WO2021238802A1 - 基于耦合电容的手势识别方法、装置及系统 - Google Patents

基于耦合电容的手势识别方法、装置及系统 Download PDF

Info

Publication number
WO2021238802A1
WO2021238802A1 PCT/CN2021/095227 CN2021095227W WO2021238802A1 WO 2021238802 A1 WO2021238802 A1 WO 2021238802A1 CN 2021095227 W CN2021095227 W CN 2021095227W WO 2021238802 A1 WO2021238802 A1 WO 2021238802A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
coordinate system
rectangular coordinate
sensor
touch screen
Prior art date
Application number
PCT/CN2021/095227
Other languages
English (en)
French (fr)
Inventor
舒兴军
管清竹
石爽
郑金龙
徐俊杰
王彦明
李卅
朱福安
安越
张亚东
高宗丽
王翠娥
刘帅南
杨胜伟
王立冬
崔利宝
杜润飞
张琦
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/921,073 priority Critical patent/US20230342020A1/en
Publication of WO2021238802A1 publication Critical patent/WO2021238802A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04162Control or interface arrangements specially adapted for digitisers for exchanging data with external devices, e.g. smart pens, via the digitiser sensing hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text

Definitions

  • the present disclosure relates to gesture recognition technology, and in particular to a method, device and system for gesture recognition based on coupling capacitors.
  • Touch screens include resistive touch screens and capacitive touch screens.
  • Capacitive touch screens include self-capacitance touch screens and mutual-capacitance touch screens. With the advancement of technology, capacitive touch screens are more and more widely used in various devices.
  • ITO indium tin oxide
  • the self-capacitance touch screen is approached or touched, the capacitance of the control body will be superimposed on the capacitance of the screen body, which increases the capacitance of the screen body.
  • the horizontal and vertical electrodes in the mutual capacitance touch screen form the two poles of the capacitance.
  • the manipulation body will affect the coupling between the two nearby electrodes, thereby changing the capacitance between the two electrodes.
  • the capacitance change of the capacitive touch screen is often used to determine the coordinates of the manipulator's corresponding point on the capacitive touch screen, so as to recognize gestures based on the coordinates of multiple corresponding points.
  • the capacitive touch screen When touching the capacitive touch screen, the self-capacitance touch screen will detect the horizontal and vertical electrodes respectively, and determine the X-axis and Y-axis coordinates of the corresponding point of the control body on the self-capacitance touch screen according to the changes in capacitance before and after the touch.
  • the horizontal electrode that sends out the excitation signal and the vertical electrode that receives the excitation signal determine the capacitance of the intersection of all the horizontal and vertical electrodes, that is, the capacitance of the two-dimensional plane of the entire touch screen, and then determine the control body based on the data of the two-dimensional capacitance change of the touch screen
  • the X-axis and Y-axis coordinates of the corresponding point on the self-capacitance touch screen that is, when the gesture is recognized by the capacitance change of the capacitive touch screen, only the coordinates of the manipulator on the two-dimensional plane can be determined, that is, the X-axis and Y-axis coordinates of the manipulator, but the coordinates of the manipulator on the three-dimensional plane cannot be determined.
  • the X-axis, Y-axis and Z-axis coordinates of the manipulator are examples of the manipulator.
  • the embodiments of the present disclosure provide a gesture recognition method, device, and system based on a coupling capacitor.
  • the gesture recognition method based on coupling capacitance includes:
  • the first sensor is the capacitive touch screen that forms a coupling capacitance with at least one control body and has the largest increase in signal value sensor;
  • the coupling capacitance value is a coupling capacitance value formed between the first sensor and the first signal line in the capacitive touch screen when the Z-axis coordinate corresponding to the at least one control body is outside the preset interval
  • the second coupling capacitance value is a coupling capacitance value formed between the first sensor and the first signal line when the Z-axis coordinate corresponding to the at least one control body is within a preset interval
  • the motion trajectory of the at least one manipulating body is generated, and the motion trajectory is recognized to obtain the gesture recognition result, and the spatial coordinates include : The X-axis coordinate, the Y-axis coordinate, and the Z-axis coordinate.
  • the acquiring the X-axis coordinates and Y-axis coordinates of the first sensor in the spatial rectangular coordinate system includes:
  • the determining that the output pin serial number is the X-axis coordinate and the Y-axis coordinate of the at least one manipulation body in the spatial rectangular coordinate system includes:
  • the X-axis coordinate and the Y-axis coordinate corresponding to the current output pin serial number in the spatial rectangular coordinate system are determined.
  • the obtaining the difference between the first coupling capacitance value and the second coupling capacitance value includes:
  • the charging module is configured to input the capacitance value to the sensor whose signal amount in the capacitive touch screen is increased to reduce the sensor Semaphore
  • the capacitance value is determined to be the difference between the first coupling capacitance value and the second coupling capacitance value.
  • determining the Z-axis coordinate of the at least one manipulation body in the spatial rectangular coordinate system according to the difference value includes:
  • the first formula is specifically:
  • d is the Z-axis coordinate of the at least one control body in the spatial rectangular coordinate system
  • C f is the difference
  • is the relative permittivity
  • S is the at least one control body and the first The facing area between a sensor
  • k is the electrostatic force constant.
  • generating the motion trajectory of the at least one manipulation body according to the change of the spatial coordinates of the at least one manipulation body in the spatial orthogonal coordinate system includes:
  • any one of the space coordinates is a valid space coordinate
  • the motion trajectory of the at least one manipulation body is generated.
  • the establishing a spatial rectangular coordinate system with the first position point of the contact surface of the capacitive touch screen as the origin, wherein the Z axis of the spatial rectangular coordinate system is perpendicular to the contact surface; including:
  • a spatial rectangular coordinate system is established with the center point of the contact surface of the capacitive touch screen as the origin, wherein the Z axis of the spatial rectangular coordinate system is perpendicular to the contact surface.
  • the embodiment of the present disclosure also provides a gesture recognition device based on coupling capacitance, which includes:
  • the first processing module is configured to establish a spatial rectangular coordinate system with the first position point of the contact surface of the capacitive touch screen as the origin, wherein the Z axis of the spatial rectangular coordinate system is perpendicular to the contact surface;
  • the first determining module is configured to obtain X-axis coordinates and Y-axis coordinates corresponding to the first sensor in the spatial rectangular coordinate system, wherein the first sensor is the at least one control body in the capacitive touch screen The sensor that forms the coupling capacitance and increases the signal amount the most;
  • the second determining module is configured to obtain the difference between the first coupling capacitance value and the second coupling capacitance value, and according to the difference, determine the Z axis of the at least one manipulation body in the spatial rectangular coordinate system Coordinate, wherein the first coupling capacitance value is between the first sensor and the first signal line in the capacitive touch screen when the Z-axis coordinate corresponding to the at least one control body is outside the preset interval When the Z-axis coordinate corresponding to the at least one control body is within a preset interval, the first sensor and the first of the capacitive touch screen are formed.
  • the second processing module is configured to generate a motion trajectory of the at least one control body according to the change of the spatial coordinates of the at least one control body in the spatial rectangular coordinate system, recognize the motion trajectory, and obtain a gesture
  • the space coordinates include: the X-axis coordinates, the Y-axis coordinates, and the Z-axis coordinates.
  • the first determining module is specifically configured to:
  • the first determining module is specifically configured to:
  • the X-axis coordinate and the Y-axis coordinate corresponding to the current output pin serial number in the spatial rectangular coordinate system are determined.
  • the second determining module is specifically configured as:
  • the charging module is configured to input the capacitance value to the sensor whose signal amount in the capacitive touch screen is increased to reduce the The signal volume of the sensor;
  • the capacitance value is determined to be the difference between the first coupling capacitance value and the second coupling capacitance value.
  • the second determining module is specifically configured as:
  • the first formula is specifically:
  • d is the Z-axis coordinate of the at least one control body in the spatial rectangular coordinate system
  • C f is the difference
  • is the relative permittivity
  • S is the at least one control body and the first The facing area between a sensor
  • k is the electrostatic force constant.
  • the second processing module is specifically configured as:
  • any one of the space coordinates is a valid space coordinate
  • the motion trajectory of the at least one manipulation body is generated.
  • the first processing module is specifically configured as:
  • a spatial rectangular coordinate system is established with the center point of the contact surface of the capacitive touch screen as the origin, wherein the Z axis of the spatial rectangular coordinate system is perpendicular to the contact surface.
  • the first signal line is a thin film transistor TFT power supply signal control line.
  • the embodiments of the present disclosure also provide a gesture recognition system based on coupling capacitance, which includes:
  • the memory is configured to store program instructions
  • the processor is configured to call the program instructions stored in the memory, and execute the steps included in the method provided in the embodiments of the present disclosure according to the obtained program instructions.
  • An embodiment of the present disclosure further provides a storage medium, wherein the storage medium stores computer-executable instructions, and the computer-executable instructions are configured to cause a computer to execute the steps included in the method provided in the embodiments of the present disclosure.
  • FIG. 1 is a schematic structural diagram of an electronic device provided with a capacitive touch screen in an embodiment of the disclosure
  • Figure 2-1 is a schematic flowchart of a gesture recognition method based on a coupling capacitor in an embodiment of the disclosure
  • 2-2 is a schematic structural diagram of an electronic device provided with a capacitive touch screen in an embodiment of the disclosure
