WO2021240024A1 - Method for manufacturing a firearm stock in a mould - Google Patents

Method for manufacturing a firearm stock in a mould Download PDF

Info

Publication number
WO2021240024A1
WO2021240024A1 PCT/ES2020/070342 ES2020070342W WO2021240024A1 WO 2021240024 A1 WO2021240024 A1 WO 2021240024A1 ES 2020070342 W ES2020070342 W ES 2020070342W WO 2021240024 A1 WO2021240024 A1 WO 2021240024A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
manufacturing
mold
stage
skin
Prior art date
Application number
PCT/ES2020/070342
Other languages
Spanish (es)
French (fr)
Inventor
Ion RACIONERO ZABALO
Santiago Jorge NEIRA HERNANDEZ
Original Assignee
Dikar, S.Coop.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dikar, S.Coop. filed Critical Dikar, S.Coop.
Priority to PCT/ES2020/070342 priority Critical patent/WO2021240024A1/en
Publication of WO2021240024A1 publication Critical patent/WO2021240024A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/14Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/42Feeding the material to be shaped into a closed space, i.e. to make articles of definite length using pressure difference, e.g. by injection or by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41CSMALLARMS, e.g. PISTOLS, RIFLES; ACCESSORIES THEREFOR
    • F41C23/00Butts; Butt plates; Stocks
    • F41C23/18Butts; Butt plates; Stocks characterised by the material used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/777Weapons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/275Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one woven fabric layer next to a non-woven fabric layer

