WO2021237577A1 - 图像处理方法、装置、可移动平台和存储介质 - Google Patents

图像处理方法、装置、可移动平台和存储介质 Download PDF

Info

Publication number
WO2021237577A1
WO2021237577A1 PCT/CN2020/092952 CN2020092952W WO2021237577A1 WO 2021237577 A1 WO2021237577 A1 WO 2021237577A1 CN 2020092952 W CN2020092952 W CN 2020092952W WO 2021237577 A1 WO2021237577 A1 WO 2021237577A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal value
range
image
frame
signal
Prior art date
Application number
PCT/CN2020/092952
Other languages
English (en)
French (fr)
Inventor
郑子翔
邵明
胡涛
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080004980.6A priority Critical patent/CN112689988A/zh
Priority to PCT/CN2020/092952 priority patent/WO2021237577A1/zh
Publication of WO2021237577A1 publication Critical patent/WO2021237577A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation

Definitions

  • the embodiments of the present invention relate to the field of image processing technology, and in particular to an image processing method, device, removable platform, and storage medium.
  • the focusing method of the camera is gradually changing.
  • Traditional cameras use a similar range finding method to achieve focusing.
  • This focusing method belongs to active focusing and is prone to errors.
  • Subsequent passive focusing such as Contrast Detection Auto Focus (CDAF)
  • CDAF Contrast Detection Auto Focus
  • This focusing method is based on lens imaging, it is compared to active focusing. In other words, the focus accuracy has been improved, and it is not easy to make mistakes.
  • the embodiments of the present invention provide an image processing method, device, movable platform, and storage medium to solve the problem that due to noise interference during the contrast focusing process, the focus may not be accurate enough or the focus speed may be slow. , Leading to technical problems of low focusing efficiency and accuracy.
  • the first aspect of the embodiments of the present invention provides an image processing method, including:
  • a second aspect of the embodiments of the present invention provides an image processing device, including:
  • Memory used to store computer programs
  • the processor is configured to run a computer program stored in the memory to realize:
  • a third aspect of the embodiments of the present invention provides an image processing device, including:
  • the acquisition circuit is used to acquire multiple frames of images taken during the movement of the lens
  • the filter circuit is used to filter each frame of image acquired through the filter to obtain the signal value corresponding to each pixel in at least some of the pixels of each frame of image;
  • a processing circuit for each frame of image, according to the obtained signal value corresponding to each pixel point, perform noise suppression processing on each frame of image, so as to suppress the signal value in the first range;
  • the focusing circuit is used to perform focusing processing according to the correction signal value obtained after noise suppression processing is performed on each frame of image.
  • a fourth aspect of the embodiments of the present invention provides a movable platform, including:
  • the image processing device described in the second aspect is installed on the body.
  • a fifth aspect of the embodiments of the present invention provides a movable platform, including:
  • the image processing device is installed on the body.
  • a sixth aspect of the embodiments of the present invention provides a computer-readable storage medium in which program instructions are stored, and the program instructions are used to implement the image processing method described in the first aspect.
  • the image processing method, device, movable platform and storage medium provided by the embodiments of the present invention can effectively reduce the influence of noise interference on the image, improve the efficiency and accuracy of focusing, and further improve the image shooting effect.
  • FIG. 1 is a schematic flowchart of an image processing method provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a corresponding relationship between a corrected signal value and a signal value provided by an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another corresponding relationship between a corrected signal value and a signal value provided by an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of another image processing method provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a corresponding relationship between a corrected signal value and a signal value determined by a piecewise linear function according to an embodiment of the present invention
  • FIG. 6 is another schematic diagram of the corresponding relationship between the corrected signal value and the signal value determined by a piecewise linear function according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of comparison between a focal value curve that has undergone noise suppression processing and a focal value curve that has not undergone noise suppression processing according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of an image processing device provided by an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another image processing apparatus provided by an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another movable platform provided by an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of another image processing method provided by an embodiment of the present invention.
  • the embodiment of the present invention provides an image processing method, which can be applied to a photographing device, and the photographing device may be any device with a function of photographing images, such as a camera, a drone, a mobile phone, a monitoring device, and the like.
  • the photographing device may include a lens, a focus motor, an image sensor, etc.
  • the light generated or reflected by an object passes through the lens and then condenses on the image sensor.
  • the image sensor then converts the light signal into an electrical signal to form an image.
  • the focus motor can drive the lens to move, thereby changing the object distance, resulting in continuous changes in the sharpness of the object being shot in the image.
  • the movable range of the lens can be determined by the stroke of the focus motor, and the movement of the lens can be done manually or automatically.
  • the image can be filtered through a filter, and focus processing is performed according to the filtered result to determine the in-focus position, thereby obtaining a clear image.
  • the image can be Fourier transformed to obtain frequency domain information about the image, digital filtering is performed according to the frequency domain information of the image, and the signal in the effective frequency band in the image is extracted to obtain the image The signal value corresponding to each pixel.
  • the image can be filtered through a filter matrix, that is, a convolution kernel. Specifically, for each pixel of the image, the pixel value matrix corresponding to the neighboring pixel can be combined with The filter matrix performs convolution operation to obtain the signal value corresponding to the pixel.
  • the signal value corresponding to each pixel in the image can be obtained, and the signal values are accumulated to obtain the focal value corresponding to the image, which is used to reflect the clarity of the image.
  • the focal value of the image When shooting an object, multiple frames of images taken during lens movement can be obtained. For a single frame of image, the larger the focal value of the image, the clearer the image.
  • the image processing method provided by the embodiment of the present invention can perform noise suppression processing on the signal value corresponding to each pixel point obtained after filtering processing, thereby improving the focusing effect.
  • the execution subject of the image processing method may specifically be an image processing device in a photographing device. It is understood that the image processing device may be implemented as software or a combination of software and hardware.
  • FIG. 1 is a schematic flowchart of an image processing method provided by an embodiment of the present invention. As shown in FIG. 1, this embodiment provides an image processing method, and the image processing method may include:
  • Step 101 Acquire multiple frames of images taken during the movement of the lens.
  • Step 102 Filter each acquired frame of image through a filter to obtain a signal value corresponding to each pixel in at least some of the pixels of each frame of image.
  • each pixel in the image may be passed through a filter to obtain a signal value corresponding to each pixel, so as to obtain a signal value corresponding to each pixel in all pixels of the image.
  • At least some of the pixels may be pixels in the region of interest in the image.
  • filtering each frame of image acquired through a filter to obtain a signal value corresponding to each pixel in at least some of the pixels of each frame of image may include: filtering each frame acquired through the filter The image is filtered to obtain the signal value corresponding to each pixel of the region of interest in each frame of the image.
  • the region of interest can be manually selected by the user by clicking on it, or a region that meets a preset condition can be selected, for example, the region where the foreground object is located is taken as the region of interest.
  • Step 103 For each frame of image, perform noise suppression processing on each frame of image according to the obtained signal value corresponding to each pixel point, so as to suppress the signal value in the first range.
  • the function of filtering is to allow signals within the target range to pass, and to filter out signals outside the target range, which can suppress noise to a certain extent.
  • the signal outside the target range may not be completely attenuated to 0 after passing through the filter. Therefore, in this embodiment, further noise suppression processing can be performed on the filtered signal value.
  • the filter may be a filter that allows high-frequency signals to pass.
  • the frequency band included in the high-frequency signal can be designed according to shooting requirements.
  • the high-frequency signal can be a signal with a frequency between 0.5 and 0.8, where the frequency refers to the frequency after the high-frequency signal is normalized.
  • high-frequency signals can correspond to the texture details in the image.
  • the noise suppression processing in this embodiment can be used to suppress low-frequency signals in the image, thereby more highlighting the texture details in the image.
  • the signal values in the first range may be suppressed, where the first range may be a range smaller than the first threshold, so as to compare the value obtained after the filtering process. Small signal values are suppressed.
  • the first threshold value may be a fixed value; or, the first threshold value may be the maximum signal value obtained after filtering multiplied by a proportional coefficient, and the proportional coefficient is greater than 0 and less than 1; or, the filtered values may be The signal value is normalized, and noise suppression is performed according to the normalized signal value to suppress signal values less than the first threshold.
  • the first threshold can be greater than 0 and less than 1, for example, the first threshold can be Is 0.02.
  • Step 104 Perform focusing processing according to the corrected signal value obtained after noise suppression processing is performed on each frame of image.
  • each pixel gets its corresponding correction signal value.
  • the signal value obtained after noise suppression processing may be accumulated to obtain the corrected signal value.
  • the focus processing can be implemented according to the correction signal value corresponding to each frame of image.
  • the specific implementation method of performing focus processing based on the corrected signal value reference may be made to the method of performing focus processing directly based on the signal value.
  • performing focusing processing based on the correction signal value obtained after noise suppression processing is performed on each frame of image may include: for each frame of image, calculating the corresponding focus value of the image according to the correction signal value corresponding to the image; Focusing is performed on the focal value corresponding to the frame image.
  • the image with the largest focal value can be found from the multiple frames of images, and the lens can be moved to the position corresponding to the image with the largest focal value to achieve focusing.
  • FIG. 12 is a schematic flowchart of another image processing method according to an embodiment of the present invention. Steps 1201 to 1202 in FIG. 12 are similar to steps 101 to 102 in FIG. 1. For the sake of brevity, the details are not repeated here. At this time, after step S1202, the method in this embodiment may further include:
  • Step 1203 For each frame of image, according to the obtained signal value corresponding to each pixel point, perform noise suppression processing in a different manner on each frame of image, so as to suppress the signal value in the first range.
  • performing noise suppression processing in different ways on each frame of image may include: performing a first noise suppression processing on signal values in a first range, and performing a second noise suppression processing on signal values in a second range.
  • Noise suppression processing may include: performing a first noise suppression processing on signal values in a first range, and performing a second noise suppression processing on signal values in a second range.
  • Noise suppression processing may include: performing a first noise suppression processing on signal values in a first range, and performing a second noise suppression processing on signal values in a second range.
  • the first noise suppression process and the second noise suppression process are respectively performed on the signal values in the first range to obtain the first signal value after the first noise suppression process and the first signal value after the second noise suppression process.
  • Two signal value Two signal value.
  • the processing methods of the first noise suppression processing and the second noise suppression processing are different.
  • different signal values after noise suppression processing can be selected to obtain the corrected signal value.
  • Step 1204 Accumulate the corrected signal values obtained after the noise suppression processing in the different manners.
  • the signal value obtained after the noise suppression processing can be obtained.
  • the corrected signal value can be obtained by accumulating the signal value obtained after noise suppression processing.
  • Step 1205 Perform focusing processing according to the corrected signal value.
  • Step 1204 in FIG. 12 is similar to step 104 in FIG. 1. For the sake of brevity, I won't repeat it.
  • high-frequency filtering can be performed on the image, and noise suppression can be performed on the filtered signal to suppress low-frequency signals.
  • the low-frequency signals may come from the low-frequency signals corresponding to the object to be photographed. Noise in the environment, or device noise of the image sensor, etc., so as to highlight the texture details of the image, improve the image effect of the shot, increase the robustness and noise resistance of the focusing process, and improve the focusing accuracy, especially in the night scene where the noise is relatively high. Many environments, or scenes where the texture details of the object being photographed are not much, can greatly improve the accuracy of focusing.
  • the above uses high-frequency filtering as an example to describe the specific implementation process of noise suppression processing on the filtered signal.
  • the specific implementation principles and methods are similar to the high frequency filtering scenario, and will not be omitted here Go into details.
  • the image processing method provided in this embodiment can obtain multiple frames of images taken during the lens movement process, and filter each frame of the obtained image through a filter to obtain each pixel in at least some of the pixels of each frame of image
  • the corrected signal value obtained after the image is subjected to noise suppression processing is subjected to focus processing, which can effectively reduce noise interference, improve the efficiency and accuracy of focusing, and improve the shooting effect of the image.
  • performing noise suppression processing on each frame of image in this embodiment to suppress the signal value in the first range may include:
