WO2021238772A1 - 显示基板、显示装置及制作方法 - Google Patents

显示基板、显示装置及制作方法 Download PDF

Info

Publication number
WO2021238772A1
WO2021238772A1 PCT/CN2021/094946 CN2021094946W WO2021238772A1 WO 2021238772 A1 WO2021238772 A1 WO 2021238772A1 CN 2021094946 W CN2021094946 W CN 2021094946W WO 2021238772 A1 WO2021238772 A1 WO 2021238772A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
tft substrate
pixel defining
pixel
away
Prior art date
Application number
PCT/CN2021/094946
Other languages
English (en)
French (fr)
Inventor
王琳琳
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/763,211 priority Critical patent/US20220392980A1/en
Publication of WO2021238772A1 publication Critical patent/WO2021238772A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the technical field of display devices, and in particular, to a display substrate, a display device, and a manufacturing method.
  • Quantum Dots have also been used in flexible display products due to their light-emitting characteristics; current quantum dot display structures are The two substrates are matched to the box. One of the substrates is equipped with traditional TFT and EL structures, and the other is equipped with a quantum dot color film, and then the two substrates are glued to the box to form a quantum dot display. structure.
  • the method of box alignment requires high precision and large box thickness, which is likely to cause poor display problems such as light leakage, and the two substrates need to be bonded by glue, which will absorb the blue light emitted from the EL structure , Reduce the light emissivity and affect the display effect.
  • an embodiment of the present disclosure provides a display substrate, including
  • a pixel defining layer, the pixel defining layer is disposed on the TFT substrate and surrounds a number of pixel pits;
  • an electroluminescent device layer, a connection layer, a first encapsulation layer, and a quantum dot layer are sequentially stacked in each of the pixel pits, and the connection layer in the adjacent pixel pits is separated from the pixel defining layer.
  • One side of the TFT substrate is connected, and the connection layer is arranged to electrically connect the electroluminescent device layers in two adjacent pixel pits.
  • the size of the pixel defining layer in the first direction is greater than or equal to that of the electroluminescent device layer, the first encapsulation layer, and the quantum dot layer.
  • the first direction is a direction from the TFT substrate to the quantum dot layer.
  • the material of the pixel defining layer is a directional thermal expansion material.
  • the pixel defining layer expands to 10 um to 14 um in a direction away from the TFT substrate after being irradiated with a laser.
  • the aforementioned display substrate further includes a color filter layer and a second encapsulation layer;
  • the color filter layer is disposed on the quantum dot layer and the connecting layer on the side facing away from the TFT substrate; wherein the connecting layer is a connection exposed on the side of the pixel defining layer facing away from the TFT substrate Floor;
  • the second encapsulation layer is arranged on a side of the color filter layer away from the TFT substrate.
  • the thickness of the quantum dot layer is greater than 10 um.
  • connection layer is made of metal.
  • an embodiment of the present disclosure provides a display device, which includes any of the foregoing display substrates.
  • the embodiments of the present disclosure provide a method for manufacturing a display substrate based on the above display substrate, which includes the following steps:
  • a connecting layer, a first encapsulation layer, and a quantum dot layer are sequentially stacked on the side of the electroluminescent device layer in each of the pixel pits away from the TFT substrate, and the connecting layer in the pixel pits is adjacent It is connected on the side of the pixel defining layer away from the TFT substrate.
  • the increasing the size of each of the pixel pits in a first direction, where the first direction is a direction from the TFT substrate to the pixel defining layer includes:
  • Laser irradiates the electroluminescent device layer on the side of the pixel defining layer away from the TFT substrate to eliminate the electroluminescent device layer on the side of the pixel defining layer away from the TFT substrate, so that The pixel defining layer expands to a predetermined size in a direction away from the TFT substrate.
  • the material of the pixel defining layer is a directional thermal expansion material.
  • forming a pixel defining layer on the TFT substrate and enclosing a plurality of pixel pits includes:
  • the pixel defining layer is arranged on the TFT substrate by means of inkjet printing.
  • the foregoing method further includes
  • a color film layer and a second encapsulation layer are sequentially stacked.
  • the stacking and stacking of a color film layer and a second encapsulation layer on the side of the quantum dot layer away from the TFT substrate in sequence includes:
  • the second encapsulation layer is fabricated on the side of the color filter layer away from the TFT substrate by any of the following methods: chemical vapor deposition, atomic layer deposition, magnetron sputtering, and inkjet printing.
  • FIG. 1 is a schematic structural diagram of a display substrate provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a part of the structure of a display substrate provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an electroluminescent device layer in a display substrate provided by an embodiment of the disclosure
  • FIG. 4 is a schematic flowchart of a method for manufacturing a display substrate according to an embodiment of the disclosure
  • FIG. 5 is a detailed flowchart of a method for manufacturing a display substrate according to an embodiment of the disclosure
  • the display substrate provided by the embodiment of the present disclosure includes a TFT substrate 1, a pixel defining layer 2, an electroluminescent device layer 3, a connection layer 4, a first encapsulation layer 5, and a quantum dot layer 6; the pixel defining layer
  • the layer 2 is arranged on the TFT substrate 1 and surrounds a number of pixel pits 21;
  • the electroluminescent device layer 3, the connection layer 4, the first encapsulation layer 5 and the quantum dot layer 6 are sequentially stacked in each of the pixel pits 21, and the connection layer 4 in the adjacent pixel pits 21 is
