WO2021238572A1 - 电压调整装置、芯片、电源及电子设备 - Google Patents

电压调整装置、芯片、电源及电子设备 Download PDF

Info

Publication number
WO2021238572A1
WO2021238572A1 PCT/CN2021/091054 CN2021091054W WO2021238572A1 WO 2021238572 A1 WO2021238572 A1 WO 2021238572A1 CN 2021091054 W CN2021091054 W CN 2021091054W WO 2021238572 A1 WO2021238572 A1 WO 2021238572A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
voltage
electrically connected
input
current
Prior art date
Application number
PCT/CN2021/091054
Other languages
English (en)
French (fr)
Inventor
金宁
Original Assignee
北京集创北方科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京集创北方科技股份有限公司 filed Critical 北京集创北方科技股份有限公司
Priority to EP21812673.8A priority Critical patent/EP4102336A4/en
Priority to KR1020227015824A priority patent/KR20220079657A/ko
Priority to JP2022563123A priority patent/JP2023521510A/ja
Publication of WO2021238572A1 publication Critical patent/WO2021238572A1/zh
Priority to US17/944,256 priority patent/US20230016715A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/59Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load
    • G05F1/595Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load semiconductor devices connected in series
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/1566Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present disclosure relates to the field of integrated circuit technology, and in particular to a voltage adjustment device, a chip, a power supply, and electronic equipment.
  • TDMA Time division multiple access, time division multiplexing
  • input power every other segment The time will be disturbed, the up or down will jump 500mV within 10 ⁇ s, and the 500mV jump will last for at least 500 ⁇ s. If this kind of interference occurs, there must be overshoot or undershoot for the output of the DC-DC Boost architecture.
  • This disturbance is required to be less than 20mV under a load within 200mA and within 1A. The load is less than 60mV.
  • a voltage adjustment device which includes:
  • Voltage input module for receiving input voltage
  • a current determining module electrically connected to the voltage input module, for determining an adjustment current according to the input voltage and load current
  • a control module electrically connected to the current determining module, and configured to output a control signal according to the adjusted current
  • the voltage output module is electrically connected to the voltage input module, the current determination module, and the control module, and is configured to output a target voltage according to the control signal and the input voltage.
  • the current determination module includes a current detection unit, a signal conversion unit, and a current determination unit, where:
  • the current detection unit is used to determine the load current, and obtain the detection voltage according to the load current,
  • the signal conversion unit is electrically connected to the current detection unit, and is configured to convert the detection voltage into a digital signal
  • the current determination unit is electrically connected to the signal conversion unit, and is configured to determine the adjustment current according to the digital signal and the input voltage.
  • the current determining unit includes a first operational amplifier, a first transistor, a second transistor, a third transistor, a fourth transistor, a plurality of fifth transistors, a plurality of switches, and a first resistor, in,
  • the positive input terminal of the first operational amplifier is used to receive the input voltage, and the negative input terminal of the first operational amplifier is electrically connected to the source of the first transistor and the first resistor of the first resistor. Terminal, the output terminal of the first operational amplifier is electrically connected to the gate of the first transistor, and the second terminal of the first resistor is grounded,
  • the drain of the first transistor is electrically connected to the source of the second transistor, the gate of the second transistor, and the gate of the third transistor,
  • the drain of the second transistor and the drain of the third transistor are used to receive a power supply voltage
  • the source of the third transistor is electrically connected to the source of the fourth transistor, the gate of the fourth transistor, and the gates of a plurality of fifth transistors,
  • the source of the fourth transistor and the sources of the plurality of fifth transistors are grounded,
  • each fifth transistor is electrically connected to the first terminal of the corresponding switch, and the control terminal of each switch is used to receive the digital signal, and is turned on or off according to the digital signal,
  • each switch is electrically connected for outputting the adjustment current.
  • the number of bits of the digital signal is the same as the number of the switches, and each bit of the digital signal is used to control the conduction state of the corresponding switch.
  • the current detection unit includes a sixth transistor, a seventh transistor, a second operational amplifier, a second resistor, and a first capacitor, where:
  • the gate of the sixth transistor is used to receive the control signal, the drain of the sixth transistor is electrically connected to the voltage input module, and the source of the sixth transistor is electrically connected to the second operational amplifier The positive input terminal of the seventh transistor, the drain of the seventh transistor,
  • the negative input terminal of the second operational amplifier is electrically connected to the voltage output module, the output terminal of the second operational amplifier is electrically connected to the gate of the seventh transistor, and the source of the seventh transistor is electrically connected. Connected to the first end of the second resistor and the first end of the first capacitor,
  • the first end of the second resistor is used to output the detection voltage.
  • the voltage output module includes an eighth transistor, a ninth transistor, a tenth transistor, an eleventh transistor, a third operational amplifier, a third resistor, a fourth resistor, and a second capacitor, where ,
  • the gate of the eighth transistor is electrically connected to the gate of the sixth transistor, the gate of the tenth transistor, and the control module for receiving the control signal,
  • the drain of the eighth transistor is electrically connected to the drain of the ninth transistor, the drain of the sixth transistor, the drain of the tenth transistor, and the voltage input module,
  • the source of the eighth transistor is electrically connected to the negative input terminal of the third operational amplifier, the negative input terminal of the second operational amplifier, the first terminal of the third resistor, and the second capacitor
  • the second end of the third resistor is electrically connected to the control module and the first end of the fourth resistor, the second end of the fourth resistor is grounded, and the second end of the second capacitor is grounded. The two ends are grounded
  • the gate of the ninth transistor is electrically connected to the control module for receiving the control signal, and the source of the ninth transistor is grounded,
  • the positive input terminal of the third operational amplifier is electrically connected to the source of the tenth transistor and the drain of the eleventh transistor, and the output terminal of the third operational amplifier is electrically connected to the eleventh transistor.
  • the source of the eleventh transistor is electrically connected to the current determination module and the control module,
  • the first end of the third resistor is used to output the target voltage.
  • the voltage input module includes an input capacitor and an input inductor, where:
  • the first end of the input capacitor is electrically connected to the first end of the input inductor for receiving the input voltage, and the second end of the input capacitor is grounded,
  • the second end of the input inductor is electrically connected to the drain of the ninth transistor, the drain of the eighth transistor, the drain of the sixth transistor, and the drain of the tenth transistor.
  • a chip including:
  • the voltage adjustment device The voltage adjustment device.
  • a power supply including:
  • the chip The chip.
  • an electronic device including:
  • the power supply is the power supply.
  • the electronic device includes a display, a smart phone or a portable device.
  • the embodiment of the present disclosure uses the current determination module to determine the adjustment current according to the input voltage and the load current. As long as the input voltage changes, the current determination module can quickly respond, generate an adjustment current in combination with the load current, and output the adjustment current to Control module to generate a control signal. According to the control signal, the voltage output module can output a stable target voltage without excessive overshoot and undershoot, and can achieve voltage stability under different load conditions. Output. According to the voltage adjustment device proposed in the present disclosure, it can output a stable target voltage, can quickly respond to changes in the input voltage, is reliable and stable, has high environmental adaptability, and can adapt to different load applications.
  • Fig. 1 shows a schematic diagram of a voltage adjusting device according to an embodiment of the present disclosure.
  • Fig. 2 shows a schematic diagram of a voltage adjusting device according to an embodiment of the present disclosure.
  • Fig. 3 shows a schematic diagram of a current determination unit according to an embodiment of the present disclosure.
  • Fig. 4 shows a schematic diagram of voltage changes in a related art DC-DC architecture.
  • Fig. 5 shows a schematic diagram of voltage changes in a voltage adjusting device according to an embodiment of the present disclosure.
  • Fig. 6 shows a schematic diagram of voltage changes in a voltage adjustment device that does not incorporate load current control.
  • Fig. 7 shows a schematic diagram of voltage changes in a voltage adjustment device combined with load current control.