  • the signal values in the first range and/or the signal values in the second range are processed so that the correction ratio corresponding to the signal values in the first range is smaller than the signal value in the second range Corresponding correction ratio; wherein, the correction ratio corresponding to the signal value is the ratio of the correction signal value to the signal value corresponding to the signal value after noise suppression processing.
  • suppressing the signal value in the first range can refer to making the signal value in the first range smaller.
  • the smaller here can be a relative concept, which refers to relative to other signal values. Said that the attenuation is greater.
  • the correction ratio can be used to measure the attenuation degree of the signal value, and the lower the value of the correction ratio, the greater the attenuation degree.
  • the signal value in the first range may be smaller than the signal value in the second range, so as to achieve greater attenuation of smaller signal values.
  • the signal value in the first range and/or the signal value in the second range is processed, so that the signal value in the first range is corrected
  • the ratio is smaller than the correction ratio corresponding to the signal value in the second range, which may include: in each signal value corresponding to the image, attenuate the signal value in the first range, and/or perform the signal value in the second range Enhanced.
  • Attenuating the signal value in the first range includes: multiplying the signal value in the first range by a first coefficient K1, at this time, 0 ⁇ K1 ⁇ 1.
  • Enhancing the signal value in the second range includes: multiplying the signal value in the second range by a second coefficient K2, at this time, K2>1.
  • the corrected signal value obtained by attenuating the signal value may be smaller than the signal value, and/or the corrected signal value obtained by enhancing the signal value may be greater than the signal value.
  • the signal value for each signal value obtained after filtering, if the signal value is in the first range, it can be multiplied by a first coefficient less than 1 to obtain a smaller corrected signal value. If the signal value is in the second range, Then, it can be multiplied by a second coefficient greater than 1, to obtain a larger correction signal value, so as to suppress the signal value in the first range.
  • the signal values in the first range and/or the signal values in the second range are processed so that the signal values in the first range correspond to
  • the correction ratio is smaller than the correction ratio corresponding to the signal value in the second range, which may include: in each signal value corresponding to the image, the signal value in the first range and the signal value in the second range are both attenuated; The attenuation degree of the signal value in one range is greater than the attenuation degree of the signal value in the second range.
  • the signal value can be controlled to be multiplied by a first coefficient less than 1 to attenuate the signal. If the signal value is within the second range , You can control the signal value to be multiplied by a second coefficient less than 1, and the second coefficient can be greater than the first coefficient; or, if the signal value is within the first range, you can control the signal value to subtract the first value to perform the signal Attenuation, if the signal value is within the second range, the signal value can be controlled to subtract the second value, and the first value can be greater than the second value. Therefore, the attenuation degree of the signal value in the second range is smaller than the attenuation degree of the signal value in the first range, so as to suppress the signal value in the first range.
  • the signal value in the first range and/or the signal value in the second range are processed, so that the signal value in the first range corresponds to The correction ratio is smaller than the correction ratio corresponding to the signal value in the second range, which may include: in each signal value corresponding to the image, the signal value in the first range and the signal value in the second range are both enhanced; The enhancement degree of the signal value in one range is smaller than the enhancement degree of the signal value in the second range.
  • the signal value can be controlled to be multiplied by a third coefficient greater than 1 to enhance the signal. If the signal value is within the second range , The signal value can be controlled to be multiplied by a fourth coefficient greater than 1, and the fourth coefficient can be greater than the third coefficient. Or, if the signal value is within the first range, the signal value can be controlled to add a third value to enhance the signal, and if the signal value is within the second range, the signal value can be controlled to add a fourth value.
  • the third value may be smaller than the fourth value, so that the enhancement degree of the signal value in the second range is greater than the enhancement degree of the signal value in the first range, so as to enhance the signal value in the first range.
  • the image after the image is acquired, it can pass through the filter pixel by pixel to output the pixel-by-pixel signal value, and then perform the above noise suppression processing on each signal, and perform the noise suppression processing on the noise suppression processing in one frame of the image. All the correction signal values are accumulated to generate a focus value, and then focus processing can be performed according to the focus value corresponding to each frame of image.
  • FIG. 2 is a schematic diagram of a corresponding relationship between a corrected signal value and a signal value provided by an embodiment of the present invention.
  • the abscissa is the signal value
  • the ordinate is the corrected signal value.
  • FIG. 3 is a schematic diagram of another corresponding relationship between a corrected signal value and a signal value provided by an embodiment of the present invention.
  • the abscissa is the signal value
  • the ordinate is the corrected signal value.
  • FIG. 4 is a schematic flowchart of another image processing method provided by an embodiment of the present invention.
  • the image processing method in this embodiment may include:
  • Step 401 Acquire multiple frames of images taken during the movement of the lens.
  • Step 402 Perform filtering processing on each acquired frame of image through a filter to obtain a signal value corresponding to each pixel in at least a part of the pixels of each frame of image.
  • step 401 to step 402 are similar to step 101 to step 102 of the foregoing embodiment, and will not be repeated here.
  • Step 403 For each frame of image, according to the obtained signal value of each pixel point, noise suppression processing is performed on each frame of image through a piecewise linear function, so as to suppress the signal value in the first range.
  • the piecewise linear function may include at least two linear functions, and for signal values in different intervals, different linear functions are used to calculate the corresponding correction signal values to implement noise suppression processing.
  • This embodiment provides an optional piecewise linear function:
  • x is the signal value before noise suppression processing, specifically may be the signal value after normalization
  • y may be the corrected signal value after noise suppression processing.
  • the corresponding correction signal value can be calculated by the first linear function, that is, equation (1), so as to suppress the signal value in the first range.
  • the corresponding correction signal value can be calculated through the second linear function, that is, equation (2), so as to enhance the signal value in the second range.
  • the corresponding corrected signal value is calculated through a third linear function, where the signal value in the third range is a signal greater than the second threshold.
  • the signal value in the first range is a signal value smaller than the first threshold
  • the signal value in the second range is larger than the first threshold and smaller than the second threshold.
  • the first threshold may be x 0
  • the second threshold may be x 1 .
  • the first threshold x 0 may be 0.02
  • the second threshold x 1 may be 0.2.
  • calculating the corresponding corrected signal value through the first linear function may include: for the signal value in the first range, multiplying the signal value by the first proportional coefficient to obtain Corresponding correction signal value.
  • the first proportional coefficient may be the slope corresponding to the first linear function, that is, k 0 in formula (1).
  • calculating the corresponding corrected signal value through the second linear function may include: for the signal value in the second range, multiplying the difference between the signal value and the first threshold Use the second proportional coefficient to obtain the first product; multiply the first threshold by the first proportional coefficient to obtain the second product; add the first product and the second product to obtain the corrected signal value corresponding to the signal value.
  • the second proportional coefficient may be the slope corresponding to the second linear function, that is, k 1 in formula (1).
  • the first proportional coefficient may be smaller than the second proportional coefficient, that is, the slope k 0 corresponding to the first linear function may be smaller than the slope k 1 corresponding to the second linear function, so that the signal value in the first range is suppressed.
  • the second proportionality factor is greater than 1.
  • calculating the corresponding corrected signal value through the third linear function may include: multiplying the difference between the signal value in the third range and the second threshold by the third ratio Coefficient, get the third product; multiply the difference between the second threshold and the first threshold by the second proportional coefficient to get the fourth product; multiply the second product (multiply the first threshold by the first proportional coefficient), and the third product Add to the fourth product to obtain the corrected signal value corresponding to the signal value.
  • the third proportionality coefficient may be greater than the first proportionality coefficient and smaller than the second proportionality coefficient, that is, the slope k 2 corresponding to the third linear function is smaller than the slope k 1 corresponding to the second linear function, and is greater than the slope k 0 corresponding to the first linear function.
  • the third proportionality factor is 1.
  • the signal value in the first range can correspond to the noise signal in the image, so the first scale factor can be the smallest to realize the noise suppression function.
  • the signal value in the second range and the signal value in the third range can both correspond to the effective signal in the image, because the signal value in the third range is greater than the signal value in the second range. Therefore, the signal value in the second range
  • the signal value can be multiplied by a larger scale factor (k 1 >k 2 ), and the signal value in the third range does not need to be enhanced too much to effectively improve the accuracy of the focus value.
  • the first proportional coefficient, the second proportional coefficient, and the third proportional coefficient can be set according to actual needs.
  • FIG. 6 is another schematic diagram of the corresponding relationship between the corrected signal value and the signal value determined by the piecewise linear function according to an embodiment of the present invention.
  • the first proportional coefficient k 0 can be 0, which realizes the comparison of smaller signal values. The suppression can avoid the influence of the small signal value superimposed on the focus value, effectively reduce noise interference, and improve the focus accuracy.
  • the second scale factor k 1 may be greater than 0, for example, k 1 may be 1.5, so as to enhance the effective signal and further improve the focus accuracy.
  • the third proportional coefficient k 2 may be 1. Setting the third proportional coefficient to 1, can reduce a parameter when calculating the corrected signal value, effectively saving registers, saving computing resources, and improving the efficiency of noise suppression processing.
  • signal suppression functions may be used.
  • the activation function (Relu function or Leak Relu function) commonly used in artificial intelligence.
  • Step 404 Perform focus processing according to the corrected signal value obtained after noise suppression processing is performed on each frame of image.
  • step 404 the specific implementation principle and process of step 404 can be referred to step 104 in the foregoing embodiment, which will not be repeated here.
  • the image processing method provided in this embodiment uses a piecewise linear function to perform noise suppression processing on the signal value obtained after filtering. For multiple segmented intervals, the corresponding linear function is used to perform attenuation or enhancement processing respectively.
  • the function is defined in the entire The domain is continuous, so that the corrected signal value after noise suppression processing is smoother, and the image shooting effect is effectively improved.
  • FIG. 7 is a schematic diagram of comparison between a focal value curve after noise suppression processing and a focal value curve without noise suppression processing provided by an embodiment of the present invention.
  • the abscissa is the image number, and the ordinate is the focal value corresponding to the image.
  • the abscissa is from 1 to 41, indicating that when shooting the object to be shot, a total of 41 frames of images were taken during the movement of the lens back and forth. It should be noted that because each frame of image corresponds to a different lens position, the sequence number 1 to the sequence number 41 are used to represent the lens position in FIG. 7. That is to say, the abscissa in FIG.
  • the corresponding focal value can be calculated to form a focal value curve, where the dotted line represents the focal value curve without noise suppression processing, and the solid line represents the focal value curve after noise suppression processing.
  • Noise suppression processing is to suppress small signal values. Therefore, if the signal value obtained after filtering a frame of image is very small, then after suppressing the small signal value, the overall focus value will also be relative to the noise It becomes lower before the suppression process. If the image contains more larger signal values after filtering, the overall focus value will become higher.
  • the image corresponds to a large number of signals, so the effect of gaining the focus value can be obtained.
  • the smaller signal value is more, so the effect of suppressing the focus value can be obtained . So that after the noise suppression processing, the focus value at the out-of-focus position is lower, and the focus value changes more sharply at the in-focus position and its vicinity, which effectively improves the focusing efficiency.
  • FIG. 8 is a schematic structural diagram of an image processing device provided by an embodiment of the present invention. referring to FIG. 8, the image processing device can execute the image processing method corresponding to FIG. 1, and the image processing device may include:
  • the memory 12 is used to store computer programs
  • the processor 11 is configured to run a computer program stored in the memory 12 to realize:
  • the focus processing is performed according to the corrected signal value obtained after the noise suppression processing is performed on each frame of the image.
  • the structure of the image processing apparatus may further include a communication interface 13 for communicating with other devices or a communication network.
  • the processor 11 is further configured to: accumulate the signal value obtained after noise suppression processing to obtain the corrected signal value.
  • noise suppression processing is performed on each frame of image according to the obtained signal value of each pixel point to suppress the signal value in the first range, the processing The device 11 is also used to: perform a first noise suppression process on the signal value in the first range, and perform a second noise suppression process on the signal value in the second range, wherein the first noise suppression process and the second noise suppression process Is handled differently.
  • the filter is a filter that allows high-frequency signals to pass through, and the noise suppression processing is used to suppress low-frequency signals in the image.