  • FIG. 3 is a schematic structural diagram of a gesture recognition device based on a coupling capacitor in an embodiment of the disclosure
  • Fig. 4 is a schematic structural diagram of a gesture recognition system based on a coupling capacitor in an embodiment of the disclosure.
  • At least one may mean at least two, for example, it may be two, three, or more, and the embodiments of the present disclosure do not limit it.
  • the capacitance change of the capacitive touch screen is often used to determine the coordinates of the manipulator's corresponding point on the capacitive touch screen, so as to recognize gestures based on the coordinates of multiple corresponding points.
  • the capacitive touch screen When touching the capacitive touch screen, the self-capacitance touch screen will detect the horizontal and vertical electrodes respectively, and determine the X-axis and Y-axis coordinates of the corresponding point of the control body on the self-capacitance touch screen according to the changes in capacitance before and after the touch.
  • the horizontal electrode that sends out the excitation signal and the vertical electrode that receives the excitation signal determine the capacitance of the intersection of all the horizontal and vertical electrodes, that is, the capacitance of the two-dimensional plane of the entire touch screen, and then determine the control body based on the data of the two-dimensional capacitance change of the touch screen
  • the X-axis and Y-axis coordinates of the corresponding point on the self-capacitance touch screen that is, when the gesture is recognized by the capacitance change of the capacitive touch screen, only the coordinates of the manipulator on the two-dimensional plane can be determined, that is, the X-axis and Y-axis coordinates of the manipulator, but the coordinates of the manipulator on the three-dimensional plane cannot be determined.
  • the embodiments of the present disclosure provide a gesture recognition method based on coupling capacitance.
  • the method can establish a spatial rectangular coordinate system with the first position point of the contact surface of the capacitive touch screen as the origin, wherein the Z axis of the spatial rectangular coordinate system and the contact The surface is vertical, and then the X-axis and Y-axis coordinates of the first sensor in the rectangular space coordinate system.
  • the first sensor is the sensor in the capacitive touch screen that forms a coupling capacitance with at least one control body and has the largest increase in signal value.
  • the difference between the first coupling capacitance value and the second coupling capacitance value and determine the Z-axis coordinate of the at least one manipulation body in the spatial rectangular coordinate system according to the difference, where the first coupling capacitance value is at least one manipulation body
  • the coupling capacitance value formed between the first sensor and the thin film transistor TFT power signal control trace in the capacitive touch screen, and the second coupling capacitance value is corresponding to the at least one control body
  • the motion trajectory is recognized, and the gesture recognition result is obtained.
  • the output pin number of the integrated circuit in the capacitive touch screen determines the coordinates of at least one manipulator on a three-dimensional plane, thereby identifying complex gestures.
  • the spatial coordinates include: X-axis coordinates, Y-axis coordinates, and Z-axis coordinates.
  • FIG. 1 is a structure of an electronic device provided with a capacitive touch screen to which the method provided by the embodiment of the present disclosure is applicable, because the electronic device provided with a capacitive touch screen that is applicable to the method provided by the embodiment of the present disclosure includes a tablet provided with a capacitive touch screen
  • the embodiments of the present disclosure provide a configuration with electricity.
  • a touch screen-capable mobile phone is an electronic device equipped with a capacitive touch screen that can be adapted to the method provided in the embodiment of the present disclosure.
  • the method provided in the embodiment of the present disclosure can be applied to a variety of electronic devices equipped with a capacitive touch screen.
  • FIG. 1 The electronic device provided with a capacitive touch screen is a detailed description of a gesture recognition system based on coupling capacitance that can be applied to the method provided by the embodiment of the present disclosure, rather than a capacitive touch screen. Limitations of touch screen electronic devices.
  • the capacitive touch screen of the mobile phone shown in Figure 1 uses indium tin oxide (ITO) to make horizontal and vertical electrodes on the glass surface of the contact surface.
  • O(0,0,0) is the first of the contact surface of the capacitive touch screen.
  • the location point, specifically, the first location point may be the center point of the contact surface of the capacitive touch screen, and the space rectangular coordinate system is established with O(0,0,0) as the origin, where the Z axis of the spatial rectangular coordinate system and the capacitive touch screen
  • the contact surface of is vertical
  • O 1 (X, Y, Z) is the relative position of the operating body (such as a finger or other conductive body) and the capacitive touch screen at a certain moment.
  • the capacitive touch screen can be a self-capacitance touch screen or a mutual-capacitance touch screen. If the capacitive touch screen is a self-capacitance touch screen, the electrode blocks in the capacitive touch screen (or the horizontal electrode and the vertical electrode, the capacitive touch screen has different composition, and the electrode composition can be different) The two poles of the capacitance are formed respectively with the ground. When the control body approaches or touches the capacitive touch screen, the capacitance of the control body will be superimposed on the capacitance of the screen body to increase the capacitance of the screen body; if the capacitive touch screen is a mutual capacitance touch screen, the capacitive touch screen The horizontal electrode and the vertical electrode in the capacitor form the two poles of the capacitor.
  • FIG. 2-1 a method for gesture recognition based on coupling capacitance provided by an embodiment of the present disclosure.
  • the method may be executed by the electronic device provided with a capacitive touch screen as shown in FIG. 1 above. The specific process of this method is described as follows.
  • Step 201 Establish a spatial rectangular coordinate system with the first position point of the contact surface of the capacitive touch screen as the origin, wherein the Z axis of the spatial rectangular coordinate system is perpendicular to the contact surface.
  • the multiple sensors in the capacitive touch screen can divide the contact surface of the capacitive touch screen into a plurality of sensor blocks of equal size, and establish a spatial rectangular coordinate system with the first position point of the contact surface of the capacitive touch screen as the origin.
  • the first position point may specifically be the center point of the contact surface of the capacitive touch screen, where the Z axis of the spatial rectangular coordinate system is perpendicular to the contact surface of the capacitive touch screen, that is, the spatial rectangular coordinate system is established by setting the sensor block in the capacitive touch screen as the origin.
  • the sensor can be located at the first position of the capacitive touch screen. For example, see Figure 2-2.
  • the multiple sensors in the capacitive touch screen divide the contact surface of the capacitive touch screen into 7x3 sensor blocks of equal size, where 7 is a horizontal row. 3 is a vertical column, the first position point of the contact surface of the capacitive touch screen is used as the origin to establish a spatial rectangular coordinate system, that is, the sensor block located in horizontal 4 vertical 2 is used as the origin to establish a spatial rectangular coordinate system.
  • Step 202 Obtain the X-axis coordinates and Y-axis coordinates of the first sensor in the spatial rectangular coordinate system.
  • this step 202 may include: Obtain the information of the integrated circuit in the capacitive touch screen corresponding to the first sensor.
  • the output pin serial number determines that the output pin serial number is the X-axis coordinate and the Y-axis coordinate of at least one manipulating body in the spatial rectangular coordinate system, wherein the first sensor is the capacitive touch screen and the At least one control body forms a sensor with a coupling capacitance and the signal value increases the most;
  • the output pin serial number of the integrated circuit in the capacitive touch screen corresponding to the first sensor is acquired, and the output pin serial number is determined to be the X-axis and Y-axis coordinates of at least one manipulator in the spatial rectangular coordinate system Coordinates can include:
  • At least one manipulating body when at least one manipulating body approaches or touches the capacitive touch screen, it will form a coupling capacitance with multiple nearby sensors, increase the signal volume of the nearby multiple sensors, and determine that a coupling capacitance is formed with at least one manipulating body And the sensor with the largest increase in signal amount is the first sensor, where at least one manipulation body may be a finger or other conductive bodies.
  • the multiple sensors in the capacitive touch screen are connected to the integrated circuit (IC) in the capacitive touch screen through metal traces, and the serial number of each metal trace is one-to-one with the input/output pin (input/output) serial number of the IC Correspondence, that is, each sensor has a one-to-one correspondence with the input/output pin number of the IC.
  • the value of the coupling capacitor formed between the first sensor and the first signal line (specifically, the thin film transistor (TFT) power signal control line in the capacitive touch screen) is followed by Comparing the coupling capacitance values formed between the other sensors attached to the first sensor and the TFT power signal control traces in the capacitive touch screen, there will be a difference, where the TFT power signal control traces are located between the sensors.
  • the output pin number of the IC corresponding to the first sensor is obtained, and the output pin number is determined to be the X-axis and Y-axis coordinates of at least one manipulator in a rectangular coordinate system.
  • the coupling capacitance formed between the first sensor and the TFT power signal control trace in the capacitive touch screen is the same as that of other sensors attached to the first sensor and the capacitive touch screen.
  • the first sensor feeds back the difference to the IC through the metal trace 5 connected to the IC, because the serial number of each metal trace is the same as that of the IC.
  • the output pin serial numbers correspond one-to-one, and the output pin serial number of the IC corresponding to the first sensor can be determined to be 5, and then the X-axis and Y-axis coordinates of the at least one manipulator in the spatial rectangular coordinate system are determined to be 5.
  • Step 203 Obtain the difference between the first coupling capacitance value and the second coupling capacitance value, and determine the Z-axis coordinate of the at least one manipulating body in the spatial rectangular coordinate system according to the difference.