  • FIG. 1 shows a schematic diagram of a voltage adjusting device according to an embodiment of the present disclosure.
  • the device includes:
  • the voltage input module 10 is used to receive input voltage
  • the current determining module 20 is electrically connected to the voltage input module 10 and configured to determine and adjust the current according to the input voltage and load current;
  • the control module 30 is electrically connected to the current determining module 20 and configured to output a control signal according to the adjusted current;
  • the voltage output module 40 is electrically connected to the voltage input module 10, the current determination module 20, and the control module 30, and is configured to output a target voltage according to the control signal and the input voltage.
  • the embodiment of the present disclosure uses the current determination module to determine the adjustment current according to the input voltage and the load current. As long as the input voltage changes, the current determination module can quickly respond, generate an adjustment current in combination with the load current, and output the adjustment current to Control module to generate a control signal. According to the control signal, the voltage output module can output a stable target voltage without excessive overshoot and undershoot, and can achieve voltage stability under different load conditions. Output. According to the voltage adjustment device proposed in the present disclosure, it can output a stable target voltage, can quickly respond to changes in the input voltage, is reliable and stable, has high environmental adaptability, and can adapt to different load applications.
  • the voltage adjustment device proposed in the present disclosure may include a DC-DC conversion circuit (DC-DC conversion circuit), which can output a stable and reliable target voltage according to the input DC voltage.
  • DC-DC conversion circuit DC-DC conversion circuit
  • FIG. 2 shows a schematic diagram of a voltage adjusting device according to an embodiment of the present disclosure.
  • the current determination module 20 may include a current detection unit 220, a signal conversion unit 230, and a current determination unit 210, where:
  • the current detection unit 220 is used to determine the load current, and obtain the detection voltage according to the load current,
  • the signal conversion unit 230 is electrically connected to the current detection unit 220 for converting the detection voltage into a digital signal
  • the current determination unit 210 is electrically connected to the signal conversion unit 230, and is configured to determine the adjustment current Isink according to the digital signal and the input voltage.
  • FIG. 3 shows a schematic diagram of a current determining unit according to an embodiment of the present disclosure.
  • the current determining unit may include a first operational amplifier OP1, a first transistor Q1, a second transistor Q2, a third transistor Q3, a fourth transistor Q4, and multiple The fifth transistor Q5, the plurality of switches S1 and the first resistor R1, wherein,
  • the positive input terminal of the first operational amplifier OP1 is used to receive the input voltage Vin, and the negative input terminal of the first operational amplifier OP1 is electrically connected to the source of the first transistor Q1 and the first transistor Q1.
  • the first end of the resistor, the output end of the first operational amplifier OP1 is electrically connected to the gate of the first transistor Q1, and the second end of the first resistor R1 is grounded,
  • the drain of the first transistor Q1 is electrically connected to the source of the second transistor Q2, the gate of the second transistor Q2, and the gate of the third transistor Q3,
  • the drain of the second transistor Q2 and the drain of the third transistor Q3 are used to receive the power supply voltage Vdd,
  • the source of the third transistor Q3 is electrically connected to the source of the fourth transistor Q4, the gate of the fourth transistor Q4, and the gates of the plurality of fifth transistors Q5,
  • the source of the fourth transistor Q4 and the source of the fifth transistor Q5 are grounded,
  • each fifth transistor Q5 is electrically connected to the first end of the corresponding switch S1, and the control end of each switch S1 is used to receive the digital signal, and is turned on or off according to the digital signal,
  • each switch S1 is electrically connected for outputting the adjustment current Isink.
  • the embodiment of the present disclosure uses the current determining unit to determine the adjustment current Isink in response to the change of the input voltage in combination with the digital signal obtained according to the load current, so as to compensate for the change of the input voltage and generate the control signal, which can make the output
  • the voltage is stable.
  • the input voltage changes, it reduces the volatility of the output voltage and improves the environmental adaptability of the device.
  • the embodiments of the present disclosure do not limit the number of fifth transistors and the number of switches, and those skilled in the art can set according to needs.
  • the number of fifth transistors and the number of switches can be the same.
  • the connection relationship between the drain of each fifth transistor and the control module is controlled by the corresponding switch.
  • the embodiment of the present disclosure does not limit the type and specific implementation of the switch.
  • the switch S1 may be a transistor, a single-pole single-throw switch, or the like.
  • the embodiment of the present disclosure can quickly respond to the change of the input voltage when the input voltage changes, and determine the adjustment current in combination with the load current to compensate the input of the control module, thereby reducing the fluctuation of the output voltage and adapting Different load environments improve environmental adaptability.
  • the current detection unit 220 may include a sixth transistor Q6, a seventh transistor Q7, a second operational amplifier OP2, a second resistor R2, The first capacitor C1, where,
  • the gate of the sixth transistor Q6 is used to receive the control signal, the drain of the sixth transistor Q6 is electrically connected to the voltage input module, and the source of the sixth transistor Q6 is electrically connected to the first The positive input terminal of the second operational amplifier OP2, the drain of the seventh transistor Q7,
  • the negative input terminal of the second operational amplifier OP2 is electrically connected to the voltage output module, the output terminal of the second operational amplifier OP2 is electrically connected to the gate of the seventh transistor Q7, and the seventh transistor Q7
  • the source of is electrically connected to the first end of the second resistor R2 and the first end of the first capacitor C1,
  • the first end of the second resistor R2 is used to output the detection voltage Vctrl.
  • the embodiment of the present disclosure can realize the detection of the load current through the current detection unit, and determine the detection voltage according to the detected load current, and determine the second adjustment current according to the detection voltage, so as to compensate for the change of the load terminal. Realize the control of the control signal based on different load conditions.
  • the embodiments of the present disclosure can achieve a quick response to the input voltage and can provide compensation for different loads. Therefore, the device can adapt to a variety of loads and increase environmental adaptability.
  • the signal conversion unit 230 can be implemented by a dedicated hardware circuit, or can be implemented by an existing hardware circuit.
  • the signal conversion unit can be implemented by a digital circuit.
  • the signal conversion unit 230 can be configured as a state machine including registers and logic circuits, or can be implemented by a digital-to-analog converter.
  • the embodiments of the present disclosure make no limitation.
  • the number of bits of the digital signal is the same as the number of the switches, and each bit of the digital signal is used to control the conduction state of the corresponding switch.
  • the digital signal obtained by the load current can be used as a control signal for multiple switches, and the output terminal of the signal conversion unit 230 can be electrically connected to the control terminal of each switch, so as to realize the control of each switch according to the digital signal.
  • the signal conversion unit 230 when the signal conversion unit 230 receives the detection voltage Vctrl output by the current detection unit 220, it may perform signal conversion on the detection voltage Vctrl to convert the detection voltage Vctrl into Dctrl ⁇ X:0>, where, X represents the highest bit of the digital signal, and X+1 can be equal to the number of switches in the current determination unit.
  • the conduction conditions of the switches in the current determination unit are different.
  • the current determination unit can output a corresponding adjustment current according to the load current, for example, when the load current Increase, the more the number of switches controlled by the digital signal, the greater the adjustment current output by the current determination unit, so that the input of the control module can be compensated or adjusted, so that the voltage output by the control module controlled voltage output module remains stable.
  • the conversion parameters of the signal conversion unit 230 can be configured according to the number of switches.
  • the signal conversion unit 230 can be configured according to the configured conversion parameters and the input detection voltage Vctrl. Obtain a digital signal to control the conduction state of each switch.
  • the signal conversion unit 230 can also be configured to automatically read the parameter information (such as the number of switches) of the current determination unit, and configure the conversion parameters (such as the number of bits of the digital signal) according to the number of switches.
  • the voltage is Vctrl
