WO2021240571A1 - In-blood imaging device - Google Patents

In-blood imaging device Download PDF

Info

Publication number
WO2021240571A1
WO2021240571A1 PCT/JP2020/020454 JP2020020454W WO2021240571A1 WO 2021240571 A1 WO2021240571 A1 WO 2021240571A1 JP 2020020454 W JP2020020454 W JP 2020020454W WO 2021240571 A1 WO2021240571 A1 WO 2021240571A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
blood
imaging device
unit
tip
Prior art date
Application number
PCT/JP2020/020454
Other languages
French (fr)
Japanese (ja)
Inventor
聡志 浪間
昌和 中田
大樹 吉松
信圭 山中
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Priority to JP2022527256A priority Critical patent/JP7439256B2/en
Priority to PCT/JP2020/020454 priority patent/WO2021240571A1/en
Publication of WO2021240571A1 publication Critical patent/WO2021240571A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes

Definitions

  • the technique disclosed herein relates to a blood imaging device.
  • a method of directly observing lesions (stenosis, obstruction, abnormal blood vessels, etc.) in the blood vessel wall or blood vessel using an ultrafine blood vessel endoscope that can be inserted into the blood vessel is used.
  • the angioscope is arranged on the long exterior portion inserted into the blood vessel, the light emitting portion which is arranged on the tip side of the exterior portion and emits light toward the inside of the blood vessel, and the tip side of the exterior portion. It also includes an imaging unit that receives reflected light from inside a blood vessel and converts it into an electrical signal.
  • the blood vessel wall cannot be optically observed as it is.
  • This specification discloses a technique capable of solving the above-mentioned problems.
  • This technique can be realized, for example, in the following forms.
  • the blood imaging device disclosed in the present specification is arranged on a long exterior portion inserted into a blood vessel and the tip end side of the exterior portion, and emits light toward the inside of the blood vessel.
  • a first polarizing unit, and a second polarizing unit that is arranged on the light receiving side of the imaging unit and causes the imaging unit to receive only the light of the polarized light component in the specific direction among the reflected light from the inside of the blood vessel.
  • the light emitted from the light emitting portion toward the inside of the blood vessel (in the blood) is regarded as the light of the polarized light component in one direction by the first polarizing portion and is inside the blood vessel. Is emitted to. Further, among the reflected light from the inside of the blood vessel, only the light of the polarized light component in one direction is received by the image pickup unit by the second polarizing unit. Therefore, it is possible to image an object (for example, a blood vessel wall or a lesion) that is specularly reflected by light of a polarized light component in one direction. That is, according to the present blood imaging apparatus, it is possible to image the state in the blood vessel without performing flushing while suppressing the deterioration of the imaging accuracy due to the scattering of light by the particles in the blood.
  • an object for example, a blood vessel wall or a lesion
  • the first polarizing portion and the second polarizing portion may be configured to be an integral polarizing plate that allows only the light of the polarizing component in the specific direction to pass through. According to this blood imaging device, it is caused by the positional deviation between the first polarizing portion and the second polarizing portion as compared with the configuration in which the first polarizing portion and the second polarizing portion are separate bodies. It is possible to suppress a decrease in imaging accuracy.
  • the emission side of the light emitting portion may be configured to be in contact with the first polarizing portion.
  • the light emitted from the light emitting unit and reflected by the first polarizing unit is incident on the imaging unit, for example, as compared with the configuration in which the light emitting unit and the first polarizing unit are separated from each other. It is possible to suppress the deterioration of the imaging accuracy of the state in the blood vessel due to this.
  • the light receiving side of the imaging unit may be configured to be in contact with the second polarizing unit. According to this blood imaging device, the light emitted from the light emitting unit and reflected by the first polarizing unit is less likely to be incident on the imaging unit as compared with the configuration in which the imaging unit and the second polarizing unit are separated from each other. It is possible to suppress a decrease in imaging accuracy due to the reflected light from the first polarizing portion.
  • the blood imaging device further includes a cylindrical shaft and a balloon whose tip is joined to the shaft, and the exterior portion includes the tip position of the shaft and the tip position in the shaft. It may be configured so that it can be displaced from the tip position to the position on the rear end side of the shaft.
  • a blood vessel located in front of the shaft is provided by arranging the exterior portion (light emitting portion, imaging portion, first polarizing portion, and second polarizing portion) at the tip position of the shaft. The state inside can be imaged.
  • the shaft has a light transmitting portion capable of transmitting light
  • the balloon covers the light transmitting portion of the shaft and has a light transmitting portion capable of transmitting light.
  • the exterior portion may be configured to be displaceable between the tip position of the shaft and the position in the light transmitting portion of the shaft in the shaft. According to this blood imaging device, by arranging the exterior portion in the light transmitting portion of the shaft, it is possible to image the state in the blood vessel located on the side of the shaft via the balloon.
  • the technique disclosed in the present specification can be realized in various forms, for example, a blood imaging device, a blood imaging method for imaging a state in a blood vessel, and the like. ..
  • a blood imaging method for example, light of a polarized light component in a specific direction is emitted toward the inside of a blood vessel, and of the light reflected from the inside of the blood vessel, only the light of the polarized light component in the specific direction is emitted to the image pickup unit by the polarizing unit. It receives light.
  • FIG. 1 shows a vertical cross section of the blood imaging device according to the first embodiment, and is a cross section parallel to the axial direction of the blood imaging device 1 (the Z-axis direction of FIG. 1 in the longitudinal direction) (YZ axis of FIG. 1). Plane) is shown.
  • FIG. 1 the configuration on the proximal end side of the blood imaging device 1 is omitted, and among the configurations on the distal end side, only the exterior portion 2 described later shows the cross-sectional configuration.
  • the negative Z-axis side is the proximal side (proximal side) operated by a technician such as a doctor
  • the positive Z-axis side is the distal end side (distal side) inserted into the body.
  • FIG. 1 shows a state in which the blood imaging device 1 has a linear shape parallel to the Z-axis direction as a whole, but the blood imaging device 1 has enough flexibility to be curved.
  • FIG. 2 shows the structure of the tip surface of the blood image pickup device 1, and shows the plan view of the blood image pickup device 1 as viewed from the tip side.
  • the blood imaging device 1 is a medical device inserted into a blood vessel in order to image and observe the state inside the blood vessel.
  • the blood imaging apparatus 1 includes a cylindrical exterior portion 2, a light emitting portion 3, an imaging unit 4, a wiring 5 derived from the imaging unit 4, and a polarizing plate 6. And have.
  • "intravascular" in the present specification is not limited to the inside of an actual blood vessel, but includes the inside of an artificially manufactured simulated blood vessel.
  • the exterior portion 2 has a long cylindrical shape, and is formed of, for example, a resin material.
  • the light emitting unit 3 includes, for example, an optical fiber arranged on the inner peripheral side of the tip portion of the exterior portion 2 and a light emitting element (LED or the like, not shown) arranged facing the base end surface of the optical fiber.
  • the tip surface of the optical fiber is directed toward the tip opening side of the exterior portion 2.
  • the wavelength of the light emitted from the light emitting unit 3 is appropriately adjusted from the magnitude relationship with the particle size of the particles contained in the blood (hereinafter referred to as "blood particles").
  • blood particles A part of the light emitted into the blood vessel is positively reflected by the blood vessel wall, and another part of the light hits the blood particles and is scattered.
  • the wavelength of the light emitted from the light emitting unit 3 is preferably 600 nm or more.
  • the image pickup unit 4 is arranged on the inner peripheral side of the tip portion of the exterior portion 2, and includes at least an image pickup element (for example, a charge coupling element, CMOS) that converts the received light into an electric signal.
  • the light receiving surface of the image pickup unit 4 is directed toward the tip opening side of the exterior unit 2.
  • Examples of the image pickup unit 4 include a CCD image sensor and a CMOS image sensor.
  • the image pickup unit 4 has a configuration without a lens, a configuration in which the lens is arranged on the front surface of the camera, a configuration in which a pinhole is arranged on the front surface of the camera instead of the lens, and a lens integrated in the camera. It may be a configuration.
  • the wiring 5 derived from the image pickup unit 4 is electrically connected to a device (not shown) that receives an electric signal output from the image pickup unit 4 and generates an image capture image.
  • the image pickup unit 4 (imaging element) is arranged at the tip portion close to the polarizing plate 6 of the blood image pickup device 1, the amount of light from the polarizing plate 6 is increased. Light can be received by the image sensor without much deterioration.
  • FIG. 2 when viewed in the axial direction (Z-axis direction) of the blood imaging device 1, the imaging unit 4 is located substantially in the center of the internal space of the exterior unit 2, and a plurality of light emitting units 3 (this In the embodiment, the tip portions of the three optical fibers) are arranged on both sides of the image pickup unit 4. Therefore, a large amount of light is emitted from the light emitting unit 3.
  • the polarizing plate 6 is a polarizing member that allows only the light of the polarizing component in a specific direction (the light component in which the vibration direction of the electric field and the magnetic field is in a specific direction) to pass through.
  • the polarizing plate 6 is arranged on the front side of the light emitting unit 3 and the imaging unit 4 in the axial direction (Z-axis direction) of the blood imaging device 1. Specifically, both the tip of the imaging unit 4 and the tip of the polarizing plate 6 are located within the outline of the polarizing plate 6 in the axial direction of the blood imaging device 1. Further, the light receiving surface of the image pickup unit 4 is in contact with the back surface of the polarizing plate 6 as a whole.
  • the area of the light receiving surface of the imaging unit 4 is larger than the light emitting area of the light emitting unit 3 (total area of the end faces of the optical fiber), so that the imaging unit 4 has a large amount of light. Can receive light.
  • FIG. 3 is an explanatory diagram of the operation of the blood imaging device 1.
  • the arrangement relationship between the light emitting unit 3, the imaging unit 4, and the polarizing plate 6 shown in FIG. 3 is an optical arrangement relationship, which is different from the actual physical arrangement relationship.
  • the blood imaging device 1 is inserted into the blood vessel, and the first emitted light L1 is emitted from the light emitting unit 3.
  • the first emitted light L1 is natural light (unpolarized light) and contains polarized light components in a plurality of directions.
  • the polarized light component of the first emitted light L1 includes circularly polarized light, elliptically polarized light, and the like in addition to the linearly polarized light in the specific direction.
  • a part of the first polarized light L2 emitted into the blood vessel is specularly reflected by the blood vessel wall and incident on the front surface of the polarizing plate 6 that maintains the polarization direction.
