WO2021240109A1 - Composition de protection anti-ozone pour un article en caoutchouc reticule - Google Patents

Composition de protection anti-ozone pour un article en caoutchouc reticule Download PDF

Info

Publication number
WO2021240109A1
WO2021240109A1 PCT/FR2021/050949 FR2021050949W WO2021240109A1 WO 2021240109 A1 WO2021240109 A1 WO 2021240109A1 FR 2021050949 W FR2021050949 W FR 2021050949W WO 2021240109 A1 WO2021240109 A1 WO 2021240109A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
solvent
ozone
rubber article
crosslinked rubber
Prior art date
Application number
PCT/FR2021/050949
Other languages
English (en)
Inventor
Sébastien FERREIRA
Gaëlle AVRIL
Original Assignee
Compagnie Generale Des Etablissements Michelin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin filed Critical Compagnie Generale Des Etablissements Michelin
Priority to US17/928,449 priority Critical patent/US20230212375A1/en
Priority to EP21734197.3A priority patent/EP4157948A1/fr
Publication of WO2021240109A1 publication Critical patent/WO2021240109A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/02Rubber derivatives containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D111/00Coating compositions based on homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • C09D123/32Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur
    • C09D123/34Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment by reaction with compounds containing phosphorus or sulfur by chlorosulfonation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/02Tyres specially adapted for particular applications for aircrafts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/32Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with phosphorus- or sulfur-containing compounds
    • C08J2423/34Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with phosphorus- or sulfur-containing compounds by chlorosulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/56Non-aqueous solutions or dispersions