  • the first coupling capacitance value is a coupling capacitance value formed between the first sensor and the first signal line in the capacitive touch screen when the Z-axis coordinate corresponding to at least one control body is outside the preset interval
  • the first The second coupling capacitance value is a coupling capacitance value formed between the first sensor and the first signal line when the Z-axis coordinate corresponding to at least one control body is within a preset interval.
  • the IC in the capacitive touch screen includes a charging module, which is composed of charging capacitors of different capacitances, and is configured to charge and discharge each sensor of the capacitive touch screen when the capacitive touch screen displays different colors.
  • a charging module which is composed of charging capacitors of different capacitances, and is configured to charge and discharge each sensor of the capacitive touch screen when the capacitive touch screen displays different colors.
  • the capacitance value input to the first sensor by the charging module of the IC is the difference between the first coupling capacitance value and the second coupling capacitance value .
  • the first coupling capacitance value is the coupling capacitance value formed between the first sensor and the TFT power signal control trace in the capacitive touch screen when at least one manipulating body is not approaching or touching the first sensor, that is, at least one manipulating body is in the space
  • the second coupling capacitance value is at least one manipulation body approaching or touching
  • the first sensor is the coupling capacitance value formed between the first sensor and the TFT power signal control trace in the capacitive touch screen, that is, when the Z-axis coordinate of at least one control body in the spatial rectangular coordinate system is outside the
  • the first formula can be used to perform correlation calculations on the difference between the first coupling capacitance value and the second coupling capacitance value to determine the Z-axis coordinate of at least one manipulating body in the spatial rectangular coordinate system.
  • the first formula is:
  • d is the Z-axis coordinate of at least one manipulating body in a rectangular coordinate system
  • C f is the difference between the first coupling capacitance value and the second coupling capacitance value
  • is the relative permittivity
  • S is at least one The facing area between the control body and the first sensor
  • k is the electrostatic force constant.
  • Step 204 Generate a motion trajectory of the at least one control body according to the change of the space coordinates of the at least one control body in the spatial rectangular coordinate system, and recognize the motion trajectory to obtain a gesture recognition result, and the space coordinates Including: X-axis coordinates, Y-axis coordinates, and Z-axis coordinates.
  • the motion trajectory of at least one control body is generated, the motion trajectory is recognized, and the gesture recognition result is obtained.
  • a gesture recognition device based on a coupling capacitor which can implement the functions corresponding to the aforementioned gesture recognition method based on a coupling capacitor.
  • the gesture recognition device based on coupling capacitance may be a hardware structure, a software module, or a hardware structure plus a software module.
  • the gesture recognition device based on the coupling capacitor can be realized by a chip system, and the chip system can be composed of a chip, and can also include a chip and other discrete devices.
  • the gesture recognition device based on coupling capacitance includes a first processing module 301, a first determining module 302, a second determining module 303, and a second processing module 304, wherein:
  • the first processing module 301 is configured to establish a spatial rectangular coordinate system with the first position point of the contact surface of the capacitive touch screen as the origin, wherein the Z axis of the spatial rectangular coordinate system is perpendicular to the contact surface;
  • the first determining module 302 is configured to obtain the X-axis coordinates and Y-axis coordinates corresponding to the first sensor in the spatial rectangular coordinate system, wherein the first sensor is the at least one manipulation of the capacitive touch screen and The body forms the sensor with the coupling capacitance and the largest increase in signal volume; specifically, the first determining module 302 is specifically configured to obtain the output pin number of the integrated circuit in the capacitive touch screen corresponding to the first sensor, and determine the output The pin number is the X-axis coordinate and the Y-axis coordinate of the at least one manipulation body in the space rectangular coordinate system; further, the first determining module 302 is specifically configured to store the output pin number and the space rectangular coordinate system in advance Correspondence of the coordinates; according to the correspondence, determine the X-axis and Y-axis coordinates of the current output pin number in the spatial rectangular coordinate system;
  • the second determining module 303 is configured to obtain the difference between the first coupling capacitance value and the second coupling capacitance value, and determine the Z of the at least one manipulation body in the spatial rectangular coordinate system according to the difference.
  • the second coupling capacitance value is a coupling capacitance value formed between the first sensor and the first signal line when the Z-axis coordinate corresponding to at least one control body is within a preset interval ;
  • the second processing module 304 is configured to generate the motion trajectory of the at least one manipulating body according to the change of the spatial coordinates of the at least one manipulating body in the spatial rectangular coordinate system, recognize the motion trajectory, and obtain As a result of gesture recognition, the spatial coordinates include: X-axis coordinates, Y-axis coordinates, and Z-axis coordinates.
  • the second determining module 302 is specifically configured as:
  • the charging module is configured to input the capacitance value to the sensor whose signal amount in the capacitive touch screen is increased to reduce the The signal volume of the sensor;
  • the capacitance value is determined to be the difference between the first coupling capacitance value and the second coupling capacitance value.
  • the second determining module 302 is specifically configured as:
  • the first formula is specifically:
  • d is the Z-axis coordinate of the at least one control body in the spatial rectangular coordinate system
  • C f is the difference
  • is the relative permittivity
  • S is the at least one control body and the first The facing area between a sensor
  • k is the electrostatic force constant.
  • the second processing module 304 is specifically configured as:
  • any one of the space coordinates is a valid space coordinate
  • the motion trajectory of the at least one manipulation body is generated.
  • FIG. 4 is an example of the connection between the processor 402 and the memory 401 through the bus 400.
  • the bus 400 is shown in bold in FIG. The line indicates that the connection mode between other components is only for schematic illustration, and is not limited thereto.
  • the bus 400 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only a thick line is used in FIG. 4 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the memory 401 stores instructions that can be executed by at least one processor 402.
  • the at least one processor 402 can execute the aforementioned gesture recognition method based on coupling capacitance. step.
  • the processor 402 is the control center of the gesture recognition system based on the coupling capacitor. It can use various interfaces and lines to connect the various parts of the gesture recognition system based on the coupling capacitor, and execute the instructions stored in the memory 401 to realize the Coupling the various functions of the capacitive gesture recognition system.
  • the processor 402 may include one or more processing units, and the processor 402 may integrate an application processor and a modem processor.
  • the application processor mainly processes an operating system, a user interface, and an application program.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 402.
  • the processor 402 and the memory 401 may be implemented on the same chip, and in some embodiments, they may also be implemented on separate chips.
  • the memory 401 can be configured to store non-volatile software programs, non-volatile computer-executable programs, and modules.
  • the memory 401 may include at least one type of storage medium, for example, may include flash memory, hard disk, multimedia card, card-type memory, random access memory (Random Access Memory, RAM), static random access memory (Static Random Access Memory, SRAM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), magnetic memory, disk , CD, etc.
  • the memory 401 is any other medium that can be configured to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory 401 in the embodiment of the present disclosure may also be a circuit or any other device capable of realizing a storage function, and is configured to store program instructions and/or data.
  • the processor 402 may be a general-purpose processor, such as a central processing unit (CPU), a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, Implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the gesture recognition method based on the coupling capacitor disclosed in the embodiments of the present disclosure may be directly executed and completed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the code corresponding to the coupling capacitor-based gesture recognition method introduced in the foregoing embodiment can be solidified into the chip, so that the chip can execute the aforementioned coupling capacitor-based gesture recognition method during operation.
  • the steps of how to design and program the processor 402 are techniques well known to those skilled in the art, which will not be repeated here.
  • embodiments of the present disclosure also provide a storage medium that stores computer instructions, and when the computer instructions run on a computer, the computer executes the steps of the aforementioned coupling capacitor-based gesture recognition method.
  • the various aspects of the gesture recognition method based on coupling capacitance provided by the present disclosure can also be implemented in the form of a program product, which includes program code, when the program product is on a gesture recognition system based on coupling capacitance When running, the program code is configured to cause the coupling capacitor-based gesture recognition system to execute the steps in the coupling capacitor-based gesture recognition method described above in this specification according to various exemplary embodiments of the present disclosure.
  • the embodiments of the present disclosure can be provided as a method, a system, or a computer program product. Therefore, the present disclosure may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps configured to implement functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种基于耦合电容的手势识别方法、装置及系统,被配置为解决现有技术中存在的无法确定操控体在三维平面上的坐标,从而无法识别复杂手势的技术问题,所述方法包括:以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系;获取第一传感器在所述空间直角坐标系下对应的X轴坐标和Y轴坐标;获取第一耦合电容值与第二耦合电容值之间的差值,根据差值,确定至少一个操控体在空间直角坐标系下的Z轴坐标;根据至少一个操控体在空间直角坐标系下的空间坐标的变化,生成至少一个操控体的运动轨迹,对运动轨迹进行识别,得到手势识别结果。

