplied heat into the infrared IR shown in FIG. Further, the heat radiating plate 70 radiates infrared IR heat.
 図6及び図7に図示されるように、熱放射板70は、放射面70Rを有する。このため、赤外線放射器11及び12の各々は、放射面70Rを有する。また、赤外線放射器11及び12の各々は、赤外線IRを放射面70Rから熱放射する。赤外線放射器11の放射面70Rは、放射面11Rを構成する。赤外線放射器12の放射面70Rは、放射面12Rを構成する。赤外線放射器11により放射される赤外線IRは、赤外線IR1を構成する。赤外線放射器12により放射される赤外線IRは、赤外線IR2を構成する。 As shown in FIGS. 6 and 7, the heat radiation plate 70 has a radiation surface 70R. Therefore, each of the infrared radiators 11 and 12 has a radiation surface 70R. Further, each of the infrared radiators 11 and 12 thermally radiates the infrared IR from the radiation surface 70R. The radiation surface 70R of the infrared radiator 11 constitutes the radiation surface 11R. The radiation surface 70R of the infrared radiator 12 constitutes the radiation surface 12R. The infrared IR emitted by the infrared radiator 11 constitutes the infrared IR1. The infrared IR emitted by the infrared radiator 12 constitutes the infrared IR2.
 また、図6及び図7に図示されるように、熱放射板70は、メタマテリアル701を備える。このため、赤外線放射器11及び12の各々は、メタマテリアル701を備える。メタマテリアル701は、放射面70Rに沿って配置される。赤外線放射器11に備えられるメタマテリアル701は、メタマテリアル111を構成する。赤外線放射器12に備えられるメタマテリアル701は、メタマテリアル121を構成する。 Further, as shown in FIGS. 6 and 7, the heat radiation plate 70 includes a metamaterial 701. Therefore, each of the infrared radiators 11 and 12 includes a metamaterial 701. The metamaterial 701 is arranged along the radial surface 70R. The metamaterial 701 provided in the infrared radiator 11 constitutes the metamaterial 111. The metamaterial 701 provided in the infrared radiator 12 constitutes the metamaterial 121.
 第2実施形態においては、メタマテリアル701は、放射面70と平行をなす方向に周期的に配列される複数のパターン片を備える周期構造である。また、赤外線IRのピーク波長は、周期構造701のパターンに応じた波長である。 In the second embodiment, the metamaterial 701 is a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radiation surface 70. Further, the peak wavelength of the infrared IR is a wavelength corresponding to the pattern of the periodic structure 701.
 第2実施形態においては、赤外線放射器11及び12の各々に備えられる熱放射板70は、ひとつの熱放射板である。また、赤外線放射器11及び12の各々により熱放射される赤外線IRは、ひとつの赤外線である。また、赤外線放射器11及び12の各々の放射面70Rは、ひとつの放射面である。また、赤外線放射器11及び12の各々に備えられるメタマテリアル701は、ひとつのメタマテリアルである。しかし、赤外線放射器11及び12の各々に備えられる熱放射板の数、赤外線放射器11及び12の各々により熱放射される赤外線の数、赤外線放射器11及び12の各々の放射面の数、並びに赤外線放射器11及び12の各々に備えられるメタマテリアルの数が増やされてもよい。 In the second embodiment, the heat radiating plate 70 provided in each of the infrared radiators 11 and 12 is one heat radiating plate. Further, the infrared IR thermally radiated by each of the infrared radiators 11 and 12 is one infrared ray. Further, each radiation surface 70R of the infrared radiators 11 and 12 is one radiation surface. Further, the metamaterial 701 provided in each of the infrared radiators 11 and 12 is one metamaterial. However, the number of heat radiating plates provided in each of the infrared radiators 11 and 12, the number of infrared rays radiated by each of the infrared radiators 11 and 12, the number of radiation surfaces of each of the infrared radiators 11 and 12, Also, the number of metamaterials provided in each of the infrared radiators 11 and 12 may be increased.
 図6に図示されるように、光学系21及び22は、導波管201及び202をそれぞれ備える。 As shown in FIG. 6, the optical systems 21 and 22 include waveguides 201 and 202, respectively.
 図6に図示されるように、導波管201及び202は、反射面201R及び202Rをそれぞれ有する。また、導波管201及び202は、出射口201E及び202Eをそれぞれ有する。また、導波管201及び202は、管内空間201S及び202Sをそれぞれ有する。 As illustrated in FIG. 6, the waveguides 201 and 202 have reflective surfaces 201R and 202R, respectively. Further, the waveguides 201 and 202 have outlets 201E and 202E, respectively. Further, the waveguides 201 and 202 have in-tube spaces 201S and 202S, respectively.
 反射面201R及び202Rは、それぞれ導波管201及び202の内面である。管内空間201S及び202Sは、反射面201R及び202Rにそれぞれ囲まれる。管内空間201S及び202Sは、出射口201E及び202Eにそれぞれ至る。管内空間201S及び202Sは、出射口201E及び202Eに近づくにつれて小さくなる径をそれぞれ有する。赤外線放射器11及び12は、管内空間201S及び202Sにそれぞれ配置される。放射面11R及び12Rは、出射口201E及び202Eに向かう方向を向く。 The reflective surfaces 201R and 202R are the inner surfaces of the waveguides 201 and 202, respectively. The in-pipe spaces 201S and 202S are surrounded by the reflective surfaces 201R and 202R, respectively. The in-pipe spaces 201S and 202S reach the outlets 201E and 202E, respectively. The in-pipe spaces 201S and 202S have diameters that decrease as they approach the outlets 201E and 202E, respectively. The infrared radiators 11 and 12 are arranged in the pipe spaces 201S and 202S, respectively. The radial surfaces 11R and 12R face toward the exits 201E and 202E.
 反射面201R及び202Rは、熱放射された赤外線IR1及びIR2をそれぞれ反射する。 The reflecting surfaces 201R and 202R reflect the heat-radiated infrared rays IR1 and IR2, respectively.