Definitions

  • the invention relates to an anti-ozone protection composition for a crosslinked rubber article, the composition being based on at least one chlorinated elastomer, at least one hydrocarbon solvent and at least one aprotic polar solvent.
  • Crosslinked rubber articles such as for example pneumatic or non-pneumatic tires, are generally based on diene polymers comprising ethylenic double bonds in their main chain. These polymers are sensitive to the action of ozone due to the presence of these double bonds.
  • compositions based on diene polymers commonly incorporate anti-ozone chemical compounds as well as waxes.
  • Anti-ozone chemicals slow down the formation and propagation of cracks under static and dynamic conditions.
  • Waxes provide additional static protection by forming a protective coating on the surface.
  • anti-ozonating agents also called anti-zone agents
  • waxes are not very compatible with certain uses of rubber articles, such as for example pneumatic tires especially intended for fitting onto airplanes.
  • an airplane pneumatic tire must withstand pressure, load and high speed conditions, in particular on landing where they must go from zero speed to very high speed, causing considerable heating and wear.
  • These particular wear conditions do not concern other types of tires such as tires for passenger vehicles, heavy goods vehicles, civil engineering or off-road vehicles.
  • an airplane tire is subjected to strong stresses during the landing phases (“Touch Down”).
  • Document EP0728810A1 discloses a coating consisting of an aqueous composition based on polymers chosen from the group of acrylic, methacrylic and vinyl esters, a constituent comprising a hydrophilic silica and a polymer whose monomer is chosen from acrylic, methacrylic and vinyl monomers. .
  • this composition exhibits poor adhesion to a rubber surface, it must be deposited in several batches, with very thin layers each time. This restrictive application in several layers results in a coating thickness that is difficult to control and in non-homogeneous distributions of the coating.
  • Another anti-ozone coating composition for pneumatic tires is also known from document WO2001 / 094453A1.
  • This composition is based on polyurethane polymers.
  • the disadvantage of this composition is a complicated implementation requiring a first step of functionalization of the rubbery support by a functionalization solution, followed by a drying step which can be more or less long, then only then the deposition of the composition. coating.
  • the bond between the elastomer of the tire and the polyurethane is achieved by virtue of the polar functions of the functionalization solution. Its protection efficiency with respect to ozone is therefore dependent on the functionalization step of the support, since this step allows the adhesion of the polyurethane layer to its support.
  • An aim of the present invention is to meet this need.
  • an anti-ozone protection composition for a crosslinked rubber article in particular for a crosslinked pneumatic tire, in particular intended to equip airplanes, based on at least one chlorinated elastomer, at least one solvent. hydrocarbon and at least one polar aprotic solvent.
  • This composition is particularly advantageous and easy to use. It is not necessary to functionalize the crosslinked rubber support, it is applied directly to the crosslinked support, in a single step, which has the advantage of being able to produce a layer of uniform thickness.
  • This composition advantageously makes it possible to form a continuous, flexible coating which adheres to any surface of the pneumatic tire which, by its presence, opposes degradation due to ozone.
  • the rubbery behavior of this composition makes it possible to advantageously resist all the deformations undergone by the crosslinked rubber article.
  • this composition is advantageously used to protect pneumatic tires especially intended for fitting onto airplanes since it is resistant to the deformations undergone after the manufacture of the tires, in particular during the inflation and subsequent use of said tire. It also has the advantage of being able to be applied to any crosslinked rubber surface, and in particular to new or retreaded pneumatic tires.
  • Another object of the present invention relates to a crosslinked elastomeric article having at least one elastomeric surface in contact with air, said elastomeric surface being wholly or in part coated with an anti-ozone protective composition as defined above.
  • the crosslinked elastomeric article is chosen from pneumatic tires, non-pneumatic tires, conveyors, gaskets, shoe soles, tracks, hoses, hoses, windshield wipers, ping-pong rackets. and floor coverings. More advantageously still, the crosslinked elastomeric article is a pneumatic or non-pneumatic crosslinked tire of which at least one outer layer is at least partly coated with an anti-ozone protection composition as defined above.
  • Figure 1 photograph of a groove in a tread of an airplane tire comprising areas protected by the protective composition according to the invention and areas not protected by the protective composition of the invention.
  • Line A-A and line B-B delimit the areas which have or have not been protected by the protective composition of the invention.
  • the zone delimited in a rectangle by the lines A-A and B-B has not been the subject of an application of the protective composition according to the invention. Large cracks are visible inside this rectangle.
  • the protected areas that is to say between the top of the photo and the line A-A and between the line B-B and the bottom of the photo, there are no cracks.
  • Figure 2 photograph of a groove in a tread of an airplane pneumatic tire; groove in which the protective composition according to the invention has been applied. No cracks are visible.
  • Figure 3 photograph of two grooves in a tread of an airplane pneumatic tire; grooves in which no protective composition according to the invention has been applied. Numerous cracks are visible in the bottom of these furrows.
  • a first subject of the invention relates to an anti-ozone protective composition for a crosslinked rubber article, in particular for a crosslinked pneumatic tire, in particular intended to be fitted to airplanes, the composition being based on at least one chlorinated elastomer, at least one hydrocarbon solvent and at least one polar aprotic solvent.
  • rubber article or “elastomeric article” is meant an article comprising one or more elastomers, in particular one or more diene elastomers.
  • This rubber article comprises at least one rubber surface (also referred to as an elastomeric surface) in contact with air.
  • crosslinked rubber article means a rubber article which has undergone a crosslinking step, that is to say that the rubber or the elastomers forming this article are in the form of a network. obtained by establishing bridges between the macromolecular chains of the rubber or of said elastomers. The formation of bridges can take place by any known crosslinking agent, such as for example peroxides or else by sulfur. When the crosslinking agent is sulfur, this is referred to as vulcanization.
  • diene elastomer or rubber indiscriminately
  • elastomer or rubber indiscriminately
  • an elastomer consisting at least in part ie, a homopolymer or a copolymer
  • diene monomer units monomers carrying two carbon-carbon double bonds, conjugated or not.
  • diene elastomers can be classified into two categories: “essentially unsaturated” or “essentially saturated”.
  • essentially unsaturated is understood to mean in general a diene elastomer derived at least in part from conjugated diene monomers, having a level of units or units of diene origin (conjugated dienes) which is greater than 15% (% by moles); it is thus that diene elastomers such as butyl rubbers or copolymers of dienes and alpha-olefins of the EPDM type do not fall within the preceding definition and can in particular be qualified as “essentially saturated” diene elastomers (level of diene. units of weak or very weak diene origin, always less than 15 mol%).
  • diene elastomer capable of being used in the elastomeric articles in accordance with the invention is particularly understood: any homopolymer of a diene monomer, conjugated or not, having from 4 to 18 carbon atoms; any copolymer of a diene, conjugated or not, having from 4 to 18 carbon atoms and at least one other monomer.
  • composition based on is meant a composition comprising the mixture and / or the in situ reaction product of the various constituents used, some of these constituents being able to react and / or being intended to react with each other, less partially, during the various phases of manufacture of the composition and / or during the use of this composition.
  • the expression “part by weight per hundred parts by weight of elastomer” should be understood to mean the part, by mass per hundred parts by mass of elastomer.
  • any interval of values designated by the expression “between a and b” represents the domain of values going from more than a to less than b (that is to say limits a and b excluded) while any range of values designated by the expression “from a to b” signifies the range of values going from a to b (that is to say including the strict limits a and b).
  • a “predominant” compound it is understood, within the meaning of the present invention, that this compound is predominant among the compounds of the same type in the composition, that is to say that it is the one which represents the greatest amount by mass among compounds of the same type.
  • a major elastomer is the elastomer representing the greatest mass relative to the total mass of the elastomers in the composition.
  • a so-called majority filler is that representing the greatest mass among the fillers of the composition.
  • the majority elastomer represents more than half of the mass of the elastomers.
  • the compounds mentioned in the description which include carbon can be of fossil origin or biobased. In the latter case, they may be, partially or totally, derived from biomass or obtained from renewable raw materials derived from biomass. This concerns in particular polymers, solvents and additives.
  • the anti-ozone protection composition of the invention comprises at least one chlorinated elastomer.
  • chlorinated elastomer is understood to mean a polymer which comprises one or more chlorine atoms and which is flexible, deformable, exhibiting elasticity of the rubber type according to the IUPAC definition of elastomers.
  • the chlorine content of the chlorinated elastomer is within a range ranging from 20% to 50% by weight relative to the total weight of the elastomer, more preferably in a range ranging from 25% to 45%, more preferably still ranging from 30% to 37% by weight per relative to the total weight of the elastomer.
  • the level of chlorine in the elastomer is measured according to the usual analysis techniques for elastomers.
  • the chlorinated elastomer has a Mooney ML viscosity index (l + 4) at 100 ° C. within a range ranging from 20 to 100 MU, more preferably ranging from 25 to 60 MU.
  • chlorinated elastomers examples include polychloroprene, chlorosulphonated polyethylene and mixtures of these elastomers.
  • chlorinated elastomers are available from suppliers such as Du Pont de Nemours, Lianda, etc.
  • the chlorinated elastomer is a chlorosulfonated polyethylene, in particular having a sulfur content in a range ranging from 0.8% to 2% by weight relative to the total weight of the polyethylene, more particularly in a range ranging from 0, 9% to 1.5% more preferably ranging from 1% to 1.5% by weight.
  • the sulfur content in the elastomer is measured according to the usual analysis techniques for polymers.
  • Chlorosulfonated polyethylenes are made by simultaneous functionalization and modification of polyethylene from chlorine and sulfur dioxide. They are marketed under the name CSM.
  • Particular embodiments of the present invention may comprise at least one chlorosulfonated polyethylene having a chlorine content ranging from 20% to 50% by weight and a sulfur content ranging from 0.8% to 2% by weight, more preferably can comprise at least one chlorosulfonated polyethylene having a chlorine content in a range ranging from 25% to 45% by weight and a sulfur content in a range ranging from 0.9% to 1, 5%, more preferably still, can comprise at least one chlorosulfonated polyethylene having a chlorine content within a range ranging from 30% to 37% and a sulfur content ranging from a range ranging from 0.8% to 1.2%.
