WO2021240579A1 - Rotor of rotary electric machine and rotary electric machine - Google Patents
Rotor of rotary electric machine and rotary electric machine Download PDFInfo
- Publication number
- WO2021240579A1 WO2021240579A1 PCT/JP2020/020480 JP2020020480W WO2021240579A1 WO 2021240579 A1 WO2021240579 A1 WO 2021240579A1 JP 2020020480 W JP2020020480 W JP 2020020480W WO 2021240579 A1 WO2021240579 A1 WO 2021240579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- electric machine
- rotary electric
- shaft end
- end component
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/21—Devices for sensing speed or position, or actuated thereby
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K17/00—Asynchronous induction motors; Asynchronous induction generators
- H02K17/02—Asynchronous induction motors
- H02K17/22—Asynchronous induction motors having rotors with windings connected to slip-rings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
- H02K3/50—Fastening of winding heads, equalising connectors, or connections thereto
- H02K3/51—Fastening of winding heads, equalising connectors, or connections thereto applicable to rotors only
Definitions
- This application relates to a rotor of a rotary electric machine and a rotary electric machine.
- a rotor core having a plurality of teeth portions protruding outward in the radial direction from the shaft, a rotor winding wound around each of the plurality of teeth portions, and axially protruding from the rotor core.
- a rotor of a rotary electric machine in which a fixed ring member for accommodating a coil end portion of a rotor winding is arranged is known (see, for example, Patent Document 1).
- the conventional rotor does not have a power supply path from the external drive circuit to the rotor winding, and for example, the fixed ring member is not provided with a lead wire guide connected to the rotor winding. Therefore, there is a problem that the quality of the lead wire from the external drive circuit is not uniform among the products and the productivity is poor.
- the present application discloses a technique for solving the above-mentioned problems, in which the lead wire from the external drive circuit can be easily routed, the quality of the product can be made uniform, and the rotation of a rotating electric machine with high productivity can be performed. It is intended to provide a child and a rotary electric machine.
- the rotor of the rotary electric machine disclosed in the present application is The shaft, the rotor core provided on the shaft, and A rotor of a rotary electric machine provided at both ends of the rotor core in the axial direction and having an annular shaft end component for holding the rotor core from both sides in the axial direction.
- the first shaft end component which is the shaft end component provided on the shaft and is close to the terminal portion to receive power from the outside, is a connection target that projects upward in the axial direction from the terminal portion and the rotor core. It has a guide unit that guides the lead wire that electrically connects to the component.
- the rotary electric machine disclosed in the present application is a rotary electric machine. With the rotor of the rotary electric machine, With a stator core and a stator consisting of a stator winding, The rotor has an outer peripheral surface facing the inner peripheral surface of the stator and is rotatably supported via a gap.
- the rotor of the rotary electric machine and the rotary electric machine disclosed in the present application it is easy to route the lead wire from the external drive circuit, the quality of the product can be made uniform, and the rotor and the rotary electric machine of the rotary electric machine with high productivity. Can be provided.
- FIG. It is a perspective view of the rotary electric machine according to Embodiment 1.
- FIG. It is sectional drawing of the rotary electric machine according to Embodiment 1.
- FIG. It is a perspective view of the stator according to Embodiment 1.
- FIG. It is a perspective view of the rotor according to Embodiment 1.
- FIG. It is a perspective view which shows the rotor which removed the shaft end component from FIG.
- It is a perspective view which shows the rotor excluding the rotor winding from FIG.
- It is a perspective view of the rotor core which wound the rotor winding by Embodiment 1.
- FIG. It is a perspective view of the shaft end component according to the first embodiment, and is the view which saw the shaft end component from the rotor core side.
- FIG. 5 is a perspective view showing an insulating component for a permanent magnet and a rotor winding of a rotary electric machine according to a second embodiment. It is a top view of the shaft end component of the rotary electric machine according to Embodiment 3. FIG. It is sectional drawing of the rotary electric machine according to Embodiment 4. FIG. It is a top view of the connection board of the rotary electric machine according to Embodiment 4.
- axial direction means the “axial direction”, “circumferential direction”, and “diameter direction” of the rotor, respectively, without particular notice. And.
- fixing is any fixing method as long as the object can be fixed, and the fixing method does not matter. "Equal” means that they are almost the same, and if they differ within the range of dimensional tolerances, they are considered to have the same function.
- FIG. 1 is a perspective view of the rotary electric machine 100.
- FIG. 2 is a cross-sectional view of the rotary electric machine 100, which is a view obtained by cutting the rotary electric machine 100 in a plane including the axis of the rotor 30.
- Examples of the rotary electric machine 100 include an AC generator motor for vehicles.
- the rotary electric machine 100 includes a stator 20 composed of a stator core 21 and a stator winding 22, and a rotor 30 having an outer peripheral surface facing the inner peripheral surface of the stator 20 and rotatably supported via a gap. It is equipped with.
- the stator 20 is fixed to a front bracket (not shown) and a rear bracket (not shown).
- FIG. 3 is a perspective view of the stator 20.
- the stator 20 includes a stator core 21 and a plurality of stator windings 22 provided on the stator core 21 as described above.
- the stator core 21 is formed in an annular shape.
- the plurality of stator windings 22 project from the inner peripheral surface of the stator core 21 toward the inside in the radial direction X, and are wound around the teeth portions arranged at equal intervals in the circumferential direction Y.
- FIG. 4 is a perspective view of the rotor 30.
- FIG. 5 is a perspective view showing the rotor 30 from which the shaft end component 38 is removed from FIG.
- FIG. 6 is a perspective view showing the rotor 30 excluding the rotor winding 37 from FIG.
- FIG. 7 is a perspective view of the rotor core 35 around which the rotor winding 37 is wound.
- the rotor 30 is provided on the shaft 31, the bearing 32 provided on the shaft 31, the resolver rotor 33 provided for measuring the rotational position of the rotor 30, and used together with the resolver stator (not shown), and the shaft 31.
- the slip ring 34 and the rotor core 35 provided on the shaft 31 are provided.
- the shaft 31 is rotatably supported by the above-mentioned front bracket and rear bracket via a bearing 32.
- the slip ring 34 is connected to an external drive power supply (external drive circuit) connected to the outside of a front or rear bracket (not shown). Therefore, the position in the axial direction Z is arranged farther from the rotor core 35 than the bearing 32 that is in contact with the front or rear bracket.
- the rotor 30 is provided with a brush (not shown) that comes into contact with the slip ring 34.
- the external drive power supply supplies electric power to the rotor winding 37 provided in the rotor 30 via the terminal portion 36 by bringing a brush (not shown) into contact with the slip ring 34. That is, the slip ring 34 is also electrically connected to the terminal portion 36.
- the rotor core 35 is formed in a cylindrical shape, the radial direction X of the rotor core 35 coincides with the radial direction X of the rotor 30, and the axial direction Z of the rotor core 35 is the axis of the rotor 30. It coincides with the direction Z, and the circumferential direction Y of the rotor core 35 coincides with the circumferential direction Y of the rotor 30.
- annular shaft end parts 38 for contacting the rotor core 35 and holding the rotor core 35 from both sides in the axial direction Z are arranged. ..
- the rotor core 35 is provided with eight pairs of coil insertion holes 35h1 penetrating in the axial direction Z.
- a rotor winding 37 is wound around each of the pair of coil insertion holes 35h1. Electric power is supplied to the rotor winding 37 from the outside via the slip ring 34 and the terminal portion 36.
- two magnet insertion holes 35h2 are provided between the pair of coil insertion holes 35h1 so as to penetrate in the axial direction Z, and are permanently inserted in the magnet insertion holes 35h2.
- the magnet MG is inserted.
- the permanent magnet MG is magnetized in the same direction as the magnetic flux generated by the current flowing through the rotor winding 37 to form a rotor magnetomotive force.
- the coil end portion 37e is a portion of the rotor winding 37 that protrudes from the pair of coil insertion holes 35h1 to the outside of the rotor core 35.
- FIG. 8 is a perspective view of the shaft end component 38, and is a view of the shaft end component 38 as viewed from the rotor core 35 side.
- the shaft end component 38 is provided with a coil end accommodating portion 38r1 which is a groove provided in an annular shape so as to include the rotor winding 37.
- the coil end portion 37e of the rotor winding 37 is covered on both sides in the radial direction X and above the axial direction Z by the coil end accommodating portion 38r1.
- the shaft end component 38 on the side close to the terminal portion 36 is provided with a guide groove portion 38r2 (guide portion) that extends in the radial direction X and is recessed on the upper side in the axial direction Z.
- the guide groove portion 38r2 guides the lead wire W shown in FIG. 2 so as to extend from the rotor winding 37 to the terminal portion 36.
- the guide groove portions 38r2 are also provided at two locations symmetrical with respect to the shaft 31.
- the guide groove portion 38r2 is not limited to the case where the groove is machined as shown in FIG. 8, and the guide portion may be provided with a space capable of guiding the lead wire W.
- the same function can be obtained even if the hole penetrates the shaft end component 38 in the axial direction Z as in the guide hole portion 38h1 shown in FIG. 8 (as in the guide hole portion 38h1 in FIG. 8).
- the intention is that the guide part may be provided only by drilling holes).
- the lead wire W extending from the end portion (connection target component) of the rotor winding 37 is connected to the terminal portion 36 through the guide groove portion 38r2. ..
- the lead wire W is drawn out through the guide hole portion 38h1 in the axial direction Z and is connected to the terminal portion 36.
- FIG. 9 is an operation circuit diagram of an AC generator motor as a rotary electric machine 100.
- DC current is supplied from the battery BA to the power circuit unit PC via the power supply terminal.
- the control circuit unit CC controls ON / OFF of each switching element PC1 of the power circuit unit PC.
- the power circuit unit PC converts the direct current into an alternating current.
- the converted alternating current is supplied to the stator winding 22 of the stator 20.
- a direct current is supplied to the rotor winding 37 based on a command from the control circuit unit CC.
- a drive torque is generated by interlinking the magnetic flux generated by the rotor winding 37 and the magnetic flux generated by the magnetic flux generated by the permanent magnet MG with the alternating current flowing through the stator winding 22.
- the generated drive torque causes the rotor 30 to rotate with respect to the stator 20.
- a direct current is supplied to the rotor winding 37 based on a command from the control circuit unit CC.
- a three-phase AC voltage is induced in the stator winding 22 by interlinking the magnetic flux generated by the rotor winding 37 and the magnetic flux generated by the permanent magnet MG with the stator winding 22.
