WO2021239028A1 - 一种使用柔性电冷探针的电冷消融系统和柔性电冷探针 - Google Patents

一种使用柔性电冷探针的电冷消融系统和柔性电冷探针 Download PDF

Info

Publication number
WO2021239028A1
WO2021239028A1 PCT/CN2021/096218 CN2021096218W WO2021239028A1 WO 2021239028 A1 WO2021239028 A1 WO 2021239028A1 CN 2021096218 W CN2021096218 W CN 2021096218W WO 2021239028 A1 WO2021239028 A1 WO 2021239028A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric cooling
flexible electric
cooling probe
electrode
flexible
Prior art date
Application number
PCT/CN2021/096218
Other languages
English (en)
French (fr)
Inventor
赵国江
宋子豪
Original Assignee
天津美电医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津美电医疗科技有限公司 filed Critical 天津美电医疗科技有限公司
Publication of WO2021239028A1 publication Critical patent/WO2021239028A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor

Definitions

  • This application relates to the field of medical science and technology, in particular to an electric cooling ablation system using a flexible electric cooling probe and a flexible electric cooling probe.
  • Tumor ablation therapy has gradually become the main treatment method for malignant tumors.
  • Commonly used ablation methods include chemical ablation (such as local alcohol or chemical drug injection, etc.), thermal ablation, and electrical ablation.
  • Tumor thermal ablation mainly includes heat-killing radiofrequency ablation, microwave ablation, laser ablation, ultrasonic ablation, etc.; and cold-killing cryoablation, etc.
  • Electrical ablation includes a variety of methods for ablating tumors using electrical energy, such as electrolytic ablation (also known as Electrochemotherapy, EchT for short), electroporation ablation, divided into reversible and irreversible electroporation ablation, electromagnetic wave ablation, and so on.
  • Electrolytic ablation is an ablation technique based on a DC electric field or a pulsed electric field, including electrolytic ablation, electroporation ablation, electromagnetic wave ablation, and so on.
  • Electrolytic ablation has been used for minimally invasive tissue ablation as early as the 19th century. It is also called electrochemical therapy (EChT). It uses an electro-ablation probe inserted in the tissue to deliver a direct current to the treatment area. The method that causes the local pH value of the treatment area to change to form a cytotoxic environment, as well as some new chemical substances formed during the electrolysis process to cause cell death.
  • Electrolytic ablation requires a very low direct current (tens to hundreds of milliamps) and a very low voltage (a few to ten volts).
  • the equipment is simple and safe, which is its advantage.
  • the length of time for this method of cell death is determined by the diffusion rate of electrochemical products produced in the tissue and the concentration of electrolysis products required to cause cell apoptosis, the treatment process of electrolytic ablation takes a long time. It can range from several tens of minutes to several hours, which is also the limitation of electrolytic ablation technology.
  • Electroporation ablation is to permeabilize the cell membrane by applying a very short high-amplitude electric field pulse, causing the cells to be poisoned to death by the tissue fluid.
  • the degree of cell membrane permeabilization is the result of the intensity of the electric field.
  • Electroporation is divided into reversible electroporation and irreversible electroporation: reversible electroporation can be used to create reversible holes in the lipid bilayer, thereby allowing molecules such as genes and drugs to be introduced into cells.
  • the principle of irreversible electroporation is to apply an electric pulse with an electric field strength higher than 500 ⁇ 600V/cm to break the tumor cell membrane, so that the cell membrane produces a large number of permanent nano-scale micropores to destroy the cell homeostasis, promote cell apoptosis, and ultimately lead to cells 'S total death. It has the advantages of no heat generation and no damage to the cavity, blood vessels and nerves; the disadvantage is that the ablation range is not visible and the ablation is incomplete.
  • Electromagnetic wave ablation works by outputting high-frequency electromagnetic waves at the working end of the electrode (the tip of the electrode forms a closed loop by itself) (for example, the source frequency of the RFS-4000KD device from Green Lab is 1.71MHz), which is concentrated in a small area .
  • the cells contain a large number of water molecules (water molecules are polar molecules and are affected by electromagnetic fields), under the action of this local high-frequency electromagnetic field, the water molecules oscillate rapidly and rub against each other, causing the water inside the cell to evaporate, vaporize, and rupture the cell. , Open the molecular bond to decompose the tissue into carbohydrates and oxides, so as to achieve the purpose of ablation.
  • Tumor electric field therapy is a physical therapy method that uses medium-frequency (100-300kHz) and low-intensity (1-3V/cm) alternating electric fields to treat tumors. It has been proven to be effective in various tumor types. Play the role of destroying tumor cell mitosis, causing cell cycle arrest and inducing cell apoptosis.
  • the problem to be solved in this application is to propose a flexible electric cooling probe system, which can treat natural cavities, blood vessels and some organs and organs in a living body in a combined way of electric cooling.
  • an electric cooling ablation system using a flexible electric cooling probe including a host and a flexible electric cooling probe, the host including a controller, an electric generation module, and a refrigeration module
  • the controller is electrically connected to the electricity generation module and the refrigeration module
  • the electricity generation module includes at least one of a direct current generator, a pulse generator, and an electromagnetic wave generator
  • the refrigeration module is a refrigerant
  • the refrigeration module can output carbon dioxide, nitrous oxide, argon, nitrogen or liquid nitrogen as a refrigerant
  • the flexible electric cooling probe has at least one and at least part of it has a flexible structure
  • the flexible electric cooling probe includes at least one electrode that is electrically connected to the electricity generation module
  • the flexible electric cooling probe includes a freezing mechanism, the freezing mechanism is a fluid tube, and the fluid tube is placed in the Inside the flexible electric cooling probe, the proximal end is communicated with the freezing module, and the distal end of the fluid tube is the refrig
  • the electric cooling ablation system further includes a surface electrode, which is arranged independently of the flexible electric cooling probe and is electrically connected to the electricity generation module.
  • the electricity generating module can output a direct current of 0.1V/cm to 500V/cm, a direct current of 0.1mA to 500mA, and a single or multiple electrical pulses of 1V/cm to 3000V/cm.
  • the host includes a controller, an electric generation module, and a refrigeration module. Electrically connected to the refrigeration module, the electricity generation module includes at least one of a direct current generator, a pulse generator, and an electromagnetic wave generator, the flexible electric cooling probe is at least one and at least part of it has a flexible structure,
  • the flexible electric cooling probe includes at least one electrode, the electrode is electrically connected to the electricity generation module, the flexible electric cooling probe includes a freezing mechanism, the freezing mechanism is a TEC semiconductor refrigerator, and the TEC semiconductor refrigerator is The device is arranged at the distal end of the flexible electric cooling probe.
  • the electric cooling ablation system further includes a surface electrode, which is arranged independently of the flexible electric cooling probe and is electrically connected to the electricity generation module.
  • the electricity generating module can output a direct current of 0.1V/cm to 500V/cm, a direct current of 0.1mA to 500mA, and a single or multiple electrical pulses of 1V/cm to 3000V/cm.
  • the application also includes a flexible electric cooling probe, the flexible electric cooling probe is at least partly a flexible structure, the flexible electric cooling probe includes at least one electrode and at least one fluid tube, and the electrode is arranged on the flexible On the distal end surface of the electric cooling probe, the fluid tube is arranged inside the flexible electric cooling probe.
  • the flexible electric cooling probe includes two or more electrodes, the electrodes are arranged at the distal end of the flexible electric cooling probe, and the electrodes are divided into positive and negative electrodes and are alternately distributed, so An electrical insulating layer is provided between the electrodes, and the electrodes are used for electrolysis and/or electrical pulse ablation.
  • the flexible electric cooling probe includes two or more electrodes, the electrodes are arranged at the distal end of the flexible electric cooling probe, and the electrodes are divided into positive and negative electrodes and are alternately distributed, so An electrical insulation layer is provided between the electrodes.
  • the flexible electric cooling probe includes a thermocouple, and the thermocouple is arranged inside the flexible electric cooling probe.
  • the flexible electric cooling probe includes a sleeve, the sleeve is sleeved on the outside of the flexible electric cooling probe to form a slidable connection structure, and the sleeve is insulated and thermally insulated.
