WO2021238885A1 - 一种光伏组件关断方法及关断系统 - Google Patents

一种光伏组件关断方法及关断系统 Download PDF

Info

Publication number
WO2021238885A1
WO2021238885A1 PCT/CN2021/095639 CN2021095639W WO2021238885A1 WO 2021238885 A1 WO2021238885 A1 WO 2021238885A1 CN 2021095639 W CN2021095639 W CN 2021095639W WO 2021238885 A1 WO2021238885 A1 WO 2021238885A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic
component
module
switch
turn
Prior art date
Application number
PCT/CN2021/095639
Other languages
English (en)
French (fr)
Inventor
彭宏亮
Original Assignee
长沙晶辉太阳能有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙晶辉太阳能有限公司 filed Critical 长沙晶辉太阳能有限公司
Publication of WO2021238885A1 publication Critical patent/WO2021238885A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of photovoltaic power generation, and specifically relates to a shutdown method and a shutdown system of a photovoltaic assembly.
  • photovoltaic power generation has now become one of the important components in the field of new energy.
  • Photovoltaic module A power generation device that converts solar energy into direct current, also called solar panel.
  • Photovoltaic string In a photovoltaic power generation system, a circuit unit composed of several or even dozens of photovoltaic modules connected in series.
  • DC high voltage In a photovoltaic power generation system composed of several or even dozens of photovoltaic modules connected in series, there is a DC high voltage of 500V-1500V.
  • Photovoltaic inverter A device that converts the direct current generated by photovoltaic modules into alternating current output.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a photovoltaic module shutdown method.
  • the photovoltaic module shutdown method has simple steps and solves the problem that the photovoltaic module-level DC high voltage shutdown is difficult to commercialize.
  • the invention also provides a photovoltaic module shutdown system.
  • the photovoltaic module shutdown method includes the following steps: connecting the communication acquisition device to the photovoltaic inverter, connecting the local processor to the photovoltaic module, and connecting the module in series at the output end of the photovoltaic module Turn off the switch and make the component turn-off switch in a closed state; send a string turn-off instruction to the communication acquisition device through the monitoring terminal, and the communication acquisition device controls the photovoltaic inverter to turn off its own current switch;
  • the communication collection device sends a component turn-off instruction to the local processor, and the local processor controls the component turn-off switch to turn off.
  • the photovoltaic module shutdown method has at least the following technical effect: through the communication between the communication acquisition device and the photovoltaic inverter, the photovoltaic inverter can turn off its own high-current switch, so that the For the shutdown of the entire photovoltaic string, the embodiment of the present invention cleverly utilizes the characteristics of the photovoltaic inverter itself without adding an additional high-current switch; at the same time, after the high-current switch of the photovoltaic inverter itself is turned off, the photovoltaic string A loop cannot be formed. At this time, each photovoltaic module does not need to face high current when it is disconnected.
  • the module shutdown switch can choose a switch with a small volume, a low cost, and a long life.
  • the hardware cost has been reduced, the service life has been increased, and the volume of the module switch-off switch has been greatly reduced, which can realize industrialization in a real sense. commercialize.
  • the module shutdown switch is connected in series with the output terminal of the photovoltaic module through a normally closed contact.
  • the foregoing photovoltaic module shutdown method further includes the following steps: collecting the module temperature of the photovoltaic module through a temperature collecting unit connected to the local processor; the module temperature exceeds a preset safe temperature If the value or the temperature rise rate of the component exceeds a preset safe temperature rise rate, the local processor issues an over-temperature warning instruction to the communication collection device.
  • the temperature collection unit directly adopts an internal temperature sensor of the local processor.
  • the temperature collection unit adopts a resistance temperature sensor.
  • the resistance temperature sensor adopts a PT1000 resistor.
  • the foregoing photovoltaic module shutdown method further includes the following steps: collecting the module voltage at the output terminal of the module shutdown switch through a voltage acquisition unit connected to the local processor, and the module voltage exceeds a preset value.
  • the local processor issues a component shutdown failure instruction to the communication collection device.
  • wireless communication is adopted between the local processor and the communication collection device, and between the communication collection device and the monitoring terminal.
  • a SIM card is provided in the communication collection device.
  • the photovoltaic module shutdown system applies the above-mentioned photovoltaic module shutdown method, including: a module shutdown switch, connected in series with the output terminal of the photovoltaic module, for cutting off the output of the photovoltaic module
  • a local processor connected to the component shutdown switch, and used to receive a component shutdown instruction and turn off the component shutdown switch;
  • a communication acquisition device connected to the photovoltaic inverter and the local processor, respectively It receives the string shutdown instruction issued by the monitoring terminal and controls the photovoltaic inverter to turn off its own current switch, and is also used to issue the component shutdown instruction to the local processor.
  • the photovoltaic module shutdown system has at least the following technical effect: the photovoltaic inverter can be controlled to turn off its own current switch through the communication acquisition device, and the photovoltaic string loop can be disconnected, thereby allowing the photovoltaic module No need to face high current situation.
  • the module shut-off switch can choose a small, low-cost, and long-life switch, and realize the function of shutting off the output of each photovoltaic module in the photovoltaic string under the control of the local processor.
  • Figure 1 is a system diagram of an embodiment of the first aspect of the present invention
  • Figure 2 is a schematic diagram of the electrical connection of the local processor of the embodiment of the first aspect of the present invention.
  • Fig. 3 is a schematic diagram of the electrical connection of the communication acquisition device according to the embodiment of the first aspect of the present invention.
  • Local processor 110 component shutdown switch 120, temperature acquisition unit 130, voltage acquisition unit 140, local wireless sending module 150,
  • Communication acquisition device 210 mid-end wireless receiving module 220, mid-end wireless sending module 230,
  • the photovoltaic component 310 The photovoltaic component 310, the photovoltaic inverter 320, and the monitoring terminal 330.
  • FIGS. 1 to 3 a photovoltaic module shutdown method according to an embodiment of the first aspect of the present invention will be described with reference to FIGS. 1 to 3.