  • a digital signal can be obtained according to the conversion parameter and the input detection voltage Vctrl to control the conduction state of each switch.
  • the signal conversion unit of the embodiment of the present disclosure can determine and adjust the size of the current according to the detection voltage output by the current detection unit, so that the device can quickly respond to changes in the input voltage, and can also adapt to various load conditions. Under different load conditions, it is possible to reduce the fluctuation of the output voltage when the input voltage changes, so that the output voltage remains stable.
  • the voltage output module 40 may include an eighth transistor Q8, a ninth transistor Q9, a tenth transistor Q10, an eleventh transistor Q11, a third operational amplifier OP3, The third resistor R3, the fourth resistor R4, and the second capacitor C2, among which,
  • the gate of the eighth transistor Q8 is electrically connected to the gate of the sixth transistor Q6, the gate of the tenth transistor Q10 and the control module for receiving the control signal,
  • the drain of the eighth transistor Q8 is electrically connected to the drain of the ninth transistor Q9, the drain of the sixth transistor Q6, the drain of the tenth transistor Q10, and the voltage input module,
  • the source of the eighth transistor Q8 is electrically connected to the negative input terminal of the third operational amplifier OP3, the negative input terminal of the second operational amplifier OP2, the first terminal of the third resistor R3, and all
  • the first end of the second capacitor C2 is electrically connected to the control module and the first end of the fourth resistor R4, and the second end of the fourth resistor R4 is grounded ,
  • the second end of the second capacitor C2 is grounded,
  • the gate of the ninth transistor Q9 is electrically connected to the control module for receiving the control signal, and the source of the ninth transistor Q9 is grounded,
  • the positive input terminal of the third operational amplifier OP3 is electrically connected to the source of the tenth transistor Q10 and the drain of the eleventh transistor Q11, and the output terminal of the third operational amplifier OP3 is electrically connected to the The gate of the eleventh transistor Q11,
  • the source of the eleventh transistor Q11 is electrically connected to the current determination module and the control module,
  • the first end of the third resistor R3 is used to output the target voltage.
  • the voltage output module of the embodiment of the present disclosure can realize voltage output according to the control signal and the input voltage input by the input module, so as to output a stable target voltage.
  • the target voltage can be obtained according to the following formula:
  • Vout Vin/(1-D), where D can represent the duty ratio of the control signal.
  • the present disclosure can quickly respond to changes in the input voltage and output the desired target output voltage.
  • the voltage input module 10 may include an input capacitor Cin and an input inductor L, where:
  • the first end of the input capacitor Cin is electrically connected to the first end of the input inductor L for receiving the input voltage, and the second end of the input capacitor Cin is grounded,
  • the second end of the input inductor L is electrically connected to the drain of the ninth transistor Q9, the drain of the eighth transistor Q8, the drain of the sixth transistor Q6, and the drain of the tenth transistor Q10. pole.
  • the present disclosure takes an input capacitor as an example for description, it should be understood that the present disclosure is not limited to this.
  • the input capacitor can be replaced with an input capacitor composed of multiple capacitors.
  • the network, the input capacitor network may include multiple capacitors, and the present disclosure does not limit the connection relationship and the number thereof.
  • the input inductor L can be set or replaced with multiple inductors, and the multiple inductors can be connected in series, parallel, or a combination of them.
  • the relationship is not limited.
  • control module 30 introduces possible implementations of the control module 30. It should be understood that the following description is exemplary and should not be regarded as a limitation of the present disclosure.
  • the control module 30 may include an error amplifier gm, a reference resistor Rea, a reference capacitor Cea, a comparator CMP, an oscillator (Oscillator), a trigger, a pulse width modulation PWM controller (PWM Control Driver, PWM controller), current source Iramp, reset switch Vreset, capacitor Cramp, sampling resistor Rramp, among them:
  • the positive terminal of the error amplifier gm is electrically connected between the third resistor and the fourth resistor, and is used to input the feedback voltage signal Vfb of the voltage output module 40, the negative terminal is used to input the reference voltage Vref, and the output terminal is electrically connected.
  • the first terminal of the reference resistor Rea and the negative terminal of the comparator CMP Connected to the first terminal of the reference resistor Rea and the negative terminal of the comparator CMP;
  • the second end of the reference resistor Rea is electrically connected to the first end of the reference capacitor Cea, and the second end of the reference capacitor Cea is grounded;
  • the positive terminal of the comparator CMP is electrically connected to the current source Iramp, the first terminal of the capacitor Cramp, and the first terminal of the reset switch for inputting a comparison voltage Vramp, and the output terminal of the comparator CMP is electrically connected to the The first end R of the flip-flop;
  • the output terminal of the current determination module is electrically connected to the second terminal of the reset switch, the second terminal of the capacitor Cramp, and the first terminal of the sampling resistor Rramp, outputs the adjustment current Isink, and the second terminal of the sampling resistor Rramp is grounded;
  • the second terminal S of the trigger is electrically connected to the output terminal of the oscillator for receiving the clock signal CLK output by the oscillator, and the output terminal Q of the trigger is electrically connected to the output terminal of the PWM controller.
  • the first output terminal of the PWM controller is electrically connected to the gate of the ninth transistor, and the second output terminal is electrically connected to the gate of the eighth transistor, the gate of the tenth transistor, and the gate of the sixth transistor.
  • the trigger may be configured as:
  • the PWM controller may be configured as:
  • control module of the embodiment of the present disclosure can adjust the control signal according to the adjustment current, which can reduce the fluctuation of the voltage output by the voltage output module and maintain the stability of the output voltage.
  • the voltage determining module may include a current determining unit and/or a second determining unit.
  • the current determination unit may also be configured to include only the current determination unit.
  • the current determination unit is included.
  • the initial level of Vramp changes the component of gm1* ⁇ Vin*Rramp. Use this change to ensure that the output of Vea does not change as much as possible.
  • Vref remains unchanged, This means that the amount of change in Vfb is small, that is, the change in ⁇ Vout is small, thereby reducing the fluctuation of the output voltage.
  • the voltage output module 40 can output a stable target voltage.
  • the control module can use the adjustment current to compensate for the change in the input voltage and generate a control signal to adjust the output voltage adaptively, so that the output voltage change and fluctuation are small.
  • FIG. 4 shows a schematic diagram of voltage changes in a related art DC-DC architecture.
  • FIG. 5 shows a schematic diagram of a voltage change in a voltage adjusting device according to an embodiment of the present disclosure.
  • the current determination unit in the embodiment of the present disclosure determines the entire current to control the control module, which can greatly reduce the fluctuation of the output voltage and the peak-to-peak value of the output voltage. Only 30mV.
  • the current determination module of the embodiment of the present disclosure may further include a current detection unit and a signal conversion unit.
  • the current detection unit detects the load current and converts it into a detection voltage
  • the signal conversion unit converts the detection voltage to a digital value.
  • the current determination unit can determine and adjust the current according to the digital signal and the input voltage, and act on the control module, so that the control module can respond quickly to changes in the input voltage, and can also adapt to different loads Condition.
  • FIG. 6 shows a schematic diagram of voltage changes in a voltage adjustment device that does not incorporate load current control.
  • FIG. 7 shows a schematic diagram of voltage changes in a voltage adjustment device combined with load current control.
  • the current detection unit is set to detect the load current, and a digital signal is determined by the signal conversion unit.
  • the current determination unit determines the adjustment current through the digital signal and the input voltage to compensate the input of the control module.
  • the voltage adjustment device can not only Realizes a fast response to input voltage changes, and can also provide compensation for different loads. Under different loads, the peak-to-peak value Vpp of the fluctuation range of the output voltage Vout is below 25mV, thereby improving the environmental adaptability of the device and making it easier for TDMA
  • the fastline excitation performance of the power supply in the test meets the needs of SPEC and meets the TDMA test requirements of AMOLED in various application environments.
  • control module 30 does not limit the selection of various components of the control module 30 and the selection of the reference voltage, which can be determined by those skilled in the art as required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