  • the distal end of the flexible electric cooling probe includes a balloon, and cold fluid can be passed into the balloon.
  • At least one balloon electrode is provided on the surface of the balloon, and the balloon electrode is used for electrolysis and/or electrical pulse ablation.
  • the flexible electric cooling probe is at least partly a flexible structure
  • the flexible electric cooling probe includes at least one electrode and at least one TEC semiconductor refrigerator
  • the electrode is arranged in the The distal end of the flexible electric cooling probe
  • the TEC semiconductor refrigerator is arranged at the distal end of the flexible electric cooling probe
  • the cooling side of the TEC semiconductor refrigerator faces outward.
  • the TEC semiconductor refrigerator includes a heat pipe, and the heat dissipation surface of the TEC semiconductor refrigerator is closely attached to the heat pipe.
  • the flexible electric cooling probe includes two or more electrodes, the electrodes are arranged at the distal end of the flexible electric cooling probe, and the electrodes are divided into positive and negative electrodes and are alternately distributed, so An electrical insulating layer is provided between the electrodes.
  • the flexible electric cooling probe includes a thermocouple, and the thermocouple is arranged inside the flexible electric cooling probe.
  • the flexible electric cooling probe includes a sleeve, the sleeve is sleeved on the outside of the flexible electric cooling probe to form a slidable connection structure, and the sleeve is insulated and thermally insulated.
  • the distal end of the flexible electric cooling probe includes a balloon, and at least one TEC semiconductor refrigerator is provided on the surface of the balloon.
  • At least one balloon electrode is provided on the surface of the balloon, and the balloon electrode is used for electrolysis and/or electrical pulse ablation.
  • the present application has the following advantages and positive effects: (1)
  • the flexible structure enters the body to directly contact the target area, and the targeted treatment plan can be formulated for the target area under different conditions through the combination of electricity and cold.
  • the freezing method can not only achieve a certain cryoablation effect, but also mark the target area by freezing so that scanning instruments such as CT can more clearly identify the ablation area, and can separate the electrolyte in the target area to increase the conductivity of the target area.
  • scanning instruments such as CT can more clearly identify the ablation area, and can separate the electrolyte in the target area to increase the conductivity of the target area.
  • the effect of electrical ablation can not only achieve a certain cryoablation effect, but also mark the target area by freezing so that scanning instruments such as CT can more clearly identify the ablation area, and can separate the electrolyte in the target area to increase the conductivity of the target area.
  • Fig. 1 is a schematic cross-sectional structure diagram of a ring-shaped two-electrode fluid tube flexible electric cooling probe in the present application.
  • Fig. 2 is a schematic diagram of the 3D structure of the ring-shaped two-electrode fluid tube flexible electric cooling probe in the present application.
  • Fig. 3 is a schematic cross-sectional view of the target area of the ring-shaped double-electrode fluid tube flexible electric cooling probe in the present application.
  • FIG. 4 is a schematic cross-sectional structure diagram of a ring-shaped single-electrode fluid tube type flexible electric cooling probe in the present application.
  • Fig. 5 is a schematic diagram of the 3D structure of the ring-shaped single-electrode fluid tube flexible electric cooling probe in the present application.
  • Fig. 6 is a schematic cross-sectional structure diagram of a flexible electric cooling probe for a two-electrode TEC semiconductor refrigerator in the present application.
  • FIG. 7 is a schematic diagram of the 3D structure of the flexible electric cooling probe of the two-electrode TEC semiconductor refrigerator in the present application.
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a dot matrix electrode fluid tube type flexible electric cooling probe in the present application.
  • FIG. 9 is a schematic diagram of the 3D structure of the dot matrix electrode fluid tube type flexible electric cooling probe in the present application.
  • Fig. 10 is a schematic cross-sectional structure diagram of a symmetrical two-electrode fluid tube type flexible electric cooling probe in the present application.
  • FIG. 11 is a schematic diagram of the 3D structure of the symmetrical two-electrode fluid tube type flexible electric cooling probe in the present application.
  • Fig. 12 is a schematic cross-sectional structure diagram of a two-electrode fluid tube type flexible electric cooling probe with a sleeve in the present application.
  • Fig. 13 is a schematic diagram of a cross-sectional structure of a flexible electric-cooled probe with a double-electrode fluid tube at the top in the present application.
  • Fig. 14 is a schematic structural diagram of the host used by the controller in the present application to control the flexible electric cooling probe through the controller.
  • Fig. 15 is a schematic front view of the balloon-type flexible electric cooling probe in the present application.
  • FIG. 16 is a schematic diagram of the front cross-sectional structure of the balloon-type flexible electric cooling probe in the present application.
  • FIG. 17 is a schematic diagram of the front view of the balloon-type flexible electric cooling probe with a TEC semiconductor refrigerator in the present application.
  • 1-ring-shaped double-electrode fluid tube flexible electric cooling probe 101-first heat-insulating knife rod, 102-first fluid tube, 103-first insulating layer, 104-first electrode, 105-second Electrode, 2-ring-shaped single-electrode fluid tube-type flexible electric cooling probe, 201-second heat-insulating knife rod, 202-second fluid tube, 203-second insulating layer, 204-third electrode, 205-temperature sensor, 3-Double-electrode TEC flexible electric cooling probe, 301-third heat-insulating blade, 302-TEC semiconductor refrigerator, 303-third insulating layer, 304-fourth electrode, 305-fifth electrode, 306-heat pipe, 4-dot electrode fluid tube flexible electric cooling probe, 401-fourth heat-insulating knife rod, 402-third fluid tube, 403-fourth insulating layer, 404-sixth electrode, 405-seventh electrode, 5 -Symmetrical double-electrode fluid tube type
  • the target area proposed in this application can generally be recognized as any part of the human body including blood vessels, natural human cavities and organs (for example, heart, stomach, kidney, bladder, etc.) tissues.
  • the term "low temperature” used in this application can be interpreted as a temperature below freezing point to absolute zero, and a temperature between -100°C and 0°C is the preferred low temperature freezing temperature range in this application, "distal", " The “proximal end” refers to the knife head and the knife handle (knife body) of the flexible electric cooling probe respectively.
  • the knife handle (knife body) and the knife head can be designed separately or integrally formed.
  • the fluid tube described in this application can be used according to Different forms are required to be selected. All forms are commonly used designs, including fluid pipes using the principle of phase change refrigeration and throttling refrigeration fluid pipes using the Joule Thomson principle. Both implementations need to be connected to the fluid pipe.
  • the return pipe is used to discharge the fluid from the outside of the device or to recover the fluid.
  • the fluid pipe can also be closed self-circulating. This fluid pipe is suitable for fluid with a constant fluid volume and a stable state, and cools the device through heat conduction.
  • a commonly used implementation in electrical ablation devices This implementation uses surface electrodes placed on the surface of the body or on the surface of the tissue as the electrodes that enter the human body to interact with the electrodes to perform electrical ablation of the target area.
  • the electrical generation module in this application can output
  • the electric pulse intensity is 1V/cm ⁇ 3000V/cm single or multiple electric pulses or the intensity is 0.1V/cm ⁇ 500V/cm, 0.1mA ⁇ 500mA direct current.
  • the controller used in this application includes a combination of multiple modules and its sub-modules. According to different embodiments, different implementation module combinations will be used.
  • the host mainly includes an energy supply system and a controller, and the controller specifically includes: an electricity generation module And the refrigeration module, in which the electricity generation module includes a direct current generator, a pulse generator and an electromagnetic wave generator.
  • the direct current generator can output direct current of different intensities.
  • the pulse generator can output pulse currents of different frequency waveforms.
  • the cells can be electroporated through pulses of different frequencies.
  • the types of electroporation that can be generated are divided into reversible electroporation and irreversible electroporation, and ablation surgery combined with cryoablation The main thing used is irreversible electroporation.
  • Electromagnetic wave generator electromagnetic wave generator can emit tumor electric field (TTFields) for treatment.
  • the refrigeration module is mainly composed of a refrigeration device.
  • the refrigeration device can be a device that relies on cold fluid to freeze. It can provide multiple intercooling fluids using the Joule Thomson principle, the principle of heat transfer or the principle of phase change refrigeration, such as carbon dioxide, nitrous oxide, and argon. Gas, nitrogen, freon or liquid nitrogen, etc.
  • the refrigeration device can also be an electric refrigeration device, such as a TEC semi-conductor cooler.
  • the cooling effect can also be achieved by supplying power to the TEC semi-conductor cooler through the electricity generation module.
  • the TEC semi-conductor cooler may have heat dissipation problems.
  • the heat pipe dissipates heat.
  • the refrigeration module and the electricity generation module are connected with the flexible electric cooling probe through the controller.
  • the flexible electric cooling probe performs various forms of ablation on the target area through the controller, for example, applying a separate electrolytic ablation through a direct current generator.
  • the pulse generator generates electroporation for cells in the target area for electroporation ablation, and performs cryoablation of the target area with cold fluid.
  • the focus of this application is that after the flexible structure is used to directly reach the target area, a combination of multiple ablation methods can be used to perform combined ablation with enhanced ablation effects.
  • electrolysis and electric pulses are applied to the target area in combination, the electrolyte is first generated near the target area by electrolysis, and then the cell membrane of the target area is opened by the electric pulse.
  • the electrolyte produced by electrolysis will be more improved. It is easy to permeate into the inside of the cell, and the electrolyte is toxic to the cell, which kills the cell and completes the ablation of the target area.
  • the combination of electrolysis and electroporation ablation is far better than electrolysis alone and then alone.
  • Perform electroporation ablation When the electrolysis and freezing are combined, the target area is first frozen by freezing, so that the target area is in a low-temperature freezing state, and the target area will be marked by freezing. The use of CT isodensity imaging equipment will more clearly show the specific ablation range of the target area. The ablation zone can be determined for subsequent electrical ablation.
  • the conductivity will increase.
  • the application of electrical ablation will speed up the electrical conduction and increase the efficiency and strength of the electrical ablation, so that the target area cells will be faster and more Complete ablation.
  • we found a more excellent ablation method combined with electric cooling. apply electric pulses to the target area. The electric pulses will inhibit the blood flow in the target area. The blood flow speed will be extremely high during the cryoablation process. Larger affects the size of the ice ball and thus affects the ablation effect.
  • cold stimulation of the human body will accelerate the blood flow in the target area. The accelerated blood flow is not conducive to freezing and ablation.
  • the size of the ice ball will affect the range of ablation during the electric cold ablation process. Therefore, the electric pulse before cryoablation can greatly increase the ablation effect of the electric cooling combined. At the same time, freezing also has the function of fixing the honorable electric cooling probe to the target area. With the inevitable activities brought about by the biological characteristics, such as breathing, the flexible electric cooling probe acting on the target area will be separated from the target area, and cryoablation can also be used in the target area and the flexible electric cooling probe at the same time as the ablation Frozen adhesions are formed between them.
  • any external equipment that can be matched in the traditional sense can be used together, such as a cavity mirror.
  • This application can refer to the coordination mode of general flexible treatment equipment to cooperate with external equipment.
  • a support device such as a balloon
  • the selected balloon can be a published applicable public product/commercial product.
  • the preferred balloon has a cold fluid that can be filled inside and is released to the outside through heat transfer to act on the target area.
  • At least one electrode should be arranged on the surface of the balloon, which can be fixed or fitted, so that cryoablation and electric ablation of the target area can be performed simultaneously with the aid of the balloon, where electric ablation includes electrolysis and electric pulse , Electrical pulses can cause reversible or irreversible electrical ablation effects.
  • Embodiment 1 With reference to system figure 14, the controller in this embodiment includes an electricity generation module and a refrigeration module. The controller is in communication with the ring-shaped two-electrode fluid tube flexible electric cooling probe 1.
  • the refrigeration module is connected to The first fluid tube 102 is in communication, and the electricity generation module is electrically connected to the first electrode 104 and the second electrode 105 provided at the distal end of the ring-shaped two-electrode fluid tube flexible electrocooling probe 1, the first electrode 104 and the second electrode 105
  • the polarity is opposite.
  • the first electrode 104 and the second electrode 105 are ring-shaped electrodes, but refer to the symmetrical two-electrode fluid tube type flexible electrocooled probe 5 in FIG.
  • the tip electrode and the thirteenth electrode 805 can be used to ablate the tip of the probe in a larger area, which shows that the distribution of the dual electrodes in this application can take many different forms. The form should not be limited to the preferred embodiment shown in this application.
  • a first insulating layer 103 is provided between the first electrode 104 and the second electrode 105.
  • To the first electrode 104 is the first heat-insulated knife bar 101.
  • the first heat-insulated knife bar 101 is configured as a whole made of heat-insulating material, but at the same time, it can also be configured as a multi-layer structure with only the outer surface of the heat insulation. Refer to Figure 12, which is similar in structure to this embodiment.
  • the material composition of the sleeve 706 is both heat-insulating and insulating.
  • the tube 706 is slidably connected with the cutter bar 701.
  • the freezing range of the ring-shaped double-electrode fluid tube flexible electric cooling probe 1 can be accurately controlled by pushing and pulling the sleeve 706.
  • the structure has loose application conditions to replace the design of an insulated knife holder in a specific environment. Refer to Figure 3 when performing ablation.
  • the example of Figure 3 is a ring-shaped two-electrode fluid tube-type flexible electric cold probe.
  • the needle 1 ablates the target area 601 in the blood vessel 6.
  • the ring-shaped two-electrode fluid tube flexible electric cooling probe 1 is close to or attached to the target area 601, and then the freezing module is controlled by the controller, and the freezing module opens the freezing module to
  • the first fluid pipe 102 inputs the cold fluid, and the cold fluid is input from the first fluid pipe 102 to the distal end of the ring-shaped double-electrode fluid-tube flexible electric cooling probe 1, and the ring-shaped double-electrode fluid-tube flexible electric cooling probe 1 is made through heat exchange.
  • the probe 1 drops to a low temperature to freeze the target area 601.
  • the cold fluid is discharged through the ring-shaped double-electrode fluid tube flexible electric cooling probe 1.
  • the cold fluid can be directly discharged or recycled. After the target area is frozen, Stop the cold fluid input to the first fluid tube 102, and then the controller turns on the electricity generating module to supply power to the first electrode 104 and the second electrode 105. According to the controller's control of the DC generator and the electric pulse generator, the first electrode 104 and The second electrode 105 can output one or more combinations of direct current and electric pulses of different frequencies to perform combined electrical ablation of the target area 601. After the ablation is completed, the ring-shaped double-electrode fluid tube flexible electric cooling probe 1 can be directly taken out or the rewarming step can be added as required. The first electrode 104 and the second electrode 105 can emit radio frequency microwaves to the ring-shaped double-electrode fluid tube.
  • the flexible electric cooling probe 1 can be reheated.
  • the controller can also input the fluid above the freezing point to the first fluid tube 102 to reheat the ring-shaped double-electrode fluid tube flexible electric cooling probe 1.
  • the traditional heating wire is used for winding.
  • the outer surface of the ring-shaped double-electrode fluid tube flexible electric cooling probe 1 is also an optional rewarming method.
  • the controller in this embodiment includes an electricity generation module and a refrigeration module.
  • the controller is connected to the ring-shaped single-electrode fluid tube flexible electric cooling probe 2, referring to Fig. 4, where the refrigeration module is connected to the The second fluid tube 202 is in communication, and the electricity generation module is electrically connected to the third electrode 204 provided at the distal end of the ring-shaped single-electrode fluid tube flexible electric cooling probe 2, in order to cooperate with the third electrode 204 to complete the electrical circuit, which can be used in the human body or tissues.
  • the outer surface of the organ should be provided with at least one surface electrode.
  • the surface electrode is opposite in polarity to the third electrode 204.
  • the ring-shaped single-electrode fluid-tube flexible electric-cooled probe 2 is cooled to a low temperature and then the target area is frozen.
  • the cold fluid passes through the ring-shaped single
  • the electrode fluid tube type flexible electric cooling probe 2 is discharged to the outside.
  • the cold fluid can be directly discharged or recycled.
  • the temperature sensor 205 can It is a thermocouple.
  • the temperature sensor 205 as a commonly used optional design in surgical probes should not be understood as only applicable to this embodiment.
  • the third electrode 204 can output one or more combinations of direct current and electric pulses of different frequencies to target the target area. Perform combined electrical ablation. After the ablation is completed, the ring-shaped single-electrode fluid-tube flexible electric-cooled probe 2 can be directly taken out or a rewarming step is added as required. The third electrode 204 can emit radio frequency microwaves to the ring-shaped single-electrode fluid-tube-type flexible electric-cooled probe. 2 Perform reheating.
  • the controller can also input fluid above the freezing point to the second fluid tube 202 to reheat the ring-shaped single-electrode fluid tube flexible electric-cooled probe 2.
  • the traditional heating wire is wound around the ring-shaped single electrode.
  • the outer surface of the fluid tube flexible electric cooling probe 2 is also an optional rewarming method.
  • Embodiment 3 With reference to system figure 14, the controller in this embodiment includes an electricity generating module, the controller is connected with the two-electrode TEC flexible electric cooling probe 3, referring to FIG. 6, where the electricity generating module is connected to the TEC semiconductor refrigerator 302
  • the preferred structure is that the TEC semiconductor refrigerator 302 is embedded and integrated inside the TEC flexible electric cooling probe 3, and the structure in which the TEC semiconductor refrigerator is externally connected to the TEC flexible electric cooling probe 3 is also an embodiment.
  • the cooling end of the TEC semiconductor refrigerator 302 is set toward the outer surface of the device, and the heat dissipation surface is set inside the TEC flexible electric cooling probe 3.
  • the heat pipe 306 and the TEC semiconductor refrigerator 302 are fixed to assist heat dissipation.
  • the controller When performing ablation, first use the two-electrode TEC flexible electric cooling probe 3 Close to or close to the target area, the controller turns on the electricity generation module to freeze the target area through the TEC semiconductor refrigerator 302, and then supplies power to the fourth electrode 304 and the fifth electrode 305, and supplies the direct current generator and the electrical pulse generator according to the controller According to the control, the fourth electrode 304 and the fifth electrode 305 can output one or more combinations of direct current and electric pulses of different frequencies for combined electrical ablation of the target area. After the ablation is completed, it can be taken out directly as required, or it can be a two-electrode TEC flexible electric cooling probe 3 or adding a rewarming step.
  • the fourth electrode 304 and the fifth electrode 305 can emit radio frequency microwaves to the two-electrode TEC flexible electric cooling probe.
  • the needle 3 is reheated, and an electric heating wire can also be wound on the outer surface of the two-electrode TEC flexible electric cooling probe 3 to energize the electric heating wire for electric heating.
  • the controller in this embodiment includes an electricity generation module and a refrigeration module.
  • the controller is in communication with the dot matrix electrode fluid tube flexible electric cooling probe 4, referring to Fig. 8, where the refrigeration module is connected to the
  • the third fluid tube 402 is in communication, and the electricity generation module is electrically connected to a number of sixth electrodes 404 and a number of seventh electrodes 405 arranged at the distal end of the dot matrix electrode fluid tube type flexible electrocooling probe 4, and the sixth electrode 404 is electrically connected to the seventh electrode 405.
  • the polarity of the electrode 405 is opposite, and a fourth insulating layer 403 is arranged between the sixth electrode 404 and the seventh electrode 405.
  • the sixth electrode 404 and the seventh electrode 405 are distributed in a dot matrix type on the dot matrix electrode fluid tube type.
  • the dot matrix distribution can more efficiently conduct uniform electrical conduction in the target area.
  • the distal end of the dot matrix electrode fluid tube flexible electric cooling probe 4 is provided with a fourth insulating layer 403
  • From the proximal end of the dot-matrix electrode fluid tube flexible electric cooling probe 4 to the sixth electrode 404 is the fourth insulated knife bar 401.
  • the fourth insulated knife bar 401 is set to be entirely composed of heat-insulating material. But at the same time, it can also be set as a multi-layer structure with only the outer surface insulation.
  • the freezing module When performing ablation, first approach or fit the dot matrix electrode fluid tube flexible electric cooling probe 4 to the target area, and then control the freezing by the controller Module, the freezing module is turned on, the freezing module inputs cold fluid to the third fluid tube 402, and the cold fluid is input from the third fluid tube 402 to the distal end of the dot matrix electrode fluid tube flexible electric cooling probe 4, and the dot matrix is made by heat exchange.
  • the electrode fluid tube type flexible electric cooling probe 4 is cooled to a low temperature to freeze the target area.
  • the cold fluid is discharged through the lattice electrode fluid tube type flexible electric cooling probe 4, and the cold fluid can be directly discharged or recycled.
  • the controller turns on the electricity generation module to supply power to the sixth electrode 404 and the seventh electrode 405, and according to the controller's control of the direct current generator and the electric pulse generator Controlled, the sixth electrode 404 and the seventh electrode 405 can output one or more combinations of direct current and electric pulses of different frequencies for combined electrical ablation of the target area.
  • the dot matrix electrode fluid tube flexible electric cooling probe 4 can be directly taken out or the rewarming step can be added as required.
  • the sixth electrode 404 and the seventh electrode 405 can emit radio frequency microwaves to the dot matrix electrode fluid tube type.
  • the flexible electric cooling probe 4 is reheated, and the fluid above the freezing point can also be input to the third fluid tube 402 through the controller to reheat the dot matrix electrode fluid tube flexible electric cooling probe 4, which is traditionally wound by heating wires
  • the outer surface of the dot matrix electrode fluid tube flexible electric cooling probe 4 is also an optional rewarming method.
  • Example 5 Referring to FIG. 15, the balloon-type flexible electric cooling probe 9 shown in FIG. 15 has a balloon 907 at the proximal end.
  • the cold fluid delivery can also be carried out through other external structures.
  • the specific balloon 907 can refer to the cold fluid delivery method disclosed and applicable to any balloon in this application. The same applies to this application.
  • the balloon 907 passes through the interior.
  • the cold fluid can transfer cold ablation energy to the target area.
  • the surface of the balloon 907 should be provided with at least one electrode for electrical ablation.
  • Specific electrical ablation includes electrolysis and electrical pulse ablation. Electrical pulse ablation can be divided into reversible electroporation and irreversible electroporation. There are two types of perforation. Referring to Fig.
  • the balloon 907 there are two electrodes on the balloon 907, a fourteenth electrode 904 and a fifteenth electrode 905.
  • the two electrodes have opposite polarities, and a second electrode is arranged between the electrodes.
  • the eight insulating layers 903 are electrically insulated to ensure that the electrolytic reaction can occur on the same balloon; according to the material of the second cutter bar 901, a second sleeve 906 can be equipped.
  • the second cutter bar is electrically insulated and thermally insulated, the first The second sleeve 906 is a non-essential accessory.
  • the second sleeve 906 should have the effect of heat insulation and/or electrical insulation, and the second sleeve 906 can be along the balloon
  • the flexible electric cooling probe 9 slides to adjust the insulation/insulation zone; referring to Figure 17, the outer surface of the balloon 907 in Figure 17 is provided with a balloon TEC semiconductor cooler 908, and the TEC semiconductor cooler 908 is closely attached to the ball
  • the capsule 907 is used for cryoablation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Surgical Instruments (AREA)

Abstract

一种使用柔性结构的电冷消融系统和装置,系统包括主机和柔性电冷探针,主机包括控制器、电发生模块和冷冻模块,控制器与电发生模块和冷冻模块连通以产生和调控其输出,柔性电冷探针至少为一根且至少部分具有柔性结构,柔性电冷探针包括至少一个电极,电极与电发生模块电连接,冷冻模块可以是与柔性电冷探针中的流体管连通的流体冷源供给装置或电制冷装置。利用柔性电冷探针进入生物体腔道和管道,采用电消融与冷冻消融结合的方式对消融靶区组织实行复合消融,通过冷冻的靶区标识和电导率增加作用,达到冷冻消融和电消融复合增效的作用。

Description

一种使用柔性电冷探针的电冷消融系统和柔性电冷探针
相关申请的交叉引用
本申请要求在2020年05月27日提交中国专利局、申请号为202020922845.7、名称为“一种使用柔性电冷探针的电冷消融系统和柔性电冷探针”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗科技领域,尤其是一种使用柔性电冷探针的电冷消融系统和柔性电冷探针。
背景技术
肿瘤消融疗法已逐渐成为恶性肿瘤的主要治疗方法。常用的消融方法有化学消融(如局部酒精或化学药物注射等)、热消融和电消融等。肿瘤热消融主要包括热杀伤的射频消融、微波消融、激光消融、超声波消融等;和冷杀伤的冷冻消融等。电消融包括多种利用电能消融肿瘤的方法,如电解消融(也称电化学消融Electrochemotherapy,简称EchT)、电穿孔(electroporation)消融,分可逆和不可逆电穿孔消融)、电磁波消融等等。
目前的肿瘤消融方法通常采用刚性探针穿刺到人体各组织器官内的肿瘤实施消融。但对人体自然腔道(如食道胃肠等消化道、气道、尿道、膀胱等)和管道(如血管、胆管等)则不能用刚性探针,需要采用柔性的探针进行消融,以尽可能减少探针在进入腔道和管道过程中对组织造成的创伤。柔性探针对于冷冻方面的需求与刚性探针不同,由于柔性探针常用于血管、腔道等部位,对冷冻温度的控制有较强的需求,刚性冷冻探针在治疗过程中通常具有压力高、温度低、功率大、难控制的特点,因此会造成腔道过度冷冻而穿孔的危险,因此简单的将刚性冷冻探针的工作方式简单的套用在柔性冷冻探针上极为不安全。
传统的冷冻消融方式已被实验证明:要达到对肿瘤组织的有效冷冻消融,必须采用两次“冷冻-复温”的循环。而每次循环,需要20~30min,冷冻消融的过程耗时较长。冷冻消融技术急需一种彻底消融和耗时更短的改进方法。
电消融是基于直流电场或脉冲电场的消融技术,包括电解消融、电穿孔消融、电磁波消融等。电解消融早在19世纪就已经被用于微创组织消融,也被称之为电化学疗法(EChT),是通过一根插在处理组织中的电融探针将直流电流传递到治疗范围内,引起治疗范围局部的PH值变化而形成细胞毒素环境,以及在电解过程中形成的一些新的化学物质进而导致细胞死亡的方法。电解消融需要很低的直流电流(几十到几百毫安)以及很低的电压(几到十几伏)。因此设备既简单又安全,这是其优势所在。但是由于这种细胞死亡方法的时间长短是由组织中产生的电化学产物的扩散速率以及引起细胞凋亡所需要的电解产物的浓度决 定的,因此,电解消融的治疗过程耗时较长,从几十分钟到几小时不等,这也是电解消融技术的局限性。
电穿孔消融是通过施加非常短暂的高幅度电场脉冲使细胞膜透化,造成细胞受组织液毒化致死,细胞膜透化程度是电场强度的作用结果。电穿孔分为可逆电穿孔和不可逆电穿孔:可逆电穿孔可用使脂质双分子层产生可逆孔洞,从而允许将诸如基因和药物的分子引入细胞中。不可逆电穿孔术原理是应用电场强度高于500~600V/cm电脉冲作用于击破肿瘤细胞膜,使细胞膜产生大量永久性纳米级微孔,以破坏细胞内稳状态,促进细胞凋亡,最终导致细胞的彻底死亡。它具有不产热、对腔道、血管和神经等不产生损伤的优点;缺点是消融范围不可视及消融不完全的问题。
电磁波消融通过在电极工作端(电极尖端自成闭合回路)输出频率很高的电磁波(例如格瑞朗博公司的RFS-4000KD设备输出的源频率是1.71MHz),集中作用在一个很小的区域。由于细胞内含有大量水分子(水分子为极性分子,受电磁场影响),在这个局部高频电磁场的度作用下,水分子快速振荡,相互摩擦,致使细胞内问水分蒸发,汽化,细胞破裂,打开分子结合答键,使组织分解为碳水化合物和氧化物,从而达到消融的目的。
肿瘤电场治疗(TTFields)是利用中等频率(100-300kHz)、低强度(1-3V/cm)交变电场治疗肿瘤的一种物理治疗方法,已在多种肿瘤类型的相关研究中被证实可起到破坏肿瘤细胞有丝分裂、致使细胞周期停滞和诱导细胞凋亡的作用。
发明内容
本申请要解决的问题是提出一种柔性电冷探针系统,以通过电冷结合作用的方式对生物体内自然腔道、血管及部分器官脏器的病灶进行治疗。
为解决上述技术问题,本申请采用的技术方案是:一种使用柔性电冷探针的电冷消融系统,包括主机和柔性电冷探针,所述主机包括控制器、电发生模块和冷冻模块,所述控制器与所述电发生模块和所述冷冻模块电连接,所述电发生模块包括直流电发生器、脉冲发生器和电磁波发生器的中的至少一种,所述冷冻模块为制冷剂产生、控制和输出装置,所述冷冻模块可输出包括二氧化碳、一氧化二氮、氩气、氮气或液氮作为制冷剂;所述柔性电冷探针至少为一根且至少部分具有柔性结构,所述柔性电冷探针包括至少一个电极,所述电极与所述电发生模块电连接;所述柔性电冷探针包括冷冻机构,所述冷冻机构为流体管,所述流体管置于所述柔性电冷探针内部,近端与所述冷冻模块连通,所述流体管的远端为制冷端。
进一步的,所述电冷消融系统还包括表面电极,所述表面电极独立于所述柔性电冷探针设置并与所述电发生模块电连接。
进一步的,所述电发生模块可输出0.1V/cm~500V/cm、0.1mA~500mA的直流电和1V/cm~3000V/cm的单个或多个电脉冲。
还包括另一种使用柔性电冷探针的电冷消融系统,包括主机和柔性电冷探针,所述主机包括控制器、电发生模块和冷冻模块,所述控制器与所述电发生模块和所述冷冻模块电连接,所述电发生模块包括直流电发生器、脉冲发生器和电磁波发生器的中的至少一种,所述柔性电冷探针至少为一根且至少部分具有柔性结构,所述柔性电冷探针包括至少一个电极,所述电极与所述电发生模块电连接,所述柔性电冷探针包括冷冻机构,所述冷冻机构为TEC半导体制冷器,所述TEC半导体制冷器设置于所述柔性电冷探针的远端。
进一步的,所述电冷消融系统还包括表面电极,所述表面电极独立于所述柔性电冷探针设置并与所述电发生模块电连接。
进一步的,所述电发生模块可输出0.1V/cm~500V/cm、0.1mA~500mA的直流电和1V/cm~3000V/cm的单个或多个电脉冲。
本申请还包括一种柔性电冷探针,所述柔性电冷探针至少部分为柔性结构,所述柔性电冷探针包括至少一个电极和至少一个流体管,所述电极设置在所述柔性电冷探针的远端表面,所述流体管设置在所述柔性电冷探针的内部。
进一步的,所述柔性电冷探针包括两个及两个以上的电极,所述电极设置在所述柔性电冷探针的远端,所述电极分为正极和负极且为交替分布,所述电极之间设有电绝缘层,所述电极用于电解和/或电脉冲消融。
进一步的,所述柔性电冷探针包括两个及两个以上的电极,所述电极设置在所述柔性电冷探针的远端,所述电极分为正极和负极且为交替分布,所述电极之间设有电绝缘层。
进一步的,所述柔性电冷探针包括测温电偶,所述测温电偶设置在所述柔性电冷探针的内部。
进一步的,所述柔性电冷探针包括套管,所述套管套接在所述柔性电冷探针的外部并形成可滑动连接结构,所述套管绝缘并绝热。
进一步的,所述柔性电冷探针的远端包括球囊,所述球囊内部可以通入冷流体。
进一步的,所述球囊的表面设有至少一个球囊电极,所述球囊电极用于电解和/或电脉冲消融。
还包括另一种柔性电冷探针,所述柔性电冷探针至少部分为柔性结构,所述柔性电冷探针包括至少一个电极和至少一个TEC半导体致冷器,所述电极设置在所述柔性电冷探针的远端,所述TEC半导体致冷器设置在所述柔性电冷探针的远端,所述TEC半导体致冷器的制冷侧朝向外设置。
进一步的,所述TEC半导体致冷器包括热管,所述TEC半导体致冷器的散热面与所述热管紧密贴合。
进一步的,所述柔性电冷探针包括两个及两个以上的电极,所述电极设置在所述柔性电冷探针的远端,所述电极分为正极和负极且为交替分布,所述电极之间设有电绝缘层。
进一步的,所述柔性电冷探针包括测温电偶,所述测温电偶设置在所述柔性电冷探针的内部。
进一步的,所述柔性电冷探针包括套管,所述套管套接在所述柔性电冷探针的外部并形成可滑动连接结构,所述套管绝缘并绝热。
进一步的,所述柔性电冷探针的远端包括球囊,所述球囊的表面设置有至少一个TEC半导体制冷器。
进一步的,所述球囊的表面设有至少一个球囊电极,所述球囊电极用于电解和/或电脉冲消融。
本申请具有的优点和积极效果是:(1)通过柔性结构进入生物体内直接接触靶区,通过电与冷结合的方式可以对不同情况的靶区制定针对性的治疗方案进行治疗。
(2)冷冻手段既可以达到一定的冷冻消融效果,也可以通过冷冻的方式标识靶区使CT等扫描仪器可更清晰的识别消融区,并可以分离靶区内电解质使靶区导电率提高增强电消融的效果。
(3)电消融与冷冻消融不同顺序的消融组合的效果不同,适用于不同的靶区。
附图说明
图1是本申请中环状双电极流体管式柔性电冷探针的剖面结构示意图。
图2是本申请中环状双电极流体管式柔性电冷探针的3D结构示意图。
图3是本申请中环状双电极流体管式柔性电冷探针作用靶区剖面示意图。
图4是本申请中环状单电极流体管式柔性电冷探针的剖面结构示意图。
图5是本申请中环状单电极流体管式柔性电冷探针的3D结构示意图。
图6是本申请中双电极TEC半导体致冷器柔性电冷探针的剖面结构示意图。
图7是本申请中双电极TEC半导体致冷器柔性电冷探针的3D结构示意图。
图8是本申请中点阵式电极流体管式柔性电冷探针的剖面结构示意图。
图9是本申请中点阵式电极流体管式柔性电冷探针的3D结构示意图。
图10是本申请中对称双电极流体管式柔性电冷探针的剖面结构示意图。
图11是本申请中对称双电极流体管式柔性电冷探针的3D结构示意图。
图12是本申请中带有套管的双电极流体管式柔性电冷探针的剖面结构示意图。
图13是本申请中顶端双电极流体管式柔性电冷探针的剖面结构示意图。
图14是本申请中控制器采用的主机通过控制器控制柔性电冷探针的结构简图。
图15是本申请中球囊式柔性电冷探针的正视结构示意图。
图16是本申请中球囊式柔性电冷探针的正剖面结构示意图。
图17是本申请中球囊式柔性电冷探针且带有TEC半导体致冷器的正视结构示意图。
图中:1-环状双电极流体管式柔性电冷探针,101-第一绝热刀杆,102-第一流体管,103-第一绝缘层,104-第一电极,105-第二电极,2-环状单电极流体管式柔性电冷探针,201-第二绝热刀杆,202-第二流体管, 203-第二绝缘层,204-第三电极,205-温度传感器,3-双电极TEC柔性电冷探针,301-第三绝热刀杆,302-TEC半导体致冷器,303-第三绝缘层,304-第四电极,305-第五电极,306-热管,4-点阵式电极流体管式柔性电冷探针,401-第四绝热刀杆,402-第三流体管,403-第四绝缘层,404-第六电极,405-第七电极,5-对称双电极流体管式柔性电冷探针,501-第五绝热刀杆,502-第四流体管,503-第五绝缘层,504-第八电极,505-第九电极,6-血管,601-靶区,7-套管式环状双电极流体管式柔性电冷探针,701-刀杆,702-第五流体管,703-第六绝缘层,704-第十电极,705-第十一电极,706-套管,8-顶部双电极流体管式柔性电冷探针,801-第七绝热刀杆,802-第六流体管,803-第七绝缘层,804-第十二电极,805-第十三电极、9-球囊式柔性电冷探针、901-第二刀杆、902-第七流体管、903-第八绝热层、904-第十四电极、905-第十五电极、906-第二套管、907-球囊、908-TEC半导体致冷器
具体实施方式
本申请可事实对象以人体举例,但同样可作用于其他生物体。本申请中所提出的靶区一般可认定为包括血管、人体自然腔道及器官(例如:心脏、胃、肾、膀胱等)组织在内的人体任何部位。本申请中所采用的的术语“低温”可解释为冰点以下至绝对零度的温度,采用-100℃至0℃之间的温度为本申请中优选的低温冷冻温度区间,“远端”、“近端”分别指的是柔性电冷探针的刀头和刀柄(刀身),刀柄(刀身)与刀头可以是分体设计或一体成型,本申请中所述的流体管可根据使用需求选择不同的形式,所有选用形式均为常用设计,包括利用相变制冷原理所采用的流体管和利用焦耳汤姆逊原理的节流制冷流体管,这两种实施方式均需要配合接入流体管的回流管以将流体排出装置外部或进行回收,流体管也可以是封闭式自循环的,这种流体管适用于流体体积不变且为稳定态的流体,通过热传导使装置制冷。电消融装置中一种常用的实施方式,该实施方式是采用表面电极放置在体表或组织表面作为与进入人体内的电极相互配合对靶区进行电消融,本申请中电发生模块可以输出的电脉冲强度为1V/cm~3000V/cm的单个或多个电脉冲或强度为0.1V/cm~500V/cm、0.1mA~500mA的直流电。
本申请中所采用的控制器包括多种模块及其子模块的组合,根据不同的实施例将采用不同的实施模块组合,主机主要包括能源供给系统和控制器,控制器具体包括:电发生模块和冷冻模块,其中电发生模块包括直流电发生器、脉冲发生器及电磁波发生器,直流电发生器可以输出不同强度的直流电。脉冲发生器,可输出不同频率波形的脉冲电流,通过不同频率的脉冲可对细胞产生电穿孔,可产生的电穿孔的类型分为可逆电穿孔和不可逆电穿孔,其中与冷冻消融组合的消融手术用到的主要是不可逆电穿孔。电磁波发生器,电磁波发生器可发射肿瘤电场(TTFields)进行治疗。冷冻模块主要由制冷装置构成,制冷装置可以是依靠冷流体冷冻的装置,其可提供利用焦耳汤姆逊原理、热传导原理或相变制冷原理的多中冷流体,例如二氧化碳、一氧化二氮、氩气、氮气、氟利昂或液氮等。制冷装置还可以是电制冷装置,如TEC半导 体制冷器,通过电发生模块向TEC半导体制冷器供电也可以达到冷冻的效果,TEC半导体制冷器可能存在散热问题,TEC半导体制冷器的散热端可以用热管进行散热。
系统中冷冻模块和电发生模块通过控制器与柔性电冷探针连通,柔性电冷探针通过控制器对靶区进行多种形式的消融,例如:通过直流电发生器施加单独的电解消融,通过脉冲发生器对靶区细胞产生电穿孔进行的电穿孔消融,通过冷流体对靶区进行冷冻消融。本申请的重点在于采用柔性结构直达靶区后可采用多种消融方式组合的方式进行具有增强消融效果的组合消融。当电解和电脉冲配合施加到靶区时,首先通过电解在靶区附近产生电解质,随后通过电脉冲将靶区的细胞膜打开,不论细胞膜打开的形式是否可逆,均会使电解所产生的电解质更容易透化进入细胞内部,电解质对于细胞来说具有毒性,从而杀死细胞完成对靶区的消融,经过实验证明电解及电穿孔两种消融方式进行组合消融效果要远胜于单独电解后再单独进行电穿孔消融消融。当电解和冷冻结合作用时,首先通过冷冻将靶区冻结,使靶区处于低温冷冻状态,靶区会被冷冻标识,采用CT等密度成像设备会更清晰的展示出靶区的具体消融范围,可为后续进行的电消融确定消融区,当靶区处于冷冻状态时电导率会增加,冷冻完成后施加电消融会加快电传导增加电消融的效率和强度,使靶区细胞被更快、更彻底的消融。经过实验我们发现了一种更加优秀的电冷结合的消融方法,首先对靶区进行电脉冲,电脉冲会对靶区的血液流动产生抑制作用,在冷冻消融的过程中血液流动的速度会极大的影响冰球生成的大小从而影响消融效果,冷冻过程中人体受到冷刺激会加速靶区的血液流动,血液流动加快不利于冷冻消融,在电冷消融的过程中冰球的大小会影响消融的范围和电消融的效果,因此冷冻消融前先进行电脉冲对电冷结合消融效果有很大的增益,同时冷冻还具有将荣幸电冷探针与靶区固定的作用,由于人体器官血管或腔内具有根据生物体特性所带来不可避免的活动,例如呼吸,会使得作用于靶区的柔性电冷探针脱离靶区,采用冷冻消融在消融的同时还可以在靶区和柔性电冷探针之间形成冷冻粘连。
为定位靶区和固定本申请与靶区的相对位置,传统意义上可配合的外部设备均可以配合使用,例如:腔镜。本申请可参考一般性的柔性治疗设备的配合方式配合外部设备使用。
在柔性电冷探针应用于部分血管及人体自然腔道时需要将血管或腔道支撑,为解决此问题可在柔性电冷探针的远端设置支撑装置(例如球囊),以球囊为例,所选用的球囊可以是已公开的适用公开产品/商用产品,优选的球囊内部具有可充盈冷流体并通过热传递向外部释放作用于靶区,当选用该种结构的时候,优选的应将至少一个电极设置在球囊的表面,可以是固定设置也可以是贴合设置,以使得借助球囊可以对靶区同时进行冷冻消融和电消融,其中电消融包括电解和电脉冲,电脉冲可以造成可逆或不可逆的电消融效果。
为了更好的理解本申请,下面结合具体实施例和附图对本申请进行进一步的描述。然而,本领域技术 人员将清楚,可以在没有这些特定细节的情况下实践本公开的实施例。此外,这里描述的本公开的特定实施例是作为示例提供的,并且不应该用于将本申请的范围限制于这些特定实施例。在其他情况下,没有详细描述或示出公知的材料,组件,过程,控制器组件,软件,电路,时序图和/或解剖结构,以避免不必要地模糊实施例。
实施例1:参考系统图14,本实施例中的控制器包括电发生模块和冷冻模块,控制器与环状双电极流体管式柔性电冷探针1连通,参考图1,其中冷冻模块与第一流体管102连通,电发生模块与设置在环状双电极流体管式柔性电冷探针1远端的第一电极104和第二电极105电连接,第一电极104与第二电极105极性相反,作为优选方案第一电极104和第二电极105选用环状电极,但参考图10的对称双电极流体管式柔性电冷探针5,其采用轴心对称设计的第八电极504和第九电极505可以获得相似的技术效果,参考图13采用顶端电极第十三电极805可对探针顶部更大范围进行消融,以此说明本申请中双电极的分布形式可采取多种不同形式不应局限于本申请中所展示的优选实施例,第一电极104和第二电极105之间设置有第一绝缘层103,环状双电极流体管式柔性电冷探针1的近端至第一电极104的为第一绝热刀杆101,本实施例中第一绝热刀杆101设置为整体都由绝热材质组成,但同时也可设置为仅外表面绝热的多层结构构成,同时参考与本实施例结构相似的图12,区别在于图中刀杆701材质选用非绝热材料,并在刀杆701上套接套管706,套管706的材质组成是既绝热又绝缘的,套管706与刀杆701滑动连接,通过推拉套管706可对环状双电极流体管式柔性电冷探针1的冷冻范围进行精确控制,应注意该套管706不应理解为仅可在本实施例中施行,该结构具有宽松的应用条件以在特定环境下上位代替采用绝缘刀杆的设计,在进行消融工作时参考图3,图3示例是环状双电极流体管式柔性电冷探针1对血管6中的靶区601进行消融,首先将环状双电极流体管式柔性电冷探针1接近或贴合靶区601,随后通过控制器控制冷冻模块,冷冻模块开启冷冻模块向第一流体管102输入冷流体,冷流体从第一流体管102输入到环状双电极流体管式柔性电冷探针1的远端,通过热交换使环状双电极流体管式柔性电冷探针1降至低温进而对靶区601进行冷冻,冷流体通过环状双电极流体管式柔性电冷探针1向外排出,冷流体可选择直接排出或回收,待靶区被冷冻后,停止向第一流体管102输入冷流体,随后控制器打开电发生模块对第一电极104和第二电极105供电,根据控制器对直流电发生器和电脉冲发生器的控制,第一电极104和第二电极105可输出直流电和不同频率电脉冲的一种或多种组合使用对靶区601进行组合电消融。消融完成后,视需求可以直接取出环状双电极流体管式柔性电冷探针1或增加复温的步骤,第一电极104和第二电极105可发射射频微波对环状双电极流体管式柔性电冷探针1进行复温,也可以通过控制器向第一流体管102输入冰点以上的流体对环状双电极流体管式柔性电冷探针1进行复温,传统的采用电热丝缠绕在环状双电极流体管式柔性电冷探针1外表面也是可选用的复温方式。
实施例2:参考系统图14,本实施例中的控制器包括电发生模块和冷冻模块,控制器与环状单电极流体管式柔性电冷探针2连通,参考图4,其中冷冻模块与第二流体管202连通,电发生模块与设置在环状单电极流体管式柔性电冷探针2远端的第三电极204电连接,为配合第三电极204完成电回路,在人体或组织器官外表面应设有至少一个的表面电极,该表面电极与第三电极204极性相反,作为优选方案第三电极204选用环状电极,环状单电极流体管式柔性电冷探针2的远端设有第二绝缘层203,但不应认为第二绝缘层203是必须设置的,环状单电极流体管式柔性电冷探针2的近端至第三电极204的为第二绝热刀杆201,本实施例中第二绝热刀杆201设置为整体都由绝热材质组成,但同时也可设置为仅外表面绝热的多层结构构成,在进行消融工作时,首先将环状单电极流体管式柔性电冷探针2接近或贴合靶区,随后通过控制器控制冷冻模块,冷冻模块开启冷冻模块向第二流体管202输入冷流体,冷流体从第二流体管202输入到环状单电极流体管式柔性电冷探针2的远端,通过热交换使环状单电极流体管式柔性电冷探针2降至低温进而对靶区进行冷冻,冷流体通过环状单电极流体管式柔性电冷探针2向外排出,冷流体可选择直接排出或回收,通过温度传感器205后可以更精确的测量温度是否符合标准并将温度数据反馈到主机中,温度传感器205可以是测温电偶,温度传感器205在手术探针中作为常用可选设计不应理解为仅适用本实施例中,温度降低到既定标准后,停止向第二流体管202输入冷流体,随后控制器打开电发生模块对第三电极204供电,根据控制器对直流电发生器和电脉冲发生器的控制,第三电极204可输出直流电和不同频率电脉冲的一种或多种组合使用对靶区进行组合电消融。消融完成后,视需求可以直接取出环状单电极流体管式柔性电冷探针2或增加复温的步骤,第三电极204可发射射频微波对环状单电极流体管式柔性电冷探针2进行复温,也可以通过控制器向第二流体管202输入冰点以上的流体对环状单电极流体管式柔性电冷探针2进行复温,传统的采用电热丝缠绕在环状单电极流体管式柔性电冷探针2外表面也是可选用的复温方式。
实施例3:参考系统图14,本实施例中的控制器包括电发生模块,控制器与双电极TEC柔性电冷探针3连通,参考图6,其中电发生模块与TEC半导体致冷器302电连接,优选结构为TEC半导体致冷器302嵌接在TEC柔性电冷探针3的内部一体成型,将TEC半导体致冷器外接于TEC柔性电冷探针3的结构也是一种实施方式,TEC半导体致冷器302的制冷端向装置外表面设置,散热面向TEC柔性电冷探针3内部设置,优选的采用热管306与TEC半导体致冷器302固定辅助散热,电发生模块与设置在双电极TEC柔性电冷探针3远端的第四电极304和第五电极305电连接,第四电极304与第五电极305极性相反,作为优选方案第四电极304和第五电极305选用环状电极,第四电极304和第五电极305之间设置有第一绝缘层103,双电极TEC柔性电冷探针3的近端至第四电极304的为第三绝热刀杆301,本实施例中第三绝热刀杆301设置为整体都由绝热材质组成,但同时也可设置为仅外表面绝热的多层结构构成,在进行消融 工作时,首先将双电极TEC柔性电冷探针3接近或贴合靶区,控制器打开电发生模块通过TEC半导体致冷器302对靶区进行冷冻随后对第四电极304和第五电极305供电,根据控制器对直流电发生器和电脉冲发生器的控制,第四电极304和第五电极305可输出直流电和不同频率电脉冲的一种或多种组合使用对靶区进行组合电消融。消融完成后,视需求可以直接取出,也可以为双电极TEC柔性电冷探针3或增加复温的步骤,第四电极304和第五电极305可发射射频微波对双电极TEC柔性电冷探针3进行复温,也可以采用电热丝缠绕在双电极TEC柔性电冷探针3外表面对电热丝通电进行电加热的方式复温。
实施例4:参考系统图14,本实施例中的控制器包括电发生模块和冷冻模块,控制器与点阵式电极流体管式柔性电冷探针4连通,参考图8,其中冷冻模块与第三流体管402连通,电发生模块与设置在点阵式电极流体管式柔性电冷探针4远端的若干第六电极404和若干第七电极405电连接,第六电极404与第七电极405极性相反,第六电极404和第七电极405之间设置有第四绝缘层403,作为优选方案第六电极404和第七电极405采用点阵式分布在点阵式电极流体管式柔性电冷探针4的远端,点阵式分布可更高效的进行在靶区均匀的电传导,点阵式电极流体管式柔性电冷探针4的远端设有第四绝缘层403,点阵式电极流体管式柔性电冷探针4的近端至第六电极404的为第四绝热刀杆401,本实施例中第四绝热刀杆401设置为整体都由绝热材质组成,但同时也可设置为仅外表面绝热的多层结构构成,在进行消融工作时,首先将点阵式电极流体管式柔性电冷探针4接近或贴合靶区,随后通过控制器控制冷冻模块,冷冻模块开启冷冻模块向第三流体管402输入冷流体,冷流体从第三流体管402输入到点阵式电极流体管式柔性电冷探针4的远端,通过热交换使点阵式电极流体管式柔性电冷探针4降至低温进而对靶区进行冷冻,冷流体通过点阵式电极流体管式柔性电冷探针4向外排出,冷流体可选择直接排出或回收,待靶区被冷冻后,停止向第三流体管402输入冷流体,随后控制器打开电发生模块对第六电极404和第七电极405供电,根据控制器对直流电发生器和电脉冲发生器的控制,第六电极404和第七电极405可输出直流电和不同频率电脉冲的一种或多种组合使用对靶区进行组合电消融。消融完成后,视需求可以直接取出点阵式电极流体管式柔性电冷探针4或增加复温的步骤,第六电极404和第七电极405可发射射频微波对点阵式电极流体管式柔性电冷探针4进行复温,也可以通过控制器向第三流体管402输入冰点以上的流体对点阵式电极流体管式柔性电冷探针4进行复温,传统的采用电热丝缠绕在点阵式电极流体管式柔性电冷探针4外表面也是可选用的复温方式。
实施例5:参考图15,图15显示的球囊式柔性电冷探针9近端具有球囊907,球囊907可如图16所示经过内部设置的第七流体管902进行冷流体的输送,也可以通过外部其他结构进行冷流体输送,具体的球囊907可以参考已公开且适用于本申请的任何球囊的冷流体输送方式,可同理应用于本申请,球囊907通过内部冷流体可以对靶区传递冷消融能量,球囊907的表面应设有至少一个电极用于电消融,具体的电 消融包括电解和电脉冲消融,电脉冲消融分为造成可逆电穿孔和不可逆电穿孔两种形式,参考图15,本实施例中球囊907上设有两个电极,第十四电极904和第十五电极905,两个电极具有相反的极性,电极之间设有第八绝缘层903进行电绝缘,确保同一球囊上可以发生电解反应;根据第二刀杆901的材质,可以配有第二套管906,当第二刀杆是电绝缘且绝热的时候,第二套管906为非必要配件,当第二刀杆非电绝缘和/或非绝热的时候,第二套管906应具有绝热和/或电绝缘效果,且第二套管906可沿球囊式柔性电冷探针9滑动以调整绝缘/绝热区;参考图17,图17中球囊907的外表面设有球囊TEC半导体致冷器908,TEC半导体致冷器908紧密贴合于球囊907用于冷冻消融。
以上对本申请的实施例进行了详细说明,但所述内容仅为本申请的较佳实施例,不能被认为用于限定本申请的实施范围。凡依本申请范围所作的均等变化与改进等,均应仍归属于本专利涵盖范围之内。