  • the chlorine content and that of sulfur in the elastomer are expressed in% by weight relative to the total weight of the chlorosulfonated polyethylene.
  • the content of the chlorinated elastomer, preferably of polychloroprene and / or of chlorosulfonated polyethylene, in the composition is within a range ranging from 3% to 25% by weight relative to the total weight of the composition, more preferably in a range ranging from 5% to 20% by weight relative to the total weight of the composition.
  • the concentration is too low to obtain the desired effects and above 25% by weight the composition becomes very viscous and difficult to apply.
  • chlorinated elastomer concentration depends on the need or not, for the elastomeric surface to be protected, of a significant final thickness of protection and on the conditions of use of this surface. If the rubber article is used in an atmosphere with high ozone concentrations, then the highest chlorinated elastomer concentration will preferably be chosen to reduce the number of layers to be applied and to obtain the best protection.
  • the anti-ozone protection composition according to the invention comprises at least one hydrocarbon solvent.
  • hydrocarbon solvent is meant a solvent mainly containing carbon atoms and hydrogen atoms.
  • the hydrocarbon solvent is liquid at ambient temperature (20 ° C.) and at atmospheric pressure.
  • the hydrocarbon solvent is a solvent for aliphatic hydrocarbons. It can have a distillation range within a range from 50 ° C to 220 ° C.
  • the hydrocarbon solvent which can be used in the context of the invention is a solvent for C4-C14 aliphatic hydrocarbons, preferably C5-C10, more preferably still C7-C9.
  • the hydrocarbon solvent is preferably volatile at room temperature (20 ° C) and has a non-zero vapor pressure at room temperature (20 ° C) and atmospheric pressure, and in particular a vapor pressure ranging from 0.13 Pa to 40,000 Pa , in particular ranging from 1.3 Pa to 13000 Pa, and more particularly ranging from 1.3 Pa to 1300 Pa.
  • the anti-ozone protection composition according to the invention also comprises at least one aprotic polar solvent.
  • aprotic polar solvent means a solvent having a dipole moment without an acidic hydrogen atom, that is to say bonded to a heteroatom.
  • the heteroatom is an oxygen atom.
  • the aprotic polar solvent is chosen from ketone solvents, ester solvents and mixtures of these solvents.
  • the aprotic polar solvent is chosen from dimethylformamide (DMF); acetone, methyl ethyl ketone (also known as butanone), methyl propyl ketone (also known as pentanone-2), methyl isopropyl ketone (also known as 3-methyl-2 -butanone), methyl isobutyl ketone (also known as 4-methyl-2-pentanone), cyclic ketones such as cyclohexanone; tetrahydrofuran (THF); acetonitrile; dimethyl sulfoxide (DMSO) and mixtures thereof.
  • DMF dimethylformamide
  • acetone methyl ethyl ketone
  • methyl propyl ketone also known as pentanone-2
  • methyl isopropyl ketone also known as 3-methyl-2 -butanone
  • methyl isobutyl ketone also known as 4-methyl-2-pentanone
  • cyclic ketones such as cyclo
  • the aprotic polar solvent is chosen from acetone, butanone, pentanone-2, 3-methyl-2-butanone, 4-methyl-2-pentanone and their mixture.
  • the aprotic polar solvent is acetone.
  • the polar aprotic solvent preferably the ketone solvents and the ester solvents, are miscible in the hydrocarbon solvent, in particular in the aliphatic hydrocarbon solvent.
  • the polar aprotic solvent forms a homogeneous and stable mixture (to the naked eye) when it is placed in the presence of said hydrocarbon solvent.
  • the hydrocarbon solvent is the majority solvent. According to this embodiment; the hydrocarbon solvent is that which represents the largest quantity by mass among the solvents of the composition.
  • the mass ratio of aprotic polar solvent relative to the hydrocarbon solvent is within a range ranging from 15:85 to 85:15 per 100% by mass of solvent, preferably from 30:70 to 70:30. for 100% by mass of solvent, more preferably from 40:60 to 60:40 for 100% by mass of solvent.
  • the hydrocarbon solvent is a solvent for C4-C14 aliphatic hydrocarbons, preferably C5-C10, more preferably still C7-C9 and the aprotic polar solvent is chosen from acetone , butanone, pentanone-2, methyl-3-butanone, methyl-4-pentanone-2 and a mixture thereof.
  • the hydrocarbon solvent is a solvent for C5-C10 aliphatic hydrocarbons, more preferably still C7-C9 and the aprotic polar solvent is chosen from butanone, methyl-3-butanone and their mixture.
  • the anti-ozone protection composition according to the invention may also comprise all or part of the usual additives and processing agents, known to those skilled in the art and usually used in rubber compositions for pneumatic tires, such as by example of plasticizers (such as plasticizing oils and / or plasticizing resins), reinforcing or non-reinforcing fillers, pigments, anti-oxidants, anti-fatigue agents, etc.
  • plasticizers such as plasticizing oils and / or plasticizing resins
  • reinforcing or non-reinforcing fillers pigments, anti-oxidants, anti-fatigue agents, etc.
  • the process for obtaining the anti-ozone protection composition is simple.
  • the constituents are brought into contact with each other; they are mixed until a homogeneous solution is obtained, that is to say a solution in which there are no particles in suspension visible to the naked eye.
  • the order in which the constituents of the protective composition are used is irrelevant.
  • Another possibility of manufacturing the composition according to the invention is to bring the two solvents into contact together and then to add the chlorinated elastomer.
  • the solution can be applied to any crosslinked rubber article or crosslinked elastomeric support.
  • This composition can thus be deposited at room temperature (20 ° C.) by any known means and in particular with a brush, a roller or by spraying with a gun.
  • the layer obtained after application is then allowed to dry; the two solvents evaporate, the elastomer thus deposited forms the protective coating.
  • the drying time is in particular of the order of 5 min to 10 min, a time which can be further reduced by operating heating, for example by circulating hot air or by radial heating, which respects maintenance of the surface temperature of the rubber article to be protected below 60 ° C.
  • the dry coating obtained exhibits high mechanical strength, which allows it to remain in place when the tires are stored until they are put into service.
  • the desired thickness of the dry coating will vary depending on the elastomeric surface where the anti-ozone protection composition is applied. Good results are obtained, for example, with dry coatings having a thickness greater than or equal to 5 ⁇ m.
  • a thickness within a range ranging from 5 ⁇ m to 500 ⁇ m will be preferred.
  • a thickness within a range ranging from 5 ⁇ m to 50 ⁇ m will be sufficient.
  • the protective coating cannot be as effective on the parts of the tire in permanent contact with the ground.
  • the anti-ozone protection composition is deposited on the entire surface of the tread, the resulting dry coating makes it possible to protect the tread before its use and continues its action on the parts which are not in contact. contact with the ground therefore in particular the hollow bottoms (grooves) of the sculptures, the coating part covering the tops of the sculptures directly in contact with the ground being rapidly destroyed since it is subject to wear.
  • the anti-ozone protection composition according to the invention can be applied to any type of crosslinked rubber article, preferably to a crosslinked pneumatic tire in particular intended to be fitted on airplanes.
  • Another object of the present invention relates to a crosslinked elastomeric article comprising at least one elastomeric surface in contact with air, said elastomeric surface being all or in part coated with an anti-ozone protective composition defined above.
  • elastomeric surface is understood to mean a surface of an article, this surface being based on at least one elastomer, preferably diene elastomer as defined above and another component.
  • the elastomeric article can be any known elastomeric article, and preferably chosen from pneumatic tires, in particular those intended to equip airplanes, non-pneumatic tires, conveyors, gaskets, shoe soles, tracks, pipes. , hoses, windshield wipers, table tennis rackets and floor coverings.
  • a non-pneumatic tire is meant a tire intended to form a cavity by cooperating with a support element, for example a rim, this cavity being able to be pressurized at a pressure greater than atmospheric pressure.
  • a non-pneumatic tire is not suitable for being pressurized.
  • a non-pneumatic tire is a toric body formed by at least one polymeric material, intended to perform the function of a tire but without being subjected to inflation pressure.
  • a non-pneumatic tire can be solid or hollow.
  • a hollow non-pneumatic tire can contain air, but at atmospheric pressure, that is to say it has no pneumatic rigidity provided by an inflation gas at a pressure greater than atmospheric pressure.
  • the pneumatic tires according to the invention are intended to equip vehicles of any type such as passenger vehicles, two-wheeled vehicles, heavy goods vehicles, agricultural vehicles, civil engineering vehicles or airplanes or, more generally. , on any rolling device.
  • Non-pneumatic tires are intended to be fitted on passenger vehicles or two-wheelers.
  • the pneumatic tires according to the invention are intended to equip airplanes.
  • the crosslinked elastomeric article is a pneumatic crosslinked tire, preferably intended to equip an aircraft, or a non-pneumatic tire, at least one outer layer of which has an elastomeric surface at least partly coated with an anti-ozone protective composition.
  • the term “outer layer” is understood to mean an elastomeric layer which is in contact with air (other than the inflation gas in the context of a pneumatic tire); as opposed to the inner layers which are elastomeric layers in contact with each other or in contact with the inflation gas.
  • the outer layer may be the tread of the pneumatic or non-pneumatic tire, the layer forming the sidewalls of the pneumatic tire or the spokes in the context of a non-pneumatic tire.
  • the crosslinked elastomeric article is a pneumatic crosslinked tire, in particular intended to equip airplanes comprising a tread and sidewalls, said tread and / or said sidewalls being at least partly coated with a composition of anti-ozone protection defined above. More preferably, this tread can be retreaded.
  • compositions C1 to C4 are prepared:
  • the tread of this retreaded tire is conventionally produced from a composition based on natural rubber and carbon black.
  • the sculpture of this tread comprises 4 grooves. On each groove, 5 zones of identical length are materialized and the compositions C1 to C4 are applied using a brush in the manner below on the 2 nd and the 4 th groove. The ier the grooves and furrows 3 rd do not include treatment.
  • the first groove is the one located closest to the wheel brake disc, in the direction of rotation of the tire, and the 4 th groove is the one that is to farthest from the wheel of the brake disc. After drying at a temperature of 23 ° C., the thickness of the coating is between 0.05 and 0.10 mm.
  • composition C2 composition C2
  • the tire is then mounted on a rim and is inflated to a pressure of 14.2 bar. Static ozone test
  • the tire is taken out of the chamber for the evaluation of the number of cracks in the tread groove, then replaced for another 2 weeks in the same thermostatically controlled chamber, the ozone concentration of which is increased to 0.4 ppm. After 4 weeks, the tire is taken out of the chamber to assess the number of cracks in the tread grooves.
  • zone A not comprising any protective composition and which corresponds to a control outside the invention, is completely cracked from the first week of storage in contact with ozone.
  • the action of ozone is therefore particularly effective on this zone A of the tread.
  • compositions C3 and C4 have the advantage of being more protective than compositions C1 and C2 which already have excellent protection against a high ozone concentration (0.4 ppm corresponds to 6 times the average of the ozone concentration. in the troposphere).
  • the protective compositions in accordance with the invention therefore provide very good anti-ozone protection for atmospheres in which the ozone concentrations are very high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

