WO2021238565A1 - 液体光圈、电子设备、液体光圈的驱动方法及驱动装置 - Google Patents

液体光圈、电子设备、液体光圈的驱动方法及驱动装置 Download PDF

Info

Publication number
WO2021238565A1
WO2021238565A1 PCT/CN2021/090763 CN2021090763W WO2021238565A1 WO 2021238565 A1 WO2021238565 A1 WO 2021238565A1 CN 2021090763 W CN2021090763 W CN 2021090763W WO 2021238565 A1 WO2021238565 A1 WO 2021238565A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sub
hydrophilic
liquid
electrode plate
Prior art date
Application number
PCT/CN2021/090763
Other languages
English (en)
French (fr)
Inventor
阮望超
王庆平
陈廷爱
周国富
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010872933.5A external-priority patent/CN113805400B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21811849.5A priority Critical patent/EP4152091A4/en
Publication of WO2021238565A1 publication Critical patent/WO2021238565A1/zh
Priority to US18/071,372 priority patent/US20230105130A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/348Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on the deformation of a fluid drop, e.g. electrowetting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/115Electrowetting

Definitions

  • This application relates to the field of terminal equipment, and in particular to a liquid diaphragm, electronic equipment, and a driving method and a driving device of the liquid diaphragm.
  • the aperture is the component that controls the amount of light in the camera.
  • the traditional aperture is composed of mechanical blades. The more the number of blades, the closer the opening is to the circle, but at the same time, the greater the thickness and the worse the reliability.
  • the structure of the traditional aperture 1'shown in Figure 1a and Figure 1b is shown.
  • the traditional aperture 1' has a plurality of mechanical blades 11', and the center of the plurality of mechanical blades 11' forms a light entrance hole J.
  • the mechanical blade 11' rotates with the center of the light entrance hole J as the center of rotation to change the size of the light entrance hole J (wherein, the light entrance hole J in Figure 1a is smaller, the light entrance hole J in Figure 1b is larger, and the aperture 1'is from The process in which the state shown in Fig. 1a changes to the state shown in Fig. 1b is the process of increasing the amount of light entering, and the process in which the aperture 1'changes from the state shown in Fig. 1b to the state shown in Fig. 1a is the process of reducing the amount of light input) .
  • the liquid diaphragm is a new type of diaphragm, in which there is no mechanical blade, but by controlling the movement of the colored liquid in the cavity to form larger or smaller openings (as shown in Figure 1c), the liquid diaphragm has more advantages than traditional mechanical diaphragms.
  • the advantages of round holes, low power consumption, fast response speed, and high precision have gradually become research hotspots in recent years and have not been used in consumer products.
  • the current liquid aperture can realize the driving adjustment of the opening size based on the electrowetting effect, and the principle can be combined with the electrowetting equation shown in Figure 1d with reference to the following electrowetting equation:
  • ⁇ 0 is the initial contact angle (not shown in Figure 1d)
  • is the contact angle after applying voltage
  • r lg is the surface tension of liquid and gas (it is not affected by the applied voltage and is a constant value)
  • ⁇ r is the relative dielectric constant of the insulating dielectric layer
  • ⁇ 0 is the vacuum dielectric constant
  • d is the thickness of the insulating dielectric layer
  • V is the voltage applied to the electrode.
  • the three-phase contact point in Figure 1d is simultaneously subjected to solid-liquid surface tension r sl , solid-gas surface tension r sg and liquid-gas surface tension r lg ; when a voltage is applied between the liquid-solid electrode, it can be
  • the change of the contact angle of the droplet that is, the wetting property of the hydrophobic surface can be changed by the electric field, and the size of the contact angle of the droplet on the hydrophobic surface can be changed.
  • the change in the contact angle of the droplet in the electrowetting effect can be used to push the opaque liquid to move, and then the size of the aperture of the aperture can be changed.
  • liquid aperture technology based on the electrowetting effect in the prior art is not mature enough to meet the demand for light input adjustment.
  • the present application provides a liquid diaphragm, an electronic device, and a driving method and a driving device of the liquid diaphragm, which are used to adjust the size of the aperture of the diaphragm.
  • the present application provides a liquid diaphragm, which can be applied to an electronic device with a camera function, and the amount of light entering the electronic device is adjusted when the electronic device takes a camera.
  • the liquid diaphragm includes a first substrate, a first electrode plate, an insulating layer, a hydrophobic layer, a hydrophilic layer, a retaining wall, and a second electrode plate arranged in close proximity in a set order (equivalent to the optical axis direction of the liquid diaphragm).
  • first substrate, the first electrode plate, the insulating layer, the hydrophobic layer, the hydrophilic layer, the second electrode plate, and the second substrate all have light-transmitting properties, and the retaining wall has light-blocking properties ;
  • the first substrate and the second substrate are equivalent to the bottom plate structure at both ends of the entire liquid aperture along the optical axis direction, the first substrate provides a bearing support for the first electrode plate, and the second substrate provides a bearing support for the second electrode plate
  • the first substrate and the second substrate can also provide protection for the entire liquid aperture; when in use, voltage can be applied to the first electrode plate and the second electrode plate , So that an electric field can be formed between the first electrode plate and the second electrode plate;
  • the insulating layer is arranged on the side of the first electrode plate away from the first substrate to insulate the hydrophobic layer from the first electrode plate, that is, It is equivalent to insulating the hydrophobic layer and the above structure from
  • the second hydrophilic part, the first hydrophilic part and the second hydrophilic part have the same thickness; the first hydrophilic part is located in the central area of the hydrophilic layer, and the second hydrophilic part is located in the outer area of the hydrophilic layer;
  • One hydrophilic part is cylindrical, and its axis is coaxial with the optical axis of the liquid aperture; the middle part of the second hydrophilic part has a cylindrical hollow, and the shape of the outer edge is not limited, such as circular, rectangular, etc.
  • the axis of the cylindrical hollow is also coaxial with the optical axis of the liquid aperture;
  • the first hydrophilic part is located in the central area of the cylindrical hollow, and the radius of the first hydrophilic part is smaller than the radius of the cylindrical hollow, so that There is a gap between the first hydrophilic part and the second hydrophilic part;
  • each second hollow structure penetrates the hydrophilic layer, so that the surface of the hydrophobic layer facing the hydrophilic layer can be exposed from the part of the second hollow structure, and each second hollow structure
  • the axis of the iris coincides with the optical axis of the liquid aperture;
  • a retaining wall is arranged between the hydrophilic layer and the second electrode plate, and the middle of the retaining wall forms a first hollow structure.
  • the first hollow structure can Through the retaining wall; the first hollow structure is connected to the N second hollow structures, so that a closed cavity is formed between the second electrode plate, the retaining wall, the hydrophilic layer and the hydrophobic layer; it should be understood that the first substrate, the first
  • the arrangement of electrode plates, insulating layers, hydrophobic layers, hydrophilic layers, retaining walls, second electrode plates and second substrates in close proximity helps to ensure the sealing of the enclosed cavity.
  • the retaining walls and hydrophilic layers are in the first place.
  • the two electrode plates and the hydrophobic layer serve as a sealing structure for the enclosed cavity; the enclosed cavity is filled Filled with light-transmitting transparent electrolyte and opaque colored ink, the transparent electrolyte and colored ink are incompatible; the surface adsorption capacity of the hydrophilic layer to the transparent electrolyte is greater than the surface adsorption capacity of the hydrophobic layer to the transparent electrolyte, the hydrophilic layer
  • the surface adsorption capacity of colored ink is less than the surface adsorption capacity of hydrophobic layer to colored ink; the volume of transparent electrolyte is fixed, and the volume of colored ink is also fixed.
  • the space occupied by the colored ink is filled to the vacant position of the transparent electrolyte, which is equivalent to the change in the distribution of the transparent electrolyte and the colored ink in the closed cavity; the transparent electrolyte is used to isolate the colored ink from the second electrode plate , The transparent electrolyte is in contact with the second electrode plate, and the colored ink is equivalent to being "pressed” by the transparent electrolyte on the side of the hydrophobic layer; when an electric field is formed between the first electrode plate and the second electrode plate, you can change the electric field The strength changes the wetting effect of the transparent electrolyte on the part of the hydrophobic layer corresponding to the battery.
  • the transparent electrolyte is light-transmissive, that is, the transparent electrolyte can allow light to pass through, and the colored ink is opaque, that is, the colored ink can block the light from passing through, and the distribution state of the transparent electrolyte and colored ink in the closed cavity can be controlled to change the liquid aperture.
  • the working principle of the above-mentioned liquid diaphragm is: when no electric field is formed between the first electrode plate and the second electrode plate or the intensity of the formed electric field is less than a set threshold, the hydrophobic layer area corresponding to the electric field is hydrophobic relative to the transparent electrolyte.
  • the contact angle between the transparent electrolyte and the hydrophobic layer is relatively large.
  • the transparent electrolyte is basically filled in the first hollow structure, while the colored ink is basically filled in the N second hollow structures.
  • the colored ink can be spread evenly to cover the exposed hydrophobic layer.
  • the size of the light entrance hole of the liquid aperture is determined by the first hydrophilic part; because the electric field between the first electrode plate and the second electrode plate here cannot change the transparent electrolyte And the distribution of colored ink in the enclosed cavity, the electric field at this time is equivalent to an invalid electric field; when an electric field is formed between the first electrode plate and the second electrode plate and the intensity of the electric field is equal to or greater than the above-mentioned set threshold, the electric The area of the hydrophobic layer corresponding to the location exhibits hydrophilic properties to the transparent electrolyte. The contact angle between the transparent electrolyte and the hydrophobic layer is reduced.
  • the transparent electrolyte enters the second hollow structure from the first hollow structure and contacts part of the hydrophobic layer during this process.
  • the transparent electrolyte pushes the colored ink in the second hollow structure to the edge of the second hollow structure away from the optical axis of the liquid aperture, which is equivalent to increasing the size of the light entrance hole for light to pass through, that is, the size of the liquid aperture.
  • the light inlet has been enlarged; since the electric field between the first electrode plate and the second electrode plate here can change the distribution of the transparent electrolyte and colored ink in the enclosed cavity, the electric field at this time is equivalent to the effective electric field;
  • the electric field intensity between the first electrode plate and the second electrode plate changes from equal to or greater than the set threshold value to less than the set threshold value
  • the hydrophobic layer relative to the transparent electrolyte changes from hydrophilic properties to hydrophobic properties, and the transparent electrolyte and the hydrophobic layer
  • the contact angle between them increases again, the transparent electrolyte returns to the first hollow structure, and the colored ink can be restored to be evenly spread on the surface of the hydrophobic layer, realizing the reduction of the liquid aperture light entrance hole.
  • the size of the contact angle on the hydrophobic layer and the wetting state of the transparent electrolyte on the hydrophobic layer can change the area of the colored ink covering the hydrophobic layer in the N second hollow structures, thereby changing the size of the liquid aperture light entrance hole; that is,
  • the liquid diaphragm provided in the present application can be driven by a low voltage to realize the driving adjustment of the liquid diaphragm, which can meet the current consumer demand for adjusting the amount of light entering the diaphragm; and, in this process, the existence of the first hydrophilic part can make the liquid diaphragm constant
  • the range of the aperture value of the liquid aperture provided in this application may be 1.2-8.
  • the retaining wall can be arranged in at least the following two ways.
  • the retaining wall is directly formed on the side of the second electrode plate facing the hydrophilic layer through UV (ultraviolet) photolithography.
  • the material of the retaining wall can be photoresist.
  • the layers are bonded by adhesive;
  • the retaining wall is independent of the second electrode plate, and the retaining wall and the second electrode plate, and between the retaining wall and the hydrophilic layer are respectively bonded by adhesive, here
  • the material of the retaining wall can be glass, PMMA (polymethyl methacrylate, commonly known as acrylic) or other hard high molecular polymers.
  • the adhesive can be pressure-sensitive adhesive or epoxy adhesive.
  • the density difference between the transparent electrolyte and the colored ink should be less than or equal to 0.09 g/cm 3 , so as to minimize the influence of the gravity difference caused by the density difference on the distribution state of the two.
  • the height of the retaining wall (that is, the dimension in the thickness direction of the liquid aperture) can be 0.05-2mm, and the thickness of the hydrophilic layer can be 0.5-3um.
  • the thicknesses of other structures are as follows, the thickness of the hydrophobic layer can be 0.02-1um, the thickness of the insulating layer can be 0.5-1um, and the thickness of the first electrode plate and/or the second electrode plate can be 20-30nm.
  • the material of the first electrode plate and the second electrode plate can be transparent ITO (indium tin oxide, indium tin oxide) or nano silver, and the material of the hydrophobic layer can be fluorine-containing polymer
  • the material of the hydrophilic layer can be photoresist.
  • the first substrate, the first electrode plate, the insulating layer, the hydrophobic layer, the hydrophilic layer, the retaining wall, and the second can be configured to match the structure, and the match here can refer to the shape and size.
  • the shapes of the first substrate and the second substrate are not limited, as long as the surface of the first substrate facing the second substrate is flat, and the surface of the second substrate facing the first substrate is flat; the outer surface of the first substrate (Equivalent to the surface of the first substrate away from the second substrate) may be a curved surface, and the outer surface of the second substrate (equivalent to the surface of the second substrate away from the first substrate) may also be a curved surface.
  • the first electrode plate may include a first sub-electrode, the first sub-electrode is a solid circular plate and the axis of the first sub-electrode is coaxial with the optical axis of the liquid aperture, so that the first sub-electrode
  • the electrode may correspond to the first hydrophilic part; along the direction perpendicular to the optical axis of the liquid aperture, the radius of the first sub-electrode is greater than the radius of the first hydrophilic part and smaller than the radius of the inner edge of the second hydrophilic part, which is equivalent to the first
  • the projection of the hydrophilic part on the hydrophobic layer falls within the projection range of the first sub-electrode on the hydrophobic layer, while the projection of the second hydrophilic part on the hydrophobic layer is not in contact with the projection of the first sub-electrode on the hydrophobic layer ;
  • the first electrode pad here may include a central electrode and M arc electrodes arranged in the same layer, where M is an integer greater than or equal to 1; the central electrode is a solid circular plate and the central electrode Located in the central area of the first electrode plate; the axis of each arc electrode is coaxial with the optical axis of the liquid aperture and the radius of each arc electrode is different, the central electrode and each arc electrode are respectively circumscribed by at least one
  • the lead wire in use, can apply voltage to the center electrode and each arc electrode separately; along the direction perpendicular to the optical axis of the liquid aperture, the radius of the outer edge of the arc electrode located on the outermost side of the first electrode plate is larger than that of the first electrode.
  • the radius of the hydrophilic part is smaller than the radius of the inner edge of the second hydrophilic part.
  • the width between the arc electrode adjacent to the center electrode and the center electrode is 10-50 ⁇ m, and the width between any two adjacent arc electrodes is 10-50 ⁇ m. This width makes the corresponding transparent electrolyte When it cannot be affected by the electric field between the first electrode plate and the second electrode plate, the transparent electrolyte can still move by virtue of its own motion inertia. Therefore, the first electrode plate with this structure can still adjust the size of the liquid aperture .
  • the third hydrophilic part; the axis of the third hydrophilic part is coaxial with the optical axis of the liquid diaphragm, the radius of the inner edge of the third hydrophilic part is larger than the radius of the first hydrophilic part, and the outer edge of the third hydrophilic part
  • the radius of is smaller than the radius of the inner edge of the second hydrophilic part, that is, the third hydrophilic part is neither connected to the first hydrophilic part nor connected to the second hydrophilic part, so that the first hydrophilic part and the third hydrophilic part are in contact with each other.
  • a second hollow structure is formed between the water parts, and a second hollow structure is formed between the second hydrophilic part and the third hydrophilic part; correspondingly, the first electrode pad includes a first sub-electrode and a third sub-electrode, The first sub-electrode is a solid circular plate and the first sub-electrode is located in the central area of the first electrode plate, the third sub-electrode is arc-shaped and the third sub-electrode surrounds the first sub-electrode; the axis of the first sub-electrode , The axis of the third sub-electrode is coaxial with the optical axis of the liquid diaphragm, and the first sub-electrode and the third sub-electrode are respectively circumscribed with at least one lead; wherein the radius of the outer edge of the first sub-electrode is larger than that of the first hydrophilic The radius of the inner edge of the third hydrophilic portion is smaller than the radius of the inner edge
  • the liquid aperture of this structure can be formed with a light entrance hole including a circular opening and a ring-shaped opening surrounding the opening to control the correspondence between the first sub-electrode, the third sub-electrode and the second electrode plate
  • the formation of an electric field can correspondingly control the distribution of the colored inks corresponding to the two hollow structures, and then control the size adjustment of the light entrance hole of the liquid aperture.
  • the water layer also includes N-1 ring-shaped third hydrophilic parts located between the first hydrophilic part and the second hydrophilic part. The axis of each third hydrophilic part is connected to the optical axis of the liquid diaphragm.
  • the hydrophilic layer is from the inside to the outside, the radius of the inner edge of the xth third hydrophilic part is r xi , the radius of the outer edge is r xj , all third hydrophilic
  • Each third sub-electrode is arc-shaped and the axis of each third sub-electrode is coaxial with the optical axis of the liquid aperture. Axis; the first sub-electrode and each third sub-electrode are respectively externally connected with at least one lead; along the direction perpendicular to the optical axis of the liquid aperture, the first electrode plate is from the inside to the outside, the inner edge of the y-th third sub-electrode The radius of is R yi and the radius of the outer edge is R yj .
  • such a structure setting can limit the colored ink in the corresponding second hollow The distribution range within the structure.
  • the first electrode pad may further include a second sub-electrode located in the peripheral area of the first electrode pad, the second sub-electrode is equivalent to the outermost structure located on the first electrode pad, and the first sub-electrode
  • the electrode and the second sub-electrode are arranged in the same layer, the middle of the second sub-electrode has a hollow, the first electrode plate is located in the central area of the second sub-electrode, and the second sub-electrode is externally connected with at least one lead.
  • the distance between the inner edge of the second sub-electrode and the optical axis of the liquid diaphragm is smaller than the radius of the inner edge of the second hydrophilic part, so that the projection of the second hollow structure closest to the second sub-electrode on the hydrophobic layer is the same as that of the second sub-electrode.
  • the projection on the layer has an overlapping area.
  • the wettability between the transparent electrolyte causes the transparent electrolyte to pressurize the colored ink corresponding to the second sub-electrode to promote the movement of the colored ink to the inner edge of the second hollow structure, which is equivalent to promoting the reduction of the liquid aperture.
  • different voltages can be applied to the first sub-electrode and the second sub-electrode so that the electric field formed between the first sub-electrode and the second electrode plate and the electric field formed between the second sub-electrode and the second electrode plate exist
  • the intensity is poor, and the size of the light entrance hole of the liquid aperture can be adjusted according to the needs.
  • the second electrode plate can be a solid plate-like structure, and its structure is continuous without hollows.
  • the distance between the inner edge of the barrier wall and the optical axis of the liquid aperture is greater than the inner edge diameter of the second hydrophilic part, which is equivalent to .
  • the projection of the retaining wall on the hydrophobic layer falls within the projection range of the second hydrophilic part on the hydrophobic layer, so that the colored ink will not contact the retaining wall and prevent the colored ink from contacting the second electrode plate under capillary action .
  • the distance between the inner edge of the barrier wall and the inner edge of the second hydrophilic part may be greater than or equal to 0.1 mm.
  • the present application also provides an electronic device, which may specifically be a smart phone, a tablet computer, a smart watch, etc., with a camera function.
  • the electronic device includes a device body, a main board, and a camera.
  • the main board is arranged in the device body, and the camera is installed on the device body.
  • the electrode plates are electrically connected; when in use, the voltage applied to the first electrode plate and the second electrode plate is adjusted through the main board to change the electric field formed between the first electrode plate and the second electrode plate. Drive the adjustment of the size of the light entrance hole of the liquid aperture, so as to meet the requirements of this type of electronic equipment for adjusting the amount of light when taking photos or videos.
  • the present application also provides a method for driving a liquid diaphragm, which is used to adjust the size of the light entrance hole of the liquid diaphragm, which specifically includes the following steps:
  • the iris adjustment command instructs to increase the iris, increase the electric field intensity between the first electrode plate and the second electrode plate to change the distribution state of the transparent electrolyte and the colored ink, and make the colored ink go out of the corresponding second hollow structure. Move the edge to increase the light passing through the liquid aperture;
  • the iris adjustment command instructs to reduce the iris, reduce the electric field intensity between the first electrode plate and the second electrode plate to change the distribution of the transparent electrolyte and the colored ink, so that the colored ink spreads on the corresponding hydrophobic layer to reduce Light passing through the liquid aperture.
  • changing the electric field strength between the first electrode plate and the second electrode plate is achieved by changing the voltage applied to the first electrode plate and the second electrode plate, and the change of the electric field can change the hydrophobic layer and
  • the contact angle between the transparent electrolytes changes the wettability between the hydrophobic layer and the transparent electrolyte, so that the transparent electrolyte can move in the closed cavity, thereby pushing the colored ink to move, and realizing the adjustment of the light entrance hole size of the liquid aperture.
  • the aperture adjustment instruction there are at least two ways to obtain the aperture adjustment instruction.
  • One is to directly obtain the aperture adjustment instruction issued by the user, that is, the user can directly change the voltage applied to the first electrode plate and the second electrode plate; the second is to obtain The iris adjustment command issued by the control center, where the control center can be the motherboard in the above electronic device, controls the liquid iris through a software program.
  • the present application also provides a driving device for a liquid diaphragm, and the driving device is used to drive the above-mentioned liquid diaphragm.
  • the driving device may include modules or units for performing various operations in the above-mentioned driving method of the liquid diaphragm, such as an acquisition module and an electric field adjustment module.
  • the acquisition module is used to obtain the aperture adjustment instruction
  • the electric field adjustment module is used to call the aperture adjustment instruction to perform the following process: when the aperture adjustment instruction instructs to increase the aperture, increase the first electrode plate and the second electrode plate In order to change the distribution state of the transparent electrolyte and the colored ink, the colored ink moves to the outer edge of the corresponding second hollow structure to increase the light passing through the liquid aperture; or, the electric field adjustment module is also used to adjust the aperture
  • the instruction instructs to reduce the aperture, reduce the electric field intensity between the first electrode plate and the second electrode plate, to change the distribution state of the transparent electrolyte and the colored ink, and spread the colored ink to the corresponding hydrophobic layer to reduce the penetration. Light passing through the liquid aperture.
  • the present application also provides an electronic device, which includes a processor, a memory, and any liquid aperture in the above technical solutions.
  • the memory is used to store program instructions;
  • the processor is used to call the stored program instructions from the memory, and execute the above-mentioned driving method through the liquid aperture.
  • Figures 1a and 1b are schematic diagrams of the structure of a mechanical aperture
  • Fig. 1c is a schematic diagram of adjusting the size of the light entrance hole of the liquid aperture
  • Figure 1d is a schematic diagram of the principle of electrowetting effect
  • FIG. 2 is a schematic structural diagram of a liquid aperture provided in Embodiment 1 of this application;
  • FIG. 3a is a schematic cross-sectional structure diagram of a liquid diaphragm provided in Embodiment 1 of the application when it is not filled with liquid;
  • FIG. 3a is a schematic cross-sectional structure diagram of a liquid diaphragm provided in Embodiment 1 of the application when it is not filled with liquid;
  • FIG. 3b is a schematic structural diagram of a first substrate in a liquid aperture provided in Embodiment 1 of the application; FIG.
  • FIG. 3c is a schematic structural diagram of a second substrate in a liquid aperture provided in Embodiment 1 of the application; FIG.
  • 3d is a schematic structural diagram of a first electrode plate in a liquid aperture provided in the first embodiment of the application;
  • 3e is a schematic diagram of the structure of an insulating layer in a liquid aperture provided in the first embodiment of the application;
  • 3f is a schematic structural diagram of a hydrophobic layer in a liquid aperture provided in Embodiment 1 of the application;
  • FIG. 3g is a schematic diagram of the structure of a hydrophilic layer in a liquid aperture provided in Embodiment 1 of the application; FIG.
  • 3h is a schematic structural diagram of a retaining wall in a liquid aperture provided in Embodiment 1 of the application;
  • FIG. 3i is a schematic structural diagram of a second electrode plate in a liquid aperture provided in Embodiment 1 of the application; FIG.
  • 3j is a schematic diagram of a cross-sectional structure of a liquid aperture provided in Embodiment 1 of the present application;
  • 3k is a schematic diagram of a cross-sectional structure of a liquid aperture provided in Embodiment 1 of the present application;
  • FIG. 31 is a schematic diagram of a cross-sectional structure of a liquid aperture provided in Embodiment 1 of the present application.
  • 3m to 3p are schematic diagrams of a process of adjusting the size of the light entrance hole of a liquid aperture provided in the first embodiment of the application;
  • FIG. 4a is a schematic structural diagram of a first electrode plate in a liquid aperture provided in the second embodiment of the application;
  • 4b is a schematic cross-sectional structure diagram of a liquid aperture provided in the second embodiment of the application.
  • FIG. 5a is a schematic structural diagram of a first electrode plate in a liquid aperture provided in the third embodiment of the application.
  • FIG. 5b is a schematic cross-sectional structure diagram of a liquid aperture provided in the third embodiment of the application.
  • FIG. 6a is a schematic structural diagram of a first electrode plate in a liquid aperture provided in the fourth embodiment of the application.
  • 6b is a schematic diagram of a cross-sectional structure of a liquid aperture provided in the fourth embodiment of the application.
  • FIG. 7a is a schematic structural diagram of a hydrophilic layer in a liquid aperture provided in Embodiment 5 of the application; FIG.
  • FIG. 7b is a schematic structural diagram of a first electrode plate in a liquid aperture provided in the fifth embodiment of the application.
  • FIG. 7c is a schematic cross-sectional structure diagram of a liquid aperture provided in Embodiment 5 of the application.
  • 7d to 7j are schematic diagrams of the process of adjusting the size of the light entrance hole of a liquid aperture provided in the fifth embodiment of this application;
  • FIG. 8a is a schematic structural diagram of a hydrophilic layer in a liquid aperture provided in Embodiment 6 of the application; FIG.
  • FIG. 8b is a schematic structural diagram of a first electrode plate in a liquid aperture provided in the sixth embodiment of the application.
  • FIG. 8c is a schematic cross-sectional structure diagram of a liquid aperture provided in the sixth embodiment of the application.
  • 8d to 8h are schematic diagrams of the process of adjusting the size of the light entrance hole of a liquid aperture provided in the sixth embodiment of this application;
  • FIG. 9a is a schematic structural diagram of a hydrophilic layer in a liquid aperture provided in Embodiment 7 of the application.
  • FIG. 9b is a schematic structural diagram of a first electrode plate in a liquid aperture provided in the seventh embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a retaining ring in a liquid aperture provided in Embodiment 8 of this application;
  • FIG. 11 is a schematic structural diagram of a retaining ring in a liquid aperture provided in the ninth embodiment of the application.
  • FIG. 12 is a schematic diagram of the structure of a hydrophilic layer in a liquid aperture provided in the tenth embodiment of this application;
  • FIG. 13 is a schematic structural diagram of a hydrophobic layer in a liquid aperture provided in the eleventh embodiment of the application.
  • 14a to 14c are schematic diagrams of the structure of a liquid aperture provided in the thirteenth embodiment of the application.
  • 15 is a schematic structural diagram of an electronic device provided by an embodiment of this application.
  • FIG. 16 is a schematic flowchart of a method for driving a liquid aperture according to an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • the liquid diaphragm is a new type of diaphragm that can be used in equipment with camera functions to control the amount of light entering the camera, especially for electronic devices that require miniaturization in volume, quality and space.
  • Liquid diaphragms Compared with mechanical aperture, it has more advantages.
  • the current liquid aperture has various problems, such as high driving voltage, small aperture size adjustment range, insufficient round aperture, low repetitiveness of the center position of the aperture, and complex structure. These defects affect the commercial feasibility of the liquid aperture. Therefore, the embodiments of the present application provide a liquid aperture, which adopts a relatively simple structural design and combines the principle of electrowetting to realize the adjustment of the amount of light entering the camera.
  • the first substrate 1 and the second substrate 8 are equivalent to the upper and lower base structures of the liquid aperture 01. Therefore, the first substrate 1 and the second substrate 8 are solid plate-shaped structures, and the structure is continuous. There is a hollow.
  • the first substrate 1 can provide bearing and support for the first electrode plate 2
  • the second substrate 8 can provide bearing and support for the second electrode plate 7.