- an alternating current is supplied to the power circuit unit PC.
- the control circuit unit CC controls ON / OFF of each switching element PC1 of the power circuit unit PC.
- the power circuit unit PC converts the alternating current into the direct current.
- the converted direct current is supplied to the battery BA. As a result, the battery BA is charged.
- the rotary electric machine 100 When the rotary electric machine 100 operates as an electric motor and a generator, it is not always necessary to supply a current to the rotor winding 37.
- the rotary electric machine 100 can operate as an electric motor and a generator by using only the magnetic flux generated by the permanent magnet MG.
- the guide groove portion 38r2 or the guide that guides the lead wire W connecting the terminal portion 36 and the rotor winding 37 to the shaft end component 38 By providing the hole portion 38h1 (both are guide portions within the scope of the patent claim), it is possible to secure a connection path between the rotor winding 37 and the terminal portion 36. As a result, the lead wire W from the terminal portion 36 can be easily routed, the quality of the product can be made uniform, and the rotor 30 and the rotary electric machine 100 of the rotary electric machine having high productivity can be provided.
- the coil end portion 37e of the rotor winding 37 is arranged so as to be covered with the coil end accommodating portion 38r1 of the shaft end component 38, the rotor winding 37 and the rotor winding 37 generated by the rotational centrifugal force of the rotor 30 are generated.
- the shear stress between the rotor cores 35 can be suppressed.
- the laminated rotor core 35 can be held from both sides in the axial direction Z by the shaft end component 38. In this way, one shaft end component 38 can realize three functions.
- FIG. 10 is a cross-sectional view of the rotary electric machine 100B, which is a view obtained by cutting the rotary electric machine 100B in a plane including the axis of the rotor 30B.
- FIG. 11 is an operation circuit diagram of the rotary electric machine 100B.
- An example of utilizing the guide groove portion 38r2 or the guide hole portion 38h1 as a guide portion for the lead wire W of the rotor winding 37 has been described so far, but for example, the rotary electric machine 100B having no rotor winding provided.
- the same function can be obtained for the rotor 30B.
- the lead wire WB of the analog sensor S (connection target component) such as temperature attached to the permanent magnet MG may be connected to the terminal portion 36 via the guide groove portion 38r2. can.
- the temperature of the permanent magnet MG is measured by connecting the analog voltage value acquired by the analog sensor S to an external circuit (external drive circuit) via the terminal portion 36 and the slip ring 34.
- the operating circuit is a circuit excluding the power supply path to the rotor winding 37 from the operating circuit of FIG. 9, as shown in FIG. It becomes.
- the circuit other than the circuit for supplying electric power to the rotor winding 37 operates in the same manner as in FIG.
- FIG. 12 is a perspective view showing an insulating component 60 for the permanent magnet MG and the rotor winding 37 of the rotary electric machine according to the second embodiment.
- the rotor winding 37 is wound around the permanent magnet MG via the insulating component 60.
- Other configurations are the same as those in the first embodiment.
- the rotor winding 37 is wound so as to cover the periphery of the permanent magnet MG via the insulating component 60.
- the permanent magnet MG is held by the rotor winding 37 from both sides in the axial direction Z and from both sides in the circumferential direction Y. Since the rotor winding 37 is held by the coil end accommodating portion 38r1 of the shaft end component 38, as a result, the permanent magnet MG is indirectly held by the shaft end component 38. Therefore, it is possible to obtain a function of holding both the rotor winding 37 and the permanent magnet MG with one shaft end component 38.
- the insulating component 60 also has a function of lowering the thermal resistance from the permanent magnet MG to the outside air because the heat generated in the permanent magnet MG can be passed to the shaft end component 38 via the rotor winding 37. ing. As a result, there is an effect of suppressing thermal demagnetization of the permanent magnet MG.
- FIG. 13 is a plan view of the shaft end component 338 of the rotary electric machine according to the third embodiment, and is a view of the shaft end component 338 as viewed from the rotor core 35 side.
- the shaft end component 338 includes a resin injection hole 338h3.
- a resin injection hole 338h3 having the same shape is provided at the same position as the guide hole portion 38h1 of the first embodiment.
- resin is injected from the resin injection hole 338h3 so as to fill the space between the rotor core 35, the permanent magnet MG, and the rotor winding 37.
- the resin injection holes 338h3 are provided at two locations 180 degrees apart in the circumferential direction Y so as to correspond to the inlet and the outlet for injecting the resin. Further, the resin injection hole 338h3 may also serve as the guide hole portion 38h1 described in the first embodiment, and the configuration for injecting the resin and the heat generated in the lead wire W are transferred to the shaft end component via the resin. It may be a form compatible with a configuration that allows it to escape to 338.
- the resin injection holes 338h3 for injecting the resin into the shaft end component 338 are provided at two positions symmetrical with respect to the shaft 31. , The rotor core 35, the permanent magnet MG and the rotor winding 37 are mutually fixed by the resin, and the influence of vibration during rotation of the rotor can be minimized.
- the rigidity of the rotor core 35, the permanent magnet MG and the rotor winding 37 is increased, the centrifugal force resistance strength of the rotor can be increased.
- the heat generated by energizing the rotor winding 37 can be passed to the rotor core 35 and dissipated to the outside via the shaft 31, so that the thermal durability of the rotor can be significantly improved.
- FIG. 14 is a cross-sectional view of the rotary electric machine 400, which is a view obtained by cutting the rotary electric machine 400 in a plane including the axis of the rotor 430.
- FIG. 15 is a plan view of the connection board 50 of the rotary electric machine 400.
- a connection board 50 as shown in FIG. 15 is arranged between the rotor core 35 and the shaft end component 38 (first shaft end component), and the connection board 50 is arranged in the circumferential direction Y of the rotor core 35.
- a plurality of pins 51 for holding the crossover wire 52 between the rotor windings 37 arranged in the plurality of pins 51 are provided. From the end of the rotor winding 37, the lead wire W passes through the guide groove portion 38r2 and is connected to the terminal portion 36 via the connection board 50 so that the connection board 50 is covered with the shaft end component 38. It is arranged in and attached to the shaft 31.
- connection board 50 forming the crossing wire of the rotor winding 37 is provided at the shaft end portion of the rotor 430, and the connection is made.
- the board 50 is attached to the shaft 31 so as to be covered with the shaft end component 38.
- connection board 50 is arranged so as to be covered with the shaft end component 38, it is possible to simultaneously hold the rotor winding 37, the permanent magnet MG, and the connection board 50 with one shaft end component 38.
- FIG. 16 is a cross-sectional view of the rotary electric machine 500, which is a view obtained by cutting the rotary electric machine 500 in a plane including the axis of the rotor 530.
- the shaft end component 538 is integrally formed with the slip ring holding component 34HLD that holds the slip ring 34.
- Other configurations of the shaft end component 538 are the same as the configuration of the shaft end component 38 described in the first embodiment.
- the slip ring holding component 34HLD on which the slip ring 34 is arranged and the shaft end component 538 are integrally formed, the slip ring 34 is formed.
- the function of holding the rotor winding 37 and the function of holding the permanent magnet MG can be compatible with each other.
- the slip ring holding component 34HLD is connected to an external circuit via a brush, the heat generated in the rotor winding 37 and the permanent magnet MG is allowed to flow to the outside via the slip ring holding component 34HLD. Can be done. As a result, the heat resistance of the rotor winding 37 and the permanent magnet MG can be improved.
- FIG. 17 is a perspective view of the rotor 630 of the rotary electric machine according to the sixth embodiment.
- the shaft end component 638 is integrally configured with a fan 638F that generates cooling air when the rotor 630 rotates.
- Other configurations of the shaft end component 638 are the same as the configuration of the shaft end component 38 described in the first embodiment.
- the rotor 630 of the rotary electric machine and the rotary electric machine according to the sixth embodiment since the shaft end component 638 and the cooling fan 638F are integrally configured, the function of cooling the rotor 630 and the rotor winding are performed.
- the function of holding the 37 and the permanent magnet MG can be compatible with each other.
- the heat of the permanent magnet MG and the permanent magnet winding 37 held by the shaft end component 638 can be passed to the outside through the fan 638F, the heat resistance of the rotor winding 37 and the permanent magnet MG is greatly improved. Can be improved.
- FIG. 18A is a plan view of the shaft end component 338.
- FIG. 18B is a plan view of the shaft end component 738.
- the shaft end component 338 shown in FIG. 18A has the same configuration as the shaft end component described in the third embodiment.
- the shaft end component 738 shown in FIG. 18B is configured not to have a resin injection hole.
- the shaft end component 338 is used on one side in the axial direction Z, and the shaft end component 738 is used on the other side in the axial direction Z.
- FIG. 19 is a cross-sectional view of the rotary electric machine 800, which is a view obtained by cutting the rotary electric machine 800 in a plane including the axis of the rotor 830.
- the shaft end component 838 (second shaft end component) provided on the right side of the paper surface in FIG. 19 (the side opposite to the shaft end component 38 in the axial direction Z) is integrally formed with the shaft 831.
- the shaft 831 is used. It is possible to achieve both the rotational support of the rotor 830 and the holding function of the rotor winding 37 and the permanent magnet MG by the shaft end component 838.
- the heat generated in the rotor winding 37 and the permanent magnet MG is configured to flow to the outside air via the shaft end component 838 and the shaft 831, the heat resistance of the rotor winding 37 and the permanent magnet MG is high. Can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Insulation, Fastening Of Motor, Generator Windings (AREA)
Abstract
A rotor (30) of a rotary electric machine (100), including a shaft (31), a rotor core (35) provided on the shaft (31), and annular shaft end components (38) provided at both ends of the rotor core (35) in an axial direction and holding the rotor core (35) at both of the ends in the axial direction, wherein a first shaft end component (38), which is a shaft end component (38) provided on the shaft (31) and close to a terminal portion (36) for receiving power from the outside, includes guide portions (38h1, 38r2) that guide lead wires (W, WB) electrically connecting the terminal portion (36) and connection target components (37, S) protruding upward in the axial direction from the rotor core (35).
Description
本願は、回転電機の回転子および回転電機に関するものである。
This application relates to a rotor of a rotary electric machine and a rotary electric machine.