L'invention concerne une composition de protection anti-ozone pour un article en caoutchouc réticulé, ladite composition étant à base d'au moins un élastomère chloré, d'au moins un solvant hydrocarboné et d'au moins un solvant polaire aprotique. L'invention concerne également un article en caoutchouc comprenant au moins une surface élastomérique en contact avec l'air, ladite surface étant tout ou partie est revêtue par ladite composition.

Description

COMPOSITION DE PROTECTION ANTI-OZONE POUR UN ARTICLE EN CAOUTCHOUC RETICULE
L'invention concerne une composition de protection anti-ozone pour un article en caoutchouc réticulé, la composition étant à base d'au moins un élastomère chloré, d'au moins un solvant hydrocarboné et d'au moins un solvant polaire aprotique.
Les articles en caoutchouc réticulés, comme par exemples les bandages pneumatiques ou non pneumatiques, sont généralement à base de polymères diéniques comportant des doubles liaisons éthyléniques dans leur chaîne principale. Ces polymères sont sensibles à l'action de l'ozone du fait de la présence de ces doubles liaisons.
Lorsqu'un article réticulé réalisé avec ces polymères est soumis à une contrainte en présence d'ozone, l'action néfaste de l'ozone se manifeste par l'apparition de craquelures ou de fissures qui sont visibles à la surface de l'article. Ces craquelures sont orientées sensiblement perpendiculairement au sens de ladite contrainte, et leur propagation sous l'effet de la persistance d'une telle contrainte peut provoquer à terme une rupture complète de cet article.
Pour limiter cette dégradation, les compositions à base de polymères diéniques incorporent couramment des composés chimiques anti-ozone ainsi que des cires. Les composés chimiques anti ozone ralentissent la formation et la propagation des fissures dans les conditions de sollicitations statiques et dynamiques. Les cires apportent un complément de protection en statique par la formation d'un revêtement protecteur en surface.
Toutefois, l'utilisation de ces composés chimiques anti-ozone et/ou de ces cires entraînent l'apparition de taches à la surface de ces articles en caoutchouc du fait de leur aptitude à migrer jusqu'à la surface. Ce phénomène est connu sous le nom de « tachage » (ou « blooming » en anglais). Pour préserver l'aspect de surface des pneumatiques, on a donc tendance à limiter la proportion de ces composés dans les compositions de caoutchouc et par conséquent, leur action. Par ailleurs, les proportions de cires et de composés anti-ozonants sont limitées du fait des problèmes de cohésion du mélange et afin de conserver les propriétés des compositions de caoutchouc.
Or, cette limitation du taux d'agents anti-ozonants (aussi appelés agents antiozone) et de cires est peu compatible avec certaines utilisations d'articles en caoutchouc, comme par exemple des bandages pneumatiques notamment destinés à équiper des avions. En effet, de manière connue, un bandage pneumatique d'avion doit résister à des conditions de pressions, de charges et de vitesse élevée, en particulier à l’atterrissage où ils doivent passer d’une vitesse nulle à une très grande vitesse, provoquant un échauffement et une usure considérables. Ces conditions d’usure particulières ne concernent pas d’autres types de pneumatiques tels que les pneumatiques de véhicules de tourisme, poids lourds, génie civil ou hors la route. En particulier, un pneumatique avion est soumis à de fortes sollicitations lors des phases d’atterrissage (« Touch Down »). Les conditions d'utilisation particulières des bandages pneumatiques pour avion ont pour conséquence que des amorces de fissures qui se créent dans la bande de roulement sous l'effet de l'ozone ont tendance à se propager davantage et plus rapidement que celles qui se créeraient sur les autres types de bandages pneumatiques tels que les pneumatiques de véhicules de tourisme. Ces amorces de fissures et fissures endommagent les bandes de roulement du bandage pneumatique et réduisent donc la durée de vie dudit bandage. Compte tenu de leurs conditions particulières d'utilisation, les bandages pneumatiques pour avion ont donc besoin d'une protection anti-ozone plus efficace que celles des autres bandages pneumatiques. Des solutions, autres que celles de la limitation des anti-ozonants, ont été proposées pour palier au problème précité. Par exemple, une solution consiste à déposer sur la surface à protéger du pneumatique destiné à équiper un avion une ou plusieurs couches d'un revêtement de protection anti-ozone. On connaît du document EP0728810A1 un revêtement constitué par une composition aqueuse à base de polymères choisi dans le groupe des esters acryliques, méthacryliques et vinyliques, un constituant comprenant une silice hydrophile et un polymère dont le monomère est choisi parmi les monomères acryliques, méthacryliques et vinyliques. Cependant, du fait que cette composition présente une faible adhésion sur une surface de caoutchouc, elle doit être déposée en plusieurs fois, avec des couches de très faibles épaisseurs à chaque fois. Cette application contraignante en plusieurs couches a pour conséquence une épaisseur du revêtement difficilement contrôlable et des répartitions du revêtement non homogènes.
Il est également connu du document W02001/094453A1 une autre composition de revêtement anti ozone pour des bandages pneumatiques. Cette composition est à base de polymères polyuréthane. L'inconvénient de cette composition est une mise en oeuvre compliquée nécessitant une première étape de fonctionnalisation du support caoutchouteux par une solution de fonctionnalisation, suivi d'une étape de séchage qui peut être plus ou moins longue, puis seulement ensuite le dépôt de la composition de revêtement. La liaison entre l'élastomère du bandage pneumatique et le polyuréthane est réalisée grâce aux fonctions polaires de la solution de fonctionnalisation. Son efficacité de la protection vis-à-vis de l'ozone est donc dépendante de l'étape fonctionnalisation du support, puisque cette étape permet l'adhésion de la couche de polyuréthane à son support.
Il existe donc toujours un besoin de disposer d'une composition protectrice anti-ozone pour un article en caoutchouc réticulé qui soit simple à mettre en oeuvre et qui assure une bonne protection contre les agressions de l'ozone.
Un but de la présente invention est de répondre à ce besoin.
Ce but est atteint grâce une composition de protection anti-ozone pour un article en caoutchouc réticulé, notamment pour un bandage réticulé pneumatique, en particulier destiné à équiper des avions, à base d'au moins un élastomère chloré, d'au moins un solvant hydrocarboné et d'au moins un solvant polaire aprotique. Cette composition est particulièrement intéressante et facile à mettre en oeuvre. Il n'est pas nécessaire de fonctionnaliser le support en caoutchouc réticulé, elle est appliquée directement sur le support réticulé, en une seule étape ce qui présente l'avantage de pouvoir réaliser une couche de l'épaisseur homogène.
Cette composition permet avantageusement de former un revêtement continu, souple, adhérent sur toute surface du bandage pneumatique qui s'oppose par sa présence aux dégradations dues à l'ozone. Le comportement caoutchouteux de cette composition permet de résister avantageusement à toutes les déformations subies par l'article en caoutchouc réticulé. Par exemple, cette composition est avantageusement utilisée pour protéger des bandages pneumatiques notamment destinés à équiper des avions car elle résiste aux déformations subies après la fabrication des pneumatiques, en particulier lors du gonflage et de l'utilisation ultérieure dudit bandage. Elle présente également l'avantage de pouvoir être appliquée sur n'importe quelle surface en caoutchouc réticulé, et notamment sur des bandages pneumatiques neufs ou rechapés.
Un autre objet de la présente invention concerne un article élastomérique réticulé ayant au moins une surface élastomérique en contact avec de l'air, ladite surface élastomérique étant tout ou en partie revêtue d'une composition de protection anti-ozone telle que définie ci-dessus. Avantageusement, l'article élastomérique réticulé est choisi parmi les bandages pneumatiques, les bandages non pneumatiques, les convoyeurs, les joints, les semelles de chaussures, les chenilles, les tuyaux, les durites, les essuie-glaces, les raquettes de ping-pong et les revêtements de surface de sol. Plus avantageusement encore, l'article élastomérique réticulé est un bandage réticulé pneumatique ou non pneumatique dont au moins une couche externe est au moins en partie revêtue d'une composition de protection anti-ozone telle que définie ci-dessus.
Brève description des dessins
