WO2021237742A1 - 具有非接触式生理体征监测功能的监护设备 - Google Patents

具有非接触式生理体征监测功能的监护设备 Download PDF

Info

Publication number
WO2021237742A1
WO2021237742A1 PCT/CN2020/093526 CN2020093526W WO2021237742A1 WO 2021237742 A1 WO2021237742 A1 WO 2021237742A1 CN 2020093526 W CN2020093526 W CN 2020093526W WO 2021237742 A1 WO2021237742 A1 WO 2021237742A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring device
physiological parameter
type
antenna
signal
Prior art date
Application number
PCT/CN2020/093526
Other languages
English (en)
French (fr)
Inventor
刘启翎
谢军华
岑建
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/093526 priority Critical patent/WO2021237742A1/zh
Priority to CN202080100656.4A priority patent/CN115515481A/zh
Priority to EP20938410.6A priority patent/EP4159115A4/en
Publication of WO2021237742A1 publication Critical patent/WO2021237742A1/zh
Priority to US18/070,394 priority patent/US20230097852A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers

Definitions

  • This application relates to a monitoring device, in particular to a monitoring device that can monitor physiological signs in a non-contact manner.
  • Vital signs parameters are indicators and basis for judging a person's physical health. Therefore, hospitals can judge the severity and criticality of the disease based on the patient's vital signs.
  • the vital signs mainly include body temperature, blood pressure, heart rate, respiration rate, electrocardiogram and so on. In the process of hospital diagnosis and treatment, medical staff need to keep abreast of the patient's vital signs changes in order to take effective diagnosis and treatment measures in time.
  • the most common method of clinical vital sign detection is to connect to the patient through electrodes or sensors to collect relevant signals.
  • This contact detection method is easy to impose certain stimulation on the human body, which may be inconvenient for some departments, such as in the burn department.
  • Contact detection methods need to connect accessories and sensors, which affects the rescue efficiency to a certain extent; for emotionally unstable patients, there may be patients
  • the problem of non-coordination is also difficult in contact detection operations.
  • the electrodes, electrode sheets and related sensors used in contact measurement are all consumable products, the use cost is relatively high. If the reusable accessories are not thoroughly disinfected, there may be patient cross-infection.
  • the present application provides a monitoring device with a non-contact physiological sign monitoring function, which can obtain the physiological sign parameters of a patient in a non-contact manner.
  • An embodiment of the application provides a monitoring device with a non-contact physiological sign monitoring function.
  • the monitoring device includes a radio frequency transmitting component, a radio frequency receiving component, a first signal processing circuit, and a processor.
  • the radio frequency emission component is used to generate electromagnetic waves of specific frequencies and emit them toward specific parts of the human body.
  • the radio frequency receiving component is used to receive the reflected beam reflected from a specific part of the human body.
  • the first signal processing circuit is used to convert the reflected beam into a first type of physiological parameter signal.
  • the processor is configured to analyze the first type of physiological parameter signal to obtain the first type of physiological parameter value, and control to output the first type of physiological parameter value.
  • An embodiment of the application discloses a triage table monitoring system, which includes a triage table with at least one triage position and at least one non-contact physiological sign monitoring device.
  • the triage position of the triage table is used for the patient to perform preliminary inspection before triage.
  • Each non-contact physiological sign monitoring device includes a radio frequency transmitting component, a radio frequency receiving component, a pseudo signal processing circuit and a processor.
  • the radio frequency transmitting component is used for generating electromagnetic waves of a specific frequency and transmitting toward the direction of the corresponding triage position.
  • the radio frequency receiving component is used to receive the reflected beam reflected from a specific part of the patient's body in the triage position.
  • the signal processing circuit is used to convert the reflected beam into a physiological parameter signal.
  • the processor is configured to analyze the physiological parameter signal to obtain a physiological parameter value, and control the output of the physiological parameter value.
  • the embodiment of the present application also discloses a non-contact physiological sign monitoring device.
  • the non-contact physiological sign monitoring device includes a support base and a non-contact physiological sign monitoring device.
  • the supporting seat is used for bearing on any bearing surface.
  • the non-contact physiological sign monitoring device is used to be fixed on the support base, and the non-contact physiological sign monitoring device includes a radio frequency transmitting component, a radio frequency receiving component, a pseudo signal processing circuit and a processor.
  • the radio frequency transmitting component is used for generating electromagnetic waves of a specific frequency and transmitting toward the direction of the corresponding triage position.
  • the radio frequency receiving component is used to receive the reflected beam reflected from a specific part of the patient's body in the triage position.
  • the signal processing circuit is used to convert the reflected beam into a physiological parameter signal.
  • the processor is configured to analyze the physiological parameter signal to obtain a physiological parameter value, and control the output of the physiological parameter value.
  • the support base includes a movable bearing member arranged on the base and movable relative to the base, and the at least one non-contact physiological sign monitoring device is respectively fixedly arranged on the movable bearing member of the at least one support seat .
  • the embodiment of the application also discloses a triage table monitoring system, which includes:
  • a triage table with at least one triage position is used for the patient to be in place for preliminary examination before triage;
  • a non-contact physiological sign monitoring device includes:
  • each set of radio frequency signal transceiving components is correspondingly associated with a triage position of the triage station, and is used to transmit electromagnetic waves of a specific frequency toward patients in the triage position, and to receive the triage position Reflected beams reflected from a specific part of the patient’s body;
  • the signal processing circuit is used to convert the reflected beams received by each group of radio frequency signal transceiver components into corresponding physiological parameter signals;
  • the processor is used to analyze each physiological parameter signal to obtain a set of physiological parameter values, and is used to determine the patient identity corresponding to each set of physiological parameter values according to the preset association relationship between the radio frequency signal transceiver component and the triage position in the triage station Information, and bind each group of physiological parameter values and corresponding patient identity information to output.
  • the monitoring device in the present application transmits electromagnetic waves through the radio frequency transmitting component, and receives the reflected beam reflected from a specific part of the patient's body through the radio frequency receiving component, the physiological parameter signal of the patient can be obtained according to the reflected beam, and then obtained Corresponding physiological parameter values, so that the patient's physiological parameter values can be obtained in a non-contact manner, which improves the convenience and safety of operation.
  • a non-contact physiological sign monitoring device is provided on the triage position of the triage table.
  • the non-contact physiological sign monitoring device generates electromagnetic waves of a specific frequency and transmits toward the direction of the corresponding triage position, and receives After the reflected beam is reflected from a specific part of the body of the patient in the triage position, the reflected beam is then converted into a physiological parameter signal, and then the physiological parameter signal is analyzed to obtain the physiological parameter value, and the physiological parameter value is controlled to be output.
  • the physiological parameter values of patients at the triage position are automatically obtained in a non-contact manner. Without the need for medical personnel to perform contact operations, multiple patients can be measured at multiple triage positions at the same time, which improves the triage efficiency .
  • Fig. 1 is a structural block diagram of a monitoring device with a non-contact physiological sign monitoring function in an embodiment of the application.
  • Figure 2 is a schematic front view of a monitoring device in an embodiment of the application.
  • FIG. 3 is a schematic diagram of a specific structure of a radio frequency transmitting component and a radio frequency receiving component in an embodiment of the application.
  • FIG. 5 is a schematic diagram of the structure of the antenna support in an embodiment of the application.
  • FIG. 6 is a schematic diagram of a specific circuit layout structure of a monitoring device in an embodiment of the application.
  • Fig. 7 is a schematic diagram of a triage station monitoring system in an embodiment of the application.
  • Fig. 8 is a structural block diagram of a non-contact physiological sign monitoring device in an embodiment of the application.
  • FIG. 9 is a schematic diagram of a specific structure of a radio frequency transmitting component and a radio frequency receiving component in another embodiment of the application.
  • FIG. 10 is a schematic diagram of a support seat in an embodiment of the application.
  • FIG. 11 is a further specific structural schematic diagram of the support base in an embodiment of the application.
  • FIG. 12 is a schematic diagram illustrating the internal structure of the support base in an embodiment of the application.
  • Fig. 13 is a structural block diagram of a non-contact physiological sign monitoring device in an embodiment of the application.
  • FIG. 1 is a structural block diagram of a monitoring device 1 (hereinafter referred to as the monitoring device 1) with a non-contact physiological sign monitoring function.
  • the monitoring device 1 includes a radio frequency transmitting component 11, a radio frequency receiving component 12, a first signal processing circuit 13 and a processor 14.
  • the radio frequency transmitting component 11 is used to generate electromagnetic waves of specific frequencies and emit them toward specific parts of the human body.
  • the radio frequency receiving component 12 is used to receive the reflected beam reflected from a specific part of the human body.
  • the first signal processing circuit 13 is used to convert the reflected beam into a first type of physiological parameter signal.
  • the processor 14 is connected to the first signal processing circuit 13 for analyzing the first type of physiological parameter signal to obtain the first type of physiological parameter value, and controlling the output of the first type of physiological parameter value.
  • the monitoring device 1 transmits electromagnetic waves through the radio frequency transmitting component 11, and receives the reflected beam from a specific part of the patient's body through the radio frequency receiving component 12, and can obtain the physiological parameter signal of the patient according to the reflected beam , And then obtain the corresponding physiological parameter value, so that the patient's physiological parameter value can be obtained in a non-contact manner, which improves the convenience and safety of operation.
  • the monitoring device 1 further includes at least one parameter measurement sensor 15 and a second signal processing circuit 16.
  • the at least one parameter measurement sensor 15 includes a detection terminal and a connection terminal.
  • the at least one parameter measurement sensor 15 The measurement signal is obtained by contacting the detection terminal with the human body.
  • the second signal processing circuit 16 is connected to the connection end of the at least one parameter measurement sensor 15, and is used to receive the measurement signal obtained by the at least one parameter measurement sensor 15 and convert the measurement signal into a second type of physiological Parameter signal.
  • the processor 14 is also connected to the second signal processing circuit 16 for analyzing the second type of physiological parameter signal to obtain the second type of physiological parameter value, and controlling the output of the second type of physiological parameter value.
  • At least one parameter measurement sensor 15 is also used to contact the human body, and the second physiological parameter value is obtained through contact measurement.
  • the monitoring device 1 obtains the physiological parameter value by combining two measurement methods of non-contact and contact, which can greatly improve the types of physiological parameter values that can be obtained.
  • the first type of physiological parameter value includes at least one of respiratory rate and heart rate
  • the second type of physiological parameter includes at least one of body temperature, blood oxygen (SPO2), and blood pressure value.
  • the reflected beam reflected from a specific part of the patient's body received by the radio frequency receiving component 32 reflects the ups and downs of the patient's chest, and the ups and downs of the patient's chest further reflect the patient's heartbeat information and/or breathing information, that is, , Heart rate and/or breathing rate.
  • the first signal processing circuit 13 is used to convert the reflected beam into a first type of physiological parameter signal
  • the processor 34 is used to analyze the first type of physiological parameter signal to obtain heart rate and/or respiration, that is, to obtain respiration At least one of heart rate and heart rate.
  • the at least one parameter measurement sensor 15 includes at least one of a temperature sensor, a blood oxygen sensor, and a blood pressure sensor.
  • the at least one parameter measurement sensor 15 may include a temperature sensor, a blood oxygen sensor, and a blood pressure sensor at the same time, while simultaneously collecting measurement signals related to body temperature parameters, blood oxygen parameters, and blood pressure parameters.
  • the blood oxygen sensor may include a blood oxygen probe, and the blood oxygen probe may have a clamping structure, which is used to be clamped on the patient's finger to measure the measurement signal related to blood oxygen parameters through the light intensity signal, for example, blood oxygen
  • the concentration measurement signal, and the blood oxygen sensor is connected to the second signal processing circuit 16, and the measurement signal related to the monitored blood oxygen parameter is sent to the second signal processing circuit 16.
  • the blood pressure sensor can be set in a strap-type structure, which is tied to the arm of the patient through the strap-type structure, and the blood pressure sensor is connected to the second signal processing circuit 16, and the monitored blood pressure parameters are measured. The signal is sent to the second signal processing circuit 16.
  • the temperature sensor includes a temperature probe, and the temperature probe can be attached to the corresponding part of the patient's body in the form of an electrode sheet to realize the collection of temperature parameter signals, and the temperature sensor is connected to the second signal processing circuit 16, and The measurement signal related to the monitored temperature parameter is sent to the second signal processing circuit 16.
  • the second analog processing circuit 16 converts the above-mentioned body temperature parameters, blood oxygen parameters, and blood pressure parameters related measurement signals into corresponding second-type physiological parameter signals, and the processor 14 analyzes the second-type physiological parameter signals to obtain the first
  • the second type of physiological parameter value is controlled to output the second type of physiological parameter value.
  • the monitoring device 1 further includes a display screen 17, and the processor 14 is further configured to control to output and display the first type of physiological parameter value and the second type of physiological parameter value on the display screen 17.
  • the physiological parameter values of the first type and the physiological parameter values of the second type may be directly displayed on the display screen 17 of the monitoring device 1 for real-time display for observation.
  • the monitoring device 1 further includes a communication unit 18, and the processor 14 establishes a communication connection between the monitoring device and the target monitoring device 2 through the communication unit 18, and is used to compare the first type of physiological parameter values with The second type of physiological parameter values are sent to the target monitoring device 2 through the communication unit 18, and the first type of physiological parameter values and the second type of physiological parameter values are displayed through the output of the target monitoring device 2.
  • the target monitoring device 2 includes at least one of bedside monitoring equipment, department-level workstations, hospital-level data centers, and hospital-level emergency management centers.
  • the monitoring device 1 further includes an input unit 19, and the input unit 19 is used for a user, such as a medical staff, to set the display output or function of the monitoring device 1.
  • the processor 14 is also used to respond to the input operation of the input unit 19 for the display setting operation, and control to output and display the first type of physiological parameter value and the second type of physiological parameter value on the display screen 17, or only One of the first type of physiological parameter value and the second type of physiological parameter value is displayed.
  • the input unit 19 by operating the input unit 19, it is possible to control to display only the first type of physiological parameter value or the second type of physiological parameter value on the display screen 17, or to display all the first type physiological parameter values.
  • One type of physiological parameter value and the second type of physiological parameter value are examples of physiological parameter value and the second type of physiological parameter value.
  • the at least one parameter measurement sensor 15 may further include an electrocardiogram sensor and a respiration sensor.
  • the number of electrocardiogram sensors is multiple, which can be placed on corresponding parts of the patient's body in the form of electrode sheets to realize the collection of electrocardiographic parameter signals and obtain corresponding ECG (electrocardiogram) data.
  • the respiration sensor is used to collect measurement signals related to breathing parameters, such as measurement signals related to respiration rate.
  • the at least one parameter measurement sensor 15 directly in contact with the corresponding part of the human body may further include an electrocardiogram sensor and a respiration sensor, and the patient's heart rate and respiration rate are obtained through contact measurement.
  • the processor 14 can also be used to control the display 16 to simultaneously display the patient's heart rate and respiration rate obtained through non-contact measurement, and to obtain the patient's heart rate and respiration rate through contact measurement for medical staff. refer to.
  • the processor 14 is also used for correcting the patient's heart rate and respiration rate obtained by non-contact measurement in response to the correction operation through the input unit 19 to obtain a heart rate correction value and a respiration rate correction value.
  • the heart rate correction value may be the difference between the patient's heart rate obtained by non-contact measurement and the patient's heart rate obtained by contact measurement