従来、シャフトから径方向外側に向けて突出する複数のティース部を備えた回転子鉄心と、複数のティース部の各々に巻回された回転子巻線と、回転子鉄心から軸方向に突出する回転子巻線のコイルエンド部を収納する固定環部材が配置された回転電機の回転子が知られている(例えば、特許文献1参照)。
Conventionally, a rotor core having a plurality of teeth portions protruding outward in the radial direction from the shaft, a rotor winding wound around each of the plurality of teeth portions, and axially protruding from the rotor core. A rotor of a rotary electric machine in which a fixed ring member for accommodating a coil end portion of a rotor winding is arranged is known (see, for example, Patent Document 1).
しかしながら、従来の回転子には、外部駆動回路から回転子巻線までの電力供給経路が確保されておらず、例えば固定環部材には回転子巻線に繋がるリード線のガイドが設けられていないため、外部駆動回路からのリード線の取り回しについて製品間の品質が均一化せず、生産性が悪いという課題があった。
However, the conventional rotor does not have a power supply path from the external drive circuit to the rotor winding, and for example, the fixed ring member is not provided with a lead wire guide connected to the rotor winding. Therefore, there is a problem that the quality of the lead wire from the external drive circuit is not uniform among the products and the productivity is poor.
本願は、上記のような課題を解決するための技術を開示するものであり、外部駆動回路からのリード線の取り回しが容易で、製品の品質を均一化でき、生産性が高い回転電機の回転子および回転電機を提供することを目的とする。
The present application discloses a technique for solving the above-mentioned problems, in which the lead wire from the external drive circuit can be easily routed, the quality of the product can be made uniform, and the rotation of a rotating electric machine with high productivity can be performed. It is intended to provide a child and a rotary electric machine.
本願に開示される回転電機の回転子は、
シャフトと、前記シャフトに設けられた回転子鉄心と、
前記回転子鉄心の軸方向の両端部にそれぞれ備えられ、前記回転子鉄心を軸方向の両側から保持する円環状の軸端部品とを備える回転電機の回転子であって、
前記シャフトに設けられ、外部から電源の供給を受ける端子部に近い側の前記軸端部品である第1軸端部品は、前記端子部と、前記回転子鉄心から軸方向上方に突出する接続対象部品とを電気的に接続するリード線を案内するガイド部を有するものである。
また、本願に開示される回転電機は、
前記回転電機の回転子と、
固定子鉄心および固定子巻線からなる固定子とを備え、
前記回転子は、前記固定子の内周面に外周面を対向させ、空隙を介して回転可能に支持されているものである。 The rotor of the rotary electric machine disclosed in the present application is
The shaft, the rotor core provided on the shaft, and
A rotor of a rotary electric machine provided at both ends of the rotor core in the axial direction and having an annular shaft end component for holding the rotor core from both sides in the axial direction.
The first shaft end component, which is the shaft end component provided on the shaft and is close to the terminal portion to receive power from the outside, is a connection target that projects upward in the axial direction from the terminal portion and the rotor core. It has a guide unit that guides the lead wire that electrically connects to the component.
Further, the rotary electric machine disclosed in the present application is a rotary electric machine.
With the rotor of the rotary electric machine,
With a stator core and a stator consisting of a stator winding,
The rotor has an outer peripheral surface facing the inner peripheral surface of the stator and is rotatably supported via a gap.
シャフトと、前記シャフトに設けられた回転子鉄心と、
前記回転子鉄心の軸方向の両端部にそれぞれ備えられ、前記回転子鉄心を軸方向の両側から保持する円環状の軸端部品とを備える回転電機の回転子であって、
前記シャフトに設けられ、外部から電源の供給を受ける端子部に近い側の前記軸端部品である第1軸端部品は、前記端子部と、前記回転子鉄心から軸方向上方に突出する接続対象部品とを電気的に接続するリード線を案内するガイド部を有するものである。
また、本願に開示される回転電機は、
前記回転電機の回転子と、
固定子鉄心および固定子巻線からなる固定子とを備え、
前記回転子は、前記固定子の内周面に外周面を対向させ、空隙を介して回転可能に支持されているものである。 The rotor of the rotary electric machine disclosed in the present application is
The shaft, the rotor core provided on the shaft, and
A rotor of a rotary electric machine provided at both ends of the rotor core in the axial direction and having an annular shaft end component for holding the rotor core from both sides in the axial direction.
The first shaft end component, which is the shaft end component provided on the shaft and is close to the terminal portion to receive power from the outside, is a connection target that projects upward in the axial direction from the terminal portion and the rotor core. It has a guide unit that guides the lead wire that electrically connects to the component.
Further, the rotary electric machine disclosed in the present application is a rotary electric machine.
With the rotor of the rotary electric machine,
With a stator core and a stator consisting of a stator winding,
The rotor has an outer peripheral surface facing the inner peripheral surface of the stator and is rotatably supported via a gap.
本願に開示される回転電機の回転子および回転電機によれば、外部駆動回路からのリード線の取り回しが容易で、製品の品質を均一化でき、生産性が高い回転電機の回転子および回転電機を提供できる。
According to the rotor of the rotary electric machine and the rotary electric machine disclosed in the present application, it is easy to route the lead wire from the external drive circuit, the quality of the product can be made uniform, and the rotor and the rotary electric machine of the rotary electric machine with high productivity. Can be provided.
実施の形態1.
以下、実施の形態1による回転電機の回転子および回転電機を、図を用いて説明する。
各図は、本実施の形態を説明するために必要な要素を図示し、実際の製品の全要素を図示しているとは限らない。Embodiment 1.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the first embodiment will be described with reference to the drawings.
Each figure illustrates the elements necessary to explain the present embodiment, and does not necessarily show all the elements of the actual product.
以下、実施の形態1による回転電機の回転子および回転電機を、図を用いて説明する。
各図は、本実施の形態を説明するために必要な要素を図示し、実際の製品の全要素を図示しているとは限らない。
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the first embodiment will be described with reference to the drawings.
Each figure illustrates the elements necessary to explain the present embodiment, and does not necessarily show all the elements of the actual product.
また、本明細書で、特に断り無く「軸方向」、「周方向」、「径方向」というときは、それぞれ、回転子の「軸方向」、「周方向」、「径方向」をいうものとする。
Further, in the present specification, the terms "axial direction", "circumferential direction", and "diameter direction" mean the "axial direction", "circumferential direction", and "diameter direction" of the rotor, respectively, without particular notice. And.
また、この明細書で、特に断り無く「上」、「下」に言及するときは、基準となる場所において、軸方向に垂直な面を想定し、その面を境界として回転子の中心点が含まれる側を「下」、その反対を「上」とする。
In addition, when referring to "upper" and "lower" in this specification without particular notice, a plane perpendicular to the axial direction is assumed at the reference location, and the center point of the rotor is set with that plane as the boundary. The included side is "bottom" and the opposite is "top".
また、「固定する」は、対象物を固定できればその固定方法任意であり、固定方法は、問わない。「等しくなる」は、ほぼ同一であることを意味しており、寸法公差の範囲で異なるものであれば、有している機能は同じとみなす。
Also, "fixing" is any fixing method as long as the object can be fixed, and the fixing method does not matter. "Equal" means that they are almost the same, and if they differ within the range of dimensional tolerances, they are considered to have the same function.
図1は、回転電機100の斜視図である。
図2は、回転電機100の断面図であり、回転電機100を、回転子30の軸心を含む平面で切断した図である。
回転電機100としては、例えば、車両用交流発電電動機が挙げられる。回転電機100は、固定子鉄心21および固定子巻線22からなる固定子20と、固定子20の内周面に外周面を対向させ、空隙を介して回転可能に支持された回転子30とを備えている。 FIG. 1 is a perspective view of the rotaryelectric machine 100.
FIG. 2 is a cross-sectional view of the rotaryelectric machine 100, which is a view obtained by cutting the rotary electric machine 100 in a plane including the axis of the rotor 30.
Examples of the rotaryelectric machine 100 include an AC generator motor for vehicles. The rotary electric machine 100 includes a stator 20 composed of a stator core 21 and a stator winding 22, and a rotor 30 having an outer peripheral surface facing the inner peripheral surface of the stator 20 and rotatably supported via a gap. It is equipped with.
図2は、回転電機100の断面図であり、回転電機100を、回転子30の軸心を含む平面で切断した図である。
回転電機100としては、例えば、車両用交流発電電動機が挙げられる。回転電機100は、固定子鉄心21および固定子巻線22からなる固定子20と、固定子20の内周面に外周面を対向させ、空隙を介して回転可能に支持された回転子30とを備えている。 FIG. 1 is a perspective view of the rotary
FIG. 2 is a cross-sectional view of the rotary
Examples of the rotary
固定子20は、図示しないフロントブラケットおよび図示しないリヤブラケットに固定されている。
The stator 20 is fixed to a front bracket (not shown) and a rear bracket (not shown).
図3は、固定子20の斜視図である。
固定子20は、上述のように固定子鉄心21と、固定子鉄心21に設けられた複数の固定子巻線22とを備えている。固定子鉄心21は、円環形状に形成されている。複数の固定子巻線22は、固定子鉄心21の内周面から径方向Xの内側に向かって突出し、周方向Yに、等間隔に配置されたティース部に巻回されている。 FIG. 3 is a perspective view of thestator 20.
Thestator 20 includes a stator core 21 and a plurality of stator windings 22 provided on the stator core 21 as described above. The stator core 21 is formed in an annular shape. The plurality of stator windings 22 project from the inner peripheral surface of the stator core 21 toward the inside in the radial direction X, and are wound around the teeth portions arranged at equal intervals in the circumferential direction Y.
固定子20は、上述のように固定子鉄心21と、固定子鉄心21に設けられた複数の固定子巻線22とを備えている。固定子鉄心21は、円環形状に形成されている。複数の固定子巻線22は、固定子鉄心21の内周面から径方向Xの内側に向かって突出し、周方向Yに、等間隔に配置されたティース部に巻回されている。 FIG. 3 is a perspective view of the
The
図4は、回転子30の斜視図である。
図5は、図4から軸端部品38を取り除いた回転子30を示す斜視図である。
図6は、図5から回転子巻線37を除いた回転子30を示す斜視図である。
図7は、回転子巻線37を巻回された回転子鉄心35の斜視図である。
回転子30は、シャフト31と、シャフト31に設けられた軸受32と、回転子30の回転位置を計測するために設けられ、図示しないレゾルバステータ共に用いられるレゾルバロータ33と、シャフト31に設けられたスリップリング34と、シャフト31に設けられた回転子鉄心35とを備えている。 FIG. 4 is a perspective view of therotor 30.