  • Another part of the first polarized light L2 hits particles contained in blood (hereinafter referred to as "blood particles") and scatters, and scattered light polarized in a direction different from a specific direction is incident on the front surface of the polarizing plate 6.
  • the polarizing plate 6 is incident with the mixed light L3 in which the reflected light from the blood vessel wall and the scattered light from the blood particles are mixed.
  • the polarizing plate 6 removes scattered light from blood particles among the mixed light L3, and allows only the reflected light L4 from the blood vessel wall to pass through. As a result, only the reflected light L4 from the blood vessel wall is incident on the image pickup unit 4. This makes it possible to image the blood vessel wall without flushing.
  • the present invention has a configuration (integrated polarizing plate) in which one polarizing plate serves both as a polarizing portion on the light emitting side and a polarizing portion on the light receiving side.
  • one polarizing plate serves both as a polarizing portion on the light emitting side and a polarizing portion on the light receiving side.
  • the light receiving surface of the image pickup unit is in contact with the back surface of the polarizing plate as a whole.
  • a part of the first emitted light L1 from the light emitting unit 3 may be reflected by the back surface of the polarizing plate 6. Therefore, in the blood imaging device 1 of the present embodiment, the light receiving surface of the imaging unit 4 is entirely in contact with the back surface of the polarizing plate 6.
  • the light reflected by the back surface of the polarizing plate 6 is less likely to be incident on the light receiving surface of the image pickup unit 4 than the configuration in which the image pickup unit 4 and the polarizing plate 6 are separated from each other. It is possible to suppress a decrease in imaging accuracy.
  • FIG. 4 is a perspective view of the balloon catheter
  • FIG. 5 is a vertical sectional view thereof.
  • the negative Z-axis side in FIGS. 4 and 5 is the proximal side (proximal side) of the balloon catheter 100 operated by a technician such as a doctor.
  • the configuration on the base end side is omitted.
  • the positive side of the Z axis is the distal end side to be inserted into the body.
  • the vertical cross section of the balloon catheter 100 means a cross section (YZ cross section) parallel to the axial direction (longitudinal Z axis direction) of the balloon catheter 100, and the cross section of the balloon catheter 100 is a cross section perpendicular to the axial direction. (XY cross section). 4 and 5 show a state in which the balloon 30, which will be described later, is expanded.
  • FIG. 6 is a cross-sectional view of the balloon catheter 100 at the position of VI-VI of FIG. 5
  • FIG. 7 is a cross-sectional view of the balloon catheter 100 at the position of VII-VII of FIG. 5
  • FIG. 8 is a cross-sectional view of the balloon catheter 100.
  • FIG. 5 is a cross-sectional view of the balloon catheter 100 at the position of VIII-VIII in FIG.
  • the balloon catheter 100 is a medical device inserted into a blood vessel or the like in order to expand and expand a lesion in a blood vessel, and has a function of a vascular endoscope.
  • the balloon catheter 100 includes an inner shaft 10, an outer shaft 20, a balloon 30, and an endoscope unit 40.
  • the balloon catheter 100 is an example of a blood imaging device within the scope of claims.
  • the inner shaft 10 is a tubular (for example, cylindrical) member having an open tip and a base end.
  • "cylindrical shape (cylindrical shape)” is not limited to a perfect cylindrical shape (cylindrical shape), but is substantially cylindrical (substantially cylindrical shape, for example, slightly conical shape or a part) as a whole. It may be a shape with irregularities, etc.).
  • a tip tip 12 is provided at the tip of the inner shaft 10.
  • the tip tip 12 is a cylindrical member having an open tip and a rear end.
  • the tip tip 12 has a tapered outer shape in which a port 14 is formed on the tip side thereof and the outer diameter gradually decreases toward the tip.
  • the tip 12 is made of, for example, a resin.
  • the inner shaft 10 corresponds to a shaft within the scope of claims.
  • a first guide wire lumen WR1 through which the first guide wire GW1 is inserted and a second guide wire lumen WR1 through which the second guide wire GW2 is inserted are inserted inside the inner shaft 10.
  • a guide wire lumen WR2 and a unit lumen CR through which the endoscope unit 40 is inserted are formed.
  • the first guide wire lumen WR1 extends along the axial direction of the inner shaft 10 over the entire length of the inner shaft 10.
  • the first guide wire GW1 inserted through the first guide wire lumen WR1 is led out to the outside from the tip opening of the first guide wire lumen WR1.
  • the tip end side of the second guide wire lumen WR2 extends toward the tip end side along the axial direction of the inner shaft 10, and the proximal end side of the second guide wire lumen WR2 is lateral to the axial direction. It is open.
  • the second guide wire GW2 inserted through the second guide wire lumen WR2 is led out to the outside from the tip opening of the second guide wire lumen WR2.
  • the balloon catheter 100 in the present embodiment can be used as a so-called rapid exchange type catheter.
  • the unit lumen CR extends along the axial direction of the balloon catheter 100 over the entire length of the balloon catheter 100.
  • the endoscope unit 40 inserted into the unit lumen CR is movable to the tip position of the port 14 of the tip tip 12 communicating with the unit lumen CR.
  • the outer shaft 20 is a tubular (for example, cylindrical) member having an open tip and base end.
  • the inner diameter of the outer shaft 20 is larger than the outer diameter of the inner shaft 10.
  • the outer shaft 20 accommodates a part of the inner shaft 10 and is arranged so as to be positioned coaxially with the inner shaft 10.
  • the tip of the inner shaft 10 projects toward the tip from the tip of the outer shaft 20.
  • An expansion lumen BR (see FIG. 8) through which an expansion fluid for expanding the balloon 30 flows is formed between the outer peripheral surface of the inner shaft 10 and the inner peripheral surface of the outer shaft 20.
  • the fluid for expansion is a liquid, and typically a mixed solution of physiological saline and a contrast medium is used.
  • the inner shaft 10 and the outer shaft 20 are made of a material that can be heat-sealed and has a certain degree of flexibility.
  • the material for forming the inner shaft 10 and the outer shaft 20 include a thermoplastic resin, more specifically, polyethylene, polypropylene, polybutene, an ethylene-propylene copolymer, an ethylene-vinyl acetate copolymer, an ionomer, or the like.
  • examples thereof include polyolefins such as a mixture of two or more of these, polyvinyl chloride resin, polyamide, polyamide elastomer, polyester, polyester elastomer, thermoplastic polyurethane and the like.
  • At least the portion of the inner shaft 10 covered by the balloon 30 is made of a light-transmitting material.
  • the light-transmitting material include polyamide, polycarbonate, polyethylene terephthalate, and polyimide.
  • the balloon 30 is an expansion member that can be expanded and contracted with the supply and discharge of the fluid for expansion.
  • the balloon 30 covers the tip of the inner shaft 10 protruding from the tip of the outer shaft 20. Further, the tip end portion 32 of the balloon 30 is joined to the outer peripheral surface of the inner shaft 10 by, for example, welding, and the base end portion 34 of the balloon 30 is joined to the outer peripheral surface of the outer shaft 20 by, for example, welding. .. In the contracted state, the balloon 30 is folded so as to be in close contact with the outer peripheral surfaces of the inner shaft 10 and the outer shaft 20.
  • the balloon 30 is preferably formed of a material having a certain degree of flexibility, and more preferably formed of a material having flexibility and being thinner than the inner shaft 10 and the outer shaft 20.
  • the material for forming the balloon 30 include polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, and a soft polyvinyl chloride resin. , Polyolefins, polyamide elastomers, polyesters, polyester elastomers, polyurethanes, thermoplastic resins such as fluororesins, silicone rubbers, latex rubbers and the like.
  • the balloon 30 is made of a light-transmitting material. Examples of the light-transmitting material include polyamide, polycarbonate, polyethylene terephthalate, and polyimide.
  • the endoscope unit 40 has a long shape as a whole, and has the same configuration as the blood imaging device 1 in the first embodiment. That is, as shown in FIG. 8, the endoscope unit 40 has a plurality of light emitting units 43 (optical fibers) and an imaging unit 44 in a long exterior portion 42 (four imaging units in this embodiment). And the polarizing plate 46 are arranged.
  • the endoscope unit 40 is inserted into the unit lumen CR and is movable in the axial direction of the balloon catheter 100 in the unit lumen CR.
  • the tip of the endoscope unit 40 (light emitting surface of the light emitting unit 43, light receiving surface of the imaging unit 44) is located at the tip of the balloon catheter 100 (tip tip 12) (tip from the balloon 30). And the position in the balloon 30 (light transmitting portion of the inner shaft 10).
  • the balloon catheter 100 by arranging the tip of the endoscope unit 40 at the position of the tip of the balloon catheter 100, it is possible to perform forward observation to image the state in the blood vessel located in front of the shaft. It will be possible. Further, by arranging the tip of the endoscope unit 40 at a position inside the balloon 30, it is possible to perform lateral observation by imaging the state inside the blood vessel located on the side of the balloon catheter 100 via the balloon 30. be.
  • the tip of the endoscope unit 40 since more than 1/2 of the balloon catheter 100 of the balloon 30 and the inner shaft 10 in the circumferential direction is made of a light-transmitting material, blood vessels are formed in a wide angle range (see range H in FIG. 5). It is possible to image the inside state.
  • the light-transmitting portion of the balloon catheter 100 between the balloon 30 and the inner shaft 10 is preferably 3/4 or more in the circumferential direction, and more preferably the entire circumference.
  • the balloon catheter 100 since the balloon catheter 100 has a configuration in which the balloon catheter has the function of a blood vessel endoscope, for example, while imaging the state inside the blood vessel, the lesion portion found by the imaging result is covered.
  • the balloon 30 can be expanded for treatment.
  • the configuration of the blood imaging device 1 and the blood imaging device (balloon catheter) 100 in each of the above embodiments is merely an example and can be variously modified.
  • the configuration in which the light emitted from the light emitting element is irradiated into the blood vessel via the optical fiber is exemplified as the light emitting unit, but the present invention is not limited to this, and for example, the light emitting element is attached to the tip of the exterior portion. It may be arranged on the side and the light from the light emitting element may be directly emitted into the blood vessel.
  • the image pickup unit is not limited to the configuration in which the image pickup element is provided at the tip portion of the exterior portion, and may be, for example, a configuration in which the image pickup element receives the reflected light from the inside of the blood vessel via the optical fiber. good.
  • At least a portion of the balloon 30 and the inner shaft 10 covered by the balloon 30 is formed of a light-transmitting material, but the portion is not necessarily light. It does not have to be transparent. This is because if the endoscope unit 40 is moved to the vicinity of the tip of the blood image pickup device 100, the blood vessel wall can be imaged.
  • one polarizing plate 6 is exemplified as the first polarizing portion and the second polarizing portion, but for example, even if the first polarizing portion and the second polarizing portion are separate bodies. good. Further, although the tip of the light emitting unit 3 (optical fiber) and the back surface of the polarizing plate 6 were separated from each other (see FIG. 1), the tip of the light emitting unit 3 and the back surface of the polarizing plate 6 were in contact with each other. You may. Thereby, for example, it is possible to suppress the deterioration of the imaging accuracy of the state inside the blood vessel due to the light emitted from the light emitting unit 3 and reflected by the polarizing plate 6 incident on the imaging unit 4.
  • each member in the blood imaging devices 1 and 100 in each of the above embodiments is merely an example and can be variously deformed.