  • the pixel defining layer 2 is connected to a side away from the TFT substrate 1, and the connecting layer 4 is configured to electrically connect the electroluminescent device layers 3 in two adjacent pixel pits 21.
  • Embodiments of the present disclosure provide a display substrate that can be improved for OLED display substrates.
  • the layer 6 and the electroluminescent device layer 3 are arranged on the same TFT substrate 1, and several pixels are formed in several pixel pits 21, which realizes that there is no need to glue the box to form an integrated display substrate, so that the thickness of the display substrate is reduced. Small, low blue light loss and avoid the problems of surface light leakage and uneven brightness.
  • the quantum dot layer 6 functions as a color film in this embodiment, which can convert the blue light emitted by the OLED in the electroluminescent device layer 3 into green light or red light; quantum dots (Quantum Dots, QDs) It can also be called nanocrystal, which is a kind of nanoparticle composed of II-VI or III-V elements.
  • the particle size of quantum dots is generally between 1nm and 20nm.
  • the quantum can emit fluorescence after being excited; and the emission spectrum of the quantum dot can be controlled by changing the size of the quantum dot, by changing the size of the quantum dot and its chemical composition
  • the emission spectrum of the quantum dots can cover the entire visible light region.
  • the quantum dot layer 6 in part of the pixel pits 21 is set to convert the blue light emitted by the OLED in the electroluminescent device layer 3 into green light.
  • the quantum dot layer 6 in the pixel pit 21 is set to convert the blue light emitted by the OLED in the electroluminescent device layer 3 into red light, and the quantum dot layer 6 in some pixel pits 21 is set to be able to convert the electroluminescent device layer 3
  • the blue light emitted by the OLED in the OLED remains blue to form a pixel layer with three primary colors.
  • the thickness of the quantum dot layer 6 is set to be greater than 10 um in this embodiment.
  • the thickness of the quantum dot layer 6 can be set according to actual needs, which is not limited in the embodiment of the present disclosure.
  • the TFT substrate 1 may be a thin film transistor substrate that provides signal driving and scanning signals to the electroluminescent device layer 3, and includes necessary gate, source electrode, drain electrode and other structures.
  • the pixel defining layer 2 is disposed on the TFT substrate 1 and encloses a number of the pixel pits 21 to provide accommodating space for sub-pixels; the pixel defining layer 2 in this embodiment can be made of directional thermal expansion material, which can be sprayed
  • the ink printing method is set on the TFT substrate 1 to ensure that the pixel defining layer 2 can expand longitudinally in the direction perpendicular to the TFT substrate 1 under heating conditions, that is, to increase the depth of the pixel pit 21, which is a quantum dot
  • the layer 6 provides enough space (the thickness of the quantum dot layer 6 is larger); because the quantum dot layer 6 with a larger thickness is prepared by inkjet printing, a thicker pixel defining layer 2 material is required to limit the quantum
  • the depth direction of the pixel pit 21 and the thickness direction of the quantum dot layer 6 are the same direction, that is, the first direction a as shown by the arrow in FIG.
  • the pixel defining layer 2 is set as a directional thermal expansion material, which can overcome the above-mentioned problems by using the anisotropy of the material's automatic expansion.
  • the electroluminescent device layer 3 includes an anode layer 31, an electron injection layer 32, an electron transport layer 33, a light emitting layer 34, a hole transport layer 35, a hole injection layer 36 and Cathode layer 37.
  • the connecting layer 4 is made of a metal material, such as indium zinc oxide (IZO), a rotating target material. Since the electroluminescent device layer 3 and the pixel defining layer 2 are interrupted at the corresponding position, the corresponding The cathode layer 37 of the electroluminescent device layer 3 in the adjacent pixel pit 21 cannot be electrically connected. Furthermore, in this embodiment, the connecting layer is provided on the side of the electroluminescent device layer 3 away from the TFT substrate 1.
  • IZO indium zinc oxide
  • the cathode layers 37 of the device layer 3 are electrically connected to each other to ensure the normal operation of the electroluminescent device layer 3.
  • the first encapsulation layer 5 can use common encapsulation materials, which will not be repeated here; in this embodiment, the function of the first encapsulation layer 5 is to protect the electroluminescent device layer 3.
  • the quantum dot layer 6 and the electroluminescent device layer 3 are arranged on the same TFT substrate 1, which realizes the integrated arrangement of the display substrate without the need for a box.
  • No glue is needed for bonding, which can reduce the thickness of the display substrate, reduce blue light loss, and avoid the problems of surface light leakage and uneven brightness;
  • the pixel defining layer 2 in the display substrate provided by the embodiment of the present disclosure serves as the quantum dot layer 6 and
  • the defining layer of the electroluminescent device layer 3 that is, the pixel defining layer 2 in the display substrate serves as both the defining layer of the quantum dot layer 6 and the defining layer of the electroluminescent device layer 3), which is beneficial to Development of flexible display devices.
  • an embodiment of the present disclosure provides a display substrate, the pixel defining layer 2 in the first direction a has a size greater than or equal to the electroluminescent device layer 3.
  • the first direction a is the direction from the TFT substrate 1 to the quantum dot layer 6.
  • the pixel defining layer 2 in this embodiment is in the first direction a (ie, vertical
  • the size of the TFT substrate 1 in a direction away from the TFT substrate 1) is greater than or equal to the electroluminescent device layer 3, the first encapsulation layer 5, and the quantum dot layer 6 in the first
  • the sum of the dimensions in the direction a can further accommodate the electroluminescent device layer 3 and the quantum dot layer 6 in the same pixel pit 21; optionally, in this embodiment, each pixel pit 21 It needs to be able to accommodate the electroluminescent device layer 3, the connection layer 4, the first encapsulation layer 5 and the quantum dot layer 6, and the connection layer 4 will be away from the TFT at the pixel defining layer 2