FIG. 5 is a perspective view showing therotor 30 from which the shaft end component 38 is removed from FIG.
FIG. 6 is a perspective view showing therotor 30 excluding the rotor winding 37 from FIG.
FIG. 7 is a perspective view of therotor core 35 around which the rotor winding 37 is wound.
Therotor 30 is provided on the shaft 31, the bearing 32 provided on the shaft 31, the resolver rotor 33 provided for measuring the rotational position of the rotor 30, and used together with the resolver stator (not shown), and the shaft 31. The slip ring 34 and the rotor core 35 provided on the shaft 31 are provided.
図5は、図4から軸端部品38を取り除いた回転子30を示す斜視図である。
図6は、図5から回転子巻線37を除いた回転子30を示す斜視図である。
図7は、回転子巻線37を巻回された回転子鉄心35の斜視図である。
回転子30は、シャフト31と、シャフト31に設けられた軸受32と、回転子30の回転位置を計測するために設けられ、図示しないレゾルバステータ共に用いられるレゾルバロータ33と、シャフト31に設けられたスリップリング34と、シャフト31に設けられた回転子鉄心35とを備えている。 FIG. 4 is a perspective view of the
FIG. 5 is a perspective view showing the
FIG. 6 is a perspective view showing the
FIG. 7 is a perspective view of the
The
シャフト31は、軸受32を介して、上述のフロントブラケットおよびリヤブラケットに回転可能に支持されている。スリップリング34は、図示しないフロントもしくはリヤブラケットの外側に接続される、外部駆動電源(外部駆動回路)に接続される。したがって、軸方向Zの位置は、フロントもしくはリヤブラケットに当接される軸受32よりも回転子鉄心35から離れて配置されている。
The shaft 31 is rotatably supported by the above-mentioned front bracket and rear bracket via a bearing 32. The slip ring 34 is connected to an external drive power supply (external drive circuit) connected to the outside of a front or rear bracket (not shown). Therefore, the position in the axial direction Z is arranged farther from the rotor core 35 than the bearing 32 that is in contact with the front or rear bracket.
また、回転子30は、スリップリング34に接触する図示しないブラシを備えている。外部駆動電源は、スリップリング34に図示しないブラシを当接させることによって、端子部36を介して回転子30内に設けられた回転子巻線37に電力を供給する。すなわちスリップリング34は、端子部36にも電気的に接続されている。
Further, the rotor 30 is provided with a brush (not shown) that comes into contact with the slip ring 34. The external drive power supply supplies electric power to the rotor winding 37 provided in the rotor 30 via the terminal portion 36 by bringing a brush (not shown) into contact with the slip ring 34. That is, the slip ring 34 is also electrically connected to the terminal portion 36.
回転子鉄心35は、円柱形状に形成されており、回転子鉄心35の径方向Xは、回転子30の径方向Xと一致し、回転子鉄心35の軸方向Zは、回転子30の軸方向Zと一致し、回転子鉄心35の周方向Yは、回転子30の周方向Yと一致する。
The rotor core 35 is formed in a cylindrical shape, the radial direction X of the rotor core 35 coincides with the radial direction X of the rotor 30, and the axial direction Z of the rotor core 35 is the axis of the rotor 30. It coincides with the direction Z, and the circumferential direction Y of the rotor core 35 coincides with the circumferential direction Y of the rotor 30.
回転子鉄心35の軸方向Zの両端部には、回転子鉄心35に当接し、回転子鉄心35を軸方向Zの両側から保持するための円環状の軸端部品38がそれぞれ配置されている。
At both ends of the rotor core 35 in the axial direction Z, annular shaft end parts 38 for contacting the rotor core 35 and holding the rotor core 35 from both sides in the axial direction Z are arranged. ..
図5~図7に示すように、回転子鉄心35には、軸方向Zに貫通する8対のコイル挿入孔35h1を備える。一対のコイル挿入孔35h1には、それぞれ回転子巻線37が巻回されている。回転子巻線37には、スリップリング34および端子部36を介して、外部から電力が供給される。
As shown in FIGS. 5 to 7, the rotor core 35 is provided with eight pairs of coil insertion holes 35h1 penetrating in the axial direction Z. A rotor winding 37 is wound around each of the pair of coil insertion holes 35h1. Electric power is supplied to the rotor winding 37 from the outside via the slip ring 34 and the terminal portion 36.
図6に示すように、一対のコイル挿入孔35h1の間に、それぞれ2個、合計16個の磁石挿入孔35h2が、軸方向Zに貫通して設けられ、磁石挿入孔35h2の中に、永久磁石MGが挿入されている。永久磁石MGは、回転子巻線37に流れる電流が作る磁束と、同一の方向に磁化され、回転子起磁力を形成する。回転子巻線37の内、一対のコイル挿入孔35h1から回転子鉄心35の外に突出する部分がコイルエンド部37eである。
As shown in FIG. 6, two magnet insertion holes 35h2, two in total, are provided between the pair of coil insertion holes 35h1 so as to penetrate in the axial direction Z, and are permanently inserted in the magnet insertion holes 35h2. The magnet MG is inserted. The permanent magnet MG is magnetized in the same direction as the magnetic flux generated by the current flowing through the rotor winding 37 to form a rotor magnetomotive force. The coil end portion 37e is a portion of the rotor winding 37 that protrudes from the pair of coil insertion holes 35h1 to the outside of the rotor core 35.
図8は、軸端部品38の斜視図であり、軸端部品38を回転子鉄心35側から見た図である。
軸端部品38には、回転子巻線37を内包するように、環状に設けられた溝であるコイルエンド収納部38r1を備える。回転子巻線37のコイルエンド部37eは、径方向Xの両側と、軸方向Zの上方をコイルエンド収納部38r1に覆われる。 FIG. 8 is a perspective view of theshaft end component 38, and is a view of the shaft end component 38 as viewed from the rotor core 35 side.
Theshaft end component 38 is provided with a coil end accommodating portion 38r1 which is a groove provided in an annular shape so as to include the rotor winding 37. The coil end portion 37e of the rotor winding 37 is covered on both sides in the radial direction X and above the axial direction Z by the coil end accommodating portion 38r1.
軸端部品38には、回転子巻線37を内包するように、環状に設けられた溝であるコイルエンド収納部38r1を備える。回転子巻線37のコイルエンド部37eは、径方向Xの両側と、軸方向Zの上方をコイルエンド収納部38r1に覆われる。 FIG. 8 is a perspective view of the
The
また、端子部36に近い側の軸端部品38(第1軸端部品)には、径方向Xに伸び、軸方向Zの上側に凹んだガイド溝部38r2(ガイド部)が設けられている。ガイド溝部38r2は、回転子巻線37から端子部36に延びるように設けられた、図2に示すリード線Wをガイドする。例えば、端子部36が、+-電位に対応して2か所に設けられている場合、ガイド溝部38r2もシャフト31を挟んで対称となる位置に2箇所設けられる。
Further, the shaft end component 38 (first shaft end component) on the side close to the terminal portion 36 is provided with a guide groove portion 38r2 (guide portion) that extends in the radial direction X and is recessed on the upper side in the axial direction Z. The guide groove portion 38r2 guides the lead wire W shown in FIG. 2 so as to extend from the rotor winding 37 to the terminal portion 36. For example, when the terminal portions 36 are provided at two locations corresponding to the + -potential, the guide groove portions 38r2 are also provided at two locations symmetrical with respect to the shaft 31.
ガイド溝部38r2は、図8に示すように溝加工されている場合に限定されず、ガイド部は、リード線Wをガイドできる空間が設けられていればよい。例えば、図8に示すガイド孔部38h1のように、軸端部品38を軸方向Zに貫通する孔であっても同等の機能を得ることができる(図8のガイド孔部38h1のように、ガイド部を穴加工だけで設けてもよい意図)。
The guide groove portion 38r2 is not limited to the case where the groove is machined as shown in FIG. 8, and the guide portion may be provided with a space capable of guiding the lead wire W. For example, the same function can be obtained even if the hole penetrates the shaft end component 38 in the axial direction Z as in the guide hole portion 38h1 shown in FIG. 8 (as in the guide hole portion 38h1 in FIG. 8). The intention is that the guide part may be provided only by drilling holes).
図2に示すように、ガイド溝部38r2を利用する場合は、回転子巻線37の端部(接続対象部品)から延びるリード線Wは、ガイド溝部38r2を通って端子部36へと接続される。また、ガイド孔部38h1を用いる場合は、リード線Wは、ガイド孔部38h1を軸方向Zに通って引き出され、端子部36に接続される。
As shown in FIG. 2, when the guide groove portion 38r2 is used, the lead wire W extending from the end portion (connection target component) of the rotor winding 37 is connected to the terminal portion 36 through the guide groove portion 38r2. .. When the guide hole portion 38h1 is used, the lead wire W is drawn out through the guide hole portion 38h1 in the axial direction Z and is connected to the terminal portion 36.
次に、回転電機100の動作について説明する。まず、回転電機100が電動機として動作する場合について説明する。
図9は、回転電機100としての交流発電電動機の動作回路図である。
バッテリBAから直流電流が、電源端子を介してパワー回路部PCに供給される。制御回路部CCは、パワー回路部PCの各スイッチング素子PC1をON/OFF制御する。これにより、パワー回路部PCは、直流電流を交流電流に変換する。変換された交流電流は、固定子20の固定子巻線22に供給される。 Next, the operation of the rotaryelectric machine 100 will be described. First, a case where the rotary electric machine 100 operates as an electric machine will be described.
FIG. 9 is an operation circuit diagram of an AC generator motor as a rotaryelectric machine 100.
DC current is supplied from the battery BA to the power circuit unit PC via the power supply terminal. The control circuit unit CC controls ON / OFF of each switching element PC1 of the power circuit unit PC. As a result, the power circuit unit PC converts the direct current into an alternating current. The converted alternating current is supplied to the stator winding 22 of thestator 20.