Abstract

The present invention makes it possible to image the state of the interior of a blood vessel without performing flushing and while suppressing a drop in imaging accuracy caused by the scattering of light by particles in the blood. This in-blood imaging device comprises: an elongated exterior cover part to be inserted into a blood vessel; a light-emitting part disposed on the forward end side of the exterior cover part, and emitting light toward the interior of the blood vessel; an imaging part disposed on the forward end side of the exterior cover part, for converting a received light into an electric signal; a first polarization part disposed on the emission side of the light-emitting part, and polarizing in a specific orientation the light emitted from the light-emitting part; and a second polarization part disposed on the light-receiving side of the imaging part, and causing the imaging part to receive, among the light reflected by the interior of the blood vessel, only light consisting of the polarization component in the specific orientation.

Description

血中内撮像装置Blood imaging device
 本明細書に開示される技術は、血中内撮像装置に関する。 The technique disclosed herein relates to a blood imaging device.
 血管の診断に、血管内に挿入可能な極細の血管内視鏡を使用して血管壁や血管における病変部(狭窄部、閉塞部や異常血管等)を直接観察する方法が用いられる。血管内視鏡は、血管内に挿入される長尺状の外装部と、外装部の先端側に配置され、血管内に向けて光を出射する発光部と、外装部の先端側に配置され、血管内からの反射光を受光して電気信号に変換する撮像部と、を備える。ここで、血管内は赤い血液で満たされているため、そのままの状態では血管壁を光学的に観察することができない。そこで、血管内視鏡の先端から前方へ向かって低分子デキストラン溶液のような透明液体を噴射するフラッシングを行うことによって、血管内視鏡の前方の血液を一時的に透明液体に置換して透明な視界を得る方法が用いられている(例えば、特許文献1参照)。 For the diagnosis of blood vessels, a method of directly observing lesions (stenosis, obstruction, abnormal blood vessels, etc.) in the blood vessel wall or blood vessel using an ultrafine blood vessel endoscope that can be inserted into the blood vessel is used. The angioscope is arranged on the long exterior portion inserted into the blood vessel, the light emitting portion which is arranged on the tip side of the exterior portion and emits light toward the inside of the blood vessel, and the tip side of the exterior portion. It also includes an imaging unit that receives reflected light from inside a blood vessel and converts it into an electrical signal. Here, since the inside of the blood vessel is filled with red blood, the blood vessel wall cannot be optically observed as it is. Therefore, by performing flushing that injects a transparent liquid such as a low-molecular-weight dextran solution from the tip of the vascular endoscope forward, the blood in front of the vascular endoscope is temporarily replaced with a transparent liquid to make it transparent. A method for obtaining a clear view is used (see, for example, Patent Document 1).
特開2015-136529号公報Japanese Unexamined Patent Publication No. 2015-136529
 上述したように、従来の血管内視鏡を使用して血管壁を観察する場合、透明液を噴射するフラッシングを常に行う必要がある。このため、血管壁を連続的に観察することが難しかったり、フラッシングを行っている最中に血管内視鏡の向きを変える操作を行うことができない等の制約が生じたりする問題がある。この問題は、血管壁を観察するための血管内視鏡に限らず、血管内の状態を撮像するために使用される血中内撮像装置に共通する課題ともいえる。 As mentioned above, when observing the blood vessel wall using a conventional blood vessel endoscope, it is necessary to always perform flushing by injecting a transparent liquid. For this reason, there are problems that it is difficult to continuously observe the blood vessel wall, and there are restrictions such as the inability to perform an operation of changing the direction of the blood vessel endoscope during flushing. This problem can be said to be a problem common not only to the blood vessel endoscope for observing the blood vessel wall but also to the blood imaging device used for imaging the state in the blood vessel.
 本明細書では、上述した課題を解決することが可能な技術を開示する。この技術は、例えば、以下の形態として実現することが可能である。 This specification discloses a technique capable of solving the above-mentioned problems. This technique can be realized, for example, in the following forms.
(1)本明細書に開示される血中内撮像装置は、血管内に挿入される長尺状の外装部と、前記外装部の先端側に配置され、血管内に向けて光を出射する発光部と、前記外装部の先端側に配置され、受光した光を電気信号に変換する撮像部と、前記発光部の出射側に配置され、前記発光部から出射された光を特定方向に偏光する第1の偏光部と、前記撮像部の受光側に配置され、血管内からの反射光のうち、前記特定方向の偏光成分の光だけを前記撮像部に受光させる第2の偏光部と、を備える。 (1) The blood imaging device disclosed in the present specification is arranged on a long exterior portion inserted into a blood vessel and the tip end side of the exterior portion, and emits light toward the inside of the blood vessel. A light emitting unit, an imaging unit arranged on the tip side of the exterior portion to convert the received light into an electric signal, and an imaging unit arranged on the emitting side of the light emitting unit to polarize the light emitted from the light emitting unit in a specific direction. A first polarizing unit, and a second polarizing unit that is arranged on the light receiving side of the imaging unit and causes the imaging unit to receive only the light of the polarized light component in the specific direction among the reflected light from the inside of the blood vessel. To prepare for.
 本発明者は、鋭意検討を重ねることにより、血液に満たされた血管内の状態を撮像できない理由は、血液が赤色という色の問題だけでなく、血液に含まれる粒子(例えば赤血球、白血球やヘモグロビン)による光の散乱が影響することを新たに見出した。血管壁を撮像する場合、発光部から血管内(血液中)に出射された光の一部は、血管壁で反射し、該光の他の一部は、血液に含まれる粒子に当たって散乱する。その結果、血管壁からの反射光だけでなく、粒子からの散乱光も撮像部に受光されるため、血管壁に応じた像が撮像部にて形成されない。これに対して、本血中内撮像装置では、発光部から血管内(血液中)に向けて出射された光は、第1の偏光部によって、一方向の偏光成分の光とされて血管内に出射される。また、第2の偏光部によって、血管内からの反射光のうち、その一方向の偏光成分の光だけが撮像部に受光される。このため、一方向の偏光成分の光を正反射した対象物(例えば血管壁や病変部)を撮像することができる。すなわち、本血中内撮像装置によれば、フラッシングを行うことなく、血液中の粒子による光の散乱に起因する撮像精度の低下を抑制しつつ、血管内の状態を撮像することができる。 The reason why the present inventor cannot image the state in the blood vessel filled with blood by repeated diligent studies is not only the problem of the color that the blood is red, but also the particles contained in the blood (for example, red blood cells, white blood cells and hemoglobin). ) Newly found that the scattering of light has an effect. When the blood vessel wall is imaged, a part of the light emitted from the light emitting part into the blood vessel (in the blood) is reflected by the blood vessel wall, and the other part of the light hits the particles contained in the blood and is scattered. As a result, not only the reflected light from the blood vessel wall but also the scattered light from the particles is received by the image pickup unit, so that the image corresponding to the blood vessel wall is not formed in the image pickup unit. On the other hand, in this blood imaging device, the light emitted from the light emitting portion toward the inside of the blood vessel (in the blood) is regarded as the light of the polarized light component in one direction by the first polarizing portion and is inside the blood vessel. Is emitted to. Further, among the reflected light from the inside of the blood vessel, only the light of the polarized light component in one direction is received by the image pickup unit by the second polarizing unit. Therefore, it is possible to image an object (for example, a blood vessel wall or a lesion) that is specularly reflected by light of a polarized light component in one direction. That is, according to the present blood imaging apparatus, it is possible to image the state in the blood vessel without performing flushing while suppressing the deterioration of the imaging accuracy due to the scattering of light by the particles in the blood.
(2)上記血中内撮像装置において、前記第1の偏光部と前記第2の偏光部とは、前記特定方向の偏光成分の光だけを通過させる一体の偏光板である構成としてもよい。本血中内撮像装置によれば、第1の偏光部と第2の偏光部とが別体である構成に比べて、第1の偏光部と第2の偏光部との位置ズレに起因する撮像精度の低下を抑制することができる。 (2) In the blood imaging apparatus, the first polarizing portion and the second polarizing portion may be configured to be an integral polarizing plate that allows only the light of the polarizing component in the specific direction to pass through. According to this blood imaging device, it is caused by the positional deviation between the first polarizing portion and the second polarizing portion as compared with the configuration in which the first polarizing portion and the second polarizing portion are separate bodies. It is possible to suppress a decrease in imaging accuracy.
(3)上記血中内撮像装置において、前記発光部の出射側は、前記第1の偏光部に接触している構成としてもよい。本血中内撮像装置によれば、発光部と第1の偏光部とが離間した構成に比べて、例えば発光部から出射され第1の偏光部で反射した光が撮像部に入射することに起因して血管内の状態の撮像精度が低下することを抑制することができる。 (3) In the blood imaging device, the emission side of the light emitting portion may be configured to be in contact with the first polarizing portion. According to the blood imaging apparatus in the blood, the light emitted from the light emitting unit and reflected by the first polarizing unit is incident on the imaging unit, for example, as compared with the configuration in which the light emitting unit and the first polarizing unit are separated from each other. It is possible to suppress the deterioration of the imaging accuracy of the state in the blood vessel due to this.
(4)上記血中内撮像装置において、前記撮像部の受光側は、前記第2の偏光部に接触している構成としてもよい。本血中内撮像装置によれば、撮像部と第2の偏光部とが離間した構成に比べて、発光部から出射され第1の偏光部で反射した光が撮像部に入射しにくいため、第1の偏光部からの反射光に起因する撮像精度の低下を抑制することができる。 (4) In the blood imaging device, the light receiving side of the imaging unit may be configured to be in contact with the second polarizing unit. According to this blood imaging device, the light emitted from the light emitting unit and reflected by the first polarizing unit is less likely to be incident on the imaging unit as compared with the configuration in which the imaging unit and the second polarizing unit are separated from each other. It is possible to suppress a decrease in imaging accuracy due to the reflected light from the first polarizing portion.
(5)上記血中内撮像装置において、さらに、筒状のシャフトと、先端部が前記シャフトに接合されたバルーンと、を備え、前記外装部は、前記シャフト内において前記シャフトの先端位置と前記先端位置より前記シャフトの後端側の位置との間で変位可能とされている構成としてもよい。本血中内撮像装置によれば、外装部(発光部と撮像部と第1の偏光部と第2の偏光部)を、シャフトの先端位置に配置することにより、シャフトの前方に位置する血管内の状態を撮像することができる。 (5) The blood imaging device further includes a cylindrical shaft and a balloon whose tip is joined to the shaft, and the exterior portion includes the tip position of the shaft and the tip position in the shaft. It may be configured so that it can be displaced from the tip position to the position on the rear end side of the shaft. According to this blood imaging device, a blood vessel located in front of the shaft is provided by arranging the exterior portion (light emitting portion, imaging portion, first polarizing portion, and second polarizing portion) at the tip position of the shaft. The state inside can be imaged.
(6)上記血中内撮像装置において、前記シャフトは、光を透過可能な光透過部を有し、前記バルーンは、前記シャフトの前記光透過部を覆うと共に、光透過可能な光透過部を有し、前記外装部は、前記シャフト内において前記シャフトの先端位置と前記シャフトにおける前記光透過部内の位置との間で変位可能とされている構成としてもよい。本血中内撮像装置によれば、外装部を、シャフトにおける光透過部内に配置することにより、バルーンを介して、シャフトの側方に位置する血管内の状態を撮像することができる。 (6) In the blood imaging device, the shaft has a light transmitting portion capable of transmitting light, and the balloon covers the light transmitting portion of the shaft and has a light transmitting portion capable of transmitting light. The exterior portion may be configured to be displaceable between the tip position of the shaft and the position in the light transmitting portion of the shaft in the shaft. According to this blood imaging device, by arranging the exterior portion in the light transmitting portion of the shaft, it is possible to image the state in the blood vessel located on the side of the shaft via the balloon.