  • the photovoltaic module shutdown method includes the following steps: connecting the communication acquisition device 210 with the photovoltaic inverter 320, connecting the local processor 110 with the photovoltaic module 310, and connecting the photovoltaic module 310 at the output end of the photovoltaic module 310
  • the series module shut-off switch 120 is turned on and the module shut-off switch 120 is in a closed state; a string shut-off command is sent to the communication acquisition device 210 through the monitoring terminal 330, and the communication acquisition device 210 controls the photovoltaic inverter 320 to turn off its own current switch;
  • the component shutdown instruction is sent to the local processor 110 through the communication collection device 210, and the local processor 110 controls the component shutdown switch 120 to turn off.
  • the communication collection device 210 is connected to the photovoltaic inverter 320 through a serial port, and data interaction between the communication collection device 210 and the photovoltaic inverter 320 can be realized.
  • the communication collection device 210 controls the photovoltaic inverter 320 to turn off its own current switch through the serial port, so as to cut off the loop of the entire photovoltaic string.
  • the communication collection device 210 will issue a component shutdown instruction to the local processor 110.
  • the local processor 110 controls the component shutdown switch 120 connected to itself to turn off.
  • the 310-level shutdown of the photovoltaic module is realized.
  • a string shutdown instruction can be manually sent to the communication acquisition device 210 through the monitoring terminal 330 to shut down the photovoltaic module 310 to ensure the safety of on-site personnel and equipment.
  • the string closing instruction can be sent to the communication collection device 210 through the monitoring terminal 330 again, so as to realize the control of the photovoltaic module 310 connecting to the photovoltaic string.
  • the module shut-off switch 120 can be a switch with a smaller volume and a lower cost.
  • a small switch is more convenient to control, and the corresponding local processor 110 can also be selected with a lower cost.
  • the photovoltaic inverter 320 connected in series with the photovoltaic string has a current switch, which can withstand the impact of high voltage and large current.
  • the photovoltaic inverter 320 can turn off its own high-current switch through the communication acquisition device 210 and the photovoltaic inverter 320, so that the entire photovoltaic string can be turned off. Ingenious use of the characteristics of the photovoltaic inverter 320 does not require an additional high-current switch; at the same time, after the high-current switch of the photovoltaic inverter 320 itself is turned off, the photovoltaic string cannot form a loop. At this time, each photovoltaic When the component 310 is disconnected, there is no need to face a large current.
  • the component shut-off switch 120 can be a switch with a small size, a low cost, and a long life.
  • the hardware cost has been reduced, the service life has been increased, and the volume of the module shut-off switch 120 has been greatly reduced, which can realize the industry in a real sense.
  • the embodiment of the present invention provides a certain technical basis for the domestic photovoltaic industry to launch corresponding safety standards, and at the same time resolves the restrictions of domestic photovoltaic enterprises by foreign corresponding safety standards when exporting abroad, and can obtain a competitive advantage with foreign high-cost solutions.
  • the module shut-off switch 120 is connected in series with the output terminal of the photovoltaic module 310 through a normally closed contact.
  • the contact is connected in series with the output terminal of the photovoltaic module 310.
  • the control coil of the module shut-off switch 120 needs to be kept energized.
  • control coil of the component shut-off switch 120 is in a non-energized state. When it needs to be disconnected, it can be energized for a short time, which can effectively improve the shutdown of the entire component. The service life of the switch 120.
  • the foregoing photovoltaic module shutdown method further includes the following steps: collect the component temperature of the photovoltaic component 310 through the temperature collection unit 130 connected to the local processor 110; the component temperature exceeds a preset safe temperature value Or the temperature rise rate of the component exceeds the preset safe temperature rise rate, and the local processor 110 issues an over-temperature warning instruction to the communication collection device 210.
  • Temperature collection is also an important link for the photovoltaic module 310.
  • the temperature change can usually effectively reflect the working state of the photovoltaic module 310. When a short circuit, overvoltage, overcurrent and other faults occur, it is usually accompanied by an increase in temperature.
  • the monitoring can detect these problems in advance.
  • the switch 120 can avoid further damage to the photovoltaic inverter 320 and other photovoltaic components 310 connected in series, thereby reducing losses.
  • the temperature collection is completed by the temperature collection unit 130, and the temperature collection unit 130 is directly arranged on the photovoltaic component 310 to complete the temperature collection of the photovoltaic component 310. After the temperature collection is completed, it is directly transmitted to the local processor 110, and then transmitted to the communication collection device 210.
  • the temperature collection unit 130 directly adopts the internal temperature sensor of the local processor 110.
  • the internal temperature sensors In actual engineering, taking some single-chip microcomputers with internal temperature sensors as an example, most of the internal temperature sensors have poor temperature detection accuracy and large errors, which are easily affected by the environment. However, in the temperature detection of the photovoltaic module 310, large In most cases, it is not necessary to accurately detect the temperature, but only needs to monitor the temperature change. When the overall temperature of the photovoltaic module 310 changes greatly in a short period of time, it can be judged that a fault has occurred.
  • the local processor 110 adopts the MSP430 series single-chip microcomputer.
  • the internal temperature sensor of the MSP430 series single-chip microcomputer is relatively accurate, and the cost is relatively low, which is suitable for large-scale applications.
  • the communication acquisition device 210 adopts STM32 series single-chip microcomputers, and the number of functional interfaces of this series of single-chip microcomputers is sufficient to meet the requirements of the embodiments of the present invention.
  • the temperature collection unit 130 adopts a resistance temperature sensor.
  • the temperature acquisition unit 130 using a resistance temperature sensor can further improve the accuracy of temperature detection, and can meet some environments that require higher-precision temperature monitoring.
  • the resistance temperature sensor has relatively low cost.
  • a simple voltage divider circuit is needed to realize the collection of temperature data of the photovoltaic module 310.