  • the first substrate 1 and the second substrate 8 can also provide protection for the structure of the entire liquid aperture 01.
  • the first electrode pad 2 and the second electrode pad 7 in FIG. 2 are shown in a layered structure, in order to clearly show that the first electrode pad 2 and the second electrode pad 7 are in the whole liquid
  • the circuit traces that play the role of the electrode in the first electrode plate 2 can be formed on the solid board (the first electrode plate 2 shown in Figure 2 is equivalent to It is composed of circuit traces in a plate-like structure), or the circuit traces can be directly formed on the first substrate 1 by plating or other methods (at this time, the thickness of the first electrode plate 2 can be nanometer level, although the thickness is particularly It is thin, but the first electrode plate 2 still has a certain thickness, which is structurally protruding from the surface of the first substrate 1.
  • the first electrode plate 2 can still be understood as a "layer”); correspondingly,
  • the circuit that functions as an electrode on the second electrode plate 7 can be formed on a physical board (the second electrode plate 7 shown in FIG. 2 is equivalent to being formed by circuit traces in a plate-like structure), or it can be formed by circuit traces. Electroplating and other methods are directly formed on the second substrate 8 (at this time, the thickness of the second electrode plate 7 can be achieved at the nanometer level. Although its thickness is particularly thin, the second electrode plate 7 still has a certain thickness. It protrudes from the surface of the second substrate 8. Therefore, the second electrode plate 7 can still be understood as a "layer”).
  • the first electrode pad 2 and the second electrode pad 7 are shown in a layered structure in FIG. The position of is not used to limit the specific implementation form of the first electrode pad 2 and the second electrode pad 7.
  • the insulating layer 3 is arranged on the side of the first electrode plate 2 facing the second substrate 8. It can insulate and isolate the first electrode plate 2 from the hydrophobic layer 4, which is also equivalent to separating the hydrophobic layer 4 and the structure thereon from the first
  • the electrode plates 2 are insulated and isolated.
  • the insulating layer 3 is a solid plate-like structure made of insulating material, and its structure is continuous without hollowing out; the outer edge of the insulating layer 3 is a rectangle matching the first substrate 1, and the thickness of the insulating layer 3 is 0.5- 1 ⁇ m, for example, the thickness of the insulating layer 3 may be 0.5 ⁇ m, 0.6 ⁇ m, 0.8 ⁇ m, or 1 ⁇ m.
  • the hydrophobic layer 4 and the hydrophilic layer 5 are relative terms, both of which are relatively hydrophobic or relatively hydrophilic for the same liquid.
  • water here refers to liquid
  • the flowable substance is not limited to water in common sense; the hydrophobic layer 4 refers to a layered substance that exhibits hydrophobic characteristics with the liquid, and correspondingly, the hydrophilic layer 5 refers to a layered substance that exhibits affinity for the liquid. A layered substance with water characteristics.
  • the liquid diaphragm 01 When the liquid diaphragm 01 is in use, it is necessary to form a light entrance hole for light to pass through in the middle of the light-blocking structure. It should be understood that the optical axis direction of the liquid diaphragm 01 is parallel to the Y direction, that is, the light will be parallel to the Y direction. Way through the liquid aperture 01.
  • the first substrate 1, the first electrode 2, the insulating layer 3, the hydrophobic layer 4, the hydrophilic layer 5, the second electrode 7 and the second substrate 8 are light-transmissive, and the retaining wall 6 is Here, it has light blocking properties, and the method of forming the light entrance hole and the adjustment of the light entrance hole will be exemplarily introduced through the following specific embodiments.
  • the liquid diaphragm 01 shown in FIG. 3a is not filled with liquid.
  • the liquid aperture 01 includes a certain sequence (the bottom-up direction shown by Y in Fig.
  • the central area of the retaining wall 6 has a first hollow structure A1, and the hydrophilic layer 5 has a second hollow structure A2.
  • the first hollow structure A1 and the second hollow structure A2 are connected, so that the second electrode plate 7 and the hydrophilic layer 5.
  • a closed cavity A is formed between the retaining wall 6 and the hydrophobic layer 4, which will be described in detail below in conjunction with the structure of each layer.
  • FIGS. 3b and 3c show the structures of the first substrate 1 and the second substrate 8 in an embodiment of the present application, and both the first substrate 1 and the second substrate 8 It is a solid plate structure, and its outer edge is rectangular in the direction perpendicular to the optical axis of the liquid aperture 01.
  • the upper and lower surfaces of the first substrate 1 shown in FIGS. 3b and 3c are both flat surfaces, and the upper and lower surfaces of the second substrate 8 are also flat surfaces.
  • the first substrate 1 and the second substrate 8 have better light transmittance during specific implementation.
  • the first substrate 1 and the second substrate 8 may be glass.
  • Figure 3d shows the structure of the first electrode pad 2.
  • the first sub-electrode 21 included in the first electrode pad 2 is a solid plate-shaped transparent electrode with a continuous structure without hollowing out.
  • the specific material can be ITO, nano silver or Other transparent electrode materials; the first sub-electrode 21 is externally connected with a lead 201, when a voltage is to be applied to the first electrode plate 2, the lead 201 can be connected to an external power source; it should be understood that only shown here
  • one lead 201 in actual applications, one or more leads 201 can be set according to specific application scenarios; in addition, the connection direction of the lead 201 and the first sub-electrode 21 is not limited to that shown in FIG. 3d.
  • the thickness of the first electrode plate 2 can be 20-30 nm, for example, the thickness of the first electrode plate 2 The thickness can be 20nm, 22nm, 25nm, 28nm, 30nm.
  • the insulating layer 3 is a solid plate-shaped structure made of insulating material, and its structure is continuous and there is no hollow.
  • the hydrophobic layer 4 is a continuous, solid layered structure arranged on the side of the insulating layer 3 away from the first electrode plate 2.
  • the hydrophobic layer 4 can be made of a fluoropolymer.
  • the outer edge is a rectangle matching the first substrate 1, and the thickness is 0.02-1 ⁇ m.
  • the thickness of the hydrophobic layer 4 can be 0.02 ⁇ m, 0.1 ⁇ m, 0.25 ⁇ m, 0.3 ⁇ m, 0.5 ⁇ m, 0.75 ⁇ m, 1 ⁇ m; in the case of normal temperature and pressure and no power is applied, the water-air contact angle of the hydrophobic layer 4 should be greater than 110°.
  • the hydrophilic layer 5 is a layered structure arranged on the side of the hydrophobic layer 4 away from the insulating layer 3, but the layered structure of the hydrophilic layer 5 is discontinuous; please refer to Figure 3g for the structure of the hydrophilic layer 5, the hydrophilic layer 5 It includes a first hydrophilic portion 51 and a second hydrophilic portion 52.
  • the first hydrophilic portion 51 and the second hydrophilic portion 52 are provided on the hydrophobic layer 4 in the same layer, and the first hydrophilic portion 51 and the second hydrophilic portion 52 has the same thickness;
  • the first hydrophilic portion 51 is cylindrical, and the first hydrophilic portion 51 is located in the central area of the entire hydrophilic layer 5;
  • the second hydrophilic portion 52 is frame-shaped, the outer edge is shown as a rectangle, and the central area has Cylindrical hollow, that is, the inner edge of the second hydrophilic portion 52 is equivalent to a cylindrical surface, the first hydrophilic portion 51 is located in the central area of the cylindrical hollow, and the cylindrical hollow inner edge of the second hydrophilic layer 51 is connected to the first hydrophilic layer 51.
  • a ring-shaped second hollow structure A2 is formed between the outer edges of a hydrophilic part 51; in operation, the axis of the second hollow structure A2 is coaxial with the optical axis of the liquid diaphragm 01; the second hollow structure A2 It is equivalent to penetrating the hydrophilic layer 5 along the thickness direction of the hydrophilic layer 5. Therefore, a part of the surface of the hydrophobic layer 4 facing the second electrode plate 7 can be exposed from the second hollow structure A2.
  • the hydrophilic layer 5 can be made of photoresist with a thickness of 0.5-3 ⁇ m.
  • the thickness of the hydrophilic layer 5 can be 0.5 ⁇ m, 1 ⁇ m, 1.6 ⁇ m, 2.5 ⁇ m, 3 ⁇ m; In this case, the water-air contact angle of the hydrophilic layer 5 is less than 70°.
  • the retaining wall 6 is arranged between the hydrophilic layer 5 and the second electrode plate 7.
  • the retaining wall 6 is also frame-shaped, as shown in Fig. 3h, the outer edge of the retaining wall 6 is a rectangle matching the first substrate 2.
  • the middle part has a cylindrical hollow, that is, the inner edge of the retaining wall 6 is equivalent to a cylindrical surface, and the cylindrical hollow forms the first hollow structure A1; it should be understood that the first hollow structure A1 penetrates the retaining wall 6 along the thickness of the retaining wall 6 so that A part of the second electrode pad 7 is exposed toward the surface of the first electrode pad 2.
  • the height of the retaining wall 6 ie, the dimension in the Y direction shown in FIG. 3a
  • the height of the retaining wall 6 is 0.05-2mm.
  • the height of the retaining wall 6 can be 0.05mm, 0.8mm, 1mm, 1.2mm, 1.6mm, 2mm; here, the material of the retaining wall 6 can be photoresist, which is directly made by UV lithography on the second electrode plate 7, and the retaining wall 6 and the hydrophilic layer 5 are independent of each other.
  • adhesive such as pressure-sensitive adhesive, epoxy adhesive, etc.
  • the first hollow structure A1 and the second hollow structure A2 in the embodiment of the present application are connected, so that the hydrophobic layer 4, the second electrode plate 7, the hydrophilic layer 5, and the retaining wall 6 A closed cavity A is formed therebetween, and the above-mentioned retaining wall 6 and the hydrophilic layer 5 are equivalent to serving as a sealing structure between the hydrophobic layer 4 and the second electrode plate 7.
  • the second electrode pad 7 can be a rectangular transparent electrode.
  • the specific material can be ITO, nano silver or other transparent electrode materials.
  • the second electrode pad 7 here is also a solid plate structure.
  • the outer edge is a rectangle matching the first substrate 1.
  • the thickness of the second electrode pad 7 can be 20-30nm, for example, the thickness of the second electrode pad 7 can be 20nm , 22nm, 25nm, 28nm, 30nm.
  • the liquid aperture 01 shown in FIG. 3j By aligning and stacking the above structures sequentially in a set order, the liquid aperture 01 shown in FIG. 3j can be obtained.
  • the first electrode 2 is shown in the form of a first sub-electrode 21.
  • the first electrode 2 can be filled with other structures 2'at the edge of the first sub-electrode 21 as shown in FIG. 3k so that the outer edge of the area where the first electrode 2 is located can also be kept neat with the structures of other layers.
  • the closed cavity A is filled with transparent electrolyte 9 and colored ink 10.
  • the transparent electrolyte 9 is a transparent salt-containing solution, which has a relatively high transmittance to part or all of the visible light and infrared light spectrum.
  • the colored ink 10 is an oily liquid containing dyes, and has a relatively low transmittance to part or all of the visible light and infrared light spectrum.
  • the liquid aperture 01 when the liquid aperture 01 is applied to a device with a camera function, light can pass through the transparent electrolyte 9, but basically cannot pass through the colored ink 10, and the distribution state of the colored ink 10 can be reflected in the light that can be formed.
  • the state of the shadow on the periphery of the hole, that is, the distribution of the colored ink 10 determines the size of the light entrance hole of the liquid aperture 01, and the distribution state of the colored ink 10 here is changed by the distribution state of the transparent electrolyte 9.
  • the hydrophilic properties of the hydrophilic layer 5 and the hydrophobic properties of the hydrophobic layer 4 in the embodiments of the present application are reflected relative to the transparent electrolyte 9 here.
  • the hydrophilic layer 5 has a greater surface adsorption capacity for the transparent electrolyte 9 than the hydrophobic layer 4
  • the surface adsorption capacity of the transparent electrolyte 9 is less than the surface adsorption capacity of the hydrophobic layer 4 to the colored ink 10; in the working process, the transparent electrolyte 9 and the hydrophobic layer 4 are changed to be hydrophilic
  • the wetting state between the layers 5 can change the distribution state of the colored ink 10 and realize the adjustment of the size of the light entrance hole of the liquid aperture 01.
  • the transparent electrolyte 9 and the colored ink 10 are filled in the closed cavity A, and they are not compatible. There is always an interface between the transparent electrolyte 9 and the colored ink 10 (as shown in Figure 3k, the colored ink 10
  • the ink 10 is basically filled in the second hollow structure A2, and the transparent electrolyte 9 is basically filled in the first hollow structure A1.
  • the interface between the transparent electrolyte 9 and the colored ink 10 is basically equivalent to the barrier wall 6 and the hydrophilic layer 5.
  • the transparent electrolyte 9 On the contact surface, under the action of the surface tension of the liquid, the colored ink 10 slightly protrudes toward the transparent electrolyte 9); it should be understood that due to the liquid nature of the transparent electrolyte 9 and the structural limitation of the closed cavity A, the transparent electrolyte 9 is not completely hydrophobic Layer 4 does not have any contact at all. On a microscopic level, there will be a little bit of transparent electrolyte 9 at the edge of the second hollow structure A2 (not shown in the figure) and there will be a wetting connection between the hydrophobic layer 4, but Macroscopically, the state shown in FIG. 3k is embodied; such a relationship is the basis for realizing the change of the contact angle between the hydrophobic layer 4 and the transparent electrolyte 9.
  • the volume of the closed cavity A occupied by the transparent electrolyte 9 is constant, and the volume of the closed cavity A occupied by the colored ink 10 is also constant. It should be understood that if the transparent electrolyte 9 flows into the space occupied by the colored ink 10, the transparent electrolyte 9 is equivalent to intruding into the space occupied by the colored ink 10, and the colored ink 10 will be "squeezed" into the empty space of the transparent electrolyte 9.
  • the density of the transparent electrolyte 9 and the density of the colored ink 10 in an ideal state should be equal, but the current process cannot achieve this effect.
  • the density difference between the transparent electrolyte 9 and the colored ink 10 is less than or equal to 0.09g/cm 3 , such a small density difference can minimize the impact of gravity on the transparent electrolyte caused by the density difference.
  • the smaller density difference can make the transparent electrolyte 9 and the colored ink 10 maintain a relatively stable position and shape.
  • the distance between the second electrode plate 7 and the hydrophobic layer 4 (also equivalent to the sum of the thickness of the hydrophilic layer 5 and the retaining wall 6) is as small as possible, so that the capillary in the entire enclosed cavity The effect is strong enough to offset the influence of a part of the gravity difference between the transparent electrolyte 9 and the colored ink 10 on the shape and distribution changes of the two.
  • the transparent electrolyte 9 separates the colored ink 10 and the second electrode plate 7, and the transparent electrolyte 9 can be connected to the second electrode plate 7, and can be connected to the first electrode plate 7 during operation.
  • a voltage is applied to the electrode plate 2 and the second electrode plate 7, so that an electric field is formed between the first electrode plate 2 and the second electrode plate 7. If the intensity of the formed electric field is equal to or greater than the set threshold of electric field intensity , The contact angle between the transparent electrolyte 9 and the hydrophobic layer 4 will decrease under the principle of electrowetting. When the contact angle between the transparent electrolyte 9 and the hydrophobic layer 4 is reduced, the transparent electrolyte 9 will move downward to contact the hydrophobic layer 4.
  • the transparent electrolyte 9 is equivalent to occupying a part of the space occupied by the colored ink 10, and the colored ink 10 will Squeezed by the transparent electrolyte 9, that is, the shape and distribution of the transparent electrolyte 9 and the colored ink 10 in the closed cavity A will change. During this change process, since light can pass through the transparent electrolyte 9 but will be blocked by the colored ink 10, the distribution of the transparent electrolyte 9 and the colored ink 10 in the closed cavity A is equivalent to determining the size of the light entrance hole of the liquid aperture 01.
  • the intensity of the electric field between the first electrode plate 2 and the second electrode plate 7 can be changed, and the transparent electrolyte 9 can be changed.
  • the state change between the transparent electrolyte 9 and the colored ink 10 can be reflected in the enlargement and reduction of the light input of the liquid aperture 01.
  • the above-mentioned setting threshold value of the electric field that can change the distribution state of the transparent electrolyte 9 and the colored ink 10 in the closed cavity A is equivalent to adjusting the critical electric field value of the liquid aperture 01 to enlarge or shrink, when the first electrode plate
  • the electric field intensity formed between 2 and the second electrode plate 7 is greater than or equal to the set threshold.
  • This electric field is the effective electric field.
  • this electric field is invalid electric field.
  • the projection range of the first hydrophilic portion 51 on the hydrophobic layer 4 can refer to B1, and the projection range of the second hydrophilic portion 52 on the hydrophobic layer 4 can refer to B21 and B22;
  • the projection range of the first sub-electrode 21 of the first electrode plate 2 on the hydrophobic layer 4 can be referred to B3. It can be seen that the projection of the first hydrophilic portion 51 on the hydrophobic layer 4 falls on the first sub-electrode 21 in the hydrophobic layer 4 In the projection on the layer 4, the projection of the first sub-electrode 21 on the hydrophobic layer 4 and the projection of the second hydrophilic portion 52 on the hydrophobic layer 4 are not connected.
  • the projection of the retaining wall 6 on the hydrophobic layer 4 falls within the projection range of the second hydrophilic portion 52 on the hydrophobic layer 4.
  • the inner edge size of the second hydrophilic portion 52 is B4, and the central area of the retaining wall 6 is cylindrical
  • the size of the hollow is B5, and B4 is smaller than B5; in other words, along the direction perpendicular to the optical axis of the liquid aperture 01 (that is, the X direction in FIG.
  • the radius of the outer edge of the first sub-electrode 21 is larger than that of the first hydrophilic part
  • the radius of 51 is smaller than the radius of the inner edge of the second hydrophilic part 52; the distance between the inner edge of the retaining wall 6 and the optical axis is greater than the radius of the inner edge of the second hydrophilic part 51, where the inner edge of the retaining wall 6 is equivalent to Cylindrical surface, the distance between the inner edge of the retaining wall 6 and the optical axis is the radius of the inner edge of the retaining wall 6;
  • the smallest dimension B6 between the inner edges of the portions 52 is not less than 0.1 mm, that is, the distance between the inner edge of the retaining wall 6 and the inner edge of the second hydrophilic portion 52 is greater than or equal to 0.1 mm.
  • the transparent electrolyte 9 and the colored ink 10 are filled in the closed cavity A, and there is an interface between the transparent electrolyte 9 and the colored ink 10.
  • no voltage is applied to the first sub-electrode 21 and the second electrode pad 7, so no electric field is formed between the first sub-electrode 21 and the second electrode pad 7 (or, the first sub-electrode 21 and the second Voltage is applied to the electrode plate 7, but the electric field formed between the first sub-electrode 21 and the second electrode plate 7 is not an effective electric field), the contact angle between the transparent electrolyte 9 and the hydrophobic layer 4 is relatively large, and the hydrophobic layer 4 The transparent electrolyte 9 exhibits hydrophobic characteristics.
  • the transparent electrolyte 9 is basically filled in the first hollow structure A1, and the colored ink 10 is basically filled in the second hollow structure A2.
  • the colored ink 10 is equivalent to forming an ink that can block light from passing through. Ring, the inner ring of the ink ring is equivalent to the liquid aperture 01 light entrance hole K, the size of the liquid aperture 01 light entrance hole K is equivalent to the size of the first hydrophilic part 51, and is also equivalent to the size of the inner ring of the colored ink 10 (can (Refer to Figure 3m for the structure of the ink ring below).
  • the transparent electrolyte 9 continues to move in the direction of the arrow in FIG.
  • the outer edge of the second hollow structure A2 (corresponding to the inner edge of the second hydrophilic part 52); since the electric field formed between the first sub-electrode 21 and the second electrode plate 7 corresponds to the first sub-electrode 21, The range of the edge of the first sub-electrode 21 is smaller than the range of the outer edge of the second hollow structure A2.
  • the transparent electrolyte 9 moves to the vicinity of the edge of the first sub-electrode 21, the electric field disappears and the transparent electrolyte 9 can no longer be generated as shown in Fig. 3n The movement of the colored ink 10 also disappears.
  • the distribution range and shape of the colored ink 10 will be as shown in Fig. 3o, that is, the colored ink 10 will be attached to the second prong of the outer edge of the second hollow structure A2.
  • the width of the ink ring formed by the colored ink 10 reaches the minimum, and correspondingly, the size of the light entrance hole K of the liquid aperture 01 reaches the maximum. Of course, the height of the colored ink 10 reaches the maximum.
  • the transparent electrolyte 9 still separates the colored ink 10 from the second electrode plate 7.
  • the size of the first hydrophilic portion 51 is equivalent to the minimum value that defines the light entrance hole K of the liquid aperture 01
  • the inner edge of the second hydrophilic portion 52 is equivalent to The maximum value of the light entrance hole K of the liquid aperture 01 is limited (of course, the minimum width of the colored ink 10 after being squeezed should also be considered here).
  • the diameter of the first hydrophilic portion 51 may be in the range of 0.5-2 mm
  • the diameter of the inner edge of the second hydrophilic portion 52 may be in the range of 2.5-10 mm.
  • the adjustment magnification range of the light entrance hole of the liquid aperture 01 is about 1.2-8. In actual production and use, it can be selected according to the needs of use.
  • the colored ink 10 is never in contact with the retaining wall 6, which can prevent the colored ink 10 from running along the retaining wall 6 due to capillary action.
  • Contacting the second electrode plate 7 can also reduce the resistance of the liquid aperture 01 to close after opening, reduce the driving voltage, and increase the reaction speed of the liquid aperture 01.
  • the liquid aperture 01 is transformed from FIG. 3m to FIG. 3n, and then transformed to the state shown in FIG.
  • the voltage applied to the second electrode plate 7 or the voltage is reduced to the point where an effective electric field cannot be formed between the first sub-electrode 21 and the second electrode plate 7, and the contact angle between the transparent electrolyte 9 and the hydrophobic layer 4 increases
  • the hydrophobic layer 4 exhibits hydrophobic properties to the transparent electrolyte 9.
  • the transparent electrolyte 9 will leave the hydrophobic layer 4 in the vertical upward arrow direction as shown in FIG.
  • the colored ink 10 moving along the horizontal arrow is occupied, and finally returns to the state shown in FIG. 3m, that is, the liquid aperture 01 is changed from FIG. 3o to FIG.
  • the liquid diaphragm 01 provided in the embodiment of the present application is an improvement on the structure of the liquid diaphragm 01 provided in the first embodiment.
  • the difference from the liquid diaphragm 01 provided in the second embodiment is that, as shown in FIG. 4a, the first liquid diaphragm 01 in the liquid diaphragm 01
  • An electrode plate 2 includes a first sub-electrode 21 and a second sub-electrode 22.
  • the first sub-electrode 21 is a circular solid plate structure located in the center area of the entire first electrode plate 2, and the first sub-electrode 21 is externally connected There is a lead 201; the second sub-electrode 22 is a frame with an opening, and its outer edge is a rectangle matching the first substrate 1; the central area of the second sub-electrode 22 is formed with a hollow, and the first sub-electrode 21 is located in the hollow In the central area of the second sub-electrode 22, at least one lead 201 is circumscribed; in FIG. The opening of the second sub-electrode 22 extends parallel to the lead 201 of the second sub-electrode 22.
  • the first sub-electrode 21 and the second sub-electrode 22 are not connected, and an electrode gap C is formed between them.
  • the width of the electrode gap C may be 10-50 ⁇ m, for example, the width of the electrode gap C may be 10 ⁇ m, 20 ⁇ m , 25 ⁇ m, 30 ⁇ m, 50 ⁇ m.
  • the existence of the electrode gap C separates the first sub-electrode 21 and the second sub-electrode 22, and different voltages can be applied to the first sub-electrode 21 and the second sub-electrode 22 respectively during operation.
  • the cross-sectional structure of the liquid diaphragm 01 is shown in Figure 4b.
  • the size of the first sub-electrode 21 can refer to D1
  • the size of the second sub-electrode 22 can refer to D31 and D32
  • the size of the second hydrophilic part 52 can refer to D21 and D22
  • the transparent electrolyte 9 can realize the movement of Fig. 3p to Fig. 3o and then to Fig. 3m in the first embodiment.
  • the state change of the colored ink 10 realizes the reduction of the light entrance hole of the liquid aperture 01.
  • the E area is equivalent to the range of the transparent electrolyte 9 that can be affected by the electric field formed between the second electrode pad 7 and the second sub-electrode 22, and the E area is very Therefore, in the process of increasing the light entrance hole of the liquid aperture 01, it can be considered that the state of the colored ink 10 close to the inner edge of the second hydrophilic portion 52 will not be affected.
  • the projection of the second hollow structure A2 that is, the area where the colored ink 10 is distributed in FIG. 4b
  • the projection of the second sub-electrode 22 on the hydrophobic layer 4 have an overlapping area (E shown in FIG. 4b) Area), that is, along the direction perpendicular to the optical axis of the liquid aperture 01, the radius of the inner edge of the second hydrophilic portion 52 is greater than the distance between the inner edge of the second sub-electrode 22 and the optical axis (equivalent to the radius of the inner edge of the second sub-electrode 22 ).
  • a voltage can be applied to the second sub-electrode 22 and the second electrode plate 7 to change the lubrication between the hydrophobic layer 4 and the transparent electrolyte 9 corresponding to the second sub-electrode 22.
  • the wetness causes the transparent electrolyte 9 to press the part of the colored ink 10 corresponding to the second sub-electrode 22 to promote the movement of the colored ink 10 to the inner edge of the second hollow structure A2 to achieve the reduction of the light entrance hole of the liquid aperture 01.
  • the voltage applied to the second sub-electrode 22 directly affects the contact time and the contact range between the hydrophobic layer 4 corresponding to the second sub-electrode 22 and the transparent electrolyte 9 As long as the magnitude and time of the voltage applied to the second sub-electrode 22 are controlled, the requirement of pushing the colored ink 10 to move to the inner edge of the second hollow structure A2 can be satisfied.
  • the voltage applied to the second sub-electrode 22 will only take effect at the moment when the liquid aperture 01 is narrowed, and the action time is very short, even if the hydrophobic layer 4 corresponding to the second sub-electrode 22
  • the wet contact with the transparent electrolyte 9 will also have a very short contact time and a very small contact range, which will not affect the normal shrinking operation of the light entrance hole of the liquid aperture 01.
  • the liquid aperture 01 provided in the embodiment of the present application is an improvement on the structure of the liquid aperture 01 provided in the first embodiment.
  • the difference from the liquid aperture 01 provided in the first embodiment is that, as shown in FIG. 5a, the first sub-electrode 21 includes a center The electrode 211 and M arc electrodes 212 (where M is an integer greater than or equal to 1, two arc electrodes 212 are shown in FIG.
  • the center electrode 211 is a solid circular plate structure and is located in the first sub-electrode 21
  • the axis of each arc electrode 212 is coaxial with the axis of the center electrode 211; wherein, the center electrode 211 is circumscribed with at least one lead 201, and each arc electrode 212 is also circumscribed with at least one ⁇ 201 ⁇ Lead 201.
  • a first gap F1 is formed between the arc electrode 212 adjacent to the center electrode 211 (the arc electrode 212 closest to the center electrode 211 in FIG. 5a) and the center electrode 211, and any two adjacent circles
  • a second gap F2 is formed between the arc electrodes 212 (the two arc electrodes 212 in FIG. 5a).
  • the width of the first gap F1 may range from 10 to 50 ⁇ m.
  • the width of the first gap F1 may be 10 ⁇ m or 20 ⁇ m.
  • the width of the second gap F2 can also be in the range of 10-50 ⁇ m, for example, the width of the second gap F2 can be 10 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 50 ⁇ m; it should be understood that the width of the first gap F1
  • the width and the width of the second gap F2 can be selected to be the same or different.
  • the structure in FIG. 5a is only an example.
  • the cross-sectional structure of the liquid diaphragm 01 can be referred to as shown in FIG. 5b.
  • the above-mentioned first gap F1 and the second gap F2 are sufficiently small to apply a voltage on the first sub-electrode 21 and the second electrode plate 7 so that the first An effective electric field is formed between the central electrode 211 of a sub-electrode 21 and the second electrode plate 7, and between each arc electrode 212 and the second electrode plate 7; when the transparent electrolyte 9 corresponding to the central electrode 211 and the hydrophobic layer
  • the transparent electrolyte 9 produces a movement similar to that shown in Figure 3n, pushing the colored ink 10 to the inside of the second hydrophilic part 52; when the transparent electrolyte 9 moves to the hydrophobic corresponding to the first gap F1 In the range of layer 4, the electric field disappears, and the contact angle between the transparent electrolyte 9 and the hydrophobic layer 4 cannot be controlled by the electric field, but because the first
  • the formed electric field can reduce the contact angle between the transparent electrolyte 9 and the hydrophobic layer 4.
  • the transparent electrolyte 9 continues to move in a manner similar to that shown in FIG. 3n, pushing the colored ink 10 to the inner side of the second hydrophilic portion 52, and finally The state shown in Figure 3o is reached.
  • the movement of the transparent electrolyte 9 between the two arc electrodes 212 can refer to the aforementioned movement process, which will not be repeated here.
  • the first electrode plate 2 in the liquid aperture 01 provided by the embodiment of the present application includes a first sub-electrode 21 and a second sub-electrode 22, where the first The two sub-electrodes 22 are equivalent to the second sub-electrodes 22 in the second embodiment.
  • the first sub-electrode 21 is a solid circle, located in the center area of the entire first electrode plate 2, and a lead 201 is circumscribed to the first sub-electrode 21;
  • the arc-shaped hollow, the first sub-electrode 21 is located in the central area of the circular hollow, and the second sub-electrode 22 is externally connected with at least one lead 201.
  • the first sub-electrode 21 and the second sub-electrode 22 are not connected, and an electrode gap C is formed between the two, and the width of the electrode gap C is 10-50 ⁇ m.
  • the first sub-electrode 21 here is equivalent to the first sub-electrode 21 in the third embodiment.
  • the first sub-electrode 21 includes a central electrode 211 and M arc electrodes 212 (M is an integer greater than or equal to 1, in Figure 6a Two arc electrodes 212 are shown), the center electrode 211 is a solid circular plate structure and is located in the central area of the first sub-electrode 21, and the axis of each arc electrode 212 is coaxial with the axis of the center electrode 211 Wherein, the central electrode 211 is circumscribed with at least one lead 201, and each arc electrode 212 is also circumscribed with at least one lead 201.
  • a first gap F1 is formed between the arc electrode 212 adjacent to the center electrode 211 (the arc electrode 212 closest to the center electrode 211 in FIG.
  • a second gap F2 is formed between the two arc electrodes 212) in 6a.
  • the width of the first gap F1 may be in the range of 10-50 ⁇ m, and the width of the second gap F2 may also be in the range of 10-50 ⁇ m; it should be understood that The width of the first gap F1 and the width of the second gap F2 can be selected to be the same or different.
  • the structure in FIG. 6a is only an example.
  • the schematic cross-sectional structure of the liquid aperture 01 can be referred to as shown in FIG. 6b. It should be understood that when adjusting the light entrance hole of the liquid aperture 01, the working processes of the second and third embodiments can be referred to, and the details are not repeated here.
  • the liquid aperture 01 provided in the embodiment of this application is a structural improvement of the liquid aperture 01 provided in the second embodiment.