  • the processor 11 when noise suppression processing is performed on each frame of image to suppress the signal value in the first range, the processor 11 is further configured to: Signal values in a range and/or signal values in a second range are processed so that the correction ratio corresponding to the signal value in the first range is smaller than the correction ratio corresponding to the signal value in the second range; where the signal value corresponds to The correction ratio is the ratio of the correction signal value to the signal value corresponding to the signal value after noise suppression processing.
  • the signal value in the first range is smaller than the signal value in the second range.
  • the processor 11 is configured to: among the signal values corresponding to the image, attenuate the signal value in the first range, and/or to attenuate the signal value in the second range The signal value is enhanced.
  • the processor 11 when attenuating the signal value in the first range, the processor 11 is configured to: multiply the signal value in the first range by the first coefficient, so as to achieve the The signal value is attenuated, where the first coefficient is greater than zero and less than 1.
  • the processor 11 when the signal value in the second range is enhanced, the processor 11 is configured to: multiply the signal value in the second range by a second coefficient, so as to realize the enhancement of the signal value in the second range The signal value is enhanced, where the second coefficient is greater than one.
  • the corrected signal value obtained by attenuating the signal value is smaller than the signal value, and/or the corrected signal value obtained by enhancing the signal value is greater than the signal value.
  • the processor 11 is configured to: in each signal value corresponding to the image, attenuate both the signal value in the first range and the signal value in the second range; wherein , The attenuation degree of the signal value in the first range is greater than the attenuation degree of the signal value in the second range.
  • the processor 11 is configured to: in each signal value corresponding to the image, enhance both the signal value in the first range and the signal value in the second range; wherein , The enhancement degree of the signal value in the first range is smaller than the enhancement degree of the signal value in the second range.
  • the processor 11 when noise suppression processing is performed on each frame of image to suppress the signal value in the first range, the processor 11 is configured to: perform a piecewise linear function on each frame of image Noise suppression processing to suppress signal values in the first range.
  • the processor 11 when noise suppression processing is performed on each frame of image through a piecewise linear function to suppress the signal value in the first range, the processor 11 is configured to: For the signal value, calculate the corresponding correction signal value through the first linear function to suppress the signal value in the first range; and, for the signal value in the second range, calculate the corresponding correction signal value through the second linear function, To enhance the signal value in the first range; wherein the slope corresponding to the first linear function is smaller than the slope corresponding to the second linear function.
  • the signal value in the first range is a signal value smaller than the first threshold; the signal value in the second range is larger than the first threshold and smaller than the second threshold.
  • the processor 11 when calculating the corresponding corrected signal value by the first linear function for the signal value in the first range, the processor 11 is configured to: for the signal value in the first range, multiply the signal value Using the first proportional coefficient, the corresponding correction signal value is obtained.
  • the first scale factor is zero.
  • the processor 11 when calculating the corresponding corrected signal value by the second linear function for the signal value in the second range, the processor 11 is configured to: for the signal value in the second range, add the signal value and The difference of the first threshold is multiplied by the second proportional coefficient to obtain the first product; the first threshold is multiplied by the first proportional coefficient to obtain the second product; the first product and the second product are added together to obtain the corresponding signal value Correct the signal value; where the first proportional coefficient is smaller than the second proportional coefficient.
  • the second scale factor is greater than one.
  • the processor 11 is configured to: for the signal value in the third range, calculate the corresponding correction signal value through a third linear function; wherein the signal value in the third range is greater than the second threshold Signal value; the slope corresponding to the third linear function is smaller than the slope corresponding to the second linear function, and larger than the slope corresponding to the first linear function.
  • the processor 11 when calculating the corresponding corrected signal value by the third linear function for the signal value in the third range, is configured to: for the signal value in the third range, compare the signal value with Multiply the difference between the second threshold and the third proportional coefficient to obtain the third product; multiply the difference between the second threshold and the first threshold by the second proportional coefficient to obtain the fourth product; add the second and third products to the sum The fourth product is added to obtain the corrected signal value corresponding to the signal value; wherein, the third proportional coefficient is greater than the first proportional coefficient and smaller than the second proportional coefficient.
  • the third scale factor is 1.
  • the processor 11 when each frame of image acquired is filtered by a filter to obtain a signal value corresponding to each pixel in at least some of the pixels of each frame of image, the processor 11 is configured to: Filtering is performed on each frame of the acquired image through the filter, and the signal value corresponding to each pixel of the region of interest in each frame of image is obtained.
  • the processor 11 when performing focusing processing based on the correction signal value obtained after noise suppression processing is performed on each frame of image, the processor 11 is configured to: for each frame of image, according to the correction signal value corresponding to the image, Calculate the focal value corresponding to the image; perform focus processing according to the focal value corresponding to each frame of image.
  • the image processing device shown in Figure 8 can execute the methods of the embodiments shown in Figures 1 to 6, and 12.
  • FIG. 9 is a schematic structural diagram of another image processing device provided by an embodiment of the present invention. referring to FIG. 9, the image processing device can execute the image processing method corresponding to FIG. 1, and the image processing device may include:
  • the acquisition circuit 21 is used to acquire multiple frames of images taken during the movement of the lens;
  • the filter circuit 22 is configured to filter each frame of image acquired through a filter to obtain a signal value corresponding to each pixel in at least some of the pixels of each frame of image;
  • the processing circuit 23 is configured to perform noise suppression processing on each frame of image according to the obtained signal value of each pixel point for each frame of image, so as to suppress the signal value in the first range;
  • the focusing circuit 24 is configured to perform focusing processing based on the corrected signal value obtained after noise suppression processing is performed on each frame of image.
  • the processing circuit 23 is further used to: accumulate the signal value obtained after the noise suppression processing to obtain the corrected signal value.
  • noise suppression processing is performed on each frame of image according to the obtained signal value of each pixel point to suppress the signal value in the first range
  • the processing The circuit 23 is also used to: perform a first noise suppression process on the signal value in the first range, and perform a second noise suppression process on the signal value in the second range, wherein the first noise suppression process and the second noise suppression process Is handled differently.
  • the filter is a filter that allows high-frequency signals to pass through, and the noise suppression process is used to suppress low-frequency signals in the image.
  • the processing circuit 23 when noise suppression processing is performed on each frame of image to suppress the signal value in the first range, the processing circuit 23 is specifically configured to:
  • the signal values in the first range and/or the signal values in the second range are processed so that the correction ratio corresponding to the signal values in the first range is smaller than the signal value in the second range Corresponding correction ratio;
  • the correction ratio corresponding to the signal value is the ratio of the correction signal value to the signal value corresponding to the signal value after noise suppression processing.
  • the signal value in the first range is smaller than the signal value in the second range.
  • the processing circuit 23 is specifically configured to: among the signal values corresponding to the image, attenuate the signal value in the first range, and/or, to attenuate the signal value in the second range The signal value is enhanced.
  • the processing circuit 23 when the signal value in the first range is attenuated, the processing circuit 23 is specifically configured to: multiply the signal value in the first range by the first coefficient, so as to realize the attenuation of the signal value in the first range The signal value of is attenuated, where the first coefficient is greater than zero and less than 1.
  • the processing circuit 23 is specifically configured to: multiply the signal value in the second range by the second coefficient, so as to realize the enhancement of the signal value in the second range The signal value of is enhanced, where the second coefficient is greater than 1.
  • the corrected signal value obtained by attenuating the signal value is smaller than the signal value, and/or the corrected signal value obtained by enhancing the signal value is greater than the signal value.
  • the processing circuit 23 is specifically configured to: in each signal value corresponding to the image, attenuate both the signal value in the first range and the signal value in the second range; Wherein, the attenuation degree of the signal value in the first range is greater than the attenuation degree of the signal value in the second range.
  • the processing circuit 23 is specifically configured to: in each signal value corresponding to the image, enhance both the signal value in the first range and the signal value in the second range; Wherein, the enhancement degree of the signal value in the first range is smaller than the enhancement degree of the signal value in the second range.
  • the processing circuit 23 when noise suppression processing is performed on each frame of image to suppress the signal value in the first range, the processing circuit 23 is specifically configured to: Perform noise suppression processing to suppress signal values in the first range.
  • the processing circuit 23 when noise suppression processing is performed on each frame of image through a piecewise linear function to suppress the signal value in the first range, the processing circuit 23 is specifically configured to: The signal value of the first linear function is used to calculate the corresponding correction signal value; for the signal value in the second range, the second linear function is used to calculate the corresponding correction signal value; wherein the slope corresponding to the first linear function is less than the second linear function The slope of the function.
  • the signal value in the first range is a signal value smaller than the first threshold; the signal value in the second range is larger than the first threshold and smaller than the second threshold.
  • the processing circuit 23 is specifically configured to: for the signal value in the first range, the signal value Multiply by the first proportional coefficient to obtain the corresponding correction signal value.
  • the first scale factor is zero.
  • the processing circuit 23 when calculating the corresponding corrected signal value by the second linear function for the signal value in the second range, is specifically configured to: for the signal value in the second range, the signal value Multiply the difference with the first threshold by the second proportional coefficient to get the first product; multiply the first threshold by the first proportional coefficient to get the second product; add the first product and the second product to get the signal value corresponding The modified signal value; where the first proportional coefficient is smaller than the second proportional coefficient.
  • the second scale factor is greater than one.
  • the processing circuit 23 is further configured to: for the signal value in the third range, calculate the corresponding corrected signal value through a third linear function; wherein the signal value in the third range is greater than the second threshold The signal value of; the slope corresponding to the third linear function is smaller than the slope corresponding to the second linear function, and greater than the slope corresponding to the first linear function.
  • the processing circuit 23 when calculating the corresponding corrected signal value by the third linear function for the signal value in the third range, is specifically configured to: for the signal value in the third range, the signal value Multiply the difference with the second threshold by the third proportional coefficient to obtain the third product; multiply the difference between the second threshold and the first threshold with the second proportional coefficient to obtain the fourth product; multiply the second product and the third product Add to the fourth product to obtain the corrected signal value corresponding to the signal value; wherein, the third proportional coefficient is larger than the first proportional coefficient and smaller than the second proportional coefficient.
  • the third scale factor is 1.
  • the filter circuit 22 when each frame of image obtained is filtered by a filter to obtain the signal value corresponding to each pixel in at least some of the pixels of each frame of image, the filter circuit 22 is specifically used for : Filter each frame of image acquired through the filter to obtain the signal value corresponding to each pixel of the region of interest in each frame of image.
  • the focusing circuit 24 when performing focusing processing according to the correction signal value obtained after noise suppression processing is performed on each frame of image, is specifically configured to: for each frame of image, according to the correction signal value corresponding to the image , Calculate the focal value corresponding to the image; perform focus processing according to the focal value corresponding to each frame of the image.
  • the image processing device shown in Figure 8 can execute the methods of the embodiments shown in Figures 1 to 6, and 12.
  • FIG. 10 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention.
  • this embodiment provides a movable platform.
  • the movable platform may be a handheld phone or a handheld phone. PTZ, drones, unmanned vehicles, unmanned ships, robots or autonomous vehicles, etc.
  • the movable platform may include:
  • the image processing device 32 in the above embodiment in FIG. 8 is installed on the body 31.
  • FIG. 11 is a schematic structural diagram of another movable platform provided by an embodiment of the present invention. Referring to FIG. 11, this embodiment provides another movable platform.
  • the movable platform may be a handheld phone. , Hand-held PTZ, drones, unmanned vehicles, unmanned ships, robots or self-driving cars, etc.
  • the movable platform may include:
  • the image processing device 42 in the above embodiment in FIG. 9 is installed on the body 41.
  • an embodiment of the present invention provides a storage medium, the storage medium is a computer-readable storage medium, the computer-readable storage medium stores program instructions, and the program instructions are used to implement the embodiments shown in FIGS. 1 to 7 above. Image processing methods in.
  • the disclosed related devices and methods can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be It can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read_Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