  • the use of a resistance temperature sensor is less susceptible to interference from an increase in the temperature of the processor itself than using an internal temperature sensor of the local processor 110.
  • the resistance temperature sensor uses a PT1000 resistor.
  • the precision of PT1000 resistance is higher, and the operating temperature range is larger.
  • Resistance temperature sensors can also use PT100 resistors, but they are more susceptible to wiring than PT1000 resistors. In addition, if the accuracy requirements are not high, other cheaper resistance temperature sensors can also be used.
  • the above-mentioned photovoltaic module shutdown method further includes the following steps: the module voltage at the output terminal of the module shutdown switch 120 is collected by the voltage collecting unit 140 connected to the local processor 110, and the module voltage exceeds a preset value.
  • the local processor 110 issues a component shutdown failure instruction to the communication acquisition device 210. Setting the voltage collecting unit 140 at the output terminal position of the component shut-off switch 120 can effectively determine whether the component shut-off switch 120 is successfully turned off. If the component turn-off switch 120 is not successfully turned off, the voltage collection unit 140 can still detect the output voltage of the photovoltaic component 310 at this time. It can be effectively judged whether the component turn-off switch 120 is successfully turned off, which can further improve safety and avoid the situation that a relatively high voltage still exists because some photovoltaic components 310 are not actually turned off.
  • the voltage sampling unit 140 adopts a voltage sampling circuit.
  • a voltage sampling circuit There are many ways to collect voltage, and voltage collection modules or devices can be used directly to collect voltage without considering the cost. However, the use of a voltage sampling circuit can effectively control the cost and further improve the ability of industrialization.
  • wired communication is adopted between the local processor 110 and the communication collection device 210, and the communication is specifically realized by a power carrier. Communication through power carrier can directly use existing lines for data communication, which can effectively reduce wiring and reduce costs.
  • wireless communication is adopted between the local processor 110 and the communication collection device 210, and between the communication collection device 210 and the monitoring terminal 330.
  • wireless communications There are many wireless communications, and wireless transmission methods such as WIFI, Bluetooth, ZigBee, etc. can be selected for communication according to the needs of use and the size of the venue.
  • the local processor 110 is connected to the local wireless sending module 150, and the communication acquisition device 210 is connected to the mid-range wireless receiving module 220.
  • the local wireless sending module 150 and the mid-range wireless receiving module 220 realize the local processor 110 and The communication collection device 210 communicates wirelessly; the communication collection device 210 is also connected to the middle-end wireless sending module 230, and the remote wireless communication with the monitoring terminal 330 is realized through the middle-end wireless sending module 230.
  • the local wireless sending module 150, the middle-end wireless receiving module 220, and the middle-end wireless sending module 230 can select a suitable wireless communication module according to the requirements of the transmission distance. In some embodiments of the present invention, the local wireless sending module 150, the middle-end wireless receiving module 220, and the middle-end wireless sending module 230 all choose to use the ZigBee module for communication.
  • ZigBee modules are cheap and have a long communication distance, enough to meet the needs of photovoltaic power plants. Realizing data transmission through wireless communication can greatly reduce the number of on-site communication lines of the photovoltaic power plant, and because the photovoltaic power plant itself is in a relatively open environment, there is less interference in wireless communication and the transmission distance can be effective Therefore, wireless communication modules with lower power can be used to effectively control the cost of wireless communication. Compared with the traditional wired communication method, it can not only control the increase in cost but also reduce the wiring on site, which improves the safety and stability of the entire photovoltaic power plant.
  • the wireless communication module used between the communication collection device 210 and the photovoltaic component 310 can be a module with a lower power. Further cost savings. Since the communication between the communication collection device 210 and the monitoring terminal 330 is far away, a wireless communication module with higher power can be used. In some embodiments of the present invention, the communication collection device 210 implements ultra-long-distance data transmission by means of a built-in SIM card.
  • the monitoring terminal 330 will directly adopt the monitoring platform of the Internet of Things.
  • the communication collection device 210 wirelessly transmits data to the monitoring terminal 330 and can directly use the Internet of Things for transmission. In this way, the wireless transmission distance can be effectively increased, and the cost of wireless communication can be greatly saved.
  • the photovoltaic module shutdown system includes: a module shutdown switch 120, a communication acquisition device 210, and a local processor 110.
  • the module shut-off switch 120 is connected in series with the output terminal of the photovoltaic module 310 and is used to cut off the output of the photovoltaic module 310;
  • the local processor 110 is connected with the module shut-off switch 120 and is used to receive the module shut-off command and turn off the module shut-off switch 120;
  • the communication acquisition device 210 is respectively connected to the photovoltaic inverter 320 and the local processor 110, and is used to receive the string shutdown command issued by the monitoring terminal 330 and control the photovoltaic inverter 320 to turn off its own current switch. Then, a component shutdown instruction is issued to the local processor 110.
  • each photovoltaic module 310 in the photovoltaic string is connected to one or two module shut-off switches 120.
  • the remote monitoring terminal 330 can send a string shut-off command to the communication collection device 210, and the communication collection device 210 controls the photovoltaic inverter 320 to shut itself off after receiving the string shut-off command.
  • the communication acquisition device 210 will send a component turn-off instruction to the local processor 110.
  • the local processor 110 controls the component turn-off switch 120 to turn off, and finally realizes photovoltaic Component 310 level shutdown.
  • the photovoltaic inverter 320 can be controlled to turn off its own current switch, and the photovoltaic string loop can be disconnected, so that the photovoltaic module 310 does not need to face large amounts of electricity.
  • the component shutdown switch 120 can select a switch with a small size, a low cost, and a long life, and under the control of the local processor 110, the output of each photovoltaic component 310 in the photovoltaic string can be turned off. Function.