 出射口201Eは、熱放射された赤外線IR1及び熱放射され反射された赤外線IR1を出射させる。出射口202Eは、熱放射された赤外線IR2及び熱放射され反射された赤外線IR2を出射させる。管内空間201S及び202Sは出射口201E及び202Eに近づくにつれて小さくなる径をそれぞれ有するため、出射する赤外線IR1及びIR2は、集光される。 The outlet 201E emits the heat-radiated infrared IR1 and the heat-radiated and reflected infrared IR1. The outlet 202E emits the heat-radiated infrared IR2 and the heat-radiated and reflected infrared IR2. Since the in-pipe spaces 201S and 202S have diameters that become smaller as they approach the exit ports 201E and 202E, the emitted infrared rays IR1 and IR2 are focused.
 血糖値測定装置2によれば、血糖値測定装置1と同様に、非侵襲で血糖値の測定を行う血糖値測定装置2のサイズを小さくすることができる。また、当該血糖値測定装置2のコストを低くすることができる。また、当該血糖値測定装置2に備えられる光源の出力を大きくすることができる。 According to the blood glucose level measuring device 2, the size of the blood glucose level measuring device 2 that measures the blood glucose level in a non-invasive manner can be reduced as in the blood glucose level measuring device 1. In addition, the cost of the blood glucose level measuring device 2 can be reduced. In addition, the output of the light source provided in the blood glucose level measuring device 2 can be increased.
 3 第3実施形態
 図8は、第3実施形態の血糖値測定装置を模式的に図示する断面図である。図9は、第3実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する断面図である。図10は、グルコースの吸光度スペクトル及び第3実施形態の血糖値測定装置に備えられる赤外線放射器により熱放射される赤外線の放射強度スペクトルの例を示すグラフである。図10においては、縦軸に吸光度及び放射強度がとられている。また、横軸に波数がとられている。図4は、第3実施形態の血糖値測定装置に備えらえる熱放射板を模式的に図示する斜視図でもある。
3 Third Embodiment FIG. 8 is a cross-sectional view schematically illustrating the blood glucose level measuring device of the third embodiment. FIG. 9 is a cross-sectional view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the third embodiment. FIG. 10 is a graph showing an example of an absorption spectrum of glucose and an infrared radiation intensity spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the third embodiment. In FIG. 10, the vertical axis represents the absorbance and the radiant intensity. In addition, the wave number is taken on the horizontal axis. FIG. 4 is also a perspective view schematically illustrating a heat radiation plate provided in the blood glucose level measuring device of the third embodiment.
 以下では、主に、図8に図示される第3実施形態の血糖値測定装置3が図1に図示される第1実施形態の血糖値測定装置1と相違する点が説明される。説明されない点については、血糖値測定装置1において採用される構成と同様の構成が血糖値測定装置3においても採用される。 In the following, it will be mainly described that the blood glucose level measuring device 3 of the third embodiment shown in FIG. 8 is different from the blood glucose level measuring device 1 of the first embodiment shown in FIG. Regarding the points not explained, the same configuration as that adopted in the blood glucose level measuring device 1 is also adopted in the blood glucose level measuring device 3.
 図8に図示される第3実施形態の血糖値測定装置3は、生体LBに照射される赤外線IR1及びIR2の各々が互いに異なるふたつ以上のピーク波長を有する波長混在型の血糖値測定装置である。 The blood glucose level measuring device 3 of the third embodiment shown in FIG. 8 is a wavelength mixed type blood glucose level measuring device in which each of the infrared rays IR1 and IR2 irradiated to the living body LB has two or more peak wavelengths different from each other. ..
 図8に図示される赤外線IR1は、ピーク波長λ1及びλ2を有する。図8に図示される赤外線IR2は、ピーク波長λ3及びλ4を有する。ピーク波長λ3及びλ4は、ピーク波長λ1及びλ2と異なる。このため、赤外線IR1及びIR2は、互いに異なるピーク波長を有する。 The infrared IR1 illustrated in FIG. 8 has peak wavelengths λ1 and λ2. The infrared IR2 illustrated in FIG. 8 has peak wavelengths λ3 and λ4. The peak wavelengths λ3 and λ4 are different from the peak wavelengths λ1 and λ2. Therefore, the infrared IR1 and IR2 have different peak wavelengths from each other.
 メタマテリアル111及び121は、互いに異なる構造を有する。ピーク波長λ1及びλ2は、メタマテリアル111の構造に応じた波長である。ピーク波長λ3及びλ4は、メタマテリアル121の構造に応じた波長である。このため、ピーク波長λ3及びλ4は、ピーク波長λ1及びλ2と異なる。 Metamaterials 111 and 121 have different structures from each other. The peak wavelengths λ1 and λ2 are wavelengths corresponding to the structure of the metamaterial 111. The peak wavelengths λ3 and λ4 are wavelengths corresponding to the structure of the metamaterial 121. Therefore, the peak wavelengths λ3 and λ4 are different from the peak wavelengths λ1 and λ2.
 第3実施形態においては、メタマテリアル111及び121は、それぞれ放射面11R及び12Rと平行をなす方向に周期的に配列される複数のパターン片を備える周期構造である。また、ピーク波長λ1及びλ2は、周期構造111のパターンに応じた波長である。また、ピーク波長λ3及びλ4は、周期構造121のパターンに応じた波長である。 In the third embodiment, the metamaterials 111 and 121 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 11R and 12R, respectively. Further, the peak wavelengths λ1 and λ2 are wavelengths corresponding to the pattern of the periodic structure 111. Further, the peak wavelengths λ3 and λ4 are wavelengths corresponding to the pattern of the periodic structure 121.
 赤外線放射器11及び12の各々は、赤外線IRA及びIRBを熱放射する。 Each of the infrared radiators 11 and 12 thermally radiates infrared IRA and IRB.
 メタマテリアル71A1及び71B1は、互いに異なる構造を有する。赤外線IRA及びIRBのピーク波長は、それぞれメタマテリアル71A1及び71B1の構造に応じた波長である。このため、赤外線IRA及びIRBのピーク波長は、互いに異なる波長である。 The metamaterials 71A1 and 71B1 have different structures from each other. The peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the structures of the metamaterials 71A1 and 71B1, respectively. Therefore, the peak wavelengths of the infrared IRA and IRB are different from each other.