  • the respiration rate correction value may be the difference between the patient's heart rate obtained by non-contact measurement
  • the accuracy of the heart rate and respiration rate obtained through the non-contact measurement method is improved to a certain extent, for example, after the heart rate and respiration rate obtained through the non-contact measurement method are basically the same , Then there is no need to use the ECG sensor and the breathing sensor to directly contact the human body in the follow-up, which improves the convenience and greatly improves the measurement accuracy.
  • the input unit 19 may be the operation panel shown in FIG. 2 and includes a number of mechanical buttons.
  • the input unit 19 may also be a touch panel, which is integrated with the display screen 17 to form a touch display screen.
  • the input unit 19 may also be a voice input unit such as a microphone for receiving input operations in the form of voice of the user.
  • FIG. 3 is a schematic diagram of the specific structure of the radio frequency transmitting component 11 and the radio frequency receiving component 12.
  • the radio frequency transmitting component 11 includes a transmitting antenna 111
  • the radio frequency receiving component 12 includes a receiving antenna 121.
  • the transmitting antenna 111 is used to transmit electromagnetic waves of a specific frequency toward the corresponding triage position.
  • the receiving antenna 121 is used to receive the reflected reflected beam.
  • the transmitting antenna 111 and the receiving antenna 121 constitute a single-transmit and single-receive antenna or a multiple-transmit and multiple-receive antenna. That is, the transmitting antenna 111 and the receiving antenna 121 may cooperate to form a single-transmit and single-receive transceiver antenna or a multiple-transmit and multiple-receive transceiver antenna.
  • the transmitting antenna 111 and the receiving antenna 121 are arranged on the housing K1 of the monitoring device 1, and the transmitting antenna 111 is used to emit electromagnetic waves of a specific frequency toward the outside of the housing K1 of the monitoring device 11.
  • the receiving antenna 121 is used to receive the reflected reflected beam.
  • the monitoring device 1 is a desktop monitoring device, for example, a bedside monitor, and the transmitting antenna 111 and the receiving antenna 121 are arranged on the non-display area A1 of the front panel B1 of the desktop monitoring device.
  • FIG. 4 is a schematic front view of the monitoring device 1 in another embodiment.
  • the monitoring device 1 is also a desktop monitoring device, and the monitoring device 1 further includes a movable antenna support 20 arranged on the top of the monitoring device 1, and the transmitting antenna 111 and the receiving antenna 121 are fixedly carried on the antenna support 20, the antenna bracket 20 is used to adjust the transmitting angle of the transmitting antenna 11 and the receiving angle of the receiving antenna 12.
  • the antenna bracket 20 can rotate 360 degrees relative to the monitoring device 1, and is used to control the transmitting antenna 111 and the receiving antenna 121 to face any direction, so as to adjust the transmitting angle of the transmitting antenna 111 and the receiving antenna 121. Receiving angle.
  • FIG. 5 is a schematic diagram of the structure of the antenna support 20.
  • the antenna support 20 may specifically include a supporting column 21 and a universal shaft 22.
  • the supporting column 21 is fixed on the top of the monitoring device 1, and the universal shaft 22 is movably arranged at an end of the supporting column 21 away from the top of the monitoring device 1 and can rotate in any direction.
  • the transmitting antenna 111 and the receiving antenna 121 are arranged on the cardan shaft 22, and can follow the cardan shaft 22 to rotate to achieve a 360-degree rotation.
  • the universal shaft 22 can be rotated in any direction in response to a user's manual operation.
  • the supporting column 21 can be fixed to the top of the monitoring device 1 by screw locking or the like.
  • the antenna support 20 can also be made of a memory metal rod that can be bent to any shape, and one end of the antenna support 20 is fixed on the top of the monitoring device 1, and the transmitting The antenna 111 and the receiving antenna 121 can be fixed to the other end of the antenna support 20, and the antenna support 20 can change the height and bend in any direction in response to a user's manual operation, so as to achieve the above mentioned.
  • the first signal processing circuit 13 and the processor 14 may be located inside the housing of the monitoring device 1, the support column 21 may be a hollow structure, and the monitoring device 1 to which the support column 21 is fixed A through hole is opened at the top position of the support column 21, and the inside of the support column 21 is in communication with the through hole.
  • the transmitting antenna 111 and the receiving antenna 121 may be electrically connected to an electrical connector penetrating through the support column 21, and the electrical connector extends to the inside of the housing of the monitoring device 1 through the through hole , Is electrically connected to the first signal processing circuit 13 located inside the housing of the monitoring device 1, so as to establish an electrical connection between the transmitting antenna 111 and the receiving antenna 121 and the first signal processing circuit 13.
  • the electrical connector can be a wire, a flexible circuit board, or the like.
  • the monitoring device 1 is a handheld monitoring device.
  • the handheld monitoring device includes a handheld terminal and a signal transceiver terminal far away from the handheld terminal.
  • the transmitting antenna 111 and the receiving antenna 121 are provided in the handheld monitoring device.
  • the handheld terminal is an end for medical staff to hold, and the signal transceiver terminal may be the end facing the patient to be tested when in use.
  • the radio frequency transmitting component 11 further includes a synthesizer 112, which is coupled to the transmitting antenna 111, and is used to generate electromagnetic waves of a specific frequency and emit the electromagnetic waves through the transmitting antenna 111.
  • the receiving antenna 121 is used to receive the reflected beam
  • the radio frequency receiving component 12 further includes a mixer 122, which is coupled between the receiving antenna 121 and the first signal processing circuit 13, and It is used for mixing the reflected beam received by the receiving antenna 121 and then sending it to the first signal processing circuit 13, and the first signal processing circuit 13 is specifically used for mixing the reflected beam after the mixing processing.
  • the beam is converted into a physiological parameter signal.
  • the number of the transmitting antenna 111 may be at least one, the number of the receiving antenna 121 is also at least one, and the number of the transmitting antenna 111 and the receiving antenna 121 are equal or not equal.
  • the transmitting antenna 111 and the receiving antenna 121 can form a single-transmit and single-receiving antenna, and when there are multiple transmitting antennas 111 and the receiving antenna 121 ,
  • the transmitting antenna 111 and the receiving antenna 121 may constitute a multiple-transmit and multiple-receive antenna.
  • the radio frequency receiving component 12 further includes a low-pass filter 123, which is coupled between the mixer 122 and the first signal processing circuit 13, for The processed reflected beam is filtered, and the first signal processing circuit 13 is specifically configured to convert the mixed and filtered reflected beam into a physiological parameter signal.
  • the radio frequency receiving component 12 includes a mixer 122 and a low-pass filter 123 at the same time, and the mixer 122 and the low-pass filter 123 are sequentially coupled to the receiving antenna 121 and the corresponding Between the first signal processing circuit 13 of the modulus, the mixer 122 is configured to mix the reflected beam received by the receiving antenna 121 and send it to the low-pass filter 123, the low-pass filter 123 123 is coupled between the mixer 122 and the corresponding modulus first signal processing circuit 13, and is used to filter the reflected beam after mixing processing.
  • the first signal processing circuit 13 is specifically used to The reflected beams that have undergone mixing processing and filtering are converted into physiological parameter signals.
  • the first signal processing circuit 13 includes an analog-to-digital converter 131, and the analog-to-digital converter 131 is coupled to the radio frequency receiving component 12 to obtain the reflected beam received by the radio frequency receiving component 12 , And convert the reflected beam received by the radio frequency receiving component 12 into the corresponding physiological parameter signal.
  • the second signal processing circuit 16 includes an analog-to-digital converter 161, which is coupled to at least one parameter measurement sensor 15, and is used to obtain a measurement signal collected by the at least one parameter measurement sensor 15, and The measurement signal is converted into a second type of physiological parameter signal.
  • the display screen 17 is an independent LCD display screen, a light-emitting diode (LED) display screen, an electronic paper display screen, and the like.
  • LED light-emitting diode
  • the communication unit 18 may include at least one of a wired interface, a WIFI module, a Bluetooth module, a WMTS communication module, and an NFC communication module.
  • the processor 14 includes a first-type physiological parameter signal processor 141, a second-type physiological parameter signal processor 142 and a main controller 143.
  • the first type of physiological parameter signal processor 141 is used to analyze the first type of physiological parameter signal to obtain the first type of physiological parameter value and transmit it to the main controller 143
  • the second type of physiological parameter signal processor 142 is used to Analyze the second type of physiological parameter signal to obtain the second type of physiological parameter value and transmit it to the main controller 143
  • the main controller 143 is used to control and output the first type of physiological parameter value and the second type of physiological parameter value .
  • the processor 14 specifically includes three processors/controllers, and each performs corresponding functions, which improves performance.
  • the monitoring device 1 further includes a circuit board 101 on which an isolation band 102 is provided.
  • the isolation band 102 isolates the circuit board 101 from an isolation area Q1 and a non-isolation area. Q2.
  • the second type of physiological parameter signal processor 142, at least one parameter measurement sensor 15 and the second signal processing circuit 16 are arranged in the isolation area Q1, and the first type of physiological parameter signal processor 141, the main controller 143.
  • the radio frequency transmitting component 11, the radio frequency receiving component 12, and the first signal processing circuit 13 are arranged in the non-isolated area Q2.
  • radio frequency transmitting component 11 and the radio frequency receiving component 12 are arranged in the non-isolated area Q2 means that the structure of the radio frequency transmitting component 11 and the radio frequency receiving component 12 except for the transmitting antenna 111 and the receiving antenna 121 is arranged at all.
  • the monitoring device 1 further includes a power supply circuit 103 arranged in the non-isolated area Q2 and an isolated power supply circuit 104 arranged on the isolation band 102, and the power supply circuit 103 is used to connect to the mains voltage.
  • the isolated power supply circuit 104 is used to step down the mains voltage into the second type physiological parameter signal processor 142, at least one parameter measurement sensor 15 and the second signal processing circuit 16 arranged on the isolation area Q1. The components inside are powered.
  • the power supply circuit 103 may include a mains power interface for connecting to a mains voltage.
  • the isolated power supply circuit 104 may include a first AC/DC (alternating current to direct current) converter, which is connected to the mains power supply interface, and is used to convert the mains voltage into a direct current voltage and step down to generate a suitable second
  • the second type of physiological parameter signal processor 142, at least one parameter measurement sensor 15, and the second signal processing circuit 16 are the power supply voltages of the components.
  • the monitoring device 1 further includes a non-isolated power supply circuit 105.
  • the non-isolated power supply circuit 105 is connected to the power supply circuit 103, and is used to step down the mains voltage to be set in the non-isolated power supply circuit.
  • the components on the isolation area Q2 including the first-type physiological parameter signal processor 141, the main controller 143, and the first signal processing circuit 13 are supplied with power.
  • the power supply circuit 103 may include a mains power interface for connecting to a mains voltage.
  • the non-isolated power supply circuit 105 may include a second AC/DC (alternating current to direct current) converter, which is connected to the mains power supply interface, and is used to convert the mains voltage into a direct current voltage and step down to generate a suitable
  • the second type of physiological parameter signal processor 142, at least one parameter measuring sensor 15, and the second signal processing circuit 16 are used to supply power to the components.
  • the isolation band 102 may be a shielding wall, and the height of the shielding wall may be higher than that of the first-type physiological parameter signal processor 141, the main controller 143, the radio frequency transmitting component 11, and the radio frequency receiving component 12. , The height of the first signal processing circuit 13, the second type of physiological parameter signal processor 142, at least one parameter measurement sensor 15, and the second signal processing circuit 16 on the circuit board 101, so as to achieve the isolation area Q1 and non-isolation Isolation of components in area Q2.
  • the shielding wall may be a metal shielding wall.
  • the isolation band 102 can also be formed when the circuit board 101 is not provided with any circuit elements and lines in this area. Wherein, the width of the isolation band 102 is greater than the predetermined distance, so as to achieve isolation of the components in the isolation region Q1 and the non-isolation region Q2.
  • the isolation band 102 is provided with an isolation communication interface 106, and the second-type physiological parameter signal processor 142 establishes a communication connection with the main controller 143 through the isolation communication interface 106, and connects The physiological parameter values of the second type are transmitted to the main controller 143.
  • the isolation communication interface 106 may be an opening in the shielding wall that penetrates the shielding wall, and the second-type physiological parameter signal processor 142 passes through a The electrical connector of the opening is electrically connected to the main controller 143, thereby establishing a communication connection.
  • the isolated communication interface 106 can also be a double-headed joint, and the two ends of the isolated communication interface 106 can be electrically connected to the second-type physiological parameter signal processor 142 and the main controller 143 through electrical connectors, respectively, so that A communication connection between the second-type physiological parameter signal processor 142 and the main controller 143 is established.
  • the electrical connector can be a wire or a flexible circuit board or the like.
  • the at least one parameter measurement sensor 15 may include a blood pressure sensor 151, a temperature sensor 152, and a blood oxygen sensor 153.
  • the monitoring device 1 may also include a blood pressure probe 1511, a temperature probe 1521, and a blood oxygen sensor.
  • the probe 1531 is used to respectively contact the human body for the blood pressure sensor 151, the temperature sensor 152, and the blood oxygen sensor 153 to collect blood pressure, temperature, and blood oxygen related test signals.
  • the blood pressure probe 1511, the temperature probe 1521, and the blood oxygen probe 1531 can extend from the monitoring device 1 through wires and contact a specific body part of the patient.
  • the monitoring device 1 may be a sphygmomanometer, and the transmitting antenna 111 and the receiving antenna 121 are arranged in a non-display area of the scale panel of the sphygmomanometer.
  • At least one parameter of the patient's heart rate and respiration rate can also be automatically obtained through a non-contact measurement method.
  • the monitoring device 1 of the present application can also be applied to a triage table.
  • FIG. 7 is a schematic diagram of a triage table monitoring system 100.
  • the triage table monitoring system 100 includes a triage table 200 with at least one triage position 201 and at least one non-contact physiological sign monitoring device 300.
  • the triage position 201 of the triage table 200 is used for the patient to perform preliminary examination before triage.
  • the at least one non-contact physiological sign monitoring device 300 is respectively arranged on a table surface corresponding to at least one triage 201 of the 200 triages.
  • the non-contact physiological sign monitoring device 300 can also be installed in other places, as long as the patient can be within the physiological sign collection range, such as on a ceiling, a wall, and the like.
  • each non-contact physiological sign monitoring device 300 may include a radio frequency transmitting component 31, a radio frequency receiving component 32, a signal processing circuit 33 and a processor 34.
  • the radio frequency transmitting component 31 is used for generating electromagnetic waves of a specific frequency and transmitting toward the corresponding triage position;
  • the radio frequency receiving component 32 is used for receiving reflected beams reflected from a specific part of the patient's body at the triage position 201;
  • the signal processing circuit 33 is used to convert the reflected beam into a physiological parameter signal;
  • the processor 34 is used to analyze the physiological parameter signal to obtain a physiological parameter value, and control to output the physiological parameter value.
  • a non-contact physiological sign monitoring device 300 is provided on the triage position 201 of the triage table 200, and the non-contact physiological sign monitoring device 300 generates electromagnetic waves of a specific frequency and faces the direction of the corresponding triage position. Transmit and receive the reflected beam reflected from a specific part of the patient’s body at the triage position 201, and then convert the reflected beam into a physiological parameter signal, and then analyze the physiological parameter signal to obtain the physiological parameter value, and control the output
  • the physiological parameter values can be automatically obtained in a non-contact manner for the physiological parameter values of the patient at the triage position 201. Without the need for medical personnel to perform contact operations, multiple patients can be simultaneously treated at multiple triage positions 201. Performing measurements improves the efficiency of triage.
  • the number of the at least one non-contact physiological sign monitoring device 300 may be equal to the number of the at least one triage 201 of the triage table 200, and the table surface of the triage table 200 corresponds to each A non-contact physiological sign monitoring device 300 is provided at the location of a triage 201. Obviously, in other embodiments, the number of the at least one non-contact physiological sign monitoring device 300 may also be less than the number of the at least one triage 201 of the triage table 200.
  • the triage position 201 is a position corresponding to the front of the triage table 200 when the patient performs triage, and the front position of the triage table 200 corresponding to the triage position 201 can be provided with a stool for the patient to sit for pre-triage inspection.
  • the front position of the triage position 21 corresponding to the triage position 201 does not need to be provided with a stool, and the patient can stand for pre-triage inspection.