Description

基于耦合电容的手势识别方法、装置及系统
相关申请的交叉引用
本公开要求在2020年05月28日提交中国专利局、申请号为202010467794.8、申请名称为“一种基于耦合电容的手势识别方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及手势识别技术,尤其涉及一种基于耦合电容的手势识别方法、装置及系统。
背景技术
触摸屏包括电阻触摸屏和电容触摸屏,电容触摸屏包括自电容触摸屏和互电容触摸屏,随着科技的进步,电容触摸屏越来越广泛的应用于各种设备。电容触摸屏在玻璃表面用氧化铟锡(Indium tin oxide,ITO)制作横向电极与纵向电极,自电容触摸屏中的横向电极与纵向电极分别与地构成了电容的两极,当操控体(例如手指或者其他的导电体)接近或触摸自电容触摸屏时,操控体的电容将会叠加到屏体电容上,使屏体电容量增加,互电容触摸屏中的横向电极与纵向电极构成了电容的两极,当操控体接近或触摸互电容触摸屏时,操控体将影响到附近两个电极之间的耦合,从而改变了这两个电极之间的电容量。
目前,当操控体接近或触摸电容触摸屏时,常通过电容触摸屏的电容变化来确定操控体在电容触摸屏上对应点的坐标,从而根据多个对应点的坐标识别手势,例如,当操控体接近或触摸电容触摸屏时,自电容触摸屏将分别检测横向与纵向电极,根据接近或触摸前后电容的变化,分别确定操控体在自电容触摸屏上对应点的X轴坐标和Y轴坐标,互电容触摸屏将根据发出激励信号的横向电极和接收激励信号的纵向电极,确定所有横向和纵向电极交 汇点的电容量,即整个触摸屏的二维平面的电容大小,再根据触摸屏二维电容变化量数据,确定操控体在自电容触摸屏上对应点的X轴坐标和Y轴坐标。即通过电容触摸屏的电容变化来识别手势时,仅能确定操控体在二维平面上的坐标,即操控体的X轴坐标和Y轴坐标,而无法确定操控体在三维平面上的坐标,即操控体的X轴坐标、Y轴坐标和Z轴坐标。
可见,现有技术中存在当通过电容触摸屏的电容变化来识别手势时,无法确定操控体在三维平面上的坐标,从而无法识别复杂手势的问题。
发明内容
本公开实施例提供一种基于耦合电容的手势识别方法、装置及系统。所述基于耦合电容的手势识别方法,其中,包括:
以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直;
获取第一传感器在所述空间直角坐标系下对应的X轴坐标和Y轴坐标,其中,所述第一传感器为所述电容触摸屏中与至少一个操控体形成耦合电容且信号量的增值最大的传感器;
获取第一耦合电容值与第二耦合电容值之间的差值,根据所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,其中,所述第一耦合电容值为所述至少一个操控体对应的所述Z轴坐标在预设区间之外时所述第一传感器与所述电容触摸屏中的第一信号线之间形成的耦合电容值,所述第二耦合电容值为所述至少一个操控体对应的所述Z轴坐标在预设区间之内时所述第一传感器与所述第一信号线之间形成的耦合电容值;
根据所述至少一个操控体在所述空间直角坐标系下的空间坐标的变化,生成所述至少一个操控体的运动轨迹,对所述运动轨迹进行识别,得到手势识别结果,所述空间坐标包括:所述X轴坐标、所述Y轴坐标、所述Z轴坐标。
在一种可能的实施方式中,所述获取第一传感器在所述空间直角坐标系 下对应的X轴坐标和Y轴坐标,包括:
获取所述第一传感器在所述电容触摸屏中的集成电路对应的输出引脚序号,确定所述输出引脚序号为所述至少一个操控体在所述空间直角坐标系下的X轴坐标和Y轴坐标。
在一种可能的实施方式中,所述确定所述输出引脚序号为所述至少一个操控体在所述空间直角坐标系下的X轴坐标和Y轴坐标,包括:
预先存储输出引脚序号与所述空间直角坐标系坐标的对应关系;
根据所述对应关系,确定当前所述输出引脚序号在所述空间直角坐标系下对应的X轴坐标和Y轴坐标。
在一种可能的实施方式中,所述获取第一耦合电容值与第二耦合电容值之间的差值,包括:
获取所述电容触摸屏中集成电路的充电模块向所述第一传感器输入的电容值,其中,所述充电模块被配置为向所述电容触摸屏中信号量增加的传感器输入电容值以降低所述传感器的信号量;
确定所述电容值为所述第一耦合电容值与所述第二耦合电容值之间的差值。
在一种可能的实施方式中,根据所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,包括:
根据第一公式和所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标;
所述第一公式,具体为:
Figure PCTCN2021095227-appb-000001
其中,d为所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,C f为所述差值,ε为相对介电常数,S为所述至少一个操控体与所述第一传感器之间的正对面积,k为静电力常量。
在一种可能的实施方式中,根据所述至少一个操控体在所述空间直角坐 标系下的空间坐标的变化,生成所述至少一个操控体的运动轨迹,包括:
判断所述至少一个操控体在所述空间直角坐标系下的任一空间坐标中的Z轴坐标是否在预设区间之内;
若在,则确定所述任一空间坐标为有效空间坐标;
根据所述有效空间坐标的变化,生成所述至少一个操控体的运动轨迹。
在一种可能的实施方式中,所述以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直;包括:
以电容触摸屏的接触面的中心点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直。
本公开实施例还提供一种基于耦合电容的手势识别装置,其中,包括:
第一处理模块,被配置为以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直;
第一确定模块,被配置为获取第一传感器在所述空间直角坐标系下对应的X轴坐标和Y轴坐标,其中,所述第一传感器为所述电容触摸屏中与所述至少一个操控体形成耦合电容且信号量的增值最大的传感器;
第二确定模块,被配置为获取第一耦合电容值与第二耦合电容值之间的差值,根据所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,其中,所述第一耦合电容值为所述至少一个操控体对应的所述Z轴坐标在预设区间之外时所述第一传感器与所述电容触摸屏中的第一信号线之间形成的耦合电容值,所述第二耦合电容值为所述至少一个操控体对应的所述Z轴坐标在预设区间之内时所述第一传感器与所述电容触摸屏中的所述第一信号线之间形成的耦合电容值;
第二处理模块,被配置为根据所述至少一个操控体在所述空间直角坐标系下的空间坐标的变化,生成所述至少一个操控体的运动轨迹,对所述运动轨迹进行识别,得到手势识别结果,所述空间坐标包括:所述X轴坐标、所述Y轴坐标、所述Z轴坐标。
在一种可能的实施方式中,所述第一确定模块具体被配置为:
获取所述第一传感器在所述电容触摸屏中的集成电路对应的输出引脚序号,确定所述输出引脚序号为所述至少一个操控体在所述空间直角坐标系下的X轴坐标和Y轴坐标。
在一种可能的实施方式中,所述第一确定模块具体被配置为:
预先存储输出引脚序号与所述空间直角坐标系坐标的对应关系;
根据所述对应关系,确定当前所述输出引脚序号在所述空间直角坐标系下对应的X轴坐标和Y轴坐标。
在一种可能的实施方式中,所述第二确定模块具体被配置为:
获取所述电容触摸屏中的集成电路的充电模块向所述第一传感器输入的电容值,其中,所述充电模块被配置为向所述电容触摸屏中信号量增加的传感器输入电容值以降低所述传感器的信号量;
确定所述电容值为所述第一耦合电容值与所述第二耦合电容值之间的差值。
在一种可能的实施方式中,所述第二确定模块具体被配置为:
根据第一公式和所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标;
所述第一公式,具体为:
Figure PCTCN2021095227-appb-000002
其中,d为所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,C f为所述差值,ε为相对介电常数,S为所述至少一个操控体与所述第一传感器之间的正对面积,k为静电力常量。
在一种可能的实施方式中,所述第二处理模块具体被配置为:
判断所述至少一个操控体在所述空间直角坐标系下的任一空间坐标中的Z轴坐标是否在预设区间之内;
若在,则确定所述任一空间坐标为有效空间坐标;
根据所述有效空间坐标的变化,生成所述至少一个操控体的运动轨迹。
在一种可能的实施方式中,所述第一处理模块具体被配置为:
以电容触摸屏的接触面的中心点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直。
在一种可能的实施方式中,所述第一信号线为薄膜晶体管TFT电源信号控制走线。
本公开实施例还提供一种基于耦合电容的手势识别系统,其中,包括:
存储器,被配置为存储程序指令;
处理器,被配置为调用所述存储器中存储的程序指令,按照获得的程序指令执行本公开实施例提供的所述方法包括的步骤。
本公开实施例还提供一种存储介质,其中,所述存储介质存储有计算机可执行指令,所述计算机可执行指令被配置为使计算机执行如本公开实施例提供的所述方法包括的步骤。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例。
图1为本公开实施例中的一种设置有电容触摸屏的电子设备的结构示意图;
图2-1为本公开实施例中的一种基于耦合电容的手势识别方法的流程示意图;
图2-2为本公开实施例中的一种设置有电容触摸屏的电子设备的结构示意图;
图3为本公开实施例中的一种基于耦合电容的手势识别装置的结构示意图;