  • the hydrophilic layer 5 includes a first A hydrophilic part 51, a second hydrophilic part 52, the first hydrophilic part 51 is cylindrical, and the first hydrophilic part 51 is located in the central area of the entire hydrophilic layer 5; the second hydrophilic part 52 is frame-shaped, and the outer The edge is a rectangle matching the first substrate 1, the middle part has a cylindrical hollow, and the first hydrophilic part 51 is located in the central area of the cylindrical hollow; between the first hydrophilic part 51 and the second hydrophilic part 52 there is One third hydrophilic part 53, the first hydrophilic part 51, the second hydrophilic part 52 and the third hydrophilic part 53 are arranged on the hydrophobic layer 4 in the same layer and have the same height.
  • the third hydrophilic portion 53 is annular (it should be understood that since the thickness of the third hydrophilic portion 53 is small, the annular shape here can also be understood as a circular ring), and the axis of the third hydrophilic portion 53 The line is coaxial with the optical axis of the liquid aperture 01. Among them, a second hollow structure A2 is formed between the first hydrophilic part 51 and the third hydrophilic part 53, and a second hollow structure A2 is formed between the second hydrophilic part 52 and the third hydrophilic part 53.
  • the first electrode pad 2 includes a first sub-electrode 21, a second sub-electrode 22, and one The third sub-electrode 23, where the third sub-electrode 23 corresponds to the third hydrophilic portion 53; the first sub-electrode 21 is a continuous solid circular plate structure without hollows (when the thickness of the first sub-electrode 21 is small enough, The first sub-electrode 21 can also be understood as a circle), which is located in the central area of the entire first electrode plate 2.
  • the first sub-electrode 21 is connected with a lead 201;
  • the outer edge of the electrode 22 is rectangular.
  • the first sub-electrode 21 is equivalent to the central area of the second sub-electrode 22.
  • the two ends of the opening of the second sub-electrode 22 are respectively connected with a lead 201.
  • the lead 201 of the first sub-electrode 21 is from The second sub-electrode 22 protrudes from the opening; the third sub-electrode 23 is annular, the third sub-electrode 23 is located between the first sub-electrode 21 and the second sub-electrode 22, the axis of the third sub-electrode 23 It is coaxial with the axis of the optical axis of the liquid diaphragm 01.
  • the third sub-electrode 23 also has an opening to facilitate the extension of the lead 201 of the first sub-electrode 21 in the ring in parallel, and the third sub-electrode 23 A lead 201 is externally connected to both ends of the opening. Please continue to refer to FIG. 7b.
  • an electrode gap G1 is formed between the third sub-electrode 23 and the first sub-electrode 21, and an electrode gap G3 is formed between the third sub-electrode 23 and the second sub-electrode 22.
  • the width of the electrode gap G1 and the electrode gap G3 may be equal or unequal.
  • the structure of the hydrophilic layer 5 and the structure of the second electrode plate 7 have a corresponding relationship.
  • the first sub-electrode 21 corresponds to the first hydrophilic portion 51
  • the radius of the first hydrophilic portion 51 is smaller than the radius of the first sub-electrode 21, that is, the first hydrophilic portion 51 on the hydrophobic layer 4
  • the projection falls within the projection range of the first sub-electrode 21 on the hydrophobic layer 4
  • the second sub-electrode 22 corresponds to the second hydrophilic portion 52
  • the radius of the inner edge of the second hydrophilic portion 52 is larger than that in the second sub-electrode 22
  • the second hydrophilic portion 7c corresponds to the projection of the second hydrophilic portion 52 on the hydrophobic layer 4 within the projection range of the second sub-electrode 22 on the hydrophobic layer 4; the second hydrophilic portion The radius of the inner edge of 52 is greater than the radius of the first sub-electrode 21; the third sub-electrode 23 corresponds to the third hydrophilic portion 53, and the radius of the inner edge of the third hydrophilic portion 53 is larger than the radius of the first sub-electrode 21 and smaller than the third The radius of the inner edge of the sub-electrode 23, the projection of the third hydrophilic part 53 on the hydrophobic layer 4 and the inner edge of the projection of the third sub-electrode 23 on the hydrophobic layer 4 overlap; as shown in FIG.
  • the projection of the third hydrophilic portion 53 on the hydrophobic layer 4 can be referred to as shown in H1, and the projection of the third sub-electrode 23 on the hydrophobic layer 4 can be referred to as shown in H2.
  • the distance between the inner edges of the three hydrophilic portions 53 may refer to L, an electrode gap G1 is formed between the third sub-electrode 23 and the first sub-electrode 21, and an electrode gap is formed between the third sub-electrode 23 and the second sub-electrode 22 G3, when the third hydrophilic portion 53 is projected onto the first electrode plate 2, the inner edge of the third hydrophilic portion 53 will fall within the aforementioned electrode gap G1.
  • the range of L is equivalent to the distance between the inner edge of the third sub-electrode 23 and the inner edge of the third hydrophilic portion 53, which L Greater than or equal to 10 ⁇ m.
  • FIGS. 7d to 7f please refer to FIGS. 7d to 7f to describe the working process of the liquid aperture 01 in detail.
  • the liquid diaphragm 01 does not apply voltage on the first electrode plate 2 and the second electrode plate 7 or the applied voltage cannot make the first electrode plate 2 and the second electrode plate 7
  • An effective electric field is formed between the transparent electrolyte 9 and the hydrophobic layer 4, and the contact angle between the transparent electrolyte 9 and the hydrophobic layer 4 is relatively large.
  • the hydrophobic layer 4 exhibits hydrophobic characteristics for the transparent electrolyte 9. It is basically filled in each second hollow structure A2 (in this embodiment, it is equivalent to two concentric ring-shaped second hollow structures A2); the colored ink 10 is equivalent to forming two ink rings that can block light from passing through.
  • the inner ring of each ink ring is equivalent to the light entrance hole of the liquid aperture 01, and the corresponding state of the light entrance aperture of the liquid aperture 01 is a concentric ring as shown in FIG. 7d.
  • the first electrode pad 2 includes a first sub-electrode 21, a second sub-electrode 22 and a third sub-electrode 23, there are many ways to apply voltage.
  • Method 1 Apply voltage to the first sub-electrode 21, the third sub-electrode 23, and the second electrode plate 7, so that the first sub-electrode 21 and the second electrode plate 7 are between the third sub-electrode 23 and the second electrode plate 7.
  • An effective electric field is formed between the electrode plates 7.
  • FIG. 7e the contact angle between the transparent electrolyte 9 and the hydrophobic layer 4 corresponding to the first sub-electrode 21 and the third sub-electrode 23 is reduced, and the hydrophobic layer 4 is transparent to the The electrolyte 9 exhibits hydrophilic properties.
  • the transparent electrolyte 9 will descend into each second hollow structure A2 along the vertical downward arrow in Figure 7e and contact the hydrophobic layer 4.
  • each ink ring has not changed, but the inner diameter has been increased, which is equivalent to the increase of each light entrance hole K of the liquid diaphragm 01. And, under the movement trend shown in FIG. 7e, the final distribution of the transparent electrolyte 9 and the colored ink 10 in the liquid aperture 01 will be as shown in FIG.
  • the colored ink 10 is attached to the inner edge of the third hydrophilic portion 53, and the colored ink 10 between the third hydrophilic portion 53 and the second hydrophilic portion 52 is attached to the inner edge of the second hydrophilic portion 52,
  • the width of the two ink rings formed by the colored ink 10 is the smallest, and correspondingly, the size of the two light entrance holes K of the liquid aperture 01 is the largest.
  • the height of the colored ink 10 reaches the maximum, where the transparent electrolyte 9 still separates the colored ink 10 from the second electrode plate 7.
  • Method 2 As shown in FIG. 7g, only the first sub-electrode 21 and the second electrode plate 7 are applied with a voltage, so that an effective electric field is formed between the first sub-electrode 21 and the second electrode plate 7, and the transparent electrolyte 9 and The contact angle between the hydrophobic layers 4 corresponding to the first sub-electrodes 21 is reduced, and the hydrophobic layer 4 exhibits hydrophilic properties to the transparent electrolyte 9.
  • the transparent electrolyte 9 will descend into the first along the vertical downward arrow in FIG. 7g.
  • the second hollow structure A2 between the hydrophilic portion 51 and the third hydrophilic portion 53 is in contact with the hydrophobic layer 4.
  • the colored ink 10 will form Among the two ink rings, the inner diameter of the inner ink ring reaches the maximum, and the state of the outer ink ring has not changed.
  • the size of the light entrance hole K of the corresponding liquid aperture 01 can be referred to as shown in FIG. 7h.
  • Method 3 As shown in FIG. 7i, only the third sub-electrode 23 and the second electrode plate 7 are applied with a voltage, so that an effective electric field is formed between the third sub-electrode 23 and the second electrode plate 7, and the transparent electrolyte 9 and The contact angle between the hydrophobic layer 4 corresponding to the third sub-electrode 23 is reduced, and the hydrophobic layer 4 exhibits hydrophilic properties to the transparent electrolyte 9.
  • the transparent electrolyte 9 will descend into the second along the vertical downward arrow in FIG. 7g.
  • the second hollow structure A2 between the hydrophilic part 52 and the third hydrophilic part 53 is in contact with the hydrophobic layer 4.
  • the colored ink 10 will form Among the two ink rings, the inner diameter of the outer ink ring reaches the maximum, and the state of the inner ink ring has not changed.
  • the corresponding size of the light entrance hole K of the liquid aperture 01 can be referred to as shown in FIG. 7j.
  • the liquid diaphragm 01 provided in the embodiment of the present application is an improvement of the structure of the liquid diaphragm 01 provided in the fifth embodiment.
  • the difference from the liquid diaphragm 01 provided in the fifth embodiment is that, as shown in FIG. 8a, the first hydrophilic part 51
  • Two third hydrophilic portions 53 are provided between the second hydrophilic portion 52 and the second hydrophilic portion 52 (shown as the third hydrophilic portion 53a and the third hydrophilic portion 53b in FIG. 8a).
  • Each third hydrophilic portion 53 is annular, the axis of each third hydrophilic portion 53 is coaxial with the optical axis of the liquid diaphragm 01, and the two third hydrophilic portions 53 are equivalent to concentric rings. The status is shown.
  • a second hollow structure A2 is formed between the first hydrophilic part 51 and the third hydrophilic part 53a, a second hollow structure A2 is formed between the third hydrophilic part 53a and the third hydrophilic part 53b, and the second hollow structure A2 is formed between the third hydrophilic part 53a and the third hydrophilic part 53b.
  • a second hollow structure A2 is formed between the hydrophilic portion 52 and the third hydrophilic portion 53b.
  • the first electrode pad 2 includes a first sub-electrode 21, a second sub-electrode 22, and two The third sub-electrode 23 (shown as the third sub-electrode 23a and the third sub-electrode 23b in FIG.
  • the two third sub-electrodes 23 here correspond to the above-mentioned two third hydrophilic portions 53 one-to-one; please 8b, in the first electrode pad 2, an electrode gap G1 is formed between the third sub-electrode 23a and the first sub-electrode 21, an electrode gap G2 is formed between the two third sub-electrodes 23, and the third sub-electrode An electrode gap G3 is formed between 23b and the second sub-electrode 22, where the widths of the electrode gap G1, the electrode gap G2, and the electrode gap G3 may be equal or unequal. At least one lead 201 is externally connected to the first sub-electrode 21, the second sub-electrode 22 and each third sub-electrode 23.
  • the structure of the hydrophilic layer 5 and the structure of the second electrode plate 7 have a corresponding relationship.
  • the first sub-electrode 21 corresponds to the first hydrophilic portion 51
  • the projection of the first hydrophilic portion 51 on the hydrophobic layer 4 falls within the projection range of the first sub-electrode 21 on the hydrophobic layer 4
  • the radius corresponding to the first hydrophilic portion 51 is smaller than the radius of the first sub-electrode 21
  • the second sub-electrode 22 corresponds to the second hydrophilic portion 52
  • the projection of the second hydrophilic portion 52 on the hydrophobic layer 4 falls on the first
  • the radius of the first hydrophilic portion 51 is smaller than the radius of the outer edge of the first sub-electrode 21, and the radius
  • the radius of the outer edge of the electrode 21; the third sub-electrode 23 corresponds to the third hydrophilic portion 53, specifically, the projection of the third hydrophilic portion 53a on the hydrophobic layer 4 and the third sub-electrode 23a on the hydrophobic layer 4
  • the inner edge of the projection of the third hydrophilic portion 53b overlaps the inner edge of the projection of the third hydrophilic part 53b on the hydrophobic layer 4 and the inner edge of the projection of the third sub-electrode 23b on the hydrophobic layer 4; as shown in FIG.
  • the projection of the third hydrophilic portion 53a on the hydrophobic layer 4 can be referred to as shown in H1.
  • An electrode gap G1 is formed between the third sub-electrode 23a and the first sub-electrode 21. It can be seen that there is an intersection between H1 and G1.
  • the overlap area L1 that is, when the third hydrophilic portion 53a is projected onto the first electrode plate 2, the inner edge of the third hydrophilic portion 53a will fall within the electrode gap G1; the third hydrophilic portion 53b is on the hydrophobic layer 4
  • the electrode gap G2 is formed between the third sub-electrode 23b and the third sub-electrode 23a.
  • the range of L1 corresponds to the distance between the inner edge of the third sub-electrode 23a and the inner edge of the third hydrophilic portion 53a
  • the range of L2 The range is equivalent to the distance between the inner edge of the third sub-electrode 23b and the inner edge of the third hydrophilic portion 53b.
  • Both L1 and L2 are greater than or equal to 10 ⁇ m, and L1 and L2 may be the same or different.
  • the liquid aperture 01 does not apply voltage to the first electrode plate 2 and the second electrode plate 7 or the applied voltage cannot make the first electrode plate 2 and the second electrode plate 7
  • An effective electric field is formed between the transparent electrolyte 9 and the hydrophobic layer 4, and the contact angle between the transparent electrolyte 9 and the hydrophobic layer 4 is relatively large.
  • the hydrophobic layer 4 exhibits hydrophobic characteristics for the transparent electrolyte 9.
  • each second hollow structure A2 (in this embodiment, it is equivalent to the second hollow structure A2 with three concentric ring structures); the colored ink 10 is equivalent to forming three ink rings that can block light from passing through, each The inner ring of the ink ring is equivalent to the light entrance hole of the liquid aperture 01, and the corresponding state of the light entrance hole of the liquid aperture 01 is shown in Figure 8d, including a circular light entrance hole K and two ring-shaped light entrance holes.
  • the light entrance hole K, the two ring-shaped light entrance holes K are distributed in a concentric ring shape with the circular light entrance hole K as the center of the circle.
  • the voltage applied to the first electrode plate 2 and the second electrode plate 7 can form an effective electric field between the first electrode plate 2 and the second electrode plate 7, because the first electrode plate 2 includes the first electrode plate 2
  • the first electrode plate 2 includes the first electrode plate 2
  • the second sub-electrode 22 and the two third sub-electrodes 23 there are many ways to apply voltage.
  • Method 1 The voltage applied to the first sub-electrode 21, the two third sub-electrodes 23 (the third sub-electrode 23a and the third sub-electrode 23b shown in FIG. 8e) and the second electrode plate 7 can make An effective electric field is formed between the first sub-electrode 21 and the second electrode plate 7, and between each third sub-electrode 23 and the second electrode plate 7, as shown in FIG. 8e, the transparent electrolyte 9 and the first sub-electrode 21.
  • the contact angle between the hydrophobic layers 4 corresponding to each third sub-electrode 23 is reduced, and the hydrophobic layer 4 exhibits hydrophilic characteristics to the transparent electrolyte 9, which will follow the vertical downward arrow in FIG.
  • the colored ink 10 is in the height direction Will increase, but the transparent electrolyte 9 will still isolate the colored ink 10 from the second electrode plate 7; as shown in Figure 8e, the three ink rings formed by the colored ink 10, each of which has no outer diameter The change occurs, and the inner diameter is increased, which is equivalent to the increase of each light entrance hole K of the liquid aperture 01. And, under the movement trend shown in FIG. 8e, the final distribution of the transparent electrolyte 9 and the colored ink 10 in the liquid aperture 01 will be as shown in FIG. 8f, between the first hydrophilic portion 51 and the third hydrophilic portion 53a.
  • the colored ink 10 is attached to the inner edge of the third hydrophilic portion 53a, and the colored ink 10 between the third hydrophilic portion 53a and the third hydrophilic portion 53b is attached to the inner edge of the third hydrophilic portion 53b.
  • the colored ink 10 between the three hydrophilic portions 53b and the second hydrophilic portion 52 is attached to the inner edge of the second hydrophilic portion 52.
  • the width of the three ink rings formed by the colored ink 10 is the smallest.
  • the liquid aperture The size of the three light entrance holes K of 01 reaches the maximum.
  • the height of the colored ink 10 reaches the maximum, where the transparent electrolyte 9 still separates the colored ink 10 from the second electrode plate 7.
  • Method 2 As shown in FIG. 8g, a voltage is applied to the first sub-electrode 21, the third sub-electrode 23b and the second electrode plate 7, so that an effective electric field is formed between the first sub-electrode 21 and the second electrode plate 7 , The contact angle between the transparent electrolyte 9 and the hydrophobic layer 4 corresponding to the first sub-electrode 21 is reduced, and the hydrophobic layer 4 exhibits hydrophilic characteristics to the transparent electrolyte 9, and the transparent electrolyte 9 will vertically downward in FIG. 8g The arrow descends into the second hollow structure A2 between the first hydrophilic portion 51 and the third hydrophilic portion 53a and contacts with the hydrophobic layer 4.
  • Such movement of the transparent electrolyte 9 will generate a thrust in the horizontal direction of the arrow in Figure 8g.
  • the colored ink 10 in the second hollow structure A2 is pushed toward the outer edge of the second hollow structure A2 (corresponding to the inner edge of the third hydrophilic portion 53a); at the same time, the third sub-electrode 23b and the second electrode pad 7
  • An effective electric field is formed between the transparent electrolyte 9 and the hydrophobic layer 4 corresponding to the third sub-electrode 23b.
  • the contact angle between the transparent electrolyte 9 and the hydrophobic layer 4 corresponding to the third sub-electrode 23b is reduced.
  • the vertical downward arrow descends into the second hollow structure A2 between the second hydrophilic part 52 and the third hydrophilic part 53b and contacts with the hydrophobic layer 4.
  • Such a movement of the transparent electrolyte 9 will produce a horizontal direction as shown in Fig. 8g
  • the pushing force in the direction of the arrow pushes the colored ink 10 in the second hollow structure A2 to the outer edge of the second hollow structure A2 (equivalent to the inner edge of the second hydrophilic part 52); in this process, it is located in the third hollow structure A2.
  • the state of the colored ink 10 in the second hollow structure A2 between the hydrophilic portion 53a and the third hydrophilic portion 53b will not change; finally, the distribution of the transparent electrolyte 9 and the colored ink 10 will be as shown in Fig. 8h.
  • the inner diameters of the innermost and outermost ink rings have reached the maximum, and the state of the intermediate ink rings has not changed.
  • the size of the light entrance hole K of the corresponding liquid aperture 01 can be referred to as shown in Figure 8h. .
  • the above method of applying voltage between the first electrode plate 2 and the second electrode plate 7 is only an example.
  • the structure of the first electrode plate 2 in the embodiment of the present application other voltage applications are also possible.
  • the first sub-electrode 21 and the second electrode plate 7 are applied with a voltage capable of forming an effective electric field between the first sub-electrode 21 and the second electrode plate 7; or, in all third sub-electrodes
  • the electrode 23 and the second electrode plate 7 are applied with a voltage capable of forming an effective electric field between all the third sub-electrodes 23 and the second electrode plate 7; or, on the first sub-electrode 21, the third sub-electrode 23a and the
  • the second electrode plate 7 is applied with a voltage capable of forming an effective electric field between the first sub-electrode 21 and the second electrode plate 7, and between the third sub-electrode 23a and the second electrode plate 7, which will affect the transparent electrolyte 9 And the distribution of the colored ink 10 is affected,
  • the two voltage application methods illustrated in the embodiments of the present application do not involve the voltage application method of the second sub-electrode 22. It can be understood that when a voltage is applied to the second sub-electrode 22, the adjustment of the liquid aperture 01 is The principle is similar to the working principle in the second embodiment, and will not be repeated here.
  • the liquid diaphragm 01 provided in the embodiment of the present application is an improvement of the liquid diaphragm 01 provided in the sixth embodiment.
  • the difference from the liquid diaphragm 01 provided in the sixth embodiment is that, as shown in FIG. 9a, the first hydrophilic part There are N third hydrophilic parts 53 between 51 and the second hydrophilic part 52, where N is greater than or equal to 3 ( Figure 9a shows two third hydrophilic parts 53, two third hydrophilic parts An ellipsis is used between the parts 53 to represent at least one third hydrophilic part 53) that is not shown.
  • Each third hydrophilic portion 53 is annular, the axis of each third hydrophilic portion 53 is coaxial with the optical axis of the liquid diaphragm 01, and the N third hydrophilic portions 53 are equivalent to concentric rings. The status is shown.
  • a second hollow structure A2 is formed between the first hydrophilic part 51 and the innermost third hydrophilic part 53, and a second hollow structure A2 is formed between any two adjacent third hydrophilic parts 53.
  • a second hollow structure A2 is formed between the second hydrophilic part 52 and the outermost third hydrophilic part 53.
  • FIG. 9b the structure of the first electrode pad 2 in the embodiment of the present application. It includes N third sub-electrodes 23 located between the first sub-electrode 21 and the second sub-electrode 22 where N is greater than or equal to 3 (two third sub-electrodes 23 are shown in FIG. 9b, and the two third sub-electrodes 23 are shown in FIG. Ellipses between the electrodes 23 represent at least one unshown third sub-electrode 23), and the N third sub-electrodes 23 here correspond to the N third hydrophilic portions 53 in a one-to-one correspondence.
  • the liquid aperture 01 provided by the embodiment of the present application is only improved in the structure of the hydrophilic layer 5 and the first electrode plate 2.
  • the corresponding relationship between the first sub-electrode 21 and the first hydrophilic portion 51, and the second sub-electrode 21 The corresponding relationship between the electrode 22 and the second hydrophilic portion 52 can be referred to FIG. 8c.
  • the following rules can be summarized by referring to the structure shown in FIG. 8c.
  • the working principle of the liquid aperture 01 of this structure can be formed to include a circular light entrance hole and at least two ring-shaped light entrance holes, and all the ring-shaped light entrance holes are The circular light entrance holes are distributed in a concentric ring shape; in work, the voltage applied to different parts of the first electrode plate 2 (the first sub-electrode 21 and N-1 third sub-electrodes 23) can be controlled. The size adjustment of the light entrance hole of the liquid aperture 01 is realized, which will not be repeated here.
  • the liquid aperture 01 provided in the embodiment of this application is an improvement on the structure of the liquid aperture 01 provided in the first embodiment.
  • the difference from the liquid aperture 01 provided in the first embodiment is that, as shown in FIG. 10, the retaining wall 6 is frame-shaped. And a rectangular first hollow structure A1 is formed in the middle; the structure of the liquid aperture 01 is similar to the structure shown in FIG. 3j in the first embodiment, and is not shown here as an example.
  • the liquid aperture 01 provided in the embodiment of the present application is an improvement on the structure of the liquid aperture 01 provided in the first embodiment.
  • the difference from the liquid aperture 01 provided in the first embodiment is that, as shown in FIG. 11, the retaining wall 6 has a circular ring shape. , That is, the outer edge is circular, and the central area forms a first hollow structure A1 with a circular cross-section; the structure of the liquid aperture 01 is similar to the structure shown in Figure 3j in the first embodiment, and is not illustrated here. out.
  • the liquid aperture 01 provided in the embodiment of this application is a structural improvement of the liquid aperture 01 provided in the first embodiment.
  • the hydrophilic layer 5 includes a first The hydrophilic part 51 and the second hydrophilic part 52, the first hydrophilic part 51 is cylindrical, the first hydrophilic part 51 is located in the central area of the entire hydrophilic layer 5; the second hydrophilic part 52 is circular, the first hydrophilic part 51 The axis of the two hydrophilic parts 52 is coaxial with the axis of the first hydrophilic part 51, and a second hollow structure A2 is formed between the first hydrophilic part 51 and the second hydrophilic part 52.
  • the structure of the liquid aperture 01 is similar to the structure shown in FIG. 3j in the first embodiment, and is not shown here as an example.
  • the liquid aperture 01 provided in the embodiment of the present application is an improvement of the structure of the liquid aperture 01 provided in the first embodiment.
  • the difference from the liquid aperture 01 provided in the second embodiment is that, as shown in FIG. 13, the hydrophobic layer 4 is a solid cylindrical shape.
  • the structure of the liquid aperture 01 is similar to the structure shown in FIG. 3j in the first embodiment, and is not shown here as an example.
  • the liquid aperture 01 provided in the embodiment of this application is an improvement on the structure of the liquid aperture 01 provided in the second embodiment.
  • the difference from the liquid aperture 01 provided in the second embodiment is that the material of the retaining wall 6 in the liquid aperture 01 is glass , PMMA or other hard macromolecular polymers after curing, the retaining wall 6 and the second electrode plate 7, and the retaining wall 6 and the hydrophilic layer 5 are all through the adhesive glue (such as pressure sensitive adhesive, ring Oxygen glue, etc.) bonding.
  • the liquid aperture 01 is only an improvement of the material and connection mode of the retaining ring 6, therefore, it is not shown here as an example.
  • the liquid diaphragm 01 provided in the embodiment of the present application is an improvement on the structure of the liquid diaphragm 01 provided in the second embodiment.
  • the difference from the liquid diaphragm 01 provided in the second embodiment is that, as shown in FIG. 14a, the outer surface of the first substrate 1 (That is, the surface of the first substrate 1 away from the second substrate 8) is a curved surface; or, as shown in FIG. 14b, the outer surface of the second substrate 8 (that is, the surface of the second substrate 8 away from the first substrate 1 is Curved surface); or, as shown in FIG. 14c, the outer surface of the first substrate 1 is a curved surface, and the outer surface of the second substrate 8 is also a curved surface.
  • the structure and working principle of the liquid aperture 01 provided by the present application have been introduced through the above embodiments. It can be seen that the liquid aperture 01 provided by the embodiments of the present application is applied to the first electrode plate 2 and the second electrode plate 2 and the second electrode plate through control.
  • the electric field between the electrode plates 7 can change the distribution of the transparent electrolyte 9 and the colored ink 10 in the closed cavity, so as to achieve the effect of adjusting the light entrance hole of the liquid aperture 01, which can meet the consumer's demand for the amount of light in the camera operation.
  • the voltage applied to the first electrode plate 2 and the second electrode plate 7 can be a low voltage, so that the liquid diaphragm 01 can be driven at a low voltage; and, due to the special structural design of the hydrophilic layer 5, There is always an opening in the center of the liquid aperture 01 (the minimum state of the opening is determined by the size of the first hydrophilic part 51 of the hydrophilic layer 5), which can improve the roundness, concentricity and repeatability of the light entrance hole of the liquid aperture 01 .
  • the embodiments of the present application also provide an electronic device, which may be a smart phone, a tablet computer, a vehicle-mounted lens, a security lens, etc., with a camera function.
  • the smart phone 02 includes a device body 022, a motherboard (not shown here) is provided in the device body 022, and a camera 021 is installed on the device body 022 as a rear camera.
  • the camera 021 is provided with the above-mentioned liquid aperture 01. While meeting the requirements of photography, the liquid aperture 01 has the advantages of small size, precise control and convenience, which is beneficial to the realization of miniaturization and thinning of the smart phone.
  • the first electrode plate 2 and the second electrode plate 7 of the liquid aperture 01 are respectively electrically connected to the main board of the smart phone 02, and the first electrode plate 2 and the second electrode plate 7 can be applied through the main board. The voltage is controlled and adjusted, and finally the control and adjustment of the liquid aperture 01 is realized.
  • the present application also provides a driving method of the liquid diaphragm, which is used to adjust the size of the light entrance hole of the liquid diaphragm 01.
  • the driving method includes the following steps:
  • the iris adjustment command here can be issued by the user, for example, the liquid diaphragm 01 is used alone, and the user can directly adjust the voltage applied to the first electrode plate 2 and the second electrode plate 7 ; And when the liquid aperture 01 is applied to an electronic device, taking a smart phone as an example, the voltage applied to the first electrode plate 2 and the second electrode plate 7 can be adjusted by the main board of the smart phone (equivalent to the control center), Of course, the motherboard of the smartphone is loaded with software for adjusting the voltage.
  • step S21 is implemented: increase the electric field intensity between the first electrode plate and the second electrode plate to change the distribution state of the transparent electrolyte and the colored ink, so that the colored ink 10 is directed to the corresponding first electrode plate. 2.
  • the outer edge of the hollow structure A2 is moved to increase the light passing through the liquid aperture 01;
  • step S22 reduce the electric field intensity between the first electrode plate and the second electrode plate to change the distribution state of the transparent electrolyte and the colored ink, so that the colored ink 10 is hydrophobic Spread on layer 4 to reduce the light passing through the liquid aperture 01.
  • the increase in voltage can improve the transparent electrolyte.
  • the wetting rate between 9 and the hydrophobic layer 4 is equivalent to the rate of increasing the light entrance hole of the liquid aperture 01.
  • the reduction of the voltage can reduce the transparency.
  • the wetting rate between the electrolyte 9 and the hydrophobic layer 4 is equivalent to reducing the rate of increasing the light entrance hole of the liquid aperture 01.
  • the voltage that forms an effective electric field between the first electrode plate 2 and the second electrode plate 7 is related to the thickness, material, and transparent electrolyte 9 of each structural layer in the liquid aperture 01, and its value range can be 5-30V.
  • an embodiment of the present application further provides a driving device for a liquid diaphragm, the driving device includes an acquisition module and an electric field adjustment module, wherein the acquisition module is used to acquire the above-mentioned diaphragm adjustment instruction; when the electric field adjustment module When executing the program code of the above iris adjustment instruction, the following process is executed:
  • an embodiment of the present application may also provide an electronic device 100.
  • the electronic device 100 may include a processor 110, an external memory interface 120, a memory 121, and a universal serial bus (universal serial bus).
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light Sensor 180L, bone conduction sensor 180M, etc.
  • the camera 193 is used to capture still images or videos.
  • the object generates an optical image through the lens and is projected to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transfers the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the electronic device 100 may include one or N cameras 193, and N is a positive integer greater than one.
  • the number of cameras 193 may be two, namely a front camera and a rear camera.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • the different processing units may be independent devices or integrated in one or more processors.
  • the memory 121 is used to store instructions and data.
  • the processor 110 is coupled to the camera 193 through a bus interface.
  • the camera 190 is provided with the above-mentioned liquid aperture 01.
  • the processor 110 can call the program instructions stored in the memory 121 to execute the above-mentioned liquid aperture through the liquid aperture 01.
  • the driving method is used to call the program instructions stored in the memory 121 to execute the above-mentioned liquid aperture through the liquid aperture 01.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