Definitions

  • the present invention relates to methods of manufacturing a stock for a firearm in a mold.
  • a stock weighs for a firearm the longer it can be carried or held before the shooter experiences fatigue that affects their aim.
  • the less a stock weighs for a firearm the less force is required for the shooter to adjust the position of the weapon, which is an important aiming factor when small adjustments to the position of the weapon are required.
  • the stock for a firearm must have a high rigidity so that the efforts transmitted to the stock by functional elements such as the set of mechanisms, the trigger and / or the barrel do not deform or damage the stock throughout its length. useful life. This rigidity is also essential for the weapon to be accurate.
  • butts for a firearm that comprise a carbon fiber skin. Thanks to the good combination of stiffness and reduced weight of the carbon fiber skin, these stocks are an attractive replacement to traditional aluminum, wood or synthetic plastic stocks.
  • US9926219B2 describes a method of manufacturing in a mold of a butt for a firearm comprising a skin of carbon fiber.
  • the method comprises a step of deposition of a carbon fiber skin.
  • Carbon fiber skin is made up of an outer wall and an inner wall.
  • In the deposition stage multiple sheets of carbon fibers impregnated in a resin are deposited on an interior surface of a mold cavity, the interior surface defining the external shape of one of the walls.
  • the deposition stage is repeated for the other wall.
  • each wall is formed separately by compression molding, where the multiple sheets of carbon fibers impregnated in a resin are compressed against a core or a counter-mold. After forming the walls, they are flush and joined together, thus obtaining a cylinder head with a carbon fiber skin.
  • the object of the invention is to provide a method of manufacturing a stock for a firearm in a mold, as defined in the claims.
  • the method of the invention is a method of manufacturing a stock for a firearm in a mold, the stock comprising a carbon fiber skin, and the method comprising at least one step of deposition of the carbon fiber skin and a stage of closing the mold.
  • At least one sheet of carbon fiber impregnated in a resin is deposited on an interior surface of a mold cavity, said interior surface of the mold defining the external shape of the cylinder head.
  • the method of the invention further comprises an insertion stage after the mold closing stage in which an exothermic foamable material is inserted into the mold cavity, and a foaming stage after the material insertion stage. foamable exothermic material, wherein said foamable exothermic material foams. This foaming process creates a foam that fills the cavity and adheres to the carbon fiber skin.
  • the manufacturing cost is high. Either it takes a lot of time and specialized craftsmanship for the carbon fiber skin to take on the irregular and complex shape of the cylinder head, or complex process equipment is often used that shortens manufacturing time, but requires high external energy sources. .
  • methods that form carbon fiber skin by compression molding require presses, and those that do so by resin transfer molding require injectors and vacuum pumps.
  • the foaming of the exothermic foamable material forms the carbon fiber skin, generating a pressure and a temperature that shorten the manufacturing time without requiring complex process equipment that requires high external energy sources.
  • a cylinder head is obtained with a low manufacturing cost, while presenting the advantages associated with carbon fiber skin, that is to say, an inexpensive, light and rigid cylinder head.
  • the cylinder head obtained from the proposed method provides a general impression of quality associated with both the carbon fiber and the solid cylinder head.
  • Figure 1 schematically represents a perspective view of a mold used in a preferred embodiment of the manufacturing method according to the invention.
  • Figure 2 schematically represents a sectional view of the mold of Figure 1 after the insert placement step.
  • Figure 3 schematically represents a perspective view of a detail of the mold of Figure 1 after the stage of deposition of the carbon fiber skin.
  • Figure 4 is a sectional view of a detail of Figure 3.
  • Figure 5 schematically represents a perspective view of the mold of Figure 1 after the stage of closing the mold.
  • Figure 6 is a sectional view of Figure 5 during the insertion stage.
  • Figure 7 is a sectional view of Figure 5 after the foaming step.
  • Figure 8 schematically represents a perspective view of the mold of Figure 1 during the demoulding stage.
  • Figure 9 schematically represents a perspective view of a stock for a firearm removed from the mold of Figure 1, and the stock for a firearm after coupling functional elements and accessories.
  • Figures 1 to 9 represent, by way of example and schematically, the steps of a preferred embodiment of the method of the invention.
  • the method of the invention is a method of manufacturing a stock 100 for a firearm in a mold 1, the stock 100 comprising a carbon fiber skin 2.
  • the stock for a firearm is the chassis of the firearm to which the functional elements and accessories are attached, such as, for example, the set of mechanisms, the butt plate and belt holders.
  • Stocks that comprise a carbon fiber skin are an attractive replacement to traditional aluminum, wood or synthetic plastic stocks thanks to the good combination of stiffness and reduced weight.
  • the method of the invention comprises at least: a step of deposition of a carbon fiber skin 2, in which at least one carbon fiber sheet 3 impregnated in a resin is deposited on an interior surface 4 of a cavity 5 of the mold 1, said inner surface 4 of mold 1 defining the external shape of the cylinder head 100, a stage of closing the mold 1, an insertion stage after the stage of closing the mold 1 in which it is inserted into the cavity 5 of the mold 1 an exothermic foamable material 6, and a foaming stage after the insertion stage of the exothermic foamable material 6 in which said exothermic foamable material 6 foams giving rise to a foam that fills the cavity 5 and remains adhered to the skin of carbon fiber 2.
  • the carbon fiber skin 2 gives the stock 100 good rigidity and a good aesthetic appearance, and the foam adhered to the carbon fiber skin 2 gives the stock 100 solidity and lightness.
  • the stock 100 obtained from the method of the invention is a light, rigid stock and provides an overall impression of quality associated with both carbon fiber and solid stock.
  • the foaming of the exothermic foamable material 6 forms the carbon fiber skin 2 generating a pressure and a temperature that shorten the manufacturing time without requiring complex process equipment that requires high external energy sources.
  • the stock 100 obtained from the method of the invention is a stock with a low manufacturing cost, while presenting the advantages associated with carbon fiber skin, that is, an inexpensive, light and rigid stock. .
  • the foam that fills the cavity 5 generates a pressure to conform the carbon fiber skin 2 with the external shape of the cylinder head 100, pressing the carbon fiber skin 2 against the inner surface 4 of the mold 1.
  • the exothermic foamable material 6 foams, an exothermic reaction occurs which generates a temperature in the mold 1 during the foaming step. This heat source of the exothermic foamable material 6 reduces the viscosity of the resin allowing, together with the pressure generated by the foam, to form the carbon fiber skin 2.
  • the polymerization or curing process is a process in which the number of cross-links of the resin increases, reducing the mobility of the molecular segments and increasing the rigidity of the material.
  • the temperature increase is progressive as the exothermic foamable material 6 reacts and the foaming stage proceeds. Therefore, until the foaming process is mostly completed, that is, until the end of the foaming stage, the resin does not reach a sufficient temperature to start polymerizing during the foaming stage.
  • Foaming of the exothermic foamable material 6 is a relatively quick process compared to artisan manufacturing methods, thereby shortening the manufacturing time of the cylinder head 100.
  • the mold 1 shown by way of example and schematically in Figure 1 is composed of two pieces and once the mold 1 is closed, the two pieces form the cavity 5 inside, so that each piece of the mold 1 comprises a part of the inner surface 4.
  • the inner surface 4 is an impermeable surface. In this way, the cylinder head 100 can be easily removed from the mold 1.
  • this configuration of the mold 1 is not intended to be a limitation of the present invention and in other possible embodiments the mold 1 could be composed of more pieces such as, for example, an upper, a lower and two sides, or by other possible configurations known to those skilled in the art so that the cylinder head 100 can be easily removed from the mold.
  • the carbon fiber skin deposition step 2 of the preferred embodiment of the method at least one carbon fiber sheet 3 impregnated in a resin is deposited on the inner surface 4 of the mold 1.
  • resin refers to a polymeric system based on a resin to which other components can be added in the formulation base, such as, for example, additives such as catalytic and thickening agents, low-shrinkage agents, polymerization inhibitors and agents. demoulding.
  • the carbon fiber sheet 3 provides rigidity, resistance to bending, traction and compression to the carbon fiber skin 2, while the resin that impregnates the carbon fiber sheet 3 gives plasticity to the carbon fiber skin 2 during the foaming step so that the carbon fiber skin 2 takes the shape of the inner surface 4 of the mold 1 without breaking the carbon fibers.
  • the carbon fiber sheet 3 is pre-impregnated with resin. In this way, the stage of deposition of the carbon fiber skin 2 is simplified, because when the carbon fiber sheet 3 is deposited, it is already impregnated and does not require impregnation after its deposition.
  • the carbon fiber sheet 3 of the preferred embodiment is a non-woven carbon fiber sheet.
  • the non-woven carbon fiber sheet is more malleable than the woven carbon fiber sheet, so that it allows the carbon fiber skin 2 to be formed with less energy while reducing the manufacturing cost.
  • the carbon fiber sheet 3 is a polymeric molding composite supplied in a ready-to-mold short carbon fiber reinforced sheet format, mainly used in compression molding.
  • the polymeric molding composite supplied in sheet format reinforced with short carbon fibers is referred to as a CF-SMC ("Carbon Fiber Sheet Molding Compound").
  • CF-SMC is manufactured from chopped carbon fibers dispersed in a matrix of resin in a "B" state of maturation, a state that favors the handling and conservation / transport of the material. In this "B" state, its polymerization has not started, for this the external contribution of a heat source is required.
  • the CF-SMC is covered on both sides with a plastic polyethylene or nylon film to prevent self-adhesion during storage / transport.
  • a resin paste is spread on the bottom film, and pieces of carbon fiber are randomly deposited on the paste up to the desired percentage of reinforcement.
  • the resin paste may comprise other components such as, for example, additives such as catalysts and thickeners, low shrinkage agents, polymerization inhibitors and mold release agents.
  • the top film is placed and the assembly is continuously laminated to the desired grammage.
  • the resulting composite is a pre-impregnated, non-woven carbon fiber sheet with good malleability ready to mold into the desired final shape.
  • the plastic films covering both sides of the CF-SMC are removed.
  • CF-SMC The main advantage of CF-SMC is its excellent plasticity compared to woven carbon fiber sheet, where staple carbon fibers further reduce manufacturing cost. Furthermore, it has an excellent compromise between high plasticity, low cost of raw material and sufficient rigidity for the application of a stock of a firearm.
  • CF-SMC Another advantage of CF-SMC is that, as the resin is in a maturing “B” state, the resin loses its stickiness and cannot spill thanks to its viscous texture in the carbon fiber skin deposition stage 2 , while the resin confers sufficient plasticity to the carbon fiber skin 2 during the foaming stage.
  • the CF-SMC comprises carbon fibers from recycling processes. This makes the cylinder head 100 more sustainable and even more economical, as it gives carbon fiber a second life.
  • the CF-SMC of the preferred embodiment comprises a percentage by weight of carbon fiber between 40% and 60% with respect to the percentage by total weight, and a length of carbon fibers between 25 and 75 mm, thus obtaining a compromise optimum between the stiffness of the carbon fiber and the plasticity of the resin. More specifically, the weight percentage of fiber of carbon is 45% and the length of carbon fibers is 50mm. In addition, the 50mm length is a standard length on commercial CF-SMCs, making it easy to find supplies for this material.
  • the resin is preferably a vinyl ester resin or an epoxy resin.
  • Said resins have a low viscosity and high flowability even at room temperature, thus favoring the impregnation of the carbon fibers and the correct matrix / reinforcement interaction for a correct transmission of stresses to external loads during the foaming stage.
  • these resins have relatively short polymerization cycles, taking into account the type of catalytic agent used in the base of the resin formulation and the temperature of the external heat source.
  • the resin is a vinyl ester resin.
  • an aesthetic sheet 7 is deposited in the stage of deposition of the carbon fiber skin 2, the aesthetic sheet 7 being the one that provides the final aesthetics to the cylinder head100.
  • the aesthetic sheet 7 is preferably a woven carbon fiber sheet.
  • the woven carbon fiber sheet adds rigidity to the structure, but is also very expensive. In this way, the aesthetic sheet 7 gives the cylinder head 100 a more rigid butt look without raising the cost of raw material of the entire carbon fiber skin 2.
  • the aesthetic sheet 7 is impregnated with the same resin as the carbon fiber sheet 3.
  • the aesthetic sheet 7 deposited can be a sheet with a stamping or with a personalized design for each user to achieve a specific aesthetic appearance, or the aesthetic sheet 7 can be deposited on only some specific area of the interior surface 4 to give it that aesthetic appearance only in that specific area.