Figure 1 : photographie d'un sillon d'une bande de roulement d'un bandage pneumatique avion comprenant des zones protégées par la composition de protection selon l'invention et des zones non protégées par la composition de protection de l'invention.
La ligne A-A et la ligne B-B délimitent les zones qui ont été ou non protégées par la composition de protection de l'invention. La zone délimitée en rectangle par les lignes A-A et B-B n'a pas fait l'objet d'une application de la composition de protection selon l'invention. Des larges fissures sont visibles à l'intérieur de ce rectangle. En revanche dans les zones protégées, c'est-à-dire entre le haut de la photo et la ligne A-A et entre la ligne B-B et le bas de la photo, il n'y a pas de fissures.
Figure 2 : photographie d'un sillon d'une bande de roulement d'un bandage pneumatique avion ; sillon dans lequel la composition de protection selon l'invention a été appliquée. Aucune fissure n'est visible. Figure 3 : photographie de deux sillons d'une bande de roulement d'un bandage pneumatique avion ; sillons dans lequel aucune composition de protection selon l'invention a été appliquée. De nombreuses fissures sont visibles dans les fond de ces sillons.
Description détaillée
Un premier objet de l'invention concerne une composition de protection anti-ozone pour un article en caoutchouc réticulé, notamment pour un bandage réticulé pneumatique, en particulier destiné à équiper des avions, la composition étant à base d'au moins un élastomère chloré, d'au moins un solvant hydrocarboné et d'au moins un solvant polaire aprotique.
Par « article en caoutchouc » ou « article élastomérique », on entend un objet comprenant un ou plusieurs élastomères notamment un ou plusieurs élastomères diéniques. Cet article en caoutchouc comprend au moins une surface en caoutchouc (dit aussi surface élastomérique) en contact avec de l'air. Par « article en caoutchouc réticulé », on entend au sens de la présente invention un article en caoutchouc ayant subi une étape de réticulation, c'est-à-dire que le caoutchouc ou les élastomères formant cet article sont sous forme d'un réseau obtenu par l'établissement de ponts entre les chaînes macromoléculaires du caoutchouc ou desdits élastomères. La formation de ponts peut se faire par tout agent de réticulation connu, tel que par exemple des peroxydes ou bien par du soufre. Lorsque l'agent de réticulation est du soufre, on parle alors de vulcanisation.
Par « élastomère (ou indistinctement caoutchouc) diénique », qu'il soit naturel ou synthétique, doit être compris de manière connue un élastomère constitué au moins en partie (i.e., un homopolymère ou un copolymère) d'unités monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non). Ces élastomères diéniques peuvent être classés dans deux catégories : « essentiellement insaturés » ou « essentiellement saturés ». On entend en général par « essentiellement insaturé », un élastomère diénique issu au moins en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d’origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles) ; c’est ainsi que des élastomères diéniques tels que les caoutchoucs butyle ou les copolymères de diènes et d’alpha-oléfines type EPDM n’entrent pas dans la définition précédente et peuvent être notamment qualifiés d’élastomères diéniques « essentiellement saturés » (taux de motifs d’origine diénique faible ou très faible, toujours inférieur à 15 % en mole). On entend particulièrement par élastomère diénique susceptible d’être utilisé dans les articles élastomériques conformes à l’invention : tout homopolymère d'un monomère diène, conjugué ou non, ayant de 4 à 18 atomes de carbone ; tout copolymère d’un diène, conjugué ou non, ayant de 4 à 18 atomes de carbone et d'au moins un autre monomère. Par l'expression « composition à base de », il faut entendre une composition comportant le mélange et/ou le produit de réaction in situ des différents constituants utilisés, certains de ces constituants pouvant réagir et/ou étant destinés à réagir entre eux, au moins partiellement, lors des différentes phases de fabrication de la composition et/ou lors de l'utilisation de cette composition.
Par l'expression « partie en poids pour cent parties en poids d'élastomère » (ou pce), il faut entendre au sens de la présente invention, la partie, en masse pour cent parties en masse d'élastomère.
Dans la présente, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des pourcentages (%) en masse.
D’autre part, tout intervalle de valeurs désigné par l’expression « entre a et b » représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l’expression « de a à b » signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b).
Lorsqu'on fait référence à un composé « majoritaire », on entend au sens de la présente invention, que ce composé est majoritaire parmi les composés du même type dans la composition, c'est-à-dire que c'est celui qui représente la plus grande quantité en masse parmi les composés du même type. Ainsi, par exemple, un élastomère majoritaire est l'élastomère représentant la plus grande masse par rapport à la masse totale des élastomères dans la composition. De la même manière, une charge dite majoritaire est celle représentant la plus grande masse parmi les charges de la composition. A titre d'exemple, dans un système comprenant un seul élastomère, celui-ci est majoritaire au sens de la présente invention ; et dans un système comprenant deux élastomères, l'élastomère majoritaire représente plus de la moitié de la masse des élastomères.
Les composés mentionnés dans la description qui comprennent du carbone peuvent être d’origine fossile ou biosourcés. Dans ce dernier cas, ils peuvent être, partiellement ou totalement, issus de la biomasse ou obtenus à partir de matières premières renouvelables issues de la biomasse. Sont concernés notamment les polymères, les solvants, les additifs.
Elastomère chloré
La composition de protection anti-ozone de l'invention comprend au moins un élastomère chloré. Par « élastomère chloré », on entend un polymère qui comprend un ou plusieurs atomes de chlore et qui est souple, déformable, présentant une élasticité de type caoutchouc selon la définition IUPAC des élastomères.
Préférentiellement, le taux de chlore de l'élastomère chloré est compris dans un domaine allant de 20 % à 50 % en poids par rapport au poids total de l'élastomère, plus préférentiellement dans un domaine allant de 25 % à 45 %, plus préférentiellement encore allant de 30 % à 37 % en poids par rapport au poids total de l'élastomère. Le taux de chlore dans l'élastomère est mesuré selon les techniques d'analyses habituelles des élastomères.
Préférentiellement, l'élastomère chloré présente un index de viscosité Mooney ML(l+4) à 100°C compris dans un domaine allant de 20 à 100 UM, plus préférentiellement allant de 25 à 60 UM. L'index de viscosité Mooney est mesuré selon la norme ASTM D-1646-2015 et est exprimé en « Unité Mooney » (UM, avec 1 UM = 0,83 N.m).
Parmi les élastomères chlorés cités ci-dessus, peuvent convenir plus spécifiquement le polychloroprène, le polyéthylène chlorosulfoné et les mélanges de ces élastomères. Ces élastomères sont disponibles auprès de fournisseurs tels que Du Pont de Nemours, Lianda, etc.
Préférentiellement, l'élastomère chloré est un polyéthylène chlorosulfoné, notamment présentant un taux de soufre compris dans un domaine allant de 0,8 % à 2 % en poids par rapport au poids total du polyéthylène, plus particulièrement compris dans un domaine allant de 0,9 % à 1,5 % plus de préférentiellement allant de 1 % à 1,5 % en poids. Le taux de soufre dans l'élastomère est mesuré selon les techniques d'analyses habituelles des polymères. Les polyéthylènes chlorosulfonés sont fabriqués par fonctionnalisation et modification simultanées du polyéthylène à partir du chlore et du dioxyde de soufre. Ils sont commercialisés sous le nom de CSM.
Des modes de réalisation particuliers de la présente invention peuvent comprendre au moins un polyéthylène chlorosulfoné ayant une teneur en chlore comprise dans un domaine allant de 20 % à 50 % en poids et une teneur en soufre comprise dans un domaine allant de 0,8 % à 2 % en poids, plus préférentiellement peuvent comprendre au moins un polyéthylène chlorosulfoné ayant une teneur en chlore comprise dans un domaine allant de 25 % à 45 % en poids et une teneur en soufre comprise dans un domaine allant de 0,9 % à 1,5 %, plus préférentiellement encore peuvent comprendre au moins un polyéthylène chlorosulfoné ayant une teneur en chlore comprise dans un domaine allant de 30 % à 37 % et une teneur en soufre compris dans un domaine allant de 0,8 % à 1,2 %. La teneur en chlore et celle en soufre de l'élastomère sont exprimés en % en poids par rapport au poids total du polyéthylène chlorosulfoné.