本申请提供了一种液体光圈、电子设备、液体光圈的驱动方法及驱动装置,该液体光圈包括沿液体光圈的光轴方向依次紧邻设置的第一基板、第一电极极板、绝缘层、疏水层、亲水层、挡墙、第二电极极板以及第二基板;挡墙中部形成有第一中空结构;亲水层包括第一亲水部和第二亲水部,第一亲水部和第二亲水部之间存在N个第二中空结构;第一中空结构和N个第二中空结构连通形成一封闭腔体;封闭腔体内填充有透明电解质和有色油墨,有色油墨与透明电解质不相容;第一电极极板和第二电极极板之间用于形成电场以改变透明电解质和有色油墨在封闭腔体内的分布。控制施加在第一电极极板和第二电极极板上的电压的大小可以调节液体光圈进光孔的大小。

Description

液体光圈、电子设备、液体光圈的驱动方法及驱动装置
相关申请的交叉引用
本申请要求在2020年08月26日提交中国专利局、申请号为202010872933.5、申请名称为“液体光圈、电子设备、液体光圈的驱动方法及驱动装置”的中国专利申请的优先权,以及2020年05月29日提交中国专利局、申请号为202010477421.9、申请名称为“液体光圈”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端设备领域,尤其涉及到一种液体光圈、电子设备、液体光圈的驱动方法及驱动装置。
背景技术
光圈是相机里控制进光量的组件,传统的光圈是机械叶片构成的,叶片数量越多则开孔越接近圆形,但同时也会使得厚度越大、可靠性越差。如图1a和图1b所示的传统光圈1’的结构示意,传统光圈1’具有多个机械叶片11’,多个机械叶片11’的中心形成进光孔J,在使用中,控制多个机械叶片11’以进光孔J的中心为旋转中心旋转可以改变进光孔J的大小(其中,图1a中进光孔J较小,图1b中进光孔J较大,光圈1’自图1a所示的状态转变为图1b所示状态的过程即进光量调大的过程,光圈1’自图1b所示的状态转变为图1a所示状态的过程即进光量调小的过程)。液体光圈是一种新型光圈,其中不存在机械叶片,而是通过控制有色液体在腔体内的运动来形成或大或小的开孔(如图1c所示),液体光圈相比传统机械光圈有开孔圆、功耗低、反应速度快、精度高等优点,近年来逐渐成为研究热点,尚未在消费产品中使用。
目前的液体光圈可以基于电润湿效应实现对开孔大小的驱动调节,其原理可以结合图1d所示参照以下电润湿方程:
cosθ=cosθ 0+(ε 0ε r/2dr lg)·V 2
其中,θ 0为起始接触角(图1d未示出),θ为加上电压后的接触角,r lg为液气表面张力(它不受所加电压的影响,为恒定值),ε r为绝缘介质层的相对介电常数,ε 0为真空介电常数,d为绝缘介质层的厚度,V为电极上所施加的电压。
可以看出,图1d中的三相接触点同时受到固液表面张力r sl、固气表面张力r sg和液气表面张力r lg;当把电压施加在液体-固体电极之间时,可以带来微液滴接触角的改变,即通过电场改变疏水表面的湿润性质,就可以改变液滴在疏水表面接触角的大小。应用到液体光圈中,即可以应用电润湿效应中液滴接触角的改变推动不透明液体移动,进而可以实现光圈进光孔的大小变化。
然而,现有技术中基于电润湿效应的液体光圈技术还不够成熟,无法满足进光量调节的需求。
发明内容
本申请提供了一种液体光圈、电子设备、液体光圈的驱动方法及驱动装置,用于实现光圈进光孔的大小调节。
第一方面,本申请提供一种液体光圈,该液体光圈可以应用于具有摄像拍照功能的电子设备中,在该电子设备进行摄像拍照时对其进光量进行调节。该液体光圈包括按照设定次序(相当于液体光圈的光轴方向)依次紧邻设置的第一基板、第一电极极板、绝缘层、疏水层、亲水层、挡墙、第二电极极板以及第二基板;其中,第一基板、第一电极极板、绝缘层、疏水层、亲水层、第二电极极板以及第二基板均具有透光性,而挡墙则具有挡光性;此处的第一基板和第二基板相当于整个液体光圈沿光轴方向两端的底板结构,第一基板为第一电极极板提供承载支撑,第二基板为第二电极极板提供承载支撑,应当理解,作为整个液体光圈结构最外侧的结构,第一基板和第二基板还可以为整个液体光圈提供保护;在使用时,可以在第一电极极板和第二电极极板上施加电压,使得第一电极极板和第二电极极板之间可以形成电场;绝缘层设置于第一电极极板远离第一基板的一侧,以将疏水层与第一电极极板绝缘,也就相当于将疏水层及其以上结构与第一电极极板绝缘;疏水层指的是形成于绝缘层朝向第二基板一侧的一层疏水物质,亲水层则指的是形成于疏水层朝向第二基板一侧的一层亲水物质;疏水层为实心板状结构,其板状结构连续无镂空部分;而亲水层则具体包括同层设置于疏水层上的第一亲水部和第二亲水部,第一亲水部和第二亲水部具有相同的厚度;第一亲水部位于亲水层的中心区域,而第二亲水部位于亲水层的外围区域;第一亲水部为圆柱形,其轴心线与液体光圈的光轴共轴;第二亲水部的中部具有圆柱形镂空,其外边缘的形状不做限定,例如圆形、矩形等均可,该圆柱形镂空的轴心线也与液体光圈的光轴共轴;上述第一亲水部位于该圆柱形镂空的中心区域,且第一亲水部的半径小于圆柱形镂空的半径,使得第一亲水部和第二亲水部之间存在间隙;在第一亲水部和第二亲水部之间存在N个圆环状的第二中空结构,此处的N为大于等于1的整数;沿亲水层的厚度方向,每个第二中空结构贯穿亲水层,使得疏水层朝向亲水层一侧的表面可以自第二中空结构的部分露出,且每个第二中空结构的轴心线与液体光圈的光轴重合;在亲水层和第二电极极板之间设置挡墙,挡墙的中部形成第一中空结构,沿液体光圈的厚度方向,第一中空结构可以贯穿挡墙;第一中空结构和N个第二中空结构连通,使得第二电极极板、挡墙、亲水层和疏水层之间形成一封闭腔体;应当理解,第一基板、第一电极极板、绝缘层、疏水层、亲水层、挡墙、第二电极极板以及第二基板紧邻设置有利于保证封闭腔体的封闭性,当然,此处挡墙和亲水层在第二电极极板、疏水层之间充当了封闭腔体的封堵结构;在封闭腔体内填充有透光的透明电解质和不透光的有色油墨,透明电解质和有色油墨之间不相容;亲水层对透明电解质的表面吸附能力大于疏水层对透明电解质的表面吸附能力,亲水层对有色油墨的表面吸附能力小于疏水层对有色油墨的表面吸附能力;透明电解质的体积是固定的,有色油墨的体积也是固定的,当透明电解质在封闭腔体内移动,透明电解质可以侵占有色油墨所占据的空间,而有色油墨则对应填充到透明电解质空余出的位置,相当于透明电解质和有色油墨在封闭腔体内的分布形态将发生变化;透明电解质用于将有色油墨与第二电极极板隔离,透明电解质与第二电极极板接触,有色油墨则相当于被透明电解质“压”在疏水层一侧;当在第一电极极板和第二电极极板之间形成电场,可以通过改变电场强度改变该电池所对应的疏水层部分对透明电解质的润湿效果。其中,透明电解质透光,即透明电解质可以允许光线穿过,而有色油墨不透光,即有色油墨可以 阻挡光线穿过,控制透明电解质和有色油墨在封闭腔体内的分布状态,可以改变液体光圈用于光线透过的进光孔的大小。上述液体光圈的工作原理在于:当第一电极极板和第二电极极板之间未形成电场或形成的电场的强度小于一设定阈值,该电场对应的疏水层区域相对透明电解质表现出疏水特性,透明电解质与疏水层之间的接触角较大,透明电解质基本填充于第一中空结构内,而有色油墨基本填充在N个第二中空结构内,有色油墨可以均匀铺展以覆盖疏水层暴露于第二中空结构内的表面,此时液体光圈的进光孔的大小由第一亲水部决定;由于此处的第一电极极板和第二电极极板之间的电场无法改变透明电解质和有色油墨在封闭腔体内的分布,此时的电场相当于无效电场;当第一电极极板和第二电极极板之间形成电场且该电场的强度等于或大于上述设定阈值,该电场所对应的疏水层区域对透明电解质表现出亲水特性,透明电解质与疏水层之间的接触角减小,透明电解质自第一中空结构进入第二中空结构并与部分疏水层接触,在此过程中,透明电解质将第二中空结构内的有色油墨推向该第二中空结构远离液体光圈光轴方向的边缘,相当于增大了用于光线穿过的进光孔的大小,即液体光圈的进光孔实现了增大;由于此处的第一电极极板和第二电极极板之间的电场可以改变透明电解质和有色油墨在封闭腔体内的分布,此时的电场相当于有效电场;当第一电极极板和第二电极极板之间的电场强度由等于或大于设定阈值变为小于设定阈值,疏水层相对透明电解质由亲水特性改变为疏水特性,透明电解质与疏水层之间的接触角又增大,透明电解质回到第一中空结构内,有色油墨可以恢复到均匀铺展在疏水层表面,实现液体光圈进光孔的调小。
在工作中,控制施加在第一电极极板和第二电极极板上的电压的大小,就可以改变第一电极极板和第二电极极板之间形成的电场的大小,进而控制透明电解质在疏水层上的接触角大小,透明电解质在疏水层上的润湿状态可以改变有色油墨在N个第二中空结构覆盖疏水层的面积,从而改变液体光圈进光孔的大小;也就是说,本申请提供的液体光圈可以采用低电压驱动实现液体光圈的驱动调节,能够满足现下消费者对光圈进光量调节的需求;并且,在此过程中,第一亲水部的存在可以使得液体光圈一直存在一开孔,提高液体光圈进光孔的圆度、同心度和重复性。
一种可能实现的方式中,本申请所提供的液体光圈的光圈值的范围可以为1.2-8。
其中,挡墙的设置方式可以至少有以下两种。其一,挡墙通过UV(ultraviolet,紫外线)光刻工艺直接形成于第二电极极板朝向亲水层的一侧,此时挡墙的材质可以为光刻胶,这种挡墙与亲水层之间则通过胶粘剂粘接;其二,挡墙相对于第二电极极板独立,挡墙与第二电极极板之间、挡墙与亲水层之间分别通过胶粘剂粘接,此处的挡墙材质可以为玻璃、PMMA(polymethyl methacrylate,聚甲基丙烯酸甲酯,俗称亚克力)或其他硬质的高分子聚合物。在这两种方式中,胶粘剂可以选择压敏胶或者环氧胶。
该液体光圈中,透明电解质与有色油墨之间的密度之差应当小于等于0.09g/cm 3,以尽可能降低密度差造成的重力差别对二者分布状态的影响。为了限制封闭腔体的体积以保证结构的毛细作用实现,挡墙的高度(即液体光圈厚度方向的尺寸)可以为0.05-2mm,亲水层的厚度可以为0.5-3um。其他结构的厚度分别如下,疏水层的厚度可以为0.02-1um,绝缘层的厚度可以为0.5-1um,第一电极极板和/或第二电极极板的厚度可以为20-30nm。至于液体光圈中各层结构的材质,第一电极极板和第二电极极板的材质可以选择透明的ITO(indium tin oxide,氧化铟锡)或纳米银,疏水层的材质可以为含氟聚合物,亲水层的材质可以为光刻胶。
应当理解,为了保证液体光圈整体结构的完整性与规则性,沿垂直于液体光圈光轴的方向,第一基板、第一电极极板、绝缘层、疏水层、亲水层、挡墙、第二电极极板以及第二基板的外边缘可以设置为相匹配的结构,此处的相匹配可以指形状以及大小。
本申请中对第一基板和第二基板的形状不做限定,只要第一基板朝向第二基板的面为平面、第二基板朝向第一基板的面为平面即可;第一基板的外表面(相当于第一基板远离第二基板的表面)可以为曲面,第二基板的外表面(相当于第二基板远离第一基板的表面)也可以为曲面。
一种可能实现的方式中,第一亲水部和第二亲水部之间仅存在有一个圆环状的第二中空结构,即上述N为1,则第一亲水部和第二亲水部之间没有其他结构。对应于亲水层的结构,第一电极极板可以包括第一子电极,第一子电极为实心圆板且第一子电极的轴心线与液体光圈的光轴共轴,使得第一子电极可以与第一亲水部对应;沿垂直于液体光圈光轴的方向,第一子电极的半径大于第一亲水部的半径且小于第二亲水部内边缘的半径,相当于,第一亲水部在疏水层上的投影落在第一子电极在疏水层上的投影范围内,而第二亲水部在疏水层上的投影与第一子电极在疏水层上的投影不相接;当向第一子电极和第二电极极板施加电压使得第一子电极与第二电极极板之间形成等于或大于设定阈值的电场,第一子电极对应的疏水层区域对透明电解质表现出亲水特性,可以改变第一子电极对应的透明电解质与疏水层之间的接触角,使得透明电解质可以与该部分疏水层接触,进而改变有色油墨的分布状态;此处的第一子电极相对第一亲水部和第二亲水部的结构,限定了有色油墨的分布范围,也就相当于控制了液体光圈进光量的调节范围。
另一种可能实现的方式中,第一亲水部和第二亲水部之间也仅存在一个圆环形的第二中空结构,即上述N也为1,第一亲水部和第二亲水部之间没有其他结构。但是,对应于亲水层的结构,此处的第一电极极板可以包括同层设置的中心电极以及M个圆弧电极,M为大于等于1的整数;中心电极为实心圆板且中心电极位于第一电极极板的中心区域;每个圆弧电极的轴心线与液体光圈的光轴共轴且每个圆弧电极的半径不同,中心电极和每个圆弧电极分别外接有至少一根引线,在使用中,可以分别向中心电极和每个圆弧电极施加电压;沿垂直于液体光圈光轴的方向,位于第一电极极板最外侧的圆弧电极外边缘的半径大于第一亲水部的半径且小于第二亲水部内边缘的半径。其中,与中心电极相邻的圆弧电极和中心电极之间的宽度为10-50μm,任意两个相邻的圆弧电极之间的宽度为10-50μm,这样的宽度使得其对应的透明电解质在不能被第一电极极板和第二电极极板之间的电场影响时,透明电解质依靠自身的运动惯性依旧可以移动,因此,这样结构的第一电极极板依旧可以实现液体光圈的大小调节。
又一种可能实现的方式中,当第二中空结构的数量为2个,即N=2个;在这种方式中,第一亲水部和第二亲水部之间存在一个圆环状的第三亲水部;第三亲水部的轴心线与液体光圈的光轴共轴,第三亲水部内边缘的半径大于第一亲水部的半径,且第三亲水部外边缘的半径小于第二亲水部内边缘的半径,即第三亲水部既不与第一亲水部相接,也不与第二亲水部相接,使得第一亲水部和第三亲水部之间形成一个第二中空结构,第二亲水部和第三亲水部之间形成一个第二中空结构;对应地,第一电极极板包括第一子电极和第三子电极,第一子电极为实心圆板且第一子电极位于第一电极极板的中心区域,第三子电极为圆弧状且第三子电极围绕第一子电极;第一子电极的轴心线、第三子电极的轴心线与液体光圈的光轴共轴,第一子电极和第三子电极分别外接有至少一根引线;其中,第一子电极外 边缘的半径大于第一亲水部的半径且小于第三亲水部内边缘的半径;第三子电极内边缘的半径大于第三亲水部内边缘的半径,第三子电极外边缘的半径大于第三亲水部外边缘的半径且小于第二亲水部内边缘的半径。这种结构的液体光圈可以形成包括一个圆形的开孔以及环绕该开孔的一个环形的开孔的进光孔,控制第一子电极、第三子电极与第二电极极板之间对应形成电场,可以对应控制两个中空结构所对应的有色油墨的分布,进而控制液体光圈进光孔的大小调节。
再一种可能实现的方式中,N≥3,即第一亲水部和第二亲水部之间存在3个、4个、5个甚至更多整数个第二中空结构;此处的亲水层还包括位于第一亲水部和第二亲水部之间的N-1个圆环状的第三亲水部,每个第三亲水部的轴心线与液体光圈的光轴共轴;沿垂直于液体光圈光轴的方向,亲水层自内向外,第x个第三亲水部的内边缘的半径为r xi、外边缘的半径为r xj,所有第三亲水部的尺寸大小满足以下条件:r 1i<r 1j<r 2i<r 2j<……r (N-1)i<r (N-1)j;对应地,第一电极极板包括第一子电极和N-1个第三子电极,N-1个第三子电极与N-1第三亲水部一一对应;第一子电极位于第一电极极板的中心区域,第一子电极为实心圆板且第一子电极的轴心线与液体光圈的光轴共轴,每个第三子电极为圆弧状且每个第三子电极的轴心线与液体光圈的光轴共轴;第一子电极和每个第三子电极分别外接有至少一根引线;沿垂直于液体光圈光轴的方向,第一电极极板自内向外,第y个第三子电极的内边缘的半径为R yi、外边缘的半径为R yj,所有第三子电极的尺寸满足以下条件:R 1i<R 1j<R 2i<R 2j<……R (N-1)i<R (N-1)j;其中,第一子电极的半径大于第一亲水部的半径且小于与第一亲水部相邻的第三亲水部内边缘的半径;对于N-1个第三亲水部和N-1个第三子电极,当x=y,r xi<R yi<r xj<R yj;这种结构的液体光圈可以形成包括一个圆形的开孔以及环绕该开孔至少两个环状开孔的进光孔,在工作中,控制施加在第一电极极板不同部分上(第一子电极以及N-1个第三子电极)的电压,可以实现这种液体光圈进光孔的大小调节。
具体地,在每组相互对应的第三亲水部与第三子电极中,即当x=y,R yi-r xi≥10μm,这样的结构设置,可以限定有色油墨在对应的第二中空结构内的分布范围。
一种可能实现的方式中,第一电极极板还可以包括位于第一电极极板外围区域的第二子电极,第二子电极相当于位于第一电极极板的最外部结构,第一子电极、第二子电极同层设置,第二子电极的中部具有镂空,第一电极极板位于第二子电极的中心区域,且第二子电极外接有至少一根引线。第二子电极内边缘距离液体光圈的光轴的距离的小于第二亲水部内边缘的半径,使得最靠近第二子电极的第二中空结构在疏水层上的投影与第二子电极在疏水层上的投影具有交叠区域,在调小液体光圈进光孔的大小时,可以在第二子电极与第二电极极板上施加电压,改变第二子电极对应的疏水层与透明电解质之间的润湿性,使得透明电解质对第二子电极所对应的部分有色油墨施压,促进有色油墨向上述第二中空结构的内边缘移动,相当于促进液体光圈的缩小。工作中可以在第一子电极与第二子电极上施加不同电压使得第一子电极与第二电极极板之间形成的电场与第二子电极与第二电极极板之间形成的电场存在强度差,进而根据需要实现对液体光圈进光孔的大小调节。
在本申请提供的液体光圈中,与第一电极极板不同的是,第二电极极板可以为一实心板状结构,其结构连续无镂空。
一种可能实现的方式中,鉴于亲水层的上述结构,沿垂直于液体光圈光轴的方向,挡墙内边缘距离液体光圈光轴的距离大于第二亲水部的内边缘直径,相当于,上述挡墙在疏水层上的投影落在第二亲水部在疏水层上的投影范围内,使得有色油墨不会与挡墙接触, 防止有色油墨在毛细作用下与第二电极极板接触。具体地,沿垂直于液体光圈光轴的方向,挡墙的内边缘与第二亲水部的内边缘之间的距离可以大于等于0.1mm。
第二方面,基于上述液体光圈的结构,本申请还提供一种电子设备,该电子设备可以具体为具有摄像功能的智能手机、平板电脑、智能手表等。该电子设备包括设备本体、主板以及摄像头,主板设置于设备本体内,摄像头安装在设备本体上;该摄像头内设置有上述任一种液体光圈,主板与液体光圈的第一电极极板、第二电极极板电性连接;在使用时,通过主板调节施加在第一电极极板和第二电极极板上的电压以改变第一电极极板和第二电极极板之间形成的电场,可以驱动液体光圈进光孔大小的调节,从而满足这类电子设备在拍照或摄像时对进光量的调节要求。
第三方面,本申请还提供一种液体光圈的驱动方法,用于调节上述液体光圈的进光孔大小,具体包括以下步骤:
获取光圈调节指令;
当光圈调节指令指示调大光圈,增大第一电极极板与第二电极极板之间的电场强度,以改变透明电解质与有色油墨分布状态,使有色油墨向对应的第二中空结构的外边缘移动以增加透过液体光圈的光线;
当光圈调节指令指示减小光圈,减小第一电极极板与第二电极极板之间的电场强度,以改变透明电解质与有色油墨分布状态,使有色油墨向对应的疏水层上铺展以减少透过液体光圈的光线。
应当理解,改变第一电极极板和第二电极极板之间的电场强度是通过改变施加在第一电极极板和第二电极极板上的电压实现的,电场的改变可以改变疏水层与透明电解质之间的接触角,从而改变疏水层与透明电解质之间的润湿性,使得透明电解质可以在封闭腔体内发生移动,进而推动有色油墨移动,实现液体光圈的进光孔大小调节。
其中,获取光圈调节指令至少包括两种方式,其一是直接获取用户发出的光圈调节指令,即用户可以直接改变施加在第一电极极板和第二电极极板上的电压;其二是获取控制中心发出的光圈调节指令,此处的控制中心可以是上述电子设备中的主板,通过软件程序控制液体光圈。
第四方面,本申请还提供一种液体光圈的驱动装置,该驱动装置用于驱动上述液体光圈。例如,该驱动装置可以包括用于执行上述液体光圈的驱动方法中各个操作的模块或单元,比如包括获取模块和电场调节模块。其中,获取模块用于获取光圈调节指令,电场调节模块用于调用该光圈调节指令执行以下过程:用于在光圈调节指令指示调大光圈时,增大第一电极极板与第二电极极板之间的电场强度,以改变透明电解质与有色油墨分布状态,使有色油墨向对应的第二中空结构的外边缘移动以增加透过液体光圈的光线;或者,电场调节模块还用于在光圈调节指令指示减小光圈,减小第一电极极板与第二电极极板之间的电场强度,以改变透明电解质与所述有色油墨分布状态,使有色油墨向对应的疏水层上铺展以减少透过液体光圈的光线。
第五方面,本申请还提供一种电子设备,该电子设备包括处理器、存储器和上述技术方案中的任一种液体光圈。其中,存储器用于存储程序指令;处理器用于从存储器调用存储的程序指令,通过液体光圈执行上述驱动方法。
附图说明
图1a和图1b为机械光圈的结构示意图;
图1c为液体光圈进光孔大小的调节示意图;
图1d为电润湿效应的原理示意图;
图2为本申请实施例一提供的一种液体光圈的结构示意图;
图3a为本申请实施例一提供的一种液体光圈未填充液体时的剖面结构示意图;
图3b为本申请实施例一提供的一种液体光圈中第一基板的结构示意图;
图3c为本申请实施例一提供的一种液体光圈中第二基板的结构示意图;
图3d为本申请实施例一提供的一种液体光圈中第一电极极板的结构示意图;
图3e为本申请实施例一提供的一种液体光圈中绝缘层的结构示意图;
图3f为本申请实施例一提供的一种液体光圈中疏水层的结构示意图;
图3g为本申请实施例一提供的一种液体光圈中亲水层的结构示意图;
图3h为本申请实施例一提供的一种液体光圈中挡墙的结构示意图;
图3i为本申请实施例一提供的一种液体光圈中第二电极极板的结构示意图;
图3j为本申请实施例一提供的一种液体光圈的剖面结构示意图;
图3k为本申请实施例一提供的一种液体光圈的剖面结构示意图;
图3l为本申请实施例一提供的一种液体光圈的剖面结构示意图;
图3m至图3p为本申请实施例一提供的一种液体光圈的进光孔大小调节过程示意图;
图4a为本申请实施例二提供的一种液体光圈中第一电极极板的结构示意图;
图4b为本申请实施例二提供的一种液体光圈的剖面结构示意图;
图5a为本申请实施例三提供的一种液体光圈中第一电极极板的结构示意图;
图5b为本申请实施例三提供的一种液体光圈的剖面结构示意图;
图6a为本申请实施例四提供的一种液体光圈中第一电极极板的结构示意图;
图6b为本申请实施例四提供的一种液体光圈的剖面结构示意图;
图7a为本申请实施例五提供的一种液体光圈中亲水层的结构示意图;
图7b为本申请实施例五提供的一种液体光圈中第一电极极板的结构示意图;
图7c为本申请实施例五提供的一种液体光圈的剖面结构示意图;
图7d至图7j为本申请实施例五提供的一种液体光圈的进光孔大小调节过程示意图;
图8a为本申请实施例六提供的一种液体光圈中亲水层的结构示意图;
图8b为本申请实施例六提供的一种液体光圈中第一电极极板的结构示意图;
图8c为本申请实施例六提供的一种液体光圈的剖面结构示意图;
图8d至图8h为本申请实施例六提供的一种液体光圈的进光孔大小调节过程示意图;
图9a为本申请实施例七提供的一种液体光圈中亲水层的结构示意图;