  • more than one carbon fiber sheet 3 is deposited in at least one cylinder head area 100 giving rise to a reinforcement area 8.
  • increasing the thickness of the carbon fiber skin 2 in the reinforcement area 8 increases the stiffness in that reinforcement area 8. Therefore, the reinforcement zone 8 supports greater forces than the rest of the cylinder head 100.
  • a single reinforcement zone 8 corresponding to the housing for a retraction tongue is represented by way of non-limiting example.
  • the recoil tab of the set of mechanisms 15 rests on this housing of the stock 100 when the firearm is fired, transmitting the recoil forces of the set of mechanisms 15 to the stock.
  • this reinforcement zone 8 is the one that supports the greatest efforts in the cylinder head 100.
  • the carbon fiber skin 2 comprises an aesthetic sheet 7 and two Carbon fiber sheets 3, while in the rest of the cylinder head 100 the carbon fiber skin 2 comprises an aesthetic sheet 7 and only one carbon fiber sheet 3.
  • the stock 100 can comprise several reinforcement areas 8.
  • the reinforcement area 8 can be any area of the stock 100 that must withstand greater stresses than the rest of the stock 100, such as, for example, the grip and / or the mooring area of the set of mechanisms 15.
  • the cavity 5 of the mold 1 is communicated with the exterior by means of an insertion conduit 9 and at least one outlet conduit 10 configured to communicate the cavity 5 of the mold 1 with the exterior once the skin of the carbon fiber 2 and closed the mold 1, as shown in Figures 3 and 4.
  • the insertion conduit 9 is configured so that the exothermic foamable material 6 is inserted into the cavity 5 from the outside through said insertion conduit 9. In this way, the stage of closing the mold 1 can be advanced to the stage of insertion, without jeopardizing the foaming stage with the delay of an intermediate stage of closing of the mold 1 between the insertion stage and the foaming stage.
  • the stage of closing the mold 1 is subsequent to the stage deposition of the carbon fiber skin 2.
  • Figure 5 shows the mold 1 of the preferred embodiment of the method after the stage of closing the mold 1, in which the two pieces of the mold 1 are arranged with the parts of the inner surface 4 on which the carbon fiber skin 2 has been previously deposited facing each other, leaving the cavity 4 inside. As the parts of the inner surface 4 face each other, the carbon fiber skin 2 is joined at the intersection of the parts, the carbon fiber skin 2 being a substantially closed skin after the mold closure step 1. Thus, in the foaming stage the foam does not rise to the outer surface of the cylinder head 100.
  • the outlet conduit 10 is configured to extract to the outside gases produced during the foaming stage. In this way, the existence of air bubbles trapped in the carbon fiber skin 2 that weaken or worsen the appearance of the carbon fiber skin 2 is minimized.
  • the insertion conduit 9 and the outlet conduits 10 are tubular elements that are arranged substantially orthogonal to the inner surface 4 at the intersection of the parts that make up the mold 1 after depositing the carbon fiber skin 2 on the inner surface 4.
  • the carbon fiber skin 2 remains closed except for the insertion conduit 9 and the outlet 10 going through the carbon fiber skin 2.
  • the insertion conduit 9 preferably has a minimum diameter configured to be able to quickly carry out the insertion stage before the foaming stage begins and the outlet conduit 9 preferably has a maximum diameter configured so that the gases escape without there being losses of significant pressure in cavity 5 of mold 1 closed.
  • the insertion conduit 9 and the outlet conduit 10 can be integral parts to the mold 1 or separate pieces that are arranged before depositing the carbon fiber skin 2.
  • cuts can be made in the carbon fiber sheet 3 before depositing it, said cuts coinciding with the insertion conduit 9 and the outlet conduits 10 in the deposition stage.
  • the outlet conduit 10 may be arranged in an existing hole.
  • An existing hole may be, for example, a side-to-side through hole in the stock 100 (not shown in the Figures) configured to receive a set screw for the mechanism assembly 15 of the firearm. In this way, the outlet conduit 10 does not leave new holes in the carbon fiber skin 2.
  • the insertion conduit 9 and the outlet conduit 10 are preferably waterproof so that they can be easily removed from the mold.
  • the method further comprises a stage of inserting the inserts, prior to the stage of deposition of the carbon fiber skin 2, where at least one insert 11 is placed on the inner surface 4 of the mold 1 abutting with at least one stopper element 12 of the mold 1 configured to position the insert 11, leaving the carbon fiber skin 2 deposited on the insert 11 in the deposition stage, so that the insert 11 remains attached to the fiber fiber skin Carbon 2 in a specific position on the cylinder head 100.
  • the resin impregnated carbon fiber sheet 3 is deposited on the inner surface 4 of the cavity 5 of the mold 1, and also on the inserts 11.
  • the foam presses the carbon fiber skin 2 against the inserts 11 until they abut the stop element 12.
  • the resin of the carbon fiber skin 2 flows, and towards the end of the foaming stage the resin polymerizes around the inserts 11, leaving the inserts 11 attached to the carbon fiber skin 2 in a specific position of the cylinder head 100. Therefore, integral inserts are obtained with the carbon fiber skin, as opposed to inserts simply inserted into the carbon fiber skin.
  • the inserts 11 preferably comprise a ridged, grooved or grooved outer surface. a high roughness configured to improve the adhesion of the insert 11 to the carbon fiber skin 2.
  • Figure 2 represents the insert placement stage in which two inserts 11 are placed abutting two stop elements 12, although more than two inserts 11 and two stop elements could be placed. stop 12.
  • the inserts 11 allow functional elements or accessories to be attached to the stock 100 once the stock 100 has been removed from the mold.
  • the inserts 11 shown in Figure 2 comprise an internal thread configured to receive and fix threaded ends of a strap of a firearm once the stock 100 has been demolished.
  • Other inserts 11 not shown in the figures may be inserts with internal thread intended to receive fixing screws of a butt plate 14 or of a set of mechanisms 15 of a firearm.
  • Figures 1 and 2 show the abutment elements 12 of the preferred embodiment configured to position the insert 11.
  • the abutment element 12 is a stem attached to the mold 1 and comprises a projection 121 that projects from the inner surface 4 of the mold 1 into cavity 5.
  • the internal thread of insert 11 is inserted into projection 121 of stopper element 12 until it abuts against projection 121, thereby positioning insert 11.
  • the projection 121 preferably comprises an external thread which in the insert placement stage is screwed into the internal thread of the insert 11. This ensures that the insert 11 cannot accidentally come out of the projection 121 during the subsequent steps of the method.
  • the insertion depth of the insert 11 in the stop element 12 can be adjusted to leave a small gap between the stop element 12 and the insert 11, said gap being filled with the fiber skin of carbon 2 in the foaming stage. In this way, a more continuous appearance of the carbon fiber skin 2 is achieved and the adhesion of the insert 11 to the carbon fiber skin 2 is improved.
  • the stop element 12 can be an integral part of the mold 1 or it can be made in any other way known to those skilled in the art.
  • the insert 11 is a metallic insert.
  • the outlet conduit 10 is arranged in one of the inserts 11. In this way, the arrangement of the outlet conduit 10 is facilitated.
  • Figure 6 represents an example of a sectional view of the mold 1 during the insertion stage of the preferred embodiment of the method, after the stage of deposition of the carbon fiber skin 2 shown in Figure 3 and at the step of closing the mold 1 shown in Figure 5, in which an exothermic foamable material 6 is inserted into the cavity 5 of the mold 1 through the insertion conduit 9.
  • the exothermic foamable material 6 is a polyurethane system.
  • the polyurethane system comprises two liquid components, polyol and isocyanate.
  • the exothermic foamable material 6 is in a liquid state, its insertion is facilitated.
  • the reactivity of the mixture can be controlled so that the insertion stage can be completed before the foaming stage begins. For example, so that the foaming reaction begins about 15-30 seconds after mixing the components of the exothermic foamable material 6, so as to allow time to insert it into the cavity 5 of the mold 1.
  • the exothermic foamable material 6 gives rise to a polyurethane foam that fills the cavity 5 and adheres to the carbon fiber skin 2.
  • the polyurethane foam takes place through an exothermic foaming chemical reaction by mixing polyol and isocyanate, and it forms the carbon fiber skin 2 generating a pressure and a temperature that shorten the manufacturing time.
  • foamable exothermic material 6 could be employed which involves the use of foaming agents integrated into thermoset polymeric systems, eg, phenolic, polyester or epoxy.
  • the carbon fiber skin 2 is a substantially closed skin after the mold closure step 1, so that in the foaming step the foam does not rise to the outer surface of the cylinder head 100, and therefore the cylinder head 100 obtained according to the method of the invention is a solid cylinder head with a carbon fiber skin 2 and a foam core.
  • the carbon fiber skin 2 gives the stock 100 good rigidity and a good aesthetic appearance
  • the foam core adhered to the carbon fiber skin 2 gives the stock 100 solidity and lightness.
  • the stock 100 obtained from the method of the invention is a light, rigid stock and provides an overall impression of quality associated with both carbon fiber and solid stock.
  • the foam that fills the cavity 5 generates a pressure to conform the carbon fiber skin 2 with the external shape of the cylinder head 100, pressing the carbon fiber skin 2 against inner surface 4 of mold 1.
  • the amount of foamable exothermic material is controlled 6 to be inserted.
  • the carbon fiber skin has a maximum thickness of 2 mm. More specifically, in order to find a compromise between a sufficient stiffness and a necessary energy to form the carbon fiber skin 2, in a preferred embodiment the carbon fiber skin has a thickness between 1 and 2 mm.
  • the foam generates a pressure on the carbon fiber skin 2 of between 1 and 3 bars in the foaming stage, preferably a pressure of 2 bars.
  • the carbon fiber skin 2 having a maximum thickness of 2 mm is suitably shaped.
  • the exothermic reaction of the exothermic foamable material 6 generates a temperature in the mold 1 that increases the fluidity of the resin, allowing the carbon fiber skin 2 to be formed together with the pressure generated by the foam and towards the At the end of the foaming stage, the polymerization reaction of the carbon fiber skin resin 2 begins, increasing the rigidity of the material.
  • this temperature is about 60-90 ° C.
  • the temperature generated in the foaming stage may not complete the polymerization cycle of the resin. producing an insufficient degree of conversion in the polymerization reaction to proceed with the demoulding of the part just after the foaming stage, since the carbon fiber skin 2 does not reach sufficient rigidity to guarantee the integrity of the cylinder head after its demoulding .
  • a preferred embodiment of the method of the invention comprises a curing stage subsequent to the foaming stage, in which for a predetermined period of time there is an external input of temperature above a threshold temperature in the mold 1.
  • the carbon fiber skin 2 reaches sufficient rigidity to guarantee the integrity of the cylinder head after the curing stage, shortening the polymerization time of the resin with which the cylinder head can be demoulded and, consequently, the time total manufacturing.
  • the preferred embodiment of the method shown in the Figures comprises the curing step.
  • Vinyl ester resin itself has a high polymerization rate and high productivity. Increasing the temperature of the curing stage further shortens the polymerization time of this resin.
  • the threshold temperature and the predetermined time of the curing step are between 120 and 135 ° C, and 10 minutes respectively.
  • the carbon fiber skin 2 is polymerized with sufficient rigidity to guarantee the integrity of the cylinder head after demoulding.
  • a preferred embodiment of the method of the invention comprises a cooling stage after the curing stage in which the mold 1 is cooled below a temperature, preferably below 40 ° C, and a demoulding stage after the stage in which the mold 1 is opened to extract the cylinder head 100.
  • the cooling step facilitates the demoulding of the cylinder head 100 and allows the mold 1 to be reused in the method of the invention to manufacture another cylinder head without the risk of premature polymerization of the resin in the other cylinder head.
  • the preferred embodiment of the method comprises the cooling and demoulding stages.
  • the mold 1 is schematically represented during the demoulding stage of the preferred embodiment of the method.
  • the mold 1 is opened, leaving the cylinder head 100 obtained with the method of the invention on one of the parts that make up the mold 1.
  • the stops 12 are removed, the insertion conduit 9 and outlet conduits 10.
  • the cylinder head 100 may comprise at least one area 13 configured to be covered with another part after the demoulding stage, the insertion conduit 9 or the outlet conduit 10 being arranged in said area 13.
  • the area 13 may correspond to an area of the cylinder head. 100 which is covered by an accessory or a functional element after demoulding the cylinder head 100. In this way the hole left in the carbon fiber skin 2 by the insertion duct 9 or the outlet duct 10 is covered.
  • the cylinder head 100 comprises two zones 13 configured to be covered with the butt plate 14 and the set of mechanisms 15 after the demoulding stage, in a zone 13 the duct is arranged 9 and in the other area 13 the outlet ducts 10 are arranged after depositing the carbon fiber skin 2.
  • the hole left by the insertion duct 9 is covered by the butt plate 14 and the holes left They are covered by the outlet conduits 10 by the set of mechanisms 15.
  • the ends of the strap of the firearm are screwed into the inserts 11 integral to the stock 100.