図9は、回転電機100としての交流発電電動機の動作回路図である。
バッテリBAから直流電流が、電源端子を介してパワー回路部PCに供給される。制御回路部CCは、パワー回路部PCの各スイッチング素子PC1をON/OFF制御する。これにより、パワー回路部PCは、直流電流を交流電流に変換する。変換された交流電流は、固定子20の固定子巻線22に供給される。 Next, the operation of the rotary
FIG. 9 is an operation circuit diagram of an AC generator motor as a rotary
DC current is supplied from the battery BA to the power circuit unit PC via the power supply terminal. The control circuit unit CC controls ON / OFF of each switching element PC1 of the power circuit unit PC. As a result, the power circuit unit PC converts the direct current into an alternating current. The converted alternating current is supplied to the stator winding 22 of the
一方、回転子巻線37には、制御回路部CCからの指令に基づいて、直流電流が供給される。回転子巻線37によって発生した磁束、永久磁石MGによって発生した磁束によって発生する磁束が、固定子巻線22に流れる交流電流に鎖交することによって、駆動トルクが発生する。発生した駆動トルクによって、回転子30が、固定子20に対して回転する。
On the other hand, a direct current is supplied to the rotor winding 37 based on a command from the control circuit unit CC. A drive torque is generated by interlinking the magnetic flux generated by the rotor winding 37 and the magnetic flux generated by the magnetic flux generated by the permanent magnet MG with the alternating current flowing through the stator winding 22. The generated drive torque causes the rotor 30 to rotate with respect to the stator 20.
次に、回転電機100が発電機として動作する場合について説明する。エンジンが駆動している状態では、エンジンの回転トルクがクランクシャフトから、ベルト、ギヤ等の機械接続部品を介して、シャフト31に伝達される。これにより、回転子30が、固定子20に対して回転する。
Next, a case where the rotary electric machine 100 operates as a generator will be described. When the engine is being driven, the rotational torque of the engine is transmitted from the crankshaft to the shaft 31 via mechanical connection parts such as belts and gears. As a result, the rotor 30 rotates with respect to the stator 20.
回転子巻線37には、制御回路部CCからの指令に基づいて、直流電流が供給される。回転子巻線37によって発生した磁束、永久磁石MGによって発生した磁束が、固定子巻線22と鎖交することによって、固定子巻線22に三相交流電圧が誘起される。これにより、パワー回路部PCに交流電流が供給される。制御回路部CCは、パワー回路部PCの各スイッチング素子PC1をON/OFF制御する。これにより、パワー回路部PCは、交流電流を直流電流に変換する。変換された直流電流は、バッテリBAに供給される。これにより、バッテリBAが充電される。
A direct current is supplied to the rotor winding 37 based on a command from the control circuit unit CC. A three-phase AC voltage is induced in the stator winding 22 by interlinking the magnetic flux generated by the rotor winding 37 and the magnetic flux generated by the permanent magnet MG with the stator winding 22. As a result, an alternating current is supplied to the power circuit unit PC. The control circuit unit CC controls ON / OFF of each switching element PC1 of the power circuit unit PC. As a result, the power circuit unit PC converts the alternating current into the direct current. The converted direct current is supplied to the battery BA. As a result, the battery BA is charged.
なお、回転電機100が、電動機および発電機として動作する場合に、回転子巻線37には、必ずしも電流が供給される必要はない。永久磁石MGによって発生する磁束のみを利用して、回転電機100は、電動機および発電機として動作できる。
When the rotary electric machine 100 operates as an electric motor and a generator, it is not always necessary to supply a current to the rotor winding 37. The rotary electric machine 100 can operate as an electric motor and a generator by using only the magnetic flux generated by the permanent magnet MG.
実施の形態1による回転電機100および回転電機100の回転子30によれば、軸端部品38に、端子部36と回転子巻線37とを接続するリード線Wをガイドするガイド溝部38r2又はガイド孔部38h1(いずれも特許請求の範囲におけるガイド部)を設けることによって、回転子巻線37と端子部36との接続経路を確保できる。これにより、端子部36からのリード線Wの取り回しが容易となり、製品の品質を均一化でき、生産性が高い回転電機の回転子30および回転電機100を提供できる。
According to the rotary electric machine 100 and the rotor 30 of the rotary electric machine 100 according to the first embodiment, the guide groove portion 38r2 or the guide that guides the lead wire W connecting the terminal portion 36 and the rotor winding 37 to the shaft end component 38. By providing the hole portion 38h1 (both are guide portions within the scope of the patent claim), it is possible to secure a connection path between the rotor winding 37 and the terminal portion 36. As a result, the lead wire W from the terminal portion 36 can be easily routed, the quality of the product can be made uniform, and the rotor 30 and the rotary electric machine 100 of the rotary electric machine having high productivity can be provided.
また、回転子巻線37のコイルエンド部37eは、軸端部品38のコイルエンド収納部38r1に覆われるように配置されるため、回転子30の回転遠心力によって生じる、回転子巻線37および回転子鉄心35間のせん断応力を抑制できる。
Further, since the coil end portion 37e of the rotor winding 37 is arranged so as to be covered with the coil end accommodating portion 38r1 of the shaft end component 38, the rotor winding 37 and the rotor winding 37 generated by the rotational centrifugal force of the rotor 30 are generated. The shear stress between the rotor cores 35 can be suppressed.
また、積層された回転子鉄心35を軸端部品38によって軸方向Zの両側から保持できる。このように、一つの軸端部品38にて3つの機能を実現できる。
Further, the laminated rotor core 35 can be held from both sides in the axial direction Z by the shaft end component 38. In this way, one shaft end component 38 can realize three functions.
図10は、回転電機100Bの断面図であり、回転電機100Bを、回転子30Bの軸心を含む平面で切断した図である。
図11は、回転電機100Bの動作回路図である。
これまで、ガイド溝部38r2又は、ガイド孔部38h1を回転子巻線37のリード線W用のガイド部として活用する例について説明したが、例えば、回転子巻線が設けられていない回転電機100Bの回転子30Bについても、同様の機能を獲得できる。
例えば、図10に示すように、永久磁石MGに取り付けられた温度等のアナログセンサS(接続対象部品)のリード線WBを、ガイド溝部38r2を介して端子部36に接続する構成とすることもできる。 FIG. 10 is a cross-sectional view of the rotaryelectric machine 100B, which is a view obtained by cutting the rotary electric machine 100B in a plane including the axis of the rotor 30B.
FIG. 11 is an operation circuit diagram of the rotaryelectric machine 100B.
An example of utilizing the guide groove portion 38r2 or the guide hole portion 38h1 as a guide portion for the lead wire W of the rotor winding 37 has been described so far, but for example, the rotaryelectric machine 100B having no rotor winding provided. The same function can be obtained for the rotor 30B.
For example, as shown in FIG. 10, the lead wire WB of the analog sensor S (connection target component) such as temperature attached to the permanent magnet MG may be connected to theterminal portion 36 via the guide groove portion 38r2. can.
図11は、回転電機100Bの動作回路図である。
これまで、ガイド溝部38r2又は、ガイド孔部38h1を回転子巻線37のリード線W用のガイド部として活用する例について説明したが、例えば、回転子巻線が設けられていない回転電機100Bの回転子30Bについても、同様の機能を獲得できる。
例えば、図10に示すように、永久磁石MGに取り付けられた温度等のアナログセンサS(接続対象部品)のリード線WBを、ガイド溝部38r2を介して端子部36に接続する構成とすることもできる。 FIG. 10 is a cross-sectional view of the rotary
FIG. 11 is an operation circuit diagram of the rotary
An example of utilizing the guide groove portion 38r2 or the guide hole portion 38h1 as a guide portion for the lead wire W of the rotor winding 37 has been described so far, but for example, the rotary
For example, as shown in FIG. 10, the lead wire WB of the analog sensor S (connection target component) such as temperature attached to the permanent magnet MG may be connected to the
この場合、アナログセンサSで取得したアナログ電圧値を、端子部36およびスリップリング34を介して外部回路(外部駆動回路)に接続することによって、永久磁石MGの温度を計測する構成とする。ただし、回転子30B内に回転子巻線は設けられていないため、動作回路は、図11に示すように、図9の動作回路から、回転子巻線37への電力供給経路を除いた回路となる。この動作回路においては、回転子巻線37に電力供給する回路以外の回路については、図9と同様の動作をする。
In this case, the temperature of the permanent magnet MG is measured by connecting the analog voltage value acquired by the analog sensor S to an external circuit (external drive circuit) via the terminal portion 36 and the slip ring 34. However, since the rotor winding is not provided in the rotor 30B, the operating circuit is a circuit excluding the power supply path to the rotor winding 37 from the operating circuit of FIG. 9, as shown in FIG. It becomes. In this operation circuit, the circuit other than the circuit for supplying electric power to the rotor winding 37 operates in the same manner as in FIG.
実施の形態2.
以下、実施の形態2による回転電機の回転子および回転電機を、図を用いて説明する。
図12は、実施の形態2による回転電機の永久磁石MGおよび回転子巻線37用の絶縁部品60を示す斜視図である。
回転子巻線37は、絶縁部品60を介して永久磁石MGの周囲を覆うように巻回される。その他の構成は、実施の形態1と同様である。 Embodiment 2.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the second embodiment will be described with reference to the drawings.
FIG. 12 is a perspective view showing an insulatingcomponent 60 for the permanent magnet MG and the rotor winding 37 of the rotary electric machine according to the second embodiment.
The rotor winding 37 is wound around the permanent magnet MG via the insulatingcomponent 60. Other configurations are the same as those in the first embodiment.
以下、実施の形態2による回転電機の回転子および回転電機を、図を用いて説明する。
図12は、実施の形態2による回転電機の永久磁石MGおよび回転子巻線37用の絶縁部品60を示す斜視図である。
回転子巻線37は、絶縁部品60を介して永久磁石MGの周囲を覆うように巻回される。その他の構成は、実施の形態1と同様である。 Embodiment 2.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the second embodiment will be described with reference to the drawings.
FIG. 12 is a perspective view showing an insulating
The rotor winding 37 is wound around the permanent magnet MG via the insulating
実施の形態2による回転電機の回転子および回転電機によれば、回転子巻線37は、絶縁部品60を介して永久磁石MGの周囲を覆うように巻回される。これにより、永久磁石MGは、回転子巻線37によって軸方向Zの両側、および周方向Yの両側から保持される。そして、回転子巻線37は、軸端部品38のコイルエンド収納部38r1によって保持されているので、結果的に、永久磁石MGは、間接的に軸端部品38に保持される。したがって、軸端部品38一つで、回転子巻線37と永久磁石MGの双方を保持する機能を得ることができる。
According to the rotor of the rotary electric machine and the rotary electric machine according to the second embodiment, the rotor winding 37 is wound so as to cover the periphery of the permanent magnet MG via the insulating component 60. As a result, the permanent magnet MG is held by the rotor winding 37 from both sides in the axial direction Z and from both sides in the circumferential direction Y. Since the rotor winding 37 is held by the coil end accommodating portion 38r1 of the shaft end component 38, as a result, the permanent magnet MG is indirectly held by the shaft end component 38. Therefore, it is possible to obtain a function of holding both the rotor winding 37 and the permanent magnet MG with one shaft end component 38.