电压调整装置、芯片、电源及电子设备。装置包括:电压输入模块(10),用于接收输入电压;电流确定模块(20),电连接于电压输入模块(10),用于根据输入电压及负载电流确定调整电流;控制模块(30),电连接于电流确定模块(20),用于根据调整电流输出控制信号;电压输出模块(40),电连接于电压输入模块(10)、电流确定模块(20)及控制模块(30),用于根据控制信号及输入电压输出目标电压。根据电压调整装置,可以输出稳定的目标电压,能够对输入电压的变化快速响应,具有可靠、稳定的特点,且具有较高的环境适应性,可以适应不同负载应用。

Description

电压调整装置、芯片、电源及电子设备 技术领域
本公开涉及集成电路技术领域,尤其涉及一种电压调整装置、芯片、电源及电子设备。
背景技术
在AMOLED(Active-matrix organic light-emitting diode,有源矩阵有机发光二极体)的电源驱动管理芯片中,有这样一个TDMA(Time division multiple access,时分复用)测试要求:输入电源每隔一段时间会受到干扰,向上或是向下在10μs内跳动500mV,并且500mV的跳动会持续至少500μs的时间。如果发生这种干扰,那么对于DC-DC的Boost架构的输出一定有overshoot(过冲)或是undershoot(下冲),要求这种扰动在200mA以内的负载情况下要少于20mV,在1A以内的负载情况下要少于60mV。
然而,相关技术在输入电源出现扰动的情况下,无法快速追踪到变化,常常导致输出电压出现过冲、下冲等扰动,造成输出电压不稳定。
发明内容
有鉴于此,本公开提出了一种电压调整装置,所述装置包括:
电压输入模块,用于接收输入电压;
电流确定模块,电连接于所述电压输入模块,用于根据所述输入电压及负载电流确定调整电流;
控制模块,电连接于所述电流确定模块,用于根据所述调整电流输出控制信号;
电压输出模块,电连接于所述电压输入模块、所述电流确定模块及所述控制模块,用于根据所述控制信号及所述输入电压输出目标电压。
在一种可能的实施方式中,电流确定模块包括电流检测单元、信号转换 单元、电流确定单元,其中,
所述电流检测单元用于确定负载电流,并根据所述负载电流得到检测电压,
所述信号转换单元电连接于所述电流检测单元,用于将所述检测电压转换为数字信号;
所述电流确定单元,电连接于所述信号转换单元,用于根据所述数字信号及所述输入电压确定所述调整电流。
在一种可能的实施方式中,所述电流确定单元包括第一运算放大器、第一晶体管、第二晶体管、第三晶体管、第四晶体管、多个第五晶体管、多个开关及第一电阻,其中,
所述第一运算放大器的正向输入端用于接收所述输入电压,所述第一运算放大器的负向输入端电连接于所述第一晶体管的源极及所述第一电阻的第一端,所述第一运算放大器的输出端电连接于所述第一晶体管的栅极,所述第一电阻的第二端接地,
所述第一晶体管的漏极电连接于所述第二晶体管的源极、所述第二晶体管的栅极及所述第三晶体管的栅极,
所述第二晶体管的漏极及所述第三晶体管的漏极用于接收电源电压,
所述第三晶体管的源极电连接于所述第四晶体管的源极、所述第四晶体管的栅极及多个第五晶体管的栅极,
所述第四晶体管的源极及多个第五晶体管的源极接地,
各个第五晶体管的漏极分别电连接于对应开关的第一端,各个开关的控制端用于接收所述数字信号,并根据所述数字信号导通或断开,
各个开关的第二端电连接,用于输出所述调整电流。
在一种可能的实施方式中,所述数字信号的位数与所述开关的数目相同,所述数字信号的每一位用于控制对应的开关的导通状态。
在一种可能的实施方式中,所述电流检测单元包括第六晶体管、第七晶体管、第二运算放大器、第二电阻、第一电容,其中,
所述第六晶体管的栅极用于接收所述控制信号,所述第六晶体管的漏极电连接于所述电压输入模块,所述第六晶体管的源极电连接于所述第二运算放大器的正向输入端、所述第七晶体管的漏极,
所述第二运算放大器的负向输入端电连接于所述电压输出模块,所述第二运算放大器的输出端电连接于所述第七晶体管的栅极,所述第七晶体管的源极电连接于所述第二电阻的第一端及所述第一电容的第一端,
所述第二电阻的第二端及所述第一电容的第二端接地,
所述第二电阻的第一端用于输出所述检测电压。
在一种可能的实施方式中,所述电压输出模块包括第八晶体管、第九晶体管、第十晶体管、第十一晶体管、第三运算放大器、第三电阻、第四电阻、第二电容,其中,
所述第八晶体管的栅极电连接于所述第六晶体管的栅极、所述第十晶体管的栅极及所述控制模块,用于接收所述控制信号,
所述第八晶体管的漏极电连接于所述第九晶体管的漏极、所述第六晶体管的漏极、所述第十晶体管的漏极及所述电压输入模块,
所述第八晶体管的源极电连接于所述第三运算放大器的负向输入端、所述第二运算放大器的负向输入端、所述第三电阻的第一端及所述第二电容的第一端,所述第三电阻的第二端电连接于所述控制模块及所述第四电阻的第一端,所述第四电阻的第二端接地,所述第二电容的第二端接地,
所述第九晶体管的栅极电连接于所述控制模块,用于接收所述控制信号,所述第九晶体管的源极接地,
所述第三运算放大器的正向输入端电连接于所述第十晶体管的源极及所述第十一晶体管的漏极,所述第三运算放大器的输出端电连接于所述第十一晶体管的栅极,
所述第十一晶体管的源极电连接于所述电流确定模块及所述控制模块,
所述第三电阻的第一端用于输出所述目标电压。
在一种可能的实施方式中,所述电压输入模块包括输入电容、输入电感, 其中,
所述输入电容的第一端电连接于所述输入电感的第一端,用于接收所述输入电压,所述输入电容的第二端接地,
所述输入电感的第二端电连接于所述第九晶体管的漏极、所述第八晶体管的漏极、所述第六晶体管的漏极、所述第十晶体管的漏极。
根据本公开的一方面,提供了一种芯片,所述芯片包括:
所述的电压调整装置。
根据本公开的一方面,提供了一种电源,所述电源包括:
所述的芯片。
根据本公开的一方面,提供了一种电子设备,所述电子设备包括:
所述的电源。
在一种可能的实现方式中,所述电子设备包括显示器、智能手机或便携设备。
通过以上装置,本公开实施例利用电流确定模块根据所述输入电压及及负载电流确定调整电流,只要输入电压有变化,电流确定模块可以快速响应,结合负载电流产生调整电流,将调整电流输出到控制模块,以产生控制信号,电压输出模块根据控制信号,可对输出稳定的目标电压,不会出现过量的过冲、下冲现象,并且可以实现在不同负载情况下,均能实现电压的稳定输出。根据本公开提出的电压调整装置,可以输出稳定的目标电压,能够对输入电压的变化快速响应,具有可靠、稳定的特点,且具有较高的环境适应性,可以适应不同负载应用。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出了根据本公开一实施方式的电压调整装置的示意图。
图2示出了根据本公开一实施方式的电压调整装置的示意图。
图3示出了根据本公开一实施方式的电流确定单元的示意图。
图4示出了相关技术的DC-DC架构中电压变化示意图。
图5示出了根据本公开一实施方式的电压调整装置中电压变化示意图。
图6示出了未结合负载电流控制的电压调整装置中电压变化示意图。
图7示出了结合负载电流控制的电压调整装置中电压变化示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
请参阅图1,图1示出了根据本公开一实施方式的电压调整装置的示意图。
如图1所示,所述装置包括:
电压输入模块10,用于接收输入电压;
电流确定模块20,电连接于所述电压输入模块10,用于根据所述输入电压及负载电流确定调整电流;
控制模块30,电连接于所述电流确定模块20,用于根据所述调整电流输出控制信号;
电压输出模块40,电连接于所述电压输入模块10、所述电流确定模块20 及所述控制模块30,用于根据所述控制信号及所述输入电压输出目标电压。