  • the depth of the pixel pit 21 is increased on one side of the substrate 1, when the thickness of the pixel defining layer 2 is designed, the thickness of the connection layer 4 does not need
  • the material of the pixel defining layer 2 is a directional thermal expansion material.
  • the pixel defining layer 2 when the pixel defining layer 2 is selected as a material with directional thermal expansion properties, for example: a composite material of aramid fiber and flexible resin, the aramid fiber and the flexible resin have good adhesion, which increases The stability of the composite material of aramid fiber and flexible resin during the thermal expansion process; in this embodiment, when the pixel defining layer 2 is initially set, the thickness of the pixel defining layer 2 can be set to 2um to 2um according to industry experience or conventions.
  • a material with directional thermal expansion properties for example: a composite material of aramid fiber and flexible resin
  • the aramid fiber and the flexible resin have good adhesion, which increases The stability of the composite material of aramid fiber and flexible resin during the thermal expansion process; in this embodiment, when the pixel defining layer 2 is initially set, the thickness of the pixel defining layer 2 can be set to 2um to 2um according to industry experience or conventions.
  • UV laser ultraviolet laser
  • the laser can not only eliminate the battery light emitting device layer 3 but also provide the required heat for the expansion of the pixel defining layer 2
  • the pixel defining layer 2 is heated to expand and expand to the height required by the design, for example: 10um to 14um.
  • the value is not limited here, and can be adjusted according to actual needs.
  • the method can be, for example, adjusting the heat emitted by the ultraviolet laser or adjusting the thickness of the pixel defining layer 2 initially set, etc., which will not be repeated here; in this embodiment, the material of the pixel defining layer 2 is selected as a material with directional thermal expansion properties.
  • the pixel defining layer 2 swells, so that the thickness of the pixel defining layer 2 cannot be changed after the electroluminescent device layer 3 is provided.
  • the pixel defining layer 2 is designed to be inkjet printed In other embodiments, the arrangement of the pixel defining layer 2 can be selected according to requirements, which is not limited in this embodiment.
  • a display substrate provided in this embodiment further includes a color film layer 7 and a second encapsulation layer 8;
  • the color filter layer 7 is arranged on the quantum dot layer 6 and the connecting layer 4 on the side facing away from the TFT substrate 1; wherein, the connecting layer 4 is exposed on the pixel defining layer 2 facing away from the TFT.
  • the connection layer 4 on one side of the substrate 1;
  • the second encapsulation layer 8 is arranged on the side of the color filter layer 7 away from the TFT substrate 1.
  • the quantum dot layer 6 is arranged on the side away from the TFT substrate 1 to purify the light emitted by the sub-pixels in each pixel pit 21.
  • the second encapsulation layer 8 is provided on the side of the color filter layer 7 away from the TFT substrate 1 to form the final encapsulation structure of the display substrate to ensure The overall sealing and safety of the display substrate; the second packaging layer 8 is a packaging material commonly used in some technologies, and will not be repeated here.
  • An embodiment of the present disclosure also provides a display device, which includes the display substrate described in any of the foregoing embodiments.
  • the display substrate in this embodiment can directly adopt the display substrate described in Embodiment 1.
  • the detailed structure please refer to the content of the above embodiment.
  • an embodiment of the present disclosure provides a method for manufacturing a display substrate based on the embodiment 1, including the following steps:
  • TFT thin film transistor
  • a directional thermal expansion material is selected as the pixel defining layer 2, and the pixel defining layer 2 is formed on the TFT substrate 1 by inkjet printing, and a number of pixel pits 21 are formed.
  • the electroluminescence device layer 3 is made by evaporation, which includes setting the cathode layer 37 of the electroluminescence device layer 3 as a semi-transmissive and semi-reverse electrode layer by evaporation.
  • the electroluminescence device layer 3 on the upper side of the pixel defining layer 2 is removed, and the pixel defining layer 2 is expanded to increase the depth of the pixel pit 21 for accommodating the electroluminescence
  • connection layer 4 in the pixel pit 21 is connected on the side of the pixel defining layer 2 away from the TFT substrate 1;
  • the connecting layer 4 is made by sputtering on the side of the electroluminescent device 3 away from the TFT substrate 1 (the connecting layer 4 is made of a metal material, such as indium tin oxide IZO), so that The connecting layer 4 covers the electroluminescent device layer 3 and the pixel defining layer 2, so that the cathode layers 37 of the electroluminescent device layer 3 in the adjacent pixel pits 21 can realize electrical interaction between each other.
  • Connect then by chemical vapor deposition (CVD) or atomic layer deposition (ALD) or magnetron sputtering (Sputter) or inkjet printing (IJP) and other methods to make the first encapsulation layer 5; finally by inkjet printing
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • Sputter magnetron sputtering
  • IJP inkjet printing
  • the above-mentioned step 104 in this embodiment may be the following steps:
  • the electroluminescent device layer 3 covered by the side of the pixel defining layer 2 facing away from the TFT substrate 1 is irradiated with laser light (ultraviolet laser, UV);
  • the pixel defining layer 2 absorbs heat and expands in the longitudinal direction. During this period, the heat of the laser, the irradiation time, and the original pixel defining layer 2 can be controlled.
  • the thickness of the pixel defining layer 2 is controlled by factors such as the thickness to be sufficient to define the thickness of the quantum dot layer 6 and the electroluminescent device layer 3, for example, 10 um to 14 um.
  • the above-mentioned manufacturing method in this embodiment further includes after step 105:

Abstract

一种显示基板、显示装置及制作方法,所述显示基板包括TFT基板;设置在TFT基板上,且围成若干像素坑的像素界定层;其中,每个像素坑内依次层叠设有电致发光器件层、连接层、第一封装层以及量子点层,且相邻像素坑内的连接层在像素界定层背离TFT基板的一侧相接,所述连接层设置为电连接相邻两所述像素坑内的所述电致发光器件层。

Description

显示基板、显示装置及制作方法
本申请要求于2020年5月26日提交中国专利局、申请号为2020104557908、发明名称为“显示基板、显示装置及制作方法”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开实施例涉及但不限于显示装置技术领域,尤其涉及一种显示基板、显示装置及制作方法。
背景技术
随着显示技术的进步,柔性OLED显示产品得以迅速应用和推广,而量子点(Quantum Dots,QDs)由于其发光特性也被应用在了柔性显示产品中;目前的量子点显示结构均是通过将两块基板对盒来实现的,其中一块基板上设置传统的TFT和EL结构,另一块基板上则设置量子点彩膜,而后将两块基板通过胶体粘接进行对盒以最终形成量子点显示结构。
但是,对盒的方式要求对盒精度较高,且盒厚较大,容易造成漏光等显示不良的问题,且两块基板之间需要通过胶体进行粘接,胶体会吸收EL结构中发出的蓝光,降低光发射率,影响显示效果。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本公开实施例提供了一种显示基板,包括
TFT基板;
像素界定层,所述像素界定层设置在所述TFT基板上,且围成若干像素坑;
其中,每个所述像素坑内依次层叠设有电致发光器件层、连接层、第一封装层以及量子点层,且相邻所述像素坑内的所述连接层在所述像素界定层背离所述TFT基板的一侧相接,所述连接层设置为电连接相邻两所述像素坑内的所述电致发光器件层。
可选地,前述的一种显示基板中,所述像素界定层在第一方向上的尺寸大于或等于所述电致发光器件层、所述第一封装层以及所述量子点层在所述第一方向上的尺寸之和;
其中,所述第一方向为由所述TFT基板指向所述量子点层的方向。
可选地,前述的一种显示基中,所述像素界定层的材质为定向热膨胀材料。
可选地,前述的一种显示基板中,所述像素界定层通过激光照射后向背离所述TFT基板的方向膨胀至10um至14um。
可选地,前述的一种显示基板中,还包括彩膜层和第二封装层;
所述彩膜层设置在所述量子点层和所述连接层背离所述TFT基板的一侧;其中,所述连接层为裸露于所述像素界定层背离所述TFT基板的一侧的连接层;
所述第二封装层设置在所述彩膜层背离所述TFT基板的一侧。
可选地,前述的一种显示基板中,所述量子点层的厚度大于10um。
可选地,前述的一种显示基板中,所述连接层为金属材质。
另一方面,本公开实施例提供了一种显示装置,其包括前述任一显示基板。
另一方面,本公开实施例基于上述显示基板提供了一种显示基板的制作方法,包括如下步骤:
制作TFT基板;
在所述TFT基板上制作像素界定层,并围成若干像素坑;
在所述像素界定层背离所述TFT基板的一侧设置电致发光器件层;
增大所述像素界定层在第一方向上的尺寸,所述第一方向为由所述TFT 基板指向所述像素界定层的方向;
在每个所述像素坑内的所述电致发光器件层背离所述TFT基板的一侧依次层叠设置连接层、第一封装层以及量子点层,且相邻所述像素坑内的所述连接层在所述像素界定层背离所述TFT基板的一侧相接。
可选地,所述增大每个所述像素坑在第一方向上的尺寸,所述第一方向为由所述TFT基板指向所述像素界定层的方向,包括:
激光照射所述像素界定层背离所述TFT基板的一侧覆盖的所述电致发光器件层,消除所述像素界定层背离所述TFT基板的一侧覆盖的所述电致发光器件层,使所述像素界定层向背离所述TFT基板的方向膨胀至预设尺寸。
可选地,
所述像素界定层的材料为定向热膨胀材料。
可选地,所述在所述TFT基板上制作像素界定层,并围成若干像素坑,包括:
通过喷墨打印的方式在所述TFT基板上设置所述像素界定层。
可选地,前述方法还包括
在所述量子点层背离所述TFT基板的一侧依次层叠设置彩膜层和第二封装层。
可选地,所述在所述量子点层背离所述TFT基板的一侧依次层叠设置彩膜层和第二封装层,包括:
在所述量子点层背离所述TFT基板的一侧通过喷墨打印的方式制作所述彩膜层;
在所述彩膜层背离所述TFT基板的一侧通过以下任一种方式制作所述第二封装层:化学气相沉积、原子层沉积、磁控溅射以及喷墨打印。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为本公开实施例提供的一种显示基板的结构示意图;
图2为本公开实施例提供的一种显示基板的部分结构示意图;
图3为本公开实施例提供的一种显示基板中电致发光器件层的结构示意图;
图4为本公开实施例提供的一种显示基板制作方法的流程示意图;
图5为本公开实施例提供的一种显示基板制作方法的详细流程示意图;
具体实施方式
在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
参考附图1,本公开实施例提供的显示基板,包括TFT基板1、像素界定层2、电致发光器件层3、连接层4、第一封装层5以及量子点层6;所述像素界定层2设置在所述TFT基板1上,且围成若干像素坑21;
每个所述像素坑21内依次层叠设有电致发光器件层3、连接层4、第一封装层5以及量子点层6,且相邻所述像素坑21内的所述连接层4在所述像素界定层2背离所述TFT基板1的一侧相接,所述连接层4设置为电连接相邻两所述像素坑内21的所述电致发光器件层3。