 第3実施形態においては、メタマテリアル71A1及び71B1は、それぞれ放射面71AR及び71BRと平行をなす方向に周期的に配列される複数のパターン片を備える周期構造である。また、赤外線IRA及びIRBのピーク波長は、それぞれ周期構造71A1及び71B1のパターンに応じた波長である。 In the third embodiment, the metamaterials 71A1 and 71B1 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 71AR and 71BR, respectively. Further, the peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the patterns of the periodic structures 71A1 and 71B1, respectively.
 血糖値測定装置3によれば、血糖値測定装置1と同様に、非侵襲で血糖値の測定を行う血糖値測定装置3のサイズを小さくすることができる。また、当該血糖値測定装置3のコストを低くすることができる。また、当該血糖値測定装置3に備えられる光源の出力を大きくすることができる。 According to the blood glucose level measuring device 3, the size of the blood glucose level measuring device 3 that measures the blood glucose level in a non-invasive manner can be reduced as in the blood glucose level measuring device 1. In addition, the cost of the blood glucose level measuring device 3 can be reduced. In addition, the output of the light source provided in the blood glucose level measuring device 3 can be increased.
 4 第4実施形態
 図11は、第4実施形態の血糖値測定装置を模式的に図示する断面図である。図12は、第4実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する断面図である。図13は、第4実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する平面図である。図10は、グルコースの吸光度スペクトル及び第4実施形態の血糖値測定装置に備えられる赤外線放射器により熱放射される赤外線の放射強度スペクトルの例を示すグラフでもある。図4は、第4実施形態の血糖値測定装置に備えらえる熱放射板を模式的に図示する斜視図でもある。
4 Fourth Embodiment FIG. 11 is a cross-sectional view schematically illustrating the blood glucose level measuring device of the fourth embodiment. FIG. 12 is a cross-sectional view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the fourth embodiment. FIG. 13 is a plan view schematically showing an infrared radiator provided in the blood glucose level measuring device of the fourth embodiment. FIG. 10 is also a graph showing an example of a glucose absorbance spectrum and an infrared radiation intensity spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the fourth embodiment. FIG. 4 is also a perspective view schematically illustrating a heat radiation plate provided in the blood glucose level measuring device of the fourth embodiment.
 以下では、主に、図11に図示される第4実施形態の血糖値測定装置4が図6に図示される第2実施形態の血糖値測定装置2と相違する点が説明される。説明されない点については、血糖値測定装置2において採用される構成と同様の構成が血糖値測定装置4においても採用される。 In the following, it will be mainly described that the blood glucose level measuring device 4 of the fourth embodiment shown in FIG. 11 is different from the blood glucose level measuring device 2 of the second embodiment shown in FIG. Regarding the points not explained, the same configuration as that adopted in the blood glucose level measuring device 2 is also adopted in the blood glucose level measuring device 4.
 図11に図示される第4実施形態の血糖値測定装置4は、生体LBに照射される赤外線IR1及びIR2の各々が互いに異なるふたつ以上のピーク波長を有する波長混在型の血糖値測定装置である。 The blood glucose level measuring device 4 of the fourth embodiment shown in FIG. 11 is a wavelength mixed type blood glucose level measuring device in which each of the infrared rays IR1 and IR2 irradiated to the living body LB has two or more peak wavelengths different from each other. ..
 図11に図示される赤外線IR1は、ピーク波長λ1及びλ2を有する。図11に図示される赤外線IR2は、ピーク波長λ3及びλ4を有する。ピーク波長λ3及びλ4は、ピーク波長λ1及びλ2と異なる。このため、赤外線IR1及びIR2は、互いに異なるピーク波長を有する。 The infrared IR1 illustrated in FIG. 11 has peak wavelengths λ1 and λ2. The infrared IR2 illustrated in FIG. 11 has peak wavelengths λ3 and λ4. The peak wavelengths λ3 and λ4 are different from the peak wavelengths λ1 and λ2. Therefore, the infrared IR1 and IR2 have different peak wavelengths from each other.
 メタマテリアル111及び121は、互いに異なる構造を有する。ピーク波長λ1及びλ2は、メタマテリアル111の構造に応じた波長である。ピーク波長λ3及びλ4は、メタマテリアル121の構造に応じた波長である。このため、ピーク波長λ3及びλ4は、ピーク波長λ1及びλ2と異なる。 Metamaterials 111 and 121 have different structures from each other. The peak wavelengths λ1 and λ2 are wavelengths corresponding to the structure of the metamaterial 111. The peak wavelengths λ3 and λ4 are wavelengths corresponding to the structure of the metamaterial 121. Therefore, the peak wavelengths λ3 and λ4 are different from the peak wavelengths λ1 and λ2.
 第4実施形態においては、メタマテリアル111及び121は、それぞれ放射面11R及び12Rと平行をなす方向に周期的に配列される複数のパターン片を備える周期構造である。また、ピーク波長λ1及びλ2は、それぞれ周期構造111及び121のパターンに応じた波長である。 In the fourth embodiment, the metamaterials 111 and 121 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 11R and 12R, respectively. Further, the peak wavelengths λ1 and λ2 are wavelengths corresponding to the patterns of the periodic structures 111 and 121, respectively.
 図12及び図13に図示されるように、熱放射板70は、放射面71AR及び71BRを有する。このため、赤外線放射器11及び12の各々は、放射面71AR及び71BRを有する。また、赤外線放射器11及び12の各々は、図11に図示される赤外線IRA及びIRBを放射面71AR及び71BRからそれぞれ熱放射する。赤外線放射器11の放射面71AR及び71BRは、放射面11Rを構成する。赤外線放射器12の放射面71AR及び71BRは、放射面12Rを構成する。赤外線放射器11により熱放射される赤外線IRA及びIRBは、赤外線IR1を構成する。赤外線放射器12により熱放射される赤外線IRA及びIRBは、赤外線IR2を構成する。 As shown in FIGS. 12 and 13, the heat radiation plate 70 has radiation surfaces 71AR and 71BR. Therefore, each of the infrared radiators 11 and 12 has radiation surfaces 71AR and 71BR. Further, each of the infrared radiators 11 and 12 thermally radiates the infrared IRA and IRB shown in FIG. 11 from the radiation surfaces 71AR and 71BR, respectively. The radiation surfaces 71AR and 71BR of the infrared radiator 11 constitute the radiation surface 11R. The radiation surfaces 71AR and 71BR of the infrared radiator 12 constitute the radiation surface 12R. The infrared IRA and IRB thermally radiated by the infrared radiator 11 constitute the infrared IR1. The infrared IRA and IRB thermally radiated by the infrared radiator 12 constitute the infrared IR2.