通过以上装置,本公开实施例利用电流确定模块根据所述输入电压及及负载电流确定调整电流,只要输入电压有变化,电流确定模块可以快速响应,结合负载电流产生调整电流,将调整电流输出到控制模块,以产生控制信号,电压输出模块根据控制信号,可对输出稳定的目标电压,不会出现过量的过冲、下冲现象,并且可以实现在不同负载情况下,均能实现电压的稳定输出。根据本公开提出的电压调整装置,可以输出稳定的目标电压,能够对输入电压的变化快速响应,具有可靠、稳定的特点,且具有较高的环境适应性,可以适应不同负载应用。
本公开提出的电压调整装置,可以包括DC-DC转换电路(直流-直流转换电路),可以根据输入的直流电压输出稳定、可靠的目标电压。
请参阅图2,图2示出了根据本公开一实施方式的电压调整装置的示意图。
在一种可能的实施方式中,如图2所示,所述电流确定模块20可以包括电流检测单元220、信号转换单元230、电流确定单元210,其中,
所述电流检测单元220用于确定负载电流,并根据所述负载电流得到检测电压,
所述信号转换单元230电连接于所述电流检测单元220,用于将所述检测电压转换为数字信号;
所述电流确定单元210,电连接于所述信号转换单元230,用于根据所述数字信号及所述输入电压确定所述调整电流Isink。
请一并参阅图3,图3示出了根据本公开一实施方式的电流确定单元的示意图。
在一种可能的实施方式中,如图3所示,所述电流确定单元可以包括第一运算放大器OP1、第一晶体管Q1、第二晶体管Q2、第三晶体管Q3、第四晶体管Q4、多个第五晶体管Q5、多个开关S1及第一电阻R1,其中,
所述第一运算放大器OP1的正向输入端用于接收所述输入电压Vin,所述 第一运算放大器OP1的负向输入端电连接于所述第一晶体管Q1的源极及所述第一电阻的第一端,所述第一运算放大器OP1的输出端电连接于所述第一晶体管Q1的栅极,所述第一电阻R1的第二端接地,
所述第一晶体管Q1的漏极电连接于所述第二晶体管Q2的源极、所述第二晶体管Q2的栅极及所述第三晶体管Q3的栅极,
所述第二晶体管Q2的漏极及所述第三晶体管Q3的漏极用于接收电源电压Vdd,
所述第三晶体管Q3的源极电连接于所述第四晶体管Q4的源极、所述第四晶体管Q4的栅极及所述多个第五晶体管Q5的栅极,
所述第四晶体管Q4的源极及所述第五晶体管Q5的源极接地,
各个第五晶体管Q5的漏极分别电连接于对应开关S1的第一端,各个开关S1的控制端用于接收所述数字信号,并根据所述数字信号导通或断开,
各个开关S1的第二端电连接,用于输出所述调整电流Isink。
通过以上装置,本公开实施例通过电流确定单元响应于输入电压的变化,并结合根据负载电流得到的数字信号确定调整电流Isink,以对输入电压的变化进行补偿,并产生控制信号,可以使得输出电压稳定,在输入电压变化时,降低输出电压的波动性,及提高装置的环境适应性。
应该说明的是,本公开实施例对第五晶体管的数目及开关的数目不做限定,本领域技术人员可以根据需要设定,在一个示例中,第五晶体管的数目与开关的数目可以相同,每一个第五晶体管的漏极与控制模块的连接关系被对应的开关控制。本公开实施例对开关的类型和具体实施方式不做限定,在一个示例中,开关S1可以为晶体管、单刀单掷开关等。
通过以上装置,本公开实施例可以在输入电压发生变化时,快速响应于输入电压的变化,并结合负载电流确定调整电流,以对控制模块的输入进行补偿,从而降低输出电压的波动,并适应不同负载环境,提高环境适应性。
请继续参阅图2,在一种可能的实施方式中,如图2所示,所述电流检测单元220可以包括第六晶体管Q6、第七晶体管Q7、第二运算放大器OP2、第 二电阻R2、第一电容C1,其中,
所述第六晶体管Q6的栅极用于接收所述控制信号,所述第六晶体管Q6的漏极电连接于所述电压输入模块,所述第六晶体管Q6的源极电连接于所述第二运算放大器OP2的正向输入端、所述第七晶体管Q7的漏极,
所述第二运算放大器OP2的负向输入端电连接于所述电压输出模块,所述第二运算放大器OP2的输出端电连接于所述第七晶体管Q7的栅极,所述第七晶体管Q7的源极电连接于所述第二电阻R2的第一端及所述第一电容C1的第一端,
所述第二电阻R2的第二端及所述第一电容C1的第二端接地,
所述第二电阻R2的第一端用于输出所述检测电压Vctrl。
通过以上装置,本公开实施例可以通过电流检测单元实现对负载电流的检测,并根据检测得到的负载电流确定检测电压,并根据检测电压确定第二调整电流,可以对负载端的变化进行补偿,以实现基于不同负载情况实现对控制信号的控制。
在一个示例中,在检测中,电流检测单元可以对第八晶体管的电流在(1-D)T*IL做平均化处理,从而得到检测电压Vtrcl=(1-D)T*IL*R,其中,D表示占空比,T表示时钟周期,IL表示输入电感L的电感,R表示第二电阻R2的阻值。
电流检测单元可以将负载电流的数值转换为检测电压Vctrl=α*Id,其中,α表示预设参数,Id表示负载电流。
通过以上装置,本公开实施例可以实现对输入电压的快速响应,且能够针对不同负载提供补偿,因此,该装置可以适应多种负载,增加了环境适应性。
在一种可能的实施方式中,信号转换单元230可以通过专用硬件电路实现,也可以通过现有硬件电路实现。
在一个示例中,信号转换单元可以通过数字电路实现,例如信号转换单元230可以被设置为包括寄存器、逻辑电路的状态机,也可以通过数模转换 器实现,对于信号转换单元230的具体实现方式,本公开实施例不做限定。
在一种可能的实施方式中,所述数字信号的位数与所述开关的数目相同,所述数字信号的每一位用于控制对应的开关的导通状态。通过负载电流得到的数字信号,可以作为多个开关的控制信号,信号转换单元230的输出端可以电连接到各个开关的控制端,从而根据数字信号实现对各个开关的控制。
在一个示例中,信号转换单元230在接收到电流检测单元220输出的检测电压Vctrl的情况下,可以对检测电压Vctrl进行信号转换,以将检测电压Vctrl转换为Dctrl<X:0>,其中,X表示数字信号的最高位,X+1可以等于电流确定单元中开关的数目。
在一个示例中,对于不同的负载电流,可以确定不同的数字信号,因此电流确定单元中的开关的导通情况不同,电流确定单元可以根据负载电流输出对应大小的调整电流,例如,当负载电流增大,数字信号控制的开关数目越多,电流确定单元输出的调整电流也越大,从而可以实现对控制模块的输入的补偿或调整,以使得控制模块控制电压输出模块输出的电压保持稳定。
在一个示例中,可以根据开关的数目配置信号转换单元230的转换参数(例如数字信号的位数),在电路工作时,信号转换单元230即可根据配置好的转换参数及输入的检测电压Vctrl得到数字信号,以对各个开关的导通状态进行控制。
在一个示例中,也可以将信号转换单元230配置为自动读取电流确定单元的参数信息(例如开关数目),并根据开关数目自行配置转换参数(例如数字信号的位数),在接收到检测电压Vctrl时,即可根据转换参数及输入的检测电压Vctrl得到数字信号,以对各个开关的导通状态进行控制。
通过以上装置,本公开实施例的信号转换单元可以根据电流检测单元输出的检测电压确定调整电流的大小,使得所述装置既可以快速响应于输入电压的变化,也可以适应各种负载情况,在不同负载条件下,都可以实现在输入电压变化时,降低输出电压的波动,使得输出电压保持稳定。
在一种可能的实施方式中,如图2所示,所述电压输出模块40可以包括 第八晶体管Q8、第九晶体管Q9、第十晶体管Q10、第十一晶体管Q11、第三运算放大器OP3、第三电阻R3、第四电阻R4、第二电容C2,其中,
所述第八晶体管Q8的栅极电连接于所述第六晶体管Q6的栅极、所述第十晶体管Q10的栅极及所述控制模块,用于接收所述控制信号,
所述第八晶体管Q8的漏极电连接于所述第九晶体管Q9的漏极、所述第六晶体管Q6的漏极、所述第十晶体管Q10的漏极及所述电压输入模块,