Préférentiellement, le taux de l'élastomère chloré, de préférence de polychloroprène et/ou de polyéthylène chlorosulfoné, dans la composition est compris dans un domaine allant de 3 % à 25 % en poids par rapport au poids total de la composition, plus préférentiellement dans un domaine allant de 5 % à 20 % en poids par rapport au poids total de la composition. En dessous de 3 % en poids d'élastomère chloré dans la composition, la concentration est trop faible pour obtenir les effets escomptés et au-delà de 25 % en poids la composition devient très visqueuse et difficile à appliquer.
Le choix de la concentration en élastomère chloré dépend de la nécessité ou non, pour la surface élastomérique à protéger, d'une épaisseur finale importante de protection et des conditions d'utilisation de cette surface. Si l'article en caoutchouc est utilisé dans une atmosphère à fortes concentrations en ozone, alors on choisira de préférence la concentration la plus élevée en élastomère chloré pour diminuer le nombre de couches, à appliquer et pour obtenir la meilleure protection.
Solvant hydrocarboné
La composition de protection anti-ozone selon l'invention comprend au moins un solvant hydrocarboné. Par « solvant hydrocarboné », on entend un solvant contenant principalement des atomes de carbone et des atomes d'hydrogène. Le solvant hydrocarboné est liquide à température ambiante (20°C) et à la pression atmosphérique.
Préférentiellement, le solvant hydrocarboné est solvant d'hydrocarbures aliphatiques. Il peut présenter un intervalle de distillation compris dans un domaine allant de 50°C à 220°C.
Avantageusement, le solvant hydrocarboné utilisable dans le cadre de l'invention est un solvant d'hydrocarbures aliphatiques en C4-C14, de préférence en C5-C10, plus préférentiellement encore en C7-C9.
Le solvant hydrocarboné est préférentiellement volatil à température ambiante (20°C) et présente une pression de vapeur non nulle, à température ambiante (20°C) et pression atmosphérique, et notamment une pression de vapeur allant de 0,13 Pa à 40000 Pa, en particulier allant de 1,3 Pa à 13000 Pa, et plus particulièrement allant de 1,3 Pa à 1300 Pa.
Solvant polaire aprotique
La composition de protection anti-ozone selon l'invention comprend également au moins un solvant polaire aprotique. Par « solvant polaire aprotique », on entend au sens de la présente invention un solvant possédant un moment dipolaire sans atome d'hydrogène acide, c'est-à-dire lié à un hétéroatome. De préférence dans le solvant polaire aprotique, l'hétéroatome est un atome d'oxygène. Préférentiellement, le solvant polaire aprotique est choisi parmi les solvants cétone, les solvants ester et les mélanges de ces solvants.
Plus préférentiellement, le solvant polaire aprotique est choisi parmi la diméthylformamide (DMF) ; l’acétone, la méthyl éthyl cétone (également connue sous le nom de butanone), la méthyl propyl cétone (également connue sous le nom de pentanone-2), la méthyl isopropyl cétone (également connue sous le nom de 3-méthyl-2-butanone), la méthyl isobutyl cétone (également connue sous le nom de 4-méthyl-2-pentanone), les cétones cycliques telles que la cyclohexanone ; le tétrahydrofurane (THF) ; l’acétonitrile ; le diméthyl sulfoxyde (DMSO) et leurs mélanges. Plus préférentiellement, le solvant polaire aprotique est choisi parmi l'acétone, la butanone, la pentanone- 2, la 3-méthyl-2-butanone, la 4-méthyl-2-pentanone et leur mélange. De préférence, le solvant polaire aprotique est l'acétone.
Le solvant polaire aprotique, de préférence les solvants cétone et les solvants ester, sont miscibles dans le solvant d'hydrocarbures notamment dans le solvant d'hydrocarbures aliphatiques. En d'autres termes, le solvant polaire aprotique forme un mélange homogène et stable (à l'œil nu) lorsqu'il est mis en présence dudit solvant d'hydrocarbures.
Selon un mode de réalisation de l'invention, le solvant hydrocarboné est le solvant majoritaire. Selon ce mode de réalisation ; le solvant hydrocarboné est celui qui représente la plus grande quantité en masse parmi les solvants de la composition.
Selon un autre mode de réalisation, le ratio massique de solvant polaire aprotique par rapport au solvant hydrocarboné est compris dans un domaine allant de 15 : 85 à 85 : 15 pour 100% massique de solvant, de préférence de 30 : 70 à 70 : 30 pour 100% massique de solvant, plus préférentiellement de 40 : 60 à 60 : 40 pour 100% massique de solvant.
Selon un mode de réalisation de l'invention, le solvant hydrocarboné est un solvant d'hydrocarbures aliphatiques en C4-C14, de préférence en C5-C10, plus préférentiellement encore en C7-C9 et le solvant polaire aprotique est choisi parmi l'acétone, la butanone, la pentanone-2, la méthyl-3- butanone, la méthyl-4-pentanone-2 et leur mélange.
Selon un autre mode de réalisation de l'invention, le solvant hydrocarboné est un solvant d'hydrocarbures aliphatiques en C5-C10, plus préférentiellement encore en C7-C9 et le solvant polaire aprotique est choisi parmi la butanone, la méthyl-3-butanone et leur mélange.
La composition de protection anti-ozone selon l'invention peut comporter également tout ou partie des additifs et agents de mise en œuvre usuels, connus de l'homme de l'art et habituellement utilisés dans les compositions de caoutchouc pour bandages pneumatiques, comme par exemple des plastifiants (tels que des huiles plastifiantes et/ou des résines plastifiantes), des charges renforçantes ou non renforçantes, des pigments, anti-oxydants, des agents anti-fatigue, etc.
Fabrication de la composition de protection anti-ozone et son application
Le procédé d'obtention de la composition de protection anti-ozone est simple. Les constituants sont mis en contact les uns avec les autres ; on les mélange jusqu'à obtenir une solution homogène, c'est- à-dire une solution où il n'y a pas de particules en suspension visibles à l'œil nu. L'ordre dans lequel les constituants de la composition de protection sont mise en œuvre est sans importance. Ainsi par exemple, on peut mettre tout d'abord en contact l'élastomère chloré dans le solvant d'hydrocarbures pour obtenir un mélange, ce mélange étant ensuite mis en contact avec le solvant polaire aprotique. Une autre possibilité de fabriquer la composition selon l'invention est de mettre en contact les deux solvants ensemble puis d'ajouter ensuite l'élastomère chloré. Une fois que la solution a bien été homogénéisée selon les techniques habituelles, elle peut être appliquée sur tout article en caoutchouc réticulé ou support élastomérique réticulé. Cette composition peut ainsi être déposée à température ambiante (20°C) par tous moyens connus et notamment au pinceau, au rouleau ou par pulvérisation au pistolet. On laisse alors sécher la couche obtenue après application ; les deux solvants s'évaporent, l'élastomère ainsi déposé forme le revêtement de protection. A température ambiante (20°C), le temps de séchage est notamment de l'ordre de 5 min à 10 min, temps que l'on peut encore réduire en opérant un chauffage, par exemple en réalisant une circulation d'air chaud ou par chauffage radian, qui respecte un maintien de la température en surface de l'article en caoutchouc à protéger inférieure à 60°C. Le revêtement sec obtenu présente une résistance mécanique élevée ce qui lui permet de rester en place lors du stockage des bandages pneumatiques jusqu'à leur mise en service.
Pour avoir l'épaisseur voulue du revêtement formé après le séchage de la composition de protection anti-ozone, il peut être intéressant d'appliquer la composition selon l'invention en une ou plusieurs couches successives.
L'épaisseur souhaitée du revêtement sec va varier en fonction de la surface élastomérique où la composition de protection anti-ozone est appliquée. De bon résultats sont obtenus par exemple avec des revêtements secs ayant une épaisseur supérieure ou égale à 5 pm. Ainsi, pour les fonds de sillon des sculptures de la bande de roulement des pneumatiques notamment destinés à équiper les avions (ces bandages pneumatiques se fissurent notamment rapidement sous l'action de l'ozone même au repos du fait des contraintes permanentes importantes dues à la pression de gonflage), on préférera une épaisseur comprise dans un domaine allant de 5 pm à 500 pm. En revanche, pour une application par exemple sur la surface extérieure des flancs d'un bandage pneumatique, une épaisseur comprise dans un domaine allant de 5 pm à 50 pm sera suffisante.
Bien entendu, le revêtement de protection ne peut pas être aussi efficace sur les parties du bandage pneumatique en contact permanent avec le sol. Ainsi, si on dépose la composition de protection anti ozone sur l'ensemble de la surface de la bande de roulement, le revêtement sec résultat permet de protéger la bande de roulement avant son utilisation et poursuit son action sur les parties qui ne sont pas en contact avec le sol donc notamment les fonds de creux (sillons) des sculptures, la partie de revêtement recouvrant les sommets des sculptures directement en contact avec le sol étant rapidement détruite puisque soumise à l'usure.