 本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、血中内撮像装置、血管内の状態を撮像する血中撮像方法等の形態で実現することができる。血中撮像方法は、例えば、血管内に向けて特定方向の偏光成分の光を出射し、偏光部により、血管内からの反射光のうち、前記特定方向の偏光成分の光だけを撮像部に受光させるものである。 The technique disclosed in the present specification can be realized in various forms, for example, a blood imaging device, a blood imaging method for imaging a state in a blood vessel, and the like. .. In the blood imaging method, for example, light of a polarized light component in a specific direction is emitted toward the inside of a blood vessel, and of the light reflected from the inside of the blood vessel, only the light of the polarized light component in the specific direction is emitted to the image pickup unit by the polarizing unit. It receives light.
第1実施形態における血中内撮像装置の縦断面図Longitudinal sectional view of the blood imaging device according to the first embodiment 図1に示す血中内撮像装置の先端面の説明図Explanatory view of the tip surface of the blood imaging apparatus shown in FIG. 血中内撮像装置の作用の説明図Explanatory diagram of the action of the blood imaging device 第2実施形態におけるバルーンカテーテルの斜視図Perspective view of the balloon catheter in the second embodiment 図4に示すバルーンカテーテルの縦断面図Longitudinal cross-sectional view of the balloon catheter shown in FIG. 図5のVI-VIの位置におけるバルーンカテーテルの横断面図Cross-sectional view of the balloon catheter at the position of VI-VI in FIG. 図5のVII-VIIの位置におけるバルーンカテーテルの横断面図Cross-sectional view of the balloon catheter at the position of VII-VII in FIG. 図5のVIII-VIIIの位置におけるバルーンカテーテルの横断面図Cross-sectional view of the balloon catheter at the position of VIII-VIII in FIG.
A.第1実施形態:
A-1.血中内撮像装置1の構成:
 まずは、図1及び2を参照して、第1実施形態における血中内撮像装置の構成を説明する。図1は、第1実施形態における血中内撮像装置の縦断面を示し、血中内撮像装置1の軸方向(長手方向で図1のZ軸方向)に平行な断面(図1のYZ軸平面)を示してある。図1では、血中内撮像装置1における基端側の構成を省略してあり、先端側の構成のうち、後述の外装部2のみ断面構成が示されている。Z軸負方向側が、医師等の手技者によって操作される基端側(近位側)であり、Z軸正方向側が、体内に挿入される先端側(遠位側)である。図1では、血中内撮像装置1が全体としてZ軸方向に平行な直線状となった状態を示しているが、血中内撮像装置1は湾曲させることができる程度の柔軟性を有している。図2は、血中内撮像装置1の先端面構成を示しており、血中内撮像装置1を先端側から見た平面構成が示されている。
A. First Embodiment:
A-1. Configuration of blood imaging device 1:
First, the configuration of the blood imaging device according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 shows a vertical cross section of the blood imaging device according to the first embodiment, and is a cross section parallel to the axial direction of the blood imaging device 1 (the Z-axis direction of FIG. 1 in the longitudinal direction) (YZ axis of FIG. 1). Plane) is shown. In FIG. 1, the configuration on the proximal end side of the blood imaging device 1 is omitted, and among the configurations on the distal end side, only the exterior portion 2 described later shows the cross-sectional configuration. The negative Z-axis side is the proximal side (proximal side) operated by a technician such as a doctor, and the positive Z-axis side is the distal end side (distal side) inserted into the body. FIG. 1 shows a state in which the blood imaging device 1 has a linear shape parallel to the Z-axis direction as a whole, but the blood imaging device 1 has enough flexibility to be curved. ing. FIG. 2 shows the structure of the tip surface of the blood image pickup device 1, and shows the plan view of the blood image pickup device 1 as viewed from the tip side.
 血中内撮像装置1は、血管内の状態を撮像して観察するために、血管内に挿入される医療用デバイスである。図1および図2に示すように、血中内撮像装置1は、筒状の外装部2と、発光部3と、撮像部4と、撮像部4から導出された配線5と、偏光板6と、を備えている。なお、本明細書における「血管内」は、実際の血管の内部に限らず、人工的に製造された模擬血管の内部を含む。 The blood imaging device 1 is a medical device inserted into a blood vessel in order to image and observe the state inside the blood vessel. As shown in FIGS. 1 and 2, the blood imaging apparatus 1 includes a cylindrical exterior portion 2, a light emitting portion 3, an imaging unit 4, a wiring 5 derived from the imaging unit 4, and a polarizing plate 6. And have. In addition, "intravascular" in the present specification is not limited to the inside of an actual blood vessel, but includes the inside of an artificially manufactured simulated blood vessel.
 外装部2は、長尺状の円筒状であり、例えば樹脂材料により形成されている。発光部3は、例えば、外装部2の先端部分における内周側に配置された光ファイバと、光ファイバの基端面に対向して配置された発光素子(LED等、図示しない)と、を備えており、光ファイバの先端面は、外装部2の先端開口側に向けられている。なお、発光部3から出射される光の波長を、血液に含まれる粒子(赤血球等 以下、「血中粒子」という)の粒子径との大小関係から適宜調整することにより、後述するように、血管内に出射された光の一部は、血管壁にて正反射し、光の別の一部は、血中粒子に当たって散乱するようになる。発光部3から出射される光の波長は、600nm以上であることが好ましい。 The exterior portion 2 has a long cylindrical shape, and is formed of, for example, a resin material. The light emitting unit 3 includes, for example, an optical fiber arranged on the inner peripheral side of the tip portion of the exterior portion 2 and a light emitting element (LED or the like, not shown) arranged facing the base end surface of the optical fiber. The tip surface of the optical fiber is directed toward the tip opening side of the exterior portion 2. As will be described later, the wavelength of the light emitted from the light emitting unit 3 is appropriately adjusted from the magnitude relationship with the particle size of the particles contained in the blood (hereinafter referred to as "blood particles"). A part of the light emitted into the blood vessel is positively reflected by the blood vessel wall, and another part of the light hits the blood particles and is scattered. The wavelength of the light emitted from the light emitting unit 3 is preferably 600 nm or more.
 撮像部4は、外装部2の先端部分における内周側に配置されており、少なくとも、受光した光を電気信号に変換する撮像素子(例えば電荷結合素子、CMOS)を備える。撮像部4の受光面は、外装部2の先端開口側に向けられている。撮像部4の例としては、CCDイメージセンサ、CMOSイメージセンサが挙げられる。また、撮像部4は、レンズを備えない構成や、レンズがカメラの前面に配置された構成、レンズの代わりにピンホールがカメラの前面に配置された構成や、レンズがカメラに一体化された構成であってもよい。撮像部4から導出された配線5は、撮像部4から出力される電気信号を受信して撮像画像を生成する装置(図示しない)に電気的に接続されている。 The image pickup unit 4 is arranged on the inner peripheral side of the tip portion of the exterior portion 2, and includes at least an image pickup element (for example, a charge coupling element, CMOS) that converts the received light into an electric signal. The light receiving surface of the image pickup unit 4 is directed toward the tip opening side of the exterior unit 2. Examples of the image pickup unit 4 include a CCD image sensor and a CMOS image sensor. Further, the image pickup unit 4 has a configuration without a lens, a configuration in which the lens is arranged on the front surface of the camera, a configuration in which a pinhole is arranged on the front surface of the camera instead of the lens, and a lens integrated in the camera. It may be a configuration. The wiring 5 derived from the image pickup unit 4 is electrically connected to a device (not shown) that receives an electric signal output from the image pickup unit 4 and generates an image capture image.
 本実施形態では、図1に示すように、撮像部4(撮像素子)が、血中内撮像装置1の偏光板6に近接した先端部分に配置されているので、偏光板6からの光量があまり低下することなく、撮像素子で光を受光できる。また、図2に示すように、血中内撮像装置1の軸方向(Z軸方向)視で、撮像部4が外装部2の内部空間における略中央に位置し、複数の発光部3(本実施形態では3本の光ファイバ)の先端部が撮像部4の両側にそれぞれ配置されている。このため、発光部3から多量の光が出射される。 In the present embodiment, as shown in FIG. 1, since the image pickup unit 4 (imaging element) is arranged at the tip portion close to the polarizing plate 6 of the blood image pickup device 1, the amount of light from the polarizing plate 6 is increased. Light can be received by the image sensor without much deterioration. Further, as shown in FIG. 2, when viewed in the axial direction (Z-axis direction) of the blood imaging device 1, the imaging unit 4 is located substantially in the center of the internal space of the exterior unit 2, and a plurality of light emitting units 3 (this In the embodiment, the tip portions of the three optical fibers) are arranged on both sides of the image pickup unit 4. Therefore, a large amount of light is emitted from the light emitting unit 3.
 偏光板6は、特定方向の偏光成分の光(電場および磁場の振動方向が特定の一方向である光成分)だけを通過させる偏光部材である。偏光板6は、血中内撮像装置1の軸方向(Z軸方向)において、発光部3と撮像部4との前側に配置されている。詳細には、撮像部4の先端と偏光板6の先端とは、いずれも、血中内撮像装置1の軸方向視で、偏光板6の外形線内に位置している。また、撮像部4の受光面は、全体的に偏光板6の背面に接触している。さらに、血中内撮像装置1の軸方向視で、撮像部4の受光面の面積は、発光部3の発光面積(光ファイバの端面の総面積)より大きいので、撮像部4は多量の光を受光できる。 The polarizing plate 6 is a polarizing member that allows only the light of the polarizing component in a specific direction (the light component in which the vibration direction of the electric field and the magnetic field is in a specific direction) to pass through. The polarizing plate 6 is arranged on the front side of the light emitting unit 3 and the imaging unit 4 in the axial direction (Z-axis direction) of the blood imaging device 1. Specifically, both the tip of the imaging unit 4 and the tip of the polarizing plate 6 are located within the outline of the polarizing plate 6 in the axial direction of the blood imaging device 1. Further, the light receiving surface of the image pickup unit 4 is in contact with the back surface of the polarizing plate 6 as a whole. Further, in the axial view of the blood imaging device 1, the area of the light receiving surface of the imaging unit 4 is larger than the light emitting area of the light emitting unit 3 (total area of the end faces of the optical fiber), so that the imaging unit 4 has a large amount of light. Can receive light.
A-2.本実施形態の効果:
 図3は、血中内撮像装置1の作用の説明図である。図3に示す発光部3と撮像部4と偏光板6との配置関係は、光学的な配置関係であり、実際の物理的な配置関係とは異なる。血管壁(図示しない)を撮像するには、まず、血中内撮像装置1を血管内に挿入し、発光部3から第1の出射光L1を出射させる。第1の出射光L1は、自然光(非偏光)であり、複数の方向の偏光成分を含んでいる。発光部3から偏光板6に照射された第1の出射光L1のうち、上記特定方向の偏光成分の光である第1の偏光L2だけが偏光板6を通過して血管内に出射される一方で、特定方向以外の偏光成分の光は偏光板6に吸収されたり反射したりする。なお、第1の出射光L1の偏光成分は、上記特定方向の直線偏光以外に、円偏光や楕円偏光なども含む。
A-2. Effect of this embodiment:
FIG. 3 is an explanatory diagram of the operation of the blood imaging device 1. The arrangement relationship between the light emitting unit 3, the imaging unit 4, and the polarizing plate 6 shown in FIG. 3 is an optical arrangement relationship, which is different from the actual physical arrangement relationship. In order to image the blood vessel wall (not shown), first, the blood imaging device 1 is inserted into the blood vessel, and the first emitted light L1 is emitted from the light emitting unit 3. The first emitted light L1 is natural light (unpolarized light) and contains polarized light components in a plurality of directions. Of the first emitted light L1 emitted from the light emitting unit 3 to the polarizing plate 6, only the first polarized light L2, which is the light of the polarized light component in the specific direction, passes through the polarizing plate 6 and is emitted into the blood vessel. On the other hand, light having a polarizing component other than the specific direction is absorbed or reflected by the polarizing plate 6. The polarized light component of the first emitted light L1 includes circularly polarized light, elliptically polarized light, and the like in addition to the linearly polarized light in the specific direction.