Abstract

Disclosed is a method for manufacturing a stock for a firearm in a mould (1), which method comprises a step of depositing a carbon fibre skin (2), in which at least one layer of resin-impregnated carbon fibre is deposited over an inner surface (4) of a cavity (5) of the mould (1) and a step of closing the mould (1). The method further comprises, subsequent to the step of closing the mould (1), at least one insertion step in which an exothermic foam material (6) is fed into the cavity (5) of the mould (1) and, subsequent to the step of inserting the exothermic foam material (6), a foaming step in which said exothermic foam material (6) forms a foam that fills the cavity (5) and remains bonded to the carbon fibre skin (2).

Description

DESCRIPCIÓN DESCRIPTION
Método de fabricación de una culata para un arma de fuego en un molde’ Manufacturing method of a stock for a firearm in a mold '
SECTOR DE LA TÉCNICA TECHNICAL SECTOR
La presente invención se relaciona con métodos de fabricación de una culata para un arma de fuego en un molde. The present invention relates to methods of manufacturing a stock for a firearm in a mold.
ESTADO ANTERIOR DE LA TÉCNICA PRIOR STATE OF THE ART
Cuanto menos pese una culata para un arma de fuego, durante más tiempo se podrá llevar o sostener antes de que el tirador experimente una fatiga que afecte a su puntería. Además, cuanto menos pese una culata para un arma de fuego, menos fuerza se requiere para que el tirador ajuste la posición del arma, lo cual constituye un factor de puntería importante cuando se requieren pequeños ajustes de posición del arma. The less a stock weighs for a firearm, the longer it can be carried or held before the shooter experiences fatigue that affects their aim. In addition, the less a stock weighs for a firearm, the less force is required for the shooter to adjust the position of the weapon, which is an important aiming factor when small adjustments to the position of the weapon are required.
Además, la culata para un arma de fuego debe tener una alta rigidez para que los esfuerzos trasmitidos a la culata por los elementos funcionales como el conjunto de mecanismos, el gatillo y/o el cañón no deformen o dañen la culata a lo largo de su vida útil. Dicha rigidez también es fundamental para que el arma sea precisa. In addition, the stock for a firearm must have a high rigidity so that the efforts transmitted to the stock by functional elements such as the set of mechanisms, the trigger and / or the barrel do not deform or damage the stock throughout its length. useful life. This rigidity is also essential for the weapon to be accurate.
Por todo ello, se conocen culatas para un arma de fuego que comprenden una piel de fibra de carbono. Gracias a la buena combinación de rigidez y de reducción en peso de la piel de fibra de carbono, estas culatas son un reemplazo atractivo a las culatas tradicionales de aluminio, de madera o de plástico sintético. For all these reasons, butts for a firearm are known that comprise a carbon fiber skin. Thanks to the good combination of stiffness and reduced weight of the carbon fiber skin, these stocks are an attractive replacement to traditional aluminum, wood or synthetic plastic stocks.
A pesar de las características deseables de una culata fabricada en fibra de carbono, el elevado precio de la fibra de carbono y el elevado coste de fabricación hace que las culatas para un arma de fuego que comprenden una piel de fibra de carbono puedan ser a menudo excesivamente caros. Los métodos de fabricación conocidos requieren mucho tiempo y trabajo artesanal especializado, o requieren complejos equipos de proceso industriales para que la piel de fibra de carbono adopte la forma irregular y compleja de la culata. Despite the desirable characteristics of a stock made of carbon fiber, the high price of carbon fiber and the high cost of manufacture mean that the stock for a firearm that comprises a carbon fiber skin can often be excessively expensive. Known manufacturing methods are time consuming and specialized artisan work, or require complex industrial process equipment for the carbon fiber skin to take on the irregular and complex shape of the cylinder head.
US9926219B2 describe un método de fabricación en un molde de una culata para un arma de fuego que comprende una piel de fibra de carbono. El método comprende una etapa de deposición de una piel de fibra de carbono. La piel de fibra de carbono está compuesta por una pared externa y una pared interna. En la etapa de deposición se depositan sobre una superficie interior de una cavidad de un molde múltiples láminas de fibras de carbono impregnadas en una resina, definiendo la superficie interior la forma externa de una de las paredes. Se repite la etapa de deposición para la otra pared. Una vez cerrado el molde cada pared se conforma por separado mediante moldeo por compresión, donde las múltiples láminas de fibras de carbono impregnadas en una resina se comprimen contra un macho o un contra-molde. Después de conformar las paredes, se enrasan y se unen entre sí, obteniendo así una culata con una piel de fibra de carbono. US9926219B2 describes a method of manufacturing in a mold of a butt for a firearm comprising a skin of carbon fiber. The method comprises a step of deposition of a carbon fiber skin. Carbon fiber skin is made up of an outer wall and an inner wall. In the deposition stage, multiple sheets of carbon fibers impregnated in a resin are deposited on an interior surface of a mold cavity, the interior surface defining the external shape of one of the walls. The deposition stage is repeated for the other wall. Once the mold is closed, each wall is formed separately by compression molding, where the multiple sheets of carbon fibers impregnated in a resin are compressed against a core or a counter-mold. After forming the walls, they are flush and joined together, thus obtaining a cylinder head with a carbon fiber skin.
EXPOSICIÓN DE LA INVENCIÓN EXHIBITION OF THE INVENTION
El objeto de la invención es el de proporcionar un método de fabricación de una culata para un arma de fuego en un molde, según se define en las reivindicaciones. The object of the invention is to provide a method of manufacturing a stock for a firearm in a mold, as defined in the claims.
El método de la invención es un método de fabricación de una culata para un arma de fuego en un molde, comprendiendo la culata una piel de fibra de carbono, y comprendiendo el método al menos una etapa de deposición de la piel de fibra de carbono y una etapa de cierre del molde. The method of the invention is a method of manufacturing a stock for a firearm in a mold, the stock comprising a carbon fiber skin, and the method comprising at least one step of deposition of the carbon fiber skin and a stage of closing the mold.
En la etapa de deposición de la piel de fibra de carbono se deposita al menos una lámina de fibra de carbono impregnada en una resina sobre una superficie interior de una cavidad del molde, definiendo dicha superficie interior del molde la forma externa de la culata. In the stage of deposition of the carbon fiber skin, at least one sheet of carbon fiber impregnated in a resin is deposited on an interior surface of a mold cavity, said interior surface of the mold defining the external shape of the cylinder head.
El método de la invención comprende además una etapa de inserción después de la etapa de cierre del molde en la que se inserta en la cavidad del molde un material exotérmico espumable, y una etapa de espumado después de la etapa de inserción del material exotérmico espumable, en la que dicho material exotérmico espumable espuma. Este proceso de espumado da lugar a una espuma que rellena la cavidad y queda adherida a la piel de fibra de carbono. The method of the invention further comprises an insertion stage after the mold closing stage in which an exothermic foamable material is inserted into the mold cavity, and a foaming stage after the material insertion stage. foamable exothermic material, wherein said foamable exothermic material foams. This foaming process creates a foam that fills the cavity and adheres to the carbon fiber skin.
En los métodos de fabricación de una culata para un arma de fuego del estado de la técnica el coste de fabricación es elevado. O se suele emplear mucho tiempo y trabajo artesanal especializado para que la piel de fibra de carbono adopte la forma irregular y compleja de la culata, o se suelen emplear complejos equipos de proceso que acortan el tiempo de fabricación, pero requieren elevadas fuentes de energía externa. Por ejemplo, los métodos que conforman la piel de fibra de carbono mediante moldeo por compresión necesitan prensas, y los que lo hacen mediante moldeo por transferencia de resina necesitan inyectores y bombas de vacío. In the methods of manufacturing a stock for a firearm of the state of the art, the manufacturing cost is high. Either it takes a lot of time and specialized craftsmanship for the carbon fiber skin to take on the irregular and complex shape of the cylinder head, or complex process equipment is often used that shortens manufacturing time, but requires high external energy sources. . For example, methods that form carbon fiber skin by compression molding require presses, and those that do so by resin transfer molding require injectors and vacuum pumps.
En el método de la invención el espumado del material exotérmico espumable conforma la piel de fibra de carbono generando una presión y una temperatura que acortan el tiempo de fabricación sin requerir los complejos equipos de proceso que requieren elevadas fuentes de energía externa. De este modo, se obtiene una culata con un reducido coste de fabricación, presentando a la vez las ventajas asociadas a la piel de fibra de carbono, es decir, una culata económica, ligera y rígida. In the method of the invention, the foaming of the exothermic foamable material forms the carbon fiber skin, generating a pressure and a temperature that shorten the manufacturing time without requiring complex process equipment that requires high external energy sources. In this way, a cylinder head is obtained with a low manufacturing cost, while presenting the advantages associated with carbon fiber skin, that is to say, an inexpensive, light and rigid cylinder head.
Por otro lado, con la espuma adherida a la piel de fibra de carbono se consigue una culata sólida. De este modo, la culata obtenida a partir del método propuesto proporciona una impresión general de calidad asociada tanto a la fibra de carbono como a la culata sólida. On the other hand, with the foam adhered to the carbon fiber skin, a solid stock is achieved. In this way, the cylinder head obtained from the proposed method provides a general impression of quality associated with both the carbon fiber and the solid cylinder head.
Estas y otras ventajas y características de la invención se harán evidentes a la vista de las figuras y de la descripción detallada de la invención. These and other advantages and characteristics of the invention will become apparent in view of the figures and the detailed description of the invention.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
La Figura 1 representa esquemáticamente una vista en perspectiva de un molde empleado en una realización preferente del método de fabricación según la invención. La Figura 2 representa esquemáticamente una vista en corte del molde de la Figura 1 después de la etapa de colocación de insertos. Figure 1 schematically represents a perspective view of a mold used in a preferred embodiment of the manufacturing method according to the invention. Figure 2 schematically represents a sectional view of the mold of Figure 1 after the insert placement step.
La Figura 3 representa esquemáticamente una vista en perspectiva de un detalle del molde de la Figura 1 después de la etapa de deposición de la piel de fibra de carbono. Figure 3 schematically represents a perspective view of a detail of the mold of Figure 1 after the stage of deposition of the carbon fiber skin.
La Figura 4 es una vista en corte de un detalle de la Figura 3. Figure 4 is a sectional view of a detail of Figure 3.
La Figura 5 representa esquemáticamente una vista en perspectiva del molde de la Figura 1 después de la etapa de cierre del molde. Figure 5 schematically represents a perspective view of the mold of Figure 1 after the stage of closing the mold.
La Figura 6 es una vista en corte de la Figura 5 durante la etapa de inserción. Figure 6 is a sectional view of Figure 5 during the insertion stage.
La Figura 7 es una vista en corte de la Figura 5 después de la etapa de espumado. Figure 7 is a sectional view of Figure 5 after the foaming step.
La Figura 8 representa esquemáticamente una vista en perspectiva del molde de la Figura 1 durante la etapa de desmoldeo. Figure 8 schematically represents a perspective view of the mold of Figure 1 during the demoulding stage.
La Figura 9 representa esquemáticamente una vista en perspectiva de una culata para un arma de fuego desmoldeada del molde de la Figura 1 , y la culata para un arma de fuego después de acoplar unos elementos funcionales y accesorios. Figure 9 schematically represents a perspective view of a stock for a firearm removed from the mold of Figure 1, and the stock for a firearm after coupling functional elements and accessories.
EXPOSICIÓN DETALLADA DE LA INVENCIÓN DETAILED EXHIBITION OF THE INVENTION
En las Figuras 1 a 9 se representan, a modo de ejemplo y de manera esquemática, las etapas de una realización preferente del método de la invención. Figures 1 to 9 represent, by way of example and schematically, the steps of a preferred embodiment of the method of the invention.
El método de la invención es un método de fabricación de una culata 100 para un arma de fuego en un molde 1, comprendiendo la culata 100 una piel de fibra de carbono 2. The method of the invention is a method of manufacturing a stock 100 for a firearm in a mold 1, the stock 100 comprising a carbon fiber skin 2.
La culata para un arma de fuego es el chasis del arma de fuego al que se le acoplan los elementos funcionales y los accesorios como, por ejemplo, el conjunto de mecanismos, la cantonera y los portacorreas. Las culatas que comprenden una piel de fibra de carbono son un reemplazo atractivo a las culatas tradicionales de aluminio, de madera o de plástico sintético gracias a la buena combinación de rigidez y de reducción en peso. The stock for a firearm is the chassis of the firearm to which the functional elements and accessories are attached, such as, for example, the set of mechanisms, the butt plate and belt holders. Stocks that comprise a carbon fiber skin are an attractive replacement to traditional aluminum, wood or synthetic plastic stocks thanks to the good combination of stiffness and reduced weight.
El método de la invención comprende al menos: una etapa de deposición de una piel de fibra de carbono 2, en la que se deposita al menos una lámina de fibra de carbono 3 impregnada en una resina sobre una superficie interior 4 de una cavidad 5 del molde 1, definiendo dicha superficie interior 4 del molde 1 la forma externa de la culata 100, una etapa de cierre del molde 1, una etapa de inserción después de la etapa de cierre del molde 1 en la que se inserta en la cavidad 5 del molde 1 un material exotérmico espumable 6, y una etapa de espumado después de la etapa de inserción del material exotérmico espumable 6 en la que dicho material exotérmico espumable 6 espuma dando lugar a una espuma que rellena la cavidad 5 y queda adherida a la piel de fibra de carbono 2. The method of the invention comprises at least: a step of deposition of a carbon fiber skin 2, in which at least one carbon fiber sheet 3 impregnated in a resin is deposited on an interior surface 4 of a cavity 5 of the mold 1, said inner surface 4 of mold 1 defining the external shape of the cylinder head 100, a stage of closing the mold 1, an insertion stage after the stage of closing the mold 1 in which it is inserted into the cavity 5 of the mold 1 an exothermic foamable material 6, and a foaming stage after the insertion stage of the exothermic foamable material 6 in which said exothermic foamable material 6 foams giving rise to a foam that fills the cavity 5 and remains adhered to the skin of carbon fiber 2.
La piel de fibra de carbono 2 le confiere a la culata 100 una buena rigidez y un buen aspecto estético, y la espuma adherida a la piel de fibra de carbono 2, le confiere a la culata 100 solidez y ligereza. De este modo, la culata 100 obtenida a partir del método de la invención es una culata ligera, rígida y proporciona una impresión general de calidad asociada tanto a la fibra de carbono como a la culata sólida. The carbon fiber skin 2 gives the stock 100 good rigidity and a good aesthetic appearance, and the foam adhered to the carbon fiber skin 2 gives the stock 100 solidity and lightness. Thus, the stock 100 obtained from the method of the invention is a light, rigid stock and provides an overall impression of quality associated with both carbon fiber and solid stock.
En el método de la invención el espumado del material exotérmico espumable 6 conforma la piel de fibra de carbono 2 generando una presión y una temperatura que acortan el tiempo de fabricación sin requerir complejos equipos de proceso que requieren elevadas fuentes de energía externa. De este modo, la culata 100 obtenida a partir del método de la invención es una culata con un reducido coste de fabricación, presentando a la vez las ventajas asociadas a la piel de fibra de carbono, es decir, una culata económica, ligera y rígida. In the method of the invention, the foaming of the exothermic foamable material 6 forms the carbon fiber skin 2 generating a pressure and a temperature that shorten the manufacturing time without requiring complex process equipment that requires high external energy sources. In this way, the stock 100 obtained from the method of the invention is a stock with a low manufacturing cost, while presenting the advantages associated with carbon fiber skin, that is, an inexpensive, light and rigid stock. .