また、絶縁部品60は、永久磁石MGに発生する熱を、回転子巻線37を介して軸端部品38に流すことができるため、永久磁石MGから外気までの熱抵抗を下げる機能も有している。その結果、永久磁石MGの熱減磁を抑制する効果がある。
Further, the insulating component 60 also has a function of lowering the thermal resistance from the permanent magnet MG to the outside air because the heat generated in the permanent magnet MG can be passed to the shaft end component 38 via the rotor winding 37. ing. As a result, there is an effect of suppressing thermal demagnetization of the permanent magnet MG.
実施の形態3.
以下、実施の形態3による回転電機の回転子および回転電機を、図を用いて説明する。
図13は、実施の形態3による回転電機の軸端部品338の平面図であり、軸端部品338を回転子鉄心35側から見た図である。
軸端部品338は、樹脂注入孔338h3を備える。図13では、実施の形態1のガイド孔部38h1と同じ位置に、同じ形状の樹脂注入孔338h3を設けている。
回転子30の内部には、樹脂注入孔338h3から、回転子鉄心35、永久磁石MG、回転子巻線37の相互間の空間を埋めるように樹脂が注入される。 Embodiment 3.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the third embodiment will be described with reference to the drawings.
FIG. 13 is a plan view of theshaft end component 338 of the rotary electric machine according to the third embodiment, and is a view of the shaft end component 338 as viewed from the rotor core 35 side.
Theshaft end component 338 includes a resin injection hole 338h3. In FIG. 13, a resin injection hole 338h3 having the same shape is provided at the same position as the guide hole portion 38h1 of the first embodiment.
Inside therotor 30, resin is injected from the resin injection hole 338h3 so as to fill the space between the rotor core 35, the permanent magnet MG, and the rotor winding 37.
以下、実施の形態3による回転電機の回転子および回転電機を、図を用いて説明する。
図13は、実施の形態3による回転電機の軸端部品338の平面図であり、軸端部品338を回転子鉄心35側から見た図である。
軸端部品338は、樹脂注入孔338h3を備える。図13では、実施の形態1のガイド孔部38h1と同じ位置に、同じ形状の樹脂注入孔338h3を設けている。
回転子30の内部には、樹脂注入孔338h3から、回転子鉄心35、永久磁石MG、回転子巻線37の相互間の空間を埋めるように樹脂が注入される。 Embodiment 3.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the third embodiment will be described with reference to the drawings.
FIG. 13 is a plan view of the
The
Inside the
樹脂注入孔338h3は、樹脂を注入するために入口と出口に相当するように周方向Yに、180度離れた位置に、2か所設けられる。また、樹脂注入孔338h3は、実施の形態1で説明したガイド孔部38h1を兼用してもよく、樹脂を注入するための構成と、リード線Wに発生する熱を樹脂を介して軸端部品338に逃がせる構成とを両立する形態としてもよい。
The resin injection holes 338h3 are provided at two locations 180 degrees apart in the circumferential direction Y so as to correspond to the inlet and the outlet for injecting the resin. Further, the resin injection hole 338h3 may also serve as the guide hole portion 38h1 described in the first embodiment, and the configuration for injecting the resin and the heat generated in the lead wire W are transferred to the shaft end component via the resin. It may be a form compatible with a configuration that allows it to escape to 338.
実施の形態3による回転電機の回転子および回転電機によれば、軸端部品338に樹脂を注入するための樹脂注入孔338h3がシャフト31を挟んで対称となる位置に2箇所設けられているので、回転子鉄心35、永久磁石MGおよび回転子巻線37は、樹脂によって相互に固定され、回転子の回転時の振動の影響を最小限に抑制できる。
According to the rotor of the rotary electric machine and the rotary electric machine according to the third embodiment, the resin injection holes 338h3 for injecting the resin into the shaft end component 338 are provided at two positions symmetrical with respect to the shaft 31. , The rotor core 35, the permanent magnet MG and the rotor winding 37 are mutually fixed by the resin, and the influence of vibration during rotation of the rotor can be minimized.
また、回転子鉄心35、永久磁石MGおよび回転子巻線37の剛性が高まることから、回転子の耐遠心力強度を高めることができる。加えて回転子巻線37への通電によって生じる熱を、回転子鉄心35に流し、シャフト31を介して外部に放熱できることから、回転子の熱耐久性を大幅に高めることができる。
Further, since the rigidity of the rotor core 35, the permanent magnet MG and the rotor winding 37 is increased, the centrifugal force resistance strength of the rotor can be increased. In addition, the heat generated by energizing the rotor winding 37 can be passed to the rotor core 35 and dissipated to the outside via the shaft 31, so that the thermal durability of the rotor can be significantly improved.
実施の形態4.
以下、実施の形態4による回転電機の回転子および回転電機を、図を用いて説明する。
図14は、回転電機400の断面図であり、回転電機400を、回転子430の軸心を含む平面で切断した図である。
図15は、回転電機400の結線盤50の平面図である。
回転子鉄心35と軸端部品38(第1軸端部品)の間には、例えば、図15に示すような結線盤50が配置され、結線盤50には、回転子鉄心35の周方向Yに複数配置された回転子巻線37間の渡り線52を保持する複数のピン51が設けられている。回転子巻線37の端部から、結線盤50を介して、リード線Wが、ガイド溝部38r2を通り、端子部36に接続されており、結線盤50は、軸端部品38に覆われるように配置され、シャフト31に取付けられている。 Embodiment 4.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the fourth embodiment will be described with reference to the drawings.
FIG. 14 is a cross-sectional view of the rotaryelectric machine 400, which is a view obtained by cutting the rotary electric machine 400 in a plane including the axis of the rotor 430.
FIG. 15 is a plan view of theconnection board 50 of the rotary electric machine 400.
For example, aconnection board 50 as shown in FIG. 15 is arranged between the rotor core 35 and the shaft end component 38 (first shaft end component), and the connection board 50 is arranged in the circumferential direction Y of the rotor core 35. A plurality of pins 51 for holding the crossover wire 52 between the rotor windings 37 arranged in the plurality of pins 51 are provided. From the end of the rotor winding 37, the lead wire W passes through the guide groove portion 38r2 and is connected to the terminal portion 36 via the connection board 50 so that the connection board 50 is covered with the shaft end component 38. It is arranged in and attached to the shaft 31.
以下、実施の形態4による回転電機の回転子および回転電機を、図を用いて説明する。
図14は、回転電機400の断面図であり、回転電機400を、回転子430の軸心を含む平面で切断した図である。
図15は、回転電機400の結線盤50の平面図である。
回転子鉄心35と軸端部品38(第1軸端部品)の間には、例えば、図15に示すような結線盤50が配置され、結線盤50には、回転子鉄心35の周方向Yに複数配置された回転子巻線37間の渡り線52を保持する複数のピン51が設けられている。回転子巻線37の端部から、結線盤50を介して、リード線Wが、ガイド溝部38r2を通り、端子部36に接続されており、結線盤50は、軸端部品38に覆われるように配置され、シャフト31に取付けられている。 Embodiment 4.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the fourth embodiment will be described with reference to the drawings.
FIG. 14 is a cross-sectional view of the rotary
FIG. 15 is a plan view of the
For example, a
実施の形態4による回転電機400の回転子430および回転電機400によれば、回転子巻線37の渡線を形成する結線盤50が、回転子430の軸端部に設けられており、結線盤50は、軸端部品38に覆われるようにシャフト31に取り付けられている。
According to the rotor 430 of the rotary electric machine 400 and the rotary electric machine 400 according to the fourth embodiment, the connection board 50 forming the crossing wire of the rotor winding 37 is provided at the shaft end portion of the rotor 430, and the connection is made. The board 50 is attached to the shaft 31 so as to be covered with the shaft end component 38.
これにより、結線盤50に配置された複数のピン51を用いて、回転子巻線37の入口線および出口線が保持されることから、周方向Yに複数配置された回転子巻線37の渡線を形成する工程が容易となる。また、結線盤50は、軸端部品38に覆われるように配置されるため、軸端部品38一つで、回転子巻線37、永久磁石MGおよび結線盤50の保持を同時に実現できる。
As a result, the inlet line and the exit line of the rotor winding 37 are held by using the plurality of pins 51 arranged on the connection board 50, so that the plurality of rotor windings 37 arranged in the circumferential direction Y are held. The process of forming the crossing line becomes easy. Further, since the connection board 50 is arranged so as to be covered with the shaft end component 38, it is possible to simultaneously hold the rotor winding 37, the permanent magnet MG, and the connection board 50 with one shaft end component 38.
実施の形態5.
以下、実施の形態5による回転電機の回転子および回転電機を、図を用いて説明する。
図16は、回転電機500の断面図であり、回転電機500を、回転子530の軸心を含む平面で切断した図である。
軸端部品538は、スリップリング34を保持するスリップリング保持部品34HLDと一体形成されている。軸端部品538のその他の構成は、実施の形態1で説明した軸端部品38の構成と同じである。 Embodiment 5.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the fifth embodiment will be described with reference to the drawings.
FIG. 16 is a cross-sectional view of the rotaryelectric machine 500, which is a view obtained by cutting the rotary electric machine 500 in a plane including the axis of the rotor 530.
Theshaft end component 538 is integrally formed with the slip ring holding component 34HLD that holds the slip ring 34. Other configurations of the shaft end component 538 are the same as the configuration of the shaft end component 38 described in the first embodiment.
以下、実施の形態5による回転電機の回転子および回転電機を、図を用いて説明する。
図16は、回転電機500の断面図であり、回転電機500を、回転子530の軸心を含む平面で切断した図である。
軸端部品538は、スリップリング34を保持するスリップリング保持部品34HLDと一体形成されている。軸端部品538のその他の構成は、実施の形態1で説明した軸端部品38の構成と同じである。 Embodiment 5.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the fifth embodiment will be described with reference to the drawings.