图9b为本申请实施例七提供的一种液体光圈中第一电极极板的结构示意图;
图10为本申请实施例八提供的一种液体光圈中挡圈的结构示意图;
图11为本申请实施例九提供的一种液体光圈中挡圈的结构示意图;
图12为本申请实施例十提供的一种液体光圈中亲水层的结构示意图;
图13为本申请实施例十一提供的一种液体光圈中疏水层的结构示意图;
图14a至图14c为本申请实施例十三提供的一种液体光圈的结构示意图;
图15为本申请实施例提供的一种电子设备的结构示意图;
图16为本申请实施例提供的一种液体光圈驱动方法的流程示意图;
图17为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
首先介绍一下本申请的应用场景,液体光圈是一种新型光圈,可以应用在具有摄像功能的设备中控制摄像头的进光量,特别是对体积、质量以及空间有小型化要求的电子设备,液体光圈相比于机械光圈更有优势。目前的液体光圈具有各种问题,例如驱动电压高、开孔大小可调范围小、开孔不够圆、开口的中心位置重复性不高、结构复杂,这些缺陷影响了液体光圈的商用可行性。因此,本申请实施例提供一种液体光圈,该液体光圈采用较为简单的结构设计,结合电润湿原理实现对摄像头进光量大小的调节。
接下来,将结合附图对本申请所提供的液体光圈的结构做示例性介绍。请参照图2所示的液体光圈01的立体结构示意图,沿图2中Y方向所示,液体光圈01包括自下而上依次紧邻设置的第一基板1、第一电极极板2、绝缘层3、疏水层4、亲水层5、挡墙6、第二电极极板7以及第二基板8,此处的Y方向也平行于液体光圈01的光轴方向。
参照图2,第一基板1和第二基板8相当于液体光圈01上下两个基底结构,因此,第一基板1和第二基板8分别为实心的板状结构,其结构是连续的,不存在镂空。其中,第一基板1可以为第一电极极板2提供承载与支撑,第二基板8可以为第二电极极板7提供承载与支撑。此外,第一基板1和第二基板8还可以为整个液体光圈01的结构提供保护。
应当理解,图2中的第一电极极板2和第二电极极板7以层状结构示出,是为了以清楚的结构表明第一电极极板2和第二电极极板7在整个液体光圈01中的分布位置;在液体光圈01实际制备过程中,第一电极极板2中发挥电极作用的电路走线可以形成在实体板上(图2所示的第一电极极板2相当于由电路走线在板状结构构成),也可以是电路走线通过电镀等方式直接形成在第一基板1上(此时第一电极极板2的厚度可以做到纳米级别,其厚度虽然特别薄,但是第一电极极板2还是存在一定的厚度,在结构上是凸出于第一基板1的表面的,因此,第一电极极板2依旧可以理解为“层”);对应地,第二电极极板7上发挥电极作用的电路可以形成在实体板上(图2所示的第二电极极板7相当于由电路走线在板状结构构成),也可以是电路走线通过电镀等方式直接形成在第二基板8上(此时第二电极极板7的厚度可以做到纳米级别,其厚度虽然特别薄,但是第二电极极板7还是存在一定的厚度,在结构上是凸出于第二基板8的表面的,因此,第二电极极板7依旧可以理解为“层”)。也就是说,第一电极极板2和第二电极极板7在图2中以层状结构示出,仅做示例第一电极极板2和第二电极极板7在整个液体光圈01中的位置,并不用于限定第一电极极板2和第二电极极板7具体实现形式。
绝缘层3设置于第一电极极板2朝向第二基板8的一侧,可以将第一电极极板2与疏水层4绝缘隔离,也相当于将疏水层4以及其上的结构与第一电极极板2绝缘隔离。绝缘层3为由绝缘材质制成的实心板状结构,其结构是连续的,不存在镂空;绝缘层3的外边缘为与第一基板1相匹配的矩形,绝缘层3的厚度为0.5-1μm,例如,绝缘层3的厚度可以为0.5μm、0.6μm、0.8μm、1μm。
此处,疏水层4和亲水层5是相对而言的,二者都是对同一种液体表现出的相对疏水 或相对亲水的特性,当然,此处的“水”指代的是液态可流动的物质,并不限定于常识中的水;疏水层4,指的是与该液体表现出疏水特性的层状物质,对应地,亲水层5则指的是与该液体表现出亲水特性的层状物质。
液体光圈01在使用时,需要在具有挡光性的结构中部形成供光线穿过的进光孔,应当理解,液体光圈01的光轴方向平行于该Y方向,即光线会以平行于Y方向的方式穿过液体光圈01。具体到本申请实施例中,第一基板1、第一电极2、绝缘层3、疏水层4、亲水层5、第二电极7以及第二基板8具有透光性,而挡墙6在此处则具有挡光性,其进光孔的形成方式以及进光孔的调节将通过以下具体实施方式进行示例性介绍。
实施例一
请参照图3a所示例的一种液体光圈01的剖面结构示意图,为了清楚展示液体光圈01的硬件结构,图3a所示出的液体光圈01中未填充液体。请先参照图3a,沿图3a中Y方向所示,该液体光圈01包括按照一定顺序(图3a中即Y所示自下而上的方向,应当理解,液体光圈01的光轴方向平行于该Y方向)依次紧邻设置的第一基板1、第一电极极板2(此处以第一子电极21示出)、绝缘层3、疏水层4、亲水层5、挡墙6、第二电极极板7以及第二基板8。其中,挡墙6的中心区域具有第一中空结构A1,亲水层5具有第二中空结构A2,第一中空结构A1和第二中空结构A2连通,使得第二电极极板7、亲水层5、挡墙6与疏水层4之间形成一封闭腔体A,下面将结合各层结构做详细介绍。
在图3a所示的液体光圈01结构的基础上,图3b和图3c示出了本申请实施例中的第一基板1和第二基板8的结构,第一基板1和第二基板8均为实心板状结构,沿垂直于液体光圈01的光轴方向,其外边缘形状为矩形。其图3b和图3c中示出的第一基板1的上下两个表面均为平面,第二基板8的上下两个表面也均为平面。此处的第一基板1和第二基板8在具体实施时具有较好的透光性,一种可能实现的方式中,第一基板1和第二基板8可以采用玻璃。
图3d示出了第一电极极板2的结构,第一电极极板2包括的第一子电极21为实心板状的透明电极,其结构连续无镂空,具体材料可以选择ITO、纳米银或者其他透明电极材料;第一子电极21外接有一根引线201,当要向第一电极极板2施加电压时,通过该引线201连通外部电源即可;应当理解的是,此处仅示出了一根引线201,在实际应用中,可以根据具体的应用场景设置一根或多根引线201;另外,引线201与第一子电极21的连接方向也并不限于图3d中示出的与第一子电极21同层的方式,可以根据第一电极极板2在具体结构中的设置方式进行调整。需要说明的是,当此处第一子电极21直接通过电镀的方式形成在第一基板1上,第一电极极板2的厚度可以做到20-30nm,例如,第一电极极板2的厚度可以为20nm、22nm、25nm、28nm、30nm。
绝缘层3的结构请参照图3e,绝缘层3为由绝缘材质制成的实心板状结构,其结构是连续的,不存在镂空。
疏水层4的结构请参照图3f,疏水层4是设置于绝缘层3远离第一电极极板2一侧的连续的、实心的层状结构,疏水层4具体可以为由含氟聚合物制备的实心板状结构,且具有较好的透光性;其外边缘为与第一基板1相匹配的矩形,厚度为0.02-1μm,例如,疏水层4的厚度可以为0.02μm、0.1μm、0.25μm、0.3μm、0.5μm、0.75μm、1μm;在常温常压且不加电的情况下,疏水层4的水-气接触角应当大于110°。
亲水层5是设置于疏水层4远离绝缘层3的一侧的层状结构,但是亲水层5的层状结 构是非连续的;亲水层5的结构请参照图3g,亲水层5包括第一亲水部51和第二亲水部52,第一亲水部51和第二亲水部52同层设置于疏水层4上,且第一亲水部51和第二亲水部52厚度相同;第一亲水部51为圆柱形,第一亲水部51位于整个亲水层5的中心区域;第二亲水部52为框型,外边缘以矩形示出,中心区域具有圆柱形的镂空,即第二亲水部52的内边缘相当于为圆柱面,第一亲水部51位于该圆柱形镂空的中心区域,第二亲水层51圆柱形镂空的内边缘与第一亲水部51的外边缘之间形成一个圆环状的第二中空结构A2;在工作中,第二中空结构A2的轴心线与液体光圈01的光轴共轴;第二中空结构A2相当于沿亲水层5的厚度方向贯穿亲水层5,因此,疏水层4朝向第二电极极板7的表面可以自第二中空结构A2中露出来一部分。亲水层5可以选择光刻胶材质,其厚度为0.5-3μm,例如,亲水层5的厚度可以为0.5μm、1μm、1.6μm、2.5μm、3μm;在常温常压且不加电的情况下,亲水层5的水-气接触角小于70°。
挡墙6设置于亲水层5与第二电极极板7之间,挡墙6也为框型,如图3h所示,挡墙6的外边缘为与第一基板2相匹配的矩形,中部具有圆柱形镂空,即挡墙6的内边缘相当于为圆柱面,该圆柱形镂空形成第一中空结构A1;应当理解,第一中空结构A1沿挡墙6的厚度贯穿挡墙6,使得第二电极极板7朝向第一电极极板2的表面露出一部分。此处,挡墙6的高度(即参照图3a中所示的Y方向的尺寸)为0.05-2mm,例如,挡墙6的高度可以为0.05mm、0.8mm、1mm、1.2mm、1.6mm、2mm;此处,挡墙6的材质可以为光刻胶,直接在第二电极极板7上采用UV光刻制作而成,而挡墙6与亲水层5之间是相互独立的,在制备时,需要通过粘接胶(如压敏胶、环氧胶等)粘接,这样的粘接方式有利于减少绝缘层3、疏水层4与亲水层5的应力,可以提高器件可靠性和寿命。
结合图3a、图3g以及图3h,本申请实施例中的第一中空结构A1和第二中空结构A2相连通,使得疏水层4、第二电极极板7、亲水层5、挡墙6之间形成一封闭腔体A,上述挡墙6和亲水层5相当于充当了疏水层4和第二电极极板7之间的封堵结构。
第二电极极板7的结构请参照图3i,其可以为矩形的透明电极,具体材料可以选择ITO、纳米银或者其他透明电极材料,此处的第二电极极板7也是实心板状结构,外边缘为与第一基板1相匹配的矩形。当此处第二电极极板7直接通过电镀的方式形成在第一基板1上,第二电极极板7的厚度可以做到20-30nm,例如,第二电极极板7的厚度可以为20nm、22nm、25nm、28nm、30nm。
将上述结构按照设定的顺序依次对准堆叠可以得到图3j所示的液体光圈01,在该液体光圈01中,第一电极2以第一子电极21的形式示出。应当理解,为了结构的完整性,第一基板1、绝缘层3、疏水层4、亲水层5、挡墙6、第二电极7和第二基板8的外边缘可以为相同的形状,而第一电极2可以如图3k所示在第一子电极21的边缘填充其他的结构2’以使第一电极2所在区域的外边缘也可以与其他层的结构保持整齐。
以图3k所示的液体光圈的结构为例,结合图3a所示的结构,封闭腔体A中填充有透明电解质9和有色油墨10。其中,透明电解质9为透明状的含盐溶液,对可见光和红外光的一部分或全部光谱具有较高的透过率。而有色油墨10则为含染料的油质液体,对可见光和红外光的一部分或全部光谱具有较低的透过率。也就是说,当该液体光圈01应用到具有摄像功能的设备中时,光线可以穿过透明电解质9,但是基本无法穿过有色油墨10,有色油墨10的分布状态可以体现为能够形成的进光孔外周阴影的状态,即有色油墨10的分布决定了液体光圈01进光孔的大小,而此处有色油墨10的分布状态通过透明电解质9 的分布状态改变。本申请实施例中的亲水层5的亲水特性和疏水层4的疏水特性是相对此处的透明电解质9体现的,此外,亲水层5对透明电解质9的表面吸附能力大于疏水层4对透明电解质9的表面吸附能力,亲水层5对有色油墨10的表面吸附能力小于疏水层4对有色油墨10的表面吸附能力;在工作过程中,改变透明电解质9与疏水层4、亲水层5之间的润湿状态,就可以改变有色油墨10的分布状态,实现液体光圈01进光孔大小的调节。
参照3k,透明电解质9和有色油墨10填充在该封闭腔体A中,二者之间不相容,在透明电解质9和有色油墨10之间始终存在一分界面(如图3k所示,有色油墨10基本填充于第二中空结构A2中,透明电解质9则基本填充于第一中空结构A1中,透明电解质9与有色油墨10之间的分界面基本相当于挡墙6与亲水层5的接触面,在液体的表面张力作用下,有色油墨10略微向透明电解质9凸出);应当理解,由于透明电解质9的液态性质以及封闭腔体A的结构限定,透明电解质9并不是完全与疏水层4完全没有任何接触的,在微观上,透明电解质9在第二中空结构A2的边缘会有一点点(少到在图中无法示出)与疏水层4之间存在润湿连接,只不过在宏观上体现出图3k所示的状态;这样的关系是实现改变疏水层4与透明电解质9之间接触角的基础。
在图3k所示的状态中,透明电解质9占用的封闭腔体A的体积是恒定的,有色油墨10占用的封闭腔体A的体积也是恒定的。应当理解,若透明电解质9向有色油墨10占据的空间流动,透明电解质9相当于侵入有色油墨10占据的空间,有色油墨10将“被挤压”进入透明电解质9空余出的空间。
需要说明的是,为了满足透明电解质9和有色油墨10的上述分布状态,理想状态下的透明电解质9的密度和有色油墨10的密度应当是相等的,但是目前的工艺还无法达到这一效果,考虑到工艺的可实现性,此处,透明电解质9和有色油墨10之间的密度差小于或等于0.09g/cm 3,这样小的密度差可以尽可能减小密度差引起的重力对透明电解质9和有色油墨10分布的影响,较小的密度差可以使透明电解质9和有色油墨10之间保持相对稳定的位置和形状。此外,在具体实施时,第二电极极板7和疏水层4之间的距离(也相当于亲水层5和挡墙6的厚度之和)尽可能比较小,使得整个封闭腔体内的毛细作用足够强,以抵消透明电解质9和有色油墨10之间的一部分重力差对二者的形状以及分布变化的影响。
在图3k所示的结构中,透明电解质9将有色油墨10和第二电极极板7分开来,而透明电解质9可以与第二电极极板7导通,在工作时,可以分别在第一电极极板2和第二电极极板7上施加电压,使得第一电极极板2和第二电极极板7之间形成电场,若该形成的电场的强度等于或大于电场强度的设定阈值,透明电解质9与疏水层4之间的接触角会在电润湿原理下减小。当透明电解质9与疏水层4之间的接触角减小,透明电解质9会向下移动与疏水层4接触,透明电解质9相当于侵占了有色油墨10所占据的一部分空间,有色油墨10将会被透明电解质9挤压,也就是说,透明电解质9和有色油墨10在封闭腔体A内的形状与分布将会发生变化。这个变化过程中,由于光线可以透过透明电解质9,但是会被有色油墨10遮挡,透明电解质9和有色油墨10在封闭腔体A内的分布相当于可以决定液体光圈01的进光孔大小。因此,通过控制施加在第一电极极板2和第二电极极板7上的电压可以改变第一电极极板2和第二电极极板7之间的电场强度大小,进而可以改变透明电解质9与有色油墨10的在封闭腔体A内的分布状态,通过合理的结构设计,可以 使得透明电解质9和有色油墨10之间的状态改变体现为液体光圈01进光量的放大与缩小。应当理解,上述能够改变改变透明电解质9与有色油墨10的在封闭腔体A内的分布状态电场的设定阈值,相当于调节液体光圈01放大或缩小的临界电场值,当第一电极极板2和第二电极极板7之间形成的电场强度大于或等于该设定阈值,此电场为有效电场,当第一电极极板2和第二电极极板7之间形成的电场强度小于该设定阈值,此电场为无效电场。
请参考图3l,以疏水层4作为参考,第一亲水部51在疏水层4上的投影范围可以参照B1,第二亲水部52在疏水层4上的投影范围可以参照B21和B22;第一电极极板2的第一子电极21在疏水层4上的投影范围可以参照B3,可以看出,第一亲水部51在疏水层4上的投影落在第一子电极21在疏水层4上的投影内,而第一子电极21在疏水层4上的投影与第二亲水部52在疏水层4上的投影不相接。并且,挡墙6在疏水层4上的投影落在第二亲水部52在疏水层4上的投影范围内,第二亲水部52的内边缘尺寸为B4,挡墙6中心区域的圆柱形镂空的尺寸为B5,B4小于B5;换句话说,沿垂直于液体光圈01光轴的方向(即图3l中的X方向),第一子电极21外边缘的半径大于第一亲水部51的半径且小于第二亲水部52内边缘的半径;挡墙6内边缘距离光轴的距离大于第二亲水部51的内边缘半径,此处,挡墙6的内边缘相当于为圆柱面,则挡墙6的内边缘距离光轴的距离即挡墙6内边缘的半径;并且,挡墙6内边缘(相当于挡墙6中心区域圆柱形镂空侧壁)与第二亲水部52的内边缘之间的最小处的尺寸B6不小于0.1mm,即挡墙6的内边缘与第二亲水部52内边缘之间的距离大于等于0.1mm。这样的结构设计,是考虑到本申请实施例所提供的液体光圈01的工作原理,接下来,将对图3l所示例的液体光圈01的工作过程进行详细介绍。
参照图3m所示的液体光圈01的状态,透明电解质9和有色油墨10填充于封闭腔体A内,透明电解质9和有色油墨10之间存在一分界面。此时,第一子电极21与第二电极极板7上均未施加电压,因此第一子电极21与第二电极极板7之间未形成电场(或者,第一子电极21和第二电极极板7上施加了电压但是第一子电极21与第二电极极板7之间形成的电场不是有效电场),透明电解质9与疏水层4之间的接触角较大,疏水层4对透明电解质9表现出疏水特性,其中,透明电解质9基本填充于第一中空结构A1内,有色油墨10基本填充于第二中空结构A2内,有色油墨10相当于形成一个可以阻挡光线穿过的油墨环,油墨环的内圈即相当于液体光圈01进光孔K,液体光圈01进光孔K的大小相当于第一亲水部51的大小,也相当于有色油墨10内圈的大小(可以参照图3m下方油墨环的结构示意)。
如图3n所示,当在第一子电极21与第二电极极板7上施加电压使得第一子电极21和第二电极极板7之间形成强度足够大的有效电场,使得透明电解质9与疏水层4之间的接触角减小,第一子电极21所对应的疏水层4对透明电解质9表现出亲水特性,透明电解质9会沿图3n中竖直向下的箭头下行进入第二中空结构A2并与疏水层4接触,透明电解质9这样的移动会产生如图3n中水平方向箭头方向的推力将有色油墨10推向第二中空结构A2的外边缘(相当于第二亲水部52的内边缘),同时,由于有色油墨10的体积恒定,有色油墨10在高度增大,但是,透明电解质9依旧会将有色油墨10与第二电极极板7隔离开来;在图3n所示的状态下,有色油墨10形成的油墨环外径没有发生变化,而内径则实现了增大,相当于液体光圈01的进光孔K实现了增大。
在第一子电极21和第二电极极板7之间形成能够驱动透明电解质9运动的有效电场 的状态下,透明电解质9持续沿图3n中的箭头方向移动,并一直将有色油墨10推向第二中空结构A2的外边缘(相当于第二亲水部52的内边缘);由于第一子电极21与第二电极极板7之间形成的电场相当于与第一子电极21对应,而第一子电极21的边缘的范围小于第二中空结构A2外边缘的范围,当透明电解质9移动到第一子电极21的边缘附近,电场消失,透明电解质9无法再产生如图3n所示的运动,对有色油墨10的推动挤压作用也消失,有色油墨10的分布范围与形状将如图3o所示,即有色油墨10会贴附于第二中空结构A2的外边缘的第二亲水部52内边缘,有色油墨10形成的油墨环的宽度达到最小,对应地,液体光圈01的进光孔K的大小达到最大。当然,有色油墨10的高度达到最大,此处,透明电解质9依旧将有色油墨10与第二电极极板7隔离开来。
可以看出,本申请实施例所提供的液体光圈01中,第一亲水部51的大小相当于限定了液体光圈01进光孔K的最小值,第二亲水部52的内边缘相当于限定了液体光圈01进光孔K的最大值(当然,此处还应当考虑有色油墨10被挤压后的最小宽度)。一种可能实现的方式中,第一亲水部51的直径范围可以为0.5-2mm,第二亲水部52的内边缘的直径范围可以为2.5-10mm,根据实验数据,本申请实施例中液体光圈01的进光孔的调节倍率范围在1.2-8左右,在实际生产使用中,可以根据使用需求进行选择。
需要注意的是,在上述工作过程中,由于挡墙6与第二亲水部52的结构设计,有色油墨10始终不与挡墙6接触,可以防止有色油墨10由于毛细作用顺着挡墙6接触第二电极极板7,还可以降低液体光圈01打开后闭合的阻力,降低驱动电压、提高液体光圈01的反应速度。
可以看出,液体光圈01由图3m变换到图3n、再变换到图3o所示的状态为本申请实施例提供的液体光圈01的进光孔调大的过程;当去除第一子电极21与第二电极极板7上施加的电压或将该电压降低到第一子电极21与第二电极极板7之间无法形成有效电场,透明电解质9与疏水层4之间的接触角增大,疏水层4对透明电解质9表现出疏水特性,透明电解质9会如图3p所示的竖直向上的箭头方向离开疏水层4,透明电解质9的运动空余出第二中空结构A2的空间将被沿水平方向箭头移动的有色油墨10占据,最终回到图3m所示的状态,也就是说,液体光圈01由图3o变换到图3p、再变换到图3m所示的状态为本申请实施例提供的液体光圈01的进光孔调小的过程。在整个调节过程中,第一亲水部51的存在可以保证液体光圈01的中心一直具有一圆形的开口(相当于液体光圈01进光孔K的最小值),为有色油墨10提供初始破裂点,提高液体光圈01开口的圆度、同心度和重复性,使得有色油墨10可以在一定的范围内自由运动,整个液体光圈01的开口范围具有较大的调节空间。
实施例二
本申请实施例提供的液体光圈01是对实施例一所提供的液体光圈01的结构改进,与实施例二提供的液体光圈01不同点在于,如图4a所示,该液体光圈01中的第一电极极板2包括第一子电极21和第二子电极22,第一子电极21为圆形实心板状结构,位于整个第一电极极板2的中心区域,且第一子电极21外接有一根引线201;第二子电极22为具有开口的框型,其外边缘为与第一基板1相匹配的矩形;第二子电极22中心区域形成镂空,第一子电极21即位于该镂空的中心区域,第二子电极22外接有至少一根引线201;图4a中第二子电极22开口两侧分别外接了两根引线201,第一子电极21的引线201由第二子电极22的开口处伸出,与第二子电极22的引线201平行。第一子电极21和第二子电极 22之间不相接,二者之间形成电极间隙C,该电极间隙C的宽度可以为10-50μm,例如,电极间隙C的宽度可以为10μm、20μm、25μm、30μm、50μm。电极间隙C的存在,将第一子电极21和第二子电极22隔离,在工作中可以向第一子电极21和第二子电极22分别施加不同的电压。
该液体光圈01的剖面结构如图4b所示,第一子电极21的尺寸可以参照D1,第二子电极22的尺寸可以参照D31和D32,第二亲水部52的尺寸则可以参照D21和D22,可以看出,第二亲水部52疏水层4上的投影落在第二子电极22在疏水层4上的投影范围内,即第二亲水部52内边缘的半径大于第二子电极22内边缘的半径。在液体光圈01进光孔的调大过程中,可以对第一电极极板2的第一子电极21和第二子电极22施加不同的电压以使第一子电极21与第二电极极板7之间、第二子电极22与第二电极极板7之间分别形成不同的电场,依旧可以实现液体光圈01进光孔的调节。
具体而言,在调大液体光圈01的进光孔时,向第一电极极板2的第一子电极21施加较大的电压使得第一子电极21与第二电极极板2之间形成有效电场,向第一电极极板2的第二子电极22施加较小的电压使得第二子电极22与第二电极极板2之间无法形成有效电场,透明电解质9依旧可以实现实施例一中图3m变换到图3n、再变换到图3o的运动,有色油墨10的状态变化实现了液体光圈01进光孔的调大。在调小液体光圈01的进光孔时,去除第一子电极21和第二电极极板7上施加的电压或将该电压降低至第一子电极21和第二电极极板7之间无法形成有效电场,透明电解质9即可实现实施例一中图3p变换到图3o、再变换到图3m的运动,有色油墨10的状态变化实现了液体光圈01进光孔的调小。