图4为本公开实施例中的一种基于耦合电容的手势识别系统的结构示意 图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,能够以不同于此处的顺序执行所示出或描述的步骤。
本公开的说明书和权利要求书及上述附图中的术语“第一”和“第二”是被配置为区别不同对象,而非被配置为描述特定顺序。此外,术语“包括”以及它们任何变形,意图在于覆盖不排他的保护。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本公开实施例中,“至少一个”可以表示至少两个,例如可以是两个、三个或者更多个,本公开实施例不做限制。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,在不做特别说明的情况下,一般表示前后关联对象是一种“或”的关系。
目前,当操控体接近或触摸电容触摸屏时,常通过电容触摸屏的电容变化来确定操控体在电容触摸屏上对应点的坐标,从而根据多个对应点的坐标识别手势,例如,当操控体接近或触摸电容触摸屏时,自电容触摸屏将分别检测横向与纵向电极,根据接近或触摸前后电容的变化,分别确定操控体在 自电容触摸屏上对应点的X轴坐标和Y轴坐标,互电容触摸屏将根据发出激励信号的横向电极和接收激励信号的纵向电极,确定所有横向和纵向电极交汇点的电容量,即整个触摸屏的二维平面的电容大小,再根据触摸屏二维电容变化量数据,确定操控体在自电容触摸屏上对应点的X轴坐标和Y轴坐标。即通过电容触摸屏的电容变化来识别手势时,仅能确定操控体在二维平面上的坐标,即操控体的X轴坐标和Y轴坐标,而无法确定操控体在三维平面上的坐标,即操控体的X轴坐标、Y轴坐标和Z轴坐标。可见,现有技术中存在当通过电容触摸屏的电容变化来识别手势时,无法确定操控体在三维平面上的坐标,从而无法识别复杂手势的问题。
鉴于此,本公开实施例提供一种基于耦合电容的手势识别方法,该方法可以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,其中,空间直角坐标系的Z轴与接触面垂直,然后第一传感器在空间直角坐标系下对应的X轴坐标和Y轴坐标,其中,第一传感器为电容触摸屏中与至少一个操控体形成耦合电容且信号量的增值最大的传感器,再获取第一耦合电容值与第二耦合电容值之间的差值,根据差值,确定至少一个操控体在空间直角坐标系下的Z轴坐标,其中,第一耦合电容值为至少一个操控体对应的Z轴坐标在预设区间之外时第一传感器与电容触摸屏中的薄膜晶体管TFT电源信号控制走线之间形成的耦合电容值,第二耦合电容值为所述至少一个操控体对应的Z轴坐标在预设区间之内时第一传感器与第一信号线之间形成的耦合电容值,最后根据至少一个操控体在空间直角坐标系下的空间坐标的变化,生成至少一个操控体的运动轨迹,对所运动轨迹进行识别,得到手势识别结果。通过至少一个操控体在接近或触摸电容触摸屏时传感器与第一信号线之间形成的耦合电容值与未接近电容触摸屏时传感器与第一信号线之间形成的耦合电容值的差值以及传感器对应的电容触摸屏中的集成电路的输出引脚序号,确定至少一个操控体在三维平面上的坐标,从而识别复杂手势,空间坐标包括:X轴坐标、Y轴坐标、Z轴坐标。
为了更好的理解上述技术方案,下面通过说明书附图以及具体实施例对 本公开技术方案做详细的说明,应当理解本公开实施例以及实施例中的具体特征是对本公开技术方案的详细的说明,而不是对本公开技术方案的限定,在不冲突的情况下,本公开实施例以及实施例中的技术特征可以相互组合。
图1为本公开实施例所提供方法可适用的一种设置有电容触摸屏的电子设备的结构,因为可适用本公开实施例所提供方法的设置有电容触摸屏的电子设备包括设置有电容触摸屏的平板电脑、智能手表、智能手机等,为了方便说明,本公开实施例提供一种设置有电。
容触摸屏的手机作为可适用本公开实施例所提供方法的设置有电容触摸屏的电子设备,当然本公开实施例所提供的方法可以适用到多种设置有电容触摸屏的电子设备上,应当理解图1所示的设置有电容触摸屏的电子设备是对可适用本公开实施例所提供方法的基于耦合电容的手势识别系统的详细的说明,而不是对可适用本公开实施例所提供方法的设置有电容触摸屏的电子设备的限定。
图1所示的手机的电容触摸屏在接触面的玻璃表面用氧化铟锡(Indium tin oxide,ITO)制作横向电极与纵向电极,O(0,0,0)为电容触摸屏的接触面的第一位置点,具体的,第一位置点可以为电容触摸屏的接触面的中心点,以O(0,0,0)为原点建立空间直角坐标系,其中,空间直角坐标系的Z轴与电容触摸屏的接触面垂直,O 1(X,Y,Z)为某一时刻操作体(例如手指或者其他的导电体)与电容触摸屏的相对位置。该电容触摸屏可为自电容触摸屏,也可以为互电容触摸屏,若电容触摸屏为自电容触摸屏,则电容触摸屏中的电极块(或横向电极与纵向电极,电容触摸屏构成不同,电极组成形式可以不同)分别与地构成了电容的两极,当操控体接近或触摸电容触摸屏时,操控体的电容将会叠加到屏体电容上,使屏体电容量增加;若电容触摸屏为互电容触摸屏,则电容触摸屏中的横向电极与纵向电极构成了电容的两极,当操控体接近或触摸电容触摸屏时,操控体将影响到附近两个电极之间的耦合,从而改变了这两个电极之间的电容量。请参见图2-1,为本公开实施例提供的一种基于耦合电容的手势识别方法,该方法可以由前述图1所示的设置有电 容触摸屏的电子设备执行。该方法的具体流程描述如下。
步骤201:以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直。
在本公开实施例中,电容触摸屏中的多个传感器可将电容触摸屏的接触面划分成多个大小相等的传感器块,以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,第一位置点具体可以为电容触摸屏的接触面的中心点,其中,空间直角坐标系的Z轴与电容触摸屏的接触面垂直,即以电容触摸屏中设定传感器块为原点建立空间直角坐标系,该传感器可以位于电容触摸屏的第一位置点,例如,参见图2-2,电容触摸屏中的多个传感器将电容触摸屏的接触面划分成7x3个大小相等的传感器块,其中,7为横排,3为竖列,则以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,即以位于横4竖2的传感器块为原点建立空间直角坐标系。
步骤202:获取第一传感器在所述空间直角坐标系下对应的X轴坐标和Y轴坐标,具体的,该步骤202,可以包括:获取第一传感器对应的所述电容触摸屏中的集成电路的输出引脚序号,确定所述输出引脚序号为至少一个操控体在所述空间直角坐标系下的X轴坐标和Y轴坐标,其中,所述第一传感器为所述电容触摸屏中与所述至少一个操控体形成耦合电容且信号量的增值最大的传感器;
具体的,获取第一传感器对应的所述电容触摸屏中的集成电路的输出引脚序号,确定所述输出引脚序号为至少一个操控体在所述空间直角坐标系下的X轴坐标和Y轴坐标,可以包括:
预先存储输出引脚序号与空间直角坐标系坐标的对应关系;
根据对应关系,确定当前输出引脚序号在空间直角坐标系下对应的X轴坐标和Y轴坐标。
在本公开实施例中,当至少一个操控体接近或触摸电容触摸屏时,会与附近的多个传感器形成耦合电容,增大附近的多个传感器的信号量,确定与至少一个操控体形成耦合电容且信号量的增值最大的传感器为第一传感器, 其中,至少一个操控体可以为手指,也可以为其他的导电体。
电容触摸屏中的多个传感器与电容触摸屏中的集成电路(Integrated circuit,IC)通过金属走线相连接,每根金属走线的序号与IC的输入/输出引脚(input/output)序号一一对应,即每个传感器与IC的输入/输出引脚(input/output)序号一一对应。当至少一个操控体与第一传感器形成耦合电容时,第一传感器与第一信号线(具体可以为电容触摸屏中的薄膜晶体管(TFT)电源信号控制走线)之间形成的耦合电容值,跟第一传感器附件的其他传感器与电容触摸屏中的TFT电源信号控制走线之间形成的耦合电容值相比较将出现差异,其中,TFT电源信号控制走线位于各个传感器之间。根据反馈的差异信号,获取与第一传感器对应的IC的输出引脚序号,确定该输出引脚序号为至少一个操控体在空间直角坐标系下的X轴坐标和Y轴坐标,为了便于理解,下面以举例的形式进行说明:
例如,当至少一个操控体与第一传感器形成耦合电容时,第一传感器与电容触摸屏中的TFT电源信号控制走线之间形成的耦合电容值,跟第一传感器附件的其他传感器与电容触摸屏中的TFT电源信号控制走线之间形成的耦合电容值相比较出现差异,第一传感器通过与IC相连接的金属走线5将该差异反馈给IC,因为每根金属走线的序号与IC的输出引脚序号一一对应,则可确定与第一传感器对应的IC的输出引脚序号为5,进而确定至少一个操控体在空间直角坐标系下的X轴坐标和Y轴坐标为5。
步骤203:获取第一耦合电容值与第二耦合电容值之间的差值,根据所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,其中,所述第一耦合电容值为至少一个操控体对应的Z轴坐标在预设区间之外时所述第一传感器与所述电容触摸屏中的第一信号线之间形成的耦合电容值,所述第二耦合电容值为至少一个操控体对应的所述Z轴坐标在预设区间之内时所述第一传感器与第一信号线之间形成的耦合电容值。
在本公开实施例中,电容触摸屏中的IC包括充电模块,该充电模块由不同容值的充值电容组成,被配置为在电容触摸屏显示不同的色彩时,通过充 放电使得电容触摸屏的每个传感器的信号量相同,当至少一个操控体接近或触摸第一传感器时,将与第一传感器形成耦合电容,增大第一传感器的信号量,此时IC的充电模块将向第一传感器输入电容,以降低第一传感器的信号量,避免第一传感器附近的其他传感器受到影响,所以IC的充电模块向第一传感器输入的电容值为第一耦合电容值与第二耦合电容值之间的差值,其中,第一耦合电容值为至少一个操控体未接近或触摸第一传感器时第一传感器与电容触摸屏中的TFT电源信号控制走线之间形成的耦合电容值,即至少一个操控体在空间直角坐标系下的Z轴坐标在预设区间之外时第一传感器与电容触摸屏中的TFT电源信号控制走线之间形成的耦合电容值,第二耦合电容值为至少一个操控体接近或触摸第一传感器时第一传感器与电容触摸屏中的TFT电源信号控制走线之间形成的耦合电容值,即至少一个操控体在空间直角坐标系下的Z轴坐标在预设区间之外时第一传感器与电容触摸屏中的TFT电源信号控制走线之间形成的耦合电容值。为了便于理解,下面以举例的形式进行说明:
例如,IC由不同容值的充值电容组成的充电模块先向第一传感器输入10个100pF的充值电容,发现第一传感器的信号量仍然偏高,再向第一传感器输入5个10pF的充值电容,发现第一传感器的信号量正常,则确定IC的充电模块向第一传感器输入的电容值为C f=100pF*10+10pF*5=1050pF,即第一耦合电容值与第二耦合电容值之间的差值为1050pF。
在获取第一耦合电容值与第二耦合电容值之间的差值之后,因为第一耦合电容值与第二耦合电容值之间的差值就是至少一个操控体与第一传感器之间形成的耦合电容值,所以可采用第一公式对第一耦合电容值与第二耦合电容值之间的差值进行相关运算,确定至少一个操控体在空间直角坐标系下的Z轴坐标,具体的,第一公式为:
Figure PCTCN2021095227-appb-000003
其中,d为至少一个操控体在空间直角坐标系下的Z轴坐标,C f为第一耦 合电容值与第二耦合电容值之间的差值,ε为相对介电常数,S为至少一个操控体与第一传感器之间的正对面积,k为静电力常量。
步骤204:根据所述至少一个操控体在所述空间直角坐标系下的空间坐标的变化,生成所述至少一个操控体的运动轨迹,对所述运动轨迹进行识别,得到手势识别结果,空间坐标包括:X轴坐标、Y轴坐标、Z轴坐标。
在本公开实施例中,判断至少一个操控体在空间直角坐标系下的任一空间坐标中的Z轴坐标是否在预设区间之内,若在,则确定任一空间坐标为有效空间坐标,根据有效空间坐标的变化,生成至少一个操控体的运动轨迹,对所述运动轨迹进行识别,得到手势识别结果。
基于同一公开构思,本公开实施例提供一种基于耦合电容的手势识别装置,该基于耦合电容的手势识别装置能够实现前述的基于耦合电容的手势识别方法对应的功能。该基于耦合电容的手势识别装置可以是硬件结构、软件模块、或硬件结构加软件模块。该基于耦合电容的手势识别装置可以由芯片系统实现,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。请参见图3所示,该基于耦合电容的手势识别装置包括第一处理模块301、第一确定模块302、第二确定模块303、第二处理模块304,其中:
第一处理模块301,被配置为以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直;
第一确定模块302,被配置为获取第一传感器在所述空间直角坐标系下对应的X轴坐标和Y轴坐标,其中,所述第一传感器为所述电容触摸屏中与所述至少一个操控体形成耦合电容且信号量的增值最大的传感器;具体的,第一确定模块302,具体被配置为获取第一传感器对应的所述电容触摸屏中的集成电路的输出引脚序号,确定所述输出引脚序号为至少一个操控体在所述空间直角坐标系下的X轴坐标和Y轴坐标;进一步的,第一确定模块302,具体被配置为:预先存储输出引脚序号与空间直角坐标系坐标的对应关系;根据对应关系,确定当前输出引脚序号在空间直角坐标系下对应的X轴坐标和Y轴坐标;
第二确定模块303,被配置为获取第一耦合电容值与第二耦合电容值之间的差值,根据所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,其中,所述第一耦合电容值为至少一个操控体对应的所述Z轴坐标在预设区间之外时所述第一传感器与所述电容触摸屏中的第一信号线之间形成的耦合电容值,所述第二耦合电容值为至少一个操控体对应的所述Z轴坐标在预设区间之内时所述第一传感器与所述第一信号线之间形成的耦合电容值;
第二处理模块304,被配置为根据所述至少一个操控体在所述空间直角坐标系下的空间坐标的变化,生成所述至少一个操控体的运动轨迹,对所述运动轨迹进行识别,得到手势识别结果,空间坐标包括:X轴坐标、Y轴坐标、Z轴坐标。
一种可选实施方式中,所述第二确定模块302具体被配置为:
获取所述电容触摸屏中的集成电路的充电模块向所述第一传感器输入的电容值,其中,所述充电模块被配置为向所述电容触摸屏中信号量增加的传感器输入电容值以降低所述传感器的信号量;
确定所述电容值为所述第一耦合电容值与所述第二耦合电容值之间的差值。
一种可选实施方式中,所述第二确定模块302具体被配置为:
根据第一公式和所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标;
所述第一公式,具体为:
Figure PCTCN2021095227-appb-000004
其中,d为所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,C f为所述差值,ε为相对介电常数,S为所述至少一个操控体与所述第一传感器之间的正对面积,k为静电力常量。
一种可选实施方式中,所述第二处理模块304具体被配置为:
判断所述至少一个操控体在所述空间直角坐标系下的任一空间坐标中的Z轴坐标是否在预设区间之内;
若在,则确定所述任一空间坐标为有效空间坐标;
根据所述有效空间坐标的变化,生成所述至少一个操控体的运动轨迹。
基于同一公开构思,本公开实施例提供一种基于耦合电容的手势识别系统,请参见图4所述,该基于耦合电容的手势识别系统包括至少一个处理器402,以及与至少一个处理器连接的存储器401,本公开实施例中不限定处理器402与存储器401之间的具体连接介质,图4是以处理器402和存储器401之间通过总线400连接为例,总线400在图4中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不以此为限。总线400可以分为地址总线、数据总线、控制总线等,为便于表示,图4中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本公开实施例中,存储器401存储有可被至少一个处理器402执行的指令,至少一个处理器402通过调用存储器401存储的指令,可以执行前述的基于耦合电容的手势识别方法中所包括的步骤。其中,处理器402是基于耦合电容的手势识别系统的控制中心,可以利用各种接口和线路连接整个基于耦合电容的手势识别系统的各个部分,通过执行存储在存储器401内的指令,从而实现基于耦合电容的手势识别系统的各种功能。可选的,处理器402可包括一个或多个处理单元,处理器402可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器402中。在一些实施例中,处理器402和存储器401可以在同一芯片上实现,在一些实施例中,它们也可以在独立的芯片上分别实现。
存储器401作为一种非易失性计算机可读存储介质,可被配置为存储非易失性软件程序、非易失性计算机可执行程序以及模块。存储器401可以包括至少一种类型的存储介质,例如可以包括闪存、硬盘、多媒体卡、卡型存储器、随机访问存储器(Random Access Memory,RAM)、静态随机访问存 储器(Static Random Access Memory,SRAM)、可编程只读存储器(Programmable Read Only Memory,PROM)、只读存储器(Read Only Memory,ROM)、带电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、磁性存储器、磁盘、光盘等等。存储器401是能够被配置为携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本公开实施例中的存储器401还可以是电路或者其它任意能够实现存储功能的装置,被配置为存储程序指令和/或数据。
处理器402可以是通用处理器,例如中央处理器(CPU)、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本公开实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本公开实施例所公开的基于耦合电容的手势识别方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
通过对处理器402进行设计编程,可以将前述实施例中介绍的基于耦合电容的手势识别方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述的基于耦合电容的手势识别方法的步骤,如何对处理器402进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
基于同一公开构思,本公开实施例还提供一种存储介质,该存储介质存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行如前述的基于耦合电容的手势识别方法的步骤。
在一些可能的实施方式中,本公开提供的基于耦合电容的手势识别方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在基于耦合电容的手势识别系统上运行时,程序代码被配置为使该基于耦合电容的手势识别系统执行本说明书上述描述的根据本公开各种示例性实施方式的基于耦合电容的手势识别方法中的步骤。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生被配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供被配置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (17)