 また、図12及び図13に図示されるように、熱放射板70は、メタマテリアル71A1及び71B1をそれぞれ備える。このため、赤外線放射器11及び12の各々は、メタマテリアル71A1及び71B1を備える。メタマテリアル71A1及び71B1は、放射面71AR及び71BRに沿ってそれぞれ配置される。赤外線放射器11に備えられるメタマテリアル71A1及び71B1は、メタマテリアル111を構成する。赤外線放射器12に備えられるメタマテリアル71A1及び71B1は、メタマテリアル121を構成する。 Further, as shown in FIGS. 12 and 13, the heat radiation plate 70 includes metamaterials 71A1 and 71B1, respectively. Therefore, each of the infrared radiators 11 and 12 includes metamaterials 71A1 and 71B1. The metamaterials 71A1 and 71B1 are arranged along the radial surfaces 71AR and 71BR, respectively. The metamaterials 71A1 and 71B1 provided in the infrared radiator 11 constitute the metamaterial 111. The metamaterials 71A1 and 71B1 provided in the infrared radiator 12 constitute the metamaterial 121.
 メタマテリアル71A1及び71B1は、互いに異なる構造を有する。赤外線IRA及びIRBのピーク波長は、それぞれメタマテリアル71A1及び71B1の構造に応じた波長である。このため、赤外線IRA及びIRBのピーク波長は、互いに異なる波長である。 The metamaterials 71A1 and 71B1 have different structures from each other. The peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the structures of the metamaterials 71A1 and 71B1, respectively. Therefore, the peak wavelengths of the infrared IRA and IRB are different from each other.
 第4実施形態においては、メタマテリアル71A1及び71B1は、それぞれ放射面71AR及び71BRと平行をなす方向に周期的に配列される複数のパターン片を備える周期構造である。また、赤外線IRA及びIRBのピーク波長は、それぞれ周期構造71A1及び71B1のパターンに応じた波長である。 In the fourth embodiment, the metamaterials 71A1 and 71B1 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 71AR and 71BR, respectively. Further, the peak wavelengths of the infrared IRA and IRB are wavelengths corresponding to the patterns of the periodic structures 71A1 and 71B1, respectively.
 血糖値測定装置4によれば、血糖値測定装置1と同様に、非侵襲で血糖値の測定を行う血糖値測定装置4のサイズを小さくすることができる。また、当該血糖値測定装置4のコストを低くすることができる。また、当該血糖値測定装置4に備えられる光源の出力を大きくすることができる。 According to the blood glucose level measuring device 4, the size of the blood glucose level measuring device 4 that measures the blood glucose level in a non-invasive manner can be reduced as in the blood glucose level measuring device 1. In addition, the cost of the blood glucose level measuring device 4 can be reduced. In addition, the output of the light source provided in the blood glucose level measuring device 4 can be increased.
 5 第5実施形態
 図14は、第5実施形態の血糖値測定装置を模式的に図示する断面図である。図15は、第5実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する断面図である。図16は、第5実施形態の血糖値測定装置に備えられる赤外線放射器を模式的に図示する平面図でもある。図3は、グルコースの吸光度スペクトル及び第5実施形態の血糖値測定装置に備えられる赤外線放射器により熱放射される赤外線の放射強度スペクトルの例を示すグラフでもある。図4は、第5実施形態の血糖値測定装置に備えらえる熱放射板を模式的に図示する斜視図でもある。
5 FIG. 14 is a cross-sectional view schematically showing the blood glucose level measuring device of the fifth embodiment. FIG. 15 is a cross-sectional view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the fifth embodiment. FIG. 16 is also a plan view schematically illustrating an infrared radiator provided in the blood glucose level measuring device of the fifth embodiment. FIG. 3 is also a graph showing an example of a glucose absorbance spectrum and an infrared radiation intensity spectrum thermally radiated by an infrared radiator provided in the blood glucose level measuring device of the fifth embodiment. FIG. 4 is also a perspective view schematically illustrating a heat radiation plate provided in the blood glucose level measuring device of the fifth embodiment.
 以下では、主に、図14に図示される第5実施形態の血糖値測定装置5が図1に図示される第1実施形態の血糖値測定装置1と相違する点が説明される。説明されない点については、血糖値測定装置1において採用される構成と同様の構成が血糖値測定装置5においても採用される。 In the following, it will be mainly described that the blood glucose level measuring device 5 of the fifth embodiment shown in FIG. 14 is different from the blood glucose level measuring device 1 of the first embodiment shown in FIG. Regarding the points not explained, the same configuration as that adopted in the blood glucose level measuring device 1 is also adopted in the blood glucose level measuring device 5.
 図14に図示される第5実施形態の血糖値測定装置5は、生体LBに照射される赤外線IR1及びIR2の各々がひとつのピーク波長しか有しない波長独立型の血糖値測定装置である。 The blood glucose level measuring device 5 of the fifth embodiment shown in FIG. 14 is a wavelength-independent blood glucose level measuring device in which each of the infrared rays IR1 and IR2 irradiated to the living body LB has only one peak wavelength.
 図14に図示されるように、第5実施形態の血糖値測定装置5は、赤外線放射器10、シャッター31、シャッター32、検出器41、制御器51及び算出器61を備える。 As shown in FIG. 14, the blood glucose level measuring device 5 of the fifth embodiment includes an infrared radiator 10, a shutter 31, a shutter 32, a detector 41, a controller 51, and a calculator 61.