应当理解,在第二子电极22上施加电压时,由于其上施加的电压非常小,第二子电极22于第二电极极板7之间形成的电场对透明电解质9与疏水层4之间的接触角的大小影响不大,如图4b中所示E区域即相当于第二电极极板7与第二子电极22之间形成的电场可以影响到的透明电解质9的范围,E区域非常小;因此,在对液体光圈01进光孔调大的过程中,可以认为有色油墨10靠近第二亲水部52内边缘的状态不会受到影响。
并且,第二中空结构A2(即图4b中有色油墨10分布的区域)在疏水层4上的投影与第二子电极22在疏水层4上的投影具有交叠区域(图4b中所示E区域),即沿垂直于液体光圈01光轴的方向,第二亲水部52内边缘的半径大于第二子电极22内边缘距离光轴的距离(相当于第二子电极22内边缘的半径)。在调小液体光圈01进光孔的大小时,可以在第二子电极22与第二电极极板7上施加电压,改变第二子电极22对应的疏水层4与透明电解质9之间的润湿性,使得透明电解质9对第二子电极22所对应的部分有色油墨10施压,促进有色油墨10向第二中空结构A2的内边缘移动,实现液体光圈01进光孔的缩小。
在控制液体光圈01进光孔缩小的过程中,施加在第二子电极22上的电压大小直接影响了第二子电极22对应的疏水层4与透明电解质9之间接触的时长以及接触的范围,只要对施加在第二子电极22上的电压大小和时间进行控制,即可满足推动有色油墨10向第二中空结构A2的内边缘移动的要求。应当理解,在此过程中,施加在第二子电极22上的电压只会在缩小液体光圈01进光孔的瞬间起作用,作用时间非常短,即使第二子电极22所对应的疏水层4与透明电解质9之间润湿接触,其接触时间也会非常短暂,且接触范围非常小,并不会影响液体光圈01进光孔的正常缩小作业。
实施例三
本申请实施例提供的液体光圈01是对实施例一所提供的液体光圈01的结构改进,与实施例一提供的液体光圈01不同点在于,如图5a所示,第一子电极21包括中心电极211和M个圆弧电极212(此处的M为大于等于1的整数,图5a中示出了两个圆弧电极212),中心电极211为实心圆板结构且位于第一子电极21的中心区域,每个圆弧电极212的轴心线与中心电极211的轴心线共轴;其中,中心电极211外接有至少一根引线201,每个圆弧电极212也外接有至少一根引线201。
继续参照图5a,与中心电极211相邻的圆弧电极212(图5a中最靠近中心电极211的圆弧电极212)和中心电极211之间形成第一间隙F1,任意两个相邻的圆弧电极212(图5a中的两个圆弧电极212)之间形成第二间隙F2,第一间隙F1的宽度的范围可以为10-50μm,例如,第一间隙F1的宽度可以为10μm、20μm、25μm、30μm、50μm;第二间隙F2的宽度的范围也可以为10-50μm,例如,第二间隙F2的宽度可以为10μm、20μm、25μm、30μm、50μm;应当理解,第一间隙F1的宽度和第二间隙F2的宽度可以选择一样,也可以选择不一样,图5a中的结构仅做示例。
该液体光圈01的剖面结构可以参照图5b所示,应当理解,上述第一间隙F1和第二间隙F2,足够小,在第一子电极21和第二电极极板7上施加电压,使得第一子电极21的中心电极211与第二电极极板7之间、各个圆弧电极212与第二电极极板7之间分别形成有效电场;当中心电极211所对应的透明电解质9与疏水层4之间的接触角减小时,透明电解质9产生类似图3n所示的运动,将有色油墨10推向第二亲水部52的内侧;当透明电解质9移动到第一间隙F1所对应的疏水层4的范围时,电场消失,透明电解质9与疏水层4之间的接触角无法被电场控制,但是由于第一间隙F1较小,透明电解质9还可以依靠自身的运动惯性继续运动到内侧圆弧电极212所对应的疏水层4所在区域并推动有色油墨10运动;透明电解质9运动到外侧圆弧电极212对应的疏水层4所在区域,该圆弧电极212与第二电极极板7之间形成的电场可以使透明电解质9与疏水层4之间的接触角减小,透明电解质9继续以类似图3n所示的方式运动,将有色油墨10推向第二亲水部52的内侧,最终达到图3o所示的状态。当然,透明电解质9在两个圆弧电极212之间的运动可以参照上述运动过程,此处不再赘述。
实施例四
结合实施例二和实施例三,如图6a所示,本申请实施例所提供的液体光圈01中的第一电极极板2包括第一子电极21和第二子电极22,此处的第二子电极22相当于实施例二中的第二子电极22。第一子电极21为实心圆形,位于整个第一电极极板2的中心区域,且第一子电极21外接有一根引线201;第二子电极22为具有开口的框型,其中部形成圆弧形的镂空,第一子电极21即位于该圆形镂空的中心区域,第二子电极22外接有至少一根引线201。第一子电极21和第二子电极22之间不相接,二者之间形成电极间隙C,该电极间隙C的宽度为10-50μm。而此处的第一子电极21相当于实施例三中的第一子电极21,第一子电极21包括中心电极211和M个圆弧电极212(M为大于等于1的整数,图6a中示出了两个圆弧电极212),中心电极211为实心圆板结构且位于第一子电极21的中心区域,每个圆弧电极212的轴心线与中心电极211的轴心线共轴;其中,中心电极211外接有至少一根引线201,每个圆弧电极212也外接有至少一根引线201。与中心电极211相邻的圆弧电极212(图6a中最靠近中心电极211的圆弧电极212)和中心电极211之间 形成第一间隙F1,任意两个相邻的圆弧电极212(图6a中的两个圆弧电极212)之间形成第二间隙F2,第一间隙F1的宽度的范围可以为10-50μm,第二间隙F2的宽度的范围也可以为10-50μm;应当理解,第一间隙F1的宽度和第二间隙F2的宽度可以选择一样,也可以选择不一样,图6a中的结构仅做示例。
该液体光圈01的剖面结构示意图可以参照图6b所示,应当理解,在对该液体光圈01进光孔调节时,可以参照实施例二和实施例三的工作过程,此处不再赘述。
实施例五
本申请实施例提供的液体光圈01是对实施例二所提供的液体光圈01的结构改进,与实施例二提供的液体光圈01的不同点在于,如图7a所示,亲水层5包括第一亲水部51、第二亲水部52,第一亲水部51为圆柱形,第一亲水部51位于整个亲水层5的中心区域;第二亲水部52为框型,外边缘为与第一基板1相匹配的矩形,中部具有圆柱形镂空,第一亲水部51位于该圆柱形镂空的中心区域;在第一亲水部51和第二亲水部52之间具有1个第三亲水部53,第一亲水部51、第二亲水部52和第三亲水部53同层设置于疏水层4上且高度一致。第三亲水部53为圆环状(应当理解,由于第三亲水部53的厚度较小,此处的圆环状也可以理解为圆环形),第三亲水部53的轴心线与液体光圈01光轴共轴。其中,第一亲水部51和第三亲水部53之间形成一个第二中空结构A2,第二亲水部52和第三亲水部53之间形成一个第二中空结构A2。
鉴于上述亲水层5的结构,本申请实施例中第一电极极板2的结构可以参照图7b所示,第一电极极板2包括第一子电极21、第二子电极22以及1个第三子电极23,此处的第三子电极23与上述第三亲水部53对应;第一子电极21为连续无镂空的实心圆板结构(当第一子电极21的厚度足够小,第一子电极21也可以理解为圆形),位于整个第一电极极板2的中心区域,第一子电极21外接有一根引线201;第二子电极22为框型,此处第二子电极22外边缘为矩形,第一子电极21相当于设置于第二子电极22的中心区域,第二子电极22开口的两端分别外接有一根引线201,第一子电极21的引线201自第二子电极22的开口处伸出;第三子电极23为圆环状,第三子电极23位于第一子电极21和第二子电极22之间,第三子电极23的轴心线与液体光圈01光轴的轴心线共轴,当然,第三子电极23也具有开口,方便位于环内的第一子电极21的引线201以平行的方式伸出,第三子电极23的开口两端分别外接有一根引线201。请继续参照图7b,该第一电极极板2中,第三子电极23与第一子电极21之间形成电极间隙G1,第三子电极23与第二子电极22之间形成电极间隙G3,此处的电极间隙G1和电极间隙G3的宽度可以相等,也可以不相等。
本申请实施例中,亲水层5的结构与第二电极极板7的结构具有对应关系,请参照图7c中所示的液体光圈01的剖面结构示意图(此处未示出透明电解质9和有色油墨10),第一子电极21与第一亲水部51对应,且第一亲水部51的半径小于第一子电极21的半径,即第一亲水部51在疏水层4上的投影落在第一子电极21在疏水层4上的投影范围内;第二子电极22与第二亲水部52对应,且第二亲水部52内边缘的半径大于第二子电极22内边缘的半径,在图7c所示的结构中,相当于第二亲水部52在疏水层4上的投影落在第二子电极22在疏水层4上的投影范围内;第二亲水部52内边缘的半径大于第一子电极21的半径;第三子电极23与第三亲水部53对应,第三亲水部53内边缘的半径大于第一子电极21的半径且小于第三子电极23内边缘的半径,第三亲水部53在疏水层4上的投影 与第三子电极23在疏水层4上的投影的内边缘交叠;如图7c所示,以疏水层4为参考,第三亲水部53在疏水层4上的投影可以参照H1所示,第三子电极23在疏水层4上的投影可以参照H2所示,第三子电极23的内边缘和第三亲水部53的内边缘之间的距离可以参照L,第三子电极23与第一子电极21之间形成电极间隙G1,第三子电极23与第二子电极22之间形成电极间隙G3,第三亲水部53投影到第一电极极板2上时,第三亲水部53的内边缘会落在上述电极间隙G1内。此处,沿垂直于液体光圈01光轴的方向(图7c中X方向),L的范围相当于第三子电极23的内边缘与第三亲水部53内边缘之间的距离,该L大于或等于10μm。
接下来请参照图7d至图7f对该液体光圈01的工作过程做以详细介绍。
如图7d所示,该液体光圈01此时未在第一电极极板2和第二电极极板7上施加电压或施加的电压不能使第一电极极板2和第二电极极板7之间形成有效电场,透明电解质9与疏水层4之间的接触角较大,疏水层4对透明电解质9表现出疏水特性,其中,透明电解质9基本填充于第一中空结构A1内,有色油墨10基本填充于各个第二中空结构A2内(本实施例中,相当于有两个同心环状的第二中空结构A2);有色油墨10相当于形成两个可以阻挡光线穿过的油墨环,每个油墨环的内圈即相当于液体光圈01进光孔,其对应的液体光圈01的进光孔的状态如图7d中所示为同心环状。
在液体光圈01的调大过程中,当在第一电极极板2与第二电极极板7上施加的电压可以使第一电极极板2和第二电极极板7之间形成有效电场,由于第一电极极板2包括第一子电极21、第二子电极22和一个第三子电极23,施加电压的方式会有多种。
方式一:在第一子电极21、第三子电极23以及第二电极极板7上施加电压,使第一子电极21与第二电极极板7之间、第三子电极23与第二电极极板7之间形成有效电场,如图7e所示,透明电解质9与第一子电极21、第三子电极23所对应的疏水层4之间的接触角减小,疏水层4对透明电解质9表现出亲水特性,透明电解质9会沿图7e中竖直向下的箭头下行进入每个第二中空结构A2并与疏水层4接触,透明电解质9这样的移动会产生如图7e中水平方向箭头方向的推力将每个第二中空结构A2中的有色油墨10推向该第二中空结构A2的外边缘(相当于第三亲水部53的内边缘以及第二亲水部52的内边缘),同时,由于有色油墨10的体积恒定,有色油墨10在高度增高,但是,透明电解质9依旧会将有色油墨10与第二电极极板7隔离开来;如图7e所示,有色油墨10形成两个油墨环,每个油墨环的外径没有发生变化,而内径实现了增大,相当于液体光圈01的每个进光孔K实现了增大。并且,在图7e所示的运动趋势下,最终液体光圈01内的透明电解质9和有色油墨10的分布将如图7f所示,第一亲水部51与内侧第三亲水部53之间的有色油墨10贴附于该第三亲水部53的内边缘,第三亲水部53与第二亲水部52之间的有色油墨10贴附于第二亲水部52的内边缘,有色油墨10形成的两个油墨环的宽度达到最小,对应地,液体光圈01的两个进光孔K的大小达到最大。有色油墨10的高度达到最大,此处,透明电解质9依旧将有色油墨10与第二电极极板7隔离开来。
方式二:如图7g所示,仅在第一子电极21以及第二电极极板7上施加电压,使得第一子电极21与第二电极极板7之间形成有效电场,透明电解质9与第一子电极21所对应的疏水层4之间的接触角减小,疏水层4对透明电解质9表现出亲水特性,透明电解质9会沿图7g中竖直向下的箭头下行进入第一亲水部51与第三亲水部53之间的第二中空结构A2并与疏水层4接触,透明电解质9这样的移动会产生如图7g中水平方向箭头方向的 推力将上述该第二中空结构A2中的有色油墨10推向该第二中空结构A2的外边缘(相当于第三亲水部53的内边缘);同时,未在第三子电极23上施加电压或施加的电压不能使第三子电极23与第二电极极板7之间形成有效电场,透明电解质9与该第三子电极23所对应的疏水层4之间的接触角不会发生变化,第三亲水部53与第二亲水部52之间的第二中空结构A2中的有色油墨的分布也就不会发生变化;最终,透明电解质9与有色油墨10的分布将如图7h所示,有色油墨10形成的两个油墨环中,内侧油墨环的内径达到最大,外侧油墨环状态未发生变化,其对应的液体光圈01的进光孔K的大小可以参照图7h所示。
方式三:如图7i所示,仅在第三子电极23以及第二电极极板7上施加电压,使得第三子电极23与第二电极极板7之间形成有效电场,透明电解质9与第三子电极23所对应的疏水层4之间的接触角减小,疏水层4对透明电解质9表现出亲水特性,透明电解质9会沿图7g中竖直向下的箭头下行进入第二亲水部52与第三亲水部53之间的第二中空结构A2并与疏水层4接触,透明电解质9这样的移动会产生如图7i中水平方向箭头方向的推力将上述该第二中空结构A2中的有色油墨10推向该第二中空结构A2的外边缘(相当于第二亲水部52的内边缘);同时,未在第一子电极21上施加电压或施加的电压不能使第一子电极21与第二电极极板7之间形成有效电场,透明电解质9与该第一子电极21所对应的疏水层4之间的接触角不会发生变化,第三亲水部53与第一亲水部51之间的第二中空结构A2中的有色油墨的分布也就不会发生变化;最终,透明电解质9与有色油墨10的分布将如图7j所示,有色油墨10形成的两个油墨环中,外侧油墨环的内径达到最大,内侧油墨环状态未发生变化,其对应的液体光圈01的进光孔K的大小可以参照图7j所示。
应当理解,该液体光圈01的进光孔K缩小时,去除施加在第一电极极板2和第二电极极板7上的电压或施加在第一电极极板2和第二电极极板7上的电压不足以在第一电极极板2和第二电极极板7之间形成有效电场,透明电解质9和有色油墨10的分布将会恢复到图7d所示。另外,本申请实施例提供的两种电压施加方式中,均未涉及第二子电极22的电压施加方式,可以理解,当对第二子电极22施加电压时,其对液体光圈01的调节原理与实施例二中的工作原理类似,此处不再赘述。
实施例六
本申请实施例提供的液体光圈01是对实施例五所提供的液体光圈01的结构改进,与实施例五提供的液体光圈01的不同点在于,如图8a所示,在第一亲水部51和第二亲水部52之间设置有两个第三亲水部53(图8a中分别以第三亲水部53a和第三亲水部53b示出)。每个第三亲水部53为圆环状,每个第三亲水部53的轴心线与液体光圈01的光轴共轴,两个第三亲水部53相当于以同心圆环的状态示出。其中,第一亲水部51和第三亲水部53a之间形成一个第二中空结构A2,第三亲水部53a和第三亲水部53b之间形成一个第二中空结构A2,第二亲水部52和第三亲水部53b之间形成一个第二中空结构A2。
鉴于上述亲水层5的结构,本申请实施例中第一电极极板2的结构请参照图8b所示,第一电极极板2包括第一子电极21、第二子电极22以及两个第三子电极23(图8b中以第三子电极23a和第三子电极23b示出),此处的两个第三子电极23与上述两个第三亲水部53一一对应;请继续参照图8b,该第一电极极板2中,第三子电极23a与第一子电极21之间形成电极间隙G1,两个第三子电极23之间形成电极间隙G2,第三子电极23b与第二子电极22之间形成电极间隙G3,此处的电极间隙G1、电极间隙G2和电极间隙G3的宽度可以相等,也可以不相等。第一子电极21、第二子电极22以及每个第三子电极23 均外接有至少一根引线201。
本申请实施例中,亲水层5的结构与第二电极极板7的结构具有对应关系,请参照图8c中所示的液体光圈01的剖面结构示意图(此处未示出透明电解质9和有色油墨10),第一子电极21与第一亲水部51对应,且第一亲水部51在疏水层4上的投影落在第一子电极21在疏水层4上的投影范围内,相当于第一亲水部51的半径小于第一子电极21的半径;第二子电极22与第二亲水部52对应,且第二亲水部52在疏水层4上的投影落在第二子电极22在疏水层4上的投影范围内,相当于第一亲水部51的半径小于第一子电极21外边缘的半径,且第二亲水部52内边缘的半径大于第一子电极21外边缘的半径;第三子电极23与第三亲水部53一一对应,具体地,第三亲水部53a在疏水层4上的投影与第三子电极23a在疏水层4上的投影的内边缘交叠,第三亲水部53b在疏水层4上的投影与第三子电极23b在疏水层4上的投影的内边缘交叠;如图8c所示,以疏水层4为参考,第三亲水部53a在疏水层4上的投影可以参照H1所示,第三子电极23a与第一子电极21之间形成电极间隙G1,可以看出H1与G1之间有交叠区域L1,即第三亲水部53a投影到第一电极极板2上时,第三亲水部53a的内边缘会落在上述电极间隙G1内;第三亲水部53b在疏水层4上的投影可以参照H2所示,第三子电极23b与第三子电极23a之间形成电极间隙G2,可以看出H2与G2之间有交叠区域L2,即第三亲水部53b投影到第一电极极板2上时,第三亲水部53b的内边缘会落在上述电极间隙G2内;第三子电极23b与第二子电极22之间形成电极间隙G3。此处,沿垂直于液体光圈01光轴的方向(图8c中X方向),L1的范围相当于第三子电极23a的内边缘与第三亲水部53a内边缘之间的距离,L2的范围相当于第三子电极23b的内边缘与第三亲水部53b内边缘之间的距离,该L1和L2均大于或等于10μm,且L1和L2可以相同也可以不同。
接下来请参照图8d至图8f,结合该液体光圈01的结构对该液体光圈01的工作过程做以详细介绍。
如图8d所示,该液体光圈01此时未在第一电极极板2和第二电极极板7上施加电压或施加的电压不能使第一电极极板2和第二电极极板7之间形成有效电场,透明电解质9与疏水层4之间的接触角较大,疏水层4对透明电解质9表现出疏水特性,其中,透明电解质9基本填充于第一中空结构A1内,有色油墨10基本填充于各个第二中空结构A2内(本实施例中,相当于有三个同心圆环结构的第二中空结构A2);有色油墨10相当于形成三个可以阻挡光线穿过的油墨环,每个油墨环的内圈即相当于液体光圈01进光孔,其对应的液体光圈01的进光孔的状态如图8d中所示,包括一个圆形的进光孔K以及两个环状的进光孔K,两个环状的进光孔K以圆形的进光孔K为圆心同心环状分布。
当在第一电极极板2与第二电极极板7上施加的电压可以使第一电极极板2和第二电极极板7之间形成有效电场,由于第一电极极板2包括第一子电极21、第二子电极22和两个第三子电极23,施加电压的方式会有多种。
方式一:在第一子电极21、两个第三子电极23(图8e中示出的第三子电极23a和第三子电极23b)以及第二电极极板7上施加的电压,可以使在第一子电极21与第二电极极板7之间、每个第三子电极23与第二电极极板7之间形成有效电场,如图8e所示,透明电解质9与第一子电极21、每个第三子电极23所对应的疏水层4之间的接触角减小,疏水层4对透明电解质9表现出亲水特性,透明电解质9会沿图8e中竖直向下的箭头下行进入每个第二中空结构A2并与疏水层4接触,透明电解质9这样的移动会产生如图8e中水 平方向箭头方向的推力将每个第二中空结构A2中的有色油墨10推向该第二中空结构A2的外边缘(相当于每个第三亲水部53的内边缘以及第二亲水部52的内边缘),同时,由于有色油墨10的体积恒定,有色油墨10在高度方向会增大,但是,透明电解质9依旧会将有色油墨10与第二电极极板7隔离开来;如图8e所示,有色油墨10形成的三个油墨环,每个油墨环的外径没有发生变化,而内径实现了增大,相当于液体光圈01的每个进光孔K实现了增大。并且,在图8e所示的运动趋势下,最终液体光圈01内的透明电解质9和有色油墨10的分布将如图8f所示,第一亲水部51与8第三亲水部53a之间的有色油墨10贴附于第三亲水部53a的内边缘,第三亲水部53a与第三亲水部53b之间的有色油墨10贴附于第三亲水部53b的内边缘,第三亲水部53b与第二亲水部52之间的有色油墨10贴附于第二亲水部52的内边缘,有色油墨10形成的三个油墨环的宽度达到最小,对应地,液体光圈01的三个进光孔K的大小达到最大。有色油墨10的高度达到最大,此处,透明电解质9依旧将有色油墨10与第二电极极板7隔离开来。
方式二:如图8g所示,在第一子电极21、第三子电极23b以及第二电极极板7上施加电压,使得第一子电极21与第二电极极板7之间形成有效电场,透明电解质9与第一子电极21所对应的疏水层4之间的接触角减小,疏水层4对透明电解质9表现出亲水特性,透明电解质9会沿图8g中竖直向下的箭头下行进入第一亲水部51、第三亲水部53a之间第二中空结构A2并与疏水层4接触,透明电解质9这样的移动会产生如图8g中水平方向箭头方向的推力将上述该第二中空结构A2中的有色油墨10推向该第二中空结构A2的外边缘(相当于第三亲水部53a的内边缘);同时,第三子电极23b与第二电极极板7之间形成有效电场,透明电解质9与第三子电极23b所对应的疏水层4之间的接触角减小,疏水层4对透明电解质9表现出亲水特性,透明电解质9会沿图8d中竖直向下的箭头下行进入第二亲水部52、第三亲水部53b之间的第二中空结构A2并与疏水层4接触,透明电解质9这样的移动会产生如图8g中水平方向箭头方向的推力将上述该第二中空结构A2中的有色油墨10推向该第二中空结构A2的外边缘(相当于第二亲水部52的内边缘);在此过程中,位于第三亲水部53a和第三亲水部53b之间的第二中空结构A2内的有色油墨10的状态不会发生变化;最终,透明电解质9与有色油墨10的分布将如图8h所示,有色油墨10形成的三个油墨环中,最内侧和最外侧的油墨环的内径达到最大,中间油墨环状态未发生变化,其对应的液体光圈01的进光孔K的大小可以参照图8h所示。
应当理解,上述在第一电极极板2和第二电极极板7之间施加电压的方式仅作示例,针对本申请实施例中第一电极极板2的结构,还可以有其他的电压施加方式,例如,仅在第一子电极21和第二电极极板7上施加能够在第一子电极21和第二电极极板7之间形成有效电场的电压;或者,在所有的第三子电极23和第二电极极板7上施加能够在所有的第三子电极23和第二电极极板7之间形成有效电场的电压;或者,在第一子电极21、第三子电极23a和第二电极极板7上施加能够在第一子电极21和第二电极极板7之间、第三子电极23a和第二电极极板7之间形成有效电场的电压,都会对透明电解质9和有色油墨10的分布产生影响,最终实现液体光圈01的进光孔K的大小调节。
