WO2021238111A1 - 一种体外血栓物性检测装置 - Google Patents

一种体外血栓物性检测装置 Download PDF

Info

Publication number
WO2021238111A1
WO2021238111A1 PCT/CN2020/130904 CN2020130904W WO2021238111A1 WO 2021238111 A1 WO2021238111 A1 WO 2021238111A1 CN 2020130904 W CN2020130904 W CN 2020130904W WO 2021238111 A1 WO2021238111 A1 WO 2021238111A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrombus
detection device
force
extracorporeal
measuring mechanism
Prior art date
Application number
PCT/CN2020/130904
Other languages
English (en)
French (fr)
Inventor
李钢
Original Assignee
常熟常江生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常熟常江生物技术有限公司 filed Critical 常熟常江生物技术有限公司
Publication of WO2021238111A1 publication Critical patent/WO2021238111A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/005Electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0087Resistance to crushing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the invention belongs to the technical field of medical detection, and specifically relates to a thrombus property detection device.
  • the current thromboelastogram (TEG, Thromboelastogram) is used to detect the coagulation process of extracorporeal blood samples, it usually uses a mode based on detecting changes in viscosity to detect the coagulation process and fibrinolysis process, thereby monitoring coagulation factors, platelets, and fibers Protein is involved in the coagulation process.
  • TEG Thromboelastogram
  • the problem with the existing TEG is that only describing the viscosity change process cannot provide more effective parameters, which limits the scope of clinical application.
  • the technical problem to be solved by the present invention is to provide a comprehensive coagulation index detection method, so that the doctor's medication and observation of the patient are closer to the actual situation.
  • the present invention provides an extracorporeal thrombus detection device, which is characterized in that it includes:
  • the test cup contains the reactants, the reactants are blood samples and reagents;
  • the test rod includes a sample end and a connecting end.
  • the sample end extends into the reactant in the test cup, and the connecting end is elastically connected with the driving mechanism;
  • the driving mechanism drives the sample end of the test rod to reciprocate in the reactant
  • Force measuring mechanism which detects the reaction force of the reactant on the sample end
  • Displacement measuring mechanism to detect the relative displacement change of the test rod when it swings
  • the sampling and digitization module digitally processes the signals of the force measuring mechanism and the displacement measuring mechanism.
  • the range of the period of reciprocating oscillation is 0-100 minutes.
  • the range of the period of the reciprocating oscillation is 0-200 seconds.
  • the range of reciprocating swing distance is 0-30 mm in both directions.
  • the range of the reciprocating swing distance is 0-3 mm in both directions.
  • the monitoring range of the force measuring mechanism is 0-1 kg.
  • the monitoring range of the force measuring mechanism is 0-100 grams.
  • the force measuring mechanism uses a force sensor to directly detect the reaction force received by the sample end of the test rod.
  • the force measuring mechanism calculates the reaction force received by the sample end of the test rod by detecting indirect data.
  • the displacement measuring mechanism adopts a displacement sensor to detect the relative displacement change of the test rod when it swings.
  • the displacement measuring mechanism calculates the relative displacement change of the test rod when it swings by detecting indirect data.
  • the driving mechanism includes a motor and a linear motion mechanism.
  • the driving mechanism drives the test rod through electromagnetic action.
  • the present invention also provides a method for measuring the recovery time of thrombus clot by using the detection device as described above, which includes recording the recovery time of thrombus clot as R, and recording the relative displacement change measured by the displacement measuring mechanism as D.
  • the present invention also provides a method for measuring the fragility of a thrombus clot using the detection device as described above, which includes the driving mechanism gradually increasing the driving force, thereby increasing the force of the sample end of the test rod on the thrombus clot, Until the reaction force measured by the force measuring mechanism suddenly disappears, the driving force of the driving mechanism at this time is the fragility value of the thrombus clot, denoted as B.
  • the advantage of the present invention is that the sample end used in the present invention swings in the blood sample, and the physical properties of the thrombus in the blood sample are obtained by detecting the state change of the test rod during the swinging process.
  • the physical properties of thrombus refer to the sample detection based on the force, the distance of action, and the period of action with time as the progress, and the results are transformed into the required relevant numerical parameters. All the above data parameters are analyzed and recorded with time as the progress and further proceeded. Processing, can output the hardness, elasticity, fragility, relaxation, recovery and other data of the thrombus formed after blood coagulation. These analyses can provide a comprehensive understanding of the internal structural quality characteristics of the thrombus.
  • the comparison of the hardness, elasticity, and fragility of the external thrombus formed by abnormal patients, before and after medication, is richer and more accurate.
  • the invention is suitable for medical detection, and the results can be used for clinical monitoring of the effect of drugs in treating thrombosis-related diseases and the risk assessment of thrombosis.
  • Figure 1 is a schematic diagram of the structure of an extracorporeal thrombus detection device.
  • An extracorporeal thrombus detection device including:
  • Test cup 1 containing reactant 2, and the reactants are blood samples and reagents;
  • the test rod 3 includes a sample end and a connecting end.
  • the sample end extends into the reactant 2 of the test cup 1, and the connecting end is elastically connected with the driving mechanism 9;
  • the driving mechanism 9 drives the sample end of the test rod 3 to reciprocate in the reactant 2;
  • Force measuring mechanism which detects the reaction force of reactant 2 on the sample end
  • Displacement measurement mechanism to detect the relative displacement change of the test rod 3 when it swings
  • the sampling and digitization module digitally processes the signals of the force measuring mechanism and the displacement measuring mechanism.
  • the range of the period of reciprocating oscillation is 0-100 minutes. More preferably, the range of the period of reciprocating oscillation is 0-200 seconds.
  • the range of reciprocating swing distance is 0-30 mm in both directions. More preferably, the range of the reciprocating swing distance is 0-3 mm in both directions.
  • the monitoring range of the force measuring mechanism is 0-1 kg. More preferably, the monitoring range of the force measuring mechanism is 0-100 grams.
  • the force measuring mechanism adopts the force sensor 7 to directly detect the reaction force received by the sample end of the test rod 3.
  • the force measuring mechanism calculates the reaction force received by the test rod sample 3 by detecting indirect data, and intermediate parameters such as amplitude, distance, deformation, etc.
  • the displacement measuring mechanism adopts a displacement sensor 5 to detect the relative displacement change of the test rod 3 when it swings.
  • the displacement measuring mechanism calculates the relative displacement change of the test rod 3 when it swings by detecting indirect data, such as swing angle and swing time.
  • the driving mechanism 9 includes a motor and a linear motion mechanism. As shown in Fig. 1, the driving mechanism 9 drives the test rod 3 to reciprocate in the arrow direction.
  • the driving mechanism 9 drives the test rod 3 through electromagnetic action.
  • the meaning of the hardness H of the thrombus clot is the force value required to make the thrombus clot reach a certain deformation under the force of the test rod 3.
  • the method of measuring the elasticity of thrombus clot using this detection device is to record the elasticity of the thrombus clot as E, and the relative displacement change measured by the displacement measuring mechanism as D, and the driving mechanism stops when the displacement measuring mechanism measures D 1 ,
  • the elasticity E of the thrombus clot means the ability of the thrombus clot to return to the state before the deformation in a certain short period of time after the force is removed after the thrombus clot is deformed.
  • the method of using this detection device to measure the recovery time of thrombosis is to record the recovery time of the measured thrombosis as R, and record the relative displacement change measured by the displacement measuring mechanism as D, and drive when the displacement measuring mechanism measures D 1
  • the mechanism stops, the thrombus clot does not recover after time T, and the total recovered deformation during this period is measured by the displacement measuring mechanism as D 3 , R (D 3 /D 1 )%/T.
  • the meaning of the blood clot recovery time R is that the shape of the blood clot does not change after a certain period of time after the force is removed.
  • the method of measuring the fragility of thrombus clot with this detection device is that the driving mechanism gradually increases the driving force, thereby increasing the force of the sample end of the test rod on the thrombus clot until the reaction force measured by the force measuring mechanism suddenly disappears.
  • the driving force of the driving mechanism is the fragility value of the thrombus, it is denoted as B.
  • the fragility B of a thrombus clot refers to the force value that destroys the thrombus clot.
  • the relaxation L of the thrombus clot refers to the degree to which the reaction force of the thrombus clot on the detection end is gradually attenuated under the set constant force for a period of time.
  • the present invention uses the sample end to swing in the blood sample, and obtains the physical properties of the thrombus in the blood sample by detecting the state change of the test rod during the swinging process.
  • the physical properties of thrombus refer to the sample detection based on the force, the distance of action, and the period of action with time as the progress, and the results are transformed into the required relevant numerical parameters. All the above data parameters are analyzed and recorded with time as the progress and further proceeded. Processing, can output the hardness, elasticity, fragility, relaxation, recovery and other data of the thrombus formed after blood coagulation. These analyses can provide a comprehensive understanding of the internal structural quality characteristics of the thrombus.
  • the comparison of the hardness, elasticity, and fragility of the external thrombus formed by abnormal patients, before and after medication, is richer and more accurate.
  • the invention is suitable for medical detection, and the results can be used for clinical monitoring of the effect of drugs in treating thrombosis-related diseases and the risk assessment of thrombosis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种体外血栓物性检测装置,包括:测试杯(1),容纳反应物(2),反应物(2)为血液样本和试剂;测试杆(3),包括样本端和连接端,样本端伸入测试杯(1)的反应物(2)中,连接端与驱动机构(9)弹性连接;驱动机构(9),驱动测试杆(3)的样本端在反应物(2)中往复摆动;测力机构,检测样本端受到的反应物(2)的反作用力;测位移机构,检测测试杆(3)在摆动时的相对位移变化;采样及数字化模块,将测力机构和测位移机构的信号进行数字处理。该装置利用了样本端在血液样本内摆动,通过检测摆动过程中测试杆(3)的状态变化而获得血液样本中血栓的物性,如血栓的硬度、弹性、脆性、松弛性、恢复性等数据,结果可用于临床监测药物治疗血栓相关疾病效果及血栓病风险评估。

Description

一种体外血栓物性检测装置 技术领域
本发明属于医疗检测技术领域,具体涉及一种血栓物性检测装置。
背景技术
现在使用的血栓弹力图仪(TEG,Thromboelastogram)在用于检测体外血液样本凝固过程时,通常采用以检测粘度变化为基础的模式,检测凝血过程和纤溶过程,从而监控凝血因子、血小板、纤维蛋白原等参与凝血过程。但是现有TEG的问题是仅描述粘度的变化过程不能提供更多有效参数,限制了临床应用范围。
发明内容
本发明所要解决的技术问题是,提供综合凝血指数的检测方法,使医生用药和观察病人更接近实际情况。
为了解决以上技术问题,一方面,本发明提供了一种体外血栓物性检测装置,其特征在于,包括:
测试杯,容纳反应物,反应物为血液样本和试剂;
测试杆,包括样本端和连接端,样本端伸入测试杯的反应物中,连接端与驱动机构弹性连接;
驱动机构,驱动测试杆的样本端在反应物中往复摆动;
测力机构,检测样本端受到的反应物的反作用力;
测位移机构,检测测试杆在摆动时的相对位移变化;
采样及数字化模块,将测力机构和测位移机构的信号进行数字处理。
进一步的,往复摆动的周期的范围为0-100分钟。
进一步的,往复摆动的周期的范围为0-200秒。
进一步的,往复摆动的距离范围为双向各0-30毫米。
进一步的,往复摆动的距离范围为双向各0-3毫米。
进一步的,测力机构的监测范围为0-1千克。
进一步的,测力机构的监测范围为0-100克。
进一步的,测力机构采用力传感器直接检测测试杆样本端受到的反作用力。
进一步的,测力机构通过检测间接数据计算测试杆样本端受到的反作用力。
进一步的,测位移机构采用位移传感器检测测试杆在摆动时的相对位移变化。
进一步的,测位移机构通过检测间接数据计算测试杆在摆动时的相对位移变化。
进一步的,驱动机构包括电机和直线运动机构。
进一步的,驱动机构通过电磁作用驱动测试杆。
另一方面,本发明还提供了一种利用如上所述的检测装置测量血栓凝块硬度的方法,包括将血栓凝块的硬度记为H,将驱动机构提供的驱动力记为G 1,将测位移机构测得的相对位移变化记为D,其中H=G 1/D。
另一方面,本发明还提供了一种利用如上所述的检测装置测量血栓凝块弹性的方法,包括将血栓凝块的弹性记为E,将测位移机构测得的相对位移变化记为D,在测位移机构测得D 1时驱动机构停止,血栓凝块在时间T内恢复的变形量由测位移机构测得为D 2,其中E=(D 2/D 1)%/T。
另一方面,本发明还提供了一种利用如上所述的检测装置测量血栓凝块恢复时间的方法,包括将血栓凝块恢复时间记为R,将测位移机构测得的相对位移变化记为D,在测位移机构测得D 1时驱动机构停止,血栓凝块经过时间T后不再恢复且此段时间内总恢复的变形量由测位移机构测得为D 3,其中R=(D 3/D 1)%/T。
另一方面,本发明还提供了一种利用如上所述的检测装置测量血栓凝块脆性的方法,包括驱动机构逐渐加大驱动力,从而增加测试杆的样本端对血栓凝块的作用力,直至测力机构测得的反作用力突然消失,此时驱动机构的驱动力即为血栓凝块的脆性值,记为B。
另一方面,本发明还提供了一种利用如上所述的检测装置测量血栓凝块松弛性的方法,包括将血栓凝块的松弛性记为L,将驱动机构提供的驱动力记为G 1,驱动机构提供驱动力G 1后驱动机构停止,经过时间T后将测力机构测得的反作用力记为G 2,其中L=(G 1-G 2)%/T。
本发明的有益之处在于,本发明了利用的样本端在血液样本内摆动,通过检测检测摆动过程中测试杆的状态变化而获得血液样本中血栓的物性。血栓的物性是指围绕着作用力、作用距离、作用周期并以时间为进度进行样本检测并将结果转变为所需的相关数值参数,上述所有数据参数均以时间为进度进行分析记录并进行进一步处理,可输出血液凝固后形成血栓的硬度、弹性、脆性、松弛性、回复性等数据。这些分析可以全面了解血栓的内在结构质量特性,这些参数间接获得血栓中纤维蛋白的致密程度、纤维蛋白的交联程度、纤维蛋白的延展性、纤维蛋白的溶解性等,对于临床分析鉴别正常与异常患者、用药前后的体外血栓形成的硬度弹性脆性等变化对比,更丰富准确。其结果能客观地评价血液在凝固过程中的质地变 化并具有较高的灵敏度。本发明适用于医学检测,其结果可用于临床监测药物治疗血栓相关疾病效果及血栓病风险评估。
附图说明
图1为一种体外血栓物性检测装置结构示意图。
具体实施方式
下面结合附图及具体实施方式对本发明进行详细描述:
一种体外血栓物性检测装置,包括:
测试杯1,容纳反应物2,并且反应物为血液样本和试剂;
测试杆3,包括样本端和连接端,样本端伸入测试杯1的反应物2中,并且连接端与驱动机构9弹性连接;
驱动机构9,驱动测试杆3的样本端在反应物2中往复摆动;
测力机构,检测样本端受到的反应物2的反作用力;
测位移机构,检测测试杆3在摆动时的相对位移变化;
采样及数字化模块,将测力机构和测位移机构的信号进行数字处理。
优选的,往复摆动的周期的范围为0-100分钟。更优选的,往复摆动的周期的范围为0-200秒。
优选的,往复摆动的距离范围为双向各0-30毫米。更优选的,往复摆动的距离范围为双向各0-3毫米。
优选的,测力机构的监测范围为0-1千克。更优选的,测力机构的监测范围为0-100克。
优选的,测力机构采用力传感器7直接检测测试杆3样本端受到的反作用力。
优选的,测力机构通过检测间接数据计算测试杆样3本端受到的反作用力,中间参数如幅度、距离、形变等。
优选的,测位移机构采用位移传感器5检测测试杆3在摆动时的相对位移变化。
优选的,测位移机构通过检测间接数据计算测试杆3在摆动时的相对位移变化,间接参数如摆动角度、摆动时间等。
优选的,驱动机构9包括电机和直线运动机构。如图1所示,驱动机构9驱动测试杆3沿箭头方向往复摆动。
优选的,驱动机构9通过电磁作用驱动测试杆3。
利用这种检测装置测量血栓凝块硬度的方法为,将血栓凝块的硬度记为H,将驱动机构提供的驱动力记为G 1,将测位移机构测得的相对位移变化记为D,H=G 1/D。血栓凝块的硬度H的含义为使血栓凝块在测试杆3作用力下达到一定形变所需的作用力数值。
利用这种检测装置测量血栓凝块弹性的方法为,将血栓凝块的弹性记为E,将测位移机构测得的相对位移变化记为D,在测位移机构测得D 1时驱动机构停止,血栓凝块在时间T内恢复的变形量由测位移机构测得为D 2,E=(D 2/D 1)%/T。血栓凝块的弹性E的含义为,在血栓凝块形变后去除作用力后,血栓凝块在一定短时间内恢复到形变之前状态的能力。
利用这种检测装置测量血栓凝块恢复时间的方法为,将测量血栓凝块恢复时间记为R,将测位移机构测得的相对位移变化记为D,在测位移机构测得D 1时驱动机构停止,血栓凝块经过时间T后不再恢复且此段时间内总恢复的变形量由测位移机构测得为D 3,R=(D 3/D 1)%/T。血凝块恢复时间R的含义为,去除作用力后经一定长时间血凝块形状不再变化。
利用这种检测装置测量血栓凝块脆性的方法为,驱动机构逐渐加大驱动力,从而增加测试杆的样本端对血栓凝块的作用力,直至测力机构测得的反作用力突然消失,此时驱动机构的驱动力即为血栓凝块的脆性值,记为B。血栓凝块的脆性B是指将血栓凝块破坏的作用力值。
利用这种检测装置测量血栓凝块松弛性的方法为,将血栓凝块的松弛性记为L,将驱动机构提供的驱动力记为G 1,驱动机构提供驱动力G 1后驱动机构停止,经过时间T后将测力机构测得的反作用力记为G 2,L=(G 1-G 2)%/T。血栓凝块的松弛性L是指血栓凝块在设定的定作用力下持续一段时间检测血凝对探测端的反作用力逐渐衰减的程度。
本发明了利用的样本端在血液样本内摆动,通过检测检测摆动过程中测试杆的状态变化而获得血液样本中血栓的物性。血栓的物性是指围绕着作用力、作用距离、作用周期并以时间为进度进行样本检测并将结果转变为所需的相关数值参数,上述所有数据参数均以时间为进度进行分析记录并进行进一步处理,可输出血液凝固后形成血栓的硬度、弹性、脆性、松弛性、回复性等数据。这些分析可以全面了解血栓的内在结构质量特性,这些参数间接获得血栓中纤维蛋白的致密程度、纤维蛋白的交联程度、纤维蛋白的延展性、纤维蛋白的溶解性等,对于临床分析鉴别正常与异常患者、用药前后的体外血栓形成的硬度弹性脆性等变化对比,更丰富准确。其结果能客观地评价血液在凝固过程中的质地变化并具有较高的灵敏度。本发明适用于医学检测,其结果可用于临床监测药物治疗血栓相关疾病效果及血栓病风险评估。
需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (18)

  1. 一种体外血栓物性检测装置,其特征在于,包括:
    测试杯,容纳反应物,并且所述反应物为血液样本和试剂;
    测试杆,包括样本端和连接端,所述样本端伸入测试杯的反应物中,并且所述连接端与驱动机构弹性连接;
    驱动机构,驱动所述测试杆的所述样本端在所述反应物中往复摆动;
    测力机构,检测所述样本端受到的所述反应物的反作用力;
    测位移机构,检测所述测试杆在摆动时的相对位移变化;
    采样及数字化模块,将所述测力机构和所述测位移机构的信号进行数字处理。
  2. 根据权利要求1所述的体外血栓物性检测装置,其特征在于,所述往复摆动的周期的范围为0-100分钟。
  3. 根据权利要求2所述的体外血栓物性检测装置,其特征在于,所述往复摆动的周期的范围为0-200秒。
  4. 根据权利要求1所述的体外血栓物性检测装置,其特征在于,所述往复摆动的距离范围为双向各0-30毫米。
  5. 根据权利要求4所述的体外血栓物性检测装置,其特征在于,所述往复摆动的距离范围为双向各0-3毫米。
  6. 根据权利要求1所述的体外血栓物性检测装置,其特征在于,所述测力机构的监测范围为0-1千克。
  7. 根据权利要求6所述的体外血栓物性检测装置,其特征在于,所述测力机构的监测范围为0-100克。
  8. 根据权利要求1所述的体外血栓物性检测装置,其特征在于,所述测力机构采用力传感器直接检测所述测试杆的所述样本端受到的反作用力。
  9. 根据权利要求1所述的体外血栓物性检测装置,其特征在于,所述测力机构通过检测间接数据计算所述测试杆的所述样本端受到的反作用力。
  10. 根据权利要求1所述的体外血栓物性检测装置,其特征在于,所述测位移机构采用位移传感器检测所述测试杆在摆动时的相对位移变化。
  11. 根据权利要求1所述的体外血栓物性检测装置,其特征在于,所述测位移机构通过检测间接数据计算所述测试杆在摆动时的相对位移变化。
  12. 根据权利要求1所述的体外血栓物性检测装置,其特征在于,所述驱动机构包括电机和直线运动机构。
  13. 根据权利要求1所述的体外血栓物性检测装置,其特征在于,所述驱动机构通过电磁作用驱动测试杆。
  14. 一种利用根据权利要求1-13中任一项所述的检测装置测量血栓凝块硬度的方法,其特征在于,将所述血栓凝块的硬度记为H,将所述驱动机构提供的驱动力记为G 1,将所述测位移机构测得的相对位移变化记为D,其中,H=G 1/D。
  15. 一种利用根据权利要求1-13中任一项所述的检测装置测量血栓凝块弹性的方法,其特征在于,将所述血栓凝块的弹性记为E,将所述测位移机构测得的相对位移变化记为D,在所述测位移机构测得D 1时驱动机构停止,所述血栓凝块在时间T内恢复的变形量由所述测位移机构测得为D 2,其中,E=(D 2/D 1)%/T。
  16. 一种利用根据权利要求1-13中任一项所述的检测装置测量血栓凝块恢复时间的方法,其特征在于,将所述血栓凝块恢复时间记为R,将所述测位移机构测得的相对位移变化记为D,在所述测位移机构测得D 1时驱动机构停止,所述血栓凝块经过时间T后不再恢复且此段时间内总恢复的变形量由所述测位移机构测得为D 3,其中,R=(D 3/D 1)%/T。
  17. 一种利用根据权利要求1-13中任一项所述的检测装置测量血栓凝块脆性的方法,其特征在于,所述驱动机构逐渐加大驱动力,从而增加所述测试杆的样本端对所述血栓凝块的作用力,直至所述测力机构测得的反作用力突然消失,此时所述驱动机构的驱动力即为血栓凝块的脆性值,记为B。
  18. 一种利用根据权利要求1-13中任一项所述的检测装置测量血栓凝块松弛性的方法,其特征在于,将所述血栓凝块的松弛性记为L,将所述驱动机构提供的驱动力记为G 1,所述驱动机构提供驱动力G 1后驱动机构停止,经过时间T后将所述测力机构测得的反作用力记为G 2,其中,L=(G 1-G 2)%/T。
PCT/CN2020/130904 2020-05-28 2020-11-23 一种体外血栓物性检测装置 WO2021238111A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010466698.1A CN111579398B (zh) 2020-05-28 2020-05-28 一种体外血栓物性检测装置
CN202010466698.1 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021238111A1 true WO2021238111A1 (zh) 2021-12-02

Family

ID=72110494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130904 WO2021238111A1 (zh) 2020-05-28 2020-11-23 一种体外血栓物性检测装置

Country Status (2)

Country Link
CN (1) CN111579398B (zh)
WO (1) WO2021238111A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579398B (zh) * 2020-05-28 2023-04-07 常熟常江生物技术有限公司 一种体外血栓物性检测装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854423A (en) * 1996-03-20 1998-12-29 Venegas; Jose G. Apparatus and method for assessment of visco-elasticity and shear adherence strength properties of blood clots
WO2013067536A1 (en) * 2011-11-04 2013-05-10 Massachusetts Institute Of Technology Multi-parameter thrombotic assay apparatus, systems, and methods
CN103630699A (zh) * 2013-12-06 2014-03-12 北京中勤世帝生物技术有限公司 一种血栓弹力测量装置
CN104062207A (zh) * 2014-07-15 2014-09-24 中国科学院苏州生物医学工程技术研究所 一种血液粘弹力监测装置
CN106771108A (zh) * 2016-12-29 2017-05-31 山东朗伯光谱设备有限公司 一种自动获取血栓弹力图的方法及装置
CN108414378A (zh) * 2017-12-29 2018-08-17 南方科技大学 生物组织的力学性能的检测系统及方法
CN109642909A (zh) * 2016-08-29 2019-04-16 藤森工业株式会社 血液凝固检查装置以及血液凝固检查方法
CN110187090A (zh) * 2019-06-28 2019-08-30 深圳麦科田生物医疗技术有限公司 血栓弹力图仪
CN110261589A (zh) * 2019-07-18 2019-09-20 深圳优迪生物技术有限公司 基于微阻力的血栓弹力图仪
CN110619938A (zh) * 2019-10-22 2019-12-27 常熟常江生物技术有限公司 基于血栓弹力图的血小板抑制率计算方法
CN111579398A (zh) * 2020-05-28 2020-08-25 常熟常江生物技术有限公司 一种体外血栓物性检测装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508366C2 (de) * 1995-03-10 1998-01-29 Evotec Biosystems Gmbh Verfahren zum direkten Nachweisen weniger Nucleinsäurestränge
US6613573B1 (en) * 1999-02-22 2003-09-02 Haemoscope Corporation Method and apparatus for monitoring anti-platelet agents
US6890299B2 (en) * 2003-04-08 2005-05-10 Haemoscope Corporation Method and apparatus for monitoring hemostasis in connection with artificial surface devices
WO2007044278A2 (en) * 2005-10-05 2007-04-19 Gurbel Paul A The detection of restenosis risk in patients receiving a stent
CN209102562U (zh) * 2018-10-08 2019-07-12 重庆普门创生物技术有限公司 一种血栓弹力测量装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5854423A (en) * 1996-03-20 1998-12-29 Venegas; Jose G. Apparatus and method for assessment of visco-elasticity and shear adherence strength properties of blood clots
WO2013067536A1 (en) * 2011-11-04 2013-05-10 Massachusetts Institute Of Technology Multi-parameter thrombotic assay apparatus, systems, and methods
CN103630699A (zh) * 2013-12-06 2014-03-12 北京中勤世帝生物技术有限公司 一种血栓弹力测量装置
CN104062207A (zh) * 2014-07-15 2014-09-24 中国科学院苏州生物医学工程技术研究所 一种血液粘弹力监测装置
CN109642909A (zh) * 2016-08-29 2019-04-16 藤森工业株式会社 血液凝固检查装置以及血液凝固检查方法
CN106771108A (zh) * 2016-12-29 2017-05-31 山东朗伯光谱设备有限公司 一种自动获取血栓弹力图的方法及装置
CN108414378A (zh) * 2017-12-29 2018-08-17 南方科技大学 生物组织的力学性能的检测系统及方法
CN110187090A (zh) * 2019-06-28 2019-08-30 深圳麦科田生物医疗技术有限公司 血栓弹力图仪
CN110261589A (zh) * 2019-07-18 2019-09-20 深圳优迪生物技术有限公司 基于微阻力的血栓弹力图仪
CN110619938A (zh) * 2019-10-22 2019-12-27 常熟常江生物技术有限公司 基于血栓弹力图的血小板抑制率计算方法
CN111579398A (zh) * 2020-05-28 2020-08-25 常熟常江生物技术有限公司 一种体外血栓物性检测装置

Also Published As

Publication number Publication date
CN111579398B (zh) 2023-04-07
CN111579398A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
US9546981B2 (en) Device and method for performing blood thromboelastographic assays by magnetic sensing
US20090130645A1 (en) Method for assessing the fibrinogen contribution in coagulation
JP2002537560A (ja) 血液凝固性測定装置及び方法
WO2014031253A1 (en) Device and method for performing blood thromboelastographic assays by magnetic sensing
CN107228904B (zh) 一种光致超声的血糖无创检测装置及方法
US20170107558A1 (en) Assessment Of Blood Coagulation Using An Acoustic Radiation Force Based Optical Coherence Elastography (ARF-OCE)
WO2021238111A1 (zh) 一种体外血栓物性检测装置
Zhang et al. Noninvasive photoacoustic measurement of glucose by data fusion
CA2519438A1 (en) Method and device for diagnostic investigation of biological samples
WO2009075891A2 (en) Magnetoelastic sensor element having a liquid-solid interface with a roughened nano/microstructure
CN117233364B (zh) 一种血栓弹力图的参数提取方法
US8092384B2 (en) System and method for continuous detection of an analyte in bloodstream
CN106771108A (zh) 一种自动获取血栓弹力图的方法及装置
US20100174186A1 (en) Method and apparatus for determining hydration levels by measuring velocity change
CN111584083A (zh) 一种血栓弹力图检测综合凝血指数积分算法
US10823723B2 (en) Apparatus, systems and methods for integrative photo-optical/mechanical test for noncontact measurement of polymerization
JP4880971B2 (ja) 血液循環状態測定装置
WO2020027741A1 (en) Microfluidic thromboelastometry instrument
US20140064595A1 (en) Apparatus and method for determining the coagulation time of blood
CN108885202A (zh) 血液凝度测量计和方法
CN108132352B (zh) 血栓弹力图仪无血清质控品及其用途
Slingerland et al. Evaluation of portable blood glucose meters. Problems and recommendations
Bazaev et al. Modern methods for measuring parameters of blood coagulation
Bailey et al. Evaluation in volunteers of the VIA V-ABG automated bedside blood gas, chemistry, and hematocrit monitor
RU2063037C1 (ru) Способ оценки функционального состояния системы гемостаза

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937408

Country of ref document: EP

Kind code of ref document: A1