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一种光伏组件关断方法,包括以下步骤:将通讯采集装置与光伏逆变器连接,将本地处理器与光伏组件连接,在光伏组件的输出端串联组件关断开关并使组件关断开关处于闭合状态;通过监测端向通讯采集装置发送组串关断指令,通讯采集装置控制光伏逆变器关断自身的电流开关;通过通讯采集装置向本地处理器发送组件关断指令,本地处理器控制组件关断开关断开。本发明实施例利用了光伏逆变器的部分功能完成光伏组串的回路断开,使得在后续的光伏组件断开过程中,可以不再面临大电流的冲击,因此可以选用小型的开关即可完成关断。相对于串联大电流开关的方式,具备成本低、寿命长、体积小等优势。

Description

一种光伏组件关断方法及关断系统 技术领域
本发明属于光伏发电领域,具体涉及一种光伏组件关断方法及关断系统。
背景技术
随着光伏发电技术的发展和成熟,目前光伏发电已经成为了新能源领域中重要的组成部分之一。
但是,在存在光伏组件的发电系统中,需要检修或者遇到火灾等情况时,需要实现光伏组件这一级别的直流高压关断,如果不能实现,将会给设备、检修人员或者消防人员等造成伤害。
因此很多国家都有强制关断光伏组件的国家标准。例如:
美国:防火协会修改的国家电气规范(2014NECARTICLE690DRAFT)中规定:“住宅用光伏发电系统中,在紧急情况发生时,光伏系统交流并网断开后,直流端电压最大不能超过80伏”;
德国:率先执行VDE防火安全标准,明确规定在光伏发电系统中逆变器与组件之间需要增加一个直流电切断装置。此外,德国保险公司也有明确规定,对于消防员在灭火过程中由于光伏电站带电造成的人身伤害不予赔付;
意大利:消防员在建筑物带电的情况下,是不可以进行灭火工作的;
澳大利亚:根据OVER11-1:2013规范,在组件附件必须有断路装置。
由上述可知实现光伏组件级别的直流高压关断的重要性,但是目前在光伏发电领域针对光伏组件关断的方法却比较单一。目前解决光伏组串关断方法是:在高电压、大电流的情况下直接关断出现故障的光伏组件。因为关断时,与光伏组件串联的组件关断开关同样存在高电压、大电流的情况,所以组件关断开关需要选用能够承受高电压、大电流的开关,而此类开关普遍存在体积大、成本高、寿命短的缺点。因为上述问题存在,导致要实现光伏组件级别的关断时,必然面临成本高、寿命短等问题,因此目前在国内难以商业化应用,致使我国光伏行业至今存在安全生产隐患。
专业术语:光伏组件:将太阳能转换成直流电的发电装置,也叫太阳能电池板。光伏组串:在光伏发电系统中,由几块甚至几十块光伏组件串联而成的电路单元。直流高压:由几块甚至几十块光伏组件串联而成的光伏发电系统中,存在500V-1500V的直流高电压。光伏逆变器:将光伏组件发出的直流电转换成交流输出的设备。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种光伏组件关断方法,所述光伏组件关断方法的步骤简单,解决了光伏组件级别直流高压关断难以商业化的问题。本发明还出了一种光伏组件关断系统。
根据本发明第一方面实施例的光伏组件关断方法,包括以下步骤:将通讯采集装置与光伏逆变器连接,将本地处理器与光伏组件连接,在所述光伏组件的输出端串联组件关断开关并使所述组件关断开关处于闭合状态;通过监测端向所述通讯采集装置发送组串关 断指令,所述通讯采集装置控制所述光伏逆变器关断自身的电流开关;通过所述通讯采集装置向所述本地处理器发送组件关断指令,所述本地处理器控制所述组件关断开关断开。
根据本发明实施例的光伏组件关断方法,至少具有如下技术效果:通过通讯采集装置与光伏逆变器之间的通讯可以实现让光伏逆变器关断自身的大电流开关,从而可以实现对整个光伏组串的关断,本发明实施例巧妙的利用了光伏逆变器自身的特性无需额外新增大电流开关;同时,将光伏逆变器自身的大电流开关关断后,光伏组串无法形成回路,此时各个光伏组件在断开时无需再面对大电流,此时组件关断开关可以选择体积小、成本低、寿命长的开关。相对于传统的直接在光伏组件输出端串联大电流开关的方式,硬件成本得到了降低,使用寿命得到了增长,组件关断开关体积得到了极大的降低,可以在真正意义上实现产业化、商业化。
根据本发明的一些实施例,所述组件关断开关通过常闭触点与所述光伏组件的输出端串联。
根据本发明的一些实施例,上述光伏组件关断方法还包括以下步骤:通过与所述本地处理器连接的温度采集单元采集所述光伏组件的组件温度;所述组件温度超过预设的安全温度值或所述组件温度上升速率超过预设的温度安全上升速率,所述本地处理器发出超温预警指令至所述通讯采集装置。
根据本发明的一些实施例,所述温度采集单元直接采用所述本地处理器具有的内部温度传感器。
根据本发明的一些实施例,所述温度采集单元采用电阻式温度 传感器。
根据本发明的一些实施例,所述电阻式温度传感器采用PT1000电阻。
根据本发明的一些实施例,上述光伏组件关断方法还包括以下步骤:通过与所述本地处理器连接的电压采集单元采集所述组件关断开关输出端的组件电压,所述组件电压超过预设的安全电压值,所述本地处理器发出组件关断失败指令至所述通讯采集装置。
根据本发明的一些实施例,所述本地处理器与所述通讯采集装置之间、所述通讯采集装置与所述监测端之间皆采用无线通讯方式。
根据本发明的一些实施例,所述通讯采集装置内设置有SIM卡。
根据本发明第二方面实施例的光伏组件关断系统,应用了上述所述的光伏组件关断方法,包括:组件关断开关,与光伏组件输出端串联,用于切断所述光伏组件的输出;本地处理器,与所述组件关断开关连接,用于接收组件关断指令并关断所述组件关断开关;通讯采集装置,分别与光伏逆变器、所述本地处理器连接,用于接收监测端发出的组串关断指令并控制所述光伏逆变器关断自身的电流开关,还用于发出所述组件关断指令至所述本地处理器。
根据本发明实施例的光伏组件关断系统,至少具有如下技术效果:通过通讯采集装置可以实现控制光伏逆变器关断自身的电流开关,进而实现将光伏组串回路断开,从而让光伏组件无需面临大电流的情况。在无需面临大电流情况时,组件关断开关可以选择体积小、成本低、寿命长的开关,并在本地处理器的控制下实现对光伏组串中每个光伏组件的输出关断的功能。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