所述第八晶体管Q8的源极电连接于所述第三运算放大器OP3的负向输入端、所述第二运算放大器OP2的负向输入端、所述第三电阻R3的第一端及所述第二电容C2的第一端,所述第三电阻R3的第二端电连接于所述控制模块及所述第四电阻R4的第一端,所述第四电阻R4的第二端接地,所述第二电容C2的第二端接地,
所述第九晶体管Q9的栅极电连接于所述控制模块,用于接收所述控制信号,所述第九晶体管Q9的源极接地,
所述第三运算放大器OP3的正向输入端电连接于所述第十晶体管Q10的源极及所述第十一晶体管Q11的漏极,所述第三运算放大器OP3的输出端电连接于所述第十一晶体管Q11的栅极,
所述第十一晶体管Q11的源极电连接于所述电流确定模块及所述控制模块,
所述第三电阻R3的第一端用于输出所述目标电压。
通过以上装置,本公开实施例的电压输出模块可以根据控制信号及输入模块传入的输入电压实现电压输出,以输出稳定的目标电压。
在一种可能的实施方式中,可以根据如下公式得到目标电压:
Vout=Vin/(1-D),其中,D可以表示控制信号的占空比。
因此,通过调整控制信号的占空比,本公开可以快速响应于输入电压的变化,输出需要的目标输出电压。
下面对电压输入模块10的可能实现方式进行介绍,应该明白的是,以下描述是示例性的,不应视为是对本公开的限制。
在一种可能的实施方式中,如图2所示,所述电压输入模块10可以包括输入电容Cin、输入电感L,其中,
所述输入电容Cin的第一端电连接于所述输入电感L的第一端,用于接收所述输入电压,所述输入电容Cin的第二端接地,
所述输入电感L的第二端电连接于所述第九晶体管Q9的漏极、所述第八晶体管Q8的漏极、所述第六晶体管Q6的漏极、所述第十晶体管Q10的漏极。
应该说明的是,本公开虽然以输入电容为例进行了说明,但是,应该明白的是,本公开不限于此,在其他的实施方式中,输入电容可以被替换为多个电容组成的输入电容网络,输入电容网络可以包括多个电容,本公开对其连接关系及数量不做限制。
在一种可能的实施方式中,输入电感L可以被设置或替换为多个电感,多个电感的连接方式可以是串联、并联或者他们的组合,本公开对输入电感L包括的电感数目、连接关系不做限定。
下面对控制模块30的可能实现方式进行介绍,应该明白的是,以下描述是示例性的,不应视为是对本公开的限制。
在一种可能的实施方式中,如图2所示,所述控制模块30可以包括误差放大器gm、参考电阻Rea、参考电容Cea、比较器CMP、振荡器(Oscillator)、触发器、脉冲宽度调制PWM控制器(PWM Control Driver,PWM控制器)、电流源Iramp、重置开关Vreset、电容Cramp、采样电阻Rramp,其中:
所述误差放大器gm的正极端电连接于所述第三电阻和第四电阻之间,用于输入所述电压输出模块40的反馈电压信号Vfb,负极端用于输入参考电压Vref,输出端电连接于所述参考电阻Rea的第一端及所述比较器CMP的负极端;
所述参考电阻Rea的第二端电连接于所述参考电容Cea的第一端,所述参考电容Cea的第二端接地;
所述比较器CMP的正极端电连接于电流源Iramp、电容Cramp的第一端、重置开关的第一端,用于输入比较电压Vramp,所述比较器CMP的输出端电 连接于所述触发器的第一端R;
电流确定模块的输出端电连接到重置开关的第二端、电容Cramp的第二端及采样电阻Rramp的第一端,输出调整电流Isink,采样电阻Rramp的第二端接地;
所述触发器的第二端S电连接于所述振荡器的输出端,用于接收所述振荡器输出的时钟信号CLK,所述触发器的输出端Q电连接于所述PWM控制器的输入端;
所述PWM控制器的第一输出端电连接于第九晶体管的栅极,第二输出端电连接于所述第八晶体管的栅极、第十晶体管的栅极、第六晶体管的栅极。
在一种可能的实施方式中,所述触发器可以被配置为:
当第一端R输入为高电平(1)时,输出端Q输出为1;
当第二端S输入为高电平时,输出端Q输出为0。
在一种可能的实施方式中,所述PWM控制器可以被配置为:
输入端输入为1时,输出为1;
输入端输入为0时,输出为0。
通过以上装置,本公开实施例的控制模块可以根据调整电流对控制信号进行调整,可以降低电压输出模块输出的电压的波动,保持输出电压的稳定。
本公开实施例中,电压确定模块可以包括电流确定单元和/或第二确定单元。
在一个示例中,所述电流确定单元也可以被设置为仅包括电流确定单元,对于电压确定模块包括电流确定单元,在一种可能的实施方式中,在输入电压增大的情况下,例如,当Vin变化了△Vin的变量,当Vin输入电流确定单元时,可以通过电流确定单元确定调整电流Isink的变化为△Isink=gm1*△Vin,其中,gm1表示根据预先确定的调整参数,Vin表示输入电压,“*”表示乘法操作,这样,Vramp的初始电平就变化了gm1*△Vin*Rramp的分量,用此变化来保证Vea的输出尽量没有变化,在Vref保持不变的情况下,这就意味着Vfb变化量小,即△Vout的变化小,从而减小输出电压的波动,通过这样的 方式,电压输出模块40可以输出稳定的目标电压。
这样,当将调整电流输入到控制模块时,控制模块可以利用调整电流补偿输入电压的变化,并产生控制信号,以适应性调整输出电压的大小,从而使得输出电压变化波动小。
应该说明的是,本公开实施例对gm1的具体大小不做限定,本领域技术人员可以根据需要通过仿真模拟的方式确定。
请参阅图4,图4示出了相关技术的DC-DC架构中电压变化示意图。
请参阅图5,图5示出了根据本公开一实施方式的电压调整装置中电压变化示意图。
如图4所示,相关技术中当输入电压Vin变化时,电压输出Vout的变化作用于误差放大器gm会对Vea产生影响,当Vea变化越大,通过环路调节新的占空比D就越慢,因此输出随着输入电压向上或者是向下跳动的输出电压就会很大,在这种情况下,输出电压Vout的峰峰值可以达到130mV。
如图5所示,当电流确定模块包括电流确定单元时,通过本公开实施例中电流确定单元确定整电流以对控制模块进行控制,可以使得输出电压的波动大幅减小,输出电压的峰峰值仅为30mV。
可以看到此方案可以很好的响应输入电压的变化,输出电压的变化的峰峰值Vpp从130mV降到了30mV。
为了适应负载的变化,本公开实施例的电流确定模块还可以进一步包括电流检测单元及信号转换单元,电流检测单元将检测到负载电流并转换为检测电压时,信号转换单元将检测电压转换为数字信号,并将数字信号输入到电流确定单元,电流确定单元可以根据数字信号和输入电压确定调整电流,并作用于控制模块,使得控制模块既可以对输入电压的变化快速响应,也可以适应不同负载情况。
请参阅图6,图6示出了未结合负载电流控制的电压调整装置中电压变化 示意图。
请参阅图7,图7示出了结合负载电流控制的电压调整装置中电压变化示意图。
如图6所示,由于电流确定单元中确定gm1时,需要提前根据设定负载大小,那么在平衡点是在轻重负载之间选取,对于过轻或是过重的负载来说补偿往往不够或是溢出,因此,当图6没有采用第二确定单元对负载电流进行检测时,电压调整装置无法适应负载的变化,负载变化(负载电流Id)时,输出电压的变化△Vout的峰峰值具有较大的波动(Vpp从20mV~50mV波动)。
如图7所示,通过设置电流检测单元检测负载电流,并通过信号转换单元确定个数字信号,电流确定单元通过数字信号及输入电压确定调整电流对控制模块的输入进行补偿,电压调整装置不仅能够实现对输入电压变化的快速响应,还能够针对不同的负载提供补偿,在不同的负载下,输出电压Vout的波动区间的峰峰值Vpp在25mV以下,从而提高了装置的环境适应性,使得对于TDMA测试中电源的fastline激励的表现满足SPEC的需要,满足各种应用环境下AMOLED的TDMA测试要求。
应该明白的是,本公开对控制模块30各个元器件的选择、参考电压的选择不做限定,本领域技术人员可以根据需要确定。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (11)

