WO2021237872A1 - Mura检测方法、装置及可读存储介质 - Google Patents

Mura检测方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2021237872A1
WO2021237872A1 PCT/CN2020/099631 CN2020099631W WO2021237872A1 WO 2021237872 A1 WO2021237872 A1 WO 2021237872A1 CN 2020099631 W CN2020099631 W CN 2020099631W WO 2021237872 A1 WO2021237872 A1 WO 2021237872A1
Authority
WO
WIPO (PCT)
Prior art keywords
target test
area
mura
value
test area
Prior art date
Application number
PCT/CN2020/099631
Other languages
English (en)
French (fr)
Inventor
王艳雪
Original Assignee
惠州市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市华星光电技术有限公司 filed Critical 惠州市华星光电技术有限公司
Priority to US16/962,426 priority Critical patent/US11741587B2/en
Publication of WO2021237872A1 publication Critical patent/WO2021237872A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/60Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30121CRT, LCD or plasma display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/07Target detection

Definitions

  • This application relates to the technical field of grayscale brightness adjustment, and in particular to a mura detection method, device and readable storage medium.
  • Local diming technology refers to dividing the backlight of the LCD into more than N small areas (Block); when working, adjust the brightness of the backlight according to the gray level of the content of the corresponding small area corresponding to the liquid crystal display; in order to achieve energy saving , The purpose of enhancing picture quality.
  • Halo vignetting
  • a type of mura which is limited by the original contrast characteristics of the backlight partition panel, etc., and the black pixels next to the bright pixels will appear vignetting.
  • Phenomenon affects the display effect of high-contrast images. Therefore, the phenomenon area is small and cannot be measured with optical measuring instruments.
  • the prior art generally performs subjective evaluation by the human eye and cannot be measured objectively.
  • a technical solution adopted in this application is to provide a mura detection method, the detection method comprising: obtaining an original image signal; obtaining a target test image from the original image signal; and obtaining the The area where mura is located in the target test image is used as the target test area; the target test area is processed to obtain the grayscale distribution of the target test area; the brightness gradient distribution of the target test area is obtained according to the grayscale distribution; Calculating the SEMU value of the brightness gradient distribution of the target test area; obtaining the corresponding position of the mura area according to the SEMU value.
  • the detection device includes: a first acquisition module for acquiring the original image signal and a second acquisition module for obtaining the original image signal from the The target test image is acquired from the original image signal; the third acquisition module is used to acquire the area where mura is located in the target test image as the target test area; the processing module is used to process the target test area to obtain the target The gray-scale distribution of the test area; a brightness gradient acquisition module for obtaining the brightness gradient distribution of the target test area according to the gray-scale distribution; a calculation module for calculating SEUM according to the brightness gradient distribution of the target test area Value; a location acquisition module for acquiring the corresponding location of the mura area according to the SEUM value.
  • another technical solution adopted in this application is to provide a computer-readable storage medium, in which a plurality of instructions are stored, and the instructions are suitable for being loaded by a processor to execute the following steps : Obtain the original image signal; obtain the target test image from the original image signal; obtain the area where mura in the target test image is located as the target test area; process the target test area to obtain the gray of the target test area Order distribution; obtain the brightness gradient distribution of the target test area according to the grayscale distribution; calculate the SEMU value according to the brightness gradient distribution of the target test area; obtain the corresponding position of the mura area according to the SEMU value.
  • the present application provides a mura detection method, device, and readable storage medium, which obtain the brightness gradient curve diagram of the target test area by processing the acquired original image information At the same time, combined with the calculation of the SEMU to obtain the position relationship curve of the SEMU and the image, the corresponding position of the mura area is obtained according to the position relationship curve to realize the objective measurement and evaluation of the halo phenomenon.
  • FIG. 1 is a schematic flowchart of an embodiment of the mura detection method according to the present application.
  • Figure 2 is a schematic diagram of the original image signal of the present application.
  • FIG. 3 is a schematic flowchart of an embodiment of step S200 of the present application.
  • FIG. 4 is a schematic diagram of an embodiment of the target test image of the present application.