本发明实施例提供一种图像处理方法、装置、可移动平台和存储介质,方法包括:获取在镜头移动过程中拍摄的多帧图像;通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值;针对每一帧图像,根据得到的各个像素点对应的信号值,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制;根据对每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。本实施例提供的技术方案,通过滤波处理后的每一帧图像中各个像素点对应的信号值对图像进行噪声抑制处理,根据噪声抑制处理后得到的修正信号值进行对焦处理,这样能够有效减少噪声干扰,提高对焦的效率和准确率,提升图像的拍摄效果。

Description

图像处理方法、装置、可移动平台和存储介质 技术领域
本发明实施例涉及图像处理技术领域,尤其涉及一种图像处理方法、装置、可移动平台和存储介质。
背景技术
随着成像技术的不断发展,相机的对焦方式也在逐渐发生变化。传统的相机采用类似测距的方式实现对焦,这种对焦方式属于主动式对焦,容易出现差错。随后出现的被动式对焦,例如反差对焦(Contrast Detection Auto Focus,CDAF),可以根据镜头的实际成像效果来判断是否正确对焦,由于这种对焦方式是基于镜头成像来实现的,因此相对于主动式对焦来说,对焦精度得到了提高,并且不容易出现差错。
但是,在反差对焦过程中,由于噪声干扰的存在,依然有可能出现对焦不够准确或者对焦速度较慢的情况,导致对焦的效率和准确率较低。
发明内容
本发明实施例提供了一种图像处理方法、装置、可移动平台和存储介质,用以解决在反差对焦过程中,由于噪声干扰的存在,依然有可能出现对焦不够准确或者对焦速度较慢的情况,导致对焦的效率和准确率较低的技术问题。
本发明实施例第一方面提供了一种图像处理方法,包括:
获取在镜头移动过程中拍摄的多帧图像;
通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值;
针对每一帧图像,根据得到的各个像素点对应的信号值,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制;
根据对所述每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。
本发明实施例第二方面提供了一种图像处理装置,包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
获取在镜头移动过程中拍摄的多帧图像;
通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值;
针对每一帧图像,根据得到的各个像素点对应的信号值,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制;
根据对所述每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。
本发明实施例第三方面提供了一种图像处理装置,包括:
获取电路,用于获取在镜头移动过程中拍摄的多帧图像;
滤波电路,用于通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值;
处理电路,用于针对每一帧图像,根据得到的各个像素点对应的信号值,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制;
对焦电路,用于根据对所述每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。
本发明实施例第四方面提供了一种可移动平台,包括:
机身;
上述第二方面所述的图像处理装置,设置于所述机身上。
本发明实施例第五方面提供了一种可移动平台,包括:
机身;
上述第三方面所述的图像处理装置,设置于所述机身上。
本发明实施例第六方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有程序指令,所述程序指令用于实现第一方面所述的图像处理方法。
本发明实施例提供的图像处理方法、装置、可移动平台和存储介质,能够有效地减少噪声干扰对图像的影响,提高对焦的效率和准确率,进而提升图像的拍摄效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的一种图像处理方法的流程示意图;
图2为本发明实施例提供的一种修正信号值与信号值的对应关系示意图;
图3为本发明实施例提供的另一种修正信号值与信号值的对应关系示意图;
图4为本发明实施例提供的另一种图像处理方法的流程示意图;
图5为本发明实施例提供的一种通过分段线性函数确定的修正信号值与信号值的对应关系示意图;
图6为本发明实施例提供的又一种通过分段线性函数确定的修正信号值与信号值的对应关系示意图;
图7为本发明实施例提供的一种经过噪声抑制处理的焦值曲线与未经过噪声抑制处理的焦值曲线的对比示意图;
图8为本发明实施例提供的一种图像处理装置的结构示意图;
图9为本发明实施例提供的另一种图像处理装置的结构示意图;
图10为本发明实施例提供的一种可移动平台的结构示意图;
图11为本发明实施例提供的另一种可移动平台的结构示意图;
图12为本发明实施例提供的另一种图像处理方法的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供了一种图像处理方法,该图像处理方法可以应用于拍摄设备,拍摄设备可以为任意具有拍摄图像功能的设备,例如:相机、无人机、手机、监控设备等。
具体的,拍摄设备可以包括镜头、对焦电机、图像传感器等,物体产生或反射的光经过镜头后会聚在图像传感器,而后图像传感器将光信号转换为电信号,从而形成图像。
在对物体进行拍摄的过程中,对焦电机可以驱动镜头移动,从而改变物距,导致被拍摄的物体在图像中的清晰程度不断变化。镜头的可移动范围可以由对焦电机的行程决定,镜头的移动可以手动进行,也可以自动进行。
在获取到拍摄的图像后,可以通过滤波器对图像进行滤波,并根据滤波后的结果进行对焦处理,确定合焦位置,从而获得清晰的图像。
对图像进行滤波的方法可以有很多种。在一种可选的实施方式中,可以对图像进行傅里叶变换,得到关于图像的频域信息,根据图像的频域信息进行数字滤波,将图像中有效频段的信号提取出来,得到图像中各像素点对应的信号值。在另一种可选的实施方式中,可以通过滤波器矩阵即卷积核对图像进行滤波,具体来说,对于图像的每一个像素点,可以将其与邻域像素点对应的像素值矩阵与滤波器矩阵进行卷积运算,得到该像素点对应的信号值。
在对图像进行滤波处理之后,可以得到图像中各个像素点对应的信号值,将各信号值进行累加,可以得到图像对应的焦值,该焦值用于反映图像的清晰程度。在对一物体进行拍摄时,可以获取镜头移动过程中拍摄的多帧图像,对于单帧图像来说,图像的焦值越大,说明该图像越清晰。在对焦时,可以从多帧图像中找出焦值最大的图像,其对应的镜头位置即为合焦位置。
在环境噪声较大时,噪声会引起焦值计算的准确度下降,导致对焦准确度降低。本发明实施例提供的图像处理方法,可以对滤波处理后得到的各个像素点对应的信号值进行噪声抑制处理,从而提高对焦效果。图像处理方法的执行主体可以具体为拍摄设备中的图像处理装置,可以理解的是,该图像处理装置可以实现为软件、或者软件和硬件的组合。
图1为本发明实施例提供的一种图像处理方法的流程示意图。如图1所示,本实施例提供了一种图像处理方法,该图像处理方法可以包括:
步骤101、获取在镜头移动过程中拍摄的多帧图像。
步骤102、通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧 图像的至少部分像素点中各个像素点对应的信号值。
其中,至少部分像素点可以为图像中的全部像素点或部分像素点。可选的,针对每一帧图像,可以将图像中的逐个像素点经过滤波器,得到逐个像素点对应的信号值,从而获取图像的全部像素点中每个像素点对应的信号值。
在其它可选的实现方式中,至少部分像素点可以为图像中感兴趣区域内的像素点。相应的,通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值,可以包括:通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像中感兴趣区域的各个像素点对应的信号值。
其中,感兴趣区域可以由用户手动点击选择,或者,可以选择满足预设条件的区域,例如:将前景物体所在区域作为感兴趣区域。
步骤103、针对每一帧图像,根据得到的各个像素点对应的信号值,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制。
可以理解的是,滤波的作用是允许目标范围内的信号通过,将目标范围以外的信号滤除,能够在一定程度上抑制噪声。但是,由于滤波器的性能限制,目标范围以外的信号在经过滤波器之后并不一定会完全衰减为0,因此,本实施例中,可以对滤波后的信号值进行进一步地噪声抑制处理。
目标范围可以根据实际需要来设置。可选的,滤波器可以为允许高频信号通过的滤波器。高频信号所包含的频段可以根据拍摄需求来设计,例如,高频信号可以为频率在0.5-0.8之间的信号,其中,该频率是指对高频信号进行归一化后的频率。
在图像中,高频信号可以对应于图像中的纹理细节,图像中的纹理细节越丰富,说明高频信号越多。本实施例中的噪声抑制处理可以用于对图像中的低频信号进行抑制,从而更加突出图像中的纹理细节。
具体来说,在进行滤波处理之后,像素点对应的信号值越高,说明该处纹理细节越丰富,像素点对应的信号值越低,说明图像在该处变化比较缓慢,纹理细节不够好,进而可以对其进行进一步抑制。
可选的,可以在得到的各个像素点对应的信号值中,对第一范围内的信号值进行抑制,其中,第一范围可以为小于第一阈值的范围,以对滤波处理后得到的较小的信号值进行抑制。
其中,第一阈值可以为一固定值;或者,第一阈值可以为滤波后得到的 最大信号值乘以一比例系数,比例系数大于0且小于1;又或者,可以将经过滤波后得到的各个信号值进行归一化处理,并根据归一化处理后的信号值进行噪声抑制处理,以对小于第一阈值的信号值进行抑制,第一阈值可以大于0且小于1,例如第一阈值可以为0.02。
步骤104、根据对每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。
在对每一帧图像进行噪声抑制处理之后,各个像素点得到其对应的修正信号值。可选地,可以对经过噪声抑制处理后得到的信号值进行累加,以得到所述修正信号值。
在获取到修正信号至之后,可以根据每一帧图像对应的修正信号值,可以实现对焦处理。根据修正信号值进行对焦处理的具体实现方法的其他细节可以参考直接根据信号值进行对焦处理的方法。
可选的,根据对每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理,可以包括:针对每一帧图像,根据图像对应的修正信号值,计算图像对应的焦值;根据各帧图像对应的焦值进行对焦处理。
其中,在根据各帧图像对应的焦值进行对焦处理时,可以从多帧图像中找出焦值最大的图像,将镜头移动到焦值最大的图像对应的位置,以实现对焦。
请参考图12,图12为本发明实施例提供的另一种图像处理方法的流程示意图。图12中的步骤1201~1202和图1中的步骤101~102相似。为求简洁,不再赘述,此时,在步骤S1202之后,本实施例中的方法还可以包括:
步骤1203、针对每一帧图像,根据得到的各个像素点对应的信号值,对所述每一帧图像进行不同方式的噪声抑制处理,以对第一范围内的信号值进行抑制。
在一实施方式中,对所述每一帧图像进行不同方式的噪声抑制处理可以包括:对第一范围内的信号值进行第一噪声抑制处理,以及对第二范围内的信号值进行第二噪声抑制处理。其中,第一噪声抑制处理和第二噪声抑制处理的处理方式不同。
在另一实施方式中,对第一范围内的信号值分别进行第一噪声抑制处理和第二噪声抑制处理,得到第一噪声抑制处理后的第一信号值和第二噪声抑制处理后的第二信号值。其中,第一噪声抑制处理和第二噪声抑制处理的处 理方式不同。
针对不同的场景(例如,不同的拍摄环境和拍摄物体),可以选择不同的噪声抑制处理后的信号值得到修正信号值。
步骤1204、累加经过所述不同方式的噪声抑制处理后得到的修正信号值。
具体来说,在噪声抑制处理后,可以得到经过噪声抑制处理后得到的信号值。在一实施方式中,通过对经过噪声抑制处理后得到的信号值进行累加,可以得到修正信号值。
步骤1205、根据修正信号值进行对焦处理。
图12中的步骤1204和图1中的步骤104相似。为求简洁,不再赘述。
在实际应用中,在得到拍摄的图像后,可以对图像进行高频滤波,并对滤波后的信号进行噪声抑制,以对低频信号进行抑制,低频信号可能来自于待拍摄物体对应的低频信号、环境中的噪声、或者图像传感器的器件噪声等,从而突出图像的纹理细节,提高拍摄的图像效果,增加对焦过程的鲁棒性、抗噪性,提高对焦精准度,尤其在夜景下、噪声较多的环境、或者被拍摄物体的纹理细节不多的场景下能够极大的提升对焦的准确率。
以上以高频滤波为例描述了对滤波后的信号进行噪声抑制处理的具体实现过程,在其他可选的实现方式中,当拍摄的目的是为了更多地获取中频信号或低频信号时,也可以对图像进行中频滤波或低频滤波,并对滤波后的结果进行噪声抑制处理,以突出图像中的中频信号或低频信号等,具体的实现原理和方法与高频滤波场景类似,此处不再赘述。