Por un lado, en la etapa de espumado la espuma que rellena la cavidad 5 genera una presión para conformar la piel de fibra de carbono 2 con la forma externa de la culata 100, presionando la piel de fibra de carbono 2 contra la superficie interior 4 del molde 1. Por otro lado, cuando el material exotérmico espumable 6 espuma, se produce una reacción exotérmica que genera una temperatura en el molde 1 durante la etapa de espumado. Esta fuente de calor del material exotérmico espumable 6 reduce la viscosidad de la resina permitiendo junto con la presión generada por la espuma conformar la piel de fibra de carbono 2. On the one hand, in the foaming stage, the foam that fills the cavity 5 generates a pressure to conform the carbon fiber skin 2 with the external shape of the cylinder head 100, pressing the carbon fiber skin 2 against the inner surface 4 of the mold 1. On the other hand, when the exothermic foamable material 6 foams, an exothermic reaction occurs which generates a temperature in the mold 1 during the foaming step. This heat source of the exothermic foamable material 6 reduces the viscosity of the resin allowing, together with the pressure generated by the foam, to form the carbon fiber skin 2.
Por último, hacia el final de la etapa de espumado se inicia la reacción de polimerización de la resina que integra la piel de fibra de carbono 2. La polimerización o el proceso de curado es un proceso en el que el número de enlaces cruzados de la resina aumenta, reduciendo la movilidad de los segmentos moleculares y aumentando la rigidez del material. El incremento de temperatura es progresivo a medida que el material exotérmico espumable 6 reacciona y avanza la etapa de espumado. Por ello, hasta que el proceso de espumado no se ha completado en su mayor parte, es decir, hasta el final de la etapa de espumado la resina no alcanza una temperatura suficiente para empezar a polimerizar durante la etapa de espumado. Finally, towards the end of the foaming stage, the polymerization reaction of the resin that makes up the carbon fiber skin begins. 2. The polymerization or curing process is a process in which the number of cross-links of the resin increases, reducing the mobility of the molecular segments and increasing the rigidity of the material. The temperature increase is progressive as the exothermic foamable material 6 reacts and the foaming stage proceeds. Therefore, until the foaming process is mostly completed, that is, until the end of the foaming stage, the resin does not reach a sufficient temperature to start polymerizing during the foaming stage.
Una vez que todo el material exotérmico espumable 6 espuma finaliza la etapa de espumado. El espumado del material exotérmico espumable 6 es un proceso relativamente rápido en comparación con los métodos de fabricación artesanales, con lo cual se acorta el tiempo de fabricación de la culata 100. Once all of the foamable exothermic material 6 foam ends, the foaming step is completed. Foaming of the exothermic foamable material 6 is a relatively quick process compared to artisan manufacturing methods, thereby shortening the manufacturing time of the cylinder head 100.
En la realización preferente el molde 1 mostrado a modo de ejemplo y esquemáticamente en la Figura 1 está compuesto por dos piezas y una vez cerrado el molde 1 las dos piezas forman la cavidad 5 en su interior, por lo que cada pieza del molde 1 comprende una parte de la superficie interior 4. Preferentemente la superficie interior 4 es una superficie impermeable. De este modo, la culata 100 se puede desmoldear fácilmente del molde 1. In the preferred embodiment, the mold 1 shown by way of example and schematically in Figure 1 is composed of two pieces and once the mold 1 is closed, the two pieces form the cavity 5 inside, so that each piece of the mold 1 comprises a part of the inner surface 4. Preferably the inner surface 4 is an impermeable surface. In this way, the cylinder head 100 can be easily removed from the mold 1.
Sin embargo, esta configuración del molde 1 no pretende ser una limitación de la presente invención y en otras posibles realizaciones el molde 1 podría estar compuesto por más piezas como, por ejemplo, una superior, una inferior y dos laterales, o por otras posibles configuraciones conocidas por el experto en la materia para que la culata 100 se pueda desmoldear fácilmente. En la etapa de deposición de la piel de fibra de carbono 2 de la realización preferente del método se deposita al menos una lámina de fibra de carbono 3 impregnada en una resina sobre la superficie interior 4 del molde 1. However, this configuration of the mold 1 is not intended to be a limitation of the present invention and in other possible embodiments the mold 1 could be composed of more pieces such as, for example, an upper, a lower and two sides, or by other possible configurations known to those skilled in the art so that the cylinder head 100 can be easily removed from the mold. In the carbon fiber skin deposition step 2 of the preferred embodiment of the method, at least one carbon fiber sheet 3 impregnated in a resin is deposited on the inner surface 4 of the mold 1.
El término resina se refiere a un sistema polimérico basado en una resina a la que se le pueden añadir otros componentes en la base de formulación como, por ejemplo, aditivos como agentes catalíticos y espesantes, agentes de baja contracción, inhibidores de polimerización y agentes de desmoldeo. The term resin refers to a polymeric system based on a resin to which other components can be added in the formulation base, such as, for example, additives such as catalytic and thickening agents, low-shrinkage agents, polymerization inhibitors and agents. demoulding.
La lámina de fibra de carbono 3 proporciona rigidez, resistencia a flexión, tracción y compresión a la piel de fibra de carbono 2, mientras que la resina que impregna la lámina de fibra de carbono 3 le confiere plasticidad a la piel de fibra de carbono 2 durante la etapa de espumado para que la piel de fibra de carbono 2 adopte la forma de la superficie interior 4 del molde 1 sin que se rompan las fibras de carbono. The carbon fiber sheet 3 provides rigidity, resistance to bending, traction and compression to the carbon fiber skin 2, while the resin that impregnates the carbon fiber sheet 3 gives plasticity to the carbon fiber skin 2 during the foaming step so that the carbon fiber skin 2 takes the shape of the inner surface 4 of the mold 1 without breaking the carbon fibers.
En la realización preferente la lámina de fibra de carbono 3 está pre-impregnada en resina. De este modo se simplifica la etapa de deposición de la piel de fibra de carbono 2, porque cuando se deposita la lámina de fibra de carbono 3, ya está impregnada y no necesita un impregnado posterior a su deposición. In the preferred embodiment, the carbon fiber sheet 3 is pre-impregnated with resin. In this way, the stage of deposition of the carbon fiber skin 2 is simplified, because when the carbon fiber sheet 3 is deposited, it is already impregnated and does not require impregnation after its deposition.
La lámina de fibra de carbono 3 de la realización preferente es una lámina de fibra de carbono no tejida. La lámina de fibra de carbono no tejida es más maleable que la lámina de fibra de carbono tejida, de manera que permite conformar la piel de fibra de carbono 2 con menos energía reduciendo el coste de fabricación. The carbon fiber sheet 3 of the preferred embodiment is a non-woven carbon fiber sheet. The non-woven carbon fiber sheet is more malleable than the woven carbon fiber sheet, so that it allows the carbon fiber skin 2 to be formed with less energy while reducing the manufacturing cost.
En la realización preferente la lámina de fibra de carbono 3 es un compuesto polimérico de moldeo suministrado en formato de lámina reforzado con fibras cortas de carbono listo para moldear, utilizado principalmente en el moldeo por compresión. En adelante se hace referencia al compuesto polimérico de moldeo suministrado en formato de lámina reforzado con fibras cortas de carbono como un CF-SMC por sus siglas en inglés ("Carbón Fiber Sheet Moulding Compound”). In the preferred embodiment, the carbon fiber sheet 3 is a polymeric molding composite supplied in a ready-to-mold short carbon fiber reinforced sheet format, mainly used in compression molding. Hereinafter, the polymeric molding composite supplied in sheet format reinforced with short carbon fibers is referred to as a CF-SMC ("Carbon Fiber Sheet Molding Compound").
El CF-SMC se fabrica a partir de fibras de carbono troceadas y dispersas en una matriz de resina en un estado “B” de maduración, estado que favorece la manipulación y conservación/transporte del material. En este estado “B” no se ha iniciado su polimerización, para ello se requiere del aporte externo de una fuente de calor. El CF-SMC está cubierto por ambos lados con una película plástica de polietileno o nylon para prevenir la autoadhesión durante su conservación/transporte. Sobre la película de abajo se extiende una pasta de resina, y sobre la pasta se depositan aleatoriamente trozos de fibra de carbono hasta el porcentaje de refuerzo deseado. La pasta de resina puede comprender otros componentes como, por ejemplo, aditivos como catalizadores y espesantes, agentes de baja contracción, inhibidores de polimerización y agentes de desmoldeo. Se coloca la película de arriba y el conjunto se lamina en continuo hasta el gramaje deseado. El compuesto resultante es una lámina de fibra de carbono no tejida y pre-impregnada con buena maleabilidad lista para moldear en la forma final deseada. Antes de la etapa de deposición de la piel de fibra de carbono 2 se quitan las películas plásticas que cubren ambos lados del CF-SMC. CF-SMC is manufactured from chopped carbon fibers dispersed in a matrix of resin in a "B" state of maturation, a state that favors the handling and conservation / transport of the material. In this "B" state, its polymerization has not started, for this the external contribution of a heat source is required. The CF-SMC is covered on both sides with a plastic polyethylene or nylon film to prevent self-adhesion during storage / transport. A resin paste is spread on the bottom film, and pieces of carbon fiber are randomly deposited on the paste up to the desired percentage of reinforcement. The resin paste may comprise other components such as, for example, additives such as catalysts and thickeners, low shrinkage agents, polymerization inhibitors and mold release agents. The top film is placed and the assembly is continuously laminated to the desired grammage. The resulting composite is a pre-impregnated, non-woven carbon fiber sheet with good malleability ready to mold into the desired final shape. Before the carbon fiber skin deposition stage 2, the plastic films covering both sides of the CF-SMC are removed.
La principal ventaja del CF-SMC es su excelente plasticidad en comparación con la lámina de fibras de carbono tejidas, donde las fibras de carbono cortadas reducen aún más el coste de fabricación. Además, presenta un excelente compromiso entre una elevada plasticidad, un bajo coste de materia prima y una rigidez suficiente para la aplicación de una culata de un arma de fuego. The main advantage of CF-SMC is its excellent plasticity compared to woven carbon fiber sheet, where staple carbon fibers further reduce manufacturing cost. Furthermore, it has an excellent compromise between high plasticity, low cost of raw material and sufficient rigidity for the application of a stock of a firearm.
Otra ventaja del CF-SMC es que, al estar la resina en un estado “B” de maduración, la resina pierde su pegajosidad y no se puede derramar gracias a su textura viscosa en la etapa de deposición de la piel de fibra de carbono 2, a la vez que la resina le confiere una plasticidad suficiente a la piel de fibra de carbono 2 durante la etapa de espumado. Another advantage of CF-SMC is that, as the resin is in a maturing “B” state, the resin loses its stickiness and cannot spill thanks to its viscous texture in the carbon fiber skin deposition stage 2 , while the resin confers sufficient plasticity to the carbon fiber skin 2 during the foaming stage.
En la realización preferente de la invención, el CF-SMC comprende fibras de carbono provenientes de procesos de reciclado. Ello posibilita que la culata 100 sea más sostenible y aún más económica, ya que le proporciona a la fibra de carbono una segunda vida. In the preferred embodiment of the invention, the CF-SMC comprises carbon fibers from recycling processes. This makes the cylinder head 100 more sustainable and even more economical, as it gives carbon fiber a second life.
El CF-SMC de la realización preferente comprende un porcentaje en peso de fibra de carbono entre 40 % y 60% respecto al porcentaje en peso total, y una longitud de fibras de carbono entre 25 y 75 mm, de este modo se obtiene un compromiso óptimo entre la rigidez de la fibra de carbono y la plasticidad de la resina. Más concretamente, el porcentaje en peso de fibra de carbono es de 45 % y la longitud de fibras de carbono es de 50 mm. Además, la longitud de 50 mm es una longitud estándar en los CF-SMC comerciales, lo cual facilita el poder encontrar suministro de este material. The CF-SMC of the preferred embodiment comprises a percentage by weight of carbon fiber between 40% and 60% with respect to the percentage by total weight, and a length of carbon fibers between 25 and 75 mm, thus obtaining a compromise optimum between the stiffness of the carbon fiber and the plasticity of the resin. More specifically, the weight percentage of fiber of carbon is 45% and the length of carbon fibers is 50mm. In addition, the 50mm length is a standard length on commercial CF-SMCs, making it easy to find supplies for this material.
En el método de la invención la resina es preferentemente una resina de éster vinílico o una resina epoxi. Dichas resinas presentan una reducida viscosidad y gran capacidad de fluidez incluso a temperatura ambiente, por lo que se favorece la impregnación de las fibras de carbono y la correcta interacción matriz /refuerzo para una correcta transmisión de esfuerzos ante cargas externas durante la etapa de espumado. Además, dichas resinas presentan ciclos de polimerización relativamente cortos, atendiendo a la tipología del agente catalítico empleado en la base de la formulación de la resina y a la temperatura de la fuente externa de calor. En la realización preferente del método de la invención la resina es una resina de éster vinílico. In the method of the invention the resin is preferably a vinyl ester resin or an epoxy resin. Said resins have a low viscosity and high flowability even at room temperature, thus favoring the impregnation of the carbon fibers and the correct matrix / reinforcement interaction for a correct transmission of stresses to external loads during the foaming stage. In addition, these resins have relatively short polymerization cycles, taking into account the type of catalytic agent used in the base of the resin formulation and the temperature of the external heat source. In the preferred embodiment of the method of the invention the resin is a vinyl ester resin.
En la realización preferente del método, previamente a la deposición de-al menos una lámina de fibra de carbono 3 se deposita una lámina estética 7 en la etapa de deposición de la piel de fibra de carbono 2, siendo la lámina estética 7 la que aporta la estética final a la culata100. La lámina estética 7 preferentemente es una lámina de fibra de carbono tejida. La lámina de fibra de carbono tejida aporta rigidez a la estructura, pero también es muy cara. De este modo, la lámina estética 7 le confiere a la culata 100 una apariencia de culata más rígida sin elevar el coste de materia prima de toda la piel de fibra de carbono 2. Para garantizar la interacción entre las diferentes capas la lámina estética 7 está impregnada con la misma resina que la lámina de fibra de carbono 3. In the preferred embodiment of the method, prior to the deposition of-at least one carbon fiber sheet 3, an aesthetic sheet 7 is deposited in the stage of deposition of the carbon fiber skin 2, the aesthetic sheet 7 being the one that provides the final aesthetics to the cylinder head100. The aesthetic sheet 7 is preferably a woven carbon fiber sheet. The woven carbon fiber sheet adds rigidity to the structure, but is also very expensive. In this way, the aesthetic sheet 7 gives the cylinder head 100 a more rigid butt look without raising the cost of raw material of the entire carbon fiber skin 2. To guarantee the interaction between the different layers, the aesthetic sheet 7 is impregnated with the same resin as the carbon fiber sheet 3.
En otras realizaciones la lámina estética 7 depositada puede ser una lámina con un estampado o con un diseño personalizado a cada usuario para conseguir una apariencia estética determinada, o la lámina estética 7 puede ser depositada sobre tan sólo alguna zona concreta de la superficie interior 4 para conferirle esa apariencia estética tan sólo en esa zona concreta. Sin embargo, en otras realizaciones en las que se desea obtener el acabado aportado por la lámina de carbono 3 es factible el no empleo de dicha lámina estética 7. In other embodiments, the aesthetic sheet 7 deposited can be a sheet with a stamping or with a personalized design for each user to achieve a specific aesthetic appearance, or the aesthetic sheet 7 can be deposited on only some specific area of the interior surface 4 to give it that aesthetic appearance only in that specific area. However, in other embodiments in which it is desired to obtain the finish provided by the carbon sheet 3, it is feasible not to use said aesthetic sheet 7.