量子点在应用在柔性OLED显示装置中时,常规的对盒方式容易造成盒厚较大、漏光等影响显示效果的问题,本公开实施例提供一种显示基板,能够针对OLED显示基板进行改进,包括所述TFT基板1、所述像素界定层2、所述电致发光器件层3、所述连接层4、所述第一封装层5以及所述量子点层6;通过将所述量子点层6和所述电致发光器件层3设置在同一块TFT基板1上,在若干个像素坑21内形成若干像素,实现了无需对盒无需胶粘形成一体化显示基板,使得显示基板厚度减小、蓝光损失少且避免了表面漏光和亮度不均的问题。
其中,所述量子点层6在本实施例中起到了彩膜的功能,能够将电致发光器件层3中的OLED发出的蓝光转化为绿光或红光;量子点(Quantum Dots,QDs)又可以称纳米晶,是一种由II-VI族或III-V族元素组成的纳米颗粒,量子点的粒径一般介于1nm至20nm之间,由于电子和空穴被量子限域,连续的能带结构变成具有分立的能级结构,则量子受激后可以发射荧光;而 量子点的发射光谱可以通过改变量子点的尺寸大小来控制,通过改变量子点的尺寸和它的化学组成可以使量子点的发射光谱覆盖整个可见光区,本实施例中,将部分像素坑21内的量子点层6设置为可以将电致发光器件层3中的OLED发出的蓝光转化为绿光,部分像素坑21内的量子点层6设置为可以将电致发光器件层3中的OLED发出的蓝光转化为红光,部分像素坑21内的量子点层6设置为可以将电致发光器件层3中的OLED发出的蓝光保持为蓝光,形成最终具有三基色的像素层。为了保证电致发光器件层3中的OLED发出的蓝光能够吸收足够的量子发出绿光或红光,本实施例中将所述量子点层6的厚度设置为大于10um。量子点层6的厚度可以根据实际需要设置,本公开实施例对此不做限制。
其中,所述TFT基板1可以为向所述电致发光器件层3提供信号驱动与扫描信号的薄膜晶体管基板,包括必要的栅极、源电极和漏电极等结构。
其中,所述像素界定层2设置在所述TFT基板1上,围成若干所述像素坑21,为子像素提供容纳空间;本实施例中的像素界定层2可以选用定向热膨胀材料,通过喷墨打印的方式设置在所述TFT基板1上,以保证像素界定层2在加热条件下能够在垂直所述TFT基板1的方向上进行纵向膨胀,即增大像素坑21的深度,为量子点层6提供足够的容纳空间(量子点层6的厚度较大);因为厚度较大的量子点层6是通过喷墨打印的方式制备的,因而需要更厚的像素界定层2材料来限定量子点墨水的流动,这里所说的像素坑21的深度方向、量子点层6的厚度方向是同一方向,即如图1中箭头所示的第一方向a。一种高厚度像素界定层制备工艺中,当像素界定层厚度过厚时,可能会存在曝光不足的问题,使得彩膜基板一侧的像素内有光刻胶残留,从而影响量子点墨水的铺展,最终影响量子点成膜的稳定性,本公开实施例中将所述像素界定层2设置为定向热膨胀材料,能够利用材料自动膨胀的各项异性来克服上述问题。
其中,参考附图3,所述电致发光器件层3包括依次层叠设置的阳极层31、电子注入层32、电子传输层33、发光层34、空穴传输层35、空穴注入层36以及阴极层37。
其中,所述连接层4为金属材质,例如:氧化铟锌(IZO),一种旋转 靶材,由于所述电致发光器件层3与所述像素界定层2对应处被打断,则相邻像素坑21内的电致发光器件层3的阴极层37无法实现电连接,进而本实施例中,在所述电致发光器件层3背离所述TFT基板1的一侧设置所述连接层4,并且保证相邻所述像素坑21内的所述连接层4在所述像素界定层2背离所述TFT基板1的一侧相互连接,进而将相邻所述像素坑21内的电子发光器件层3的阴极层37相互的电连接起来,保证电子发光器件层3的正常工作。
其中,所述第一封装层5可采用常见的封装材料,在此不做赘述;本实施例中所述第一封装层5的作用是保护所述电致发光器件层3。
根据上述所列,本公开实施例提供的显示基板中,所述量子点层6和所述电致发光器件层3设置在同一TFT基板1上,实现了显示基板一体化设置,无需对盒,无需胶体进行粘接,能够使显示基板厚度减小、蓝光损失少且避免了表面漏光和亮度不均的问题;本公开实施例提供的显示基板中像素界定层2作为所述量子点层6和所述电致发光器件层3的界定层(即:显示基板中像素界定层2既作为所述量子点层6的界定层,也作为所述电致发光器件层3的界定层),有利于柔性显示装置的开发。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,理解为:可以包含有A与B,可以单独存在A,也可以单独存在B,能够具备上述三种中的任一情况。
可选地,参考附图1和附图2所示,本公开实施例提供的一种显示基板,所述像素界定层2在第一方向a上的尺寸大于或等于所述电致发光器件层3、所述第一封装层5以及所述量子点层6在所述第一方向a上的尺寸之和;
其中,所述第一方向a为由所述TFT基板1指向所述量子点层6的方向。
可选地,为了实现所述像素界定层2作为所述电致发光器件层3和所述量子点层6的界定层,本实施例中所述像素界定层2在第一方向a(即垂直所述TFT基板1且向远离所述TFT基板1的方向)上的尺寸大于或等于所述电致发光器件层3、所述第一封装层5以及所述量子点层6在所述第一方向a上的尺寸之和,进而能够将所述电致发光器件层3和所述量子点层6均容纳在同一个像素坑21内;可选地,本实施例中,每个像素坑21内需要能 够容纳所述电致发光器件层3、连接层4、所述第一封装层5以及所述量子点层6,而所述连接层4会在所述像素界定层2背离所述TFT基板1的一侧增加像素坑21的深度,则在设计像素界定层2的厚度时,可以无需考虑连接层4的厚度,而在设计中能够清楚所述电致发光器件层3、所述第一封装层5以及所述量子点层6的厚度,因此在选取像素界定层2的材料时,可以根据需要选定能够实现膨胀至预设尺寸的材料。