  • FIG. 5 is a schematic flowchart of an embodiment of step S400 of the present application.
  • FIG. 6 is a schematic flowchart of an embodiment of step S500 of the present application.
  • FIG. 7 is a schematic flowchart of an implementation manner of step S700 of the present application.
  • FIG. 8 is a schematic flowchart of an implementation manner of step S720 of the present application.
  • Figure 9 is a normalized intensity gradient distribution diagram of the present application.
  • Figure 10 is a graph of the positional relationship between the SEMU value and the mura area of the present application.
  • FIG. 11 is a schematic structural diagram of an embodiment of the mura detection device of the present application.
  • first”, “second”, and “third” in this application are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first”, “second”, and “third” may explicitly or implicitly include at least one of the features.
  • "a plurality of” means at least two, such as two, three, etc., unless otherwise specifically defined. All the directional indicators (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between the components in a specific posture (as shown in the drawings) , Movement status, etc., if the specific posture changes, the directional indication will also change accordingly.
  • the mura area in this application can represent the area where the halo phenomenon is located, that is, the halo phenomenon in this application is regarded as a type of mura.
  • FIG. 1 is a schematic flowchart of an embodiment of a mura detection method according to this application. As shown in FIG. 1, the mura detection method provided by this application includes the following steps:
  • FIG. 2 is a schematic diagram of the original image signal 100 obtained by this application, where the middle area of the original image signal 100 is the position of the white pixel 110.
  • FIG. 3 is a schematic flowchart of an embodiment of step S200 of this application, and step S200 further includes the following sub-steps:
  • S210 Acquire multiple images with preset shooting angles from the original image signal.
  • the shooting angle is set to 45 degrees, and the white pixel 110 is blocked by a light shielding plate.
  • the positions of the white pixels 110 are different, the halo phenomenon will be different. Therefore, the position of the white pixel 110 is slightly shifted to obtain multiple images with a shooting angle of 45 degrees.
  • the halo phenomenon is more obvious when the shooting angle is 45 degrees. In other embodiments, other shooting angles may be used to acquire images, which is not specifically limited here.
  • S220 Select a target test image that meets the test condition from a plurality of images with a preset shooting angle.
  • Figure 4 is a schematic diagram of an embodiment of the target test image of the application.
  • the image with the most severe halo phenomenon is selected as the target test image, that is, the more black edge light leakage in the target test image, the more serious the halo phenomenon .
  • S300 Acquire the area where mura is located in the target test image as the target test area.
  • S400 Process the target test area to obtain a grayscale distribution of the target test area.
  • Fig. 5 is a schematic flowchart of an implementation manner of step S400 of this application. As shown in Fig. 5, step S400 of this application further includes the following sub-steps:
  • Matlab is used to process the image, specifically, fine-tuning the position of the image of the target test area.
  • Matlab can directly read the RGB grayscale value of each pixel in the target test area, thereby obtaining the grayscale distribution of the target test area.
  • S500 Obtain a brightness gradient distribution of the target test area according to the grayscale distribution.
  • Fig. 6 is a schematic flowchart of an implementation manner of step S500 of this application. As shown in Fig. 6, step S500 of this application further includes the following sub-steps:
  • S510 Perform chromaticity conversion on the RGB grayscale value of each pixel in the target test area to obtain its tristimulus value XYZ in the color system.
  • tristimulus values are obtained through CIE colorimetric system (RGB-XYZ) conversion, where the conversion between RGB space and XYZ space is based on linear tristimulus value data, and the formula used is:
  • A is the conversion matrix
  • the brightness gradient distribution of the target test area is obtained.
  • S600 Calculate the SEMU value according to the brightness gradient distribution of the target test area.
  • the formula for calculating the SEMU value is:
  • C1 is the average grayscale value of the mura area
  • C2 is the average grayscale value outside the mura area
  • Sx is the area of the mura area
  • SEMU is the mura level of the mura area, according to The contrast characteristics of the human eye, the recognition of mura by the human eye is related to the size of the mura.
  • FIG. 7 is a schematic flowchart of an implementation manner of step S700 of this application. As shown in FIG. 7, step S700 of this application further includes the following sub-steps:
  • FIG. 8 is a schematic flowchart of an embodiment of step S720 of this application. As shown in FIG. 8, step S720 of this application further includes the following sub-steps:
  • Figure 9 is a normalized intensity gradient distribution diagram of the application
  • Figure 10 is a curve diagram of the positional relationship between the SEMU value of the application and the mura region, as shown in Figure 10, the three curves are respectively in three different situations The first is the curve L1 when the area dimming is off, the second is the curve L2 when the area dimming is turned on to "High”, and the third is the curve when the area dimming is turned on to "Middle”. L3.
  • the abscissa represents the position information of the image
  • the ordinate represents the value of SEMU
  • the peak of the corresponding curve represents the intensity value.
  • a threshold value can be set to determine the relative position of the halo phenomenon.
  • the threshold value can be set to a SEMU value of 80. In other embodiments, the threshold value can also be set to other values. No further restrictions are made here.
  • the brightness gradient curve of the target test area is obtained by processing the acquired original image information, and the position relationship curve between the SEMU and the image is obtained by combining with the SEMU calculation, and the corresponding position of the mura area is obtained according to the position relationship curve to realize the comparison Objective measurement and evaluation of halo phenomenon.
  • FIG. 11 is a schematic structural diagram of an embodiment of a mura detection device of this application.
  • the mura detection device 300 of this application includes a first acquisition module 310, a second acquisition module 320, and a third acquisition module 330.
  • the first acquisition module 310 is used to acquire the original image signal.
  • the second acquisition module 320 is used to acquire the target test image from the original image signal.
  • the second acquisition module 320 is further configured to acquire multiple images with preset shooting angles from the original image signal; select the target test image that meets the test conditions from the multiple images with preset shooting angles .
  • the third acquiring module 330 is configured to acquire the area where mura is located in the target test image as the target test area.
  • the processing module 340 is configured to process the target test area to obtain the grayscale distribution of the target test area.
  • the processing module 340 is further configured to adjust the position of the target test area, and obtain the RGB grayscale value of each pixel in the target test area.
  • the brightness gradient obtaining module 350 is configured to obtain the brightness gradient distribution of the target test area according to the grayscale distribution.
  • the brightness gradient obtaining module 350 is further configured to perform chromaticity conversion on the RGB grayscale value of each pixel in the target test area to obtain its tristimulus value XYZ in the color system; The tristimulus value obtains the brightness gradient distribution of the target test area.
  • the calculation module 360 is configured to calculate the SEUM value according to the brightness gradient distribution of the target test area.
  • the location acquiring module 370 is configured to acquire the corresponding location of the mura area according to the SEUM value.
  • the position obtaining module 370 is further configured to obtain a position relationship curve between the SEMU value and the mura region; and determine the corresponding width of the mura region according to the peak value of the position relationship curve.
  • determining the corresponding width of the mura region according to the peak value of the position relationship curve further includes setting a preset critical value of the position relationship curve; and obtaining the corresponding width of the mura region according to the critical value.
  • the brightness gradient curve of the target test area is obtained by processing the acquired original image information, and the position relationship curve between the SEMU and the image is obtained by combining with the SEMU calculation, and the corresponding position of the mura area is obtained according to the position relationship curve to realize the comparison Objective measurement and evaluation of halo phenomenon.
  • each of the above modules and units can be implemented as independent entities, or can be combined arbitrarily, and implemented as the same or several entities.
  • the specific implementation of the above modules and units please refer to the previous method embodiments. No longer.
  • an embodiment of the present application provides a storage medium in which multiple instructions are stored, and the instructions can be loaded by a processor to execute the steps in any mura detection method provided in the embodiments of the present application.
  • the storage medium may include: read only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the brightness gradient curve of the target test area is obtained by processing the acquired original image information, and combined SEMU calculates and obtains the position relationship curve between SEMU and the image, and obtains the corresponding position of the mura area according to the position relationship curve, so as to realize the objective measurement and evaluation of halo phenomenon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

本申请公开了一种mura检测方法、装置及可读存储介质,检测方法包括:从原始图像信号获取的目标测试图像中获取mura所在区域作为目标测试区域;对目标测试区域进行处理以得到的灰阶分布;根据灰阶分布得到亮度梯度分布;根据亮度梯度分布计算SEMU值;根据SEMU值获取mura区域对应位置,能够实现对晕影现象的进行客观测量及评价。

Description

Mura检测方法、装置及可读存储介质 技术领域
本申请涉及灰阶亮度调节技术领域,特别是涉及一种mura检测方法、装置及可读存储介质。
背景技术
区域调光(local diming)技术是指将LCD的背光分成N多小区域(Block);工作时,根据相应小区域对应液晶显示的内容的灰度,来调整背光的明暗度;以此达到节能、增强画质的目的。
技术问题
随着技术的发展区域调光容易引入Halo(晕影)现象,mura的一种,即受限于背光分区面板本来的对比度特性等,在高亮的像素旁边的黑色像素处会出现晕影的现象,影响高对比图像的显示效果,因此现象区域较小,无法使用光学测量仪器进行量测,且现有技术一般为人眼进行主观性评价,无法客观测量。
技术解决方案
为解决上述技术问题,本申请采用的一种技术方案是:提供一种mura的检测方法,所述检测方法包括:获取原始图像信号;从所述原始图像信号中获取目标测试图像;获取所述目标测试图像中mura 所在区域作为目标测试区域;对所述目标测试区域进行处理以得到所述目标测试区域的灰阶分布;根据所述灰阶分布得到所述目标测试区域的亮度梯度分布;根据所述目标测试区域的所述亮度梯度分布计算SEMU值;根据所述SEMU值获取所述mura区域对应位置。
为解决上述技术问题,本申请采用的另一种技术方案是:提供一种mura检测装置,所述检测装置包括:第一获取模块,用于获取原始图像信号第二获取模块,用于从所述原始图像信号中获取目标测试图像;第三获取模块,用于获取所述目标测试图像中mura所在区域作为目标测试区域;处理模块,用于对所述目标测试区域进行处理以得到所述目标测试区域的灰阶分布;亮度梯度获取模块,用于根据所述灰阶分布得到所述目标测试区域的亮度梯度分布;计算模块,用于根据所述目标测试区域的所述亮度梯度分布计算SEUM值;位置获取模块,用于根据所述SEUM值获取所述mura区域对应位置。
为解决上述技术问题,本申请采用的又一种技术方案是,提供一种计算机可读存储介质,所述存储介质中存储有多条指令,所述指令适于由处理器加载以执行以下步骤:获取原始图像信号;从所述原始图像信号中获取目标测试图像;获取所述目标测试图像中mura所在区域作为目标测试区域;对所述目标测试区域进行处理以得到所述目标测试区域的灰阶分布;根据所述灰阶分布得到所述目标测试区域的亮度梯度分布;根据所述目标测试区域的所述亮度梯度分布计算SEMU值;根据所述SEMU值获取所述mura区域对应位置。
有益效果
本申请的有益效果是:区别于现有技术的情况,本申请提供一种mura检测方法、装置及可读存储介质,通过对获取到的原始图像信息进行处理获得目标测试区域的亮度梯度曲线图,同时结合SEMU计算获得SEMU和图像的位置关系曲线,根据位置关系曲线获取mura区域对应位置,实现对halo现象的客观测量和评价。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本申请mura检测方法一实施方式的流程示意图;
图2是本申请原始图像信号的示意图;
图3是本申请步骤S200一实施方式的流程示意图;
图4是本申请目标测试图像一实施方式的示意图;
图5是本申请步骤S400一实施方式的流程示意图;
图6是本申请步骤S500一实施方式的流程示意图;
图7是本申请步骤S700一实施方式的流程示意图;
图8是本申请步骤S720一实施方式的流程示意图;
图9是本申请归一化的强度梯度分布图;
图10是本申请SEMU值与mura区域的位置关系曲线图;
图11是本申请mura检测装置一实施方式的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理 解的是,本文所描述的实施例可以与其它实施例相结合。
可以理解的是,本申请中的mura区域则可以表示halo现象所在的区域,也即是本申请的halo现象视为mura的一种。
请参阅图1,图1为本申请mura检测方法一实施方式的流程示意图,如图1所示,本申请提供的mura检测方法包括如下步骤:
S100,获取原始图像信号。
结合图2,图2为本申请获取到原始图像信号100的示意图,其中,原始图像信号100中间区域为白色像素110所在位置。
S200,从原始图像信号中获取目标测试图像。
可选地,进一步结合图3,图3为本申请步骤S200一实施方式的流程示意图,且步骤S200进一步包括如下子步骤:
S210,从原始图像信号中获取多张预设拍摄角度的图像。
为了增加halo现象的成像效果,需要从原始图像信号100中获取多张预设拍摄角度的图像。具体地,将拍摄角度设置为45度,采用遮光板遮挡白色像素110。可选地,受分区数的影响,白色像素110的位置不同,则halo现象会存在差异。故微移白色像素110的位置获得多张拍摄角度为45度的图像。当然,本申请实施例中,拍摄角度为45度时halo现象更为明显,在其他实施方式中,可以采用其他拍摄角度获取图像,此处不做具体限定。
S220,从多张预设拍摄角度的图像中选择符合测试条件的作为目标测试图像。
结合图4,图4为本申请目标测试图像一实施方式的示意图,本 申请中选择halo现象最严重的图像作为目标测试图像,即目标测试图像中黑色边缘漏光越多,则表明halo现象越严重。
S300,获取目标测试图像中mura所在区域作为目标测试区域。
对所述目标测试图像进行旋转和裁剪等操作,得到halo现象所在的区域,即mura区域200作为目标测试区域。
S400,对目标测试区域进行处理以得到目标测试区域的灰阶分布。
结合图5,图5为本申请步骤S400一实施方式的流程示意图,如图5,本申请步骤S400进一步包括如下子步骤:
S410,调整目标测试区域的位置。
本申请实施例中,采用Matlab对图像进行处理,具体地,针对目标测试区域图像的位置进行微调。
S420,获取目标测试区域中每一像素的RGB灰阶值。
因获取到的图片信息为RGB信号,则Matlab可以直接读取目标测试区域中每一像素的RGB灰阶值,从而得到目标测试区域的灰阶分布。
S500,根据灰阶分布得到目标测试区域的亮度梯度分布。
结合图6,图6为本申请步骤S500一实施方式的流程示意图,如图6,本申请步骤S500进一步包括如下子步骤:
S510,将目标测试区域中的每一像素的RGB灰阶值进行色度转换,以获得其在颜色系统的三刺激值XYZ。
具体地,通过CIE色度系统(RGB-XYZ)转换得到三刺激值,其中,RGB空间与XYZ空间的转换是基于线性的三刺激值数据进行的, 且采用的公式为:
Figure PCTCN2020099631-appb-000001
其中,A为转换矩阵
Figure PCTCN2020099631-appb-000002
S520,根据三刺激值得到目标测试区域的亮度梯度分布。
根据上述三刺激值以及结合亮度标定原理得到目标测试区域的亮度梯度分布。
S600,根据目标测试区域的亮度梯度分布计算SEMU值。
可选地,SEMU值计算公式为:
Figure PCTCN2020099631-appb-000003
|C x|=|C 1-C 2|/C 2
其中,C1为所述mura区域的平均灰阶值,C2为所述mura区域之外的平均灰阶值,Sx为所述mura区域的面积,所述SEMU为所述mura区域的mura等级,根据人眼对比度特性,人眼对mura的识别与mura的大小有相关性。
S700,根据SEMU值获取mura区域对应位置。
结合图7,图7为本申请步骤S700一实施方式的流程示意图,如图7,本申请步骤S700进一步包括如下子步骤:
S710,获取SEMU值与mura区域的位置关系曲线。
S720,根据位置关系曲线的峰值判定mura区域对应宽度。
可选地,根据SEMU值与mura区域的位置关系曲线可以获知halo现象的严重程度。具体地可以结合图8,图8为本申请步骤S720一实施方式的流程示意图,如图8,本申请步骤S720进一步包括如下子步骤:
S721,设定位置关系曲线的预设临界值。
结合图9和图10,图9为本申请归一化的强度梯度分布图,图10为本申请SEMU值与mura区域的位置关系曲线图,如图10,三条曲线分别为三种不同情况下的位置关系曲线,第一条为区域调光关闭时的曲线L1,第二条为区域调光开到“高”时的曲线L2,第三条为区域调光开到“中”时的曲线L3。其中,横坐标表示图像的位置信息,纵坐标表示SEMU的值,且对应曲线的峰值表示强度值。
本申请实施例中,可以设定一临界值来判定halo现象的相对位置,具体地该临界值可以设定为SEMU值为80,在其他实施方式中,该临界值还可以设置为其他数值,此处不做进一步限定。
S722,根据临界值获取mura区域对应宽度。
结合图9可知,当区域调光关闭时SEMU的数值较低,此时无halo现象。当区域调光开时,halo现象出现,则开到“高”及“中”时,曲线L2和L3强度值分别为94与87,则此时结合面板尺寸可以得到halo的宽度分别为187mm和173mm。
上述实施方式中,通过对获取到的原始图像信息进行处理获得目标测试区域的亮度梯度曲线图,同时结合SEMU计算获得SEMU和图像的位置关系曲线,根据位置关系曲线获取mura区域对应位置,实现 对halo现象的客观测量和评价。
参阅图11,图11为本申请mura检测装置一实施方式的结构示意图,如图11,本申请的mura检测装置300包括第一获取模块310、第二获取模块320、第三获取模块330、处理模块340、亮度梯度获取模块350、计算模块360以及位置获取模块370。
第一获取模块310用于获取原始图像信号。
第二获取模块320用于从原始图像信号中获取目标测试图像。
其中,第二获取模块320还用于从所述原始图像信号中获取多张预设拍摄角度的图像;从所述多张预设拍摄角度的图像中选择符合测试条件的作为所述目标测试图像。
第三获取模块330用于获取所述目标测试图像中mura所在区域作为目标测试区域。
处理模块340用于对所述目标测试区域进行处理以得到所述目标测试区域的灰阶分布。
其中,处理模块340还用于调整所述目标测试区域的位置,获取所述目标测试区域中每一像素的RGB灰阶值。
亮度梯度获取模块350用于根据所述灰阶分布得到所述目标测试区域的亮度梯度分布。
可选地,亮度梯度获取模块350还用于将所述目标测试区域中的每一所述像素的RGB灰阶值进行色度转换,以获得其在颜色系统的三刺激值XYZ;根据所述三刺激值得到所述目标测试区域的亮度梯度分布。
计算模块360用于根据所述目标测试区域的所述亮度梯度分布计算SEUM值。
位置获取模块370用于根据所述SEUM值获取所述mura区域对应位置。
可选地,位置获取模块370还用于获取所述SEMU值与所述mura区域的位置关系曲线;根据所述位置关系曲线的峰值判定所述mura区域对应宽度。其中,根据所述位置关系曲线的峰值判定所述mura区域对应宽度还包括设定所述位置关系曲线的预设临界值;根据所述临界值获取所述mura区域对应宽度。
上述实施方式中,通过对获取到的原始图像信息进行处理获得目标测试区域的亮度梯度曲线图,同时结合SEMU计算获得SEMU和图像的位置关系曲线,根据位置关系曲线获取mura区域对应位置,实现对halo现象的客观测量和评价。
具体实施时,以上各个模块和单元可以作为独立的实体来实现,也可以进行任意组合,作为同一或若干个实体来实现,以上各个模块和单元的具体实施可参见前面的方法实施例,在此不再赘述。
本领域普通技术人员可以理解,上述实施例的各种方法中的全部或部分步骤可以通过指令来完成,或通过指令控制相关的硬件来完成,该指令可以存储于一计算机可读存储介质中,并由处理器进行加载和执行。为此,本申请实施例提供一种存储介质,其中存储有多条指令,该指令能够被处理器进行加载,以执行本申请实施例所提供的任一种mura检测方法中的步骤。
其中,该存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM,Random Access Memory)、磁盘或光盘等。
由于该存储介质中所存储的指令,可以执行本申请实施例所提供的任一种mura检测方法中的步骤,因此,可以实现本申请实施例所提供的任一种mura检测方法所能实现的有益效果,详见前面的实施例,在此不再赘述。
以上各个操作的具体实施可参见前面的实施例,在此不再赘述。
综上所述,本领域技术人员容易理解,本申请提供一种mura检测方法、装置及可读存储介质,通过对获取到的原始图像信息进行处理获得目标测试区域的亮度梯度曲线图,同时结合SEMU计算获得SEMU和图像的位置关系曲线,根据位置关系曲线获取mura区域对应位置,实现对halo现象的客观测量和评价。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (17)

  1. 一种mura检测方法,其中,所述检测方法包括:
    获取原始图像信号;
    从所述原始图像信号中获取目标测试图像;
    获取所述目标测试图像中mura所在区域作为目标测试区域;
    对所述目标测试区域进行处理以得到所述目标测试区域的灰阶分布;
    根据所述灰阶分布得到所述目标测试区域的亮度梯度分布;
    根据所述目标测试区域的所述亮度梯度分布计算SEMU值;
    根据所述SEMU值获取所述mura区域对应位置。
  2. 根据权利要求1所述的检测方法,其中,所述对所述目标测试区域进行处理以得到所述目标测试区域的灰阶分布包括:
    调整所述目标测试区域的位置;
    获取所述目标测试区域中每一像素的RGB灰阶值。
  3. 根据权利要求2所述的检测方法,其中,所述根据所述灰阶分布得到所述目标测试区域的亮度梯度分布包括:
    将所述目标测试区域中的每一所述像素的RGB灰阶值进行色度转换,以获得其在颜色系统的三刺激值XYZ;
    根据所述三刺激值得到所述目标测试区域的亮度梯度分布。
  4. 根据权利要求3所述的检测方法,其中,所述对每一所述像素的RGB灰阶值进行色度转换采用公式为:
    Figure PCTCN2020099631-appb-100001
    其中,A为转换矩阵
    Figure PCTCN2020099631-appb-100002
  5. 根据权利要求3所述的检测方法,其中,所述SEMU值计算公式为:
    Figure PCTCN2020099631-appb-100003
    |C x|=|C 1-C 2|/C 2
    其中,C1为所述mura区域的平均灰阶值,C2为所述mura区域之外的平均灰阶值,Sx为所述mura区域的面积,所述SEMU为所述mura区域的mura等级。
  6. 根据权利要求3所述的检测方法,其中,所述根据所述SEMU值获取所述mura区域对应位置包括:
    获取所述SEMU值与所述mura区域的位置关系曲线;
    根据所述位置关系曲线的峰值判定所述mura区域对应宽度。
  7. 根据权利要求6所述的检测方法,其中,所述根据所述位置关系曲线的峰值判定所述mura区域对应宽度包括:
    设定所述位置关系曲线的预设临界值;
    根据所述临界值获取所述mura区域对应宽度。
  8. 根据权利要求1所述的检测方法,其中,所述所述从所述原始图像信号中获取目标测试图像包括:
    从所述原始图像信号中获取多张预设拍摄角度的图像;
    从所述多张预设拍摄角度的图像中选择符合测试条件的作为所述目标测试图像。
  9. 一种mura检测装置,其中,所述检测装置包括:
    第一获取模块,用于获取原始图像信号;
    第二获取模块,用于从所述原始图像信号中获取目标测试图像;
    第三获取模块,用于获取所述目标测试图像中mura所在区域作为目标测试区域;
    处理模块,用于对所述目标测试区域进行处理以得到所述目标测试区域的灰阶分布;
    亮度梯度获取模块,用于根据所述灰阶分布得到所述目标测试区域的亮度梯度分布;
    计算模块,用于根据所述目标测试区域的所述亮度梯度分布计算SEUM值;
    位置获取模块,用于根据所述SEUM值获取所述mura区域对应位置。
  10. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有多条指令,所述指令适于由处理器加载以执行以下步骤:
    获取原始图像信号;
    从所述原始图像信号中获取目标测试图像;
    获取所述目标测试图像中mura所在区域作为目标测试区域;
    对所述目标测试区域进行处理以得到所述目标测试区域的灰阶 分布;
    根据所述灰阶分布得到所述目标测试区域的亮度梯度分布;
    根据所述目标测试区域的所述亮度梯度分布计算SEMU值;
    根据所述SEMU值获取所述mura区域对应位置。
  11. 根据权利要求10所述的计算机可读存储介质,其中,所述对所述目标测试区域进行处理以得到所述目标测试区域的灰阶分布包括:
    调整所述目标测试区域的位置;
    获取所述目标测试区域中每一像素的RGB灰阶值。
  12. 根据权利要求11所述的计算机可读存储介质,其中,所述根据所述灰阶分布得到所述目标测试区域的亮度梯度分布包括:
    将所述目标测试区域中的每一所述像素的RGB灰阶值进行色度转换,以获得其在颜色系统的三刺激值XYZ;
    根据所述三刺激值得到所述目标测试区域的亮度梯度分布。
  13. 根据权利要求12所述的计算机可读存储介质,其中,所述对每一所述像素的RGB灰阶值进行色度转换采用公式为:
    Figure PCTCN2020099631-appb-100004
    其中,A为转换矩阵
    Figure PCTCN2020099631-appb-100005
  14. 根据权利要求12所述的计算机可读存储介质,其中,所述SEMU值计算公式为:
    Figure PCTCN2020099631-appb-100006
    |C x|=|C 1-C 2|/C 2
    其中,C1为所述mura区域的平均灰阶值,C2为所述mura区域之外的平均灰阶值,Sx为所述mura区域的面积,所述SEMU为所述mura区域的mura等级。
  15. 根据权利要求12所述的计算机可读存储介质,其中,所述根据所述SEMU值获取所述mura区域对应位置包括:
    获取所述SEMU值与所述mura区域的位置关系曲线;
    根据所述位置关系曲线的峰值判定所述mura区域对应宽度。
  16. 根据权利要求15所述的计算机可读存储介质,其中,所述根据所述位置关系曲线的峰值判定所述mura区域对应宽度包括:
    设定所述位置关系曲线的预设临界值;
    根据所述临界值获取所述mura区域对应宽度。
  17. 根据权利要求10所述的计算机可读存储介质,其中,所述所述从所述原始图像信号中获取目标测试图像包括:
    从所述原始图像信号中获取多张预设拍摄角度的图像;
    从所述多张预设拍摄角度的图像中选择符合测试条件的作为所述目标测试图像。
PCT/CN2020/099631 2020-05-29 2020-07-01 Mura检测方法、装置及可读存储介质 WO2021237872A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/962,426 US11741587B2 (en) 2020-05-29 2020-07-01 Mura detecting method, device and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010475158.X 2020-05-29
CN202010475158.XA CN111652865B (zh) 2020-05-29 2020-05-29 Mura检测方法、装置及可读存储介质

Publications (1)

Publication Number Publication Date
WO2021237872A1 true WO2021237872A1 (zh) 2021-12-02

Family

ID=72344563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099631 WO2021237872A1 (zh) 2020-05-29 2020-07-01 Mura检测方法、装置及可读存储介质

Country Status (3)

Country Link
US (1) US11741587B2 (zh)
CN (1) CN111652865B (zh)
WO (1) WO2021237872A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114299070A (zh) * 2022-03-09 2022-04-08 深圳精智达技术股份有限公司 一种显示屏mura缺陷的检测方法及相关装置
CN114612320A (zh) * 2022-03-04 2022-06-10 业成科技(成都)有限公司 图像亮度优化方法、装置、计算机设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917935A (en) * 1995-06-13 1999-06-29 Photon Dynamics, Inc. Mura detection apparatus and method
CN103869511A (zh) * 2012-12-13 2014-06-18 乐金显示有限公司 显示装置的mura检测设备和方法
CN104137171A (zh) * 2012-03-01 2014-11-05 日本麦可罗尼克斯股份有限公司 显示设备的显示不均匀检测方法及其装置
CN104160439A (zh) * 2012-03-01 2014-11-19 日本麦可罗尼克斯股份有限公司 显示设备的显示不均匀检测方法以及其装置
CN109285143A (zh) * 2018-08-08 2019-01-29 深圳市华星光电技术有限公司 Mura侦测方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8049695B2 (en) * 2007-10-15 2011-11-01 Sharp Laboratories Of America, Inc. Correction of visible mura distortions in displays by use of flexible system for memory resources and mura characteristics
CN101918818A (zh) * 2007-11-12 2010-12-15 麦克罗尼克激光系统公司 检测图案误差的方法和装置
US8610654B2 (en) * 2008-07-18 2013-12-17 Sharp Laboratories Of America, Inc. Correction of visible mura distortions in displays using filtered mura reduction and backlight control
EP2493689A2 (en) * 2009-10-27 2012-09-05 3M Innovative Properties Company Optical film with anti-warp surface
KR101830679B1 (ko) * 2010-07-29 2018-02-22 삼성디스플레이 주식회사 표시 패널 검사 장치 및 그 방법
EP3264402A4 (en) * 2015-03-20 2018-01-17 Huawei Technologies Co., Ltd. Method for correcting screen asymmetry and device and system thereof
CN107045863B (zh) * 2017-06-26 2018-02-16 惠科股份有限公司 一种显示面板的灰阶调整方法及装置
US10681344B2 (en) * 2017-12-15 2020-06-09 Samsung Display Co., Ltd. System and method for mura detection on a display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917935A (en) * 1995-06-13 1999-06-29 Photon Dynamics, Inc. Mura detection apparatus and method
CN104137171A (zh) * 2012-03-01 2014-11-05 日本麦可罗尼克斯股份有限公司 显示设备的显示不均匀检测方法及其装置
CN104160439A (zh) * 2012-03-01 2014-11-19 日本麦可罗尼克斯股份有限公司 显示设备的显示不均匀检测方法以及其装置
CN103869511A (zh) * 2012-12-13 2014-06-18 乐金显示有限公司 显示装置的mura检测设备和方法
CN109285143A (zh) * 2018-08-08 2019-01-29 深圳市华星光电技术有限公司 Mura侦测方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114612320A (zh) * 2022-03-04 2022-06-10 业成科技(成都)有限公司 图像亮度优化方法、装置、计算机设备和存储介质
CN114612320B (zh) * 2022-03-04 2023-09-29 业成科技(成都)有限公司 图像亮度优化方法、装置、计算机设备和存储介质
CN114299070A (zh) * 2022-03-09 2022-04-08 深圳精智达技术股份有限公司 一种显示屏mura缺陷的检测方法及相关装置
CN114299070B (zh) * 2022-03-09 2022-05-31 深圳精智达技术股份有限公司 一种显示屏mura缺陷的检测方法及相关装置

Also Published As

Publication number Publication date
US20230091782A1 (en) 2023-03-23
CN111652865B (zh) 2022-04-08
CN111652865A (zh) 2020-09-11
US11741587B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
US10798373B2 (en) Display correction apparatus, program, and display correction system
CN109036271B (zh) 曲面屏弯折区色偏修正的方法、装置、存储介质及终端
WO2020224387A1 (zh) 驱动方法、驱动装置、显示设备和计算机可读介质
CN108665866B (zh) 获取背光源扩散传输参数的方法及显示控制方法和装置
WO2019100443A1 (zh) 一种mura补偿方法及装置
WO2021237872A1 (zh) Mura检测方法、装置及可读存储介质
WO2018188122A1 (zh) 一种显示器的驱动方法和驱动装置、显示器
WO2022089082A1 (zh) 显示图像调整方法、终端设备及计算机可读存储介质
TWI525604B (zh) 影像分析和影像顯示的裝置和方法
TWI573126B (zh) 可依據不同環境執行最佳化調整的影像調整方法及其顯示器
US10048061B2 (en) Measuring method and measuring system thereof
WO2020107662A1 (zh) 多曝光图像融合方法
CN109448653B (zh) 显示装置补偿计算的方法、补偿结构及显示装置
US11647174B2 (en) Method for testing crosstalk of screen
CN113724652A (zh) OLED显示面板Mura的补偿方法、装置及可读介质
US20050134302A1 (en) Dynamic gamma for a liquid crystal display
CN111445879A (zh) 动态局部调光显示控制方法及装置、显示装置
Trentacoste et al. Photometric image processing for high dynamic range displays
CN112954304B (zh) 一种显示面板Mura缺陷评估方法
CN109119046B (zh) 灰阶亮度的调节系统及调节方法、存储器
CN108803097A (zh) 像素暗态漏光的检测方法及检测装置
US11217188B2 (en) Method for displaying image on dual-screen display panel and related apparatus
CN111383604B (zh) 一种改进区域调光算法的方法、系统及存储介质
TWI819672B (zh) 用於判定環境光亮度的方法、主機及電腦可讀儲存媒體
WO2022006754A1 (zh) 显示控制装置及其确定像素点亮度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938001

Country of ref document: EP

Kind code of ref document: A1