本实施例提供的图像处理方法,可以获取在镜头移动过程中拍摄的多帧图像,通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值,针对每一帧图像,根据得到的各个像素点对应的信号值,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制,根据对每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理,能够有效减少噪声干扰,提高对焦的效率和准确率,提升图像的拍摄效果。
在上述实施例提供的技术方案的基础上,本实施例中的对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制,可以包括:
在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内 的信号值对应的修正比例;其中,信号值对应的修正比例为对信号值在经过噪声抑制处理后对应的修正信号值与信号值的比值。
简单来说,对第一范围内的信号值进行抑制,可以是指将第一范围内的信号值变得更小,此处的更小可以是一个相对概念,是指相对于其他信号值来说衰减程度更大。本发明实施例中,可以用修正比例来衡量信号值的衰减程度,修正比例的取值越低,表示衰减程度越大。
可选的,第一范围内的信号值可以小于第二范围内的信号值,以实现对较小的信号值进行较大的衰减。
可选的,本实施例中,通过对第一范围内的信号值进行较大衰减来实现噪声抑制处理的具体方法可以有很多种。在一个可选的实施方式中,在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例,可以包括:在图像对应的各个信号值中,对第一范围内的信号值进行衰减,和/或,对第二范围内的信号值进行增强。
可选的,对第一范围内的信号值进行衰减包括:将位于第一范围内的信号值乘以第一系数K1,此时,0<K1<1。对第二范围内的信号值进行增强包括:将位于第二范围内的信号值乘以第二系数K2,此时,K2>1。其中,对信号值进行衰减后得到的修正信号值可以小于信号值,和/或,对信号值进行增强后得到的修正信号值可以大于信号值。
举例来说,对于滤波后得到的各个信号值,若信号值在第一范围内,则可以乘以小于1的第一系数,得到较小的修正信号值,若信号值在第二范围内,则可以乘以大于1的第二系数,得到较大的修正信号值,以对第一范围内的信号值进行抑制。
在另一个可选的实施方式中,在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例,可以包括:在图像对应的各个信号值中,对第一范围内的信号值和第二范围内的信号值均进行衰减;其中,第一范围内的信号值的衰减程度大于第二范围内的信号值的衰减程度。
举例来说,对于滤波后得到的各个信号值,若信号值在第一范围内,则可以控制信号值乘以小于1的第一系数,以对信号进行衰减,若信号值在第二 范围内,则可以控制信号值乘以小于1的第二系数,第二系数可以大于第一系数;或者,若信号值在第一范围内,则可以控制信号值减去第一数值,以对信号进行衰减,若信号值在第二范围内,则可以控制信号值减去第二数值,第一数值可以大于第二数值。从而使得第二范围内的信号值的衰减程度小于第一范围内的信号值的衰减程度,以对第一范围内的信号值进行抑制。
在又一个可选的实施方式中,在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例,可以包括:在图像对应的各个信号值中,对第一范围内的信号值和第二范围内的信号值均进行增强;其中,第一范围内的信号值的增强程度小于第二范围内的信号值的增强程度。
举例来说,对于滤波后得到的各个信号值,若信号值在第一范围内,则可以控制信号值乘以大于1的第三系数,以对信号进行增强,若信号值在第二范围内,则可以控制信号值乘以大于1的第四系数,第四系数可以大于第三系数。再或者,若信号值在第一范围内,则可以控制信号值加上第三数值,以对信号进行增强,若信号值在第二范围内,则可以控制信号值加上第四数值,第三数值可以小于第四数值,从而使得第二范围内的信号值的增强程度大于第一范围内的信号值的增强程度,以对第一范围内的信号值进行增强。
在实际应用中,获取到图像之后,可以逐个像素点经过滤波器,输出逐个像素点的信号值,然后,对逐个的信号进行如上的噪声抑制处理,对一帧图像内的经过噪声抑制处理的所有修正信号值累加,生成焦值,而后可以根据各帧图像对应的焦值可以进行对焦处理。
图2为本发明实施例提供的一种修正信号值与信号值的对应关系示意图。如图2所示,横坐标为信号值,纵坐标为修正信号值。对于第一范围内的信号值来说,可以通过y=ax计算对应的修正信号值,对于第二范围内的信号值来说,可以通过y=bx计算对应的修正信号值,其中a<b,从而实现对第一范围内的信号值的抑制,且逻辑简单、便于实现。
图3为本发明实施例提供的另一种修正信号值与信号值的对应关系示意图。如图3所示,横坐标为信号值,纵坐标为修正信号值。可以通过y=x 2计算修正信号值,在x逐渐增大的过程中,y与x的比值也逐渐增大,因此,第二范围内的修正比例要大于第一范围内的修正比例,从而实现对第一范围内的信 号值的抑制,且过渡平稳,图像拍摄效果较好。
图4为本发明实施例提供的另一种图像处理方法的流程示意图。在上述实施例的基础上,如图4所示,本实施例中的图像处理方法可以包括:
步骤401、获取在镜头移动过程中拍摄的多帧图像。
步骤402、通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值。
本实施例中,步骤401至步骤402的具体实现原理和过程与前述实施例的步骤101至步骤102类似,此处不再赘述。
步骤403、针对每一帧图像,根据得到的各个像素点对应的信号值,通过分段线性函数,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制。
其中,分段线性函数可以包含至少两个线性函数,对于不同区间的信号值,采用不同的线性函数计算其对应的修正信号值,以实现噪声抑制处理。本实施例提供了一种可选的分段线性函数:
y=x*k 0,0<x≤x 0         (1)
y=(x–x 0)*k 1+x 0*k 0,x 0<x≤x 1      (2)
y=(x–x 1)*k 2+(x 0*k 0+(x 1–x 0)*k 1),x 1<x≤1  (3)
其中,x为噪声抑制处理前的信号值,具体可以为经过归一化后的信号值,y可以为经过噪声抑制处理后的修正信号值。具体来说,对于第一范围(0,x 0)内的信号值,可以通过第一线性函数即式(1)计算对应的修正信号值,以对第一范围内的信号值进行抑制。对于第二范围(x 0,x 1)内的信号值,可以通过第二线性函数即式(2)计算对应的修正信号值,以对第二范围内的信号值进行增强。可选的,对于第三范围(x 1,1)内的信号值,通过第三线性函数计算对应的修正信号值,其中,第三范围内的信号值为大于第二阈值的信号。
其中,第一范围的信号值为小于第一阈值的信号值,第二范围的信号值为大于第一阈值且小于第二阈值的信号值。第一阈值可以为x 0,第二阈值为x 1。例如,第一阈值x 0可以为0.02,第二阈值x 1可以为0.2。
参见式(1),对于第一范围内的信号值,通过第一线性函数计算对应的修正信号值,可以包括:对于第一范围内的信号值,将信号值乘以第一比例系数,得到对应的修正信号值。其中,第一比例系数可以为第一线性函数对 应的斜率,即式(1)中的k 0
参见式(2),对于第二范围内的信号值,通过第二线性函数计算对应的修正信号值,可以包括:对于第二范围内的信号值,将信号值和第一阈值的差值乘以第二比例系数,得到第一乘积;将第一阈值乘以第一比例系数,得到第二乘积;将第一乘积和第二乘积相加,得到信号值对应的修正信号值。其中,第二比例系数可以为第二线性函数对应的斜率,即式(1)中的k 1
第一比例系数可以小于第二比例系数,即第一线性函数对应的斜率k 0可以小于第二线性函数对应的斜率k 1,从而实现对第一范围内的信号值进行抑制。可选的,第二比例系数大于1。
参见式(3),对于第三范围内的信号值,通过第三线性函数计算对应的修正信号值,可以包括:将第三范围内的信号值与第二阈值的差值乘以第三比例系数,得到第三乘积;将第二阈值和第一阈值的差值乘以与第二比例系数,得到第四乘积;将第二乘积(第一阈值乘以第一比例系数)、第三乘积和第四乘积相加,得到信号值对应的修正信号值。
其中,第三比例系数可以大于第一比例系数,小于第二比例系数,即第三线性函数对应的斜率k 2小于第二线性函数对应的斜率k 1,大于第一线性函数对应的斜率k 0。可选的,第三比例系数为1。
第一范围内的信号值可以对应于图像中的噪声信号,因此第一比例系数可以最小,以实现噪声抑制功能。第二范围内的信号值和第三范围内的信号值都可以对应于图像中的有效信号,因为第三范围内的信号值大于第二范围内的信号值,因此,对第二范围内的信号值可以乘以一更大的比例系数(k 1>k 2),而对第三范围内的信号值不需要增强太多,即可有效提高焦值的准确性。
图5为本发明实施例提供的一种通过分段线性函数确定的修正信号值与信号值的对应关系示意图,对应于上述式(1)、(2)、(3)。通过图5以及对式(1)、(2)、(3)的分析可知,在x=x0时,通过式(1)计算得到的y值与通过式(2)计算得到的y值是相等的,在x=x1时,通过式(2)计算得到的y值与通过式(3)得到的y值是相等的,因此,函数在整个定义域内是连续的,此时,在进行噪声抑制处理之后,得到的修正信号值也是连续的,不会出现断层。
在一个可选的实施方式中,第一比例系数、第二比例系数和第三比例系数可以根据实际需要来设置。图6为本发明实施例提供的又一种通过分段线性 函数确定的修正信号值与信号值的对应关系示意图,图6中,第一比例系数k 0可以为0,实现对较小信号值的抑制,避免较小信号值叠加对焦值产生影响,有效减少噪声干扰,提高对焦准确性。
第二比例系数k 1可以大于0,例如:k 1可以为1.5,从而实现对有效信号的增强,进一步提高对焦准确性。
第三比例系数k 2可以为1,将第三比例系数设置为1,能够在计算修正信号值时减少一个参数,有效节约寄存器,节省计算资源,提高噪声抑制处理的效率。
根据本发明的一实施方式,可以采用其他形式的信号抑制函数。例如,人工智能中常用的激活函数(Relu函数或者Leak Relu函数)。
步骤404、根据对每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。
本实施例中,步骤404的具体实现原理和过程可以参见前述实施例中的步骤104,此处不再赘述。
本实施例提供的图像处理方法,采用分段线性函数对经过滤波后得到的信号值进行噪声抑制处理,针对多个分段区间,分别通过对应的线性函数进行衰减或增强处理,函数在整个定义域上是连续的,使得噪声抑制处理后的修正信号值更加平滑,有效提高图像的拍摄效果。
图7为本发明实施例提供的一种经过噪声抑制处理的焦值曲线与未经过噪声抑制处理的焦值曲线的对比示意图。图7中,横坐标为图像序号,纵坐标为图像对应的焦值。横坐标从1到41,说明针对待拍摄物体进行拍摄时,在镜头前后移动过程中共拍摄了41帧图像。需要说明的是,因为各帧图像对应的镜头位置不同,因此,在图7中用序列号1至序列号41来表示镜头位置。也就是说,在图7中横坐标对应于镜头位置1至镜头位置41,其分别与第1帧图像至第41帧图像对应。对于每一帧图像都可以计算其对应的焦值,从而形成焦值曲线,其中,虚线表示没有经过噪声抑制处理的焦值曲线,实线表示经过噪声抑制处理的焦值曲线。
噪声抑制处理是对较小的信号值进行抑制,因此,如果一帧图像经过滤波后得到的信号值都很小,那么在对较小的信号值进行抑制后,整体焦值也会相对于噪声抑制处理前变得更低,如果图像在经过滤波后包含更多的较大的信号值,那么整体焦值则会变高。
在合焦位置及合焦位置附近,图像对应的较大的信号多,所以可以得到对焦值进行增益的效果,在失焦位置,较小的信号值多,所以可以得到对焦值进行抑制的效果,从而使得在经过噪声抑制处理后,在失焦位置的焦值更低,在合焦位置及其附近焦值变化更加锐利,有效提高了对焦的效率。
需要注意的是,本实施例中的上述步骤的执行顺序并不限于上述序号所限定的顺序,本领域技术人员可以根据具体的应用需求和设计需求进行任意配置,在此不再赘述。
图8为本发明实施例提供的一种图像处理装置的结构示意图;参考附图8所示,图像处理装置可以执行上述图1所对应的图像处理方法,图像处理装置可以包括:
存储器12,用于存储计算机程序;
处理器11,用于运行存储器12中存储的计算机程序以实现:
获取在镜头移动过程中拍摄的多帧图像;
通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值;
针对每一帧图像,根据得到的各个像素点对应的信号值,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制;
根据对每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。
可选的,该图像处理装置的结构中还可以包括通信接口13,用于与其他设备或通信网络通信。
在一个可实施的方式中,处理器11还用于:对经过噪声抑制处理后得到的信号值进行累加,以得到所述修正信号值。
在一个可实施的方式中,在针对每一帧图像,根据得到的各个像素点对应的信号值,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,处理器11还用于:对第一范围内的信号值进行第一噪声抑制处理,以及对第二范围内的信号值进行第二噪声抑制处理,其中,第一噪声抑制处理和第二噪声抑制处理的处理方式不同。
在一个可实施的方式中,滤波器为允许高频信号通过的滤波器,噪声抑制处理用于对图像中的低频信号进行抑制。