另外,本申请实施例所示例的两种电压施加方式中,均未涉及第二子电极22的电压施加方式,可以理解,当对第二子电极22施加电压时,其对液体光圈01的调节原理与实施例二中的工作原理类似,此处不再赘述。
实施例七
本申请实施例提供的液体光圈01是对实施例六所提供的液体光圈01的结构改进,与实施例六提供的液体光圈01的不同点在于,如图9a所示,在第一亲水部51和第二亲水部52之间设置有N个第三亲水部53,此处的N大于等于3(图9a中示出了两个第三亲水部53,两个第三亲水部53之间以省略号代表未示出的至少一个第三亲水部53)。每个第三亲水部53为圆环状,每个第三亲水部53的轴心线与液体光圈01的光轴共轴,N个第三亲水部53相当于以同心圆环的状态示出。其中,第一亲水部51和最内侧的第三亲水部53之间形成一个第二中空结构A2,任意两个相邻的第三亲水部53之间形成一个第二中空结构A2,第二亲水部52和最外侧的第三亲水部53之间形成一个第二中空结构A2。
鉴于上述亲水层5的结构,本申请实施例中第一电极极板2的结构请参照图9b所示,第一电极极板2除了包括第一子电极21、第二子电极22,还包括位于第一子电极21与第二子电极22之间的N个第三子电极23此处的N大于等于3(图9b中示出了两个第三子电极23,两个第三子电极23之间以省略号代表未示出的至少一个第三子电极23),此处的N个第三子电极23与上述N个第三亲水部53一一对应。
本申请实施例所提供的液体光圈01仅在亲水层5和第一电极极板2的结构进行了改进,其中,第一子电极21与第一亲水部51的对应关系、第二子电极22与第二亲水部52的对应关系可以以图8c为参考。而对于任意一组相互对应的第三子电极23和第三亲水部53的对应关系,可以借鉴图8c所示的结构进行归纳总结得到以下规律。
在亲水层5中,沿垂直于液体光圈01光轴的方向,亲水层5自内向外,第x个第三亲水部53的内边缘的半径为r xi、外边缘的半径为r xj,所有第三亲水部53的尺寸大小满足以下条件:r 1i<r 1j<r 2i<r 2j<……r (N-1)i<r (N-1)j;在第一电极极板2中,沿垂直于液体光圈01光轴的方向,第一电极极板2自内向外,第y个第三子电极23的内边缘的半径为R yi、外边缘的半径为R yj,所有第三子电极23的尺寸满足以下条件:R 1i<R 1j<R 2i<R 2j<……R (N -1)i<R (N-1)j;当x=y,r xi<R yi<r xj<R yj;并且,当x=y,R yi-r xi≥10μm,这样的结构设置,可以限定有色油墨10在对应的第二中空结构A2内的分布范围。
参照实施例六以及图8d至图8h,这种结构的液体光圈01的工作原理可以形成包括一个圆形的进光孔以及至少两个环状的进光孔,所有环状的进光孔以圆形的进光孔为圆心同心环状分布;在工作中,控制施加在第一电极极板2不同部分上(第一子电极21以及N-1个第三子电极23)的电压,可以实现这种液体光圈01进光孔的大小调节,此处不再展开赘述。
实施例八
本申请实施例提供的液体光圈01是对实施例一所提供的液体光圈01的结构改进,与实施例一提供的液体光圈01不同点在于,如图10所示,挡墙6为框型,且中部形成矩形的第一中空结构A1;该液体光圈01的结构与实施例一中图3j所示的结构相似,此处不再以图例示出。
实施例九
本申请实施例提供的液体光圈01是对实施例一所提供的液体光圈01的结构改进,与实施例一提供的液体光圈01不同点在于,如图11所示,挡墙6为圆环形,即其外边缘为圆形,中心区域形成横截面为圆形的第一中空结构A1;该液体光圈01的结构与实施例一中图3j所示的结构相似,此处不再以图例示出。
实施例十
本申请实施例提供的液体光圈01是对实施例一所提供的液体光圈01的结构改进,与实施例一提供的液体光圈01不同点在于,如图12所示,亲水层5包括第一亲水部51和第二亲水部52,第一亲水部51为圆柱形,第一亲水部51位于整个亲水层5的中心区域;第二亲水部52为圆环形,第二亲水部52的轴心线与第一亲水部51的轴心线共轴,第一亲水部51和第二亲水部52之间形成第二中空结构A2。该液体光圈01的结构与实施例一中图3j所示的结构相似,此处不再以图例示出。
实施例十一
本申请实施例提供的液体光圈01是对实施例一所提供的液体光圈01的结构改进,与实施例二提供的液体光圈01不同点在于,如图13所示,疏水层4为实心圆柱形。该液体光圈01的结构与实施例一中图3j所示的结构相似,此处不再以图例示出。
实施例十二
本申请实施例提供的液体光圈01是对实施例二所提供的液体光圈01的结构改进,与实施例二提供的液体光圈01不同点在于,该液体光圈01中的挡墙6的材质为玻璃、PMMA或其他固化后呈硬质的高分子聚合物,挡墙6与第二电极极板7之间、挡墙6与亲水层5之间均通过粘接胶(如压敏胶、环氧胶等)粘接。该液体光圈01仅是挡圈6的材质和连接方式的改进,因此,此处未以图例示出。
实施例十三
本申请实施例提供的液体光圈01是对实施例二所提供的液体光圈01的结构改进,与实施例二提供的液体光圈01不同点在于,如图14a所示,第一基板1的外表面(即第一基板1远离第二基板8的一侧表面)为曲面;或者,如图14b所示,第二基板8的外表面(即第二基板8远离第一基板1的一侧表面为曲面);或者,如图14c所示,第一基板1的外表面为曲面,第二基板8的外表面也为曲面。
至此,通过以上实施例对本申请提供的液体光圈01的结构与工作原理做了介绍,可以看出,本申请实施例所提供的液体光圈01,通过控制施加在第一电极极板2和第二电极极板7之间的电场,就可以改变透明电解质9和有色油墨10在封闭腔体的分布,从而实现对液体光圈01进光孔调节的效果,可以满足消费者对摄像作业中进光量的调节需求;此处施加在第一电极极板2和第二电极极板7上的电压可以是低电压,使得液体光圈01实现低电压驱动;并且,由于亲水层5的特殊结构设计,使得液体光圈01的中心一直存在一开孔(该开孔最小状态由亲水层5的第一亲水部51的大小决定),可以提高液体光圈01进光孔的圆度、同心度以及重复性。
本申请实施例还提供一种电子设备,该电子设备可以是具备拍照摄像功能的智能手机、平板电脑、车载镜头、安防镜头等。请参照图15所示例的一种智能手机02,该智能手机02包括设备本体022,设备本体022内设置有主板(此处未示出),设备本体022上安装有摄像头021作为后置摄像头,该摄像头021内设置有上述液体光圈01,在满足摄像需求的同时,由于液体光圈01体积小、控制精准且方便的优势,有利于智能手机实现小型化和轻薄化。
此处,液体光圈01的第一电极极板2和第二电极极板7分别与智能手机02的主板电性连接,可以通过主板对第一电极极板2和第二电极极板7上施加的电压进行控制调节,最终实现液体光圈01的控制与调节。
此外,本申请还提供一种液体光圈的驱动方法,用于调节上述液体光圈01的进光孔 大小。请参照图16,该驱动方法包括以下步骤:
S1:获取光圈调节指令;此处的光圈调节指令可以是用户发出的,例如,该液体光圈01单独使用,用户可以直接调节施加在第一电极极板2和第二电极极板7上的电压;而当该液体光圈01应用于电子设备,以智能手机为例,施加在第一电极极板2和第二电极极板7上的电压可以通过智能手机的主板(相当于控制中心)调节,当然,该智能手机的主板加载有用于调节该电压的软件。
当光圈调节指令指示调大光圈,实施步骤S21:增大第一电极极板与第二电极极板之间的电场强度,以改变透明电解质与有色油墨分布状态,使有色油墨10向对应的第二中空结构A2的外边缘移动以增加透过液体光圈01的光线;
当光圈调节指令指示减小光圈,实施步骤S22:减小第一电极极板与第二电极极板之间的电场强度,以改变透明电解质与有色油墨分布状态,使有色油墨10向对应的疏水层4上铺展以减少透过液体光圈01的光线。
应当理解,当施加在第一电极极板2和第二电极极板7上的电压使得第一电极极板2和第二电极极板7之间形成有效电场,电压的增大可以提高透明电解质9与疏水层4之间的润湿速率,相当于增大液体光圈01进光孔调大的速率。
相应地,当施加在第一电极极板2和第二电极极板7上的电压使得第一电极极板2和第二电极极板7之间形成有效电场,电压的减小可以减小透明电解质9与疏水层4之间的润湿速率,相当于减小液体光圈01进光孔调大的速率。
在具体实施时,在得第一电极极板2和第二电极极板7之间形成有效电场的电压与液体光圈01中各结构层的厚度、材料以及透明电解质9相关,其数值范围可以为5-30V。
基于上述液体光圈的驱动方法,本申请实施例还提供一种液体光圈的驱动装置,该驱动装置包括获取模块和电场调节模块,其中,获取模块用于获取上述光圈调节指令;当该电场调节模块执行上述光圈调节指令的程序代码时,执行以下过程:
用于在光圈调节指令指示调大光圈时,增大第一电极极板2与第二电极极板7之间的电场强度,以改变透明电解质9与有色油墨10的分布状态,使有色油墨10向对应的第二中空结构A1的外边缘移动以增加透过液体光圈01的光线;或者,用于在光圈调节指令指示减小光圈,减小第一电极极板2与第二电极极板7之间的电场强度,以改变透明电解质9与有色油墨10分布状态,使有色油墨10向对应的疏水层4上铺展以减少透过液体光圈01的光线。
基于上述液体光圈的驱动方法,如图17所示,本申请实施例还可以提供一种电子设备100,电子设备100可以包括处理器110,外部存储器接口120,存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线100,天线200,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
其中,摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光 元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。例如,当电子设备100为智能手机,摄像头193的数量可以为两个,分别为前置摄像头和后置摄像头。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
存储器121用于存储指令和数据,处理器110通过总线接口耦合摄像头193,摄像头190内设置有上述液体光圈01,处理器110可以调用存储器121中存储的程序指令,通过液体光圈01执行上述液体光圈的驱动方法。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种液体光圈,其特征在于,包括:沿所述液体光圈的光轴方向依次紧邻设置的第一基板、第一电极极板、绝缘层、疏水层、亲水层、挡墙、第二电极极板以及第二基板;
    所述第一基板、所述第一电极极板、所述绝缘层、所述疏水层、所述亲水层、所述第二电极极板和第二基板具有透光性,所述挡墙具有挡光性;所述第一基板用于承载所述第一电极极板,所述第二基板用于承载所述第二电极极板,所述绝缘层用于将所述疏水层和第一电极极板绝缘;
    所述挡墙中部形成有第一中空结构,所述第一中空结构沿所述挡墙的厚度方向贯穿所述挡墙;
    所述亲水层包括第一亲水部和第二亲水部,所述第一亲水部位于所述亲水层的中心区域,所述第二亲水部位于所述亲水层的外围区域;所述第一亲水部为圆柱形,所述第二亲水部的中部具有圆柱形镂空;所述第一亲水部的轴心线、所述圆柱形镂空的轴心线与所述液体光圈的光轴共轴;所述第一亲水部位于所述圆柱形镂空中,且所述第一亲水部和所述第二亲水部之间存在N个圆环状的第二中空结构,所述N为大于等于1的整数;
    所述第一中空结构和N个所述第二中空结构连通,使得所述第二电极极板、所述挡墙、所述亲水层和所述疏水层之间形成一封闭腔体;所述封闭腔体内填充有透光的透明电解质和不透光的有色油墨;所述有色油墨的与所述透明电解质不相容,且所述透明电解质用于将所述有色油墨与所述第二电极极板隔离;所述亲水层对所述透明电解质的表面吸附能力大于所述疏水层对所述透明电解质的表面吸附能力,所述亲水层对所述有色油墨的表面吸附能力小于所述疏水层对所述有色油墨的表面吸附能力;
    所述第一电极极板和所述第二电极极板之间用于形成电场以改变所述透明电解质和所述有色油墨在所述封闭腔体内的分布。
  2. 如权利要求1所述的液体光圈,其特征在于,所述N等于1;所述第一电极极板包括第一子电极,所述第一子电极为实心圆板且所述第一子电极的轴心线与所述液体光圈的光轴共轴;所述第一子电极的半径大于所述第一亲水部的半径且小于所述第二亲水部内边缘的半径。
  3. 如权利要求1所述的液体光圈,其特征在于,所述N等于1;所述第一电极极板包括同层设置的中心电极以及M个圆弧电极,所述M为大于等于1的整数;所述中心电极为实心圆板且所述中心电极位于所述第一电极极板的中心区域;每个所述圆弧电极的轴心线与所述液体光圈的光轴共轴且每个所述圆弧电极的半径不同,所述中心电极和每个所述圆弧电极分别外接有至少一根引线;
    位于所述第一电极极板最外侧的圆弧电极外边缘的半径大于所述第一亲水部的半径且小于所述第二亲水部内边缘的半径。
  4. 如权利要求3所述的液体光圈,其特征在于,与所述中心电极相邻的圆弧电极和所述中心电极之间的宽度为10-50μm,任意两个相邻的所述圆弧电极之间的宽度为10-50μm。
  5. 如权利要求1所述的液体光圈,其特征在于,所述N=2;所述亲水层还包括位于所述第一亲水部和所述第二亲水部之间的圆环状的第三亲水部;所述第三亲水部的轴心线与所述液体光圈的光轴共轴,所述第三亲水部内边缘的半径大于所述第一亲水部的半径,且所述第三亲水部外边缘的半径小于所述第二亲水部内边缘的半径;
    所述第一电极极板包括第一子电极和第三子电极,所述第一子电极为实心圆板且所述第一子电极位于所述第一电极极板的中心区域,所述第三子电极为圆弧状且所述第三子电极围绕所述第一子电极;所述第一子电极的轴心线、所述第三子电极的轴心线与所述液体光圈的光轴共轴,所述第一子电极和所述第三子电极分别外接有至少一根引线;
    其中,所述第一子电极外边缘的半径大于所述第一亲水部的半径且小于所述第三亲水部内边缘的半径;所述第三子电极内边缘的半径大于所述第三亲水部内边缘的半径,所述第三子电极外边缘的半径大于所述第三亲水部外边缘的半径且小于所述第二亲水部内边缘的半径。
  6. 如权利要求1所述的液体光圈,其特征在于,所述N≥3;所述亲水层还包括位于所述第一亲水部和所述第二亲水部之间的N-1个圆环状的第三亲水部,每个所述第三亲水部的轴心线与所述液体光圈的光轴共轴;沿垂直于所述液体光圈光轴的方向,所述亲水层自内向外,第x个所述第三亲水部的内边缘的半径为r xi、外边缘的半径为r xj,r 1i<r 1j<r 2i<r 2j<……r (N-1)i<r (N-1)j
    所述第一电极极板包括第一子电极和N-1个第三子电极,N-1个所述第三子电极与N-1所述第三亲水部一一对应;所述第一子电极位于所述第一电极极板的中心区域,所述第一子电极为实心圆板且所述第一子电极的轴心线与所述液体光圈的光轴共轴,每个所述第三子电极为圆弧状且每个所述第三子电极的轴心线与所述液体光圈的光轴共轴;所述第一子电极和每个所述第三子电极分别外接有至少一根引线;沿垂直于所述液体光圈光轴的方向,所述第一电极极板自内向外,第y个所述第三子电极的内边缘的半径为R yi、外边缘的半径为R yj,R 1i<R 1j<R 2i<R 2j<……R (N-1)i<R (N-1)j
    其中,所述第一子电极的半径大于所述第一亲水部的半径且小于与所述第一亲水部相邻的第三亲水部内边缘的半径;当x=y,r xi<R yi<r xj<R yj
  7. 如权利要求6所述的液体光圈,其特征在于,当x=y,R yi-r xi≥10μm。
  8. 如权利要求2-7中任一项所述的液体光圈,其特征在于,所述第一电极极板包括位于所述第一电极极板外围区域的第二子电极,所述第二子电极外接有至少一根引线;
    所述第二子电极的中部具有镂空,所述第二子电极内边缘距离所述液体光圈光轴的距离的小于所述第二亲水部内边缘的半径。
  9. 如权利要求1-8中任一项所述的液体光圈,其特征在于,所述挡墙内边缘距离所述液体光圈光轴的距离大于所述第二亲水部的内边缘半径。
  10. 如权利要求9所述的液体光圈,其特征在于,沿垂直于所述液体光圈光轴的方向,所述挡墙的内边缘与所述第二亲水部的内边缘之间的距离大于等于0.1mm。
  11. 如权利要求1-10中任一项所述的液体光圈,其特征在于,所述挡墙的高度为0.05-2mm。
  12. 如权利要求1-11中任一项所述的液体光圈,其特征在于,所述亲水层的厚度为0.5-3um。
  13. 如权利要求1-12中任一项所述的液体光圈,其特征在于,所述透明电解质与所述有色油墨之间的密度之差小于等于0.09g/cm 3
  14. 如权利要求1-13中任一项所述的液体光圈,其特征在于,所述挡墙形成于所述第二电极极板朝向所述亲水层的一侧,且所述挡墙与所述亲水层之间通过胶粘剂粘接,所述挡墙的材质为光刻胶。
  15. 如权利要求1-13中任一项所述的液体光圈,其特征在于,所述挡墙与所述亲水层之间、所述挡墙与所述第二电极极板之间分别通过胶粘剂粘接,所述挡墙的材质为玻璃或高分子聚合物。
  16. 如权利要求14或15所述的液体光圈,其特征在于,所述胶粘剂为压敏胶或环氧胶。
  17. 如权利要求1-16中任一项所述的液体光圈,其特征在于,所述绝缘层的厚度为0.5-1um;和/或,所述疏水层的厚度为0.02-1um。
  18. 如权利要求1-17中任一项所述的液体光圈,其特征在于,所述疏水层的材质为含氟聚合物;和/或,所述亲水层的材质为光刻胶。
  19. 如权利要求1-18中任一项所述的液体光圈,其特征在于,所述第二电极极板为实心板状结构。
  20. 如权利要求1-19中任一项所述的液体光圈,其特征在于,所述第一电极极板的厚度为20-30nm;
    和/或,所述第二电极极板的厚度为20-30nm。
  21. 如权利要求1-20中任一项所述的液体光圈,其特征在于,所述第一基板的外表面为曲面;
    和/或,所述第二基板的外表面为曲面。
  22. 如权利要求1-21中任一项所述的液体光圈,其特征在于,所述液体光圈的光圈值为1.2-8。
  23. 如权利要求1-22中任一项所述的液体光圈,其特征在于,沿垂直于所述液体光圈光轴的方向,所述第一基板、所述第一电极极板、所述绝缘层、所述疏水层、所述亲水层、所述挡墙、所述第二电极极板以及所述第二基板的外边缘相匹配。
  24. 一种电子设备,其特征在于,包括设备本体、主板以及摄像头,所述主板设置于所述设备本体内,所述摄像头安装于所述设备本体上;
    所述摄像头内设置有如权利要求1-23中任一项所述的液体光圈,所述主板与所述液体光圈中的第一电极极板和第二电极极板电性连接。
  25. 一种液体光圈的驱动方法,用于调节权利要求1-23中任一项所述的液体光圈,其特征在于,包括以下步骤:
    获取光圈调节指令;
    当所述光圈调节指令指示调大光圈,增大所述第一电极极板与所述第二电极极板之间的电场强度,以改变所述透明电解质与所述有色油墨分布状态,使所述有色油墨向对应的第二中空结构的外边缘移动以增加透过所述液体光圈的光线;
    当所述光圈调节指令指示减小光圈,减小所述第一电极极板与所述第二电极极板之间的电场强度,以改变所述透明电解质与所述有色油墨分布状态,使所述有色油墨向对应的所述疏水层上铺展以减少透过所述液体光圈的光线。
  26. 如权利要求25所述的驱动方法,其特征在于,所述获取光圈调节指令包括以下步骤:
    获取用户发出的光圈调节指令;
    或,获取控制中心发出的光圈调节指令。
  27. 一种液体光圈的驱动装置,用于调节如权利要求1-23中任一项所述的液体光圈,其特征在于,包括获取模块和电场调节模块;
    所述获取模块,用于获取光圈调节指令;
    所述电场调节模块,用于在所述光圈调节指令指示调大光圈时,增大第一电极极板与第二电极极板之间的电场强度,以改变所述透明电解质与所述有色油墨分布状态,使所述有色油墨向对应的第二中空结构的外边缘移动以增加透过所述液体光圈的光线;或者,用于在所述光圈调节指令指示减小光圈,减小所述第一电极极板与所述第二电极极板之间的电场强度,以改变所述透明电解质与所述有色油墨分布状态,使所述有色油墨向对应的所述疏水层上铺展以减少透过所述液体光圈的光线。
  28. 一种电子设备,其特征在于,包括处理器、存储器和如权利要求1-23中任一项所述的液体光圈;所述存储器,用于存储程序指令;
    所述处理器,用于从所述存储器调用存储的程序指令,通过所述液体光圈执行如权利要求25或26所述的驱动方法。
PCT/CN2021/090763 2020-05-29 2021-04-28 液体光圈、电子设备、液体光圈的驱动方法及驱动装置 WO2021238565A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21811849.5A EP4152091A4 (en) 2020-05-29 2021-04-28 LIQUID OPENING, ELECTRONIC DEVICE AND CONTROL METHOD AND CONTROL DEVICE FOR LIQUID OPENING
US18/071,372 US20230105130A1 (en) 2020-05-29 2022-11-29 Liquid aperture, electronic device, and driving method and apparatus for liquid aperture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010477421.9 2020-05-29
CN202010477421 2020-05-29
CN202010872933.5 2020-08-26
CN202010872933.5A CN113805400B (zh) 2020-05-29 2020-08-26 液体光圈、电子设备、液体光圈的驱动方法及驱动装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/071,372 Continuation US20230105130A1 (en) 2020-05-29 2022-11-29 Liquid aperture, electronic device, and driving method and apparatus for liquid aperture