FIG. 16 is a cross-sectional view of the rotary
The
実施の形態5による回転電機500の回転子530および回転電機500によれば、スリップリング34が配置されるスリップリング保持部品34HLDと軸端部品538とを一体形成しているため、スリップリング34を保持する機能と、回転子巻線37および永久磁石MGを保持する機能とを両立できる。
According to the rotor 530 of the rotary electric machine 500 and the rotary electric machine 500 according to the fifth embodiment, since the slip ring holding component 34HLD on which the slip ring 34 is arranged and the shaft end component 538 are integrally formed, the slip ring 34 is formed. The function of holding the rotor winding 37 and the function of holding the permanent magnet MG can be compatible with each other.
また、スリップリング保持部品34HLDは、ブラシを介して、外部回路と接続されているため、回転子巻線37および永久磁石MGに発生した熱を、スリップリング保持部品34HLDを介して外部に流すことができる。結果として、回転子巻線37および永久磁石MGの耐熱性を向上できる。
Further, since the slip ring holding component 34HLD is connected to an external circuit via a brush, the heat generated in the rotor winding 37 and the permanent magnet MG is allowed to flow to the outside via the slip ring holding component 34HLD. Can be done. As a result, the heat resistance of the rotor winding 37 and the permanent magnet MG can be improved.
実施の形態6.
以下、実施の形態6による回転電機の回転子および回転電機を、図を用いて説明する。
図17は、実施の形態6による回転電機の回転子630の斜視図である。軸端部品638は、回転子630の回転時に冷却風を発生させるファン638Fと一体構成となっている。軸端部品638のその他の構成は、実施の形態1で説明した軸端部品38の構成と同じである。Embodiment 6.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the sixth embodiment will be described with reference to the drawings.
FIG. 17 is a perspective view of therotor 630 of the rotary electric machine according to the sixth embodiment. The shaft end component 638 is integrally configured with a fan 638F that generates cooling air when the rotor 630 rotates. Other configurations of the shaft end component 638 are the same as the configuration of the shaft end component 38 described in the first embodiment.
以下、実施の形態6による回転電機の回転子および回転電機を、図を用いて説明する。
図17は、実施の形態6による回転電機の回転子630の斜視図である。軸端部品638は、回転子630の回転時に冷却風を発生させるファン638Fと一体構成となっている。軸端部品638のその他の構成は、実施の形態1で説明した軸端部品38の構成と同じである。
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the sixth embodiment will be described with reference to the drawings.
FIG. 17 is a perspective view of the
実施の形態6による回転電機の回転子630および回転電機によれば、軸端部品638と冷却用のファン638Fとが一体構成となっているので、回転子630を冷却する機能と回転子巻線37および永久磁石MGとを保持する機能を両立できる。
According to the rotor 630 of the rotary electric machine and the rotary electric machine according to the sixth embodiment, since the shaft end component 638 and the cooling fan 638F are integrally configured, the function of cooling the rotor 630 and the rotor winding are performed. The function of holding the 37 and the permanent magnet MG can be compatible with each other.
また、軸端部品638によって保持された永久磁石MGおよび回転子巻線37の熱を、ファン638Fを介して外部に流すことができるため、回転子巻線37および永久磁石MGの耐熱性を大幅に向上できる。
Further, since the heat of the permanent magnet MG and the permanent magnet winding 37 held by the shaft end component 638 can be passed to the outside through the fan 638F, the heat resistance of the rotor winding 37 and the permanent magnet MG is greatly improved. Can be improved.
実施の形態7.
以下、実施の形態7による回転電機の回転子および回転電機を、図を用いて説明する。
図18Aは、軸端部品338の平面図である。
図18Bは、軸端部品738の平面図である。
図18Aに示す軸端部品338は、実施の形態3で説明した軸端部品と同じ構成である。
図18Bに示す軸端部品738は、樹脂注入孔を備えていない構成である。
本実施の形態7では、軸方向Zの一方に軸端部品338を用い、軸方向Zの他方に軸端部品738を用いる。 Embodiment 7.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the seventh embodiment will be described with reference to the drawings.
FIG. 18A is a plan view of theshaft end component 338.
FIG. 18B is a plan view of theshaft end component 738.
Theshaft end component 338 shown in FIG. 18A has the same configuration as the shaft end component described in the third embodiment.
Theshaft end component 738 shown in FIG. 18B is configured not to have a resin injection hole.
In the seventh embodiment, theshaft end component 338 is used on one side in the axial direction Z, and the shaft end component 738 is used on the other side in the axial direction Z.
以下、実施の形態7による回転電機の回転子および回転電機を、図を用いて説明する。
図18Aは、軸端部品338の平面図である。
図18Bは、軸端部品738の平面図である。
図18Aに示す軸端部品338は、実施の形態3で説明した軸端部品と同じ構成である。
図18Bに示す軸端部品738は、樹脂注入孔を備えていない構成である。
本実施の形態7では、軸方向Zの一方に軸端部品338を用い、軸方向Zの他方に軸端部品738を用いる。 Embodiment 7.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the seventh embodiment will be described with reference to the drawings.
FIG. 18A is a plan view of the
FIG. 18B is a plan view of the
The
The
In the seventh embodiment, the
回転子の耐熱性を高めるためには、粘度が低く流動性の高い樹脂を用いることが望まれる。実施の形態7による回転電機の回転子および回転電機によれば、回転子内に樹脂を充填させる際に、軸方向Zの一方側の軸端部品338の樹脂注入孔338h3から樹脂を注入し、他方側の軸端部品738から樹脂が漏れることを抑制する必要があるため、本構成を用いることで回転子内の樹脂充填工程が容易となる。
In order to increase the heat resistance of the rotor, it is desirable to use a resin with low viscosity and high fluidity. According to the rotor of the rotary electric machine according to the seventh embodiment and the rotary electric machine, when the rotor is filled with the resin, the resin is injected from the resin injection hole 338h3 of the shaft end component 338 on one side in the axial direction Z. Since it is necessary to prevent the resin from leaking from the shaft end component 738 on the other side, the resin filling step in the rotor becomes easy by using this configuration.
実施の形態8.
以下、実施の形態8による回転電機の回転子および回転電機を、図を用いて説明する。
図19は、回転電機800の断面図であり、回転電機800を、回転子830の軸心を含む平面で切断した図である。
図19の紙面右側(軸端部品38とは軸方向Zの反対側)に設けられた軸端部品838(第2軸端部品)は、シャフト831と一体形成されている。
実施の形態8による回転電機800の回転子830および回転電機800によれば、リード線Wを引き回す必要が無い側の軸端部品838とシャフト831とが一体形成されていることから、シャフト831による回転子830の回転支持と、軸端部品838による回転子巻線37および永久磁石MGの保持機能とを両立できる。 Embodiment 8.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the eighth embodiment will be described with reference to the drawings.
FIG. 19 is a cross-sectional view of the rotaryelectric machine 800, which is a view obtained by cutting the rotary electric machine 800 in a plane including the axis of the rotor 830.
The shaft end component 838 (second shaft end component) provided on the right side of the paper surface in FIG. 19 (the side opposite to theshaft end component 38 in the axial direction Z) is integrally formed with the shaft 831.
According to therotor 830 and the rotary electric machine 800 of the rotary electric machine 800 according to the eighth embodiment, since the shaft end component 838 and the shaft 831 on the side where the lead wire W does not need to be routed are integrally formed, the shaft 831 is used. It is possible to achieve both the rotational support of the rotor 830 and the holding function of the rotor winding 37 and the permanent magnet MG by the shaft end component 838.
以下、実施の形態8による回転電機の回転子および回転電機を、図を用いて説明する。
図19は、回転電機800の断面図であり、回転電機800を、回転子830の軸心を含む平面で切断した図である。
図19の紙面右側(軸端部品38とは軸方向Zの反対側)に設けられた軸端部品838(第2軸端部品)は、シャフト831と一体形成されている。
実施の形態8による回転電機800の回転子830および回転電機800によれば、リード線Wを引き回す必要が無い側の軸端部品838とシャフト831とが一体形成されていることから、シャフト831による回転子830の回転支持と、軸端部品838による回転子巻線37および永久磁石MGの保持機能とを両立できる。 Embodiment 8.
Hereinafter, the rotor of the rotary electric machine and the rotary electric machine according to the eighth embodiment will be described with reference to the drawings.
FIG. 19 is a cross-sectional view of the rotary
The shaft end component 838 (second shaft end component) provided on the right side of the paper surface in FIG. 19 (the side opposite to the
According to the
また、回転子巻線37および永久磁石MGに発生する熱を、軸端部品838およびシャフト831を介して外気へと流す構成となっているため、回転子巻線37および永久磁石MGの耐熱性を向上できる。
Further, since the heat generated in the rotor winding 37 and the permanent magnet MG is configured to flow to the outside air via the shaft end component 838 and the shaft 831, the heat resistance of the rotor winding 37 and the permanent magnet MG is high. Can be improved.
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
100,100B,400,500,800 回転電機、20 固定子、21 固定子鉄心、22 固定子巻線、30,30B,430,530,630,830 回転子、31,831 シャフト、32 軸受、33 レゾルバロータ、34 スリップリング、34HLD スリップリング保持部品、35 回転子鉄心、35h1 コイル挿入孔、35h2 磁石挿入孔、36 端子部、37 回転子巻線、37e コイルエンド部、38,338,538,638,738,838 軸端部品、38h1 ガイド孔部、38r1 コイルエンド収納部、38r2 ガイド溝部、338h3 樹脂注入孔、638F ファン、50 結線盤、51 ピン、52 渡り線、60 絶縁部品、BA バッテリ、CC 制御回路部、MG 永久磁石、PC パワー回路部、PC1 スイッチング素子、S アナログセンサ、W,WB リード線。
100,100B, 400,500,800 Rotor, 20 stator, 21 stator core, 22 stator winding, 30,30B, 430,530,630,830 rotor, 31,831 shaft, 32 bearing, 33 Resolver rotor, 34 slip ring, 34HLD slip ring holding part, 35 rotor core, 35h1 coil insertion hole, 35h2 magnet insertion hole, 36 terminal part, 37 rotor winding, 37e coil end part, 38,338,538,638 , 738, 838 shaft end parts, 38h1 guide hole part, 38r1 coil end storage part, 38r2 guide groove part, 338h3 resin injection hole, 638F fan, 50 connection board, 51 pin, 52 cross wire, 60 insulation parts, BA battery, CC Control circuit section, MG permanent magnet, PC power circuit section, PC1 switching element, S analog sensor, W, WB lead wire.