Article élastomérique.
La composition de protection anti-ozone selon l'invention peut être appliquée sur tout type d'article en caoutchouc réticulé, préférentiellement sur un bandage pneumatique réticulé notamment destiné à équiper des avions.
Ainsi, un autre objet de la présente invention concerne un article élastomérique réticulé comprenant au moins une surface élastomérique en contact avec de l'air, ladite surface élastomérique étant tout ou en partie revêtue d'une composition de protection anti-ozone définie ci-dessus.
Par « surface élastomérique », on entend une surface d'un article cette surface étant à base d'au moins un élastomère, de préférence diénique tel que défini ci-dessus et un autre composant. Préférentiellement, l'article élastomérique peut être tout article élastomérique connu, et préférentiellement choisi parmi les bandages pneumatiques, notamment ceux destinés à équiper des avions, les bandages non pneumatiques, les convoyeurs, les joints, les semelles de chaussures, les chenilles, les tuyaux, les durites, les essuie-glaces, les raquettes de ping-pong et les revêtements de surface de sol.
Par « bandage pneumatique », on entend un bandage destiné à former une cavité en coopérant avec un élément support, par exemple une jante, cette cavité étant apte à être pressurisée à une pression supérieure à la pression atmosphérique. Par opposition, un bandage non pneumatique n'est pas apte à être pressurisé. Ainsi un bandage non pneumatique est un corps torique constitué par au moins un matériau polymérique, destiné à assurer la fonction d'un pneumatique mais sans être soumis à une pression de gonflage. Un bandage non pneumatique peut être plein ou creux. Un bandage non pneumatique creux peut contenir de l'air, mais à la pression atmosphérique, c'est-à-dire qu'il n'a pas de rigidité pneumatique apportée par un gaz de gonflage à une pression supérieure à la pression atmosphérique.
Les bandages pneumatiques selon l'invention sont destinés à équiper des véhicules de tout type tels que les véhicules de tourisme, les véhicules à deux roues, les véhicules poids lourds, les véhicules agricoles, les véhicules de génie civil ou des avions ou, plus généralement, sur tout dispositif roulant. Les bandages non pneumatiques sont destinés à équiper des véhicules de tourisme ou des deux roues. De manière préférée, les bandages pneumatiques selon l'invention sont destinés à équiper des avions.
Préférentiellement, l'article élastomérique réticulé est un bandage réticulé pneumatique, préférentiellement destiné à équiper un avion, ou un bandage non pneumatique, dont au moins une couche externe présente une surface élastomérique au moins en partie revêtue d'une composition de protection anti-ozone définie ci-dessus. Par « couche externe », on entend une couche élastomérique qui est en contact avec de l'air (autre que le gaz de gonflage dans le cadre d'un bandage pneumatique) ; par opposition aux couches internes qui sont des couches élastomériques en contact les unes avec les autres ou en contact avec le gaz de gonflage. La couche externe peut être la bande de roulement du bandage pneumatique ou non pneumatique, la couche formant les flancs du bandage pneumatique ou les rayons dans le cadre d'un bandage non pneumatique.
Plus préférentiellement encore, l'article élastomérique réticulé est un bandage réticulé pneumatique, notamment destiné à équiper les avions comprenant une bande de roulement et des flancs, ladite bande de roulement et/ou lesdits flancs étant au moins en partie revêtu d'une composition de protection anti-ozone définie ci-dessus. Plus préférentiellement, cette bande de roulement peut être rechapée.
Exemple : Le but de cet essai est de montrer les propriétés de protection que confère les compositions de l'invention lorsqu'elles sont appliquées sur une bande de roulement réticulée d'un bandage pneumatique pour avion.
Pour cela, on prépare les compositions Cl à C4 suivantes :
Tableau 1
Figure imgf000012_0001
(1) : polyéthylène chlorosulfoné commercialisé par Lianda sous la référence « CSM40 » ayant un indice de viscosité Mooney de 56 UM, un taux de soufre égal à 1 %, un taux de chlore égal à 35 %.
(2) : solvant hydrocarboné aliphatique en C7-C9, commercialisé par Total sous la référence « Solane 100-155 ».
(3) : solvant cétone : butanone commercialisé par Fisher Scientific.
Application sur un pneumatique
On utilise un pneumatique avion vulcanisé, rechapé, PN M05102/IBE développement 4100 mm non gonflé et non monté sur une jante pour tester l'efficacité des compositions de protection Cl à C4 conforme à l'invention. La bande de roulement de ce pneumatique rechapé est classiquement réalisée à partir d'une composition à base de caoutchouc naturel et de noir de carbone. La sculpture de cette bande de roulement comprend 4 sillons. Sur chaque sillon, on matérialise 5 zones de longueur identique et on applique à l'aide d'un pinceau les compositions Cl à C4 de la manière ci-dessous sur le 2ieme et le 4ieme sillon. Les lier sillons et le 3ieme sillons ne comprennent pas de traitement. Le premier sillon est celui qui se trouve le plus près du disque de frein de la roue, dans le sens de rotation du bandage pneumatique, et le 4ieme sillon est celui qui se trouve au plus éloigné du disque de frein de la roue. Après séchage à température de 23°C, l'épaisseur du revêtement est comprise entre 0,05 et 0,10 mm.
2'ème et 4ième sillon :
- Zone A : pas de composition
- Zone B : composition Cl
- Zone C : composition C2
- Zone D : composition C3
- Zone E : composition C4
Le pneumatique est alors monté sur une jante et est gonflé à une pression de 14,2 bar. Test ozone statique
Le pneumatique monté et gonflé est ensuite placé dans une chambre thermostatée à 23°C et comprenant de l'air dans lequel la concentration en ozone est égale à 0,1 ppm (ppm=partie par million). Au bout 1 semaine, le pneumatique est sorti de la chambre pour l'évaluation du nombre de fissures dans le sillon de la bande de roulement, puis replacé dans la même chambre thermostatée en doublant la concentration en ozone (0,20 ppm) pendant une autre semaine.
Au bout de cette deuxième semaine, le pneumatique est sorti de la chambre pour l'évaluation du nombre de fissures dans le sillon de la bande de roulement, puis replacé pendant encore 2 semaines dans la même chambre thermostatée dont la concentration en ozone est augmentée à 0,4 ppm. Au bout de 4 semaines, le pneumatique est sorti de la chambre pour l'évaluation du nombre de fissures dans les sillons de la bande de roulement.
Les avions de lignes volent dans un environnement qui comprend une concentration théorique d'ozone de 0,1 ppm. Le stockage des pneumatiques dans la chambre thermostatée, au-delà de la première semaine dans les conditions du test décrit ci-dessus, correspond donc à des conditions plus sévères que celles que pourraient rencontrer les avions dans la troposphère (de 2 à 4 fois plus sévère).
L'évaluation du nombre de fissures s'effectue par un contrôle visuel de la manière suivante :
- : pas de fissure ;
+ : dix fissures ou moins de dix fissures, chaque fissure ayant une longueur inférieure à 10 mm ;
++ : au moins une fissure dépassant 10 mm de longueur.
Les résultats sont présentés dans le tableau 2 suivant
Tableau 2
Figure imgf000013_0001
On constate que la zone A ne comportant aucune composition de protection et qui corresponde à un témoin hors invention, est complètement fissurée dès la première semaine de stockage en contact avec l'ozone. L'action de l'ozone est donc particulièrement efficace sur cette zone A de la bande de roulement.
En revanche, de manière surprenante, sur les zones B, C, D et E dont la surface du sillon a été recouverte respectivement par les compositions de protection selon l'invention Cl à C4, on constate qu'il n'apparait aucune dégradation, c'est-à-dire aucune fissure lorsque le pneumatique a été stocké en contact avec l'ozone une ou deux semaines dans la chambre thermostatée.
Dans des conditions très sévères de stockage en présence d'ozone, on constate que les zones D et E ne présentent toujours pas de fissures. Les compositions C3 et C4, ont l'avantage d'être plus protectrices que les compositions Cl et C2 qui présentent déjà une excellente protection contre une concentration d'ozone importante (0,4 ppm correspond à 6 fois la moyenne de la concentration en ozone dans la troposphère).
Les compositions de protection conforme à l'invention assurent donc une très bonne protection anti- ozone pour des atmosphères dont les concentrations en ozone sont très élevées.