 検出器41は、生体LB中のグルコースによる赤外線IR1及びIR2の吸収量を反映する量Dを検出する。第5実施形態においては、検出器41は、音響波検出器である。また、検出される量Dは、赤外線IR1及びIR2が生体LBに照射されている間に生体LBから到来する音響波AWの強度である。音響波検出器は、マイクロフォンである。音響波検出器が、マイクロフォン以外の音響波検出器であってもよい。音響波AWは、赤外線IR1及びIR2をグルコースが吸収した際に光音響効果により発生する音響波である。 The detector 41 detects an amount D that reflects the amount of infrared rays IR1 and IR2 absorbed by glucose in the living body LB. In the fifth embodiment, the detector 41 is an acoustic wave detector. Further, the detected amount D is the intensity of the acoustic wave AW arriving from the living body LB while the infrared rays IR1 and IR2 are irradiated on the living body LB. The acoustic wave detector is a microphone. The acoustic wave detector may be an acoustic wave detector other than a microphone. The acoustic wave AW is an acoustic wave generated by the photoacoustic effect when glucose absorbs infrared rays IR1 and IR2.
 図14、図15及び図16に図示されるように、赤外線放射器10は、複数の放射面11R及び12Rを有する。赤外線放射器10は、赤外線IR1及びIR2を放射面11R及び12Rからそれぞれ熱放射する。放射面11R及び12Rは、同じ方向を向く。 As shown in FIGS. 14, 15 and 16, the infrared radiator 10 has a plurality of radiation surfaces 11R and 12R. The infrared radiator 10 thermally radiates infrared IR1 and IR2 from the radiation surfaces 11R and 12R, respectively. The radial surfaces 11R and 12R face the same direction.
 図14、図15及び図16に図示されるように、赤外線放射器10は、メタマテリアル111及び121を備える。メタマテリアル111及び121は、放射面11R及び12Rに沿ってそれぞれ配置される。 As shown in FIGS. 14, 15 and 16, the infrared radiator 10 includes metamaterials 111 and 121. The metamaterials 111 and 121 are arranged along the radial surfaces 11R and 12R, respectively.
 メタマテリアル111及び121は、互いに異なる構造を有する。ピーク波長λ1及びλ2は、それぞれメタマテリアル111及び121の構造に応じた波長である。このため、ピーク波長λ1及びλ2は、互いに異なる。このため、赤外線IR1及びIR2は、互いに異なるピーク波長を有する。 Metamaterials 111 and 121 have different structures from each other. The peak wavelengths λ1 and λ2 are wavelengths corresponding to the structures of the metamaterials 111 and 121, respectively. Therefore, the peak wavelengths λ1 and λ2 are different from each other. Therefore, the infrared IR1 and IR2 have different peak wavelengths from each other.
 第5実施形態においては、メタマテリアル111及び121は、それぞれ放射面11R及び12Rと平行をなす方向に周期的に配列される複数のパターン片を備える周期構造である。また、ピーク波長λ1及びλ2は、それぞれ周期構造111及び121のパターンに応じた波長である。 In the fifth embodiment, the metamaterials 111 and 121 have a periodic structure including a plurality of pattern pieces periodically arranged in a direction parallel to the radial surfaces 11R and 12R, respectively. Further, the peak wavelengths λ1 and λ2 are wavelengths corresponding to the patterns of the periodic structures 111 and 121, respectively.
 図15に図示されるように、赤外線放射器10は、熱放射板70及びヒーター81を備える。 As shown in FIG. 15, the infrared radiator 10 includes a heat radiating plate 70 and a heater 81.
 図16に図示されるように、熱放射板70は、放射面11R及び12Rを有する。 As illustrated in FIG. 16, the heat radiation plate 70 has radiation surfaces 11R and 12R.
 血糖値測定装置5によれば、血糖値測定装置1と同様に、非侵襲で血糖値の測定を行う血糖値測定装置5のサイズを小さくすることができる。また、当該血糖値測定装置5のコストを低くすることができる。また、当該血糖値測定装置5に備えられる光源の出力を大きくすることができる。 According to the blood glucose level measuring device 5, the size of the blood glucose level measuring device 5 that measures the blood glucose level in a non-invasive manner can be reduced as in the blood glucose level measuring device 1. In addition, the cost of the blood glucose level measuring device 5 can be reduced. In addition, the output of the light source provided in the blood glucose level measuring device 5 can be increased.
 また、血糖値測定装置5によれば、広い範囲から到来する音響波AWの強度を容易に検出することができる。このため、赤外線IR1及びIR2を集光する必要がなく、赤外線IR1及びIR2を集光する光学系を省略することができる。 Further, according to the blood glucose level measuring device 5, the intensity of the acoustic wave AW arriving from a wide range can be easily detected. Therefore, it is not necessary to collect the infrared rays IR1 and IR2, and the optical system that collects the infrared rays IR1 and IR2 can be omitted.
 6 熱放射板の別例
 図17から図19までは、第1実施形態から第5実施形態までの血糖値測定装置に備えられる熱放射板の別例を模式的に図示する斜視図である。
6 Another example of the heat radiating plate FIGS. 17 to 19 are perspective views schematically illustrating another example of the heat radiating plate provided in the blood glucose level measuring devices of the first to fifth embodiments.
 熱放射板71A,71B及び70の各々が、図4に図示される熱放射板以外の熱放射板であってもよい。例えば、熱放射板71A,71B及び70の各々が、図17、図18又は図19に図示される熱放射板であってもよい。 Each of the heat radiating plates 71A, 71B and 70 may be a heat radiating plate other than the heat radiating plate shown in FIG. For example, each of the heat radiating plates 71A, 71B and 70 may be the heat radiating plate shown in FIG. 17, FIG. 18 or FIG.