可选地,本公开实施例提供的一种显示基板,在实际实施中,所述像素界定层2的材质为定向热膨胀材料。
可选地,当所述像素界定层2选定为具有定向热膨胀性质的材料时,例如:芳纶纤维与柔性树脂的复合材料,芳纶纤维与柔性树脂之间具有良好的粘合性,增加了芳纶纤维与柔性树脂的复合材料在热膨胀过程中的稳定性;本实施例中,起初设置像素界定层2时可以将所述像素界定层2的厚度根据行业经验或惯例设定为2um至3um,后续将像素界定层2上的电致发光器件层3通过紫外线激光(UV激光)消除后(激光既能够消除电池发光器件层3又能够为像素界定层2提供膨胀所需的热量),借助紫外线激光的热量使得所述像素界定层2受热发生膨胀,并膨胀至设计所需的高度上,例如:10um至14um,对该数值在此不做限定,可以根据实际需要进行调整,调节的方式可以例如:调节紫外激光发出的热量或调节起初设置的像素界定层2的厚度等在此不做赘述;本实施例中将所述像素界定层2的材料选定为具有定向热膨胀性质的材料,那么也就限定了在设置所述像素界定层2的最初阶段不能使用一些技术中常见的光刻的方式,因为光刻的方式必然会散发出热量,会在设置像素界定层2的最初使像素界定层2发生膨胀,导致无法在设置了电致发光器件层3后再改变像素界定层2的厚度,进而本实施例中,将所述像素界定层2的设置方式设计为喷墨打印的方式,在其他实施例中可以根据需求选择像素界定层2的设置方式,本实施例对此不作限制。
可选地,参考附图1,本实施例提供的一种显示基板,还包括彩膜层7和第二封装层8;
所述彩膜层7设置在所述量子点层6和所述连接层4背离所述TFT基板1的一侧;其中,所述连接层4为裸露于所述像素界定层2背离所述TFT基 板1的一侧的连接层4;
所述第二封装层8设置在所述彩膜层7背离所述TFT基板1的一侧。
可选地,为了避免电致发光器件层3中OLED发出的蓝光经过量子点等6后未完全转化,导致发出的绿光或红光不纯净,本实施例中,在所述量子点层6背离所述TFT基板1的一侧设置所述彩膜层7(CF),以纯化每个像素坑21内的子像素发出的光。
可选地,为了保护整体显示基板,本实施例中在所述彩膜层7背离所述TFT基板1的一侧设置所述第二封装层8,用于形成显示基板的最终封装结构,保证显示基板整体的密封性与安全性;所述第二封装层8为一些技术中常见的封装材料,在此不做赘述。
本公开实施例还提供一种显示装置,包括上述任一实施例中所述的显示基板。
本实施例中的所述显示基板可以直接采用实施例1所述的显示基板,详细结构请参照上述实施例内容。
参考附图4,本公开实施例提供了一种基于实施例1所述的显示基板的制作方法,包括如下步骤:
101、制作TFT基板1;
例如:在衬底基板上制作薄膜晶体管(TFT)电路。
102、在所述TFT基板1上制作像素界定层2,并围成若干像素坑21;
可选地,选定定向热膨胀材料作为像素界定层2,并通过喷墨打印的方式在所述TFT基板1上制作所述像素界定层2,并形成若干像素坑21。
103、在所述像素界定层2背离所述TFT基板1的一侧设置电致发光器件层3;
可选地,通过蒸镀的方式制作所述电致发光器件层3,其中包括通过蒸镀的方式将所述电致发光器件层3的阴极层37设置为半透半反电极层。
104、增大所述像素界定层2在第一方向a上的尺寸,所述第一方向a为由所述TFT基板1指向所述像素界定层2的方向;
可选地,去除所述像素界定层2上侧的电致发光器件层3,并使所述像素界定层2膨胀,以增大所述像素坑21的深度,用于容纳所述电致发光器件层3、所述连接层4、所述第一封装层5以及所述量子点层6;其中,所述像素界定层2选定为具有定向热膨胀性质的材料,例如芳纶纤维与柔性树脂的复合材料。
105、在每个所述像素坑21内的所述电致发光器件层3背离所述TFT基板1的一侧依次层叠设置连接层4、第一封装层5以及量子点层6,且相邻所述像素坑21内的所述连接层4在所述像素界定层2背离所述TFT基板1的一侧相接;
可选地,在所述电致发光器件3背离所述TFT基板1的一侧通过溅射的方式制作所述连接层4(所述连接层4为金属材质,例如氧化铟锡IZO),使得所述连接层4覆盖在所述电致发光器件层3和所述像素界定层2之上,以使得相邻像素坑21内的电致发光器件层3的阴极层37能够相互之间实现电连接;而后通过化学气相沉积(CVD)或原子层沉积(ALD)或磁控溅射(Sputter)或喷墨打印(IJP)等方式制作所述第一封装层5;最后通过喷墨打印的方式制作所述量点层6。
可选地,参考附图5,本实施例中对于上述步骤104可以为下述步骤:
201、消除所述像素界定层2上方的所述电致发光器件层3;
可选地,通过激光照射(紫外线激光,UV)所述像素界定层2背离所述TFT基板1的一侧覆盖的所述电致发光器件层3;
202、沿背离所述TFT基板1的方向上增大所述像素界定层2的尺寸至预设尺寸;
可选地,当激光照射所述电致发光器件层3时,所述像素界定层2吸收热量在纵向上发生定向膨胀,此期间,可以通过控制激光的热量、照射时间、原始像素界定层2的厚度等因素控制所述像素界定层2膨胀至足以限定所述量子点层6和所述电致发光器件层3的厚度,例如:10um至14um。
可选地,参考附图5,本实施例中对于上述制作方法在步骤105后还包括:
106、在所述量子点层6背离所述TFT基板1的一侧通过喷墨打印的方式制作所述彩膜层;
107、在所述彩膜层7背离所述TFT基板1的一侧通过化学气相沉积(CVD)或原子层沉积(ALD)或磁控溅射(Sputter)或喷墨打印(IJP)等方式制作所述第二封装层8。
以上所述,仅是本公开的较佳实施例而已,并非对本公开作任何形式上的限制,因而以上实施例之间可以进行结合,依据本公开的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本公开技术方案的范围内。