  1. 一种基于耦合电容的手势识别方法,其中,包括:
    以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直;
    获取第一传感器在所述空间直角坐标系下对应的X轴坐标和Y轴坐标,其中,所述第一传感器为所述电容触摸屏中与至少一个操控体形成耦合电容且信号量的增值最大的传感器;
    获取第一耦合电容值与第二耦合电容值之间的差值,根据所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,其中,所述第一耦合电容值为所述至少一个操控体对应的所述Z轴坐标在预设区间之外时所述第一传感器与所述电容触摸屏中的第一信号线之间形成的耦合电容值,所述第二耦合电容值为所述至少一个操控体对应的所述Z轴坐标在预设区间之内时所述第一传感器与所述第一信号线之间形成的耦合电容值;
    根据所述至少一个操控体在所述空间直角坐标系下的空间坐标的变化,生成所述至少一个操控体的运动轨迹,对所述运动轨迹进行识别,得到手势识别结果,所述空间坐标包括:所述X轴坐标、所述Y轴坐标、所述Z轴坐标。
  2. 如权利要求1所述的方法,其中,所述获取第一传感器在所述空间直角坐标系下对应的X轴坐标和Y轴坐标,包括:
    获取所述第一传感器在所述电容触摸屏中的集成电路对应的输出引脚序号,确定所述输出引脚序号为所述至少一个操控体在所述空间直角坐标系下的X轴坐标和Y轴坐标。
  3. 如权利要求2所述的方法,其中,所述确定所述输出引脚序号为所述至少一个操控体在所述空间直角坐标系下的X轴坐标和Y轴坐标,包括:
    预先存储输出引脚序号与所述空间直角坐标系坐标的对应关系;
    根据所述对应关系,确定当前所述输出引脚序号在所述空间直角坐标系 下对应的X轴坐标和Y轴坐标。
  4. 如权利要求1所述的方法,其中,所述获取第一耦合电容值与第二耦合电容值之间的差值,包括:
    获取所述电容触摸屏中集成电路的充电模块向所述第一传感器输入的电容值,其中,所述充电模块被配置为向所述电容触摸屏中信号量增加的传感器输入电容值以降低所述传感器的信号量;
    确定所述电容值为所述第一耦合电容值与所述第二耦合电容值之间的差值。
  5. 如权利要求4所述的方法,其中,根据所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,包括:
    根据第一公式和所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标;
    所述第一公式,具体为:
    Figure PCTCN2021095227-appb-100001
    其中,d为所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,C f为所述差值,ε为相对介电常数,S为所述至少一个操控体与所述第一传感器之间的正对面积,k为静电力常量。
  6. 如权利要求1所述的方法,其中,根据所述至少一个操控体在所述空间直角坐标系下的空间坐标的变化,生成所述至少一个操控体的运动轨迹,包括:
    判断所述至少一个操控体在所述空间直角坐标系下的任一空间坐标中的Z轴坐标是否在预设区间之内;
    若在,则确定所述任一空间坐标为有效空间坐标;
    根据所述有效空间坐标的变化,生成所述至少一个操控体的运动轨迹。
  7. 如权利要求1所述的方法,其中,所述以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所 述接触面垂直;包括:
    以电容触摸屏的接触面的中心点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直。
  8. 一种基于耦合电容的手势识别装置,其中,包括:
    第一处理模块,被配置为以电容触摸屏的接触面的第一位置点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直;
    第一确定模块,被配置为获取第一传感器在所述空间直角坐标系下对应的X轴坐标和Y轴坐标,其中,所述第一传感器为所述电容触摸屏中与所述至少一个操控体形成耦合电容且信号量的增值最大的传感器;
    第二确定模块,被配置为获取第一耦合电容值与第二耦合电容值之间的差值,根据所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,其中,所述第一耦合电容值为所述至少一个操控体对应的所述Z轴坐标在预设区间之外时所述第一传感器与所述电容触摸屏中的第一信号线之间形成的耦合电容值,所述第二耦合电容值为所述至少一个操控体对应的所述Z轴坐标在预设区间之内时所述第一传感器与所述电容触摸屏中的所述第一信号线之间形成的耦合电容值;
    第二处理模块,被配置为根据所述至少一个操控体在所述空间直角坐标系下的空间坐标的变化,生成所述至少一个操控体的运动轨迹,对所述运动轨迹进行识别,得到手势识别结果,所述空间坐标包括:所述X轴坐标、所述Y轴坐标、所述Z轴坐标。
  9. 如权利要求8所述的装置,其中,所述第一确定模块具体被配置为:
    获取所述第一传感器在所述电容触摸屏中的集成电路对应的输出引脚序号,确定所述输出引脚序号为所述至少一个操控体在所述空间直角坐标系下的X轴坐标和Y轴坐标。
  10. 如权利要求9所述的装置,其中,所述第一确定模块具体被配置为:
    预先存储输出引脚序号与所述空间直角坐标系坐标的对应关系;
    根据所述对应关系,确定当前所述输出引脚序号在所述空间直角坐标系 下对应的X轴坐标和Y轴坐标。
  11. 如权利要求8所述的装置,其中,所述第二确定模块具体被配置为:
    获取所述电容触摸屏中的集成电路的充电模块向所述第一传感器输入的电容值,其中,所述充电模块被配置为向所述电容触摸屏中信号量增加的传感器输入电容值以降低所述传感器的信号量;
    确定所述电容值为所述第一耦合电容值与所述第二耦合电容值之间的差值。
  12. 如权利要求8所述的装置,其中,所述第二确定模块具体被配置为:
    根据第一公式和所述差值,确定所述至少一个操控体在所述空间直角坐标系下的Z轴坐标;
    所述第一公式,具体为:
    Figure PCTCN2021095227-appb-100002
    其中,d为所述至少一个操控体在所述空间直角坐标系下的Z轴坐标,C f为所述差值,ε为相对介电常数,S为所述至少一个操控体与所述第一传感器之间的正对面积,k为静电力常量。
  13. 如权利要求8所述的装置,其中,所述第二处理模块具体被配置为:
    判断所述至少一个操控体在所述空间直角坐标系下的任一空间坐标中的Z轴坐标是否在预设区间之内;
    若在,则确定所述任一空间坐标为有效空间坐标;
    根据所述有效空间坐标的变化,生成所述至少一个操控体的运动轨迹。
  14. 如权利要求8所述的装置,其中,所述第一处理模块具体被配置为:
    以电容触摸屏的接触面的中心点为原点建立空间直角坐标系,其中,所述空间直角坐标系的Z轴与所述接触面垂直。
  15. 如权利要求8所述的装置,其中,所述第一信号线为薄膜晶体管TFT电源信号控制走线。
  16. 一种基于耦合电容的手势识别系统,其中,包括:
    存储器,被配置为存储程序指令;
    处理器,被配置为调用所述存储器中存储的程序指令,按照获得的程序指令执行权利要求1-7任一项所述的方法包括的步骤。
  17. 一种存储介质,其中,所述存储介质存储有计算机可执行指令,所述计算机可执行指令被配置为使计算机执行权利要求1-7任一项所述的方法包括的步骤。
PCT/CN2021/095227 2020-05-28 2021-05-21 基于耦合电容的手势识别方法、装置及系统 WO2021238802A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/921,073 US20230342020A1 (en) 2020-05-28 2021-05-21 Gesture recognition method, apparatus and system based on coupling capacitance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010467794.8A CN111625147B (zh) 2020-05-28 2020-05-28 一种基于耦合电容的手势识别方法、装置及系统
CN202010467794.8 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021238802A1 true WO2021238802A1 (zh) 2021-12-02