 血管内に出射された第1の偏光L2の一部は、血管壁にて正反射し、偏光方向を維持した偏光板6の前面に入射する。第1の偏光L2の別の一部は、血液に含まれる粒子(以下、「血中粒子」という)に当たって散乱し、特定方向とは異なる方向に偏光する散乱光が偏光板6の前面に入射することになる。すなわち、偏光板6には、血管壁からの反射光と、血中粒子からの散乱光とが混在した混合光L3が入射する。偏光板6は、混合光L3のうち、血中粒子からの散乱光を除去して、血管壁からの反射光L4だけを通過させる。これにより、血管壁からの反射光L4だけが撮像部4に入射することになる。これにより、フラッシングを行うことなく、血管壁を撮像することができる。 A part of the first polarized light L2 emitted into the blood vessel is specularly reflected by the blood vessel wall and incident on the front surface of the polarizing plate 6 that maintains the polarization direction. Another part of the first polarized light L2 hits particles contained in blood (hereinafter referred to as "blood particles") and scatters, and scattered light polarized in a direction different from a specific direction is incident on the front surface of the polarizing plate 6. Will be done. That is, the polarizing plate 6 is incident with the mixed light L3 in which the reflected light from the blood vessel wall and the scattered light from the blood particles are mixed. The polarizing plate 6 removes scattered light from blood particles among the mixed light L3, and allows only the reflected light L4 from the blood vessel wall to pass through. As a result, only the reflected light L4 from the blood vessel wall is incident on the image pickup unit 4. This makes it possible to image the blood vessel wall without flushing.
 本実施形態のように、本発明は、1つの偏光板が発光側の偏光部と受光側の偏光部とを兼ねる構成(一体の偏光板)であることが好ましい。これにより、発光側の偏光部と受光側の偏光部とが別体である構成よりも、両偏光部間の位置ズレに起因する撮像精度の低下を抑制することができる。また、血中内撮像装置1の部品点数の低減を図ることができる。 As in the present embodiment, it is preferable that the present invention has a configuration (integrated polarizing plate) in which one polarizing plate serves both as a polarizing portion on the light emitting side and a polarizing portion on the light receiving side. As a result, it is possible to suppress a decrease in imaging accuracy due to a positional shift between the two polarizing portions, as compared with a configuration in which the polarizing portion on the light emitting side and the polarizing portion on the light receiving side are separate bodies. In addition, the number of parts of the blood imaging device 1 can be reduced.
 本発明では、撮像部の受光面は全体的に偏光板の背面に接触していることが好ましい。発光部3からの第1の出射光L1の一部は、偏光板6の背面で反射することがある。このため、本実施形態の血中内撮像装置1では、撮像部4の受光面を全体的に偏光板6の背面に接触させている。これにより、撮像部4と偏光板6とが離間した構成よりも、偏光板6の背面で反射した光が撮像部4の受光面に入射しにくくなるので、偏光板6からの反射光に起因する撮像精度の低下を抑制することができる。 In the present invention, it is preferable that the light receiving surface of the image pickup unit is in contact with the back surface of the polarizing plate as a whole. A part of the first emitted light L1 from the light emitting unit 3 may be reflected by the back surface of the polarizing plate 6. Therefore, in the blood imaging device 1 of the present embodiment, the light receiving surface of the imaging unit 4 is entirely in contact with the back surface of the polarizing plate 6. As a result, the light reflected by the back surface of the polarizing plate 6 is less likely to be incident on the light receiving surface of the image pickup unit 4 than the configuration in which the image pickup unit 4 and the polarizing plate 6 are separated from each other. It is possible to suppress a decrease in imaging accuracy.
B.第2実施形態:
B-1.血中内撮像装置(バルーンカテーテル)の構成
 図4から図8を参照して、第2実施形態における血中内撮像装置の構成を説明する。第2実施形態では、血中内撮像装置がバルーンカテーテルを兼ねる。図4は、バルーンカテーテルの斜視図であり、図5は、その縦断面図である。図4および図5におけるZ軸負方向側が、医師等の手技者によって操作されるバルーンカテーテル100の基端側(近位側)である。図面では、該基端側の構成を省略してある。Z軸正方向側が、体内に挿入される先端側(遠位側)である。図4および図5では、バルーンカテーテル100が全体としてZ軸方向に平行な直線状となった状態を示しているが、バルーンカテーテル100は湾曲させることができる程度の柔軟性を有している。なお、バルーンカテーテル100の縦断面とは、バルーンカテーテル100の軸方向(長手方向 Z軸方向)に平行な断面(YZ断面)をいい、バルーンカテーテル100の横断面とは、軸方向に垂直な断面(XY断面)をいう。図4及び5では、後述するバルーン30が拡張した状態を示してある。
B. Second embodiment:
B-1. Configuration of Blood Imaging Device (Balloon Catheter) The configuration of the blood imaging device according to the second embodiment will be described with reference to FIGS. 4 to 8. In the second embodiment, the blood imaging device also serves as a balloon catheter. FIG. 4 is a perspective view of the balloon catheter, and FIG. 5 is a vertical sectional view thereof. The negative Z-axis side in FIGS. 4 and 5 is the proximal side (proximal side) of the balloon catheter 100 operated by a technician such as a doctor. In the drawings, the configuration on the base end side is omitted. The positive side of the Z axis is the distal end side to be inserted into the body. 4 and 5 show a state in which the balloon catheter 100 has a linear shape parallel to the Z-axis direction as a whole, but the balloon catheter 100 has sufficient flexibility to be curved. The vertical cross section of the balloon catheter 100 means a cross section (YZ cross section) parallel to the axial direction (longitudinal Z axis direction) of the balloon catheter 100, and the cross section of the balloon catheter 100 is a cross section perpendicular to the axial direction. (XY cross section). 4 and 5 show a state in which the balloon 30, which will be described later, is expanded.
 図6は、図5のVI-VIの位置におけるバルーンカテーテル100の横断面図であり、図7は、図5のVII-VIIの位置におけるバルーンカテーテル100の横断面図であり、図8は、図5のVIII-VIIIの位置におけるバルーンカテーテル100の横断面図である。 6 is a cross-sectional view of the balloon catheter 100 at the position of VI-VI of FIG. 5, FIG. 7 is a cross-sectional view of the balloon catheter 100 at the position of VII-VII of FIG. 5, and FIG. 8 is a cross-sectional view of the balloon catheter 100. FIG. 5 is a cross-sectional view of the balloon catheter 100 at the position of VIII-VIII in FIG.
 バルーンカテーテル100は、血管における病変部を押し広げて拡張させるために、血管等に挿入される医療用デバイスであり、かつ、血管内視鏡の機能を備える。バルーンカテーテル100は、インナーシャフト10と、アウターシャフト20と、バルーン30と、内視鏡ユニット40と、を備えている。バルーンカテーテル100は、特許請求の範囲における血中内撮像装置の一例である。 The balloon catheter 100 is a medical device inserted into a blood vessel or the like in order to expand and expand a lesion in a blood vessel, and has a function of a vascular endoscope. The balloon catheter 100 includes an inner shaft 10, an outer shaft 20, a balloon 30, and an endoscope unit 40. The balloon catheter 100 is an example of a blood imaging device within the scope of claims.
 図4および図5に示すように、インナーシャフト10は、先端と基端とが開口した筒状(例えば円筒状)の部材である。なお、本明細書において「筒状(円筒状)」とは、完全な筒形状(円筒形状)に限らず、全体として略筒状(略円筒形状、例えば、若干、円錐形状や、一部に凹凸がある形状など)であってもよい。インナーシャフト10の先端には、先端チップ12が設けられている。先端チップ12は、先端と後端とが開口した筒状の部材である。先端チップ12は、その先端側にポート14が形成されると共に、先端に向かって外径が徐々に小さくなるテーパ状の外形を有している。なお、先端チップ12は、例えば樹脂により形成されている。インナーシャフト10は、特許請求の範囲におけるシャフトに相当する。 As shown in FIGS. 4 and 5, the inner shaft 10 is a tubular (for example, cylindrical) member having an open tip and a base end. In addition, in this specification, "cylindrical shape (cylindrical shape)" is not limited to a perfect cylindrical shape (cylindrical shape), but is substantially cylindrical (substantially cylindrical shape, for example, slightly conical shape or a part) as a whole. It may be a shape with irregularities, etc.). A tip tip 12 is provided at the tip of the inner shaft 10. The tip tip 12 is a cylindrical member having an open tip and a rear end. The tip tip 12 has a tapered outer shape in which a port 14 is formed on the tip side thereof and the outer diameter gradually decreases toward the tip. The tip 12 is made of, for example, a resin. The inner shaft 10 corresponds to a shaft within the scope of claims.
 図4および図5に示すように、インナーシャフト10の内部には、第1のガイドワイヤGW1が挿通される第1のガイドワイヤルーメンWR1と、第2のガイドワイヤGW2が挿通される第2のガイドワイヤルーメンWR2と、内視鏡ユニット40が挿通されるユニットルーメンCRとが形成されている。 As shown in FIGS. 4 and 5, inside the inner shaft 10, a first guide wire lumen WR1 through which the first guide wire GW1 is inserted and a second guide wire lumen WR1 through which the second guide wire GW2 is inserted are inserted. A guide wire lumen WR2 and a unit lumen CR through which the endoscope unit 40 is inserted are formed.
 第1のガイドワイヤルーメンWR1は、インナーシャフト10の軸方向に沿ってインナーシャフト10の全長にわたって延びている。第1のガイドワイヤルーメンWR1に挿通された第1のガイドワイヤGW1は、第1のガイドワイヤルーメンWR1の先端開口部から外部に導出される。第2のガイドワイヤルーメンWR2の先端側は、インナーシャフト10の軸方向に沿って先端側に延びており、第2のガイドワイヤルーメンWR2の基端側は、該軸方向に対して側方に開口している。第2のガイドワイヤルーメンWR2に挿通された第2のガイドワイヤGW2は、第2のガイドワイヤルーメンWR2の先端開口部から外部に導出される。これにより、本実施形態におけるバルーンカテーテル100は、いわゆるラピッドエクスチェンジ型のカテーテルとして利用することができる。 The first guide wire lumen WR1 extends along the axial direction of the inner shaft 10 over the entire length of the inner shaft 10. The first guide wire GW1 inserted through the first guide wire lumen WR1 is led out to the outside from the tip opening of the first guide wire lumen WR1. The tip end side of the second guide wire lumen WR2 extends toward the tip end side along the axial direction of the inner shaft 10, and the proximal end side of the second guide wire lumen WR2 is lateral to the axial direction. It is open. The second guide wire GW2 inserted through the second guide wire lumen WR2 is led out to the outside from the tip opening of the second guide wire lumen WR2. Thereby, the balloon catheter 100 in the present embodiment can be used as a so-called rapid exchange type catheter.
 ユニットルーメンCRは、バルーンカテーテル100の軸方向に沿ってバルーンカテーテル100の全長にわたって延びている。ユニットルーメンCRに挿通された内視鏡ユニット40は、ユニットルーメンCRに連通する先端チップ12のポート14の先端位置まで移動可能とされている。 The unit lumen CR extends along the axial direction of the balloon catheter 100 over the entire length of the balloon catheter 100. The endoscope unit 40 inserted into the unit lumen CR is movable to the tip position of the port 14 of the tip tip 12 communicating with the unit lumen CR.
 アウターシャフト20は、先端と基端とが開口した筒状(例えば円筒状)の部材である。アウターシャフト20の内径は、インナーシャフト10の外径より大きい。アウターシャフト20は、インナーシャフト10の一部を収容し、かつ、インナーシャフト10と同軸上に位置するように配置されている。インナーシャフト10の先端部は、アウターシャフト20の先端部より先端側に突出している。インナーシャフト10の外周面とアウターシャフト20の内周面との間には、バルーン30を拡張するための拡張用の流体が流通する拡張ルーメンBR(図8参照)が形成されている。なお、拡張用の流体は、液体を用い、典型的には、生理食塩水と造影剤との混合液を用いる。 The outer shaft 20 is a tubular (for example, cylindrical) member having an open tip and base end. The inner diameter of the outer shaft 20 is larger than the outer diameter of the inner shaft 10. The outer shaft 20 accommodates a part of the inner shaft 10 and is arranged so as to be positioned coaxially with the inner shaft 10. The tip of the inner shaft 10 projects toward the tip from the tip of the outer shaft 20. An expansion lumen BR (see FIG. 8) through which an expansion fluid for expanding the balloon 30 flows is formed between the outer peripheral surface of the inner shaft 10 and the inner peripheral surface of the outer shaft 20. The fluid for expansion is a liquid, and typically a mixed solution of physiological saline and a contrast medium is used.