Claims (14)

  1. 一种显示基板,包括:
    TFT基板;
    像素界定层,所述像素界定层设置在所述TFT基板上,且围成若干像素坑;
    其中,每个所述像素坑内依次层叠设有电致发光器件层、连接层、第一封装层以及量子点层,且相邻所述像素坑内的所述连接层在所述像素界定层背离所述TFT基板的一侧相接,所述连接层设置为电连接相邻两所述像素坑内的所述电致发光器件层。
  2. 根据权利要求1所述的显示基板,其中,
    所述像素界定层在第一方向上的尺寸大于或等于所述电致发光器件层、所述第一封装层以及所述量子点层在所述第一方向上的尺寸之和;
    其中,所述第一方向为由所述TFT基板指向所述量子点层的方向。
  3. 根据权利要求1所述的显示基板,其中,
    所述像素界定层的材质为定向热膨胀材料。
  4. 根据权利要求3所述的显示基板,其中,
    所述像素界定层通过激光照射后向背离所述TFT基板的方向膨胀至10um至14um。
  5. 根据权利要求1所述的显示基板,
    还包括彩膜层和第二封装层;
    所述彩膜层设置在所述量子点层和所述连接层背离所述TFT基板的一侧;其中,所述连接层为裸露于所述像素界定层背离所述TFT基板的一侧的连接层;
    所述第二封装层设置在所述彩膜层背离所述TFT基板的一侧。
  6. 根据权利要求1所述的显示基板,其中,
    所述量子点层的厚度大于10um。
  7. 根据权利要求1所述的显示基板,其中,
    所述连接层为金属材质。
  8. 一种显示装置,包括:
    权利要求1-4中任一所述的显示基板。
  9. 一种基于权利要求1-4中任一所述的显示基板的制作方法,包括如下步骤:
    制作TFT基板;
    在所述TFT基板上制作像素界定层,并围成若干像素坑;
    在所述像素界定层背离所述TFT基板的一侧设置电致发光器件层;
    增大所述像素界定层在第一方向上的尺寸,所述第一方向为由所述TFT基板指向所述像素界定层的方向;
    在每个所述像素坑内的所述电致发光器件层背离所述TFT基板的一侧依次层叠设置连接层、第一封装层以及量子点层,且相邻所述像素坑内的所述连接层在所述像素界定层背离所述TFT基板的一侧相接。
  10. 根据权利要求9所述的显示基板的制作方法,其中,所述增大每个所述像素坑在第一方向上的尺寸,所述第一方向为由所述TFT基板指向所述像素界定层的方向,包括:
    激光照射所述像素界定层背离所述TFT基板的一侧覆盖的所述电致发光器件层,消除所述像素界定层背离所述TFT基板的一侧覆盖的所述电致发光器件层,使所述像素界定层向背离所述TFT基板的方向膨胀至预设尺寸。
  11. 根据权利要求10所述的显示基板的制作方法,其中,
    所述像素界定层的材料为定向热膨胀材料。
  12. 根据权利要求11所述的显示基板的制作方法,其中,所述在所述TFT基板上制作像素界定层,并围成若干像素坑,包括:
    通过喷墨打印的方式在所述TFT基板上设置所述像素界定层。
  13. 根据权利要求9所述的显示基板的制作方法,还包括:
    在所述量子点层背离所述TFT基板的一侧依次层叠设置彩膜层和第二 封装层。
  14. 根据权利要求13所述的显示基板的制作方法,其中,所述在所述量子点层背离所述TFT基板的一侧依次层叠设置彩膜层和第二封装层,包括:
    在所述量子点层背离所述TFT基板的一侧通过喷墨打印的方式制作所述彩膜层;
    在所述彩膜层背离所述TFT基板的一侧通过以下任一种方式制作所述第二封装层:化学气相沉积、原子层沉积、磁控溅射以及喷墨打印。
PCT/CN2021/094946 2020-05-26 2021-05-20 显示基板、显示装置及制作方法 WO2021238772A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/763,211 US20220392980A1 (en) 2020-05-26 2021-05-20 Display substrate, display device, and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010455790.8 2020-05-26
CN202010455790.8A CN111584596A (zh) 2020-05-26 2020-05-26 显示基板、显示装置及制作方法