Family

ID=72259589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095227 WO2021238802A1 (zh) 2020-05-28 2021-05-21 基于耦合电容的手势识别方法、装置及系统

Country Status (3)

Country Link
US (1) US20230342020A1 (zh)
CN (1) CN111625147B (zh)
WO (1) WO2021238802A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111625147B (zh) * 2020-05-28 2023-08-25 京东方科技集团股份有限公司 一种基于耦合电容的手势识别方法、装置及系统
CN114647362B (zh) * 2022-03-22 2024-04-12 天马微电子股份有限公司 显示面板的触控算法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446042A (zh) * 2010-10-12 2012-05-09 谊达光电科技股份有限公司 电容式近接感应暨触控侦测装置与方法
CN103116432A (zh) * 2013-03-04 2013-05-22 惠州Tcl移动通信有限公司 一种触摸屏的三维操作控制方法、装置及其移动终端
US20150324025A1 (en) * 2014-05-12 2015-11-12 Electronics And Telecommunications Research Institute User input device and method thereof
CN111625147A (zh) * 2020-05-28 2020-09-04 京东方科技集团股份有限公司 一种基于耦合电容的手势识别方法、装置及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7834847B2 (en) * 2005-12-01 2010-11-16 Navisense Method and system for activating a touchless control
WO2008093682A1 (ja) * 2007-01-31 2008-08-07 Alps Electric Co., Ltd. 静電容量式モーション検出装置及びそれを用いた入力装置
US20130002598A1 (en) * 2011-06-30 2013-01-03 Victor Phay Kok Heng Circuits and Methods for Tracking Multiple Objects Relative to a Touch-Sensitive Interface
KR101655810B1 (ko) * 2014-04-22 2016-09-22 엘지전자 주식회사 차량용 디스플레이 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446042A (zh) * 2010-10-12 2012-05-09 谊达光电科技股份有限公司 电容式近接感应暨触控侦测装置与方法
CN103116432A (zh) * 2013-03-04 2013-05-22 惠州Tcl移动通信有限公司 一种触摸屏的三维操作控制方法、装置及其移动终端
US20150324025A1 (en) * 2014-05-12 2015-11-12 Electronics And Telecommunications Research Institute User input device and method thereof
CN111625147A (zh) * 2020-05-28 2020-09-04 京东方科技集团股份有限公司 一种基于耦合电容的手势识别方法、装置及系统

Also Published As

Publication number Publication date
CN111625147B (zh) 2023-08-25
CN111625147A (zh) 2020-09-04
US20230342020A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
US10614279B2 (en) Apparatus and method for driving fingerprint sensing array provided in touchscreen, and driver integrated circuit for driving the touchscreen including the fingerprint sensing array
WO2021238802A1 (zh) 基于耦合电容的手势识别方法、装置及系统
CN107741824B (zh) 对可重定位触摸表面上的姿态朝向的检测
US9098153B2 (en) Touch panel excitation using a drive signal having time-varying characteristics
CN104699335A (zh) 混合型电容性触摸系统设计
CN106778508B (zh) 一种指纹识别方法及移动终端
WO2019019900A1 (zh) 黑屏手势的检测方法、装置、存储介质及移动终端
CN103941946A (zh) 一种触摸屏及显示装置
US10254879B1 (en) Touch screen proximity sensing with accelerometer/gyroscope and finger grip suppression to prevent false ear touch
CN104898981A (zh) 用于识别手势的方法、装置及终端
WO2020118491A1 (zh) 基于指纹识别的交互方法、电子设备及相关装置
CN107111387B (zh) 确定方位角或姿态的方法、触控输入装置、触控屏及系统
US20130249807A1 (en) Method and apparatus for three-dimensional image rotation on a touch screen
KR20180118269A (ko) 터치 스크린 및 그에 따른 펜 터치 검출 방법
TW201504929A (zh) 電子裝置及其手勢控制方法
JP2017215842A (ja) 電子機器
CN106020471A (zh) 一种移动终端的操作方法及移动终端
US20160026280A1 (en) Shadeless touch hand-held electronic device and touch cover
CN106201078B (zh) 一种轨迹补全方法和终端
US10303299B2 (en) Use of groove analysis in a touch screen device to determine occurrence of an elongated touch by a single finger
TWI405105B (zh) Signal handling method of compound touch panel
CN108345403B (zh) 用于过滤触摸感测中的坐标抖动的多阈值运动公差
KR102303136B1 (ko) 입력 장치, 전자 시스템 및 그 제어 방법
TWI444878B (zh) 表面電容式觸控面板及其控制方法
KR101375727B1 (ko) 선형터치패턴을 이용한 터치스크린의 화면확대/축소 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814124

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21814124

Country of ref document: EP

Kind code of ref document: A1