在一个可实施的方式中,在对每一帧图像进行噪声抑制处理,以对第一 范围内的信号值进行抑制时,处理器11还用于:在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例;其中,信号值对应的修正比例为对信号值在经过噪声抑制处理后对应的修正信号值与信号值的比值。
在一个可实施的方式中,第一范围内的信号值小于第二范围内的信号值。
在一个可实施的方式中,在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例时,处理器11用于:在图像对应的各个信号值中,对第一范围内的信号值进行衰减,和/或,对第二范围内的信号值进行增强。
在一个可实施的方式中,在对第一范围内的信号值进行衰减时,处理器11用于:将位于第一范围内的信号值乘以第一系数,以实现对第一范围内的信号值进行衰减,其中,第一系数大于零、且小于1。
在一个可实施的方式中,在对第二范围内的信号值进行增强时,处理器11用于:将位于第二范围内的信号值乘以第二系数,以实现对第二范围内的信号值进行增强,其中,第二系数大于1。
在一个可实施的方式中,对信号值进行衰减后得到的修正信号值小于信号值,和/或,对信号值进行增强后得到的修正信号值大于信号值。
在一个可实施的方式中,在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例时,处理器11用于:在图像对应的各个信号值中,对第一范围内的信号值和第二范围内的信号值均进行衰减;其中,第一范围内的信号值的衰减程度大于第二范围内的信号值的衰减程度。
在一个可实施的方式中,在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例时,处理器11用于:在图像对应的各个信号值中,对第一范围内的信号值和第二范围内的信号值均进行增强;其中,第一范围内的信号值的增强程度小于第二范围内的信号值的增强程度。
在一个可实施的方式中,在对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,处理器11用于:通过分段线性函数,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制。
在一个可实施的方式中,在通过分段线性函数,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,处理器11用于:对于第一范围内的信号值,通过第一线性函数计算对应的修正信号值,以对第一范围内的信号值进行抑制;以及,对于第二范围内的信号值,通过第二线性函数计算对应的修正信号值,以对第一范围内的信号值进行增强;其中,第一线性函数对应的斜率小于第二线性函数对应的斜率。
在一个可实施的方式中,第一范围的信号值为小于第一阈值的信号值;第二范围的信号值为大于第一阈值且小于第二阈值的信号值。
在一个可实施的方式中,在对于第一范围内的信号值,通过第一线性函数计算对应的修正信号值时,处理器11用于:对于第一范围内的信号值,将信号值乘以第一比例系数,得到对应的修正信号值。
在一个可实施的方式中,第一比例系数为0。
在一个可实施的方式中,在对于第二范围内的信号值,通过第二线性函数计算对应的修正信号值时,处理器11用于:对于第二范围内的信号值,将信号值和第一阈值的差值乘以第二比例系数,得到第一乘积;将第一阈值乘以第一比例系数,得到第二乘积;将第一乘积和第二乘积相加,得到信号值对应的修正信号值;其中,第一比例系数小于第二比例系数。
在一个可实施的方式中,第二比例系数大于1。
在一个可实施的方式中,处理器11用于:对于第三范围内的信号值,通过第三线性函数计算对应的修正信号值;其中,第三范围内的信号值为大于第二阈值的信号值;第三线性函数对应的斜率小于第二线性函数对应的斜率,大于第一线性函数对应的斜率。
在一个可实施的方式中,在对于第三范围内的信号值,通过第三线性函数计算对应的修正信号值时,处理器11用于:对于第三范围内的信号值,将信号值与第二阈值的差值乘以第三比例系数,得到第三乘积;将第二阈值和第一阈值的差值乘以第二比例系数,得到第四乘积;将第二乘积、第三乘积和第四乘积相加,得到信号值对应的修正信号值;其中,第三比例系数大于第一比例系数,小于第二比例系数。
在一个可实施的方式中,第三比例系数为1。
在一个可实施的方式中,在通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值时,处理器11用于:通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像中感兴趣区域的各个像素点对应的信号值。
在一个可实施的方式中,在根据对每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理时,处理器11用于:针对每一帧图像,根据图像对应的修正信号值,计算图像对应的焦值;根据各帧图像对应的焦值进行对焦处理。
图8所示图像处理装置可以执行图1-图6、图12所示实施例的方法,本实施例未详细描述的部分,可参考对图1-图6、图12所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1-图6、图12所示实施例中的描述,在此不再赘述。
图9为本发明实施例提供的另一种图像处理装置的结构示意图;参考附图9所示,图像处理装置可以执行上述图1所对应的图像处理方法,图像处理装置可以包括:
获取电路21,用于获取在镜头移动过程中拍摄的多帧图像;
滤波电路22,用于通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值;
处理电路23,用于针对每一帧图像,根据得到的各个像素点对应的信号值,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制;
对焦电路24,用于根据对每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。
在一个可实施的方式中,处理电路23还用于:对经过噪声抑制处理后得到的信号值进行累加,以得到修正信号值。
在一个可实施的方式中,在针对每一帧图像,根据得到的各个像素点对应的信号值,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,处理电路23还用于:对第一范围内的信号值进行第一噪声抑制处理,以及对第二范围内的信号值进行第二噪声抑制处理,其中,第一噪声抑制处理和第二噪声抑制处理的处理方式不同。
在一个可实施的方式中,滤波器为允许高频信号通过的滤波器,噪声抑 制处理用于对图像中的低频信号进行抑制。
在一个可实施的方式中,在对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,处理电路23具体用于:
在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例;
其中,信号值对应的修正比例为对信号值在经过噪声抑制处理后对应的修正信号值与信号值的比值。
在一个可实施的方式中,第一范围内的信号值小于第二范围内的信号值。
在一个可实施的方式中,在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例时,处理电路23具体用于:在图像对应的各个信号值中,对第一范围内的信号值进行衰减,和/或,对第二范围内的信号值进行增强。
在一个可实施的方式中,在对第一范围内的信号值进行衰减时,处理电路23具体用于:将位于第一范围内的信号值乘以第一系数,以实现对第一范围内的信号值进行衰减,其中,第一系数大于零、且小于1。
在一个可实施的方式中,在对第二范围内的信号值进行增强时,处理电路23具体用于:将位于第二范围内的信号值乘以第二系数,以实现对第二范围内的信号值进行增强,其中,第二系数大于1。
在一个可实施的方式中,对信号值进行衰减后得到的修正信号值小于信号值,和/或,对信号值进行增强后得到的修正信号值大于信号值。
在一个可实施的方式中,在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例时,处理电路23具体用于:在图像对应的各个信号值中,对第一范围内的信号值和第二范围内的信号值均进行衰减;其中,第一范围内的信号值的衰减程度大于第二范围内的信号值的衰减程度。
在一个可实施的方式中,在图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例时,处理电路23具体用于: 在图像对应的各个信号值中,对第一范围内的信号值和第二范围内的信号值均进行增强;其中,第一范围内的信号值的增强程度小于第二范围内的信号值的增强程度。
在一个可实施的方式中,在对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,处理电路23具体用于:通过分段线性函数,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制。
在一个可实施的方式中,在通过分段线性函数,对每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,处理电路23具体用于:对于第一范围内的信号值,通过第一线性函数计算对应的修正信号值;对于第二范围内的信号值,通过第二线性函数计算对应的修正信号值;其中,第一线性函数对应的斜率小于第二线性函数对应的斜率。
在一个可实施的方式中,第一范围的信号值为小于第一阈值的信号值;第二范围的信号值为大于第一阈值且小于第二阈值的信号值。
在一个可实施的方式中,在对于第一范围内的信号值,通过第一线性函数计算对应的修正信号值时,处理电路23具体用于:对于第一范围内的信号值,将信号值乘以第一比例系数,得到对应的修正信号值。
在一个可实施的方式中,第一比例系数为0。
在一个可实施的方式中,在对于第二范围内的信号值,通过第二线性函数计算对应的修正信号值时,处理电路23具体用于:对于第二范围内的信号值,将信号值和第一阈值的差值乘以第二比例系数,得到第一乘积;将第一阈值乘以第一比例系数,得到第二乘积;将第一乘积和第二乘积相加,得到信号值对应的修正信号值;其中,第一比例系数小于第二比例系数。
在一个可实施的方式中,第二比例系数大于1。
在一个可实施的方式中,处理电路23还用于:对于第三范围内的信号值,通过第三线性函数计算对应的修正信号值;其中,第三范围内的信号值为大于第二阈值的信号值;第三线性函数对应的斜率小于第二线性函数对应的斜率,大于第一线性函数对应的斜率。
在一个可实施的方式中,在对于第三范围内的信号值,通过第三线性函数计算对应的修正信号值时,处理电路23具体用于:对于第三范围内的信号值,将信号值与第二阈值的差值乘以第三比例系数,得到第三乘积;将第二阈值和第一阈值的差值乘以第二比例系数,得到第四乘积;将第二乘积、第 三乘积和第四乘积相加,得到信号值对应的修正信号值;其中,第三比例系数大于第一比例系数,小于第二比例系数。
在一个可实施的方式中,第三比例系数为1。
在一个可实施的方式中,在通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值时,滤波电路22具体用于:通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像中感兴趣区域的各个像素点对应的信号值。
在一个可实施的方式中,在根据对每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理时,对焦电路24具体用于:针对每一帧图像,根据图像对应的修正信号值,计算图像对应的焦值;根据各帧图像对应的焦值进行对焦处理。
图8所示图像处理装置可以执行图1-图6、图12所示实施例的方法,本实施例未详细描述的部分,可参考对图1-图6、图12所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1-图6、图12所示实施例中的描述,在此不再赘述。
图10为本发明实施例提供的一种可移动平台的结构示意图,参考附图10所示,本实施例提供了一种可移动平台,具体应用时,该可移动平台可以为手持电话、手持云台、无人机、无人车、无人船、机器人或自动驾驶汽车等,具体的,该可移动平台可以包括:
机身31;
上述图8实施例中的图像处理装置32,设置于机身31上。
图10所示可移动平台的具体实现过程和实现原理与上述图8中图像处理装置的实现过程和实现原理相类似,具体可参见上述图8所示实施例中的描述,在此不再赘述。
图11为本发明实施例提供的另一种可移动平台的结构示意图,参考附图11所示,本实施例提供了另一种可移动平台,具体应用时,该可移动平台可以为手持电话、手持云台、无人机、无人车、无人船、机器人或自动驾驶汽车等,具体的,该可移动平台可以包括:
机身41;
上述图9实施例中的图像处理装置42,设置于机身41上。
图11所示可移动平台的具体实现过程和实现原理与上述图9中图像处理 装置的实现过程和实现原理相类似,具体可参见上述图9所示实施例中的描述,在此不再赘述。
另外,本发明实施例提供了一种存储介质,该存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,程序指令用于实现上述图1-图7所示实施例中的图像处理方法。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本发明保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read_Only Memory,ROM)、随机存取存储器(Random Access  Memory,RAM)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (52)