  • the triage table monitoring system 100 further includes at least one display 400, the non-contact physiological sign monitoring device 300 is connected to the corresponding display 400, and the processor 34 is used to control the display on the corresponding display 400.
  • the output on 400 displays the physiological parameter value.
  • controlling the processor 34 to output and display the physiological parameter value on the corresponding display 400 may include: the processor 34 sends the physiological parameter value to the display 400, and displays the physiological parameter value through the display 400 Output.
  • the at least one display 400 is arranged on the table top of the triage table 200, and can be used by medical staff to directly watch the physiological parameter values of each patient.
  • the triage table monitoring system 100 further includes multiple displays 400, and each display 400 is connected to a corresponding non-contact physiological sign monitoring device 300, and receives the corresponding non-contact physiological sign.
  • the physiological parameter values generated by the device 300 are monitored and displayed and output.
  • each display 400 is set on the table top of the triage table 200 corresponding to the triage position 201 for medical personnel to view the physiological parameter value. Obviously, medical personnel only need to see whether the physiological parameter values output by the display 400 are normal, and do not need to perform contact detection operations, and only a few medical personnel, such as one medical personnel, can perform the pre-triage inspection.
  • the triage table monitoring system 100 may include only one display 400 arranged on the table top of the triage table 200, and all non-contact physiological sign monitoring devices 300 are connected to the display 400, so The display 400 is used to display and output all physiological parameter values generated by the non-contact physiological sign monitoring device 300.
  • the physiological parameter value sent by the processor 34 to the display 400 may specifically be display data corresponding to the physiological parameter value, and the display 400 receives the corresponding non-contact physiological sign monitoring device 300
  • the generated physiological parameter value may also be received display data corresponding to the physiological parameter value generated by the non-contact physiological sign monitoring device 300.
  • the display 400 may be an independent display screen, or may be an electronic device with a display screen such as a tablet computer or a notebook computer.
  • each non-contact physiological sign monitoring device 300 further includes a communication unit 35.
  • the processor 34 establishes a connection between the non-contact physiological sign monitoring device 300 and the target monitoring device 500 through the communication unit 35. Communication connection, and used to send the physiological parameter value to the target monitoring device 500, and output and display the physiological parameter value through the target monitoring device 500.
  • the target monitoring device 500 includes at least one of a department-level workstation device and a hospital-level data center/hospital-level emergency center management device.
  • the communication unit 35 includes a wired communication unit and/or a wireless communication unit, and the communication connection between the non-contact physiological sign monitoring device 300 and the target monitoring device 500 includes a wired communication connection and/or a wireless communication connection.
  • the signal processing circuit 33 includes an analog-to-digital converter 331, and the analog-to-digital converter 331 is coupled to the radio frequency receiving component 32 to obtain the reflected beam received by the radio frequency receiving component 32, and The reflected beam received by the radio frequency receiving component 32 is converted into a corresponding physiological parameter signal.
  • FIG. 9 is a schematic diagram of the specific structure of the radio frequency transmitting component 31 and the radio frequency receiving component 32.
  • the radio frequency transmitting component 31 includes a transmitting antenna 311
  • the radio frequency receiving component 32 includes a receiving antenna 321.
  • the transmitting antenna 311 is used to transmit electromagnetic waves of a specific frequency toward the corresponding triage position.
  • the receiving antenna 321 is used to receive the reflected reflected beam.
  • the transmitting antenna 311 and the receiving antenna 321 constitute a single-transmit and single-receive antenna or a multiple-transmit and multiple-receive antenna. That is, the transmitting antenna 311 and the receiving antenna 321 can cooperate to form a single-transmit and single-receive transceiver antenna or a multiple-transmit and multiple-receive transceiver antenna.
  • the radio frequency transmitting component 31 further includes a synthesizer 312, which is coupled to the transmitting antenna 311, and is used to generate electromagnetic waves of a specific frequency, which are emitted through the transmitting antenna 311.
  • the receiving antenna 321 is used for receiving reflected beams
  • the radio frequency receiving component 32 further includes a mixer 322, which is coupled between the receiving antenna 321 and the signal processing circuit 33 for The reflected beam received by the receiving antenna 321 is mixed and sent to the signal processing circuit 33.
  • the signal processing circuit 33 is specifically configured to convert the mixed reflected beam into a physiological parameter signal .
  • the mixer 322 mixes the reflected beam received by the receiving antenna 321 and sends it to the analog-to-digital converter 331 in the signal processing circuit 33, and then the analog-to-digital converter 331 converts the The reflected beam after mixing is converted into a physiological parameter signal.
  • the number of the transmitting antenna 311 may be at least one, the number of the receiving antenna 321 is also at least one, and the number of the transmitting antenna 311 and the receiving antenna 321 are equal or not equal.
  • the transmitting antenna 311 and the receiving antenna 321 may constitute a single-transmit and single-receiving antenna, and when there are multiple transmitting antennas 311 and the receiving antenna 321
  • the transmitting antenna 311 and the receiving antenna 321 may constitute a multiple-transmit and multiple-receive antenna.
  • the radio frequency receiving component 32 further includes a low-pass filter 323, which is coupled between the mixer 322 and the signal processing circuit 33, and is configured to perform the mixing process
  • the reflected beam is filtered
  • the signal processing circuit 33 is specifically configured to convert the mixed and filtered reflected beam into a physiological parameter signal.
  • the radio frequency receiving component 32 includes a mixer 322 and a low-pass filter 323 at the same time, and the mixer 322 and the low-pass filter 323 are sequentially coupled to the receiving antenna 321 and the corresponding
  • the mixer 322 is configured to mix the reflected beam received by the receiving antenna 321 and send it to the low-pass filter 323, and the low-pass filter 323 is coupled It is connected between the mixer 322 and the corresponding analog signal processing circuit 33, and is used to filter the reflected beam after the mixing process.
  • the signal processing circuit 33 is specifically used to perform the mixing process.
  • the filtered reflected beam is converted into a physiological parameter signal.
  • the analog-to-digital converter 331 in the signal processing circuit 33 converts the mixed and filtered reflected beam into a physiological parameter signal.
  • the triage table monitoring system 100 further includes at least one support base 600, each support base 600 includes a base 31 and a movable carrier 62 arranged on the base 61 and movable relative to the base 61, the at least A non-contact physiological sign monitoring device 300 is fixedly arranged on the movable supporting member 62 of the at least one supporting base 600, respectively.
  • the support base 600 is used for bearing on any bearing surface. Specifically, the support base 600 can be fixed on the table surface of the triage table 200 through the base 31.
  • the number of the support bases 600 is equal to the number of the non-contact physiological sign monitoring devices 300, and each non-contact physiological sign monitoring device 300 can be set on the triage table 200 through a corresponding support base 600.
  • the base 31 can be fixed to the surface of the triage table 200 by screw locking, bonding, or the like.
  • the base 31 may be a suction cup-shaped structure made of soft plastic or other materials, and is adsorbed on the surface of the triage table 200 by squeezing out air, so that the When the base 600 is supported, it can be easily moved.
  • the movable bearing member 32 of each support seat 600 can move up and down and/or rotate in any direction relative to the corresponding base 31, thereby driving the corresponding non-contact physiological sign monitoring device 300 to move up and down or rotate to adjust The transmitting direction of the radio frequency transmitting component 31 and the receiving direction of the radio frequency receiving component 32 on the non-contact physiological sign monitoring device 300.
  • the non-contact physiological sign monitoring device 30 is fixed on the movable carrier 62 of the support base 600, and the movable carrier 62 can move up and down relative to the base 61 and/or move in any direction Rotation, so that the non-contact physiological sign monitoring device 300 can move up and down correspondingly or rotate, and the transmitting direction of the radio frequency transmitting component 31 and the receiving direction of the radio frequency receiving component 32 can be adjusted.
  • the specific part of the patient located at the triage position 201 of the triage table 200 such as the position of the patient's chest.
  • the reflected beam reflected from a specific part of the patient's body at the triage position 201 received by the radio frequency receiving component 32 reflects the undulating law of the patient's chest, and the undulating law of the patient's chest further reflects the patient's heartbeat information and/ Or breathing information, that is, heart rate and/or breathing rate.
  • the processor 34 is configured to analyze the physiological parameter signal to obtain physiological parameter values of heart rate and/or respiration rate.
  • the movable supporting member 62 includes a telescopic rod 621 that can be extended and contracted toward or away from the base 61, and a universal shaft 622 provided at an end of the telescopic rod 621 that is away from the base 61 .
  • the non-contact physiological sign monitoring device 300 is fixedly arranged on the cardan shaft 622.
  • the universal shaft 622 is movably connected to the end of the telescopic rod 621 away from the base 61, and can rotate relative to the telescopic rod 621 in any direction.
  • the movable carrier 62 specifically includes a telescopic rod 621 and a universal shaft 622, and the non-contact physiological sign monitoring device 30 is fixed on the universal shaft 622 and can pass through
  • the universal shaft 622 rotates in any direction to adjust the transmitting direction of the radio frequency transmitting assembly 31 and the receiving direction of the radio frequency receiving assembly 32, and the height on the triage table 200 is adjusted by the retractable rod 621.
  • the non-contact physiological signs can be adjusted through the retractable rod 621 respectively.
  • the height of the monitoring device 30 on the triage table 200 and the rotation of the cardan shaft 622 adjust the transmitting direction of the radio frequency transmitting component 31 and the receiving direction of the radio frequency receiving component 32, so that the radio frequency transmitting component 31 of the non-contact physiological sign monitoring device 30
  • the direction of emission is towards the specific body part of the patient.
  • each non-contact physiological sign monitoring device 300 also includes a camera module 36 whose orientation is the same as the emitting direction of the radio frequency transmitting component 31, and the camera module 36 is used to obtain For the image of the patient in the current triage position, the processor 34 is also used to compare the image of the patient in the current triage position acquired by the camera module 36 with a preset image, and analyze whether the transmitting direction of the radio frequency transmitting component is correct.
  • the difference between the image of the patient at the current triage position acquired by the camera module 36 and the preset image is The movable carrier 62 is differentially controlled to move, so that the emitting direction of the radio frequency transmitting component 31 is directly on a specific part of the patient's body.
  • the processor 34 determines that the transmitting direction of the radio frequency transmitting component is facing a specific part of the patient's body, it can control the radio frequency transmitting component 31 to emit electromagnetic waves of a specific frequency.
  • the camera module 36 is a visible light camera module.
  • the camera module 36 may be an infrared camera module, and may be located inside the non-contact physiological sign monitoring device 300.
  • the camera module 36 may include an optical lens and an image sensor.
  • the optical lens is used to receive light and transmit it to the image sensor.
  • the image sensor is connected to the processor 34 and is used to convert the received light signal into electricity. The signal is transmitted to the processor 34 for imaging processing.
  • FIG. 12 is a schematic diagram illustrating the internal structure of the support base 600 in an embodiment.
  • the support base 600 further includes a drive motor 63, which is used to drive the telescopic rod 621 to move up and down and to drive the cardan shaft 622 to rotate.
  • the non-contact physiological sign monitoring device The processor 34 of 30 may be electrically connected to the drive motor 63 in the support base 600 where it is located, and is used to control the drive motor 63 to drive the telescopic rod 621 to move up and down and/or to drive the cardan shaft 622 to rotate.
  • the radiation direction of the radio frequency transmitting component 31 is made to face a specific part of the patient's body.
  • the telescopic rod 621 may be a sleeve structure, including a first sleeve 6211 and a second sleeve 6212 that are relatively slidable.
  • the first sleeve 6211 and The second sleeve 6212 has the same shape but different sizes.
  • the second sleeve 6212 is fixedly connected to the base 61, the inner diameter of the first sleeve 6211 is larger than the outer diameter of the second sleeve 6212, and the first sleeve 6211 is sleeved Is connected to the second sleeve 6212, and a sliding structure (not shown in the figure) is provided between the inner wall of the first sleeve 6211 and the outer wall of the second sleeve 6212, the first sleeve 6211
  • the second sleeve 6212 can move along the telescopic direction of the telescopic rod 621 through the sliding structure.
  • the sliding structure may include a sliding rail and a protrusion
  • the sliding rail is arranged on the inner wall of the first sleeve and extends along the telescopic direction of the telescopic rod 621
  • the protrusion is arranged on the
  • the outer wall of the second sleeve 6121 is accommodated in the slide rail and can slide along the slide rail.
  • the first sleeve 6211 and the second sleeve 6212 can move along the telescopic direction of the telescopic rod 621 through the sliding structure.
  • the driving motor 63 can be fixedly arranged on the inner wall of the second sleeve 6212, and the driving motor 63 is connected to the inner wall of the first sleeve 6121 through the first driving conductor 631, and the driving motor 63 can be
  • the first sleeve 6121 is driven to move toward or away from the base 61 through the first driving conductive member 631, so that the telescopic rod 621 can be expanded and contracted.
  • one end of the first driving conductive member 631 can be meshed with the driving motor 63 through gears, and the other end can be fixed to the inner wall of the first sleeve 6121, and the driving motor 63 can be changed by changing the rotation direction of the motor.
  • the first driving conductive member 631 is moved toward or away from the base 61, thereby driving the first sleeve 6121 to move toward or away from the base 61.
  • the driving motor 63 can also be connected to the cardan shaft 622 through a second driving conduction member 632, and the universal joint shaft 622 is driven to rotate through the second driving conduction member 632.
  • the second driving conductive member 632 may be a multi-directional transmission member.
  • first sleeve 6121 and the second sleeve 6212 may be round sleeves, square sleeves, or the like.
  • the processor 34 may be electrically connected to the driving motor 63 through a flexible circuit board, a conductive wire, etc., which pass through the first sleeve 6121 and the second sleeve 6212.
  • the telescopic rod 621 is used to expand and contract toward or away from the base 61 in response to a user's manual operation, and the cardan shaft 622 is used to rotate in any direction in response to a user's manual operation.
  • the telescopic rod 621 may be in the shape of a multi-section sleeve similar to a television antenna, and may be contracted or stretched under the operation of the user.
  • the movable supporting member 62 may also be made of a material such as a memory metal rod that can be bent to any shape, and one end of the movable supporting member 62 is fixed on the base 61.
  • the non-contact physiological sign monitoring device 300 can be fixed to the other end of the movable carrier 62, which can change the height and bend in any direction in response to a user's manual operation.
  • the physiological parameter value includes at least one of respiratory rate and heart rate.
  • the electromagnetic wave of the specific frequency is a millimeter wave.
  • the processor 34 may be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (ASICs). ), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • each non-contact physiological sign monitoring device 300 in the present application may be the same, and for details, please refer to the foregoing description.
  • the structure and function of each support 600 are also the same, and the details can be referred to the foregoing description.
  • a triage table with at least one triage position is used for the patient to be in place for preliminary examination before triage;
  • a non-contact physiological sign monitoring device includes:
  • the signal processing circuit is used to convert the reflected beams received by each group of radio frequency signal transceiver components into corresponding physiological parameter signals;
  • the processor is used to analyze each physiological parameter signal to obtain a set of physiological parameter values, and is used to determine the patient identity corresponding to each set of physiological parameter values according to the preset association relationship between the radio frequency signal transceiver component and the triage position in the triage station Information, and bind each group of physiological parameter values and corresponding patient identity information to output.
  • one non-contact physiological sign monitoring device corresponds to one triage position and one non-contact physiological sign monitoring device corresponds to multiple triage positions.
  • the structure of the non-contact physiological sign monitoring device is similar. For its structure, please refer to the above content, which will not be repeated here.
  • the emission direction of the radio frequency transmitting component 31 of the non-contact physiological sign monitoring device 300 can be adjusted to the direction facing the specific body part of the patient. Thereby improving the accuracy and convenience of measurement.
  • the monitoring device 1 described earlier in this application can correspond to the non-contact physiological sign monitoring device 300, or can correspond to the non-contact physiological sign monitoring device 300 and the support base 600. Monitoring equipment 700.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Cardiology (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pulmonology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

本申请公开一种具有非接触式生理体征监测功能的监护设备,所述监护设备包括射频发射组件、射频接收组件、第一信号处理电路以及处理器。所述射频发射组件用于产生特定频率的电磁波并朝向人体特定部位发射。所述射频接收组件用于接收人体特定部位反射回来的反射波束。所述第一信号处理电路用于将所述反射波束转换为第一类生理参数信号。所述处理器用于分析所述第一类生理参数信号得到第一类生理参数值,并控制输出所述第一类生理参数值。本申请可通过非接触的方式获取病人的生理参数值,提高了操作便捷性和安全性。

Description

具有非接触式生理体征监测功能的监护设备 技术领域
本申请涉及一种监护设备,特别涉及一种可通过非接触方式进行生理体征监测的监护设备。
背景技术
生命体征参数是用来判断人身体健康状态的指标和依据,因此,医院可以根据病人的生命体征来判断病情的轻重和危急程度。生命体征主要包括体温、血压、心率、呼吸率、心电等。在医院诊疗过程中,医务人员需要及时掌握病人的生命体征变化以便及时采取有效的诊疗措施。
目前临床生命体征检测最常见的方法就是通过电极或者传感器连接到病人采集相关的信号,这种接触式的检测方法很容易对人体施加一定的刺激,对于部分科室使用可能不方便,比如烧伤科中的大面积烧伤病人根本无法连接电极或者传感器;对于急诊抢救病人,抢救时间分秒必争,接触式检测方法需要连接附件和传感器,在一定程度上影响了抢救效率;对于情绪不稳定的病人,可能存在病人不配合的问题,接触式检测操作上也比较困难。此外,由于接触式测量所使用的电极以及电极片和相关的传感器均为耗材产品,使用成本较高,对于重复使用的附件如果消毒不彻底可能存在病人交叉感染。
发明内容
本申请提供一种具有非接触式生理体征监测功能的监护设备,能通过非接触式的方式获取病人的生理体征参数。
本申请实施例提供一种具有非接触式生理体征监测功能的监护设备,所述监护设备包括射频发射组件、射频接收组件、第一信号处理电路以及处理器。所述射频发射组件用于产生特定频率的电磁波并朝向人体特定部位发射。所述射频接收组件用于接收人体特定部位反射回来的反射波束。所述第一信号处理电路用于将所述反射波束转换为第一类生理参数信号。所述处理器用于分析所述第一类生理参数信号得到第一类生理参数值,并控制输出所述第一类生理参 数值。
本申请实施例公开一种分诊台监测系统,所述分诊台监测系统包括具有至少一个分诊位的分诊台以及至少一个非接触式生理体征监测装置。所述分诊台的分诊位用于供病人就位进行分诊前初步检查。每一非接触式生理体征监测装置包括射频发射组件、射频接收组件、拟信号处理电路以及处理器。所述射频发射组件用于产生特定频率的电磁波并朝向对应的分诊位的方向发射。所述射频接收组件用于接收位于分诊位的病人的身体特定部位反射回来的反射波束。所述信号处理电路用于将所述反射波束转换为生理参数信号。所述处理器用于分析所述生理参数信号得到生理参数值,并控制输出所述生理参数值。
本申请实施例还公开一种非接触式生理体征监测设备,所述非接触式生理体征监测设备包括支撑座以及非接触式生理体征监测装置。所述支撑座用于承载于任意承载面上。所述非接触式生理体征监测装置用于固定于所述支撑座上,所述非接触式生理体征监测装置包括射频发射组件、射频接收组件、拟信号处理电路以及处理器。所述射频发射组件用于产生特定频率的电磁波并朝向对应的分诊位的方向发射。所述射频接收组件用于接收位于分诊位的病人的身体特定部位反射回来的反射波束。所述信号处理电路用于将所述反射波束转换为生理参数信号。所述处理器用于分析所述生理参数信号得到生理参数值,并控制输出所述生理参数值。其中,支撑座包括底座设置于底座上的可相对所述底座活动的可活动承载件,所述至少一个非接触式生理体征监测装置分别固定设置于所述至少一个支撑座的可活动承载件上。
本申请实施例还公开了一种分诊台监测系统,包括:
具有至少一个分诊位的分诊台,所述分诊位用于供病人就位进行分诊前初步检查;和
非接触式生理体征监测装置,所述非接触式生理体征监测装置,包括:
至少一组射频信号收发组件,每一组射频信号收发组件与分诊台的一分诊位对应关联,并用于朝向所述分诊位的病人发射特定频率的电磁波,以及接收所述分诊位上的病人的身体特定部位反射回来的反射波束;
信号处理电路,用于将每组射频信号收发组件接收的反射波束转换为对应的生理参数信号;
处理器,用于分析每个生理参数信号得到一组生理参数值,并用于根据预设的射频信号收发组件与分诊台中的分诊位的关联关系确定每组生理参数值所对应的病人身份信息,并将每组生理参数值和对应的病人身份信息进行绑定输出。
本申请中的所述监护设备通过所述射频发射组件发射电磁波,并通过所述射频接收组件接收病人的身体特定部位反射回来的反射波束后,可根据反射波束获取病人的生理参数信号,继而得到对应的生理参数值,从而可通过非接触的方式获取病人的生理参数值,提高了操作便捷性和安全性。
本申请并通过在分诊台的分诊位上设置非接触式生理体征监测装置,所述非接触式生理体征监测装置产生特定频率的电磁波并朝向对应的分诊位的方向发射,并接收位于分诊位的病人的身体特定部位反射回来的反射波束,然后将所述反射波束转换为生理参数信号后,然后分析所述生理参数信号得到生理参数值,并控制输出所述生理参数值,可通过非接触的方式自动获取位于分诊位的病人的生理参数值,在无需医护人员执行接触式操作的情况下,可在多个分诊位同时对多个病人进行测量,提高了分诊效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中的具有非接触式生理体征监测功能的监护设备的结构框图。
图2为本申请一实施例中的监护设备的正面示意图。
图3为本申请一实施例中的射频发射组件及射频接收组件的具体结构示意图。
图4为本申请另一实施例中的监护设备的正面示意图。
图5为本申请一实施例中的天线支架的结构示意图。
图6为本申请一实施例中的监护设备具体的电路布局结构示意图。
图7为本申请一实施例中的分诊台监测系统的示意图。
图8为本申请一实施例中的非接触式生理体征监测装置的结构框图。
图9为本申请另一实施例中的射频发射组件及射频接收组件的具体结构示意图。
图10为本申请一实施例中的支撑座的示意图。
图11为本申请一实施例中的支撑座的进一步的具体结构示意图。
图12为本申请一实施例中的支撑座的示意出内部结构的示意图。
图13为本申请一实施例中的非接触式生理体征监测设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而非用于描述特定顺序。此外,术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参阅图1,为一种具有非接触式生理体征监测功能的监护设备1(以下称为监护设备1)的结构框图。所述监护设备1包括射频发射组件11、射频接收组件12、第一信号处理电路13以及处理器14。所述射频发射组件11用于产生特定频率的电磁波并朝向人体特定部位发射。所述射频接收组件12用于接收人体特定部位反射回来的反射波束。所述第一信号处理电路13用于将所述反射波束转换为第一类生理参数信号。所述处理器14与所述第一信号处理电路13连接,用于分析所述第一类生理参数信号得到第一类生理参数值,并 控制输出所述第一类生理参数值。
本申请中,所述监护设备1通过所述射频发射组件11发射电磁波,并通过所述射频接收组件12接收病人的身体特定部位反射回来的反射波束后,可根据反射波束获取病人的生理参数信号,继而得到对应的生理参数值,从而可通过非接触的方式获取病人的生理参数值,提高了操作便捷性和安全性。
如图1所示,所述监护设备1还包括至少一个参数测量传感器15以及第二信号处理电路16,所述至少一个参数测量传感器15包括探测端以及连接端,所述至少一个参数测量传感器15通过所述探测端与人体接触而获取测量信号。所述第二信号处理电路16与所述至少一个参数测量传感器15的连接端连接,用于接收所述至少一个参数测量传感器15获取的测量信号,并将所述测量信号转换为第二类生理参数信号。所述处理器14还与所述第二信号处理电路16连接,用于分析所述第二类生理参数信号得到第二类生理参数值,并控制输出所述第二类生理参数值。
从而,本申请中,在通过非接触式的测量方式获取第一类生理参数值之外,还通过至少一个参数测量传感器15去与人体接触,通过接触式的测量方式来获取第二生理参数值,所述监护设备1通过结合非接触式和接触式两种测量方式来获取生理参数值,可极大地提高可获取的生理参数值的类型。
其中,本申请的非接触式的测量方式指的是前述的通过所述射频发射组件11发射电磁波,并通过所述射频接收组件12接收病人的身体特定部位反射回来的反射波束后,根据反射波束获取病人的生理参数信号,继而得到对应的生理参数值的测量方式。本申请的接触式的测量方式指的是通过所述至少一个参数测量传感器15的探测端与人体接触而获取测量信号,继而得到对应的生理参数值的测量方式。
其中,所述第一类生理参数值包括呼吸率和心率中的至少一种,所述第二类生理参数包括体温、血氧(SPO2)、血压值中的至少一种。
其中,所述射频接收组件32接收的病人的身体特定部位反射回来的反射波束反映了病人胸部的起伏规律,所述病人胸部的起伏规律进一步反映了病人的心跳信息和/或呼吸信息,也即,心率和/或呼吸率。所述第一信号处理电路13用于将所述反射波束转换为第一类生理参数信号,所述处理器34用于分析 第一类生理参数信得到为心率和/或呼吸,即,得到呼吸率和心率中的至少一种。
所述至少一个参数测量传感器15用于设置于病人的相应部位,并与所述第二信号处理电路16连接,所述第二信号处理电路16接收所述至少一个参数测量传感器15获取的测量信号,并将所述测量信号转换为第二类生理参数信号。
本申请中,所述至少一个参数测量传感器15包括温度传感器、血氧传感器以及血压传感器中的至少一种。在一些实施例中,所述至少一个参数测量传感器15可同时包括温度传感器、血氧传感器以及血压传感器,而同时采集体温参数、血氧参数以及血压参数相关的测量信号。
其中,所述血氧传感器可包括血氧探头,血氧探头可为夹持式结构,用于夹持在病人的手指上,通过光强信号测量血氧参数相关的测量信号,例如,血氧浓度测量信号,且血氧传感器与所述第二信号处理电路16连接,而将监测到的血氧参数相关的测量信号发送至所述第二信号处理电路16。
所述血压传感器可设置于绑带式结构中,通过绑带式结构绑缚于病人的胳膊上,且血压传感器与所述第二信号处理电路16连接,而将监测到的血压参数相关的测量信号发送至所述第二信号处理电路16。
所述温度传感器包括温度探头,温度探头可通过电极片的形式贴放在病人身体的相应部位,而实现温度参数信号的采集,且所述温度传感器与所述第二信号处理电路16连接,而将监测到的温度参数相关的测量信号发送至所述第二信号处理电路16。
所述第二模拟处理电路16将上述体温参数、血氧参数以及血压参数相关的测量信号转换为对应的第二类生理参数信号,所述处理器14分析所述第二类生理参数信号得到第二类生理参数值,并控制输出所述第二类生理参数值。
请返回参阅图1及图2,为监护设备1的正面示意图。所述监护设备1还包括显示屏17,所述处理器14还用于控制在显示屏17上输出显示所述第一类生理参数值和所述第二类生理参数值。
即,在一些实施例中,所述第一类生理参数值和所述第二类生理参数值可直接显示在监护设备1的显示屏17上,而进行实时显示,以供观察。
如图1所示,所述监护设备1还包括通信单元18,所述处理器14通过通信单元18建立监护设备与目标监护装置2之间的通信连接,并用于将第一类生理参数值和第二类生理参数值通过通信单元18发送至所述目标监护装置2,并通过所述目标监护装置2输出显示所述第一类生理参数值和所述第二类生理参数值。
其中,所述目标监护装置2包括床边监护设备、科室级工作站、院级数据中心、院级急救管理中心中的至少一种。
其中,所述通信单元18包括有线通信单元和/或无线通信单元,所述监护设备1与目标监护装置2之间的通信连接包括有线通信连接和/或无线通信连接。
其中,如图1和2所示,所述监护设备1还包括输入单元19,所述输入单元19用于供用户,例如医护人员对所述监护设备1的显示输出或功能进行设置。所述处理器14还用于响应输入单元19的为显示设置操作的输入操作,而控制在显示屏17上输出显示所述第一类生理参数值和所述第二类生理参数值,或者仅显示所述第一类生理参数值和所述第二类生理参数值中的一种。
即,在一些实施例中,通过所述输入单元19进行操作,可控制仅在显示屏17上显示所述第一类生理参数值或者所述第二类生理参数值,或者全部显示所述第一类生理参数值和所述第二类生理参数值。
在一些实施例中,所述至少一个参数测量传感器15还可进一步包括心电传感器、呼吸传感器。
其中,心电传感器的数量为多个,可为电极片形式贴放在病人身体的相应部位,而实现心电参数信号的采集,而得到相应的ECG(心电图)数据。
其中,呼吸传感器用于采集呼吸参数相关的测量信号,例如呼吸率相关的测量信号。
即,在一些实施例中,所述与人体相应部位直接接触的至少一个参数测量传感器15还可进一步包括心电传感器、呼吸传感器,而通过接触式的测量方式获取病人的心率、呼吸率。
其中,所述处理器14还可用于控制在显示屏16上同时显示通过非接触测量方式获得的病人的心率、呼吸率以及通过接触式的测量方式获取病人的心 率、呼吸率,以供医护人员参考。
其中,通过接触式的测量方式获取的病人的心率、呼吸率的准确度往往高于通过非接触式的测量方式获取的病人的心率、呼吸率的准确度。所述处理器14还用于响应通过输入单元19的校正操作,而对通过非接触式的测量方式获取的病人的心率、呼吸率进行校正,得出心率校正值以及呼吸率校正值。所述心率校正值可为所述通过非接触测量方式获得的病人的心率与通过接触式的测量方式获取病人的心率之间的差值,所述呼吸率校正值可为所述通过非接触测量方式获得的病人的呼吸率与通过接触式的测量方式获取病人的呼吸率之间的差值。
在一些实施例中,在通过非接触的方式获取病人的生理参数值的过程中,所述处理器14分析所述第一类生理参数信号得到第一类生理参数值,并控制输出所述第一类生理参数值,可包括:所述处理器14分析所述第一类生理参数信号得到第一类生理参数值,并通过预先得出的校正值对所述第一类生理参数值进行校正得到校正后的第一类生理参数值,并控制输出所述校正后的第一类生理参数值。
即,在一些实施例中,所述监护设备1同时还可配备心电传感器、呼吸传感器,而通过接触式的测量方式获取病人的心率、呼吸率的相关测量信号。并可响应操作而将通过接触式的测量方式得到病人的心率、呼吸率与非接触式的测量方式获取的心率、呼吸率进行对比,得到非接触式的测量方式获取的心率、呼吸率的校正值,以提高后续通过非接触式的测量方式获取的心率、呼吸率的准确度。
从而,当通过预设次数校正后,使得通过非接触式的测量方式获取的心率、呼吸率的准确度提高到一定程度,例如与通过非接触式的测量方式获取的心率、呼吸率基本一致后,则后续无需再使用心电传感器、呼吸传感器与人体直接接触,提高了便利性,也极大地提高了测量准确度。
其中,所述输入单元19可为图2所示的操作面板,包括若干机械按键。在一些实施例中,所述输入单元19也可为触摸面板,与显示屏17整合成触摸显示屏。
在另一些实施例中,输入单元19还可为麦克风等语音输入单元,用于接 收用户的语音形式的输入操作。
请参阅图3,为射频发射组件11及射频接收组件12的具体结构示意图。如图3所示,所述射频发射组件11包括发射天线111,所述射频接收组件12包括接收天线121,所述发射天线111用于朝向对应的分诊位的方向发射特定频率的电磁波,所述接收天线121用于接收反射的反射波束。
其中,所述发射天线111和接收天线121构成单发单收天线或多发多收天线。即,所述发射天线111和接收天线121可配合而构成单发单收的收发天线或者多发多收的收发天线。
请返回参考图2,所述发射天线111和接收天线121设置于所述监护设备1的壳体K1上,所述发射天线111用于朝向监护设备11的壳体K1外侧发射特定频率的电磁波,所述接收天线121用于接收反射的反射波束。
其中,所述监护设备1为台式监护设备,例如,为床边监护仪,所述发射天线111和接收天线121设置于所述台式监护设备的前面板B1的非显示区域A1上。
请参阅图4,为另一实施例中的监护设备1的正面示意图。其中,所述监护设备1同样为台式监护设备,所述监护设备1还包括设置于监护设备1顶部的可活动的天线支架20,所述发射天线111和接收天线121固定承载于所述天线支架20上,所述天线支架20用于调节发射天线11的发射角度以及接收天线12的接收角度。
其中,所述天线支架20可相对于监护设备1进行360度转动,而用于控制所述发射天线111和接收天线121朝向任意方向,以调节所述发射天线111的发射角度以及接收天线121的接收角度。
请参阅图5,为天线支架20的结构示意图。所述天线支架20具体可包括一支撑柱21以及万向轴22。所述支撑柱21固定于所述监护设备1的顶部,所述万向轴22可活动地设置于所述支撑柱21的远离所述监护设备1的顶部的一端,而可朝向任意方向转动。所述发射天线111和接收天线121设置于所述万向轴22上,可跟随所述万向轴22转动,而实现360度转动。
其中,所述万向轴22可响应用户的手动操作而朝向任意方向转动。所述支撑柱21可通过螺丝锁固等方式固定于所述监护设备1的顶部。
在另一些实施例中,所述天线支架20也可为可弯曲至任意形态的记忆金属杆等材质制成,所述天线支架20的一端固定于所述监护设备1的顶部上,所述发射天线111和接收天线121可固定于所述天线支架20的另一端,天线支架20可响应用户的手动操作而改变高度以及朝向任意的方向弯曲,以使得所述。
其中,第一信号处理电路13以及处理器14等可位于所述监护设备1的壳体内部,所述支撑柱21可为中空结构,且所述支撑柱21所固定于的所述监护设备1的顶部位置,开设有导通孔,所述支撑柱21的内部与所述导通孔连通。所述发射天线111和接收天线121可与穿设于所述支撑柱21内的电连接件电连接,所述电连接件并通过所述导通孔延伸至所述监护设备1的壳体内部,与位于所述监护设备1的壳体内部的第一信号处理电路13电连接,从而建立所述发射天线111和接收天线121和所述第一信号处理电路13之间的电连接。
其中,所述电连接件可为导线、柔性电路板等。
在一些实施例中,所述监护设备1为手持式监护设备,所述手持式监护设备包括手持端以及远离手持端的信号收发端,所述发射天线111和接收天线121设置于所述手持式监护设备1的信号收发端。
其中,所述手持端为用于供医护人员手持的一端,所述信号收发端则可为使用时朝向待测病人的一端。
请返回参阅图3,所述射频发射组件11还包括合成器112,所述合成器112与所述发射天线111耦接,用于产生特定频率的电磁波,并通过发射天线111发射出来。所述接收天线121用于接收反射波束,所述射频接收组件12还包括混频器122,所述混频器122耦接于所述接收天线121和所述第一信号处理电路13之间,用于将所述接收天线121接收的反射波束进行混频处理后发送至所述第一信号处理电路13,所述第一信号处理电路13具体为用于将所述经过混频处理后的反射波束转换为生理参数信号。
其中,所述发射天线111的数量可为至少一个,所述接收天线121的数量也为至少一个,所述发射天线111与所述接收天线121的数量相等或不相等。其中,所述发射天线311与所述接收天线321均为一个时,所述发射天线111和接收天线121可构成单发单收天线,而当发射天线111与所述接收天线121 为多个时,所述发射天线111和接收天线121可构成多发多收天线。
其中,所述射频接收组件12还包括低通滤波器123,所述低通滤波器123耦接于所述混频器122和所述第一信号处理电路13之间,用于对经过混频处理后的反射波束进行滤波,所述第一信号处理电路13具体为用于将所述经过混频处理以及滤波后的反射波束转换为生理参数信号。
即,在一些实施例中,所述射频接收组件12同时包括混频器122以及低通滤波器123,所述混频器122及低通滤波器123依次耦接于所述接收天线121和对应的模第一信号处理电路13之间,所述混频器122用于将所述接收天线121接收的反射波束进行混频处理后发送至所述低通滤波器123,所述低通滤波器123耦接于所述混频器122和对应的模第一信号处理电路13之间,用于对经过混频处理后的反射波束进行滤波,所述第一信号处理电路13具体为用于将所述经过混频处理以及滤波后的反射波束转换为生理参数信号。
其中,如图2所示,所述第一信号处理电路13包括模数转换器131,所述模数转换器131与射频接收组件12耦接,而用于获取射频接收组件12接收的反射波束,并将射频接收组件12接收的反射波束转换为对应的生理参数信号。
所述第二信号处理电路16包括模数转换器161,所述模数转换器161与至少一个参数测量传感器15耦接,而用于获取所述至少一个参数测量传感器15采集的测量信号,并将所述测量信号转换为第二类生理参数信号。
其中,所述处理器14可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述显示器屏17为独立的LCD显示屏、LED(light-emitting diode,发光二极管)显示屏,电子纸显示屏等。
所述通信单元18可包括有线接口、WIFI模组蓝牙模组、WMTS通信模组、NFC通信模组中的至少一种。
请参阅图6,为监护设备1具体的电路布局结构示意图。如图6所示,所述处理器14包括第一类生理参数信号处理器141、第二类生理参数信号处理器142以及主控制器143。所述第一类生理参数信号处理器141用于分析所述第一类生理参数信号得到第一类生理参数值并传送给主控制器143,所述第二类生理参数信号处理器142用于分析所述第二类生理参数信号得到第二类生理参数值并传送给主控制器143,所述主控制器143用于控制输出显示所述第一类生理参数值以及第二类生理参数值。
即,在一些实施例中,所述处理器14具体包括了三个处理器/控制器,且各自执行相应的功能,提高了性能。
如图6所示,所述监护设备1还包括电路板101,所述电路板上设置有隔离带102,所述隔离带102将所述电路板101隔离出一隔离区Q1以及一非隔离区Q2。其中,所述第二类生理参数信号处理器142、至少一个参数测量传感器15以及第二信号处理电路16设置于所述隔离区Q1,所述第一类生理参数信号处理器141、主控制器143、射频发射组件11、射频接收组件12、第一信号处理电路13设置于所述非隔离区Q2。
其中,所述射频发射组件11、射频接收组件12设置于所述非隔离区Q2指的是所述射频发射组件11、射频接收组件12除了发射天线111和接收天线121之外的结构设置于所述非隔离区Q2。
如图6所示,所述监护设备1还包括设置于非隔离区Q2的供电电源电路103以及设置于隔离带102上的隔离电源电路104,所述供电电源电路103用于接入市电电压,所述隔离电源电路104用于将市电电压进行降压后为设置于隔离区Q1上的包括第二类生理参数信号处理器142、至少一个参数测量传感器15以及第二信号处理电路16在内的元件进行供电。
其中,所述供电电源电路103可包括市电电源接口,而用于接入市电电压。所述隔离电源电路104可包括第一AC/DC(交流转直流)转换器,与所述市电电源接口连接,用于将所述市电电压转换为直流电压并降压,而生成适合第二类生理参数信号处理器142、至少一个参数测量传感器15以及第二信号处理电路16在内的元件的供电电压。
如图6所示,所述监护设备1还包括非隔离电源电路105,所述非隔离电 源电路105与所述供电电源电路103连接,而用于将市电电压进行降压后为设置于非隔离区Q2上的包括所述第一类生理参数信号处理器141、主控制器143、第一信号处理电路13在内的元件进行供电。其中,所述供电电源电路103可包括市电电源接口,而用于接入市电电压。所述非隔离电源电路105可包括第二AC/DC(交流转直流)转换器,与所述市电电源接口连接,用于将所述市电电压转换为直流电压并降压,而生成适合第二类生理参数信号处理器142、至少一个参数测量传感器15以及第二信号处理电路16在内的元件的供电电压。
在一些实施例中,所述隔离带102可为一屏蔽墙,所述屏蔽墙的高度可高于第一类生理参数信号处理器141、主控制器143、射频发射组件11、射频接收组件12、第一信号处理电路13、第二类生理参数信号处理器142、至少一个参数测量传感器15以及第二信号处理电路16等元件在电路板101上的高度,从而实现对隔离区Q1以及非隔离区Q2中元件的隔离。所述屏蔽墙可为金属屏蔽墙。
在另一实施例中,所述隔离带102也可为电路板101在该区域未设置任何电路元件和线路而形成。其中,所述隔离带102的宽度大于预设距离,而实现对隔离区Q1以及非隔离区Q2中元件的隔离。
如图6所示,所述隔离带102上设置有隔离通信接口106,所述第二类生理参数信号处理器142通过所述隔离通信接口106与所述主控制器143建立通信连接,而将所述第二类生理参数值传送给主控制器143。
其中,当所述隔离带102为屏蔽墙时,所述隔离通信接口106可为屏蔽墙上开设的贯穿所述屏蔽墙的开孔,所述第二类生理参数信号处理器142通过一穿过所述开孔的电连接件与所述主控制器143电连接,从而建立通信连接。
所述隔离通信接口106也可为一双头接头,所述隔离通信接口106的两头可分别通过电连接件与所述第二类生理参数信号处理器142以及所述主控制器143电连接,从而建立所述第二类生理参数信号处理器142与所述主控制器143的通信连接。所述电连接件可为导线或柔性电路板等。
如图6所示,如前所述,至少一个参数测量传感器15可包括血压传感器151、温度传感器152以及血氧传感器153,所述监护设备1还可包括血压探 头1511、温度探头1521以及血氧探头1531,用于分别与人体接触而分别供血压传感器151、温度传感器152以及血氧传感器153采集血压、温度、血氧相关的测试信号。
其中,所述血压探头1511、温度探头1521以及血氧探头1531可通过导线从监护设备1中延伸出来并与病人的特定身体部位接触。
在一些实施例中,所述监护设备1可为血压计,所述发射天线111和接收天线121设置于所述血压计的刻度面板的非显示区域。
从而,当病人使用血压计进行血压检测时,还可自动通过非接触的测量方式得到病人的心率、呼吸率中的至少一个参数。
在另一些实施例中,本申请的监护设备1还可以应用于分诊台。
请参阅图7,为一种分诊台监测系统100的示意图。所述分诊台监测系统100包括具有至少一个分诊位201的分诊台200以及至少一个非接触式生理体征监测装置300。其中,所述分诊台200的分诊位201用于供病人就位进行分诊前初步检查。所述至少一个非接触式生理体征监测装置300分别设置于所述分诊200台的对应至少一个分诊位201的台面上。在其他实施例中,非接触式生理体征监测装置300也可以设置在其他地方,只要能够使得病人在生理体征采集范围内即可,例如设置在天花板、墙壁等位置。
请一并参阅图8,为一非接触式生理体征监测装置300的结构框图。其中,每一非接触式生理体征监测装置300可包括射频发射组件31、射频接收组件32、信号处理电路33以及处理器34。所述射频发射组件31用于产生特定频率的电磁波并朝向对应的分诊位的方向发射;所述射频接收组件32用于接收位于分诊位201的病人的身体特定部位反射回来的反射波束;所述信号处理电路33用于将所述反射波束转换为生理参数信号;所述处理器34用于分析所述生理参数信号得到生理参数值,并控制输出所述生理参数值。
从而,本申请通过在分诊台200的分诊位201上设置非接触式生理体征监测装置300,所述非接触式生理体征监测装置300产生特定频率的电磁波并朝向对应的分诊位的方向发射,并接收位于分诊位201的病人的身体特定部位反射回来的反射波束,然后将所述反射波束转换为生理参数信号后,然后分析所述生理参数信号得到生理参数值,并控制输出所述生理参数值,可通过非接触 的方式自动获取位于分诊位201的病人的生理参数值,在无需医护人员执行接触式操作的情况下,可在多个分诊位201同时对多个病人进行测量,提高了分诊效率。
在一些实施例中,所述至少一个非接触式生理体征监测装置300的数量可与所述分诊台200的至少一个分诊位201的数量相等,所述分诊台200的台面上对应每一分诊位201的位置处都设置有一非接触式生理体征监测装置300。显然,在其他实施例中,所述至少一个非接触式生理体征监测装置300的数量也可少于所述分诊台200的至少一个分诊位201的数量。
其中,分诊位201为病人进行分诊时在分诊台200前所对应的位置,分诊台200对应分诊位201的台前位置可设置有凳子供病人就坐进行分诊前检查。显然,所述分诊位21对应分诊位201的台前位置也可不设置凳子,病人可站立进行分诊前检查。
如图7所示,所述分诊台监测系统100还包括至少一个显示器400,所述非接触式生理体征监测装置300与对应的显示器400连接,所述处理器34用于控制在对应的显示器400上输出显示所述生理参数值。其中,所述处理器34控制在对应的显示器400上输出显示所述生理参数值可包括:所述处理器34将所述生理参数值发送至所述显示器400,而通过所述显示器400进行显示输出。
其中,所述至少一个显示器400设置于分诊台200的台面上,而可供医护人员直接观看各个病人的生理参数值。
在一些实施例中,所述分诊台监测系统100还包括多个显示器400,每个显示器400与对应的一个非接触式生理体征监测装置300连接,而接收所述对应的非接触式生理体征监测装置300产生的生理参数值并进行显示输出。其中,每一显示器400设置于所述分诊台200的对应分诊位201的台面上,用于供医护人员观看所述生理参数值。显然,医护人员仅需要去观看显示器400输出的生理参数值是否正常,无需去执行接触式检测操作,仅需要很少的医护人员,例如一名医护人员即可实现分诊前的检查。
在另一实施例中,所述分诊台监测系统100可仅包括一个设置于分诊台200的台面上的显示器400,所有非接触式生理体征监测装置300均与所述显 示器400连接,所述显示器400用于显示输出所有非接触式生理体征监测装置300产生的生理参数值。
具体的,所述处理器34发送至所述显示器400的所述生理参数值可具体为所述生理参数值对应的显示数据,所述显示器400接收所述对应的非接触式生理体征监测装置300产生的生理参数值,也可为接收非接触式生理体征监测装置300产生的生理参数值对应的显示数据。
其中,所述显示器400可为独立的显示屏,也可为平板电脑、笔记本电脑等具有显示屏的电子装置。
如图8所示,其中,每一非接触式生理体征监测装置300还包括通信单元35,所述处理器34通过通信单元35建立非接触式生理体征监测装置300与目标监护装置500之间的通信连接,并用于将所述生理参数值发送目标监护装置500,并通过目标监护装置500输出显示所述生理参数值。
其中,目标监护装置500包括科室级工作站装置和院级数据中心/院级急救中心管理装置中的至少一种。
其中,所述通信单元35包括有线通信单元和/或无线通信单元,所述非接触式生理体征监测设备300与目标监护设备500之间的通信连接包括有线通信连接和/或无线通信连接。
其中,如图8所示,所述信号处理电路33包括模数转换器331,所述模数转换器331与射频接收组件32耦接,而用于获取射频接收组件32接收的反射波束,并将射频接收组件32接收的反射波束转换为对应的生理参数信号。
请参阅图9,为射频发射组件31及射频接收组件32的具体结构示意图。如图3所示,所述射频发射组件31包括发射天线311,所述射频接收组件32包括接收天线321,所述发射天线311用于朝向对应的分诊位的方向发射特定频率的电磁波,所述接收天线321用于接收反射的反射波束。
其中,所述发射天线311和接收天线321构成单发单收天线或多发多收天线。即,所述发射天线311和接收天线321可配合而构成单发单收的收发天线或者多发多收的收发天线。
所述射频发射组件31还包括合成器312,所述合成器312与所述发射天线311耦接,用于产生特定频率的电磁波,并通过发射天线311发射出来。所 述接收天线321用于接收反射波束,所述射频接收组件32还包括混频器322,所述混频器322耦接于所述接收天线321和所述信号处理电路33之间,用于将所述接收天线321接收的反射波束进行混频处理后发送至所述信号处理电路33,所述信号处理电路33具体为用于将所述经过混频处理后的反射波束转换为生理参数信号。具体的,混频器322将所述接收天线321接收的反射波束进行混频处理后发送至所述信号处理电路33中的模数转换器331,然后,所述模数转换器331将所述经过混频处理后的反射波束转换为生理参数信号。
其中,所述发射天线311的数量可为至少一个,所述接收天线321的数量也为至少一个,所述发射天线311与所述接收天线321的数量相等或不相等。其中,所述发射天线311与所述接收天线321均为一个时,所述发射天线311和接收天线321可构成单发单收天线,而当发射天线311与所述接收天线321为多个时,所述发射天线311和接收天线321可构成多发多收天线。
其中,所述射频接收组件32还包括低通滤波器323,所述低通滤波器323耦接于所述混频器322和所述信号处理电路33之间,用于对经过混频处理后的反射波束进行滤波,所述信号处理电路33具体为用于将所述经过混频处理以及滤波后的反射波束转换为生理参数信号。
即,在一些实施例中,所述射频接收组件32同时包括混频器322以及低通滤波器323,所述混频器322及低通滤波器323依次耦接于所述接收天线321和对应的模信号处理电路33之间,所述混频器322用于将所述接收天线321接收的反射波束进行混频处理后发送至所述低通滤波器323,所述低通滤波器323耦接于所述混频器322和对应的模信号处理电路33之间,用于对经过混频处理后的反射波束进行滤波,所述信号处理电路33具体为用于将所述经过混频处理以及滤波后的反射波束转换为生理参数信号。具体的,为所述信号处理电路33中的模数转换器331将所述经过混频处理以及滤波后的反射波束转换为生理参数信号。
请参阅图10,为一支撑座的示意图。其中,所述分诊台监测系统100还包括至少一个支撑座600,每一支撑座600包括底座31以及设置于底座61上的可相对所述底座61活动的可活动承载件62,所述至少一个非接触式生理体征监测装置300分别固定设置于所述至少一个支撑座600的可活动承载件62 上。
其中,所述支撑座600用于承载于任意承载面上,具体的,所述支撑座600可通过底座31固定于所述分诊台200的台面上。所述支撑座600的数量与所述非接触式生理体征监测装置300的数量相等,每一非接触式生理体征监测装置300可通过对应的一支撑座600设置于所述分诊台200上。
在一些实施例中,所述底座31可通过螺丝锁固、粘接等方式固定于所述分诊台200的台面上。在另一实施例中,所述底座31可为较软的塑胶等材质制成的吸盘状结构,通过挤压出空气而吸附在所述分诊台200的台面上,从而在需要挪动所述支撑座600时,可方便地进行挪动。
其中,每一支撑座600的可活动承载件32可相对于对应的底座31上下伸缩运动和/或朝任意方向转动,从而带动对应的非接触式生理体征监测装置300上下运动或转动,而调整非接触式生理体征监测装置300上的射频发射组件31的发射方向及射频接收组件32的接收方向。
即,所述非接触式生理体征监测装置30固定于所述支撑座600的可活动承载件62上,而所述可活动承载件62则可相对于底座61上下伸缩运动和/或朝任意方向转动,从而使得所述非接触式生理体征监测装置300可对应上下运动或转动,而可调整射频发射组件31的发射方向及射频接收组件32的接收方向。从而方便对准位于分诊台200的分诊位201的病人的特定部位,例如病人的胸部位置。其中,所述射频接收组件32接收的位于分诊位201的病人的身体特定部位反射回来的反射波束反映了病人胸部的起伏规律,所述病人胸部的起伏规律进一步反映了病人的心跳信息和/或呼吸信息,也即,心率和/或呼吸率。所述信号处理电路33将所述反射波束转换为生理参数信号后,所述处理器34用于分析所述生理参数信号得到为心率和/或呼吸率的生理参数值。
请参阅图11,为一实施例中的支撑座600的进一步的具体结构示意图。其中,在一些实施例中,所述可活动承载件62包括可朝靠近或远离底座61方向伸缩的可伸缩杆621以及设置于所述可伸缩杆621的远离底座61的一端的万向轴622。所述非接触式生理体征监测装置300固定设置于所述万向轴622上。所述万向轴622与所述可伸缩杆621的远离底座61的一端可活动连接,而可相对所述可伸缩杆621超任意方向转动。
即,在一些实施例中,所述可活动承载件62具体包括可伸缩杆621以及万向轴622,所述非接触式生理体征监测装置30固定在所述万向轴622上,而可通过所述万向轴622朝任意方向转动,而调节射频发射组件31的发射方向及射频接收组件32的接收方向,并通过所述可伸缩杆621调节在分诊台200上的高度。
从而,当不同的病人坐在分诊台200的分诊位201的凳子上时,根据病人身高的不同以及病人坐的位置的不同,可分别通过所述可伸缩杆621调节非接触式生理体征监测装置30在分诊台200上的高度以及通过万向轴622转动而调节射频发射组件31的发射方向及射频接收组件32的接收方向,使得非接触式生理体征监测装置30的射频发射组件31的发射方向朝向病人的特定身体部位。
请返回参阅图8,每一非接触式生理体征监测装置300还包括摄像模组36,所述摄像模组36的朝向与射频发射组件31的发射方向相同,所述摄像模组36用于获取当前分诊位的病人的图像,所述处理器34还用于将所述摄像模组36获取的当前分诊位的病人的图像与预设图像进行对比,分析射频发射组件的发射方向是否正对病人的身体特定部位,并在确定射频发射组件的发射方向未正对病人的身体特定部位时,根据所述摄像模组36获取的当前分诊位的病人的图像与预设图像之间的差异控制可活动承载件62进行运动,以使得所述射频发射组件31的发射方向正对病人的身体特定部位。
显然,当所述处理器34确定射频发射组件的发射方向正对病人的身体特定部位后,则可控制所述射频发射组件31发射特定频率的电磁波。
其中,所述摄像模组36为可见光摄像模组。在其他实施例中,所述摄像模组36可为红外摄像模组,而可位于所述非接触式生理体征监测装置300的内部。
所述摄像模组36可包括光学镜头和图像传感器,所述光学镜头用于接收光线并传输至图像传感器,所述图像传感器与所述处理器34连接,用于将接收的光信号转换为电信号,并传输至所述处理器34进行成像处理。
请一并参阅图12,为一实施例中的支撑座600的示意出内部结构的示意图。如图6所示,所述支撑座600还包括驱动电机63,所述驱动电机63用于 驱动可伸缩杆621上下运动以及驱动所述万向轴622转动,所述非接触式生理体征监测装置30的处理器34可与其位于的支撑座600中的驱动电机63电连接,用于控制所述驱动电机63驱动所述可伸缩杆621上下运动和/或驱动所述万向轴622转动,以使得所述射频发射组件31的发射方向正对病人的身体特定部位。
如图12所示,在一些实施例中,所述可伸缩杆621具体可为套筒结构,包括可相对滑动的第一套筒6211以及第二套筒6212,所述第一套筒6211和第二套筒6212的形状相同,尺寸不同。在一些实施例中,所述第二套筒6212与所述底座61固定连接,所述第一套筒6211的内径大于所述第二套筒6212的外径,所述第一套筒6211套接于所述第二套筒6212上,且第一套筒6211的内壁以及所述第二套筒6212的外壁之间设置有滑动结构(图中未示出),所述第一套筒6211与所述第二套筒6212可通过该滑动结构沿着可伸缩杆621的伸缩方向运动。例如,所述滑动结构可包括滑轨和凸起,所述滑轨设置于所述第一套筒的内壁,且沿所述可伸缩杆621的伸缩方向延伸,所述凸起设置于所述第二套筒6121的外壁,且收容于所述滑轨中,并可沿所述滑轨滑动。从而使得所述第一套筒6211与所述第二套筒6212可通过该滑动结构沿着可伸缩杆621的伸缩方向运动。
所述驱动电机63可固定设置于所述第二套筒6212的内壁,且所述驱动电机63通过第一驱动传导件631连接至所述第一套筒6121的内壁,所述驱动电机63可通过第一驱动传导件631驱动所述第一套筒6121朝着靠近或远离底座61的方向运动,而实现所述可伸缩杆621的伸缩。其中,所述第一驱动传导件631的一端可与所述驱动电机63通过齿轮啮合,另一端可固定于所述第一套筒6121的内壁,所述驱动电机63可通过改变电机旋转方向而使得第一驱动传导件631的朝着靠近或远离底座61的方向运动,从而带动所述第一套筒6121朝着靠近或远离底座61的方向运动。
其中,所述驱动电机63还可通过第二驱动传导件632与所述万向轴622连接,而通过所述第二驱动传导件632驱动所述万向轴622转动。其中,所述第二驱动传导件632可为多向传动件。
其中,所述第一套筒6121和所述第二套筒6212可为圆形套筒、方形套筒 等。
其中,所述处理器34可通过穿设于所述第一套筒6121和所述第二套筒6212内的柔性电路板、传导线等与所述驱动电机63电连接。
在一些实施例中,所述可伸缩杆621用于响应用户的手动操作而朝着靠近或远离底座61方向伸缩,所述万向轴622用于响应用户的手动操作而朝向任意方向转动。其中,所述可伸缩杆621可为类似电视天线的多节套筒形,而可在用户的操作下,收缩或拉伸开。
在另一些实施例中,所述可活动承载件62也可为可弯曲至任意形态的记忆金属杆等材质制成,所述可活动承载件62的一端固定于所述底座61上,所述非接触式生理体征监测装置300可固定于可活动承载件62的另一端,所述可活动承载件62可响应用户的手动操作而改变高度以及朝向任意的方向弯曲。
在一些实施例中,所述生理参数值包括呼吸率和心率中的至少一种。
其中,所述特定频率的电磁波为毫米波。
其中,所述处理器34可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述显示器400为独立的LCD显示器、LED(light-emitting diode,发光二极管)显示器,电子纸显示器等,或者为整合于平板电脑、笔记本电脑中的LCD显示屏、LED显示屏,电子纸显示屏等。
所述通信单元35可包括有线接口、WIFI模组蓝牙模组、WMTS通信模组、NFC通信模组中的至少一种。
请参阅图13,为本申请一实施例中的非接触式生理体征监测设备700的结构框图。本申请还提供一种非接触式生理体征监测设备700,所述非接触式生理体征监测设备700包括前述的非接触式生理体征监测装置300以及支撑座600。即,在一些实施例中,所述非接触式生理体征监测装置300以及支撑座 600可整合在一起构成一个非接触式生理体征监测设备700。
其中,非接触式生理体征监测装置300以及支撑座600的具体结构及功能请参见前述的描述,在此不再赘述。
其中,本申请中的每一非接触式生理体征监测装置300的结构和功能可相同,具体可参见前述的描述。每一支撑座600的结构和功能也相同,具体可参见前述的描述。
图7所示的实施例中,一个非接触式生理体征监测装置对应一个分诊位,在其他实施例中,也可以是一个非接触式生理体征监测装置对应多个分诊位,该分诊台监测系统包括:
具有至少一个分诊位的分诊台,所述分诊位用于供病人就位进行分诊前初步检查;和
非接触式生理体征监测装置,所述非接触式生理体征监测装置,包括:
至少一组射频信号收发组件,每一组射频信号收发组件与分诊台的一分诊位对应关联,并用于朝向所述分诊位的病人发射特定频率的电磁波,以及接收所述分诊位上的病人的身体特定部位反射回来的反射波束;
信号处理电路,用于将每组射频信号收发组件接收的反射波束转换为对应的生理参数信号;
处理器,用于分析每个生理参数信号得到一组生理参数值,并用于根据预设的射频信号收发组件与分诊台中的分诊位的关联关系确定每组生理参数值所对应的病人身份信息,并将每组生理参数值和对应的病人身份信息进行绑定输出。
当然,一个非接触式生理体征监测装置对应一个分诊位和一个非接触式生理体征监测装置对应多个分诊位,这两种方案中,非接触式生理体征监测装置的结构具有相似之处,其结构可以参考上述内容,此处不赘述。
本申请还通过在分诊台200的分诊位201上设置非接触式生理体征监测装置300,所述非接触式生理体征监测装置300产生特定频率的电磁波并朝向对应的分诊位的方向发射,并接收位于分诊位201的病人的身体特定部位反射回来的反射波束,然后将所述反射波束转换为生理参数信号后,然后分析所述生理参数信号得到生理参数值,并控制输出所述生理参数值,可通过非接触的方 式自动获取位于分诊位201的病人的生理参数值,在无需医护人员执行接触式操作的情况下,可在多个分诊位201同时对多个病人进行测量,提高了分诊效率。而且,通过所述支撑座600,不论病人的坐姿和身高如何,都能将非接触式生理体征监测装置300的所述射频发射组件31的发射方向调整至正对病人的特定身体部位的方向,从而提高了测量的准确性和便捷性。
其中,本申请在先描述的监护设备1可对应为所述非接触式生理体征监测装置300,也可对应为包括非接触式生理体征监测装置300以及支撑座600的所述非接触式生理体征监测设备700。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (19)

  1. 一种具有非接触式生理体征监测功能的监护设备,其特征在于,包括:
    射频发射组件,用于产生特定频率的电磁波并朝向人体特定部位发射;
    射频接收组件,用于接收人体特定部位反射回来的反射波束;
    第一信号处理电路,用于将所述反射波束转换为第一类生理参数信号;以及
    处理器,用于分析所述第一类生理参数信号得到第一类生理参数值,并控制输出所述第一类生理参数值。
  2. 如权利要求1所述的监护设备,其特征在于,所述监护设备还包括至少一个参数测量传感器以及第二信号处理电路,所述至少一个参数测量传感器包括探测端以及连接端,所述至少一个参数测量传感器通过所述探测端与人体接触而获取测量信号,所述第二信号处理电路与所述至少一个参数测量传感器的连接端连接,用于将所述测量信号转换为第二类生理参数信号;所述处理器还用于分析所述第二类生理参数信号得到第二类生理参数值,并控制输出所述第二类生理参数值。
  3. 如权利要求2所述的监护设备,其特征在于,所述监护设备还包括显示屏,所述处理器用于控制在显示屏上输出显示所述第一类生理参数值和所述第二类生理参数值。
  4. 如权利要求3所述的监护设备,其特征在于,所述第一类生理参数值包括呼吸率和心率中的至少一种,所述第二类生理参数包括体温、血氧、血压值中的至少一种。
  5. 如权利要求2所述的监护设备,其特征在于,所述监护设备还包括通信单元,所述处理器通过通信单元建立监护设备与目标监护装置之间的通信连接,并用于将第一类生理参数值和第二类生理参数值通过通信单元发送至所述目标监护装置,并通过所述目标监护装置输出显示所述第一类生理参数值和所述第二类生理参数值。
  6. 如权利要求1-5任一项所述的监护设备,其特征在于,所述射频发射组件包括发射天线,所述射频接收组件包括接收天线,所述发射天线和接收天线设置于所述监护设备的壳体上,所述发射天线用于朝向监护设备的壳体外侧 发射特定频率的电磁波,所述接收天线用于接收反射的反射波束。
  7. 如权利要求6所述的监护设备,其特征在于,所述监护设备为台式监护设备,所述发射天线和接收天线设置于所述台式监护设备的前面板的非显示区域。
  8. 如权利要求6所述的监护设备,其特征在于,所述监护设备为台式监护设备,所述监护设备还包括设置于监护设备顶部的可活动的天线支架,所述发射天线和接收天线固定承载于所述天线支架上,所述天线支架用于调节发射天线的发射角度以及接收天线的接收角度。
  9. 如权利要求8所述的监护设备,其特征在于,所述天线支架可相对于监护设备360度转动,而用于控制所述发射天线和接收天线朝向任意方向,以调节所述发射天线的发射角度以及接收天线的接收角度。
  10. 如权利要求6所述的监护设备,其特征在于,所述监护设备为手持式监护设备,所述手持式监护设备包括手持端以及远离手持端的信号收发端,所述发射天线和接收天线设置于所述手持式监护设备的信号收发端。
  11. 如权利要求6所述的监护设备,其特征在于,所述发射天线和接收天线构成单发单收天线或多发多收天线。
  12. 如权利要求6所述的监护设备,其特征在于,所述射频发射组件还包括合成器,所述合成器与所述发射天线耦接,用于产生特定频率的电磁波,并通过发射天线发射出来;所述接收天线用于接收反射波束,所述射频接收组件还包括混频器,所述混频器耦接于所述接收天线和所述第一信号处理电路之间,用于将所述接收天线接收的反射波束进行混频处理后发送至所述第一信号处理电路,所述第一信号处理电路用于将所述经过混频处理后的反射波束转换为第一类生理参数信号。
  13. 如权利要求12所述的监护设备,其特征在于,所述射频接收组件还包括低通滤波器,所述低通滤波器耦接于所述混频器和所述第一信号处理电路之间,用于对经过混频处理后的反射波束进行滤波,所述第一信号处理电路为用于将所述经过混频处理以及滤波后的反射波束转换为第一类生理参数信号。
  14. 如权利要求2所述的监护设备,其特征在于,所述处理器包括第一类生理参数信号处理器、第二类生理参数信号处理器以及主控制器,所述第一类 生理参数信号处理器用于分析所述第一类生理参数信号得到第一类生理参数值并传送给主控制器,所述第二类生理参数信号处理器用于分析所述第二类生理参数信号得到第二类生理参数值并传送给主控制器,所述主控制器用于控制输出显示所述第一类生理参数值以及第二类生理参数值。
  15. 如权利要求14所述的监护设备,其特征在于,所述监护设备包括电路板,所述电路板上设置有隔离带,所述隔离带将所述电路板隔离出一隔离区以及一非隔离区,所述第二类生理参数信号处理器、至少一个参数测量传感器以及第二信号处理电路设置于所述隔离区,所述第一类生理参数信号处理器、主控制器、射频发射组件、射频接收组件、第一信号处理电路设置于所述非隔离区。
  16. 如权利要求15所述的监护设备,其特征在于,所述监护设备还包括设置于非隔离区的供电电源电路以及设置于隔离带上的隔离电源电路,所述供电电源电路用于接入市电电压并转换为第一电压,所述隔离电源电路用于将市电电压进行降压后为设置于隔离区上的包括第二类生理参数信号处理器、至少一个参数测量传感器以及第二信号处理电路在内的元件进行供电。
  17. 如权利要求15所述的监护设备,其特征在于,所述隔离带上设置有隔离通信接口,所述第二类生理参数信号处理器通过所述隔离通信接口与所述主控制器建立通信连接,而将所述第二类生理参数值传送给主控制器。
  18. 如权利要求6所述的监护设备,其特征在于,所述监护设备为血压计,所述发射天线和接收天线设置于所述血压计的刻度面板的非显示区域。
  19. 如权利要求1-18任一项所述的监护设备,其特征在于,所述特定频率的电磁波为毫米波。
PCT/CN2020/093526 2020-05-29 2020-05-29 具有非接触式生理体征监测功能的监护设备 WO2021237742A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/093526 WO2021237742A1 (zh) 2020-05-29 2020-05-29 具有非接触式生理体征监测功能的监护设备
CN202080100656.4A CN115515481A (zh) 2020-05-29 2020-05-29 具有非接触式生理体征监测功能的监护设备
EP20938410.6A EP4159115A4 (en) 2020-05-29 2020-05-29 MONITORING DEVICE HAVING A CONTACTLESS PHYSIOLOGICAL SIGN MONITORING FUNCTION
US18/070,394 US20230097852A1 (en) 2020-05-29 2022-11-28 Monitoring device having non-contact physiological parameter monitoring function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093526 WO2021237742A1 (zh) 2020-05-29 2020-05-29 具有非接触式生理体征监测功能的监护设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/070,394 Continuation US20230097852A1 (en) 2020-05-29 2022-11-28 Monitoring device having non-contact physiological parameter monitoring function

Publications (1)

Publication Number Publication Date
WO2021237742A1 true WO2021237742A1 (zh) 2021-12-02

Family

ID=78745415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093526 WO2021237742A1 (zh) 2020-05-29 2020-05-29 具有非接触式生理体征监测功能的监护设备

Country Status (4)

Country Link
US (1) US20230097852A1 (zh)
EP (1) EP4159115A4 (zh)
CN (1) CN115515481A (zh)
WO (1) WO2021237742A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230008697A1 (en) * 2021-07-11 2023-01-12 Wanshih Electronic Co., Ltd. Millimeter wave radar apparatus determining vital sign

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014737A (zh) * 2008-05-09 2011-04-13 皇家飞利浦电子股份有限公司 患者的非接触呼吸监测和用于光电容积描记术测量的光学传感器
CN102512148A (zh) * 2006-03-06 2012-06-27 森赛奥泰克公司 超宽带监视系统和天线
CN109171691A (zh) * 2018-10-24 2019-01-11 重庆科技学院 一种睡眠呼吸检测系统及其检测方法
US20190054347A1 (en) * 2015-08-18 2019-02-21 Michael Saigh Wearable sports guidance communication system and developers tool kit
CN110250774A (zh) * 2018-04-08 2019-09-20 吉林工程技术师范学院 一种实现健康数据监控的智能化大学生公寓家具系统
US20190336085A1 (en) * 2018-04-10 2019-11-07 Hill-Rom Services, Inc. Patient risk assessment based on data from multiple sources in a healthcare facility
CN110772233A (zh) * 2019-10-31 2020-02-11 前线医疗科技(深圳)有限公司 一种野外加固型跨平台便携式生命体征监测系统
CN111157960A (zh) * 2019-12-03 2020-05-15 南京汇君半导体科技有限公司 基于毫米波雷达的生命体征信号增强方法及设备、提取方法及设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070252919A1 (en) * 2006-04-27 2007-11-01 Mcgreevy Roy L Remotely controlled adjustable flat panel display support system
TWM348883U (en) * 2008-09-10 2009-01-11 Amtran Technology Co Ltd Electronic device
EP3386384A4 (en) * 2015-12-10 2019-07-24 Raytelligence AB RADAR DETECTOR FOR MONITORING BODY FUNCTIONS
WO2018033574A1 (en) * 2016-08-16 2018-02-22 Resmed Sensor Technologies Limited Digital radio frequency motion detection sensor
KR101787603B1 (ko) * 2017-04-24 2017-10-19 정선욱 모니터의 위치 조절장치
KR102350493B1 (ko) * 2017-05-19 2022-01-14 삼성전자주식회사 수면과 관련된 정보를 결정하기 위한 전자 장치 및 방법
EP3664694A4 (en) * 2017-08-10 2021-07-28 Zoll Medical Israel Ltd. SYSTEMS, DEVICES AND METHODS FOR THE PHYSIOLOGICAL MONITORING OF PATIENTS
WO2019113332A1 (en) * 2017-12-06 2019-06-13 Praesidium, Inc. Home occupant detection and monitoring system
US10310073B1 (en) * 2018-02-07 2019-06-04 Infineon Technologies Ag System and method for determining engagement level of a human being using a millimeter-wave radar sensor
JP2019180939A (ja) * 2018-04-12 2019-10-24 オムロン株式会社 生体情報測定装置、方法およびプログラム
DE202018006171U1 (de) * 2018-09-25 2020-01-07 Sick Ag Vorrichtung
EP3643233B1 (en) * 2018-10-25 2021-09-08 Tata Consultancy Services Limited Method and system for health monitoring using amplitude modulated continuous wave microwave signal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102512148A (zh) * 2006-03-06 2012-06-27 森赛奥泰克公司 超宽带监视系统和天线
CN102014737A (zh) * 2008-05-09 2011-04-13 皇家飞利浦电子股份有限公司 患者的非接触呼吸监测和用于光电容积描记术测量的光学传感器
US20190054347A1 (en) * 2015-08-18 2019-02-21 Michael Saigh Wearable sports guidance communication system and developers tool kit
CN110250774A (zh) * 2018-04-08 2019-09-20 吉林工程技术师范学院 一种实现健康数据监控的智能化大学生公寓家具系统
US20190336085A1 (en) * 2018-04-10 2019-11-07 Hill-Rom Services, Inc. Patient risk assessment based on data from multiple sources in a healthcare facility
CN109171691A (zh) * 2018-10-24 2019-01-11 重庆科技学院 一种睡眠呼吸检测系统及其检测方法
CN110772233A (zh) * 2019-10-31 2020-02-11 前线医疗科技(深圳)有限公司 一种野外加固型跨平台便携式生命体征监测系统
CN111157960A (zh) * 2019-12-03 2020-05-15 南京汇君半导体科技有限公司 基于毫米波雷达的生命体征信号增强方法及设备、提取方法及设备

Also Published As

Publication number Publication date
CN115515481A (zh) 2022-12-23
US20230097852A1 (en) 2023-03-30
EP4159115A4 (en) 2023-10-18
EP4159115A1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
US20240112556A1 (en) Modular patient monitor
US20140058213A1 (en) Vital Signs Monitor for Controlling Power-Adjustable Examination Table
US9713453B2 (en) Method and apparatus for high reliability wireless communications
US20130158364A1 (en) Device Embodied to Measure Vital Parameters of a Patient
WO2018018923A1 (zh) 平躺式体征检测装置及方法
US10265050B2 (en) Dual display presentation apparatus for portable medical ultrasound scanning systems
US20230097852A1 (en) Monitoring device having non-contact physiological parameter monitoring function
WO2017096694A1 (zh) 一种手持式心血管健康监测装置
WO2017009697A1 (en) A measuring device and a system for comprehensive screening for children and adolescents
WO2018018922A1 (zh) 平躺式体征检测一体机
JP7086441B1 (ja) 携帯型非接触生体信号検出装置、運転者モニター装置、入場者スクリーニング・システム、及び家庭用ヘルスケアシステム
US8195279B2 (en) Portable electrocardiogram
CN104434220A (zh) 超音波扫描系统
CN206902859U (zh) 可提供实时心功能监测的智能马桶
CN107137076B (zh) 一种心电监测装置及基于该心电监测装置的电极定位方法
US11005575B2 (en) Wireless sensors in medical environments
TW201940126A (zh) 感測裝置
JP2004230158A (ja) 患者モニタ
CN210697675U (zh) 超声监护一体机
JPH01223934A (ja) 健康管理測定装置
CN214073362U (zh) 辅助定位的超声诊断仪
CN107550477B (zh) 一种生物体征检测装置
US20200275908A1 (en) Ultrasonic probe and ultrasonic measurement system
CN113729652A (zh) 分诊台监测系统及非接触式生理体征监测设备
US11602297B2 (en) Device for recording a multi-channel-ECG and a method there for

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020938410

Country of ref document: EP

Effective date: 20230102