En la realización preferente del método de la invención, en la etapa de deposición de la piel de fibra de carbono 2 se deposita más de una lámina de fibra de carbono 3 en al menos una zona de la culata 100 dando lugar a una zona de refuerzo 8. De este modo, aumentando el espesor de la piel de fibra de carbono 2 en la zona de refuerzo 8 se aumenta la rigidez en esa zona de refuerzo 8. Por lo tanto, la zona de refuerzo 8 soporta unos esfuerzos mayores que el resto de la culata 100. In the preferred embodiment of the method of the invention, in the carbon fiber skin deposition step 2, more than one carbon fiber sheet 3 is deposited in at least one cylinder head area 100 giving rise to a reinforcement area 8. Thus, increasing the thickness of the carbon fiber skin 2 in the reinforcement area 8 increases the stiffness in that reinforcement area 8. Therefore, the reinforcement zone 8 supports greater forces than the rest of the cylinder head 100.
En la realización preferente mostrada en las Figuras 3 y 4 se representa a modo de ejemplo no limitativo una sola zona de refuerzo 8 correspondiente al alojamiento para una-lengüeta de retroceso. Sobre este alojamiento de la culata 100 se apoya la lengüeta de retroceso del conjunto de mecanismos 15 cuando se dispara el arma de fuego, transmitiendo los esfuerzos de retroceso del conjunto de mecanismos 15 a la culata. Generalmente esta zona de refuerzo 8 es la que soporta los mayores esfuerzos en la culata 100. Tal y como se muestra en detalle en la Figura 4, en la zona de refuerzo 8 la piel de fibra de carbono 2 comprende una lámina estética 7 y dos láminas de fibra de carbono 3, mientras que en el resto de la culata 100 la piel de fibra de carbono 2 comprende una lámina estética 7 y tan sólo una lámina de fibra de carbono 3. In the preferred embodiment shown in Figures 3 and 4, a single reinforcement zone 8 corresponding to the housing for a retraction tongue is represented by way of non-limiting example. The recoil tab of the set of mechanisms 15 rests on this housing of the stock 100 when the firearm is fired, transmitting the recoil forces of the set of mechanisms 15 to the stock. Generally, this reinforcement zone 8 is the one that supports the greatest efforts in the cylinder head 100. As shown in detail in Figure 4, in the reinforcement zone 8 the carbon fiber skin 2 comprises an aesthetic sheet 7 and two Carbon fiber sheets 3, while in the rest of the cylinder head 100 the carbon fiber skin 2 comprises an aesthetic sheet 7 and only one carbon fiber sheet 3.
En otras realizaciones la culata 100 puede comprender varias zonas de refuerzo 8. La zona de refuerzo 8 puede ser cualquier zona de la culata 100 que deba soportar unos esfuerzos mayores que el resto de la culata 100 como, por ejemplo, la empuñadura y/o la zona de amarre del conjunto de mecanismos 15. In other embodiments, the stock 100 can comprise several reinforcement areas 8. The reinforcement area 8 can be any area of the stock 100 that must withstand greater stresses than the rest of the stock 100, such as, for example, the grip and / or the mooring area of the set of mechanisms 15.
En la realización preferente del método, la cavidad 5 del molde 1 está comunicada con el exterior mediante un conducto de inserción 9 y al menos un conducto de salida 10 configurados para comunicar la cavidad 5 del molde 1 con el exterior una vez depositada la piel de fibra de carbono 2 y cerrado el molde 1 , tal y como se muestra en las Figuras 3 y 4. In the preferred embodiment of the method, the cavity 5 of the mold 1 is communicated with the exterior by means of an insertion conduit 9 and at least one outlet conduit 10 configured to communicate the cavity 5 of the mold 1 with the exterior once the skin of the carbon fiber 2 and closed the mold 1, as shown in Figures 3 and 4.
El conducto de inserción 9 está configurado para que el material exotérmico espumable 6 se inserte dentro de la cavidad 5 desde el exterior a través de dicho conducto de inserción 9. De este modo, se puede adelantar la etapa de cierre del molde 1 a la etapa de inserción, sin peligrar la etapa de espumado con la demora de una etapa intermedia de cierre del molde 1 entre la etapa de inserción y la etapa de espumado. The insertion conduit 9 is configured so that the exothermic foamable material 6 is inserted into the cavity 5 from the outside through said insertion conduit 9. In this way, the stage of closing the mold 1 can be advanced to the stage of insertion, without jeopardizing the foaming stage with the delay of an intermediate stage of closing of the mold 1 between the insertion stage and the foaming stage.
En la realización preferente del método, la etapa de cierre del molde 1 es posterior a la etapa de deposición de la piel de fibra de carbono 2. En la Figura 5 se muestra el molde 1 de la realización preferente del método después de la etapa de cierre del molde 1 , en la que las dos piezas del molde 1 se disponen con las partes de la superficie interior 4 sobre las que se ha depositado previamente la piel de fibra de carbono 2 enfrentadas entre sí, quedando la cavidad 4 en su interior. Al enfrentar entre sí las partes de la superficie interior 4, la piel de fibra de carbono 2 queda unida en la intersección de las piezas, siendo la piel de fibra de carbono 2 una piel sustancialmente cerrada después de la etapa de cierre del molde 1. De este modo, en la etapa de espumado la espuma no aflora a la superficie exterior de la culata 100. In the preferred embodiment of the method, the stage of closing the mold 1 is subsequent to the stage deposition of the carbon fiber skin 2. Figure 5 shows the mold 1 of the preferred embodiment of the method after the stage of closing the mold 1, in which the two pieces of the mold 1 are arranged with the parts of the inner surface 4 on which the carbon fiber skin 2 has been previously deposited facing each other, leaving the cavity 4 inside. As the parts of the inner surface 4 face each other, the carbon fiber skin 2 is joined at the intersection of the parts, the carbon fiber skin 2 being a substantially closed skin after the mold closure step 1. Thus, in the foaming stage the foam does not rise to the outer surface of the cylinder head 100.
El conducto de salida 10 está configurado para extraer al exterior unos gases producidos durante la etapa de espumado. De este modo, se minimiza la existencia de burbujas de aire atrapadas en la piel de fibra de carbono 2 que debiliten o empeoren la apariencia de la piel de fibra de carbono 2. The outlet conduit 10 is configured to extract to the outside gases produced during the foaming stage. In this way, the existence of air bubbles trapped in the carbon fiber skin 2 that weaken or worsen the appearance of the carbon fiber skin 2 is minimized.
En la realización preferente del método, tal y como se muestra en la Figura 3, el conducto de inserción 9 y los conductos de salida 10 son unos elementos tubulares que se disponen sustancialmente ortogonales a la superficie interior 4 en la intersección de las piezas que componen el molde 1 después de depositar la piel de fibra de carbono 2 sobre la superficie interior 4. De este modo, cuando se cierra el molde 1 la piel de la fibra de carbono 2 queda cerrada excepto por el conducto de inserción 9 y los conductos de salida 10 que atraviesan la piel de fibra carbono 2. In the preferred embodiment of the method, as shown in Figure 3, the insertion conduit 9 and the outlet conduits 10 are tubular elements that are arranged substantially orthogonal to the inner surface 4 at the intersection of the parts that make up the mold 1 after depositing the carbon fiber skin 2 on the inner surface 4. Thus, when the mold 1 is closed, the carbon fiber skin 2 remains closed except for the insertion conduit 9 and the outlet 10 going through the carbon fiber skin 2.
El conducto de inserción 9 tiene preferentemente un diámetro mínimo configurado para poder realizar rápidamente la etapa de inserción antes de que empiece la etapa de espumado y el conducto de salida 9 tiene preferentemente un diámetro máximo configurado para que salgan los gases sin que haya unas pérdidas de presión significativas en la cavidad 5 del molde 1 cerrado. The insertion conduit 9 preferably has a minimum diameter configured to be able to quickly carry out the insertion stage before the foaming stage begins and the outlet conduit 9 preferably has a maximum diameter configured so that the gases escape without there being losses of significant pressure in cavity 5 of mold 1 closed.
Sin embargo, en otras realizaciones del método el conducto de inserción 9 y el conducto de salida 10 pueden ser partes integrales al molde 1 o piezas aparte que se disponen antes de depositar la piel de fibra de carbono 2. En estos casos, para facilitar la deposición de la piel de fibra de carbono 2 sin que se cubran el conducto de inserción 9 y los conductos de salida 10, se pueden realizar unos cortes en la lámina de fibra de carbono 3 antes de depositarla, coincidiendo dichos cortes con el conducto de inserción 9 y los conductos de salida 10 en la etapa de deposición. However, in other embodiments of the method the insertion conduit 9 and the outlet conduit 10 can be integral parts to the mold 1 or separate pieces that are arranged before depositing the carbon fiber skin 2. In these cases, to facilitate the carbon fiber skin deposition 2 without covering the insertion duct 9 and the outlet ducts 10, cuts can be made in the carbon fiber sheet 3 before depositing it, said cuts coinciding with the insertion conduit 9 and the outlet conduits 10 in the deposition stage.
En otra realización del método el conducto de salida 10 se puede disponer en un orificio existente. Un orificio existente puede ser, por ejemplo, un orificio pasante de lado a lado de la culata 100 (no mostrado en las Figuras) configurado para recibir un tornillo de fijación del conjunto de mecanismos 15 del arma de fuego. De este modo, el conducto de salida 10 no deja nuevos orificios en la piel de fibra de carbono 2. In another embodiment of the method the outlet conduit 10 may be arranged in an existing hole. An existing hole may be, for example, a side-to-side through hole in the stock 100 (not shown in the Figures) configured to receive a set screw for the mechanism assembly 15 of the firearm. In this way, the outlet conduit 10 does not leave new holes in the carbon fiber skin 2.
A igual que la superficie interior 4 el conducto de inserción 9 y el conducto de salida 10 son preferentemente impermeables para que se puedan desmoldear fácilmente. Like the inner surface 4, the insertion conduit 9 and the outlet conduit 10 are preferably waterproof so that they can be easily removed from the mold.
En la realización preferente, el método comprende además una etapa de colocación de insertos, anterior a la etapa de deposición de la piel de fibra de carbono 2, donde se coloca al menos un inserto 11 en la superficie interior 4 del molde 1 haciendo tope con al menos un elemento de tope 12 del molde 1 configurado para posicionar el inserto 11, quedando la piel de fibra de carbono 2 depositada sobre el inserto 11 en la etapa de deposición, de modo que el inserto 11 queda unido a la piel de fibra de carbono 2 en una posición concreta de la culata 100. In the preferred embodiment, the method further comprises a stage of inserting the inserts, prior to the stage of deposition of the carbon fiber skin 2, where at least one insert 11 is placed on the inner surface 4 of the mold 1 abutting with at least one stopper element 12 of the mold 1 configured to position the insert 11, leaving the carbon fiber skin 2 deposited on the insert 11 in the deposition stage, so that the insert 11 remains attached to the fiber fiber skin Carbon 2 in a specific position on the cylinder head 100.
Tal y como se muestra en la Figura 6, en la etapa de deposición de la piel de fibra de carbono 2, la lámina de fibra de carbono 3 impregnada en resina se deposita sobre la superficie interior 4 de la cavidad 5 del molde 1 , y también sobre los insertos 11. De esta manera, en la etapa de espumado la espuma presiona la piel de fibra de carbono 2 contra los insertos 11 hasta que hacen tope con el elemento de tope 12. A la vez que la piel de fibra de carbono 2 presiona el inserto 11, la resina de la piel de fibra de carbono 2 fluye, y hacia el final de la etapa de espumado la resina se polimeriza alrededor de los insertos 11, quedando los insertos 11 unidos a la piel de fibra de carbono 2 en una posición concreta de la culata 100. Por lo tanto, se obtienen insertos integrales con la piel de fibra de carbono, a diferencia de insertos simplemente insertados en la piel de fibra de carbono. As shown in Figure 6, in the carbon fiber skin 2 deposition stage, the resin impregnated carbon fiber sheet 3 is deposited on the inner surface 4 of the cavity 5 of the mold 1, and also on the inserts 11. In this way, in the foaming stage the foam presses the carbon fiber skin 2 against the inserts 11 until they abut the stop element 12. At the same time as the carbon fiber skin 2 presses the insert 11, the resin of the carbon fiber skin 2 flows, and towards the end of the foaming stage the resin polymerizes around the inserts 11, leaving the inserts 11 attached to the carbon fiber skin 2 in a specific position of the cylinder head 100. Therefore, integral inserts are obtained with the carbon fiber skin, as opposed to inserts simply inserted into the carbon fiber skin.
Los insertos 11 preferentemente comprenden una superficie externa estriada, ranurada o de una elevada rugosidad configurada para mejorar la adherencia del inserto 11 a la piel de fibra de carbono 2. The inserts 11 preferably comprise a ridged, grooved or grooved outer surface. a high roughness configured to improve the adhesion of the insert 11 to the carbon fiber skin 2.
A modo de ejemplo no limitativo, en la Figura 2 se representa la etapa de colocación de insertos en la que se colocan dos insertos 11 haciendo tope con dos elementos de tope 12, aunque se podrían colocar más de dos insertos 11 y de dos elementos de tope 12. By way of non-limiting example, Figure 2 represents the insert placement stage in which two inserts 11 are placed abutting two stop elements 12, although more than two inserts 11 and two stop elements could be placed. stop 12.
Los insertos 11 permiten fijar unos elementos funcionales o unos accesorios a la culata 100 una vez desmoldeada la culata 100. Por ejemplo, los insertos 11 mostrados en la Figura 2 comprenden una rosca interna configurada para recibir y fijar unos extremos roscados de una correa de un arma de fuego una vez desmoldeada la culata 100. Otros insertos 11 no mostrados en las figuras pueden ser unos insertos de rosca interna destinados a recibir unos tornillos de fijación de una cantonera 14 o de un conjunto de mecanismos 15 de un arma de fuego. The inserts 11 allow functional elements or accessories to be attached to the stock 100 once the stock 100 has been removed from the mold. For example, the inserts 11 shown in Figure 2 comprise an internal thread configured to receive and fix threaded ends of a strap of a firearm once the stock 100 has been demolished. Other inserts 11 not shown in the figures may be inserts with internal thread intended to receive fixing screws of a butt plate 14 or of a set of mechanisms 15 of a firearm.
En las Figuras 1 y 2 se muestran los elementos de tope 12 de la realización preferente configurados para posicionar el inserto 11. El elemento de tope 12 es un vástago fijado al molde 1 y comprende un saliente 121 que sobresale de la superficie interior 4 del molde 1 hacia la cavidad 5. En la etapa de colocación de insertos la rosca interna del inserto 11 se inserta en el saliente 121 del elemento de tope 12 hasta que hace tope con el saliente 121, posicionando de este modo el inserto 11. Figures 1 and 2 show the abutment elements 12 of the preferred embodiment configured to position the insert 11. The abutment element 12 is a stem attached to the mold 1 and comprises a projection 121 that projects from the inner surface 4 of the mold 1 into cavity 5. In the insert placement stage the internal thread of insert 11 is inserted into projection 121 of stopper element 12 until it abuts against projection 121, thereby positioning insert 11.
El saliente 121 preferentemente comprende una rosca externa que en la etapa de colocación de insertos se enrosca en la rosca interna del inserto 11. De este modo se asegura que el inserto 11 no pueda salir accidentalmente del saliente 121 durante las posteriores etapas del método. The projection 121 preferably comprises an external thread which in the insert placement stage is screwed into the internal thread of the insert 11. This ensures that the insert 11 cannot accidentally come out of the projection 121 during the subsequent steps of the method.
Además, con la rosca externa del saliente 121 se puede ajustar la profundidad de inserción del inserto 11 en el elemento de tope 12 para dejar un pequeño hueco entre el elemento de tope 12 y el inserto 11 , rellenándose dicho hueco con la piel de fibra de carbono 2 en la etapa de espumado. De este modo, se consigue un aspecto más continuo de la piel de fibra de carbono 2 y se mejora la adherencia del inserto 11 a la piel de fibra de carbono 2. Sin embargo, en otras posibles realizaciones el elemento de tope 12 puede ser parte integral del molde 1 o puede realizarse de cualquier otra forma conocida por el experto en la materia. Furthermore, with the external thread of the projection 121, the insertion depth of the insert 11 in the stop element 12 can be adjusted to leave a small gap between the stop element 12 and the insert 11, said gap being filled with the fiber skin of carbon 2 in the foaming stage. In this way, a more continuous appearance of the carbon fiber skin 2 is achieved and the adhesion of the insert 11 to the carbon fiber skin 2 is improved. However, in other possible embodiments, the stop element 12 can be an integral part of the mold 1 or it can be made in any other way known to those skilled in the art.