Publications (1)

Publication Number Publication Date
WO2021238772A1 true WO2021238772A1 (zh) 2021-12-02

Family

ID=72126988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094946 WO2021238772A1 (zh) 2020-05-26 2021-05-20 显示基板、显示装置及制作方法

Country Status (3)

Country Link
US (1) US20220392980A1 (zh)
CN (1) CN111584596A (zh)
WO (1) WO2021238772A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584596A (zh) * 2020-05-26 2020-08-25 京东方科技集团股份有限公司 显示基板、显示装置及制作方法
CN112652651B (zh) * 2020-12-22 2023-10-27 北京维信诺科技有限公司 一种显示面板及其制造方法、显示装置
CN112928230A (zh) * 2021-02-08 2021-06-08 安徽熙泰智能科技有限公司 一种彩色硅基oled制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935713A (zh) * 2015-12-28 2017-07-07 三星显示有限公司 有机发光显示装置及其制造方法
US20180211620A1 (en) * 2017-01-26 2018-07-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the semiconductor device
CN109300961A (zh) * 2018-10-15 2019-02-01 合肥鑫晟光电科技有限公司 Oled显示基板及其制作方法、显示装置
CN109560117A (zh) * 2018-12-21 2019-04-02 合肥鑫晟光电科技有限公司 一种阵列基板及其制备方法、显示装置
CN110379839A (zh) * 2019-07-24 2019-10-25 京东方科技集团股份有限公司 一种显示基板、显示基板的制作方法及显示装置
CN110649185A (zh) * 2019-09-26 2020-01-03 合肥京东方卓印科技有限公司 显示基板及其喷墨打印方法、显示装置
CN111584596A (zh) * 2020-05-26 2020-08-25 京东方科技集团股份有限公司 显示基板、显示装置及制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304681B (zh) * 2015-10-19 2019-09-17 广东聚华印刷显示技术有限公司 含有机/无机混合发光层的电致发光显示器及制备方法
CN108649057B (zh) * 2018-05-14 2020-07-31 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935713A (zh) * 2015-12-28 2017-07-07 三星显示有限公司 有机发光显示装置及其制造方法
US20180211620A1 (en) * 2017-01-26 2018-07-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the semiconductor device
CN109300961A (zh) * 2018-10-15 2019-02-01 合肥鑫晟光电科技有限公司 Oled显示基板及其制作方法、显示装置
CN109560117A (zh) * 2018-12-21 2019-04-02 合肥鑫晟光电科技有限公司 一种阵列基板及其制备方法、显示装置
CN110379839A (zh) * 2019-07-24 2019-10-25 京东方科技集团股份有限公司 一种显示基板、显示基板的制作方法及显示装置
CN110649185A (zh) * 2019-09-26 2020-01-03 合肥京东方卓印科技有限公司 显示基板及其喷墨打印方法、显示装置
CN111584596A (zh) * 2020-05-26 2020-08-25 京东方科技集团股份有限公司 显示基板、显示装置及制作方法

Also Published As

Publication number Publication date
CN111584596A (zh) 2020-08-25
US20220392980A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
WO2021238772A1 (zh) 显示基板、显示装置及制作方法
KR102093628B1 (ko) 유기전계 발광소자 및 이의 제조 방법
Han et al. Toward high‐resolution, inkjet‐printed, quantum dot light‐emitting diodes for next‐generation displays
JP4600569B2 (ja) ドナー基板および表示装置の製造方法
US8597740B2 (en) Red organic light emitting element and display device provided with same, donor substrate and transfer method using same, method of manufacturing display device, and system of manufacturing display device
DE102013021185B4 (de) Herstellung flexibler organischer elektronischer Vorrichtungen
WO2010109877A1 (ja) 有機電界発光装置,有機電界発光装置の製造方法,画像表示装置,及び画像表示装置の製造方法
EP1646094B1 (en) Method of fabricating an OLED using a donor substrate
JP6674054B2 (ja) 微細パターンを有する樹脂フィルムの製造方法および有機el表示装置の製造方法
JP4957929B2 (ja) ドナー基板および表示装置の製造方法
US10033020B2 (en) Method of manufacturing organic light emitting display
US20070176169A1 (en) Organic light emitting display including transparent cathode
US20220115613A1 (en) Light-emitting element, display device, and method of manufacturing light-emitting element
JP2008227230A (ja) 表示装置
KR102315824B1 (ko) 유기 발광 표시 장치 및 그의 제조 방법
WO2020206773A1 (zh) 有机发光二极管器件及其制作方法
WO2019010817A1 (zh) 主动发光显示面板及其制造方法
Wang et al. High-efficiency and high-resolution patterned quantum dot light emitting diodes by electrohydrodynamic printing
CN110048024B (zh) 显示基板及其制造方法、显示装置
US7317469B2 (en) Laser induced thermal imaging apparatus
CN107146858A (zh) 有机发光组件及其制备方法、显示装置
JP2008311103A (ja) 表示装置の製造方法および表示装置
KR101740798B1 (ko) 패시브 매트릭스 방식의 양자점 발광 표시 장치의 제조 방법
JP2011023119A (ja) 表示装置の製造方法、有機発光素子の製造方法および転写方法
CN114430934A (zh) 发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812531

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21812531

Country of ref document: EP

Kind code of ref document: A1