 図17に図示される熱放射板71A,71B及び70の各々は、導電体層801を備える。導電体層801には、複数のマイクロキャビティ802が形成される。複数のマイクロキャビティ802は、マトリクス状に配列される。熱放射板71A,71B及び70に備えられる導電体層801は、メタマテリアル71A1,71B1及び701をそれぞれ構成する。 Each of the heat radiating plates 71A, 71B and 70 illustrated in FIG. 17 includes a conductor layer 801. A plurality of microcavities 802 are formed in the conductor layer 801. The plurality of microcavities 802 are arranged in a matrix. The conductor layer 801 provided in the heat radiating plates 71A, 71B and 70 constitutes the metamaterials 71A1, 71B1 and 701, respectively.
 図18に図示される熱放射板71A,71B及び70の各々は、導電体層811、誘電体層812及び導電体パターン813を備える。誘電体層812は、導電体層811の上に配置される。導電体パターン813は、誘電体層812の上に配置される。導電体パターン813は、複数のスプリットリング814を備える。複数のスプリットリング814は、マトリクス状に配列される。熱放射板71A,71B及び70に備えられる導電体層811、誘電体層812及び導電体パターン813は、メタマテリアル71A1,71B1及び701をそれぞれ構成する。 Each of the heat radiating plates 71A, 71B and 70 illustrated in FIG. 18 includes a conductor layer 811, a dielectric layer 812 and a conductor pattern 813. The dielectric layer 812 is arranged on the conductor layer 811. The conductor pattern 813 is arranged on the dielectric layer 812. The conductor pattern 813 includes a plurality of split rings 814. The plurality of split rings 814 are arranged in a matrix. The conductor layer 811, the dielectric layer 812, and the conductor pattern 813 provided in the heat radiating plates 71A, 71B and 70 constitute the metamaterials 71A1, 71B1 and 701, respectively.
 図19に図示される熱放射板71A,71B及び70の各々は、W層821、SiO層822、Ge層823、SiO層824、Ge層825、SiO層826及びGe層827を備える。W層821、SiO層822、Ge層823、SiO層824、Ge層825、SiO層826及びGe層827は、記載された順序で下から上に積層される。熱放射板71A,71B及び70に備えられるW層821、SiO層822、Ge層823、SiO層824、Ge層825、SiO層826及びGe層827は、メタマテリアル71A1,71B1及び701をそれぞれ構成する。 Each of the heat radiating plate 71A, 71B and 70, illustrated in FIG. 19 comprises a W layer 821, SiO 2 layer 822, Ge layer 823, SiO 2 layer 824, Ge layer 825, SiO 2 layer 826 and Ge layers 827 .. The W layer 821, the SiO 2 layer 822, the Ge layer 823, the SiO 2 layer 824, the Ge layer 825, the SiO 2 layer 826, and the Ge layer 827 are laminated from bottom to top in the order described. The W layer 821, SiO 2 layer 822, Ge layer 823, SiO 2 layer 824, Ge layer 825, SiO 2 layer 828 and Ge layer 827 provided in the heat radiating plates 71A, 71B and 70 are metamaterials 71A1, 71B1 and 701. Are configured respectively.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is exemplary in all aspects and the invention is not limited thereto. It is understood that innumerable variations not illustrated can be assumed without departing from the scope of the present invention.
 1,2,3,4,5 血糖値測定装置
 10,11,12 赤外線放射器
 21,22 光学系
 31,32 シャッター
 41 検出器
 51 制御器
 61 算出器
 70,71A,71B 熱放射板
 81 ヒーター
 101,102 放物面鏡
 111,121,71A1,71B1,701 メタマテリアル
 141,142 レンズ
 201,202 導波管
 LB 生体
 IR1,IR2,IR,IRA,IRB 赤外線
 AIR 到来赤外線
 AW 音響波
1,2,3,4,5 Blood glucose level measuring device 10,11,12 Infrared radiator 21,22 Optical system 31,32 Shutter 41 Detector 51 Controller 61 Calculator 61 Calculator 70, 71A, 71B Heat radiation plate 81 Heater 101 , 102 Parabolic mirror 111,121,71A1,71B1,701 Metamaterial 141,142 Lens 201,202 Waveguide LB Biological IR1, IR2, IR, IRA, IRB Infrared IR Infrared AW Acoustic wave

Claims (17)

  1.  放射面を有し、メタマテリアルを備え、前記メタマテリアルの構造に応じたピーク波長を有する赤外線を前記放射面から熱放射する赤外線放射器と、
     生体中のグルコースによる前記赤外線の吸収量を反映する量を検出する検出器と、
    を備える血糖値測定装置。
    An infrared radiator having a radiating surface, having a metamaterial, and thermally radiating infrared rays having a peak wavelength corresponding to the structure of the metamaterial from the radiating surface.
    A detector that detects an amount that reflects the amount of infrared rays absorbed by glucose in the living body,
    A glucose meter measuring device.
  2.  前記量は、前記生体に前記赤外線が照射されている間に前記生体から到来する到来赤外線の強度である
    請求項1の血糖値測定装置。
    The blood glucose level measuring device according to claim 1, wherein the amount is the intensity of the incoming infrared rays coming from the living body while the living body is irradiated with the infrared rays.
  3.  前記量は、前記生体に前記赤外線が照射されている間に前記生体から到来する音響波の強度である
    請求項1の血糖値測定装置。
    The blood glucose level measuring device according to claim 1, wherein the amount is the intensity of an acoustic wave arriving from the living body while the living body is irradiated with the infrared rays.
  4.  前記赤外線を集光する光学系
    を備える請求項1から3までのいずれかの血糖値測定装置。
    The blood glucose level measuring device according to any one of claims 1 to 3, further comprising an optical system that collects infrared rays.
  5.  前記光学系は、
     焦点と、前記赤外線を反射する反射面と、を有する放物面鏡と、
     反射された赤外線を集光するレンズと、
    を備え、
     前記赤外線放射器は、前記焦点に配置される
    請求項4の血糖値測定装置。
    The optical system is
    A parabolic mirror having a focal point and a reflecting surface that reflects the infrared rays.
    A lens that collects reflected infrared rays and
    Equipped with
    The infrared radiator is the blood glucose level measuring device according to claim 4, which is arranged at the focal point.