En una realización preferente del método de la invención el inserto 11 es un inserto metálico. In a preferred embodiment of the method of the invention the insert 11 is a metallic insert.
En una realización preferente del método, el conducto de salida 10 se dispone en uno de los insertos 11. De esta manera, se facilita la disposición del conducto de salida 10. In a preferred embodiment of the method, the outlet conduit 10 is arranged in one of the inserts 11. In this way, the arrangement of the outlet conduit 10 is facilitated.
En la Figura 6 se representa a modo de ejemplo una vista en corte del molde 1 durante la etapa de inserción de la realización preferente del método, posterior a la etapa de deposición de la piel de fibra de carbono 2 mostrada en la Figura 3 y a la etapa de cierre del molde 1 mostrada en la Figura 5, en la que se inserta un material exotérmico espumable 6 en la cavidad 5 del molde 1 a través del conducto de inserción 9. Figure 6 represents an example of a sectional view of the mold 1 during the insertion stage of the preferred embodiment of the method, after the stage of deposition of the carbon fiber skin 2 shown in Figure 3 and at the step of closing the mold 1 shown in Figure 5, in which an exothermic foamable material 6 is inserted into the cavity 5 of the mold 1 through the insertion conduit 9.
En la realización preferente del método el material exotérmico espumable 6 es un sistema de poliuretano. El sistema de poliuretano comprende dos componentes líquidos, poliol e isocianato, Al estar el material exotérmico espumable 6 en estado líquido se facilita su inserción. Además, la reactividad de la mezcla se puede controlar para poder finalizar la etapa de inserción antes de que empiece la etapa de espumado. Por ejemplo, para que la reacción de espumado empiece a unos 15-30 segundos después de mezclar los componentes del material exotérmico espumable 6, de manera que dé tiempo a insertarlo en la cavidad 5 del molde 1. En la etapa de espumado de la realización preferente el material exotérmico espumable 6 da lugar a una espuma de poliuretano que rellena la cavidad 5 y queda adherida a la piel de fibra de carbono 2. La espuma de poliuretano tiene lugar mediante una reacción química exotérmica de espumado al mezclar poliol e isocianato, y conforma la piel de fibra de carbono 2 generando una presión y una temperatura que acortan el tiempo de fabricación. In the preferred embodiment of the method, the exothermic foamable material 6 is a polyurethane system. The polyurethane system comprises two liquid components, polyol and isocyanate. As the exothermic foamable material 6 is in a liquid state, its insertion is facilitated. Furthermore, the reactivity of the mixture can be controlled so that the insertion stage can be completed before the foaming stage begins. For example, so that the foaming reaction begins about 15-30 seconds after mixing the components of the exothermic foamable material 6, so as to allow time to insert it into the cavity 5 of the mold 1. In the foaming stage of the embodiment preferably, the exothermic foamable material 6 gives rise to a polyurethane foam that fills the cavity 5 and adheres to the carbon fiber skin 2. The polyurethane foam takes place through an exothermic foaming chemical reaction by mixing polyol and isocyanate, and it forms the carbon fiber skin 2 generating a pressure and a temperature that shorten the manufacturing time.
Sin embargo, en otras realizaciones se podría emplear otro material exotérmico espumable 6 que implica el uso de agentes de espumación integrados en sistemas poliméricos termoestables, por ejemplo, fenólicas, poliester o epoxi. However, in other embodiments another foamable exothermic material 6 could be employed which involves the use of foaming agents integrated into thermoset polymeric systems, eg, phenolic, polyester or epoxy.
Tal y como se ha comentado, en la realización preferente la piel de fibra de carbono 2 es una piel sustancialmente cerrada después de la etapa de cierre del molde 1, de manera que en la etapa de espumado la espuma no aflora a la superficie exterior de la culata 100, y por lo tanto la culata 100 obtenida según el método de la invención es una culata sólida con una piel de fibra de carbono 2 y un núcleo de espuma. As mentioned, in the preferred embodiment, the carbon fiber skin 2 is a substantially closed skin after the mold closure step 1, so that in the foaming step the foam does not rise to the outer surface of the cylinder head 100, and therefore the cylinder head 100 obtained according to the method of the invention is a solid cylinder head with a carbon fiber skin 2 and a foam core.
La piel de fibra de carbono 2 le confiere a la culata 100 una buena rigidez y un buen aspecto estético, y el núcleo de espuma adherido a la piel de fibra de carbono 2, le confiere a la culata 100 solidez y ligereza. De este modo, la culata 100 obtenida a partir del método de la invención es una culata ligera, rígida y proporciona una impresión general de calidad asociada tanto a la fibra de carbono como a la culata sólida. The carbon fiber skin 2 gives the stock 100 good rigidity and a good aesthetic appearance, and the foam core adhered to the carbon fiber skin 2 gives the stock 100 solidity and lightness. Thus, the stock 100 obtained from the method of the invention is a light, rigid stock and provides an overall impression of quality associated with both carbon fiber and solid stock.
Tal y como se ha comentado anteriormente y se muestra en la Figura 7, en la etapa de espumado la espuma que rellena la cavidad 5 genera una presión para conformar la piel de fibra de carbono 2 con la forma externa de la culata 100, presionando la piel de fibra de carbono 2 contra la superficie interior 4 del molde 1. As previously mentioned and shown in Figure 7, in the foaming stage the foam that fills the cavity 5 generates a pressure to conform the carbon fiber skin 2 with the external shape of the cylinder head 100, pressing the carbon fiber skin 2 against inner surface 4 of mold 1.
Para que la presión generada por la espuma en la etapa de espumado sea la adecuada para que conforme la piel de fibra de carbono 2 sin que conlleve un riesgo de apertura del molde 1 , en la etapa de inserción se controla la cantidad del material exotérmico espumable 6 que se inserta. In order for the pressure generated by the foam in the foaming stage to be adequate so that it forms the carbon fiber skin 2 without entailing a risk of opening the mold 1, in the insertion stage the amount of foamable exothermic material is controlled 6 to be inserted.
La presión adecuada depende a su vez del espesor de la piel de fibra de carbono 2. A mayor espesor mayor rigidez, pero también se requiere mayor presión para conformar la piel de fibra de carbono 2 y un mayor coste de materia prima. Por ello, conviene acotar el espesor máximo de la piel de fibra de carbono 2. En una realización preferente la piel de fibra de carbono tiene un espesor máximo de 2 mm. Más concretamente, para buscar un compromiso entre una suficiente rigidez y una energía necesaria para conformar la piel de fibra de carbono 2, en una realización preferente la piel de fibra de carbono tiene un espesor entre 1 y 2 mm. The appropriate pressure depends in turn on the thickness of the carbon fiber skin 2. The thicker the greater the stiffness, but also requires greater pressure to form the carbon fiber skin 2 and a higher cost of raw material. For this reason, it is convenient to limit the maximum thickness of the carbon fiber skin 2. In a preferred embodiment, the carbon fiber skin has a maximum thickness of 2 mm. More specifically, in order to find a compromise between a sufficient stiffness and a necessary energy to form the carbon fiber skin 2, in a preferred embodiment the carbon fiber skin has a thickness between 1 and 2 mm.
En una realización preferente la espuma genera una presión sobre la piel de fibra de carbono 2 de entre 1 y 3 bares en la etapa de espumado, preferentemente una presión de 2 bares. De este modo, se conforma adecuadamente la piel de fibra de carbono 2 que tiene un espesor máximo de 2 mm. Tal y como se ha comentado anteriormente, la reacción exotérmica del material exotérmico espumable 6 genera una temperatura en el molde 1 que aumenta la fluidez de la resina permitiendo conformar la piel de fibra de carbono 2 junto con la presión generada por la espuma y hacia el final de la etapa de espumado se inicia la reacción de polimerización de la resina de la piel de fibra de carbono 2, aumentando la rigidez del material. Cuando el material exotérmico espumable 6 es un sistema de poliuretano esta temperatura es de unos 60-90°C. In a preferred embodiment, the foam generates a pressure on the carbon fiber skin 2 of between 1 and 3 bars in the foaming stage, preferably a pressure of 2 bars. Thus, the carbon fiber skin 2 having a maximum thickness of 2 mm is suitably shaped. As previously mentioned, the exothermic reaction of the exothermic foamable material 6 generates a temperature in the mold 1 that increases the fluidity of the resin, allowing the carbon fiber skin 2 to be formed together with the pressure generated by the foam and towards the At the end of the foaming stage, the polymerization reaction of the carbon fiber skin resin 2 begins, increasing the rigidity of the material. When the exothermic foamable material 6 is a polyurethane system this temperature is about 60-90 ° C.
Sin embargo, teniendo en cuenta el sistema catalítico empleado en la base de la formulación de la resina que integra la piel de fibra de carbono 2, puede que con la temperatura generada en la etapa de espumado no se complete el ciclo de polimerización de la resina produciéndose un grado de conversión en la reacción de polimerización insuficiente para proceder al desmoldeo de la pieza justo después de la etapa de espumado, ya que la piel de fibra de carbono 2 no alcanza la rigidez suficiente para garantizar la integridad de la culata tras su desmoldeo. However, taking into account the catalytic system used in the base of the resin formulation that integrates the carbon fiber skin 2, the temperature generated in the foaming stage may not complete the polymerization cycle of the resin. producing an insufficient degree of conversion in the polymerization reaction to proceed with the demoulding of the part just after the foaming stage, since the carbon fiber skin 2 does not reach sufficient rigidity to guarantee the integrity of the cylinder head after its demoulding .
Una realización preferente del método de la invención comprende una etapa de curado posterior a la etapa de espumado, en el que durante un periodo de tiempo predeterminado hay un aporte externo de temperatura por encima de una temperatura umbral en el molde 1. De este modo, en el tiempo predeterminado la piel de fibra de carbono 2 alcanza la rigidez suficiente para garantizar la integridad de la culata tras la etapa de curado acortando el tiempo de polimerización de la resina con el que se pueda desmoldear la culata y, por consiguiente, el tiempo total de fabricación. A preferred embodiment of the method of the invention comprises a curing stage subsequent to the foaming stage, in which for a predetermined period of time there is an external input of temperature above a threshold temperature in the mold 1. In this way, in the predetermined time, the carbon fiber skin 2 reaches sufficient rigidity to guarantee the integrity of the cylinder head after the curing stage, shortening the polymerization time of the resin with which the cylinder head can be demoulded and, consequently, the time total manufacturing.
La realización preferente del método mostrada en las Figuras comprende la etapa de curado. La resina de éster vinílico tiene de por sí una elevada velocidad de polimerización y una elevada productividad. El aumento de temperatura de la etapa de curado acorta aún más el tiempo de polimerización de esta resina. The preferred embodiment of the method shown in the Figures comprises the curing step. Vinyl ester resin itself has a high polymerization rate and high productivity. Increasing the temperature of the curing stage further shortens the polymerization time of this resin.
Preferentemente la temperatura umbral y el tiempo predeterminado de la etapa de curado son de entre 120 y135 °C, y 10 minutos respectivamente. Sometiendo la resina de éster vinílico o de epoxi a una temperatura de entre 120 y135 °C durante 10 minutos la piel de fibra de carbono 2 se polimeriza con la rigidez suficiente para garantizar la integridad de la culata tras su desmoldeo. Una realización preferente del método de la invención comprende una etapa de enfriamiento posterior a la etapa de curado en la que se enfría el molde 1 por debajo de una temperatura, preferiblemente por debajo de 40°C, y una etapa de desmoldeo posterior a la etapa de enfriamiento en la que el molde 1 se abre para extraer la culata 100. La etapa de enfriamiento facilita el desmoldeo de la culata 100 y permite volver a emplear el molde 1 en el método de la invención para fabricar otra culata sin que haya riesgo de una polimerización prematura de la resina en la otra culata. Preferably the threshold temperature and the predetermined time of the curing step are between 120 and 135 ° C, and 10 minutes respectively. By subjecting the vinyl ester or epoxy resin to a temperature of between 120 and 135 ° C for 10 minutes, the carbon fiber skin 2 is polymerized with sufficient rigidity to guarantee the integrity of the cylinder head after demoulding. A preferred embodiment of the method of the invention comprises a cooling stage after the curing stage in which the mold 1 is cooled below a temperature, preferably below 40 ° C, and a demoulding stage after the stage in which the mold 1 is opened to extract the cylinder head 100. The cooling step facilitates the demoulding of the cylinder head 100 and allows the mold 1 to be reused in the method of the invention to manufacture another cylinder head without the risk of premature polymerization of the resin in the other cylinder head.
La realización preferente del método comprende las etapas de enfriamiento y de desmoldeo. En la Figura 8 se representa esquemáticamente el molde 1 durante la etapa de desmoldeo de la realización preferente del método. Durante la etapa de desmoldeo de la realización preferente se abre el molde 1 , quedando la culata 100 obtenida con el método de la invención sobre una de las piezas que componen el molde 1. Antes de extraer la culata 100 se quitan los topes 12, el conducto de inserción 9 y los conductos de salida 10. The preferred embodiment of the method comprises the cooling and demoulding stages. In Figure 8 the mold 1 is schematically represented during the demoulding stage of the preferred embodiment of the method. During the demoulding stage of the preferred embodiment, the mold 1 is opened, leaving the cylinder head 100 obtained with the method of the invention on one of the parts that make up the mold 1. Before removing the cylinder head 100, the stops 12 are removed, the insertion conduit 9 and outlet conduits 10.
La culata 100 puede comprender al menos una zona 13 configurada para ser cubierta con otra pieza tras la etapa de desmoldeo, disponiéndose en dicha zona 13 el conducto de inserción 9 o el conducto de salida 10. La zona 13 puede corresponderá una zona de la culata 100 que queda cubierta por un accesorio o un elemento funcional después de desmoldear la culata 100. De este modo el orificio dejado en la piel de fibra de carbono 2 por el conducto de inserción 9 o el conducto de salida 10 queda cubierto. The cylinder head 100 may comprise at least one area 13 configured to be covered with another part after the demoulding stage, the insertion conduit 9 or the outlet conduit 10 being arranged in said area 13. The area 13 may correspond to an area of the cylinder head. 100 which is covered by an accessory or a functional element after demoulding the cylinder head 100. In this way the hole left in the carbon fiber skin 2 by the insertion duct 9 or the outlet duct 10 is covered.
Tal y como se muestra en la Figura 9, en la realización preferente la culata 100 comprende dos zonas 13 configuradas para ser cubiertas con la cantonera 14 y el conjunto de mecanismos 15 después de la etapa de desmoldeo, en una zona 13 se dispone el conducto de inserción 9 y en la otra zona 13 se disponen los conductos de salida 10 después de depositar la piel de fibra de carbono 2. De este modo, el orificio dejado por el conducto de inserción 9 queda cubierto por la cantonera 14 y los orificios dejados por los conductos de salida 10 quedan cubiertos por el conjunto de mecanismos 15. Así mismo, después de desmoldear la culata 100, en los insertos 11 integrales a la culata 100 se enroscan los extremos de la correa del arma de fuego. As shown in Figure 9, in the preferred embodiment the cylinder head 100 comprises two zones 13 configured to be covered with the butt plate 14 and the set of mechanisms 15 after the demoulding stage, in a zone 13 the duct is arranged 9 and in the other area 13 the outlet ducts 10 are arranged after depositing the carbon fiber skin 2. In this way, the hole left by the insertion duct 9 is covered by the butt plate 14 and the holes left They are covered by the outlet conduits 10 by the set of mechanisms 15. Likewise, after removing the stock 100, the ends of the strap of the firearm are screwed into the inserts 11 integral to the stock 100.