Claims (19)

  1. 一种使用柔性电冷探针的电冷消融系统,其特征在于:包括主机和柔性电冷探针,所述主机包括控制器、电发生模块和冷冻模块,所述控制器与所述电发生模块和所述冷冻模块电连接,所述电发生模块包括直流电发生器、脉冲发生器和电磁波发生器的中的至少一种,所述冷冻模块为制冷剂产生、控制和输出装置,所述冷冻模块可输出包括二氧化碳、一氧化二氮、氩气、氮气或液氮作为制冷剂;所述柔性电冷探针至少为一根且至少部分具有柔性结构,所述柔性电冷探针包括至少一个电极,所述电极与所述电发生模块电连接;所述柔性电冷探针包括冷冻机构,所述冷冻机构为流体管,所述流体管置于所述柔性电冷探针内部,近端与所述冷冻模块连通,所述流体管的远端为制冷端。
  2. 根据权利要求1所述的电冷消融系统,其特征在于:所述电冷消融系统还包括表面电极,所述表面电极独立于所述柔性电冷探针设置并与所述电发生模块电连接。
  3. 根据权利要求1所述的电冷消融系统,其特征在于:所述电发生模块可输出0.1V/cm~500V/cm、0.1mA~500mA的直流电和1V/cm~3000V/cm的单个或多个电脉冲。
  4. 一种使用柔性电冷探针的电冷消融系统,其特征在于:包括主机和柔性电冷探针,所述主机包括控制器、电发生模块和冷冻模块,所述控制器与所述电发生模块和所述冷冻模块电连接,所述电发生模块包括直流电发生器、脉冲发生器和电磁波发生器的中的至少一种,所述柔性电冷探针至少为一根且至少部分具有柔性结构,所述柔性电冷探针包括至少一个电极,所述电极与所述电发生模块电连接,所述柔性电冷探针包括冷冻机构,所述冷冻机构为TEC半导体制冷器,所述TEC半导体制冷器设置于所述柔性电冷探针的远端。
  5. 根据权利要求4所述的电冷消融系统,其特征在于:所述电冷消融系统还包括表面电极,所述表面电极独立于所述柔性电冷探针设置并与所述电发生模块电连接。
  6. 根据权利要求4所述的电冷消融系统,其特征在于:所述电发生模块可输出0.1V/cm~500V/cm、0.1mA~500mA的直流电和1V/cm~3000V/cm的单个或多个电脉冲。
  7. 一种柔性电冷探针,其特征在于:所述柔性电冷探针至少部分为柔性结构,所述柔性电冷探针包括至少一个电极和至少一个流体管,所述电极设置在所述柔性电冷探针的远端表面,所述流体管设置在所述柔性电冷探针的内部。
  8. 根据权利要求7所述的柔性电冷探针,其特征在于:所述柔性电冷探针包括两个及两个以上的电极,所述电极设置在所述柔性电冷探针的远端,所述电极分为正极和负极且为交替分布,所述电极之间设有电绝缘层,所述电极用于电解和/或电脉冲消融。
  9. 根据权利要求7所述的柔性电冷探针,其特征在于:所述柔性电冷探针包括测温电偶,所述测温电偶设置在所述柔性电冷探针的内部。
  10. 根据权利要求7所述的柔性电冷探针,其特征在于:所述柔性电冷探针包括套管,所述套管套接在所述柔性电冷探针的外部并形成可滑动连接结构,所述套管绝缘并绝热。
  11. 根据权利要求7所述的柔性电冷探针,其特征在于:所述柔性电冷探针的远端包括球囊,所述球囊与所述流体管连通。
  12. 根据权利要求11所述的柔性电冷探针,其特征在于:所述球囊的表面设有至少一个球囊电极,所述球囊电极用于电解和/或电脉冲消融。
  13. 一种柔性电冷探针,其特征在于:所述柔性电冷探针至少部分为柔性结构,所述柔性电冷探针包括至少一个电极和至少一个TEC半导体致冷器,所述电极设置在所述柔性电冷探针的远端,所述TEC半导体致冷器设置在所述柔性电冷探针的远端,所述TEC半导体致冷器的制冷侧朝向外设置。
  14. 根据权利要求13所述的柔性电冷探针,其特征在于:所述TEC半导体致冷器包括热管,所述TEC半导体致冷器的散热面与所述热管紧密贴合。
  15. 根据权利要求13所述的柔性电冷探针,其特征在于:所述柔性电冷探针包括两个及两个以上的电极,所述电极设置在所述柔性电冷探针的远端,所述电极分为正极和负极且为交替分布,所述电极之间设有电绝缘层。
  16. 根据权利要求13所述的柔性电冷探针,其特征在于:所述柔性电冷探针包括测温电偶,所述测温电偶设置在所述柔性电冷探针的内部。
  17. 根据权利要求13所述的柔性电冷探针,其特征在于:所述柔性电冷探针包括套管,所述套管套接在所述柔性电冷探针的外部并形成可滑动连接结构,所述套管绝缘并绝热。
  18. 根据权利要求13所述的柔性电冷探针,其特征在于:所述柔性电冷探针的远端包括球囊,所述球囊的表面设置有至少一个TEC半导体制冷器。
  19. 根据权利要求18所述的柔性电冷探针,其特征在于:所述球囊的表面设有至少一个球囊电极,所述球囊电极用于电解和/或电脉冲消融。
PCT/CN2021/096218 2020-05-27 2021-05-27 一种使用柔性电冷探针的电冷消融系统和柔性电冷探针 WO2021239028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020922845.7 2020-05-27
CN202020922845.7U CN212879547U (zh) 2020-05-27 2020-05-27 一种使用柔性电冷探针的电冷消融系统和柔性电冷探针

Publications (1)

Publication Number Publication Date
WO2021239028A1 true WO2021239028A1 (zh) 2021-12-02

Family

ID=75265971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096218 WO2021239028A1 (zh) 2020-05-27 2021-05-27 一种使用柔性电冷探针的电冷消融系统和柔性电冷探针

Country Status (2)

Country Link
CN (1) CN212879547U (zh)
WO (1) WO2021239028A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117204939A (zh) * 2023-10-30 2023-12-12 电冷医疗科技(天津)有限公司 一种冷冻和电消融结合的消融系统、消融针及控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212879547U (zh) * 2020-05-27 2021-04-06 天津美电医疗科技有限公司 一种使用柔性电冷探针的电冷消融系统和柔性电冷探针

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080077126A1 (en) * 2006-09-22 2008-03-27 Rassoll Rashidi Ablation for atrial fibrillation
CN108175498A (zh) * 2018-01-31 2018-06-19 海口市人民医院(中南大学湘雅医学院附属海口医院) 一种微波消融针的冷却装置
CN109009407A (zh) * 2018-09-10 2018-12-18 科塞尔医疗科技(苏州)有限公司 可实现标测功能的冷冻消融球囊导管及方法
CN109199570A (zh) * 2017-06-29 2019-01-15 四川锦江电子科技有限公司 一种极间冷冻消融导管
CN109259856A (zh) * 2018-09-12 2019-01-25 中国科学院理化技术研究所 射频加热探针装置及射频消融设备
CN109481004A (zh) * 2018-12-29 2019-03-19 天津美电医疗科技有限公司 一种电冷消融装置用电冷探针
CN109481002A (zh) * 2018-12-29 2019-03-19 天津美电医疗科技有限公司 一种融合冷消融与电消融的装置
CN212879547U (zh) * 2020-05-27 2021-04-06 天津美电医疗科技有限公司 一种使用柔性电冷探针的电冷消融系统和柔性电冷探针

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080077126A1 (en) * 2006-09-22 2008-03-27 Rassoll Rashidi Ablation for atrial fibrillation
CN109199570A (zh) * 2017-06-29 2019-01-15 四川锦江电子科技有限公司 一种极间冷冻消融导管
CN108175498A (zh) * 2018-01-31 2018-06-19 海口市人民医院(中南大学湘雅医学院附属海口医院) 一种微波消融针的冷却装置
CN109009407A (zh) * 2018-09-10 2018-12-18 科塞尔医疗科技(苏州)有限公司 可实现标测功能的冷冻消融球囊导管及方法
CN109259856A (zh) * 2018-09-12 2019-01-25 中国科学院理化技术研究所 射频加热探针装置及射频消融设备
CN109481004A (zh) * 2018-12-29 2019-03-19 天津美电医疗科技有限公司 一种电冷消融装置用电冷探针
CN109481002A (zh) * 2018-12-29 2019-03-19 天津美电医疗科技有限公司 一种融合冷消融与电消融的装置
CN212879547U (zh) * 2020-05-27 2021-04-06 天津美电医疗科技有限公司 一种使用柔性电冷探针的电冷消融系统和柔性电冷探针

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117204939A (zh) * 2023-10-30 2023-12-12 电冷医疗科技(天津)有限公司 一种冷冻和电消融结合的消融系统、消融针及控制方法
CN117204939B (zh) * 2023-10-30 2024-05-24 电冷医疗科技(天津)有限公司 一种冷冻和电消融结合的消融系统、消融针及控制方法

Also Published As

Publication number Publication date
CN212879547U (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
US11241282B2 (en) Method and apparatus for rapid and selective transurethral tissue ablation
US7875025B2 (en) Electro-surgical needle apparatus
WO2021239028A1 (zh) 一种使用柔性电冷探针的电冷消融系统和柔性电冷探针
EP2892455B1 (en) Device for ablating and electroporating tissue cells
JP4274727B2 (ja) 電気外科−冷凍外科用複合機器
US6976492B2 (en) Noninvasive devices, methods, and systems for shrinking of tissues
US20080161890A1 (en) Methods, systems, and apparatuses for protecting esophageal tissue during ablation
US20070016274A1 (en) Gastrointestinal (GI) ablation for GI tumors or to provide therapy for obesity, motility disorders, G.E.R.D., or to induce weight loss
US20030178032A1 (en) Noninvasive devices, methods, and systems for shrinking of tissues
ES2668304T3 (es) Electrodo bipolar en solapamiento para tratamiento térmico de alta frecuencia
JP4795354B2 (ja) 凍結手術用の装置および方法
CN114376723B (zh) 不可逆电穿孔消融针、针道消融装置及消融装置
CN109481002A (zh) 一种融合冷消融与电消融的装置
CN109199570B (zh) 一种极间冷冻消融导管
CN209808517U (zh) 一种电冷消融装置用电冷探针
CN204814162U (zh) 针灸针型射频电针
CN113729912A (zh) 一种使用柔性结构的电冷消融装置、系统及方法
CN104706419B (zh) 针灸针型射频电针
CN109481004A (zh) 一种电冷消融装置用电冷探针
CN116172685A (zh) 一种配合冷冻消融的电消融系统和消融针
Filingeri et al. Physics of radiofrequency in proctology
Rempp et al. A comparison of internally water-perfused and cryogenically cooled monopolar and bipolar radiofrequency applicators in ex vivo liver samples
US9468493B2 (en) Apparatus, system, and method for performing surface tissue desiccation having an internal cooling system
CN219579012U (zh) 一种防腐蚀电极针及电治疗装置
CN117204939B (zh) 一种冷冻和电消融结合的消融系统、消融针及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21814437

Country of ref document: EP

Kind code of ref document: A1