 インナーシャフト10とアウターシャフト20とは、熱融着可能であり、かつ、ある程度の可撓性を有する材料により形成されている。インナーシャフト10とアウターシャフト20との形成材料としては、例えば、熱可塑性樹脂、より具体的には、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、熱可塑性ポリウレタン等が挙げられる。インナーシャフト10のうち、少なくともバルーン30に覆われる部分は、光透過可能な材料により形成されている。光透過可能な材料とは、例えば、ポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリイミド等が挙げられる。 The inner shaft 10 and the outer shaft 20 are made of a material that can be heat-sealed and has a certain degree of flexibility. Examples of the material for forming the inner shaft 10 and the outer shaft 20 include a thermoplastic resin, more specifically, polyethylene, polypropylene, polybutene, an ethylene-propylene copolymer, an ethylene-vinyl acetate copolymer, an ionomer, or the like. Examples thereof include polyolefins such as a mixture of two or more of these, polyvinyl chloride resin, polyamide, polyamide elastomer, polyester, polyester elastomer, thermoplastic polyurethane and the like. At least the portion of the inner shaft 10 covered by the balloon 30 is made of a light-transmitting material. Examples of the light-transmitting material include polyamide, polycarbonate, polyethylene terephthalate, and polyimide.
 バルーン30は、拡張用の流体の供給および排出に伴い拡張および収縮可能な拡張部材である。バルーン30は、インナーシャフト10の内、アウターシャフト20の先端から突出した先端部を覆う。また、バルーン30の先端部32は、例えば溶着により、インナーシャフト10の外周面に接合されており、バルーン30の基端部34は、例えば溶着により、アウターシャフト20の外周面に接合されている。なお、バルーン30は、収縮された状態では、インナーシャフト10とアウターシャフト20との外周面に密着するように折り畳まれる。 The balloon 30 is an expansion member that can be expanded and contracted with the supply and discharge of the fluid for expansion. The balloon 30 covers the tip of the inner shaft 10 protruding from the tip of the outer shaft 20. Further, the tip end portion 32 of the balloon 30 is joined to the outer peripheral surface of the inner shaft 10 by, for example, welding, and the base end portion 34 of the balloon 30 is joined to the outer peripheral surface of the outer shaft 20 by, for example, welding. .. In the contracted state, the balloon 30 is folded so as to be in close contact with the outer peripheral surfaces of the inner shaft 10 and the outer shaft 20.
 バルーン30は、ある程度の可撓性を有する材料により形成されていることが好ましく、インナーシャフト10やアウターシャフト20より薄くて、可撓性を有する材料により形成されていることがより好ましい。バルーン30の形成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、フッ素樹脂等の熱可塑性樹脂、シリコーンゴム、ラテックスゴム等が挙げられる。本実施形態では、バルーン30は、光透過可能な材料により形成されている。光透過可能な材料とは、例えば、ポリアミド、ポリカーボネート、ポリエチレンテレフタレート、ポリイミド等が挙げられる。 The balloon 30 is preferably formed of a material having a certain degree of flexibility, and more preferably formed of a material having flexibility and being thinner than the inner shaft 10 and the outer shaft 20. Examples of the material for forming the balloon 30 include polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, and a soft polyvinyl chloride resin. , Polyolefins, polyamide elastomers, polyesters, polyester elastomers, polyurethanes, thermoplastic resins such as fluororesins, silicone rubbers, latex rubbers and the like. In this embodiment, the balloon 30 is made of a light-transmitting material. Examples of the light-transmitting material include polyamide, polycarbonate, polyethylene terephthalate, and polyimide.
 内視鏡ユニット40は、全体として、長尺状であり、上記実施形態1における血中内撮像装置1と同様の構成である。すなわち、図8に示すように、内視鏡ユニット40は、長尺状の外装部42内に、複数(本実施形態では撮像部4つ)の発光部43(光ファイバ)と、撮像部44と、偏光板46とが配置されている。内視鏡ユニット40は、ユニットルーメンCR内に挿通され、かつ、ユニットルーメンCR内でバルーンカテーテル100の軸方向に移動可能とされている。このため、バルーンカテーテル100では、内視鏡ユニット40の先端(発光部43の発光面、撮像部44の受光面)が、バルーンカテーテル100(先端チップ12)の先端の位置(バルーン30より先端)と、バルーン30(インナーシャフト10の光透過部)内の位置とに変位可能である。 The endoscope unit 40 has a long shape as a whole, and has the same configuration as the blood imaging device 1 in the first embodiment. That is, as shown in FIG. 8, the endoscope unit 40 has a plurality of light emitting units 43 (optical fibers) and an imaging unit 44 in a long exterior portion 42 (four imaging units in this embodiment). And the polarizing plate 46 are arranged. The endoscope unit 40 is inserted into the unit lumen CR and is movable in the axial direction of the balloon catheter 100 in the unit lumen CR. Therefore, in the balloon catheter 100, the tip of the endoscope unit 40 (light emitting surface of the light emitting unit 43, light receiving surface of the imaging unit 44) is located at the tip of the balloon catheter 100 (tip tip 12) (tip from the balloon 30). And the position in the balloon 30 (light transmitting portion of the inner shaft 10).
B-2.本実施形態の効果:
 本実施形態に係るバルーンカテーテル100によれば、内視鏡ユニット40の先端を、バルーンカテーテル100の先端の位置に配置することにより、シャフトの前方に位置する血管内の状態を撮像する前方観察が可能になる。また、内視鏡ユニット40の先端を、バルーン30内の位置に配置することにより、バルーン30を介して、バルーンカテーテル100の側方に位置する血管内の状態を撮像する側方観察が可能である。本実施形態では、バルーン30とインナーシャフト10とのバルーンカテーテル100の周方向における1/2以上が光透過可能な材料により形成されているため、広角な範囲(図5の範囲H参照)で血管内の状態を撮像することができる。なお、バルーン30とインナーシャフト10とのバルーンカテーテル100における光透過可能な部分は、周方向における3/4以上であることが好ましく、全周であることがより好ましい。
B-2. Effect of this embodiment:
According to the balloon catheter 100 according to the present embodiment, by arranging the tip of the endoscope unit 40 at the position of the tip of the balloon catheter 100, it is possible to perform forward observation to image the state in the blood vessel located in front of the shaft. It will be possible. Further, by arranging the tip of the endoscope unit 40 at a position inside the balloon 30, it is possible to perform lateral observation by imaging the state inside the blood vessel located on the side of the balloon catheter 100 via the balloon 30. be. In the present embodiment, since more than 1/2 of the balloon catheter 100 of the balloon 30 and the inner shaft 10 in the circumferential direction is made of a light-transmitting material, blood vessels are formed in a wide angle range (see range H in FIG. 5). It is possible to image the inside state. The light-transmitting portion of the balloon catheter 100 between the balloon 30 and the inner shaft 10 is preferably 3/4 or more in the circumferential direction, and more preferably the entire circumference.
 本実施形態によれば、バルーンカテーテル100は、バルーンカテーテルに血管内視鏡の機能を備えた構成であるため、例えば、血管内の状態を撮像しつつ、撮像結果により発見された病変部に対してバルーン30を拡張させて治療を施すことができる。 According to the present embodiment, since the balloon catheter 100 has a configuration in which the balloon catheter has the function of a blood vessel endoscope, for example, while imaging the state inside the blood vessel, the lesion portion found by the imaging result is covered. The balloon 30 can be expanded for treatment.
C.変形例:
 本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
C. Modification example:
The technique disclosed in the present specification is not limited to the above-described embodiment, and can be transformed into various forms without departing from the gist thereof, and for example, the following modifications are also possible.
 上記各実施形態における血中内撮像装置1や血中内撮像装置(バルーンカテーテル)100の構成は、あくまで一例であり、種々変形可能である。例えば、上記各実施形態では、発光部として、発光素子から出射された光を、光ファイバを介して血管内に照射する構成を例示したが、これに限らず、例えば発光素子を外装部の先端側に配置して発光素子からの光を、直接、血管内に出射させる構成であってもよい。上記各実施形態において、撮像部は、外装部の先端部分に撮像素子を備える構成に限らず、例えば、血管内からの反射光を、光ファイバを介して撮像素子に受光させる構成であってもよい。 The configuration of the blood imaging device 1 and the blood imaging device (balloon catheter) 100 in each of the above embodiments is merely an example and can be variously modified. For example, in each of the above embodiments, the configuration in which the light emitted from the light emitting element is irradiated into the blood vessel via the optical fiber is exemplified as the light emitting unit, but the present invention is not limited to this, and for example, the light emitting element is attached to the tip of the exterior portion. It may be arranged on the side and the light from the light emitting element may be directly emitted into the blood vessel. In each of the above embodiments, the image pickup unit is not limited to the configuration in which the image pickup element is provided at the tip portion of the exterior portion, and may be, for example, a configuration in which the image pickup element receives the reflected light from the inside of the blood vessel via the optical fiber. good.
 第2実施形態における血中内撮像装置100のうち、バルーン30及びインナーシャフト10のうち、少なくともバルーン30に覆われる部分が、光透過可能な材料により形成されているが、必ずしも、その部分を光透過可能としなくてもよい。内視鏡ユニット40を、血中内撮像装置100の先端近傍に移動させれば、血管壁を撮像することが可能となるからである。 Of the blood imaging device 100 in the second embodiment, at least a portion of the balloon 30 and the inner shaft 10 covered by the balloon 30 is formed of a light-transmitting material, but the portion is not necessarily light. It does not have to be transparent. This is because if the endoscope unit 40 is moved to the vicinity of the tip of the blood image pickup device 100, the blood vessel wall can be imaged.
 第1実施形態では、第1の偏光部および第2の偏光部として、1つの偏光板6を例示したが、例えば、第1の偏光部と第2の偏光部とが別体であってもよい。また、発光部3(光ファイバ)の先端と偏光板6の背面とは離隔していたが(図1参照)、発光部3の先端と偏光板6の背面とが接触している構成であってもよい。これにより、例えば発光部3から出射され偏光板6で反射した光が撮像部4に入射することに起因して血管内の状態の撮像精度が低下することを抑制することができる。 In the first embodiment, one polarizing plate 6 is exemplified as the first polarizing portion and the second polarizing portion, but for example, even if the first polarizing portion and the second polarizing portion are separate bodies. good. Further, although the tip of the light emitting unit 3 (optical fiber) and the back surface of the polarizing plate 6 were separated from each other (see FIG. 1), the tip of the light emitting unit 3 and the back surface of the polarizing plate 6 were in contact with each other. You may. Thereby, for example, it is possible to suppress the deterioration of the imaging accuracy of the state inside the blood vessel due to the light emitted from the light emitting unit 3 and reflected by the polarizing plate 6 incident on the imaging unit 4.
 上記各実施形態における血中内撮像装置1,100における各部材の材料は、あくまで一例であり、種々変形可能である。 The material of each member in the blood imaging devices 1 and 100 in each of the above embodiments is merely an example and can be variously deformed.
 1  : 血中内撮像装置(第1実施形態)
 2  : 外装部(第1実施形態)
 3  : 発光部(第1実施形態)
 4  : 撮像部(第1実施形態)
 5  : 配線
 6  : 偏光板(第1実施形態)
 10 : インナーシャフト
 12 : 先端チップ
 14 : ポート
 20 : アウターシャフト
 30 : バルーン
 32 : 先端部
 34 : 基端部
 40 : 内視鏡ユニット
 42 : 外装部(第2実施形態)
 43 : 発光部(第2実施形態)
 44 : 撮像部(第2実施形態)
 46 : 偏光板(第2実施形態)
 100: 血中内撮像装置(バルーンカテーテル)(第2実施形態)
 BR : 拡張ルーメン
 CR : ユニットルーメン
 GW1: 第1のガイドワイヤ
 GW2: 第2のガイドワイヤ
 H  : 範囲
 L1 : 第1の出射光
 L2 : 第1の偏光
 L3 : 混合光
 L4 : 反射光
 WR1: 第1のガイドワイヤルーメン
 WR2: 第2のガイドワイヤルーメン
1: Blood imaging device (first embodiment)
2: Exterior part (first embodiment)
3: Light emitting unit (first embodiment)
4: Imaging unit (first embodiment)
5: Wiring 6: Polarizing plate (first embodiment)
10: Inner shaft 12: Tip tip 14: Port 20: Outer shaft 30: Balloon 32: Tip part 34: Base end part 40: Endoscope unit 42: Exterior part (second embodiment)
43: Light emitting unit (second embodiment)
44: Imaging unit (second embodiment)
46: Polarizing plate (second embodiment)
100: Blood imaging device (balloon catheter) (second embodiment)
BR: Extended lumen CR: Unit lumen GW1: First guide wire GW2: Second guide wire H: Range L1: First emitted light L2: First polarized light L3: Mixed light L4: Reflected light WR1: First Guide wire lumen WR2: Second guide wire lumen