下面结合附图对本发明的具体实施方式做进一步的说明。
图1是本发明第一方面实施例的系统简图;
图2是本发明第一方面实施例的本地处理器的电气连接简图;
图3是本发明第一方面实施例的通讯采集装置的电气连接简图。
附图标记:
本地处理器110、组件关断开关120、温度采集单元130、电压采集单元140、本地无线发送模块150、
通讯采集装置210、中端无线接收模块220、中端无线发送模块230、
光伏组件310、光伏逆变器320、监测端330。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,如果有描述到第一、第二、第三、第四等等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、连接等词语应 做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
下面参考图1至图3描述根据本发明第一方面实施例的光伏组件关断方法。
根据本发明第一方面实施例的光伏组件关断方法,包括以下步骤:将通讯采集装置210与光伏逆变器320连接,将本地处理器110与光伏组件310连接,在光伏组件310的输出端串联组件关断开关120并使组件关断开关120处于闭合状态;通过监测端330向通讯采集装置210发送组串关断指令,通讯采集装置210控制光伏逆变器320关断自身的电流开关;通过通讯采集装置210向本地处理器110发送组件关断指令,本地处理器110控制组件关断开关120断开。
参考图1至图3,将通讯采集装置210通过串口与光伏逆变器320连接,可以实现通讯采集装置210与光伏逆变器320数据交互。在通讯采集装置210接收到监测端330发出的组串关断指令后,通讯采集装置210会通过串口控制光伏逆变器320关断自身的电流开关,从而实现整个光伏组串的回路的切断。回路切断之后,通讯采集装置210会发出组件关断指令到本地处理器110。本地处理器110在接收到组件关断指令后,会控制与自身连接的组件关断开关120进行关断。最终实现了光伏组件310级别的关断。在实际使用时,遇到检修或紧急情况时,可以人工通过监测端330向通讯采集装置210发送组串关断指令,从而进行光伏组件310的关断,确保现场人员和设备的安全。在检修或紧急情况结束之后可以再次通过监测端330向通讯采集装置210发送组串闭合指令,从而实现对光伏组件 310接入光伏组串的控制。
此外需要说明,光伏组串的回路切断之后,光伏组串中的所有光伏组件310只有输出电压而不具备输出电流。此时与光伏组件310输出端串联的组件关断开关120再进行关断时,不再需要担心具有大电流的冲击,因此组件关断开关120可以选用体积较小、成本较低的开关。且小型的开关更便于控制,相应的本地处理器110也可以选用成本更低的。此外,现有的光伏发电系统中,与光伏组串串联的光伏逆变器320本身具备电流开关,这个电流开关可以承受高电压、大电流的冲击。
根据本发明实施例的光伏组件关断方法,通过通讯采集装置210与光伏逆变器320通讯可以实现让光伏逆变器320关断自身的大电流开关,从而可以实现对整个光伏组串的关断,巧妙的利用了光伏逆变器320自身的特性无需额外新增大电流开关;同时,将光伏逆变器320自身的大电流开关关断后,光伏组串无法形成回路,此时各个光伏组件310在断开时无需再面对大电流,此时组件关断开关120可以选择体积小、成本低、寿命长的开关。相对于传统的直接在光伏组件310输出端串联大电流开关的方式,硬件成本得到了降低,使用寿命得到了增长,组件关断开关120体积得到了极大的降低,可以在真正意义上实现产业化、商业化。本发明实施例为国内光伏行业推出对应安全标准提供了一定的技术基础,同时化解了国内光伏企业出口国外时被国外相应安全标准所限制,可以获得与国外高成本解决方案的竞争优势。
在本发明的一些实施例中,组件关断开关120通过常闭触点与 光伏组件310的输出端串联。组件关断开关120与光伏组件310输出端的连接有两种方式,一种是组件关断开关120的常开触点与光伏组件310输出端串联,另一种是组件关断开关120的常闭触点与光伏组件310输出端串联。常开触点连接时,需要组件关断开关120的控制线圈一直保持通电的状态,通电时间过长会容易导致控制线圈加速衰老,从而使组件关断开关120的闭合出现故障,最终导致整个光伏组串的回路出现故障。而选用常闭触点,则可以有效避免这个问题,平时组件关断开关120的控制线圈处于不通电状态,在需要断开时,进行短时间通电即可,这样可以有效的提高整个组件关断开关120使用寿命。
在本发明的一些实施例中,上述的光伏组件关断方法还包括以下步骤:通过与本地处理器110连接的温度采集单元130采集光伏组件310的组件温度;组件温度超过预设的安全温度值或组件温度上升速率超过预设的温度安全上升速率,,本地处理器110发出超温预警指令至通讯采集装置210。温度采集对于光伏组件310也是一个重要的环节,温度的变化通常可以有效的反应光伏组件310的工作状态,当出现短路、过压、过流等故障时通常会伴随着温度的升高,通过温度的监测可以提前发现这些问题,此时如果及时关断出现故障的光伏组串,并断开该光伏组串所有的组件关断开关120或断开出现故障的光伏组件310所连接的组件关断开关120,则可以避免对光伏逆变器320和其他串联的光伏组件310的进一步伤害,从而减少损失。温度采集通过温度采集单元130完成,温度采集单元130直接布置在光伏组件310上即可完成对光伏组件310的温度采集。 温度采集完成之后,直接传输到本地处理器110,再传输到通讯采集装置210即可。
在本发明的一些实施例中,温度采集单元130直接采用本地处理器110具有的内部温度传感器。在实际工程中,以部分具备内部温度传感器的单片机为例,大多数的内部温度传感器检测温度的精度较差,误差也较大,容易受环境影响,但是在光伏组件310的温度检测中,大多数情况下不需要对温度的精确检测,只需要监测温度变化,当光伏组件310短时间内整体温度变化较大时,即可判断出现了故障。