  1. 一种电压调整装置,其特征在于,所述装置包括:
    电压输入模块,用于接收输入电压;
    电流确定模块,电连接于所述电压输入模块,用于根据所述输入电压及负载电流确定调整电流;
    控制模块,电连接于所述电流确定模块,用于根据所述调整电流输出控制信号;
    电压输出模块,电连接于所述电压输入模块、所述电流确定模块及所述控制模块,用于根据所述控制信号及所述输入电压输出目标电压。
  2. 根据权利要求1所述的装置,其特征在于,电流确定模块包括电流检测单元、信号转换单元、电流确定单元,其中,
    所述电流检测单元用于确定负载电流,并根据所述负载电流得到检测电压,
    所述信号转换单元电连接于所述电流检测单元,用于将所述检测电压转换为数字信号;
    所述电流确定单元,电连接于所述信号转换单元,用于根据所述数字信号及所述输入电压确定所述调整电流。
  3. 根据权利要求2所述的装置,其特征在于,所述电流确定单元包括第一运算放大器、第一晶体管、第二晶体管、第三晶体管、第四晶体管、多个第五晶体管、多个开关及第一电阻,其中,
    所述第一运算放大器的正向输入端用于接收所述输入电压,所述第一运算放大器的负向输入端电连接于所述第一晶体管的源极及所述第一电阻的第一端,所述第一运算放大器的输出端电连接于所述第一晶体管的栅极,所述第一电阻的第二端接地,
    所述第一晶体管的漏极电连接于所述第二晶体管的源极、所述第二晶体管的栅极及所述第三晶体管的栅极,
    所述第二晶体管的漏极及所述第三晶体管的漏极用于接收电源电压,
    所述第三晶体管的源极电连接于所述第四晶体管的源极、所述第四晶体 管的栅极及多个第五晶体管的栅极,
    所述第四晶体管的源极及多个第五晶体管的源极接地,
    各个第五晶体管的漏极分别电连接于对应开关的第一端,各个开关的控制端用于接收所述数字信号,并根据所述数字信号导通或断开,
    各个开关的第二端电连接,用于输出所述调整电流。
  4. 根据权利要求3所述的装置,其特征在于,所述数字信号的位数与所述开关的数目相同,所述数字信号的每一位用于控制对应的开关的导通状态。
  5. 根据权利要求2所述的装置,其特征在于,所述电流检测单元包括第六晶体管、第七晶体管、第二运算放大器、第二电阻、第一电容,其中,
    所述第六晶体管的栅极用于接收所述控制信号,所述第六晶体管的漏极电连接于所述电压输入模块,所述第六晶体管的源极电连接于所述第二运算放大器的正向输入端、所述第七晶体管的漏极,
    所述第二运算放大器的负向输入端电连接于所述电压输出模块,所述第二运算放大器的输出端电连接于所述第七晶体管的栅极,所述第七晶体管的源极电连接于所述第二电阻的第一端及所述第一电容的第一端,
    所述第二电阻的第二端及所述第一电容的第二端接地,
    所述第二电阻的第一端用于输出所述检测电压。
  6. 根据权利要求5所述的装置,其特征在于,所述电压输出模块包括第八晶体管、第九晶体管、第十晶体管、第十一晶体管、第三运算放大器、第三电阻、第四电阻、第二电容,其中,
    所述第八晶体管的栅极电连接于所述第六晶体管的栅极、所述第十晶体管的栅极及所述控制模块,用于接收所述控制信号,
    所述第八晶体管的漏极电连接于所述第九晶体管的漏极、所述第六晶体管的漏极、所述第十晶体管的漏极及所述电压输入模块,
    所述第八晶体管的源极电连接于所述第三运算放大器的负向输入端、所述第二运算放大器的负向输入端、所述第三电阻的第一端及所述第二电容的第一端,所述第三电阻的第二端电连接于所述控制模块及所述第四电阻的第 一端,所述第四电阻的第二端接地,所述第二电容的第二端接地,
    所述第九晶体管的栅极电连接于所述控制模块,用于接收所述控制信号,所述第九晶体管的源极接地,
    所述第三运算放大器的正向输入端电连接于所述第十晶体管的源极及所述第十一晶体管的漏极,所述第三运算放大器的输出端电连接于所述第十一晶体管的栅极,
    所述第十一晶体管的源极电连接于所述电流确定模块及所述控制模块,
    所述第三电阻的第一端用于输出所述目标电压。
  7. 根据权利要求6所述的装置,其特征在于,所述电压输入模块包括输入电容、输入电感,其中,
    所述输入电容的第一端电连接于所述输入电感的第一端,用于接收所述输入电压,所述输入电容的第二端接地,
    所述输入电感的第二端电连接于所述第九晶体管的漏极、所述第八晶体管的漏极、所述第六晶体管的漏极、所述第十晶体管的漏极。
  8. 一种芯片,其特征在于,所述芯片包括:
    如权利要求1-7任一项所述的电压调整装置。
  9. 一种电源,其特征在于,所述电源包括:
    如权利要求8所述的芯片。
  10. 一种电子设备,其特征在于,所述电子设备包括:
    如权利要求9所述的电源。
  11. 根据权利要求10所述的电子设备,其特征在于,所述电子设备包括显示器、智能手机或便携设备。
PCT/CN2021/091054 2020-05-29 2021-04-29 电压调整装置、芯片、电源及电子设备 WO2021238572A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21812673.8A EP4102336A4 (en) 2020-05-29 2021-04-29 VOLTAGE ADJUSTMENT DEVICE, CHIP, POWER SOURCE AND ELECTRONIC DEVICE
KR1020227015824A KR20220079657A (ko) 2020-05-29 2021-04-29 전압 조정 장치, 칩, 전원 및 전자 기기
JP2022563123A JP2023521510A (ja) 2020-05-29 2021-04-29 電圧調整装置、チップ、電源及び電子機器
US17/944,256 US20230016715A1 (en) 2020-05-29 2022-09-14 Voltage Adjustment Apparatus, Chip, Power Source, and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010475300.0 2020-05-29
CN202010475300.0A CN111596715A (zh) 2020-05-29 2020-05-29 电压调整装置、芯片、电源及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/944,256 Continuation US20230016715A1 (en) 2020-05-29 2022-09-14 Voltage Adjustment Apparatus, Chip, Power Source, and Electronic Device