Claims (6)

  1.  血中内撮像装置であって、
     血管内に挿入される長尺状の外装部と、
     前記外装部の先端側に配置され、血管内に向けて光を出射する発光部と、
     前記外装部の先端側に配置され、受光した光を電気信号に変換する撮像部と、
     前記発光部の出射側に配置され、前記発光部から出射された光を特定方向に偏光する第1の偏光部と、
     前記撮像部の受光側に配置され、血管内からの反射光のうち、前記特定方向の偏光成分の光だけを前記撮像部に受光させる第2の偏光部と、
    を備える、血中内撮像装置。
    It is a blood imaging device,
    A long exterior that is inserted into a blood vessel,
    A light emitting part arranged on the tip side of the exterior part and emitting light toward the inside of a blood vessel,
    An image pickup unit, which is arranged on the tip side of the exterior portion and converts the received light into an electric signal,
    A first polarizing unit, which is arranged on the emission side of the light emitting unit and polarizes the light emitted from the light emitting unit in a specific direction,
    A second polarizing unit, which is arranged on the light receiving side of the imaging unit and causes the imaging unit to receive only the light of the polarizing component in the specific direction among the reflected light from the blood vessel.
    A blood imaging device.
  2.  請求項1に記載の血中内撮像装置であって、
     前記第1の偏光部と前記第2の偏光部とは、前記特定方向の偏光成分の光だけを通過させる一体の偏光板である、
     血中内撮像装置。
    The blood imaging device according to claim 1.
    The first polarizing portion and the second polarizing portion are integral polarizing plates that allow only the light of the polarizing component in the specific direction to pass through.
    Blood imaging device.
  3.  請求項1または請求項2に記載の血中内撮像装置であって、
     前記発光部の出射側は、前記第1の偏光部に接触している、
     血中内撮像装置。
    The blood imaging device according to claim 1 or 2.
    The emission side of the light emitting portion is in contact with the first polarizing portion.
    Blood imaging device.
  4.  請求項1から請求項3までのいずれか一項に記載の血中内撮像装置であって、
     前記撮像部の受光側は、前記第2の偏光部に接触している、
     血中内撮像装置。
    The blood imaging device according to any one of claims 1 to 3.
    The light receiving side of the imaging unit is in contact with the second polarizing unit.
    Blood imaging device.
  5.  請求項1から請求項4までのいずれか一項に記載の血中内撮像装置であって、さらに、
     筒状のシャフトと、
     先端部が前記シャフトに接合されたバルーンと、を備え、
     前記外装部は、前記シャフト内において前記シャフトの先端位置と前記先端位置より前記シャフトの後端側の位置との間で変位可能とされている、血中内撮像装置。
    The blood imaging device according to any one of claims 1 to 4, further comprising.
    With a cylindrical shaft,
    With a balloon whose tip is joined to the shaft,
    The exterior portion is a blood imaging device capable of being displaced between the tip position of the shaft and the position on the rear end side of the shaft from the tip position in the shaft.
  6.  請求項5に記載の血中内撮像装置であって、
     前記シャフトは、光を透過可能な光透過部を有し、
     前記バルーンは、前記シャフトの前記光透過部を覆うと共に、光透過可能な光透過部を有し、
     前記外装部は、前記シャフト内において前記シャフトの先端位置と前記シャフトにおける前記光透過部内の位置との間で変位可能とされている、血中内撮像装置。
    The blood imaging device according to claim 5.
    The shaft has a light transmitting portion capable of transmitting light, and has a light transmitting portion.
    The balloon covers the light transmitting portion of the shaft and has a light transmitting portion capable of transmitting light.
    The exterior portion is a blood imaging device capable of being displaced between a position at the tip of the shaft in the shaft and a position in the light transmitting portion of the shaft.
PCT/JP2020/020454 2020-05-25 2020-05-25 In-blood imaging device WO2021240571A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022527256A JP7439256B2 (en) 2020-05-25 2020-05-25 Blood imaging device
PCT/JP2020/020454 WO2021240571A1 (en) 2020-05-25 2020-05-25 In-blood imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020454 WO2021240571A1 (en) 2020-05-25 2020-05-25 In-blood imaging device