在本发明的一些实施例中,本地处理器110采用MSP430系列单片机。MSP430系列的单片机内部温度传感器相对检测较为准确,且成本较低廉,适合大规模的应用。
在本发明的一些实施例中,通讯采集装置210采用STM32系列单片机,该系列单片机的功能接口数量足以满足本发明实施例的需求。
在本发明的一些实施例中,温度采集单元130采用电阻式温度传感器。相对于采用本地处理器110的内部温度传感器,温度采集单元130采用电阻式温度传感器可以进一步提高温度检测的精度,可以满足部分需要较高精度温度监测的环境。同时电阻式温度传感器成本较为低廉,在应用于温度采集时只需要简单的分压电路即可实现对光伏组件310温度数据的采集。此外,使用电阻式温度传感器相对于使用本地处理器110的内部温度传感器而言,不容易受到处理器自身温度升高的干扰。
在本发明的一些实施例中,电阻式温度传感器采用PT1000电阻。PT1000电阻的精度较高,工作温度范围较大。电阻式温度传感器也可以采用PT100电阻,但是相对于PT1000电阻更容易受到线路的影响。此外,如果对精度要求不高,也可以采用其他更为廉价的电阻式温度传感器。
在本发明的一些实施例中,上述的光伏组件关断方法还包括以下步骤:通过与本地处理器110连接的电压采集单元140采集组件关断开关120输出端的组件电压,组件电压超过预设的安全电压值,本地处理器110发出组件关断失败指令至通讯采集装置210。将电压采集单元140设置在组件关断开关120的输出端位置,可以有效的判别组件关断开关120是否成功的断开。如果组件关断开关120未能成功断开,则此时电压采集单元140依然能够检测到光伏组件310的输出电压。能够有效的判断出组件关断开关120是否成功断开,可以进一步提高安全性,避免因为部分光伏组件310没有真实断开而仍然存在较高电压的情况。
在本发明的一些实施例中,电压采集单元140采用电压采样电路。电压采集的方式较多,在不考虑成本的前提下可以直接采用电压采集模块或装置采集电压。但是采用电压采样电路可以有效的控制成本,进一步提高产业化的能力。
在本发明的一些实施例中,本地处理器110与通讯采集装置210之间采用有线通讯的方式,具体采用电力载波的方式实现通讯。通过电力载波方式进行通讯可以直接利用现有的线路进行数据通讯,可以有效的减小布线、降低成本。
在本发明的一些实施例中,本地处理器110与通讯采集装置210之间、通讯采集装置210与监测端330之间皆采用无线通讯方式。无线通讯的较多,可根据使用需求和场地的大小选择WIFI、Bluetooth、ZigBee等无线传输方式进行通讯。在实际工程中,本地处理器110连接了本地无线发送模块150,通讯采集装置210连接了中端无线接收模块220,通过本地无线发送模块150、中端无线接收模块220实现了本地处理器110与通讯采集装置210之间无线通讯;通讯采集装置210还连接了中端无线发送模块230,通过中端无线发送模块230实现与监测端330的远程无线通讯。本地无线发送模块150、中端无线接收模块220、中端无线发送模块230可以根据传输距离的要求选择合适的无线通讯模块。在本发明的一些实施例中,本地无线发送模块150、中端无线接收模块220、中端无线发送模块230皆选择使用ZigBee模块进行通讯。ZigBee模块低廉、通讯距离较远,足以满足光伏发电场的需求。通过无线通讯的方式实现数据传输,可以极大的减少光伏发电场现场通讯线的数量,且因为光伏发电场本身处于与一个较为空旷的环境,因此无线通讯的干扰较少,传输距离能够得到有效的保障,进而可以使用功率较小的无线通讯模块,有效的控制无线通通讯的成本。相较于传统的有线通讯的方式,既能控制成本的上升又能减少现场的布线,提高了整个光伏发电场的安全性、稳定性。
在本发明的一些实施例中,因为通讯采集装置210与光伏组件310的距离较近,因此用于通讯采集装置210与光伏组件310之间的无线通讯模块可以采用功率较小的模块,这样可以进一步节约成本。 而通讯采集装置210与监测端330的通讯因为距离较远,则可以采用功率较大的无线通讯模块。在本发明的一些实施例中,通讯采集装置210通过内置SIM卡的方式实现超远程的数据传输。
在本发明的一些实施例中,监测端330会直接采用物联网的监控平台,此时通讯采集装置210将数据无线传输到监测端330可以直接利用物联网进行传输。通过这种方式可以有效的提高无线传输的距离,并大幅节约无线通讯的成本。
根据本发明第二方面实施例的光伏组件关断系统,包括:组件关断开关120、通讯采集装置210、本地处理器110。组件关断开关120,与光伏组件310输出端串联,用于切断光伏组件310的输出;本地处理器110,与组件关断开关120连接,用于接收组件关断指令并关断组件关断开关120;通讯采集装置210,分别与光伏逆变器320、本地处理器110连接,用于接收监测端330发出的组串关断指令并控制光伏逆变器320关断自身的电流开关,还用于发出组件关断指令至本地处理器110。
参考图1至图3,光伏组串中的每个光伏组件310都连接一个或两个组件关断开关120。在需要进行光伏组串关断时,可以通过远程的监测端330发出组串关断指令至通讯采集装置210,通讯采集装置210接收到组串关断指令之后控制光伏逆变器320关断自身的大电流开关,光伏逆变器320的大电流开关关断之后,通讯采集装置210会发送组件关断指令到本地处理器110,本地处理器110控制组件关断开关120断开,最终实现光伏组件310级别的关断。
根据本发明实施例的光伏组件关断系统,通过通讯采集装置210 可以实现控制光伏逆变器320关断自身的电流开关,进而实现将光伏组串回路断开,从而让光伏组件310无需面临大电流的情况。在无需面临大电流情况时,组件关断开关120可以选择体积小、成本低、寿命长的开关,并在本地处理器110的控制下实现对光伏组串中每个光伏组件310的输出关断的功能。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上述结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (9)

  1. 一种光伏组件关断方法,其特征在于,包括以下步骤:
    将通讯采集装置与光伏逆变器连接,将本地处理器与光伏组件连接,在所述光伏组件的输出端串联组件关断开关并使所述组件关断开关处于闭合状态;所述组件关断开关通过常闭触点与所述光伏组件的输出端串联;
    通过监测端向所述通讯采集装置发送组串关断指令,所述通讯采集装置控制所述光伏逆变器关断自身的电流开关;
    通过所述通讯采集装置向所述本地处理器发送组件关断指令,所述本地处理器控制所述组件关断开关断开。
  2. 根据权利要求1所述的光伏组件关断方法,其特征在于,还包括以下步骤:通过与所述本地处理器连接的温度采集单元采集所述光伏组件的组件温度;所述组件温度超过预设的安全温度值或所述组件温度上升速率超过预设的温度安全上升速率,所述本地处理器发出超温预警指令至所述通讯采集装置。
  3. 根据权利要求2所述的光伏组件关断方法,其特征在于,所述温度采集单元直接采用所述本地处理器具有的内部温度传感器。
  4. 根据权利要求2所述的光伏组件关断方法,其特征在于,所述温度采集单元采用电阻式温度传感器。
  5. 根据权利要求4所述的光伏组件关断方法,其特征在于,所述电阻式温度传感器采用PT1000电阻。
  6. 根据权利要求1所述的光伏组件关断方法,其特征在于,还包括以下步骤:通过与所述本地处理器连接的电压采集单元采集所 述组件关断开关输出端的组件电压,所述组件电压超过预设的安全电压值,所述本地处理器发出组件关断失败指令至所述通讯采集装置。
  7. 根据权利要求1所述的光伏组件关断方法,其特征在于,所述本地处理器与所述通讯采集装置之间、所述通讯采集装置与所述监测端之间皆采用无线通讯方式。
  8. 根据权利要求1或7所述的光伏组件关断方法,其特征在于,所述通讯采集装置内设置有SIM卡。
  9. 一种应用权利要求1至8任一所述的光伏组件关断方法的光伏组件关断系统,其特征在于,包括:
    组件关断开关,与光伏组件输出端串联,用于切断所述光伏组件的输出;
    本地处理器,与所述组件关断开关连接,用于接收组件关断指令并关断所述组件关断开关;
    通讯采集装置,分别与光伏逆变器、所述本地处理器连接,用于接收监测端发出的组串关断指令并控制所述光伏逆变器关断自身的电流开关,还用于发出所述组件关断指令至所述本地处理器。
PCT/CN2021/095639 2020-05-26 2021-05-25 一种光伏组件关断方法及关断系统 WO2021238885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010453347.7 2020-05-26
CN202010453347.7A CN111669119B (zh) 2020-05-26 2020-05-26 一种光伏组件关断方法及关断系统