Publications (1)

Publication Number Publication Date
WO2021238572A1 true WO2021238572A1 (zh) 2021-12-02

Family

ID=72189621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091054 WO2021238572A1 (zh) 2020-05-29 2021-04-29 电压调整装置、芯片、电源及电子设备

Country Status (6)

Country Link
US (1) US20230016715A1 (zh)
EP (1) EP4102336A4 (zh)
JP (1) JP2023521510A (zh)
KR (1) KR20220079657A (zh)
CN (1) CN111596715A (zh)
WO (1) WO2021238572A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111596715A (zh) * 2020-05-29 2020-08-28 北京集创北方科技股份有限公司 电压调整装置、芯片、电源及电子设备
CN111596716A (zh) * 2020-05-29 2020-08-28 北京集创北方科技股份有限公司 电压调整装置、芯片、电源及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034848A (zh) * 2005-09-30 2007-09-12 日立环球储存科技荷兰有限公司 响应于来自确定性负载的前馈信息的电压调节系统
KR20090090665A (ko) * 2008-02-21 2009-08-26 한양대학교 산학협력단 발광다이오드 구동회로
US20110109291A1 (en) * 2009-11-11 2011-05-12 Richtek Technology Corp. Frequency control circuit and method for a non-constant frequency voltage regulator
CN103580478A (zh) * 2012-07-30 2014-02-12 瑞萨电子株式会社 电压调节器、半导体器件和数据处理系统
CN106329924A (zh) * 2016-05-30 2017-01-11 武汉新芯集成电路制造有限公司 一种提高负载瞬态响应性能的系统
US10389248B1 (en) * 2018-04-20 2019-08-20 Renesas Electronics America Inc. Method and apparatus for minimizing voltage droop due to load step during energy conservation operation
CN110518799A (zh) * 2019-09-05 2019-11-29 北京集创北方科技股份有限公司 电压转换装置、芯片、电源及电子设备
CN111596715A (zh) * 2020-05-29 2020-08-28 北京集创北方科技股份有限公司 电压调整装置、芯片、电源及电子设备
CN111596716A (zh) * 2020-05-29 2020-08-28 北京集创北方科技股份有限公司 电压调整装置、芯片、电源及电子设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8829879B2 (en) * 2010-12-03 2014-09-09 Maxim Integrated Products, Inc. Inductor current measurement for DC to DC converters
US10110128B2 (en) * 2017-03-08 2018-10-23 Allegro Microsystems, Llc DC-DC converter having feedforward for enhanced output voltage regulation
JP6708156B2 (ja) * 2017-03-31 2020-06-10 株式会社オートネットワーク技術研究所 車両用電源装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101034848A (zh) * 2005-09-30 2007-09-12 日立环球储存科技荷兰有限公司 响应于来自确定性负载的前馈信息的电压调节系统
KR20090090665A (ko) * 2008-02-21 2009-08-26 한양대학교 산학협력단 발광다이오드 구동회로
US20110109291A1 (en) * 2009-11-11 2011-05-12 Richtek Technology Corp. Frequency control circuit and method for a non-constant frequency voltage regulator
CN103580478A (zh) * 2012-07-30 2014-02-12 瑞萨电子株式会社 电压调节器、半导体器件和数据处理系统
CN106329924A (zh) * 2016-05-30 2017-01-11 武汉新芯集成电路制造有限公司 一种提高负载瞬态响应性能的系统
US10389248B1 (en) * 2018-04-20 2019-08-20 Renesas Electronics America Inc. Method and apparatus for minimizing voltage droop due to load step during energy conservation operation
CN110518799A (zh) * 2019-09-05 2019-11-29 北京集创北方科技股份有限公司 电压转换装置、芯片、电源及电子设备
CN111596715A (zh) * 2020-05-29 2020-08-28 北京集创北方科技股份有限公司 电压调整装置、芯片、电源及电子设备
CN111596716A (zh) * 2020-05-29 2020-08-28 北京集创北方科技股份有限公司 电压调整装置、芯片、电源及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4102336A4 *

Also Published As

Publication number Publication date
JP2023521510A (ja) 2023-05-24
KR20220079657A (ko) 2022-06-13
CN111596715A (zh) 2020-08-28
EP4102336A1 (en) 2022-12-14
EP4102336A4 (en) 2023-07-26
US20230016715A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021238571A1 (zh) 电压调整装置、芯片、电源及电子设备
US8253407B2 (en) Voltage mode switching regulator and control circuit and method therefor
US9831780B2 (en) Buck-boost converter and method for controlling buck-boost converter
US8680832B2 (en) Control circuit of step-down DC-DC converter, control circuit of step-up DC-DC converter and step-up/step-down DC-DC converter
US20230016715A1 (en) Voltage Adjustment Apparatus, Chip, Power Source, and Electronic Device
US20090153114A1 (en) DC-DC converters with transient response control
US8304931B2 (en) Configurable power supply integrated circuit
US20060132998A1 (en) Power supply circuit
CN103683935A (zh) 一种开关模式电源及其控制电路和控制方法
US9055637B2 (en) Light emitting diode load driving apparatus
US10594209B2 (en) Switching power converter circuit and control circuit thereof
US9467044B2 (en) Timing generator and timing signal generation method for power converter
KR102068843B1 (ko) Dc-dc 컨버터
US11728733B2 (en) Multi-input single-output circuit and control method thereof
US9401650B2 (en) Power supply apparatus
CN211857324U (zh) 电压调整装置、芯片、电源及电子设备
CN112787505A (zh) 一种dc-dc变换器及其控制电路和控制方法
JP2014207820A (ja) スイッチングレギュレータおよびその制御回路、それを用いた電子機器
CN212433648U (zh) 电压调整装置、芯片、电源及电子设备
CN110391735B (zh) 具有可编程脉冲跳频模式的pwm模式升压开关调节器
US20120187931A1 (en) Power Supply Control Circuit and Power Supply Circuit
JP2010063290A (ja) 電源制御回路
CN116742951B (zh) 开关电源电路及电子设备
US20240063717A1 (en) Control circuit for adaptive noise margin control for a constant on time converter
CN117873252A (zh) 电压调整电路、芯片及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227015824

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021812673

Country of ref document: EP

Effective date: 20220909

ENP Entry into the national phase

Ref document number: 2022563123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE