WO2021238086A1 - 构建体外检测肺癌的数学模型的方法和应用 - Google Patents

构建体外检测肺癌的数学模型的方法和应用 Download PDF

Info

Publication number
WO2021238086A1
WO2021238086A1 PCT/CN2020/127728 CN2020127728W WO2021238086A1 WO 2021238086 A1 WO2021238086 A1 WO 2021238086A1 CN 2020127728 W CN2020127728 W CN 2020127728W WO 2021238086 A1 WO2021238086 A1 WO 2021238086A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung cancer
markers
mir
marker
concentration
Prior art date
Application number
PCT/CN2020/127728
Other languages
English (en)
French (fr)
Inventor
高俊莉
高俊顺
高金波
Original Assignee
杭州广科安德生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州广科安德生物科技有限公司 filed Critical 杭州广科安德生物科技有限公司
Publication of WO2021238086A1 publication Critical patent/WO2021238086A1/zh

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations

Definitions

  • This application relates to the field of biological detection technology, and specifically, to a method and application for constructing a mathematical model for detecting lung cancer in vitro.
  • Asian new cancers accounted for 48.4% of the world, which is equivalent to 1/2 of the world's new cancers, and Asia accounted for nearly 60% of the 9.6 million cancer deaths.
  • 18.1 million new cancer cases more than half were men, and 9.5 million people had an incidence rate of 50% of the total, and a mortality rate of 60%.
  • 8.6 million were female patients, and their incidence accounted for For 47.5% of the total, the mortality rate is slightly more than half.
  • lung cancer is the "Men's No. 1 Killer.”
  • the data shows that whether it is in the world or China, lung cancer ranks first in the total incidence and mortality of cancer, and its incidence and mortality account for 11.6% and 18.4% (global), 20% and 27.3% of the total cancer incidence population. (China).
  • lung cancer markers are currently one of the most promising such detection indicators.
  • one lung cancer marker can appear in multiple lung cancers, and one lung cancer can also appear multiple lung cancer markers. This makes the combined detection of relevant lung cancer markers to improve diagnostic sensitivity and specificity become a trend.
  • the present invention provides a multi-dimensional combined method for in vitro diagnosis of lung cancer, which combines lung cancer-related protein markers, metabolites, cell-free DNA, cell-free non-coding RNA, autoantibodies, inflammatory factors and growth factors, circulating lung cancer cells, and external
  • the combined detection of exosomes can improve the sensitivity and specificity of lung cancer detection.
  • the main purpose of this application is to provide a method for constructing a mathematical model that can be used in multi-dimensional in vitro diagnosis of lung cancer to improve the sensitivity and specificity of clinical detection of lung cancer.
  • a mathematical model that can be used in multi-dimensional in vitro diagnosis of lung cancer to improve the sensitivity and specificity of clinical detection of lung cancer.
  • There is no single marker for lung cancer detection that can be used at the same time. Diagnose lung cancer with very high sensitivity and specific results.
  • Most lung cancers use joint testing, but molecular diagnostics or immunodiagnostics are used to detect several markers of one type.
  • the detection of various dimensions is not combined, so as to strengthen
  • the accuracy of the prediction is preferably a combination of horizontal and vertical, internal and external considerations: the combination of metabolites, exosomes, molecular diagnosis, and immunodiagnosis is the purpose of the present invention.
  • This application provides a method for constructing a mathematical model for the detection of lung cancer in vitro.
  • the method includes obtaining the concentration of at least two lung cancer markers from a sample, performing logistic regression on the measured concentration value of each marker, and calculating the The concentration of the obtained markers is substituted into the logistic regression model to obtain the analysis results, and the concentration of each marker and the logistic regression analysis results are used for comprehensive lung cancer analysis.
  • the method includes obtaining the concentration of three lung cancer markers from a sample, performing logistic regression on the measured concentration value of each marker, and substituting the detected concentration of the marker into the logistic regression model to obtain Analyze the results.
  • the lung cancer marker includes at least one of the following categories:
  • Lung cancer protein markers Lung cancer protein markers, lung cancer metabolite markers, lung cancer molecular diagnostic markers, lung cancer autoantibodies, lung cancer-related DNA methylation markers, lung cancer-related inflammatory factors and/or growth factors, and lung cancer-related exosomes.
  • the lung cancer protein marker is selected from any one of Pro-SFTBP, CEA, CA125, SCC-Ag, CYFRA21-1, Pro-GRP, NSE, CA15-3, CA19-9, CA242, HSPG, NCAM One or more, preferably any one or a combination of Pro-SFTBP, CEA, CA125, SCC-Ag, CYFRA21-1, Pro-GRP, NSE;
  • the lung cancer metabolite marker is selected from 8-hydroxydeoxyguanosine, diacetylspermine, N-acetylated glycoprotein, ⁇ -hydroxybutyric acid, leucine, lysine, tyrosine, threonine, Any one or more of glutamine, valine, and aspartic acid, preferably one or more of 8-hydroxydeoxyguanosine, diacetylspermine, and N-acetylated glycoprotein;
  • the molecular diagnostic marker for lung cancer is selected from EGFR, AKT1, ALK, HER2, MEK1, KRAS, BRAF, DKK-1, pIK3CA, ROS1, NRAS, RET, MET, BRCA1/2, cap43, miR-21, miR-20a , MiR-24, miR-25, miR-145, miR-183, miR-205, miR-196b, miR-203, miR-429, miR-200b, any one or more of them.
  • the lung cancer autoantibody is selected from any one of IGFBP1, PGAM1, TP53, UBQLN1, ANXA1, ANXA2, CDK2, CTAG1B, MAGE A1, SOX2, p53, GAGE 7, PGP9.5, CAGE, and GBU4-5 Or multiple
  • the lung cancer-related inflammatory factors and growth factors are selected from any one or more of IL-6, IL-10, S100, IL-13, CRP, and SAA;
  • the lung cancer-related exosomes are selected from any one or more of LRG1, KIT, CD91, miR-30B, miR-30C, miR-122, miR-195, miR-203, miR-221, and miR-222 .
  • the lung cancer-related DNA methylation markers are selected from SHOX2, RASSF1A, EGFR, E18, E19, E20, E21, BRAF, PIK3CA, KRAS, p16, CDH1, CDH13, APC, RAR ⁇ , DAPK, MGMT, FHIT, HIC- 1.
  • AKAP12 ESR1, CYGB, OPCML, ADAMTS1, TGFBI, RUNX3, UMD1, hSRBC, CADM1, p14ARF, p16INK4a, DAPK, GSTP1, MGMT, MLH1, FBN2, DAL-1, ASC,
  • any one or more of SHOX2, RASSF1A, EGFR, BRAF, PIK3CA, KRAS, and p16 Preferably, any one or more of SHOX2, RASSF1A, EGFR, BRAF, PIK3CA, KRAS, and p16.
  • the logistic regression formula is:
  • Logit(P) is the result of the logistic regression model of the above-mentioned lung cancer markers of the same or different types
  • C is the natural constant obtained by regression
  • is the coefficient of each marker obtained by regression analysis, which is a natural number
  • the concentration of the marker i is For the concentration of markers in the same category or different categories
  • n is an integer greater than or equal to 2.
  • the sample to be tested includes: any one or more of human or animal body tissues, blood samples, urine, saliva, body fluids, and feces.
  • the detection technology methods include radiation methods, immunological methods, fluorescence methods, flow fluorescence, latex turbidimetric methods, biochemical methods, enzymatic methods, PCR methods, sequencing methods, hybridization methods, gas mass spectrometry, liquid mass spectrometry, and layer One or more of analytical methods, chemiluminescence methods, magnetoelectric and photoelectric conversion methods.
  • the different types of lung cancer markers are lung cancer protein markers, a combination of lung cancer molecular diagnostic markers and lung cancer-related DNA methylation markers, wherein the lung cancer protein markers are Pro-SFTBP, CEA, CA125, SCC-Ag, CYFRA21-1, Pro-GRP, molecular diagnostic markers for lung cancer are EGFR, AKT1, ALK, HER2, BRAF, pIK3CA, BRCA1/2, and lung cancer-related DNA methylation markers are SHOX2, RASSF1A, AKAP12.
  • lung cancer protein markers are Pro-SFTBP, CEA, CA125, SCC-Ag, CYFRA21-1, Pro-GRP
  • molecular diagnostic markers for lung cancer are EGFR, AKT1, ALK, HER2, BRAF, pIK3CA, BRCA1/2
  • lung cancer-related DNA methylation markers are SHOX2, RASSF1A, AKAP12.
  • This preferred combination of markers can comprehensively judge the early diagnosis and early screening of lung cancer, the auxiliary diagnosis of lung cancer, the subtype of lung cancer (small cell lung cancer or non-small cell lung cancer), drug-associated diagnosis and prognostic treatment observation. It can effectively replace the inaccuracy of CT detection, the specificity for judging benign and malignant pulmonary nodules within 6mm is greater than 90%, and the sensitivity is greater than 95% (currently there is no way to judge in the market).
  • Another aspect of the present application provides the use of the method of constructing a mathematical model for in vitro detection of lung cancer to obtain the application of the mathematical model in predicting the risk of cancer in a sample subject, when the value of the calculation and analysis result obtained according to the mathematical model is ⁇ - At 2.156, the subject of the sample is considered to be at risk of cancer
  • the above model is just an example. Different models have different functions for diagnosing lung cancer, and their analysis results are different. They can be used for early diagnosis, early screening, auxiliary diagnosis or prognosis of lung cancer.
  • the method for constructing a mathematical model provided by the present invention starts from different dimensions of lung cancer, and uses different types of marker concentration data in combination to obtain a more complete mathematical model.
  • the mathematical model embodies the combination of horizontal and vertical, internal and external detection in the application, which can overcome the shortcomings of low sensitivity and specificity when predicting cancer risk with one marker or one dimension in the market, and greatly improve the prediction.
  • the accuracy and accuracy of the lung cancer risk of the sample subject can overcome the shortcomings of low sensitivity and specificity when predicting cancer risk with one marker or one dimension in the market, and greatly improve the prediction.
  • the detection methodology used in the examples can be purchased reagent detection kits or self-made kits.
  • chemiluminescence detection kit to test the concentration of 7 lung cancer protein markers in the blood sample (Pro-SFTBP, CEA, CA125, SCC-Ag, CYFRA21-1, Pro-GRP, NSE), using fluorescence in situ hybridization Or sequencing method to test the concentration of 9 lung cancer molecular markers in blood samples (EGFR, AKT1, ALK, HER2, KRAS, BRAF, pIK3CA, ROS1, BRCA1/2), and use flow fluorescence method to detect 4 lung cancer-related inflammatory factors in blood samples Concentrations (IL-6, IL-10, S100, IL-13), use standard LC/MS methods to detect the concentration of two lung cancer-related metabolite markers (8-hydroxydeoxyguanosine, diacetyl Spermine (DAS)).
  • DAS diacetyl Spermine
  • chemiluminescence method kits to test the concentration of 4 lung cancer protein markers (Pro-SFTBP, CEA, CA125, CYFRA21-1) in blood samples, and test the blood samples by fluorescence in situ hybridization or flow cytometry
  • Six molecular markers of lung cancer EGFR, KRAS, BRAF, PIK3CA, ALK, ROS1
  • one lung cancer-related metabolite marker DAS
  • chemiluminescence kits to test the concentration of 4 lung cancer protein markers in blood samples (Pro-SFTBP, CEA, CA125, CYFRA21-1), and use fluorescence in situ hybridization to test 6 lung cancer molecular markers in blood samples (EGFR, KRAS, BRAF, PIK3CA, ALK, ROS1), use the purchased immunofluorescence method to detect the concentration of 7 lung cancer autoantibodies in blood samples (MAGE A1, SOX2, p53, GAGE7, PGP9.5, CAGE, GBU4-5 ). The concentration of four lung cancer-related inflammatory factors (IL-6, IL-10, S100, IL-13) in blood samples was detected by flow fluorescence method, and three lung cancer-related exosomes ( LRG1, KIT, CD91).
  • the combined method of lung cancer detection has higher sensitivity and specificity than single or several types of detection.
  • the sensitivity can reach 99% and the specificity is 100%, which is far superior to the lung cancer diagnostic markers on the market.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computational Mathematics (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Public Health (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Analytical Chemistry (AREA)
  • Algebra (AREA)
  • Chemical & Material Sciences (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种构建体外检测肺癌的数学模型的方法及其应用,所述方法包括从样本中获得至少两种肺癌标志物的浓度,对测定的每个标志物的浓度值进行logistic回归,将所检测到的标志物的浓度代入到logistic回归模型中,得到分析结果,使用每个标志物的浓度和logistic回归分析结果进行综合肺癌分析。

Description

构建体外检测肺癌的数学模型的方法和应用
相关申请的交叉引用
本申请要求于2020年5月29日提交中国专利局,申请号为2020104820645,发明名称为“构建体外检测肺癌的数学模型的方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及生物检测技术领域,具体地,涉及一种构建体外检测肺癌的数学模型的方法和应用。
背景技术
世界卫生组织(WHO),国际癌症研究机构(IARC),2018年发布最新报告称,经估计全世界罹患癌症的人数在“迅速增长”,仅2018年一年就新增1810万病例,死亡人数高达960万,到本世纪末,癌症将成为全球头号“杀手”,也是阻碍人类预期,寿命延长的最大“拦路虎”。
其中亚洲癌症新发全球占比48.4%,相当于是全球的新发的1/2,而在960万的癌症死亡病例中亚洲则占了近60%。在1810万癌症新发病例,超过半数为男性,有950万人,其发病率为总数的50%,死亡率达60%,而癌症新发病例中有860万为女性患者,其发病率占总数的47.5%,死亡率略微超过一半。
而在我国,癌发病率也呈上升趋势,中国平均每年有超过400万人被确诊癌症,平均每天有超过1万人确诊癌症,平均每分钟有7个人得癌症,每天有6000多人死于癌症,每分钟有将近5人死于癌症。
对于整体人群来讲,肺癌是“男性头号杀手”。数据显示,不论是全球还是中国,癌症总发病率和死亡率位居第一的是肺癌,其发病率和死亡率占总癌症发病人口的11.6%和18.4%(全球)、20%和27.3%(中国)。
肺癌与肺部良性病变的鉴别为普遍性难题,肺癌的治疗方法主要有手术、放疗、化疗及细胞生物疗法,不同性质病变及不同临床分期其临床处理方法各异,因此,肺癌的早期诊断显得尤为重要,肺癌标志物(TM)是目前被看好的这类检测指标之一。但一项肺癌标志物可 以出现在多种肺癌中,一种肺癌也可以出现多项肺癌标志物,这就使联合检测相关肺癌标志物以提高诊断敏感度、特异性成为趋势。
对于肺癌检测诊断在更多的情况下,一个指标是远远不够的。在涉及多个指标的案例中,我们还需要考虑参数整合的问题。本发明提供一种多维度组合的体外诊断肺癌的方法,把肺癌相关的蛋白标志物、代谢物、无细胞DNA、无细胞非编码RNA、自身抗体、炎症因子和生长因子、循环肺癌细胞、外泌体等联合检测,提高肺癌检测的灵敏度和特异性。
发明内容
本申请的主要目的在于提一种构建数学模型的方法,该数学模型能够应用在多维度地体外诊断肺癌中,以提高临床检测肺癌的灵敏度和特异性,目前肺癌检测没有一种标志物可以同时以非常高的灵敏度和特异性结果诊断肺癌,大部分肺癌采用联检形式,但都是采用分子诊断或免疫诊断检测一种类型的几种标志物,没有把各种维度的检测组合起来,为加强预测的精准度,最好是连横合纵、内外兼顾结合:把代谢物、外泌体、分子诊断、免疫诊断结合起来,此为本发明的目的。
本申请提供了一种构建体外检测肺癌的数学模型的方法,所述方法包括从样本中获得至少两种肺癌标志物的浓度,对测定的每个标志物的浓度值进行logistic回归,将所检测到的标志物的浓度代入到logistic回归模型中,得到分析结果,使用每个标志物的浓度和logistic回归分析结果进行综合肺癌分析。
优选地,所述方法包括从样本中获得三种肺癌标志物的浓度,对测定的每个标志物的浓度值进行logistic回归,将所检测到的标志物的浓度代入到logistic回归模型中,得到分析结果。
优选地,所述肺癌标志物包括以下大类中的至少一类:
肺癌蛋白标志物、肺癌代谢物标志物、肺癌分子诊断标志物、肺癌自身抗体、肺癌相关DNA甲基化标志物、肺癌相关炎症因子和/或生长因子以及肺癌相关外泌体。
优选地,所述肺癌蛋白标志物选自Pro-SFTBP、CEA、CA125、SCC-Ag、CYFRA21-1、Pro-GRP、NSE、CA15-3、CA19-9、CA242、HSPG、NCAM中的任意一种或多种,优选Pro-SFTBP、CEA、CA125、SCC-Ag、CYFRA21-1、Pro-GRP、NSE其中的任意一种或多种组合;
所述肺癌代谢物标志物选自8-羟基脱氧鸟苷、二乙酰精胺、N-乙酰化糖蛋白、β-羟基丁酸、亮氨酸、赖氨酸、酪氨酸、苏氨酸、谷氨酰胺、缬氨酸、天冬氨酸中的任意一种或多种,优选8-羟基脱氧鸟苷、二乙酰精胺、N-乙酰化糖蛋白其中的一种或多种;
所述肺癌分子诊断标志物选自EGFR、AKT1、ALK、HER2、MEK1、KRAS、BRAF、DKK-1、pIK3CA、 ROS1、NRAS、RET、MET、BRCA1/2、cap43、miR-21、miR-20a、miR-24、miR-25、miR-145、miR-183、miR-205、miR-196b、miR-203、miR-429、miR-200b中的任意一种或多种。
优选地,所述肺癌自身抗体选自IGFBP1、PGAM1、TP53、UBQLN1、ANXA1、ANXA2、CDK2、CTAG1B、MAGE A1、SOX2、p53、GAGE 7、PGP9.5、CAGE、GBU4-5中的任意一种或多种;
所述肺癌相关炎症因子和生长因子选自IL-6、IL-10、S100、IL-13、CRP、SAA中的任意一种或多种;
所述肺癌相关外泌体选自LRG1、KIT、CD91、miR-30B、miR-30C、miR-122、miR-195、miR-203、miR-221和miR-222中的任意一种或多种。
所述肺癌相关DNA甲基化标志物选自SHOX2、RASSF1A、EGFR、E18、E19、E20、E21、BRAF、PIK3CA、KRAS、p16、CDH1、CDH13、APC、RARβ、DAPK、MGMT、FHIT、HIC-1、AKAPl2、ESRl、CYGB、OPCML、ADAMTSl、TGFBI、RUNX3、UMDl、hSRBC、CADM1、p14ARF、p16INK4a、DAPK、GSTP1、MGMT、MLH1、FBN2、DAL-1、ASC中的任意一种或多种,优选SHOX2、RASSF1A、EGFR、BRAF、PIK3CA、KRAS、p16其中的任意一种或多种。
优选地,所述logistic回归的公式为:
Logit(P)=C+∑ n i=1αi*标志物浓度i
其中Logit(P)为上述同一类或不同类肺癌标志物的logistic回归模型结果,C为回归得到的自然常数,α为回归分析得到的每个标志物的系数,为自然数,标志物浓度i为同一大类或不同大类中的标志物浓度,n为大于等于2的整数。
优选地,检测的样本包括:人体或动物体组织、血样、尿液、唾液、体液、粪便中的任何一种或多种。
优选地,检测技术方法包括放射方法、免疫方法、荧光方法、流式荧光、胶乳比浊法、生化法、酶法、PCR方法、测序法、杂交法、气质联用法、液质联用法、层析法、化学发光方法、磁电、光电转换方法其中的一种或多种。
优选地,所述肺癌不同类别标志物为肺癌蛋白标志物,肺癌分子诊断标志物和肺癌相关DNA甲基化标志物组合,其中肺癌蛋白标志物为Pro-SFTBP、CEA、CA125、SCC-Ag、CYFRA21-1、Pro-GRP,肺癌分子诊断标志物为EGFR、AKT1、ALK、HER2、BRAF、pIK3CA、BRCA1/2,肺癌相关DNA甲基化标志物为SHOX2、RASSF1A、AKAPl2,获得这些标志在样本的浓度值,进行自然对数转换,经logistic回归分析,剔除无贡献的标志物后,得到回归模型为:Logit(P)=-8.536+1.852*Ln(Pro-SFTBP)+0.741*Ln(CEA)+0.689*Ln(CA125)+0.521*Ln(SCC-Ag)+0.534*Ln(CYFRA21-1)+1.245*Ln(EGFR)+0.872*Ln(HER2)+0.316*Ln(BRAF)+0.872*Ln (pIK3CA)+0.352*Ln(BRCA1/2)+0.821*Ln(SHOX2)+0.258*Ln(RASSF1A)+0.698*Ln(AKAPl2)。
这一优选的标志物组合,可全面综合判断肺癌的早诊,早筛,肺癌的辅助诊断,及肺癌的亚型(小细胞肺癌或非小细胞肺癌),药物的伴随诊断及预后治疗观察。可以有效替代CT检测的不准确,对肺小结节小于6mm内的良性和恶性判断特异性大于90%,灵敏度大于95%(目前市场还没有办法判断)。
本申请的另一个方面,提供了使用所述构建体外检测肺癌的数学模型的方法得到数学模型在预测样本主体患癌风险中的应用,当根据所述数学模型得到计算分析结果的值为≥-2.156时,认为所述样本的主体具有癌症风险
其中Ln为自然对数,当根据模型公式得到计算分析结果Logit(P)的值为≥-2.156时,认为所述样本的主体具有癌症风险。
以上模型仅为一个实例,不同模型,具有不同诊断肺癌功能,其分析结果数值也不相同,可以做肺癌的早诊,早筛,辅助诊断或预后。
本申请具有以下优点:
本发明提供的构建数学模型的方法从肺癌不同维度出发,不同种类的标志物浓度数据组合使用,得到的数学模型更加完善。该数学模型在应用中体现了连横合纵,内外兼顾的检测,能够克服市场上以一种标志物或一个维度的进行癌症风险预测时,预测灵敏度和特异性不高等缺点,极大提高预测样本主体肺癌风险的精准度和准确性。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
实施例中所用的检测方法学,可以是购买的试剂检测试剂盒或自制试剂盒。
实施例1
用购买的化学发光方法检测试剂盒,测试血样中7种肺癌蛋白标志物浓度(Pro-SFTBP、CEA、CA125、SCC-Ag、CYFRA21-1、Pro-GRP、NSE),用荧光原位杂交法或测序法测试血样中9种肺癌分子标志物浓度(EGFR、AKT1、ALK、HER2、KRAS、BRAF、pIK3CA、ROS1、BRCA1/2),用流式荧光方法检测血样中4种肺癌相关的炎症因子浓度(IL-6、IL-10、S100、IL-13),用标准的液质联用方法检测尿液或血液中2种肺癌相关代谢物标志物浓度(8-羟基脱氧鸟苷、 二乙酰精胺(DAS))。
把7种肺癌蛋白标志物的浓度、9种肺癌分子标志物浓度、4种肺癌相关的炎症因子浓度、2种肺癌相关代谢物标志物浓度、进行logistics回归分析得到Logit(P)=常数+λ1*P1+λ2*P2+η3*P3+η4*P4……
测试未知血样各个标志物浓度,代入到回归模型中,根据计算得到的Logit(P)及回归模型Logit(P)值的判断标准,综合诊断是否患肺癌的情况及肺癌风险。
Figure PCTCN2020127728-appb-000001
实施例2
用购买的或自制的化学发光方法试剂盒,测试血样中4种肺癌蛋白标志物浓度(Pro-SFTBP、CEA、CA125、CYFRA21-1),用荧光原位杂交法或流式荧光法测试血样中6种肺癌分子标志物(EGFR、KRAS、BRAF、PIK3CA、ALK、ROS1),用流式荧光法或液质联用方法检测尿液中1种肺癌相关代谢物标志物(二乙酰精胺(DAS))。
把4种肺癌蛋白标志物的浓度、7种肺癌分子标志物浓度、肺癌相关代谢物标志物DAS的浓度进行logistics回归分析得到Logit(P)=常数+λ1*P1+λ2*P2+η3*P3+η4*P4……
测试未知血样各个标志物浓度,代入到回归模型中,根据计算得到的Logit(P)及回归模型Logit(P)值的判断标准,综合诊断是否患肺癌的情况及肺癌风险。
Figure PCTCN2020127728-appb-000002
实施例3
用购买的或自制的化学发光方法试剂盒,测试血样中4种肺癌蛋白标志物浓度(Pro-SFTBP、CEA、CA125、CYFRA21-1),用荧光原位杂交法测试血样中6种肺癌分子标志物(EGFR、KRAS、BRAF、PIK3CA、ALK、ROS1),用购买的免疫荧光方法检测血样中7种肺癌自身抗体的浓度(MAGE A1、SOX2、p53、GAGE7、PGP9.5、CAGE、GBU4-5)。用流式荧光方法检测血样中4种肺癌相关的炎症因子浓度(IL-6、IL-10、S100、IL-13),用液质联用方法检测尿液中3种肺癌相关外泌体(LRG1、KIT、CD91)。
先构建回归模型,将上述标志物的浓度进行logistics回归分析得到Logit(P)=常数+λ1*P1+λ2*P2+η3*P3+η4*P4……
测试未知血样各个标志物浓度,代入到回归模型中,根据计算得到的Logit(P)及回归模型Logit(P)值的判断标准,综合诊断是否患肺癌的情况及肺癌风险。
Figure PCTCN2020127728-appb-000003
实施例4
肺癌分子诊断标志物和肺癌相关DNA甲基化标志物组合,其中肺癌蛋白标志物为Pro-SFTBP、CEA、CA125、SCC-Ag、CYFRA21-1、Pro-GRP,肺癌分子诊断标志物为EGFR、AKT1、ALK、HER2、BRAF、pIK3CA、BRCA1/2,肺癌相关DNA甲基化标志物为SHOX2、RASSF1A、AKAPl2,获得这些标志在样本的浓度值,进行自然对数转换,经logistic回归分析,剔除无贡献的标志物后,得到回归模型为:Logit(P)=-8.536+1.852*Ln(Pro-SFTBP)+0.741*Ln(CEA)+0.689*Ln(CA125)+0.521*Ln(SCC-Ag)+0.534*Ln(CYFRA21-1)+1.245*Ln(EGFR)+0.872*Ln(HER2)+0.316*Ln(BRAF)+0.872*Ln(pIK3CA)+0.352*Ln(BRCA1/2)+0.821*Ln(SHOX2)+0.258*Ln(RASSF1A)+0.698*Ln(AKAPl2)。
测试未知血样各个标志物浓度,代入到回归模型中,根据计算得到的Logit(P)及回归模型Logit(P)值的判断标准,综合诊断是否患肺癌的情况及肺癌风险。
Figure PCTCN2020127728-appb-000004
Figure PCTCN2020127728-appb-000005
组合方式肺癌检测,比单独的一种或几种种类型的检测,有更高的灵敏度和特异性,灵敏度可以达到99%,特异性100%,远远优于市场上的肺癌诊断标志物。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种构建体外检测肺癌的数学模型的方法,其特征在于,所述方法包括从样本中获得至少两种肺癌标志物的浓度,对测定的每个标志物的浓度值进行logistic回归,将所检测到的标志物的浓度代入到logistic回归模型中,得到分析结果,使用每个标志物的浓度和logistic回归分析结果进行综合肺癌分析。
  2. 根据权利要求1所述一种构建体外检测肺癌的数学模型的方法,其特征在于,所述方法包括从样本中获得三种肺癌标志物的浓度,对测定的每个标志物的浓度值进行logistic回归,将所检测到的标志物的浓度代入到logistic回归模型中,得到分析结果。
  3. 根据权利要求1所述的构建体外检测肺癌的数学模型的方法,其特征在于,所述肺癌标志物包括以下大类中的至少一类:
    肺癌蛋白标志物、肺癌代谢物标志物、肺癌分子诊断标志物、肺癌自身抗体、肺癌相关DNA甲基化标志物、肺癌相关炎症因子和/或生长因子以及肺癌相关外泌体。
  4. 根据权利要求1所述的构建体外检测肺癌的数学模型的方法,其特征在于,所述肺癌蛋白标志物选自Pro-SFTBP、CEA、CA125、SCC-Ag、CYFRA21-1、Pro-GRP、NSE、CA15-3、CA19-9、CA242、HSPG、NCAM中的任意一种或多种,优选Pro-SFTBP、CEA、CA125、SCC-Ag、CYFRA21-1、Pro-GRP、NSE其中的任意一种或多种组合;
    所述肺癌代谢物标志物选自8-羟基脱氧鸟苷、二乙酰精胺、N-乙酰化糖蛋白、β-羟基丁酸、亮氨酸、赖氨酸、酪氨酸、苏氨酸、谷氨酰胺、缬氨酸、天冬氨酸中的任意一种或多种,优选8-羟基脱氧鸟苷、二乙酰精胺、N-乙酰化糖蛋白其中的一种或多种;
    所述肺癌分子诊断标志物选自EGFR、AKT1、ALK、HER2、MEK1、KRAS、BRAF、DKK-1、pIK3CA、ROS1、NRAS、RET、MET、BRCA1/2、cap43、miR-21、miR-20a、miR-24、miR-25、miR-145、miR-183、miR-205、miR-196b、miR-203、miR-429、miR-200b中的任意一种或多种。
  5. 根据权利要求1所述的构建体外检测肺癌的数学模型的方法,其特征在于,所述肺癌自身抗体选自IGFBP1、PGAM1、TP53、UBQLN1、ANXA1、ANXA2、CDK2、CTAG1B、MAGE A1、SOX2、p53、GAGE 7、PGP9.5、CAGE、GBU4-5中的任意一种或多种。
    所述肺癌相关炎症因子和生长因子选自IL-6、IL-10、S100、IL-13、CRP、SAA中的任意一种或多种;
    所述肺癌相关外泌体选自LRG1、KIT、CD91、miR-30B、miR-30C、miR-122、miR-195、miR-203、miR-221和miR-222中的任意一种或多种;
    所述肺癌相关DNA甲基化标志物选自SHOX2、RASSF1A、EGFR、E18、E19、E20、E21、BRAF、PIK3CA、KRAS、p16、CDH1、CDH13、APC、RARβ、DAPK、MGMT、FHIT、HIC-1、AKAPl2、ESRl、CYGB、OPCML、ADAMTSl、TGFBI、RUNX3、UMDl、hSRBC、CADM1、p14ARF、p16INK4a、DAPK、GSTP1、MGMT、MLH1、FBN2、DAL-1、ASC中的任意一种或多种,优选SHOX2、RASSF1A、EGFR、BRAF、PIK3CA、KRAS、p16其中的任意一种或多种。
  6. 根据权利要求3所述的构建体外检测肺癌的数学模型的方法,其特征在于,所述logistic回归的公式为:
    Figure PCTCN2020127728-appb-100001
    其中Logit(P)为上述同一类或不同类肺癌标志物的logistic回归模型结果,C为回归得到的自然常数,α为回归分析得到的每个标志物的系数,为自然数,标志物浓度i为同一大类或不同大类中的标志物浓度,n为大于等于2的整数。
  7. 根据权利要求1所述的构建体外检测肺癌的数学模型的方法,其特征在于检测的样本包括:人体或动物体组织、血样、尿液、唾液、体液、粪便中的任何一种或多种。
  8. 根据权利要求1所述的构建体外检测肺癌的数学模型的方法,其特征在于检测技术方法包括放射方法、免疫方法、荧光方法、流式荧光、胶乳比浊法、生化法、酶法、PCR方法、测序法、杂交法、气质联用法、液质联用法、层析法、化学发光方法、磁电、光电转换方法其中的一种或多种。
  9. 根据权利要求4所述的构建体外检测肺癌的数学模型的方法,其特征在于,所述肺癌标志物为肺癌蛋白标志物,肺癌分子诊断标志物和肺癌相关DNA甲基化标志物组合,其中肺癌蛋白标志物为Pro-SFTBP、CEA、CA125、SCC-Ag、CYFRA21-1、Pro-GRP,肺癌分子诊断标志物为EGFR、AKT1、ALK、HER2、BRAF、pIK3CA、BRCA1/2,肺癌相关DNA甲基化标志物为SHOX2、RASSF1A、AKAPl2,获得这些标志在样本的浓度值,进行自然对数转换,经logistic回归分析,剔除无贡献的标志物后,得到的回归模型为:Logit(P)=-8.536+1.852*Ln(Pro-SFTBP)+0.741*Ln(CEA)+0.689*Ln(CA125)+0.521*Ln(SCC-Ag)+0.534*Ln(CYFRA21-1)+1.245*Ln(EGFR)+0.872*Ln(HER2)+0.316*Ln(BRAF)+0.872*Ln(pIK3CA)+0.352*Ln(BRCA1/2)+0.821*Ln(SHOX2)+0.258*Ln(RASSF1A)+0.698*Ln(AKAPl2),其中Ln为自然对数。
  10. 使用权利要求1-9中任意一项所述的构建体外检测肺癌的数学模型的方法得到数学模型在预测样本主体患癌风险中的应用,其特征在于,当根据所述数学模型得到计算分析结果的值为≥-2.156时,认为所述样本的主体具有癌症风险。
PCT/CN2020/127728 2020-05-29 2020-11-10 构建体外检测肺癌的数学模型的方法和应用 WO2021238086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010482064.5 2020-05-29
CN202010482064.5A CN111667918A (zh) 2020-05-29 2020-05-29 构建体外检测肺癌的数学模型的方法和应用

Publications (1)

Publication Number Publication Date
WO2021238086A1 true WO2021238086A1 (zh) 2021-12-02

Family

ID=72385371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127728 WO2021238086A1 (zh) 2020-05-29 2020-11-10 构建体外检测肺癌的数学模型的方法和应用

Country Status (2)

Country Link
CN (1) CN111667918A (zh)
WO (1) WO2021238086A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111667918A (zh) * 2020-05-29 2020-09-15 杭州广科安德生物科技有限公司 构建体外检测肺癌的数学模型的方法和应用
CN112501295B (zh) * 2020-12-01 2023-03-31 上海米然生物科技有限公司 miRNA组合、含其的试剂盒及在肺癌诊断中的应用
CN116381073A (zh) * 2020-10-10 2023-07-04 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) 生物标志物在制备肺癌检测试剂中的用途和方法
CN112415198B (zh) * 2020-11-20 2022-11-11 四川大学华西医院 Gp1bb检测试剂在制备肺癌筛查试剂盒中的用途
CN113106151A (zh) * 2021-03-25 2021-07-13 杭州瑞普基因科技有限公司 基于qPCR检测肺小结节甲基化的核酸组合物、试剂盒
CN113311162A (zh) * 2021-04-29 2021-08-27 安徽省肿瘤医院 用于鉴别肺结节良恶性的血浆外泌体自身抗体组合及应用
CN113355425B (zh) * 2021-08-10 2021-12-07 至本医疗科技(上海)有限公司 一种用于预测肺腺癌总生存时间高低分类的标志物及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105067822A (zh) * 2015-08-12 2015-11-18 中山大学附属肿瘤医院 用于食管癌诊断的标志物
CN105219844A (zh) * 2015-06-08 2016-01-06 刘宗正 一种谱筛查十一种疾病的基因标志物组合、试剂盒以及疾病风险预测模型
CN110734978A (zh) * 2019-11-12 2020-01-31 杭州昱鼎生物科技有限公司 Dlx1,hoxc6和pca3在制备前列腺癌标志物中的应用及其试剂盒
CN111172279A (zh) * 2019-12-17 2020-05-19 中国医学科学院肿瘤医院 外周血甲基化基因及idh1联合检测诊断肺癌模型
CN111489829A (zh) * 2020-05-29 2020-08-04 杭州广科安德生物科技有限公司 构建体外检测胰腺癌的数学模型的方法及其应用
CN111540469A (zh) * 2020-05-29 2020-08-14 杭州广科安德生物科技有限公司 构建体外检测胃癌的数学模型的方法及其应用
CN111584008A (zh) * 2020-05-29 2020-08-25 杭州广科安德生物科技有限公司 构建体外检测结直肠癌的数学模型的方法及其应用
CN111583993A (zh) * 2020-05-29 2020-08-25 杭州广科安德生物科技有限公司 构建体外检测癌症的数学模型的方法及其应用
CN111667918A (zh) * 2020-05-29 2020-09-15 杭州广科安德生物科技有限公司 构建体外检测肺癌的数学模型的方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155570A1 (en) * 2016-03-08 2017-09-14 Magarray, Inc. Protein and autoantibody biomarkers for the diagnosis and treatment of lung cancer
CN107300613A (zh) * 2017-06-27 2017-10-27 深圳市优圣康生物科技有限公司 一种生物标记物、采样方法、建模方法及其用途
CN110376378B (zh) * 2019-07-05 2022-07-26 中国医学科学院肿瘤医院 可用于肺癌诊断的标志物联合检测模型

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219844A (zh) * 2015-06-08 2016-01-06 刘宗正 一种谱筛查十一种疾病的基因标志物组合、试剂盒以及疾病风险预测模型
CN105067822A (zh) * 2015-08-12 2015-11-18 中山大学附属肿瘤医院 用于食管癌诊断的标志物
CN110734978A (zh) * 2019-11-12 2020-01-31 杭州昱鼎生物科技有限公司 Dlx1,hoxc6和pca3在制备前列腺癌标志物中的应用及其试剂盒
CN111172279A (zh) * 2019-12-17 2020-05-19 中国医学科学院肿瘤医院 外周血甲基化基因及idh1联合检测诊断肺癌模型
CN111489829A (zh) * 2020-05-29 2020-08-04 杭州广科安德生物科技有限公司 构建体外检测胰腺癌的数学模型的方法及其应用
CN111540469A (zh) * 2020-05-29 2020-08-14 杭州广科安德生物科技有限公司 构建体外检测胃癌的数学模型的方法及其应用
CN111584008A (zh) * 2020-05-29 2020-08-25 杭州广科安德生物科技有限公司 构建体外检测结直肠癌的数学模型的方法及其应用
CN111583993A (zh) * 2020-05-29 2020-08-25 杭州广科安德生物科技有限公司 构建体外检测癌症的数学模型的方法及其应用
CN111667918A (zh) * 2020-05-29 2020-09-15 杭州广科安德生物科技有限公司 构建体外检测肺癌的数学模型的方法和应用

Also Published As

Publication number Publication date
CN111667918A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2021238086A1 (zh) 构建体外检测肺癌的数学模型的方法和应用
Yokoi et al. A combination of circulating miRNAs for the early detection of ovarian cancer
TWI803477B (zh) 使用核酸片段之診斷應用
Wang et al. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis
US9920375B2 (en) Biomarkers in peripheral blood mononuclear cells for diagnosing or detecting lung cancers
WO2020220994A1 (zh) 一种检测胃癌的miRNA标志物组合及试剂盒
CN110387421A (zh) 用于肺癌检测的DNA甲基化qPCR试剂盒及使用方法
Shen et al. The clinical utility of microRNA-21 as novel biomarker for diagnosing human cancers
WO2016070819A1 (zh) 由血清microRNA组成的肝癌诊断标志物及诊断试剂盒
CN109825586A (zh) 用于肺癌检测的DNA甲基化qPCR试剂盒及使用方法
CN111584008A (zh) 构建体外检测结直肠癌的数学模型的方法及其应用
CN109504780A (zh) 用于肺癌检测的DNA甲基化qPCR试剂盒及使用方法
CN105603101A (zh) 检测8个miRNA表达量的系统在制备诊断或辅助诊断肝细胞癌产品中的应用
JP2013509169A (ja) 前立腺癌の診断および病期分類のための非侵襲的マーカーとなる血中miRNA
CN111489829A (zh) 构建体外检测胰腺癌的数学模型的方法及其应用
WO2021238085A1 (zh) 构建体外检测癌症的数学模型的方法及其应用
TWI571514B (zh) 評估罹患大腸直腸癌風險的方法
CN111455053B (zh) 用于结直肠腺瘤诊断的外泌体rna分子标记物组合及其应用
CN105671179B (zh) 血清microRNA在肝癌诊断中的应用及诊断试剂盒
CN111653315A (zh) 构建体外检测乳腺癌的数学模型的方法及其应用
Zhang et al. Identification of microRNAs as diagnostic biomarkers in screening of head and neck cancer: a meta-analysis
CN108753981A (zh) Hoxb8基因的定量检测在结直肠癌预后判断中的应用
JP6612509B2 (ja) 大腸癌の予後診断を補助する方法、記録媒体および判定装置
CN111100930B (zh) 一种用于检测胰腺肿瘤良恶性程度的分级模型及其应用
TWI626314B (zh) 評估罹患大腸直腸癌風險的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937474

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20937474

Country of ref document: EP

Kind code of ref document: A1