Publications (1)

Publication Number Publication Date
WO2021238565A1 true WO2021238565A1 (zh) 2021-12-02

Family

ID=78745590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090763 WO2021238565A1 (zh) 2020-05-29 2021-04-28 液体光圈、电子设备、液体光圈的驱动方法及驱动装置

Country Status (3)

Country Link
US (1) US20230105130A1 (zh)
EP (1) EP4152091A4 (zh)
WO (1) WO2021238565A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250967A (ja) * 2005-03-08 2006-09-21 Sony Corp 光学素子
CN101206377A (zh) * 2006-12-20 2008-06-25 鸿富锦精密工业(深圳)有限公司 光圈
CN101634793A (zh) * 2008-07-22 2010-01-27 鸿富锦精密工业(深圳)有限公司 相机曝光装置及相机模组
CN101685173A (zh) * 2008-09-26 2010-03-31 索尼株式会社 光学元件、成像装置以及驱动光学元件的方法
CN102129124A (zh) * 2010-01-19 2011-07-20 瀚宇彩晶股份有限公司 电湿润式显示装置及其驱动方法与制作方法
CN102385210A (zh) * 2010-08-30 2012-03-21 鸿富锦精密工业(深圳)有限公司 光圈及采用该光圈的相机模组
CN204856002U (zh) * 2015-07-31 2015-12-09 信利半导体有限公司 一种光圈和镜头模组
CN107783349A (zh) * 2016-08-24 2018-03-09 蔡睿哲 非机械式可调孔径的光圈组件
CN110501828A (zh) * 2019-09-04 2019-11-26 Oppo广东移动通信有限公司 光圈、成像模组和电子装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250967A (ja) * 2005-03-08 2006-09-21 Sony Corp 光学素子
CN101206377A (zh) * 2006-12-20 2008-06-25 鸿富锦精密工业(深圳)有限公司 光圈
CN101634793A (zh) * 2008-07-22 2010-01-27 鸿富锦精密工业(深圳)有限公司 相机曝光装置及相机模组
CN101685173A (zh) * 2008-09-26 2010-03-31 索尼株式会社 光学元件、成像装置以及驱动光学元件的方法
CN102129124A (zh) * 2010-01-19 2011-07-20 瀚宇彩晶股份有限公司 电湿润式显示装置及其驱动方法与制作方法
CN102385210A (zh) * 2010-08-30 2012-03-21 鸿富锦精密工业(深圳)有限公司 光圈及采用该光圈的相机模组
CN204856002U (zh) * 2015-07-31 2015-12-09 信利半导体有限公司 一种光圈和镜头模组
CN107783349A (zh) * 2016-08-24 2018-03-09 蔡睿哲 非机械式可调孔径的光圈组件
CN110501828A (zh) * 2019-09-04 2019-11-26 Oppo广东移动通信有限公司 光圈、成像模组和电子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4152091A4

Also Published As

Publication number Publication date
EP4152091A4 (en) 2023-11-22
US20230105130A1 (en) 2023-04-06
EP4152091A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
US9634225B2 (en) Artificial muscle camera lens actuator
US11281256B2 (en) Electronic device
US11171190B2 (en) Semiconductor device, input/output device, and electronic appliance
US7675687B2 (en) Liquid lens group
WO2023010989A1 (zh) 摄像头模组及电子设备
WO2021013018A1 (zh) 显示面板、显示装置以及终端
WO2023011119A1 (zh) 光学防抖方法、系统、计算机可读存储介质及电子设备
US20120038813A1 (en) Camera module
TW201211666A (en) Electrophoretic device, display, and electronic apparatus
JP2024074947A (ja) 発光装置
CN104903788A (zh) 电光光圈器件
WO2021027375A1 (zh) 一种摄像模组、电子设备
KR20210043604A (ko) 표시 장치, 표시 모듈, 및 전자 기기
CN110928075B (zh) 一种显示装置、制作方法、以及显示和摄像方法
WO2023142721A1 (zh) 防抖组件、摄像模组及电子设备
CN217543571U (zh) 可穿戴设备
WO2022127660A1 (zh) 一种摄像模组以及电子设备
US20160142606A1 (en) Electro-optic aperture device
CN110501828A (zh) 光圈、成像模组和电子装置
CN112379560A (zh) 薄膜光圈及光圈模组
WO2021238565A1 (zh) 液体光圈、电子设备、液体光圈的驱动方法及驱动装置
CN209390119U (zh) 显示屏组件及电子设备
CN101169571A (zh) 快门装置及相机模组
CN113805400B (zh) 液体光圈、电子设备、液体光圈的驱动方法及驱动装置
WO2014044060A1 (zh) 一种基于分置式电路设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21811849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021811849

Country of ref document: EP

Effective date: 20221212

NENP Non-entry into the national phase

Ref country code: DE