  6.  前記放物面鏡は、回転対称軸を有し、
     前記放射面は、ふたつ以上の放射面であり、
     前記赤外線は、ふたつ以上の赤外線であり、
     前記ふたつ以上の放射面は、前記回転対称軸が伸びる方向と垂直をなす方向を向き、互いに異なる方向を向き、
     前記赤外線放射器は、前記ふたつ以上の赤外線を前記ふたつ以上の放射面からそれぞれ熱放射する
    請求項5の血糖値測定装置。
    The parabolic mirror has an axis of rotational symmetry and
    The radial surface is two or more radial surfaces.
    The infrared rays are two or more infrared rays.
    The two or more radial planes face in a direction perpendicular to the direction in which the axis of rotational symmetry extends, and face in different directions.
    The infrared radiator is the blood glucose level measuring device according to claim 5, wherein the two or more infrared rays are thermally radiated from the two or more radiation surfaces.
  7.  前記メタマテリアルは、ふたつ以上のメタマテリアルであり、
     前記ふたつ以上のメタマテリアルは、前記ふたつ以上の放射面に沿ってそれぞれ配置され、同じ構造を有し、
     前記ふたつ以上の赤外線のピーク波長は、前記ふたつ以上のメタマテリアルの構造に応じた波長であり、同じ波長である
    請求項6の血糖値測定装置。
    The metamaterial is two or more metamaterials.
    The two or more metamaterials are respectively arranged along the two or more radial planes and have the same structure.
    The blood glucose level measuring device according to claim 6, wherein the peak wavelengths of the two or more infrared rays are wavelengths corresponding to the structures of the two or more metamaterials, and are the same wavelengths.
  8.  前記メタマテリアルは、ふたつ以上のメタマテリアルであり、
     前記ふたつ以上のメタマテリアルは、前記ふたつ以上の放射面に沿ってそれぞれ配置され、互いに異なる構造を有し、
     前記ふたつ以上の赤外線のピーク波長は、それぞれ前記ふたつ以上のメタマテリアルの構造に応じた波長であり、互いに異なる波長である
    請求項6の血糖値測定装置。
    The metamaterial is two or more metamaterials.
    The two or more metamaterials are arranged along the two or more radial planes and have different structures from each other.
    The blood glucose level measuring device according to claim 6, wherein the peak wavelengths of the two or more infrared rays are wavelengths corresponding to the structures of the two or more metamaterials, and are different wavelengths from each other.
  9.  前記光学系は、
     内面であり前記赤外線を反射する反射面と、前記赤外線及び反射された赤外線を出射させる出射口と、前記反射面に囲まれ前記出射口に至り前記出射口に近づくにつれて小さくなる径を有する管内空間と、を有する導波管
    を備え、
     前記赤外線放射器は、前記管内空間に配置される
    請求項4の血糖値測定装置。
    The optical system is
    An inner surface, a reflecting surface that reflects the infrared rays, an exit port that emits the infrared rays and the reflected infrared rays, and an inner space having a diameter that is surrounded by the reflecting surface and has a diameter that becomes smaller as it reaches the exit port and approaches the emission port. And equipped with a waveguide with
    The infrared radiator is the blood glucose level measuring device according to claim 4, which is arranged in the space inside the tube.
  10.  前記放射面は、前記出射口に向かう方向を向く
    請求項9の血糖値測定装置。
    The blood glucose level measuring device according to claim 9, wherein the radiating surface faces the direction toward the exit port.
  11.  前記放射面は、ふたつ以上の放射面であり、
     前記メタマテリアルは、ふたつ以上のメタマテリアルであり、
     前記ふたつ以上のメタマテリアルは、前記ふたつ以上の放射面に沿ってそれぞれ配置され、互いに異なる構造を有し、
     前記赤外線は、ふたつ以上の赤外線であり、
     前記ふたつ以上の赤外線のピーク波長は、それぞれ前記ふたつ以上のメタマテリアルの構造に応じた波長であり、互いに異なる波長であり、
     前記赤外線放射器は、前記ふたつ以上の赤外線を前記ふたつ以上の放射面からそれぞれ熱放射する
    請求項10の血糖値測定装置。
    The radial surface is two or more radial surfaces.
    The metamaterial is two or more metamaterials.
    The two or more metamaterials are arranged along the two or more radial planes and have different structures from each other.
    The infrared rays are two or more infrared rays.
    The peak wavelengths of the two or more infrared rays are wavelengths corresponding to the structures of the two or more metamaterials, and are different wavelengths from each other.
    The infrared radiator is the blood glucose level measuring device according to claim 10, wherein the two or more infrared rays are thermally radiated from the two or more radiation surfaces.
  12.  前記赤外線放射器を含む複数の赤外線放射器を備え、
     前記複数の赤外線放射器は、
     複数の放射面をそれぞれ有し、
     前記複数の放射面に沿って配置され互いに異なる構造を有する複数のメタマテリアルをそれぞれ備え、
     前記複数のメタマテリアルに応じた波長であり互いに異なるピーク波長を有する複数の赤外線を前記複数の放射面からそれぞれ熱放射する
    請求項1から11までのいずれかの血糖値測定装置。
    A plurality of infrared radiators including the infrared radiator are provided.
    The plurality of infrared radiators
    Each has multiple radial surfaces,
    Each of the plurality of metamaterials arranged along the plurality of radial planes and having different structures from each other is provided.
    The blood glucose level measuring device according to any one of claims 1 to 11, wherein a plurality of infrared rays having wavelengths corresponding to the plurality of metamaterials and having different peak wavelengths are thermally radiated from the plurality of radiation surfaces.
  13.  前記複数の赤外線のピーク波長は、グルコースの吸光度が最小となる波長及びグルコースの吸光度が最大となる波長を含む
    請求項12の血糖値測定装置。
    The blood glucose level measuring apparatus according to claim 12, wherein the plurality of infrared peak wavelengths include a wavelength at which the absorbance of glucose is minimized and a wavelength at which the absorbance of glucose is maximized.