Publications (1)

Publication Number Publication Date
WO2021240571A1 true WO2021240571A1 (en) 2021-12-02

Family

ID=78723148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020454 WO2021240571A1 (en) 2020-05-25 2020-05-25 In-blood imaging device

Country Status (2)

Country Link
JP (1) JP7439256B2 (en)
WO (1) WO2021240571A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503203A (en) * 2001-08-10 2005-02-03 シー2キュア インコーポレイテッド Intravascular imaging method and apparatus
US20050165279A1 (en) * 2001-12-11 2005-07-28 Doron Adler Apparatus, method and system for intravascular photographic imaging
JP2009095447A (en) * 2007-10-16 2009-05-07 Olympus Corp Method and apparatus for intravascular visualization
JP2016049267A (en) * 2014-08-29 2016-04-11 国立大学法人大阪大学 Vascular endoscope catheter and vascular endoscope using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005503203A (en) * 2001-08-10 2005-02-03 シー2キュア インコーポレイテッド Intravascular imaging method and apparatus
US20050165279A1 (en) * 2001-12-11 2005-07-28 Doron Adler Apparatus, method and system for intravascular photographic imaging
JP2009095447A (en) * 2007-10-16 2009-05-07 Olympus Corp Method and apparatus for intravascular visualization
JP2016049267A (en) * 2014-08-29 2016-04-11 国立大学法人大阪大学 Vascular endoscope catheter and vascular endoscope using the same

Also Published As

Publication number Publication date
JPWO2021240571A1 (en) 2021-12-02
JP7439256B2 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
US9521946B2 (en) Transparent endoscope head defining a focal length
JP6262285B2 (en) Optical system for multi-sensor endoscope
US7662094B2 (en) Optical head assembly with dome, and device for use thereof
JP4354425B2 (en) Endoscope insertion part and endoscope
US8587718B2 (en) Image pickup unit and manufacturing method of image pickup unit
EP1859723B1 (en) Insertion section for endoscope
EP1834572B1 (en) Endoscope-use insertion unit
US7488288B2 (en) Ultrasonic endoscope
US8414480B2 (en) Methods and devices for reducing reflection-illuminated artifacts
JP2009522052A (en) Module visualization stylet device and method of use
JP4391956B2 (en) Endoscope insertion part and endoscope
JP2014524303A (en) Multiple observation element endoscope
JP2012504019A (en) Systems and methods for optical viewing and therapeutic intervention in blood vessels
JP2006192200A (en) Insertion unit for endoscope and endoscope
JP4464518B2 (en) Endoscope
JP6872468B2 (en) Capsule endoscopy for obtaining images of the surface of hollow organs
WO2021240571A1 (en) In-blood imaging device
JP7009375B2 (en) A system for visualizing the target area
JP2004121843A (en) System including optical head assembly, and dome, and in vivo imaging device
JP2015000267A (en) Endoscope and endoscope system
KR101630849B1 (en) endoscope
JP3462776B2 (en) The tip of the ultrasonic treatment endoscope
JP2006288821A (en) Electronic endoscope
JP2006187553A (en) Insertion tube for endoscope, endoscope and endoscopic system
WO2018168070A1 (en) Endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938396

Country of ref document: EP

Kind code of ref document: A1