  1. 一种图像处理方法,其特征在于,包括:
    获取在镜头移动过程中拍摄的多帧图像;
    通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值;
    针对每一帧图像,根据得到的各个像素点对应的信号值,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制;
    根据对所述每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    对经过噪声抑制处理后得到的信号值进行累加,以得到所述修正信号值。
  3. 根据权利要求1所述的方法,其特征在于,所述针对每一帧图像,根据得到的各个像素点对应的信号值,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制,包括:
    对第一范围内的信号值进行第一噪声抑制处理,以及对第二范围内的信号值进行第二噪声抑制处理,其中,第一噪声抑制处理和第二噪声抑制处理的处理方式不同。
  4. 根据权利要求1所述的方法,其特征在于,所述滤波器为允许高频信号通过的滤波器,所述噪声抑制处理用于对图像中的低频信号进行抑制。
  5. 根据权利要求1所述的方法,其特征在于,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制,包括:
    在所述图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例;
    其中,所述信号值对应的修正比例为对所述信号值在经过噪声抑制处理后对应的修正信号值与所述信号值的比值。
  6. 根据权利要求5所述的方法,其特征在于,所述第一范围内的信号值小于所述第二范围内的信号值。
  7. 根据权利要求5所述的方法,其特征在于,在所述图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例, 包括:
    在所述图像对应的各个信号值中,对第一范围内的信号值进行衰减,和/或,对第二范围内的信号值进行增强。
  8. 根据权利要求7所述的方法,其特征在于,对第一范围内的信号值进行衰减,包括:
    将位于第一范围内的信号值乘以第一系数,以实现对第一范围内的信号值进行衰减,其中,所述第一系数大于零、且小于1。
  9. 根据权利要求7所述的方法,其特征在于,对第二范围内的信号值进行增强,包括:
    将位于第二范围内的信号值乘以第二系数,以实现对第二范围内的信号值进行增强,其中,所述第二系数大于1。
  10. 根据权利要求7所述的方法,其特征在于,对信号值进行衰减后得到的修正信号值小于所述信号值,和/或,对信号值进行增强后得到的修正信号值大于所述信号值。
  11. 根据权利要求5所述的方法,其特征在于,在所述图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例,包括:
    在所述图像对应的各个信号值中,对第一范围内的信号值和第二范围内的信号值均进行衰减;
    其中,第一范围内的信号值的衰减程度大于第二范围内的信号值的衰减程度。
  12. 根据权利要求5所述的方法,其特征在于,在所述图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例,包括:
    在所述图像对应的各个信号值中,对第一范围内的信号值和第二范围内的信号值均进行增强;
    其中,第一范围内的信号值的增强程度小于第二范围内的信号值的增强程度。
  13. 根据权利要求1所述的方法,其特征在于,对所述每一帧图像进行噪 声抑制处理,以对第一范围内的信号值进行抑制,包括:
    通过分段线性函数,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制。
  14. 根据权利要求13所述的方法,其特征在于,通过分段线性函数,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制,包括:
    对于第一范围内的信号值,通过第一线性函数计算对应的修正信号值,以对第一范围内的信号值进行抑制;以及
    对于第二范围内的信号值,通过第二线性函数计算对应的修正信号值,以对第一范围内的信号值进行增强;
    其中,所述第一线性函数对应的斜率小于所述第二线性函数对应的斜率。
  15. 根据权利要求14所述的方法,其特征在于,所述第一范围的信号值为小于第一阈值的信号值;所述第二范围的信号值为大于第一阈值且小于第二阈值的信号值。
  16. 根据权利要求15所述的方法,其特征在于,对于第一范围内的信号值,通过第一线性函数计算对应的修正信号值,包括:
    对于第一范围内的信号值,将所述信号值乘以第一比例系数,得到对应的修正信号值。
  17. 根据权利要求16所述的方法,其特征在于,所述第一比例系数为0。
  18. 根据权利要求16所述的方法,其特征在于,对于第二范围内的信号值,通过第二线性函数计算对应的修正信号值,包括:
    对于第二范围内的信号值,将所述信号值和所述第一阈值的差值乘以第二比例系数,得到第一乘积;将所述第一阈值乘以所述第一比例系数,得到第二乘积;将所述第一乘积和所述第二乘积相加,得到所述信号值对应的修正信号值;
    其中,所述第一比例系数小于所述第二比例系数。
  19. 根据权利要求18所述的方法,其特征在于,所述第二比例系数大于1。
  20. 根据权利要求18所述的方法,其特征在于,还包括:
    对于第三范围内的信号值,通过第三线性函数计算对应的修正信号值;
    其中,所述第三范围内的信号值为大于所述第二阈值的信号值;所述第三线性函数对应的斜率小于所述第二线性函数对应的斜率,大于所述第一线 性函数对应的斜率。
  21. 根据权利要求20所述的方法,其特征在于,对于第三范围内的信号值,通过第三线性函数计算对应的修正信号值,包括:
    对于第三范围内的信号值,将所述信号值与所述第二阈值的差值乘以第三比例系数,得到第三乘积;将所述第二阈值和所述第一阈值的差值乘以所述第二比例系数,得到第四乘积;将所述第二乘积、所述第三乘积和所述第四乘积相加,得到所述信号值对应的修正信号值;
    其中,所述第三比例系数大于所述第一比例系数,小于所述第二比例系数。
  22. 根据权利要求21所述的方法,其特征在于,所述第三比例系数为1。
  23. 根据权利要求1所述的方法,其特征在于,通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值,包括:
    通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像中感兴趣区域的各个像素点对应的信号值。
  24. 根据权利要求1所述的方法,其特征在于,根据对所述每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理,包括:
    针对每一帧图像,根据所述图像对应的修正信号值,计算所述图像对应的焦值;
    根据各帧图像对应的焦值进行对焦处理。
  25. 一种图像处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现:
    获取在镜头移动过程中拍摄的多帧图像;
    通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值;
    针对每一帧图像,根据得到的各个像素点对应的信号值,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制;
    根据对所述每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。
  26. 根据权利要求25所述的装置,其特征在于,所述处理器还用于:
    对经过噪声抑制处理后得到的信号值进行累加,以得到所述修正信号值。
  27. 根据权利要求25所述的装置,其特征在于,在针对每一帧图像,根据得到的各个像素点对应的信号值,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,所述处理器还用于:
    对第一范围内的信号值进行第一噪声抑制处理,以及对第二范围内的信号值进行第二噪声抑制处理,其中,第一噪声抑制处理和第二噪声抑制处理的处理方式不同。
  28. 根据权利要求25所述的装置,其特征在于,所述滤波器为允许高频信号通过的滤波器,所述噪声抑制处理用于对图像中的低频信号进行抑制。
  29. 根据权利要求25所述的装置,其特征在于,在对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,所述处理器还用于:
    在所述图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例;
    其中,所述信号值对应的修正比例为对所述信号值在经过噪声抑制处理后对应的修正信号值与所述信号值的比值。
  30. 根据权利要求29所述的装置,其特征在于,所述第一范围内的信号值小于所述第二范围内的信号值。
  31. 根据权利要求29所述的装置,其特征在于,在所述图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例时,所述处理器用于:
    在所述图像对应的各个信号值中,对第一范围内的信号值进行衰减,和/或,对第二范围内的信号值进行增强。
  32. 根据权利要求31所述的装置,其特征在于,在对第一范围内的信号值进行衰减时,所述处理器用于:
    将位于第一范围内的信号值乘以第一系数,以实现对第一范围内的信号值进行衰减,其中,所述第一系数大于零、且小于1。
  33. 根据权利要求31所述的装置,其特征在于,在对第二范围内的信号值进行增强时,所述处理器用于:
    将位于第二范围内的信号值乘以第二系数,以实现对第二范围内的信号值进行增强,其中,所述第二系数大于1。
  34. 根据权利要求31所述的装置,其特征在于,对信号值进行衰减后得到的修正信号值小于所述信号值,和/或,对信号值进行增强后得到的修正信号值大于所述信号值。
  35. 根据权利要求29所述的装置,其特征在于,在所述图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例时,所述处理器用于:
    在所述图像对应的各个信号值中,对第一范围内的信号值和第二范围内的信号值均进行衰减;
    其中,第一范围内的信号值的衰减程度大于第二范围内的信号值的衰减程度。
  36. 根据权利要求29所述的装置,其特征在于,在所述图像对应的各个信号值中,对第一范围内的信号值和/或第二范围内的信号值进行处理,使得第一范围内的信号值对应的修正比例小于第二范围内的信号值对应的修正比例时,所述处理器用于:
    在所述图像对应的各个信号值中,对第一范围内的信号值和第二范围内的信号值均进行增强;
    其中,第一范围内的信号值的增强程度小于第二范围内的信号值的增强程度。
  37. 根据权利要求25所述的装置,其特征在于,在对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,所述处理器用于:
    通过分段线性函数,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制。
  38. 根据权利要求37所述的装置,其特征在于,在通过分段线性函数,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制时,所述处理器用于:
    对于第一范围内的信号值,通过第一线性函数计算对应的修正信号值,以对第一范围内的信号值进行抑制;以及
    对于第二范围内的信号值,通过第二线性函数计算对应的修正信号值, 以对第一范围内的信号值进行增强;
    其中,所述第一线性函数对应的斜率小于所述第二线性函数对应的斜率。
  39. 根据权利要求38所述的装置,其特征在于,所述第一范围的信号值为小于第一阈值的信号值;所述第二范围的信号值为大于第一阈值且小于第二阈值的信号值。
  40. 根据权利要求39所述的装置,其特征在于,在对于第一范围内的信号值,通过第一线性函数计算对应的修正信号值时,所述处理器用于:
    对于第一范围内的信号值,将所述信号值乘以第一比例系数,得到对应的修正信号值。
  41. 根据权利要求40所述的装置,其特征在于,所述第一比例系数为0。
  42. 根据权利要求40所述的装置,其特征在于,在对于第二范围内的信号值,通过第二线性函数计算对应的修正信号值时,所述处理器用于:
    对于第二范围内的信号值,将所述信号值和所述第一阈值的差值乘以第二比例系数,得到第一乘积;将所述第一阈值乘以所述第一比例系数,得到第二乘积;将所述第一乘积和所述第二乘积相加,得到所述信号值对应的修正信号值;
    其中,所述第一比例系数小于所述第二比例系数。
  43. 根据权利要求42所述的装置,其特征在于,所述第二比例系数大于1。
  44. 根据权利要求42所述的装置,其特征在于,所述处理器用于:
    对于第三范围内的信号值,通过第三线性函数计算对应的修正信号值;
    其中,所述第三范围内的信号值为大于所述第二阈值的信号值;所述第三线性函数对应的斜率小于所述第二线性函数对应的斜率,大于所述第一线性函数对应的斜率。
  45. 根据权利要求44所述的装置,其特征在于,在对于第三范围内的信号值,通过第三线性函数计算对应的修正信号值时,所述处理器用于:
    对于第三范围内的信号值,将所述信号值与所述第二阈值的差值乘以第三比例系数,得到第三乘积;将所述第二阈值和所述第一阈值的差值乘以所述第二比例系数,得到第四乘积;将所述第二乘积、所述第三乘积和所述第四乘积相加,得到所述信号值对应的修正信号值;
    其中,所述第三比例系数大于所述第一比例系数,小于所述第二比例系数。
  46. 根据权利要求45所述的装置,其特征在于,所述第三比例系数为1。
  47. 根据权利要求25所述的装置,其特征在于,在通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值时,所述处理器用于:
    通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像中感兴趣区域的各个像素点对应的信号值。
  48. 根据权利要求25所述的装置,其特征在于,在根据对所述每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理时,所述处理器用于:
    针对每一帧图像,根据所述图像对应的修正信号值,计算所述图像对应的焦值;
    根据各帧图像对应的焦值进行对焦处理。
  49. 一种图像处理装置,其特征在于,包括:
    获取电路,用于获取在镜头移动过程中拍摄的多帧图像;
    滤波电路,用于通过滤波器对获取到的每一帧图像进行滤波处理,得到每一帧图像的至少部分像素点中各个像素点对应的信号值;
    处理电路,用于针对每一帧图像,根据得到的各个像素点对应的信号值,对所述每一帧图像进行噪声抑制处理,以对第一范围内的信号值进行抑制;
    对焦电路,用于根据对所述每一帧图像进行噪声抑制处理后得到的修正信号值进行对焦处理。
  50. 一种可移动平台,其特征在于,包括:
    机身;
    权利要求25-48中任意一项所述的图像处理装置,设置于所述机身上。
  51. 一种可移动平台,其特征在于,包括:
    机身;
    权利要求49所述的图像处理装置,设置于所述机身上。
  52. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-24中任意一项所述的图像处理方法。
PCT/CN2020/092952 2020-05-28 2020-05-28 图像处理方法、装置、可移动平台和存储介质 WO2021237577A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004980.6A CN112689988A (zh) 2020-05-28 2020-05-28 图像处理方法、装置、可移动平台和存储介质
PCT/CN2020/092952 WO2021237577A1 (zh) 2020-05-28 2020-05-28 图像处理方法、装置、可移动平台和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092952 WO2021237577A1 (zh) 2020-05-28 2020-05-28 图像处理方法、装置、可移动平台和存储介质