  14.  前記赤外線放射器は、
     前記放射面を有し、前記メタマテリアルを備える熱放射板と、
     前記熱放射板を加熱するヒーターと、
    を備える
    請求項1から13までのいずれかの血糖値測定装置。
    The infrared radiator is
    A thermal radiation plate having the radiation surface and the metamaterial.
    A heater that heats the heat radiation plate and
    The blood glucose measuring device according to any one of claims 1 to 13.
  15.  前記放射面は、ふたつの放射面であり、
     前記メタマテリアルは、ふたつのメタマテリアルであり、
     前記赤外線放射器は、
     前記ふたつの放射面をそれぞれ有し、前記ふたつのメタマテリアルをそれぞれ備えるふたつの熱放射板と、
     前記ふたつの熱放射板に挟まれるヒーターと、
    を備える
    請求項1から14までのいずれかの血糖値測定装置。
    The radial planes are two radial planes.
    The metamaterials are two metamaterials.
    The infrared radiator is
    Two thermal radiation plates each having the two radiation surfaces and each of the two metamaterials,
    The heater sandwiched between the two heat radiation plates and
    The blood glucose level measuring device according to any one of claims 1 to 14.
  16.  前記赤外線の光路を開閉するシャッター
    を備える請求項1から15までのいずれかの血糖値測定装置。
    The blood glucose level measuring device according to any one of claims 1 to 15, further comprising a shutter for opening and closing the infrared optical path.
  17.  前記量から血糖値を算出する算出器
    を備える請求項1から16までのいずれかの血糖値測定装置。
    The blood glucose level measuring device according to any one of claims 1 to 16, further comprising a calculator for calculating the blood glucose level from the amount.
PCT/JP2020/020545 2020-05-25 2020-05-25 Blood sugar measuring device WO2021240600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020545 WO2021240600A1 (en) 2020-05-25 2020-05-25 Blood sugar measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020545 WO2021240600A1 (en) 2020-05-25 2020-05-25 Blood sugar measuring device

Publications (1)

Publication Number Publication Date
WO2021240600A1 true WO2021240600A1 (en) 2021-12-02

Family

ID=78723212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020545 WO2021240600A1 (en) 2020-05-25 2020-05-25 Blood sugar measuring device

Country Status (1)

Country Link
WO (1) WO2021240600A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025465A (en) * 1999-04-30 2001-01-30 Lilienfeld-Toal Hermann V Device and method for detecting substance
CN101536910A (en) * 2009-04-09 2009-09-23 上海理工大学 Pulmonary artery blood oxygen saturation monitoring device based on optical fiber sensor
JP2016509868A (en) * 2013-02-13 2016-04-04 ルマン・ミクロ・デバイシズ・ソシエテ・アノニムLeman Micro Devices Sa Noninvasive blood analysis
JP2017507722A (en) * 2014-02-26 2017-03-23 メディカル ワイヤレス センシング リミテッド Sensor
JP2017519509A (en) * 2014-06-27 2017-07-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Animal vital sign detection system
WO2018123369A1 (en) * 2016-12-26 2018-07-05 三菱電機株式会社 Biological substance measurement device
WO2019009288A1 (en) * 2017-07-05 2019-01-10 日本碍子株式会社 Infrared processing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025465A (en) * 1999-04-30 2001-01-30 Lilienfeld-Toal Hermann V Device and method for detecting substance
CN101536910A (en) * 2009-04-09 2009-09-23 上海理工大学 Pulmonary artery blood oxygen saturation monitoring device based on optical fiber sensor
JP2016509868A (en) * 2013-02-13 2016-04-04 ルマン・ミクロ・デバイシズ・ソシエテ・アノニムLeman Micro Devices Sa Noninvasive blood analysis
JP2017507722A (en) * 2014-02-26 2017-03-23 メディカル ワイヤレス センシング リミテッド Sensor
JP2017519509A (en) * 2014-06-27 2017-07-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Animal vital sign detection system
WO2018123369A1 (en) * 2016-12-26 2018-07-05 三菱電機株式会社 Biological substance measurement device
WO2019009288A1 (en) * 2017-07-05 2019-01-10 日本碍子株式会社 Infrared processing device

Similar Documents

Publication Publication Date Title
US20070179484A1 (en) Temperature Controlled Multi-Wavelength Laser Welding And Heating System
US20210109019A1 (en) Apparatus and Method for Analyzing a Material
JP5103186B2 (en) Multi-band pass filtering for high temperature measurements in laser-based annealing systems
US8523847B2 (en) Reconnectable handpieces for optical energy based devices and methods for adjusting device components
ES2275519T3 (en) OPTICAL FIBER PROBE FOR PHOTOACUSTIC MATERIAL ANALYSIS.
CN101336371B (en) Organism ingredient measuring apparatus for highly precise and non-invasive organism ingredient measurement
JP2019507319A (en) Apparatus and method for analyzing substances
JP6220128B2 (en) Terahertz wave generator and terahertz wave measuring method
JP6509829B2 (en) Measuring device for skin characteristics and non-invasive processing device
EP2167272B1 (en) Pyrometer for laser annealing system compatible with amorphous carbon optical absorber layer
JP2021505871A (en) Devices and methods for analyzing substances
US20140092932A1 (en) Laser apparatus and photoacoustic apparatus
US10436641B2 (en) Shutter assembly for calibration
JP2010521662A (en) Irradiation of scattering reflective media
CN101410069A (en) Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
EP1958584A1 (en) Temperature controlled multi-wavelength laser welding and heating system
WO2021240600A1 (en) Blood sugar measuring device
WO2019150543A1 (en) Biological substance measurement device
JPH08503767A (en) Device for qualitative and / or quantitative analysis of samples
TW201638574A (en) Optical measurement device and method
JP2022180677A (en) Blood sugar measuring device
EP3052010B1 (en) Probe, system, and method for non-invasive measurement of blood analytes
JP6570716B2 (en) Biological substance measuring device
WO2022071442A1 (en) Substance-in-blood concentration measurement device and substance-in-blood concentration measurement method
US20220071521A1 (en) Blood-sugar-level measuring apparatus and blood-sugar-level measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937359

Country of ref document: EP

Kind code of ref document: A1