Publications (1)

Publication Number Publication Date
WO2021238885A1 true WO2021238885A1 (zh) 2021-12-02

Family

ID=72384570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095639 WO2021238885A1 (zh) 2020-05-26 2021-05-25 一种光伏组件关断方法及关断系统

Country Status (2)

Country Link
CN (1) CN111669119B (zh)
WO (1) WO2021238885A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243927A (zh) * 2021-12-24 2022-03-25 上海交通大学 短路型光伏组件关断装置
CN114784853A (zh) * 2022-04-07 2022-07-22 广东汇丰综合能源有限公司 光伏系统的关断控制方法、系统、装置及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669119B (zh) * 2020-05-26 2021-04-06 长沙晶辉太阳能有限公司 一种光伏组件关断方法及关断系统
CN112737503B (zh) * 2020-12-31 2021-10-08 浙江锐博科技工程有限公司 一种光伏电站监控系统、方法及存储介质
CN113867217A (zh) * 2021-10-09 2021-12-31 浙江奔一电气有限公司 一种dc24v电源载波快速关断器控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080099063A1 (en) * 2006-10-23 2008-05-01 Ascent Solar Technologies, Inc. Flexible High-Voltage Adaptable Current Photovoltaic Modules And Associated Methods
CN109088431A (zh) * 2018-08-30 2018-12-25 海宁昱能电子有限公司 一种光伏组件的关断设备、方法及光伏系统
CN109617523A (zh) * 2018-11-28 2019-04-12 无锡尚德太阳能电力有限公司 一种光伏电池快速通断系统、关断方法及启动方法
CN111669119A (zh) * 2020-05-26 2020-09-15 长沙晶辉太阳能有限公司 一种光伏组件关断方法及关断系统
CN212486461U (zh) * 2020-05-26 2021-02-05 长沙晶辉太阳能有限公司 一种光伏电站监控系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235221B (zh) * 2013-04-18 2015-04-01 河海大学常州校区 光伏电站远程监控的故障检测系统及检测方法
CN106981881A (zh) * 2016-01-18 2017-07-25 台达电子企业管理(上海)有限公司 一种光伏发电系统及其快速关断方法
CN109245713B (zh) * 2018-11-15 2024-06-14 上海数明半导体有限公司 一种串联式组件级光伏关断系统
CN111162733A (zh) * 2020-03-15 2020-05-15 沈阳富润太阳能科技开发有限公司 一种光伏组件的故障检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080099063A1 (en) * 2006-10-23 2008-05-01 Ascent Solar Technologies, Inc. Flexible High-Voltage Adaptable Current Photovoltaic Modules And Associated Methods
CN109088431A (zh) * 2018-08-30 2018-12-25 海宁昱能电子有限公司 一种光伏组件的关断设备、方法及光伏系统
CN109617523A (zh) * 2018-11-28 2019-04-12 无锡尚德太阳能电力有限公司 一种光伏电池快速通断系统、关断方法及启动方法
CN111669119A (zh) * 2020-05-26 2020-09-15 长沙晶辉太阳能有限公司 一种光伏组件关断方法及关断系统
CN212486461U (zh) * 2020-05-26 2021-02-05 长沙晶辉太阳能有限公司 一种光伏电站监控系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243927A (zh) * 2021-12-24 2022-03-25 上海交通大学 短路型光伏组件关断装置
CN114784853A (zh) * 2022-04-07 2022-07-22 广东汇丰综合能源有限公司 光伏系统的关断控制方法、系统、装置及存储介质

Also Published As

Publication number Publication date
CN111669119B (zh) 2021-04-06
CN111669119A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2021238885A1 (zh) 一种光伏组件关断方法及关断系统
WO2021043040A1 (zh) 具有在线采样校验功能的电气系统及其校验方法
WO2021043036A1 (zh) 实现气体密度继电器免维护的现场检测装置、系统及方法
TWM557456U (zh) 太陽能光伏組件的監控關斷裝置
CN201966578U (zh) 灭弧式电气防火短路保护装置
WO2021043041A1 (zh) 一种现场在线校验气体密度继电器用的接点信号采集电路
CN107144757B (zh) 一种瓦斯继电器油流流速在线监测装置及方法
CN110444442A (zh) 一种远传气体密度继电器系统及其校验方法
CN110416022A (zh) 一种多功能气体密度继电器
CN102496920B (zh) 浪涌保护装置及利用浪涌保护装置进行故障检测的方法
CN204719176U (zh) 一种智能故障指示器
CN204244099U (zh) 一种串并联组合式电源变换装置
CN203535514U (zh) 一种具有自检测功能的干式变压器温度控制装置
CN205595885U (zh) 一种消防应急照明设备的高速切换装置
CN112505588A (zh) 一种基于系统相关的电缆故障在线检测系统
CN205246796U (zh) 一种变电站所用电漏电故障检测装置
CN217642861U (zh) 基于模糊控制的高压开关柜散热与防凝露智能控制系统
CN213213242U (zh) 一种双馈风电机组发电机定转子接线盒防火装置及系统
CN202712967U (zh) Bc油风冷却器故障检测装置
CN201838977U (zh) 低压配网中性线防烧断自动保护装置
CN211656393U (zh) 一种国密算法的费控终端无线通讯系统
CN204302826U (zh) 一种用于动态无功补偿及滤波装置的星型拓扑结构温控保护系统
CN210668208U (zh) 一种多功能气体密度继电器
CN203553721U (zh) 罐式断路器伴热带监测装置
CN203274929U (zh) 电力系统高压设备温度遥测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812908

Country of ref document: EP

Kind code of ref document: A1