Claims

REVENDICATIONS
1. Composition de protection anti-ozone pour un article en caoutchouc réticulé, ladite composition étant à base d'au moins un élastomère chloré, d'au moins un solvant hydrocarboné et d'au moins un solvant polaire aprotique.
2. Composition de protection anti-ozone pour un article en caoutchouc réticulé selon la revendication précédente, dans lequel le solvant hydrocarboné est le solvant majoritaire.
3. Composition de protection anti-ozone pour un article en caoutchouc réticulé selon la revendication 1, dans laquelle le ratio massique de solvant polaire aprotique par rapport au solvant hydrocarboné est compris dans un domaine allant de 15 :85 à 85 :15 pour 100% massique de solvant, de préférence de 30 :70 à 70 :30 pour 100% massique de solvant, plus préférentiellement de 40 :60 à 60 :40 pour 100% massique de solvant.
4. Composition de protection anti-ozone pour un article en caoutchouc réticulé selon l'une quelconque des revendications précédentes, dans laquelle le solvant hydrocarboné est un solvant d'hydrocarbures aliphatiques en C4-C14, de préférence en C5-C10, plus préférentiellement encore en C7-C9.
5. Composition de protection anti-ozone pour un article en caoutchouc réticulé selon l'une quelconque des revendications précédentes, dans laquelle le solvant polaire aprotique est choisi parmi les solvants cétone, les solvants ester et les mélanges de ces solvants.
6. Composition de protection anti-ozone pour un article en caoutchouc réticulé selon l'une quelconque des revendications précédentes, dans laquelle le solvant polaire aprotique est choisi parmi l'acétone, la butanone, la pentanone-2, la méthyl-3-butanone, la méthyl-4-pentanone-2 et leur mélange.
7. Composition de protection anti-ozone pour un article en caoutchouc réticulé selon l'une quelconque des revendications précédentes, dans laquelle le taux de l'élastomère chloré dans la composition est compris dans un domaine allant de 3 % à 25 % en poids par rapport au poids total de la composition, plus préférentiellement dans un domaine allant de 5 % à 20 % en poids par rapport au poids total de la composition.
8. Composition de protection anti-ozone pour un article en caoutchouc réticulé selon l'une quelconque des revendications précédentes, dans lequel l'élastomère chloré est choisi parmi le polychloroprène, le polyéthylène chlorosulfoné et les mélange de ces élastomères.
9. Composition de protection anti-ozone pour un article en caoutchouc réticulé selon l'une quelconque des revendications précédentes, dans laquelle le taux de chlore de l'élastomère chloré est compris dans un domaine allant de 20 % à 50 % en poids par rapport au poids total de l'élastomère, plus préférentiellement dans un domaine allant de 25 % à 45 % en poids, plus préférentiellement dans un domaine allant de 30 % à 37 % en poids.
10. Composition de protection anti-ozone pour un article en caoutchouc réticulé selon l'une quelconque des revendications précédentes, dans laquelle l'élastomère chloré présente un index de viscosité Mooney compris dans un domaine allant de 20 à 100 UM, plus préférentiellement allant de 25 à 60 UM.
11. Composition de protection anti-ozone pour un article en caoutchouc réticulé selon l'une quelconque des revendications précédentes, dans laquelle l'élastomère chloré est un élastomère polyéthylène chlorosulfoné, notamment présentant un taux de soufre compris dans un domaine allant de 0,8 % à 2 % en poids par rapport au poids total du polyéthylène, plus particulièrement compris dans un domaine allant de 0,9 % à 1,5 % en poids, plus préférentiellement encore de 1 % à 1,5 en poids.
12. Article élastomérique réticulé ayant au moins une surface élastomérique en contact avec de l'air, ladite surface étant au moins en partie revêtue d'une composition de protection anti-ozone selon l'une quelconque des revendications précédentes.
13. Article élastomérique réticulé selon la revendication 12, l'article élastomérique étant choisi parmi les bandages pneumatiques, les bandages non pneumatiques, les convoyeurs, les joints, les semelles de chaussures, les chenilles, les tuyaux, les durites, les essuie-glaces, les raquettes de ping-pong et les revêtements de surface de sol.
14. Bandage réticulé pneumatique ou non pneumatique dont au moins une couche externe est au moins en partie revêtue d'une composition de protection anti-ozone selon l'une quelconque des revendications 1 à 11.
15. Bandage réticulé pneumatique ou non pneumatique selon la revendication 14 dont la couche externe est une bande de roulement.
PCT/FR2021/050949 2020-05-29 2021-05-26 Composition de protection anti-ozone pour un article en caoutchouc reticule WO2021240109A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/928,449 US20230212375A1 (en) 2020-05-29 2021-05-26 Anti-ozonant composition for a crosslinked rubber article
EP21734197.3A EP4157948A1 (fr) 2020-05-29 2021-05-26 Composition de protection anti-ozone pour un article en caoutchouc reticule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2005702A FR3110911B1 (fr) 2020-05-29 2020-05-29 Composition de protection anti-ozone pour un article en caoutchouc reticule
FRFR2005702 2020-05-29

Publications (1)

Publication Number Publication Date
WO2021240109A1 true WO2021240109A1 (fr) 2021-12-02

Family

ID=72266518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050949 WO2021240109A1 (fr) 2020-05-29 2021-05-26 Composition de protection anti-ozone pour un article en caoutchouc reticule

Country Status (4)

Country Link
US (1) US20230212375A1 (fr)
EP (1) EP4157948A1 (fr)
FR (1) FR3110911B1 (fr)
WO (1) WO2021240109A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692276A1 (fr) * 1992-06-12 1993-12-17 Bostik Sa Procédé de préparation de surface en vue du collage d'articles en polyoléfine, articles ainsi obtenus et application à l'industrie de la chaussure.
EP0728810A2 (fr) 1995-02-22 1996-08-28 COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN-MICHELIN & CIE Composition aqueuse pour protection antimigrations et antiozone de pneumatiques
WO2001094453A1 (fr) 2000-06-07 2001-12-13 Societe De Technologie Michelin Procede de protection d'un pneumatique vis a vis de l'ozone
US20040068036A1 (en) * 2002-10-07 2004-04-08 Halladay James R. Flexible emissive coatings for elastomer substrates
EP3572472A1 (fr) * 2017-01-20 2019-11-27 Toyobo Co., Ltd. Composition de matériau de revêtement à base de polyoléfine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2692276A1 (fr) * 1992-06-12 1993-12-17 Bostik Sa Procédé de préparation de surface en vue du collage d'articles en polyoléfine, articles ainsi obtenus et application à l'industrie de la chaussure.
EP0728810A2 (fr) 1995-02-22 1996-08-28 COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN-MICHELIN & CIE Composition aqueuse pour protection antimigrations et antiozone de pneumatiques
WO2001094453A1 (fr) 2000-06-07 2001-12-13 Societe De Technologie Michelin Procede de protection d'un pneumatique vis a vis de l'ozone
US20040068036A1 (en) * 2002-10-07 2004-04-08 Halladay James R. Flexible emissive coatings for elastomer substrates
EP3572472A1 (fr) * 2017-01-20 2019-11-27 Toyobo Co., Ltd. Composition de matériau de revêtement à base de polyoléfine

Also Published As

Publication number Publication date
FR3110911B1 (fr) 2022-06-17
FR3110911A1 (fr) 2021-12-03
US20230212375A1 (en) 2023-07-06
EP4157948A1 (fr) 2023-04-05

Similar Documents

Publication Publication Date Title
EP1292635B1 (fr) Procede de protection d'un pneumatique vis a vis de l'ozone
EP2125392B1 (fr) Pneumatique avec une couche auto-obturante
EP0812875B1 (fr) Dispersion de revêtement et lame d'essuyage revêtue d'une telle solution
JP5431450B2 (ja) 弾性の線状異形材、殊にウインドウワイパーブレード用のコーティング、およびその製造方法
EP3368354B1 (fr) Pneumatique avec un organe fixe a sa surface et procede de fixation d'un organe a la surface d'un pneumatique
FR2722203A1 (fr) Procede de revetement d'un substrat a l'aide de fluorosilicone, substrat ainsi revetu et composition pour le revetement
EP0728810B1 (fr) Procédé de protection antimigration et antiozone de la surface d'un pneumatique
WO2021240109A1 (fr) Composition de protection anti-ozone pour un article en caoutchouc reticule
WO2016078810A1 (fr) Ensemble roulant
EP3645319A1 (fr) Pneumatique muni d'un objet fixe a sa surface
FR3058677A1 (fr) Pneumatique pret a recevoir un organe a sa surface
EP4065358A1 (fr) Composition de caoutchouc silicone pour revetement de membrane de cuisson
FR2949714A1 (fr) Bandage pneumatique avec couche auto-obturante integree.
FR3031473A1 (fr) Ensemble roulant
WO2017220896A1 (fr) Pneumatique muni d'un organe fixé a sa surface
FR3067356A1 (fr) Compositions auto-obturantes
FR3103821A1 (fr) stratifié à base de compositions de caoutchouc silicone
EP3078554B1 (fr) Lame d'essuyage pour balai d'essuie-glace
WO2021019178A1 (fr) Composition de caoutchouc silicone pour revêtement de membrane de cuisson
FR3093335A1 (fr) Composition de revêtement pour lame d’essuyage pour balai d’essuie-glace et lame d’essuyage associée
EP2938671B1 (fr) Composition elastomere autoadherente
FR3086947A1 (fr) Compositions auto-obturantes
FR3067357A1 (fr) Compositions auto-obturantes
FR2740460A3 (fr) Composition aqueuse pour protection anti-migrations et antiozone de pneumatiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21734197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021734197

Country of ref document: EP

Effective date: 20230102