Publications (1)

Publication Number Publication Date
WO2021237577A1 true WO2021237577A1 (zh) 2021-12-02

Family

ID=75457700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092952 WO2021237577A1 (zh) 2020-05-28 2020-05-28 图像处理方法、装置、可移动平台和存储介质

Country Status (2)

Country Link
CN (1) CN112689988A (zh)
WO (1) WO2021237577A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835030A (zh) * 2022-11-21 2023-03-21 山东大学 一种用于高光谱成像设备的环境光抑制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130135520A1 (en) * 2011-11-24 2013-05-30 Samsung Electronics Co., Ltd. Apparatus for adjusting autofocus and method of controlling the same
CN103248809A (zh) * 2012-02-08 2013-08-14 株式会社日立制作所 图像信号处理装置、摄像装置以及图像处理装置
CN105791668A (zh) * 2014-12-25 2016-07-20 北京展讯高科通信技术有限公司 自动对焦装置
CN106506946A (zh) * 2016-10-26 2017-03-15 浙江宇视科技有限公司 一种摄像机自动聚焦方法及摄像机
CN109064413A (zh) * 2018-07-03 2018-12-21 赛诺微医疗科技(浙江)有限公司 图像对比度增强方法及采用其的图像采集医疗设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130135520A1 (en) * 2011-11-24 2013-05-30 Samsung Electronics Co., Ltd. Apparatus for adjusting autofocus and method of controlling the same
CN103248809A (zh) * 2012-02-08 2013-08-14 株式会社日立制作所 图像信号处理装置、摄像装置以及图像处理装置
CN105791668A (zh) * 2014-12-25 2016-07-20 北京展讯高科通信技术有限公司 自动对焦装置
CN106506946A (zh) * 2016-10-26 2017-03-15 浙江宇视科技有限公司 一种摄像机自动聚焦方法及摄像机
CN109064413A (zh) * 2018-07-03 2018-12-21 赛诺微医疗科技(浙江)有限公司 图像对比度增强方法及采用其的图像采集医疗设备

Also Published As

Publication number Publication date
CN112689988A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN110691193B (zh) 摄像头切换方法、装置、存储介质及电子设备
CN108259774B (zh) 图像合成方法、系统和设备
JP6469678B2 (ja) 画像アーティファクトを補正するシステム及び方法
JP5709911B2 (ja) 画像処理方法、画像処理装置、画像処理プログラムおよび撮像装置
US7941042B2 (en) Auto-focus method, medium, and apparatus for image-capturing
KR101664123B1 (ko) 필터링에 기반하여 고스트가 없는 hdri를 생성하는 장치 및 방법
JP2010258628A5 (zh)
JP6429444B2 (ja) 画像処理装置、撮像装置及び画像処理方法
AU2013273843A1 (en) Motion blur compensation for depth from defocus
WO2017107840A1 (zh) 自动聚焦控制方法和装置
WO2021237577A1 (zh) 图像处理方法、装置、可移动平台和存储介质
WO2021217427A1 (zh) 图像处理方法、装置、拍摄设备、可移动平台和存储介质
US9262833B2 (en) Methodology for performing depth estimation with defocused images under extreme lighting conditions
US8270755B2 (en) Method to evaluate contrast value for an image and applications thereof
US11373277B2 (en) Motion detection method and image processing device for motion detection
US9386214B2 (en) Focusing control method using colour channel analysis
JP2002010126A (ja) 撮像装置
US10326951B2 (en) Image processing apparatus, image processing method, image capturing apparatus and image processing program
WO2021207945A1 (zh) 对焦控制方法、装置、设备、可移动平台和存储介质
CN111294504B (zh) 一种反差对焦过程中对比度反差值的计算方法及装置
CN106791434B (zh) 一种利用af对焦辅助图片清晰的装置及方法
JP6579934B2 (ja) 画像処理装置、撮像装置、画像処理方法、プログラム、記憶媒体
JP2015109681A (ja) 画像処理方法、画像処理装置、画像処理プログラムおよび撮像装置
WO2021217392A1 (zh) 红外图像降噪方法、装置及设备
JP2018196067A (ja) 画像処理装置、撮像装置及び画像処理プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937196

Country of ref document: EP

Kind code of ref document: A1