Claims (13)
- シャフトと、前記シャフトに設けられた回転子鉄心と、
前記回転子鉄心の軸方向の両端部にそれぞれ備えられ、前記回転子鉄心を軸方向の両側から保持する円環状の軸端部品とを備える回転電機の回転子であって、
前記シャフトに設けられ、外部から電源の供給を受ける端子部に近い側の前記軸端部品である第1軸端部品は、前記端子部と、前記回転子鉄心から軸方向上方に突出する接続対象部品とを電気的に接続するリード線を案内するガイド部を有する回転電機の回転子。 The shaft, the rotor core provided on the shaft, and
A rotor of a rotary electric machine provided at both ends of the rotor core in the axial direction and having an annular shaft end component for holding the rotor core from both sides in the axial direction.
The first shaft end component, which is the shaft end component provided on the shaft and is close to the terminal portion to receive power from the outside, is a connection target that projects upward in the axial direction from the terminal portion and the rotor core. A rotor of a rotating electric machine having a guide portion that guides a lead wire that electrically connects to a component. - 前記ガイド部は、前記第1軸端部品の前記回転子鉄心側の面に径方向に設けられ、軸方向の上側に凹んだ溝である請求項1に記載の回転電機の回転子。 The rotor of the rotary electric machine according to claim 1, wherein the guide portion is provided in the radial direction on the surface of the first shaft end component on the rotor core side, and is a groove recessed in the upper side in the axial direction.
- 前記ガイド部は、前記第1軸端部品を軸方向に貫通する孔である請求項1に記載の回転電機の回転子。 The rotor of the rotary electric machine according to claim 1, wherein the guide portion is a hole that penetrates the first shaft end component in the axial direction.
- 前記接続対象部品は、前記回転子鉄心に巻回された回転子巻線の端部である請求項1から請求項3のいずれか1項に記載の回転電機の回転子。 The rotor of the rotary electric machine according to any one of claims 1 to 3, wherein the component to be connected is an end portion of a rotor winding wound around the rotor core.
- 前記接続対象部品は、前記回転子に軸方向に挿入された永久磁石に取り付けられたセンサである請求項1から請求項3のいずれか1項に記載の回転電機の回転子。 The rotor of the rotary electric machine according to any one of claims 1 to 3, wherein the connection target component is a sensor attached to a permanent magnet inserted in the rotor in the axial direction.
- 前記第1軸端部品は、前記第1軸端部品を軸方向に貫通し、2つの前記軸端部品間に樹脂を注入する樹脂注入孔を有する請求項2に記載の回転電機の回転子。 The rotor of a rotary electric machine according to claim 2, wherein the first shaft end component has a resin injection hole that penetrates the first shaft end component in the axial direction and injects resin between the two shaft end components.
- 前記第1軸端部品の前記孔は、2つの前記軸端部品間に樹脂を注入する樹脂注入孔を兼ねる請求項3に記載の回転電機の回転子。 The rotor of the rotary electric machine according to claim 3, wherein the hole of the first shaft end component also serves as a resin injection hole for injecting resin between the two shaft end components.
- 前記回転子鉄心に巻回された回転子巻線と、
、前記回転子に軸方向に挿入された永久磁石とを備え、
前記回転子巻線は、前記永久磁石の周囲を覆うように巻回されている請求項1から請求項3のいずれか1項に記載の回転電機の回転子。 The rotor winding wound around the rotor core and
The rotor is equipped with a permanent magnet inserted in the axial direction.
The rotor of the rotary electric machine according to any one of claims 1 to 3, wherein the rotor winding is wound so as to cover the periphery of the permanent magnet. - 前記回転子鉄心と前記第1軸端部品の間に、複数の前記回転子巻線を結線し、複数の前記回転子巻線間の渡り線を保持するピンを有する結線盤を備え、
前記結線盤を介して、前記リード線が前記端子部に接続されている請求項8に記載の回転電機の回転子。 A wire board having a pin for connecting a plurality of the rotor windings between the rotor core and the first shaft end component and holding a crossover between the plurality of rotor windings is provided.
The rotor of a rotary electric machine according to claim 8, wherein the lead wire is connected to the terminal portion via the connection board. - 前記第1軸端部品は、前記回転子に取り付けられ、外部駆動電源および前記端子部に接続されたスリップリングを保持するスリップリング保持部品と一体形成されている請求項1から請求項9のいずれか1項に記載の回転電機の回転子。 Any of claims 1 to 9, wherein the first shaft end component is integrally formed with a slip ring holding component that is attached to the rotor and holds a slip ring connected to the external drive power supply and the terminal portion. The rotor of the rotary electric machine according to item 1.
- 前記第1軸端部品は、軸方向に突出し、冷却風を発生させるファンと一体構成されている請求項1から請求項10のいずれか1項に記載の回転電機の回転子。 The rotor of a rotary electric machine according to any one of claims 1 to 10, wherein the first shaft end component protrudes in the axial direction and is integrally configured with a fan that generates cooling air.
- 前記第1軸端部品とは軸方向の反対側に設けられた前記軸端部品である第2軸端部品は、前記シャフトと一体形成されている請求項1から請求項11のいずれか1項に記載の回転電機の回転子。 The second shaft end component, which is the shaft end component provided on the opposite side in the axial direction from the first shaft end component, is any one of claims 1 to 11 integrally formed with the shaft. The rotor of the rotary electric machine described in.
- 請求項1から請求項12のいずれか1項に記載の回転電機の回転子と、
固定子鉄心および固定子巻線からなる固定子とを備え、
前記回転子は、前記固定子の内周面に外周面を対向させ、空隙を介して回転可能に支持されている回転電機。 The rotor of the rotary electric machine according to any one of claims 1 to 12,
With a stator core and a stator consisting of a stator winding,
The rotor is a rotary electric machine in which an outer peripheral surface faces the inner peripheral surface of the stator and is rotatably supported via a gap.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/020480 WO2021240579A1 (en) | 2020-05-25 | 2020-05-25 | Rotor of rotary electric machine and rotary electric machine |
JP2020551603A JP6827600B1 (en) | 2020-05-25 | 2020-05-25 | Rotor of rotary electric machine and rotary electric machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/020480 WO2021240579A1 (en) | 2020-05-25 | 2020-05-25 | Rotor of rotary electric machine and rotary electric machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021240579A1 true WO2021240579A1 (en) | 2021-12-02 |
Family
ID=74529681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/020480 WO2021240579A1 (en) | 2020-05-25 | 2020-05-25 | Rotor of rotary electric machine and rotary electric machine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6827600B1 (en) |
WO (1) | WO2021240579A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4489267A1 (en) * | 2023-07-05 | 2025-01-08 | Polestar Performance AB | A method for attaching a busbar to a rotor winding of a rotor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5846241U (en) * | 1981-09-25 | 1983-03-29 | 株式会社東芝 | Wound rotary electric machine |
JPH0374151A (en) * | 1989-08-10 | 1991-03-28 | Aichi Emerson Electric Co Ltd | Permanent magnet type rotor |
JP2000037060A (en) * | 1998-05-29 | 2000-02-02 | Johnson Electric Sa | Rotor |
JP2001128414A (en) * | 1999-10-21 | 2001-05-11 | Honda Motor Co Ltd | Thermosensor attachment structure of permanent magnet motor |
JP2009232505A (en) * | 2008-03-19 | 2009-10-08 | Yaskawa Electric Corp | Rotating field type synchronous machine |
JP2017225259A (en) * | 2016-06-16 | 2017-12-21 | 東芝三菱電機産業システム株式会社 | Rotary machine |
-
2020
- 2020-05-25 JP JP2020551603A patent/JP6827600B1/en active Active
- 2020-05-25 WO PCT/JP2020/020480 patent/WO2021240579A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5846241U (en) * | 1981-09-25 | 1983-03-29 | 株式会社東芝 | Wound rotary electric machine |
JPH0374151A (en) * | 1989-08-10 | 1991-03-28 | Aichi Emerson Electric Co Ltd | Permanent magnet type rotor |
JP2000037060A (en) * | 1998-05-29 | 2000-02-02 | Johnson Electric Sa | Rotor |
JP2001128414A (en) * | 1999-10-21 | 2001-05-11 | Honda Motor Co Ltd | Thermosensor attachment structure of permanent magnet motor |
JP2009232505A (en) * | 2008-03-19 | 2009-10-08 | Yaskawa Electric Corp | Rotating field type synchronous machine |
JP2017225259A (en) * | 2016-06-16 | 2017-12-21 | 東芝三菱電機産業システム株式会社 | Rotary machine |
Also Published As
Publication number | Publication date |
---|---|
JP6827600B1 (en) | 2021-02-10 |
JPWO2021240579A1 (en) | 2021-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1874114B (en) | Production method for rotating electric machine and stator coils, and electric power steering motor | |
US9419481B2 (en) | Rotary electric machine | |
JP5274738B2 (en) | Rotating electrical apparatus and manufacturing method thereof | |
JP4743167B2 (en) | Terminal module for rotating electric machine and rotating electric machine | |
US8217544B2 (en) | Motor-generator having stator and inner and outer rotors | |
JP5954200B2 (en) | Rotating electric machine stator | |
US9385567B2 (en) | Rotating electric machine | |
JP5911034B1 (en) | Rotating electric machine stator | |
JPH08251891A (en) | Hybrid exciting electric rotary machine | |
JP4697292B2 (en) | Rotating electrical machine rotor | |
JP6593038B2 (en) | Rotating electric machine | |
JP2017050946A (en) | Rotary electric machine | |
CN117897891A (en) | Rotor shaft with separate slip ring modules for electric machine rotors | |
JP2018157612A (en) | motor | |
JP6827600B1 (en) | Rotor of rotary electric machine and rotary electric machine | |
JP2018098914A (en) | Rotary electric machine and robot device | |
JP6676622B2 (en) | Brushless motor, electric pump, and brushless motor manufacturing method | |
JP6839069B2 (en) | Rotating machine | |
JP7539106B2 (en) | Brushless motors and power tools | |
US20220271589A1 (en) | Rotor, rotating electrical machine, and drive device | |
JP7150171B2 (en) | Rotating electric machine stator, terminal block and rotating electric machine | |
JP3790765B2 (en) | Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine | |
WO2014188505A1 (en) | Rotating electric machine | |
CN114830510A (en) | Method for manufacturing molded motor and molded motor | |
US20190319521A1 (en) | Rotor and rotating electric machine including rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020551603 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20938398 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20938398 Country of ref document: EP Kind code of ref document: A1 |