Claims

REIVINDICACIONES
1. Método de fabricación de una culata para un arma de fuego en un molde (1), comprendiendo la culata (100) una piel de fibra de carbono (2), y comprendiendo el método al menos las etapas de: deposición de la piel de fibra de carbono (2) en la que se deposita al menos una lámina de fibra de carbono (3) impregnada en una resina sobre una superficie interior (4) de una cavidad (5) del molde (1), definiendo dicha superficie interior (4) del molde (1) la forma externa de la culata (100), y cierre del molde (1), caracterizado porque comprende una etapa de inserción después de la etapa de cierre del molde (1) en la que se inserta en la cavidad (5) del molde (1) un material exotérmico espumable (6), y una etapa de espumado después de la etapa de inserción del material exotérmico espumable (6) en la que dicho material exotérmico espumable (6) espuma dando lugar a una espuma que rellena la cavidad (5) y queda adherida a la piel de fibra de carbono (2). 1. Method of manufacturing a stock for a firearm in a mold (1), the stock (100) comprising a carbon fiber skin (2), and the method comprising at least the steps of: deposition of the skin carbon fiber (2) in which at least one carbon fiber sheet (3) impregnated in a resin is deposited on an interior surface (4) of a cavity (5) of the mold (1), defining said interior surface (4) of the mold (1) the external shape of the cylinder head (100), and closure of the mold (1), characterized in that it comprises an insertion stage after the stage of closing the mold (1) in which it is inserted into the cavity (5) of the mold (1) an exothermic foamable material (6), and a foaming stage after the insertion stage of the exothermic foamable material (6) in which said exothermic foamable material (6) foams giving rise to a foam that fills the cavity (5) and adheres to the carbon fiber skin (2).
2. Método de fabricación según la reivindicación 1 , en donde la lámina de fibra de carbono (3) es una lámina de fibra de carbono pre-impregnada en resina. Manufacturing method according to claim 1, wherein the carbon fiber sheet (3) is a carbon fiber sheet pre-impregnated with resin.
3. Método de fabricación según la reivindicación 1 o 2, en donde la lámina de fibra de carbono (3) es una lámina de fibra de carbono no tejida. Manufacturing method according to claim 1 or 2, wherein the carbon fiber sheet (3) is a non-woven carbon fiber sheet.
4. Método de fabricación según la reivindicación 3, en donde la lámina de fibra de carbono (3) es un compuesto polimérico de moldeo suministrado en formato de lámina reforzado con fibras cortas de carbono. Manufacturing method according to claim 3, wherein the carbon fiber sheet (3) is a polymeric molding compound supplied in a sheet format reinforced with short carbon fibers.
5. Método de fabricación según la reivindicación 4, en donde la lámina de fibra de carbono (3) comprende fibras de carbono provenientes de procesos de reciclado. Manufacturing method according to claim 4, wherein the carbon fiber sheet (3) comprises carbon fibers from recycling processes.
6. Método de fabricación según la reivindicación 4 o 5, en donde la lámina de fibra de carbono (3) comprende un porcentaje en peso de fibra de carbono entre 40 % y 60% respecto al porcentaje en peso total, y una longitud de fibras de carbono entre 25 y 95 mm, preferentemente un porcentaje en peso de fibra de carbono del 45 % y una longitud de fibras de carbono de 50 mm. 6. Manufacturing method according to claim 4 or 5, wherein the carbon fiber sheet (3) comprises a percentage by weight of carbon fiber between 40% and 60% with respect to the percentage by total weight, and a length of carbon fibers between 25 and 95 mm, preferably a percentage by weight of carbon fiber of 45% and a length of carbon fibers of 50 mm.
7. Método de fabricación según cualquiera de las reivindicaciones anteriores, en donde la resina es una resina de éster vinílico o de epoxi. Manufacturing method according to any one of the preceding claims, wherein the resin is a vinyl ester or epoxy resin.
8. Método de fabricación según cualquiera de las reivindicaciones anteriores, en donde en la etapa de deposición se deposita una lámina estética (7) previamente a la deposición de la al menos una lámina de fibra de carbono (3), siendo dicha lámina estética (7) preferentemente una lámina de fibra de carbono tejida. Manufacturing method according to any of the preceding claims, wherein in the deposition stage an aesthetic sheet (7) is deposited prior to the deposition of the at least one carbon fiber sheet (3), said aesthetic sheet ( 7) preferably a woven carbon fiber sheet.
9. Método de fabricación según cualquiera de las reivindicaciones anteriores, en donde en la etapa de deposición se deposita más de una lámina de fibra de carbono (3), en al menos una zona de la culata (100) dando lugar a una zona de refuerzo (8). 9. Manufacturing method according to any of the preceding claims, wherein in the deposition step more than one carbon fiber sheet (3) is deposited in at least one area of the cylinder head (100), giving rise to an area of reinforcement (8).
10. Método de fabricación según cualquiera de las reivindicaciones anteriores, en donde la cavidad (5) del molde (1) está comunicada con el exterior mediante al menos un conducto de inserción (9) y al menos un conducto de salida (10) configurados para comunicar la cavidad (5) del molde (1) con el exterior después de la etapa de deposición de la piel de fibra de carbono (2) y la etapa de cierre del molde (1). Manufacturing method according to any of the preceding claims, wherein the cavity (5) of the mold (1) is communicated with the outside through at least one insertion conduit (9) and at least one outlet conduit (10) configured to communicate the cavity (5) of the mold (1) with the exterior after the stage of deposition of the carbon fiber skin (2) and the stage of closing the mold (1).
11. Método de fabricación según la reivindicación 10, en donde el conducto de inserción (9) está configurado para que el material exotérmico espumable (6) se inserte dentro de la cavidad (5) desde el exterior a través de dicho conducto de inserción (9). Manufacturing method according to claim 10, wherein the insertion conduit (9) is configured so that the exothermic foamable material (6) is inserted into the cavity (5) from the outside through said insertion conduit ( 9).
12. Método de fabricación según la reivindicación 10 o 11, en donde el conducto de salida (10) está configurado para extraer al exterior unos gases producidos durante la etapa de espumado. Manufacturing method according to claim 10 or 11, wherein the outlet conduit (10) is configured to extract to the outside gases produced during the foaming stage.
13. Método de fabricación según cualquiera de las reivindicaciones anteriores, que comprende una etapa de colocación de insertos antes de la etapa de deposición, en donde se coloca al menos un inserto (11) en la superficie interior (4) del molde (1) haciendo tope con al menos un elemento de tope (12) del molde (1) configurado para posicionarel inserto (11), quedando la piel de fibra de carbono (2) depositada sobre el inserto (11) en la etapa de deposición, de modo que el inserto (11) queda unido a la piel de fibra de carbono (2) en una posición concreta de la culata (100). Manufacturing method according to any of the preceding claims, comprising a step of placing the inserts before the deposition step, wherein at least one insert (11) is placed on the inner surface (4) of the mold (1) making butt with at least one stop element (12) of the mold (1) configured to position the insert (11), leaving the carbon fiber skin (2) deposited on the insert (11) in the deposition stage, so that the insert (11) remains attached to the carbon fiber skin (2) in a specific position of the cylinder head (100).
14. Método de fabricación según la reivindicación 13, en donde el inserto (11) es un inserto metálico. Manufacturing method according to claim 13, wherein the insert (11) is a metal insert.
15. Método de fabricación según la reivindicación 13 o 14, en donde el conducto de salida (10) se dispone en uno de los insertos (11). Manufacturing method according to claim 13 or 14, wherein the outlet conduit (10) is arranged in one of the inserts (11).
16. Método de fabricación según cualquiera de las reivindicaciones anteriores, en donde el material exotérmico espumable (6) es un sistema de poliuretano. Manufacturing method according to any of the preceding claims, wherein the exothermic foamable material (6) is a polyurethane system.
17. Método de fabricación según cualquiera de las reivindicaciones anteriores, en donde la piel de fibra de carbono (2) tiene un espesor máximo de 2 mm. 17. Manufacturing method according to any of the preceding claims, wherein the carbon fiber skin (2) has a maximum thickness of 2 mm.
18. Método de fabricación según la reivindicación 17, en donde en la etapa de espumado la espuma genera una presión sobre la piel de fibra de carbono (2) de entre 1 y 3 bares, preferentemente una presión de 2 bares. Manufacturing method according to claim 17, wherein in the foaming stage the foam generates a pressure on the carbon fiber skin (2) of between 1 and 3 bars, preferably a pressure of 2 bars.
19. Método de fabricación según cualquiera de las reivindicaciones anteriores, que comprende una etapa de curado posterior a la etapa de espumado en la que durante un periodo de tiempo predeterminado hay un aporte externo de temperatura por encima de una temperatura umbral en el molde (1). Manufacturing method according to any of the preceding claims, comprising a curing stage subsequent to the foaming stage in which for a predetermined period of time there is an external temperature input above a threshold temperature in the mold (1 ).
20. Método de fabricación según la reivindicación 19, en donde la temperatura umbral y el tiempo predeterminado de la etapa de curado son de entre 120 y 135 °C y 10 minutos respectivamente. 20. Manufacturing method according to claim 19, wherein the threshold temperature and the predetermined time of the curing step are between 120 and 135 ° C and 10 minutes respectively.
21. Método de fabricación según la reivindicación 19 o 20, que comprende una etapa de enfriamiento posterior a la etapa de curado en la que se enfría el molde (1) por debajo de una temperatura, preferiblemente por debajo de 40°C y una etapa de desmoldeo posterior a la etapa de enfriamiento, donde se abre el molde (1) para extraer la culata (100). Manufacturing method according to claim 19 or 20, comprising a cooling stage subsequent to the curing stage in which the mold (1) is cooled below a temperature, preferably below 40 ° C and a stage post demoulding to the cooling stage, where the mold (1) is opened to extract the cylinder head (100).
22. Método de fabricación según la reivindicación 21, en donde la culata (100) comprende al menos una zona (13) configurada para ser cubierta con otra pieza tras la etapa de desmoldeo, disponiéndose en dicha zona (13) el conducto de inserción (9) o el conducto de salida (10). Manufacturing method according to claim 21, wherein the cylinder head (100) comprises at least one area (13) configured to be covered with another part after the demoulding step, the insertion conduit (13) being arranged in said area (13). 9) or the outlet duct (10).
PCT/ES2020/070342 2020-05-25 2020-05-25 Method for manufacturing a firearm stock in a mould WO2021240024A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2020/070342 WO2021240024A1 (en) 2020-05-25 2020-05-25 Method for manufacturing a firearm stock in a mould

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2020/070342 WO2021240024A1 (en) 2020-05-25 2020-05-25 Method for manufacturing a firearm stock in a mould

Publications (1)

Publication Number Publication Date
WO2021240024A1 true WO2021240024A1 (en) 2021-12-02

Family

ID=71846419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070342 WO2021240024A1 (en) 2020-05-25 2020-05-25 Method for manufacturing a firearm stock in a mould

Country Status (1)

Country Link
WO (1) WO2021240024A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205891A (en) * 1937-02-05 1940-06-25 Gen Electric Process of manufacturing gunstocks
US2753642A (en) * 1951-12-10 1956-07-10 George C Sullivan Gun stock of expanded cellular plastic material
US3011283A (en) * 1959-03-09 1961-12-05 James S Lunn Reinforced plastic rifle stock
US6117376A (en) * 1996-12-09 2000-09-12 Merkel; Michael Method of making foam-filled composite products
US9926219B2 (en) 2012-07-03 2018-03-27 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US20190373873A1 (en) * 2015-09-02 2019-12-12 Lure Maker LLC Flexible fishing lure having an integral retainer and method of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205891A (en) * 1937-02-05 1940-06-25 Gen Electric Process of manufacturing gunstocks
US2753642A (en) * 1951-12-10 1956-07-10 George C Sullivan Gun stock of expanded cellular plastic material
US3011283A (en) * 1959-03-09 1961-12-05 James S Lunn Reinforced plastic rifle stock
US6117376A (en) * 1996-12-09 2000-09-12 Merkel; Michael Method of making foam-filled composite products
US9926219B2 (en) 2012-07-03 2018-03-27 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US20190373873A1 (en) * 2015-09-02 2019-12-12 Lure Maker LLC Flexible fishing lure having an integral retainer and method of making same

Similar Documents

Publication Publication Date Title
US10766621B2 (en) Method for manufacturing an overhead storage compartment for an aircraft cabin
JPH06154385A (en) Method of manufacturing ski board
US8808480B2 (en) Flanged fiber-reinforced resin hollow part and method of molding the same
GB2253156A (en) Bow grip
WO2021240024A1 (en) Method for manufacturing a firearm stock in a mould
JP2009143178A (en) Method for molding fiber-reinforced resin hollow component
US3727936A (en) Ski of shaped laminated material and method for its manufacture
JPH05147048A (en) Production of frp product with built-in foamed polyurethane core
ES2711121T3 (en) Procedure to produce a piece of plastic material that has a foam core
JPH08510931A (en) Ski
US20060261612A1 (en) Pre-pregnated composite vehicle bumper comprising a grill guard and method for same
US20170072600A1 (en) Gun mold resin system and method
CN113478865A (en) Foam board forming method
US20210221074A1 (en) Compression molding hollow structure
WO2021192564A1 (en) Pultrusion mold and pultrusion apparatus
KR100930683B1 (en) Street lamp structure and manufacturing method thereof
JPH0793957B2 (en) Golf club head manufacturing method
JP2922253B2 (en) Golf club head for golf and manufacturing method thereof
DE19632516C1 (en) Single mould used for all moulding stages
JP2001523130A (en) Composite plastic material core for safety footwear and method of manufacturing the same
JPH0114796B2 (en)
CA1186880A (en) Method of making a racket frame
JPH0263024B2 (en)
JP4382869B2 (en) Molding method of hollow fiber reinforced plastic parts with flange
JPS6259650B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20747444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20747444

Country of ref document: EP

Kind code of ref document: A1