WO2021237418A1 - 一种天线、天线阵列及基站 - Google Patents

一种天线、天线阵列及基站 Download PDF

Info

Publication number
WO2021237418A1
WO2021237418A1 PCT/CN2020/092145 CN2020092145W WO2021237418A1 WO 2021237418 A1 WO2021237418 A1 WO 2021237418A1 CN 2020092145 W CN2020092145 W CN 2020092145W WO 2021237418 A1 WO2021237418 A1 WO 2021237418A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
supporting wall
feeding
substrate
radiating
Prior art date
Application number
PCT/CN2020/092145
Other languages
English (en)
French (fr)
Inventor
洪辉吕
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声精密制造科技(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声精密制造科技(常州)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2020/092145 priority Critical patent/WO2021237418A1/zh
Publication of WO2021237418A1 publication Critical patent/WO2021237418A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present invention relates to the field of communication technology, in particular to an antenna, an antenna array and a base station.
  • the fifth-generation mobile communication system will widely use Massive MIMO technology, which generally requires miniaturization, low profile, high gain, and high isolation.
  • 5G macro base station antennas will use 64-channel or more antenna radiating units to achieve good 3D beamforming capabilities, and the antenna will be integrated with a radio remote unit (RRU) to form an active Integrated antenna (Active Antenna Unit, AAU). Therefore, if the antenna continues to use traditional techniques and substrates, it will inevitably lead to excessive weight of the base station antenna, complicated assembly, and an invisibly increased antenna design cost.
  • the purpose of the present invention is to provide an antenna with low profile, miniaturization, high isolation and light weight.
  • an antenna including a substrate, the substrate including a first surface and a second surface opposite to the first surface, the substrate is integrally injection molded, and the antenna further includes a substrate formed on the first surface;
  • a plurality of the protruding parts are arranged between a plurality of supporting walls arranged side by side.
  • the protruding portion includes a third surface parallel to the first surface and a first side surface connecting the first surface and the third surface, the radiating unit is provided on the third surface, and the The feeding branch is arranged on the first side surface.
  • the support wall includes a first support wall, a second support wall, and a third support wall that are arranged side by side
  • the radiation unit includes a radiation unit formed between the first support wall and the second support wall.
  • a plurality of first radiation units and a second radiation unit formed between the second support wall and the third support wall, and the decoupling structure is at least disposed on the second support wall close to the first radiation One side of the unit.
  • the substrate is provided with a ground hole at a position of the second supporting wall close to the first radiating unit, and the decoupling structure includes approaching through both ends of the second supporting wall and the ground hole.
  • the ground portion formed by extending the direction of the metal ground layer and connected with the metal ground layer and a decoupling gap hollowed out on the surface of the decoupling structure.
  • one end of the diagonal line of the protrusion is removed in a direction close to the first surface to form a chamfered portion, and the chamfered portion is electroplated from the radiation unit in a direction close to the first surface to form a parasitic unit ,
  • the parasitic unit is electrically connected to the radiating unit, the other end of the diagonal of the protrusion forms a first step parallel to the third surface, and the feeding branch is from the protrusion
  • One side extends to the first platform and extends to both sides of the diagonal to form a Y-shaped open-circuit transmission line.
  • the feeding stub includes a first feeding stub on a side far from the decoupling structure and a second feeding stub on a side close to the decoupling structure
  • the power division feeding network includes multiple connections.
  • a first feeder network connected to a first feeder stub and a second feeder network connected to a plurality of second feeder stubs.
  • the plurality of radiating units includes 3 first radiating units arranged between the first supporting wall and the second supporting wall to form a 1 ⁇ 3 arrangement, and 3 first radiating units arranged on the second supporting wall A 1 ⁇ 3 second radiating unit is formed between the third supporting wall, and the first radiating unit and the second radiating unit jointly form an antenna sub-array including 6 radiating units arranged in a 2 ⁇ 3 arrangement.
  • a groove is hollowed out on a side of the convex portion close to the metal ground layer, and a through hole is formed in the substrate between the plurality of convex portions.
  • the antenna further includes a reflector plate fixed to an end of the metal ground layer away from the substrate, and a port that penetrates the substrate and connects the power division feed network and the metal ground layer.
  • An antenna array which includes a plurality of antennas as described above arranged in an array.
  • a base station includes the antenna array as described above.
  • the present invention adopts coupling feed technology and plastic electroplating processing technology, adopts a decoupling structure in the antenna, and finally realizes the low cost, low profile, and miniaturization of the 5G large-scale base station array antenna. With high isolation and lightweight requirements, this large-scale array antenna can be well applied to 5G macro base stations.
  • FIG. 1 is a three-dimensional schematic diagram of the antenna structure of the present invention facing away from the decoupling structure.
  • FIG. 2 is a three-dimensional schematic diagram of the antenna structure of the present invention facing the side of the decoupling structure.
  • Fig. 3 is a top view of the antenna structure of the present invention.
  • Fig. 4 is a cross-sectional view at C-C in Fig. 3.
  • FIG. 5 is a perspective schematic view of the side of the antenna structure facing the second surface of the present invention.
  • Fig. 6 is a schematic plan view of the decoupling structure of the present invention.
  • Fig. 7 is a schematic diagram of the antenna array structure of the present invention.
  • Fig. 8 is a partial enlarged schematic diagram of A in Fig. 1.
  • Fig. 9 is a partial enlarged schematic diagram of B in Fig. 1.
  • Fig. 10 is an exploded schematic diagram of the antenna structure of the present invention.
  • the first embodiment of the present invention provides an antenna 100.
  • the antenna 100 of the first embodiment operates at 2500-2700 MHz.
  • the technical concept of the antenna 100 of the present invention is not limited to this frequency band.
  • the antenna 100 of the first embodiment works in other frequency bands, such as 3400-3800MHz, 4800-5000MHz.
  • the antenna 100 includes a substrate 10, a metal ground layer 20, a protrusion 30, a supporting wall 40, a radiation unit 50, a feeding branch 60, a power division feeding network 70 and a decoupling structure 80.
  • the substrate 10 is an integrally injection-molded plate-shaped structure, and the substrate includes a first surface 11 and a second surface 12 opposite to the first surface 11.
  • the metal ground layer 20 is formed on the second surface 12.
  • the metal ground layer 20 is formed on the second surface 12 through a plastic electroplating process.
  • the raised portion 30 is formed on the first surface 11 and extends in a direction away from the metal stratum 20.
  • the raised portion 30 includes a third surface 35 and a first side surface. 36.
  • the third surface 35 is the side of the raised portion 30 away from the metal ground layer 20, the third surface 35 is parallel to the first surface 11, and the radiation unit 50 is disposed on the third surface 35.
  • the first side surface 36 connects the third surface 35 and the first surface 11. In the embodiment of this city, the first side surface 36 is perpendicular to the third surface 35.
  • the number is multiple, and the multiple protrusions 30 are divided into multiple groups and are respectively arranged along a linear direction x.
  • the linear direction x is the extending direction of the support wall 40.
  • the multiple protrusions are arranged in a plurality of parallel Between the supporting walls.
  • the number of the protrusions 30 is six, and the six protrusions 30 are formed on the first surface 11 in a 2 ⁇ 3 arrangement.
  • the convex portion 30 is hollowed out to form a groove 31 on the side close to the metal ground layer 20.
  • the substrate 10 is formed on a plurality of the convex portions 30.
  • a through hole 14 is formed therebetween, and the groove 31 and the through hole 14 reduce the weight and material cost of the antenna 100.
  • the number of the supporting walls 40 is multiple, and a plurality of the supporting walls 40 are arranged side by side.
  • the supporting wall 40 includes a first supporting wall 41 and a second supporting wall 41 arranged side by side.
  • the number of the radiation units 50 corresponds to the number of the protrusions 30, and the radiation units 50 are formed on the third surface 35 through a plastic electroplating process.
  • the number of the radiation units 50 is 6, and the 6 radiation units 50 and the 6 protrusions 30 are arranged correspondingly to be formed on the third surface 35 in a 2 ⁇ 3 arrangement.
  • the radiating unit 50 includes a first radiating unit 51 and a second radiating unit 52, and the first radiating unit 51 is formed between the first supporting wall 41 and the second supporting wall 42, The second radiating unit 52 is formed between the second supporting wall 42 and the third supporting wall 43.
  • the number of the first radiating unit 51 is 3, and the first radiating unit 51 is located in the A 1 ⁇ 3 structure is formed between the first supporting wall 41 and the second supporting wall 42, the number of the second radiating unit 52 is 3, and the second radiating unit 52 is connected to the second supporting wall 42 A 1 ⁇ 3 structure is formed between the third supporting walls 43, and the three first radiating units 51 and the three second radiating units 52 together form a 2 ⁇ 3 arrangement including 6 radiating units 50 Antenna 100 sub-arrays.
  • the feeding stub 60 is formed on the first side surface 36 by a plastic electroplating process, and the feeding stub 60 is spaced from the radiating unit 50 to form an open circuit.
  • the third surface 35 has a nearly rectangular structure. There are two diagonal lines y at the four corners of the rectangular structure. The surface 11 direction is removed to form a chamfered portion 32. See FIG.
  • the unit 50 is integrally formed by electroplating, and the parasitic unit 33 is electrically connected to the radiation unit 50. The parasitic unit 33 is used to adjust the resonance point of the antenna 100 to realize the miniaturization of the antenna 100.
  • the raised portion 30 forms a first step 34 parallel to the third surface 35 at the other end of the diagonal line y, as shown in FIG. 8, the feeding stub 60 extends from one side of the raised portion 30 to The first platform extends to both sides of the diagonal y to form a Y-shaped open-circuit transmission line, thereby generating a dual-polarized wave of +/-45°.
  • the feeding stub 60 includes a first feeding stub 61 on the side away from the decoupling structure 80 and a second feeding stub 62 on the side close to the decoupling structure 80.
  • the 6 protrusions 30 are correspondingly provided with 2 groups of 1 ⁇ 3 arrays totaling 6 first feeding stubs 61 and 2 groups of 1 ⁇ 3 arrays 6 second feeding stubs 62.
  • the power division feeder network 70 is formed on the first surface 11 through a plastic plating process, and the power division feeder network 70 is connected to a plurality of the feeder branches 60, this embodiment
  • the power division feeding network 70 includes a first feeding network 71 connected to a plurality of first feeding branches 61 and a second feeding network 72 connected to a plurality of second feeding branches 62.
  • the first feeder network 71 is two one-to-three power-divide feeder networks 70 respectively connected to two groups of the first feeder branches 61 in a 1 ⁇ 3 arrangement
  • the second feeder network 72 In order to connect two groups of 1 ⁇ 3 arranged second feeder stubs 62 respectively, two one-to-three power-dividing feeder networks 70 are used to excite signals of equal amplitude and a certain phase difference for each radiating unit 50, the antenna 100 finally produces a radiation pattern with a fixed downtilt angle.
  • the decoupling structure 80 is formed on the supporting wall 40 by a plastic electroplating process, and the decoupling structure 80 is at least disposed on the second supporting wall 42 close to the first radiation.
  • the radiating elements of the antenna 100 are arranged in a 2 ⁇ 3 array, specifically two groups of radiating elements arranged in a linear direction x, the decoupling structure 80 It is only arranged on the side of the second supporting wall 42 close to the first radiating unit 51, so that the decoupling structure 80 is located between the two groups of radiating units, which improves the heteropolarization isolation.
  • the decoupling structure 80 is also arranged on the first supporting wall 41 and the third supporting wall 43, so that the multiple groups in the antenna array 200 are arranged linearly.
  • a decoupling structure 80 is provided between the radiating elements 50 arranged in the direction x to improve the isolation of different polarization.
  • the decoupling structure 80 is connected to the metal ground layer 20.
  • the substrate 10 is provided with a ground hole 13 at a position of the second supporting wall 42 close to the first radiating unit 51.
  • the decoupling structure 80 is electroplated and connected to the supporting wall 40 side.
  • a rectangular metal plating layer, the decoupling structure 80 includes a grounding portion 82 and a decoupling gap 81.
  • the grounding portion 82 passes through the second support wall 42 along the two ends of the protrusion 30 and corresponds to the grounding The position of the hole 13 extends toward the metal ground layer 20, and the ground portion 82 is connected to the metal ground layer 20.
  • the decoupling gap 81 is hollowed out on the surface of the decoupling structure 80.
  • the decoupling gap 81 can have a variety of hollow structures. In this embodiment, referring to FIG. 6, the decoupling gap 81 is a hollowed out Z-shape.
  • the decoupling slot 81 can also be a hollowed H-shaped structure, a horizontal T-shaped structure, a U-shaped structure, and other hollow structures to improve the antenna 100 different polarization isolation.
  • the antenna 100 further includes a reflector 90 and a port 110.
  • the reflector 90 is fixed to an end of the metal ground layer 20 away from the substrate 10 by rivets.
  • the port 110 penetrates the substrate 10, and the port 110 connects the power division feed network 70 and the port 110 of the metal formation 20. In this embodiment, it corresponds to four one-to-three power division feed networks 70 is provided with 4 ports 110 respectively connected to the power division feeding network 70.
  • the second embodiment of the present invention relates to an antenna array 200.
  • the structure of the antenna array 200 is shown in FIG. 7.
  • the antenna array 200 includes 16 antennas 100 arranged in 4 ⁇ 4 as in the first embodiment.
  • the third embodiment of the present invention relates to a base station.
  • the base station includes the antenna array 200 related to the second embodiment, and 16 4 ⁇ 4 2x3 antennas 100 related to the first embodiment are finally assembled into a 64-channel 5G Acer. stand.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种天线,其包括基板,所述基板包括第一表面、第二表面,其特征在于,所述基板一体注塑成型,所述天线还包括形成于所述第二表面的金属地层、多个分别沿线性方向延伸形成且并排设置的支撑壁、多个在所述第一表面沿背离所述金属地层方向延伸形成的凸起部、电镀形成于凸起部的辐射单元、电镀形成于所述凸起部且与所述辐射单元相间隔的馈电枝节、电镀形成于所述第一表面且连接多个所述馈电枝节的功分馈电网络及电镀形成于所述支撑壁且与所述金属地层相连接的去耦结构,多个所述凸起部分布于多个并排设置的支撑壁之间。最终实现了5G大规模基站阵列天线的低成本,低剖面,小型化,高隔离度和轻量化等要求。

Description

一种天线、天线阵列及基站 技术领域
本发明涉及通讯技术领域,特别涉及一种天线、天线阵列及基站。
背景技术
第五代移动通信系统将广泛采用大规模阵列天线(Massive MIMO)技术,天线一般要求实现小型化,低剖面,高增益和高隔离度等特性。目前,5G宏基站天线将采用64通道甚至更多的天线辐射单元,以实现良好的3D波束赋形能力,并且天线将与射频拉远单元(Radio Remote Unit,RRU)集成在一起,形成有源一体化天线(Active Antenna Unit,AAU)。因此,如果天线继续采用传统的工艺和基材,必将导致基站天线重量过大,组装复杂,无形中也增加了天线设计成本。
因此,有必要提供一种低剖面,小型化,高隔离度和轻量化的天线。
技术问题
本发明的目的在于提供一种低剖面,小型化,高隔离度和轻量化的天线。
技术解决方案
本发明的技术方案如下:一种天线,其包括基板,所述基板包括第一表面及与第一表面相对的第二表面,所述基板一体注塑成型,所述天线还包括形成于所述第二表面的金属地层、多个分别沿线性方向延伸形成且并排设置的支撑壁、多个在所述第一表面沿背离所述金属地层方向延伸形成的凸起部、电镀形成于凸起部的辐射单元、电镀形成于所述凸起部且与所述辐射单元相间隔的馈电枝节、电镀形成于所述第一表面且连接多个所述馈电枝节的功分馈电网络及电镀形成于所述支撑壁且与所述金属地层相连接的去耦结构,多个所述凸起部分布于多个并排设置的支撑壁之间。
更优地,所述凸起部包括与所述第一表面相平行的第三表面及连接第一表面与第三表面的第一侧面,所述辐射单元设于所述第三表面,所述馈电枝节设于所述第一侧面。
更优地,所述支撑壁包括并排设置的第一支撑壁、第二支撑壁及第三支撑壁,所述辐射单元包括形成于所述第一支撑壁与所述第二支撑壁之间的多个第一辐射单元及形成于所述第二支撑壁与所述第三支撑壁之间的第二辐射单元,所述去耦结构至少设置于所述第二支撑壁靠近所述第一辐射单元的一侧。
更优地,所述基板在所述第二支撑壁靠近所述第一辐射单元的位置设置有接地孔,所述去耦结构包括经所述第二支撑壁两端及所述接地孔向靠近所述金属地层方向延伸形成且与所述金属地层相连接的接地部及在去耦结构表面镂空形成的去耦缝隙。
更优地,所述凸起部的对角线一端沿靠近所述第一表面方向去除形成切角部,所述切角部自所述辐射单元沿靠近所述第一表面方向电镀形成寄生单元,所述寄生单元与所述辐射单元电性连接,所述凸起部的对角线另一端形成与所述第三表面相平行的第一台阶,所述馈电枝节自所述凸起部一侧延伸至所述第一平台并向对角线两侧延伸形成Y字型开路传输线。
更优地,所述馈电枝节包括远离所述去耦结构一侧的第一馈电枝节及靠近所述去耦结构一侧的第二馈电枝节,所述功分馈电网络包括连接多个第一馈电枝节的第一馈电网络及连接多个第二馈电枝节的第二馈电网络。
更优地,多个所述辐射单元为包括3个排列于所述第一支撑壁与第二支撑壁之间形成1×3排列的第一辐射单元及3个排列于所述第二支撑壁与第三支撑壁之间形成1×3排列的第二辐射单元,所述第一辐射单元与所述第二辐射单元共同形成包括6个所述辐射单元以2×3排列的天线子阵。
更优地,所述凸起部靠近所述金属地层的一侧镂空形成凹槽,所述基板在多个所述凸起部之间形成有贯穿孔。
更优地,所述天线还包括固定于所述金属地层远离所述基板一端的反射板及贯穿所述基板且连接所述功分馈电网络与所述金属地层的端口。
一种天线阵列,所述天线阵列包括若干个阵列排列的如上任一所述的天线。
一种基站,包括如上所述的天线阵列。
有益效果
本发明的有益效果在于:本发明通过采用耦合馈电技术和塑料电镀的加工工艺,在天线中采用了去耦结构,最终实现了5G大规模基站阵列天线的低成本,低剖面,小型化,高隔离度和轻量化等要求,该大规模阵列天线可以很好的应用到5G宏基站上。
附图说明
图1为本发明的天线结构背向去耦架构一侧立体示意图。
图2为本发明的天线结构面向去耦结构一侧立体示意图。
图3为本发明的天线结构俯视图。
图4为图3中C-C处剖面图。
图5为本发明的天线结构面向第二表面一侧立体示意图。
图6为本发明的去耦结构平面示意图。
图7为本发明的天线阵列结构示意图。
图8为图1中A处局部放大示意图。
图9为图1中B处局部放大示意图。
图10为本发明的天线结构分解示意图。
本发明的实施方式
下面结合附图和实施方式对本发明作进一步说明。
本发明的实施例一提供一种天线100,本实施例一的天线100工作在2500-2700MHz,但本发明天线100的技术构思不仅限于该频段,通过调节本实施例的天线100尺寸可以使本实施例一的天线100工作于其他频段如:3400-3800MHz,4800-5000MHz。
参见图10,所述天线100包括基板10、金属地层20、凸起部30、支撑壁40、辐射单元50、馈电枝节60、功分馈电网络70及去耦结构80。
具体地,参见图1~图4,所述基板10为一体注塑成型的板状结构,所述基板包括第一表面11及与第一表面11相对的第二表面12。所述金属地层20形成于第二表面12,本实施例中,所述金属地层20通过塑料电镀工艺形成于所述第二表面12。
参见图1、图2、图4和图8,所述凸起部30在第一表面11沿背离所述金属地层20方向延伸形成,所述凸起部30包括第三表面35和第一侧面36,所述第三表面35为凸起部30远离所述金属地层20的一面,所述第三表面35与所述第一表面11相平行,所述辐射单元50设置于所述第三表面35。所述第一侧面36连接所述第三表面35与所述第一表面11,本市实施例中,所述第一侧面36与所述第三表面35相垂直,所述凸起部30的数量为多个,多个所述凸起部30分多组分别沿线性方向x排列,所述线性方向x为支撑壁40的延伸方向,多个所述凸起部分布于多个并列设置的支撑壁之间。本实施例中,参见图1,所述凸起部30数量为6个,6个所述凸起部30以2×3排列形成于所述第一表面11。本实施例中,参加图4,所述凸起部30靠近所述金属地层20的一侧镂空形成凹槽31,参见图1~图5,所述基板10在多个所述凸起部30之间形成有贯穿孔14,所述凹槽31和所述贯穿孔14减轻天线100的重量和材料成本。
参见图1~图3,所述支撑壁40数量为多个,多个所述支撑壁40并排设置,本实施例中,所述支撑壁40包括并排设置的第一支撑壁41、第二支撑壁42及第三支撑壁43,所述辐射单元50的数量与所述凸起部30数量相对应,所述辐射单元50通过塑料电镀工艺形成于所述第三表面35。本实施例中,所述辐射单元50的数量为6个,且6个所述辐射单元50与6个所述凸起部30相对应地设置为以2×3排列形成于第三表面35。本实施例中,所述辐射单元50包括第一辐射单元51和第二辐射单元52,所述第一辐射单元51形成于所述第一支撑壁41与所述第二支撑壁42之间,所述第二辐射单元52形成于第二支撑壁42与第三支撑壁43之间,本实施例中所述第一辐射单元51的数量为3个,所述第一辐射单元51在所述第一支撑壁41与所述第二支撑壁42之间形成1×3结构,所述第二辐射单元52的数量为3个,所述第二辐射单元52在所述第二支撑壁42与所述第三支撑壁43之间形成1×3结构,3个所述第一辐射单元51与3个所述第二辐射单元52共同形成包括6个所述辐射单元50以2×3排列的天线100子阵。
参见图1~3及图8和图9,所述馈电枝节60通过塑料电镀工艺形成于所述第一侧面36,且所述馈电枝节60与所述辐射单元50相间隔形成开路。参见图3,所述第三表面35为接近矩形的结构,矩形结构的四个角存在两条对角线y,所述凸起部30在其中一条对角线y一端沿靠近所述第一表面11方向去除形成切角部32,参见图9,所述切角部32自所述辐射单元50沿靠近所述第一表面11方向电镀形成寄生单元33,所述寄生单元33与所述辐射单元50通过电镀一体成型,所述寄生单元33与所述辐射单元50电性连接。所述寄生单元33用来调节天线100的谐振点,以实现天线100的小型化。所述凸起部30在对角线y另一端形成与所述第三表面35相平行的第一台阶34,参见图8,所述馈电枝节60自所述凸起部30一侧延伸至所述第一平台并向对角线y两侧延伸形成Y字型开路传输线,从而产生+/-45°的双极化波。参见图3,所述馈电枝节60包括远离所述去耦结构80一侧的第一馈电枝节61及靠近所述去耦结构80一侧的第二馈电枝节62。本实施例中,6个凸起部30对应设置2组1×3排列共计6个第一馈电枝节61和2组1×3排列6个第二馈电枝节62。
参见图1~图3,所述功分馈电网络70通过塑料电镀工艺形成于所述第一表面11,且所述功分馈电网络70连接多个所述馈电枝节60,本实施例中,所述功分馈电网络70包括连接多个第一馈电枝节61的第一馈电网络71及连接多个第二馈电枝节62的第二馈电网络72。本实施例中,所述第一馈电网络71为分别连接2组1×3排列的第一馈电枝节61的2个一分三功分馈电网络70,所述第二馈电网络72为分别连接2组1×3排列的第二馈电枝节62的2个一分三功分馈电网络70,以用于给各辐射单元50激励起等幅度和具有一定相位差的信号,天线100最终产生带固定下倾角的辐射方向图。
参见图1~ 4及图5和图6,去耦结构80通过塑料电镀工艺形成于所述支撑壁40,所述去耦结构80至少设置于所述第二支撑壁42靠近所述第一辐射单元51的一侧,本实施例中,单个天线100内,所述天线100的辐射单元形成2×3阵列排列,具体为2组分别沿线性方向x排列的辐射单元,所述去耦结构80仅设置于所述第二支撑壁42靠近所述第一辐射单元51的一侧,使得去耦结构80处于2组辐射单元之间,提高了异极化隔离度。当若干个天线100阵列排列时,根据实际需求,所述去耦结构80还设置于所述第一支撑壁41和所述第三支撑壁43上,使得天线阵列200内的多组分别沿线性方向x排列的辐射单元50之间设有去耦结构80以提高异极化隔离度。且所述去耦结构80与所述金属地层20相连接的。所述基板10在所述第二支撑壁42靠近所述第一辐射单元51的位置设置有接地孔13,本实施例中,所述去耦结构80为电镀与所述支撑壁40一侧的矩形金属镀层,所述去耦结构80包括接地部82及去耦缝隙81,所述接地部82经所述第二支撑壁42沿所述凸起部30排列方向的两端及对应所述接地孔13的位置向靠近所述金属地层20方向延伸形成,且所述接地部82与所述金属地层20相连接。所述去耦缝隙81镂空形成于所述去耦结构80表面,所述去耦缝隙81可以有多种镂空结构,本实施例中,参见图6,所述去耦缝隙81为镂空的Z字型结构,除了本实施例公开的Z字型结构,所述去耦缝隙81还可以为镂空的H字型结构、横放的T字型结构或U字型结构等其他镂空结构,以提高天线100的异极化隔离度。
参见图7,所述天线100还包括反射板90及端口110,所述反射板90通过铆钉固定于所述金属地层20远离所述基板10一端。所述端口110贯穿所述基板10,且所述端口110连接所述功分馈电网络70与所述金属地层20的端口110,本实施例,对应4个一分三的功分馈电网络70设置有4个分别与功分馈电网络70相连接的端口110。
需要说明的是,以上仅为举例说明,并不对本申请的技术方案构成限定。
本发明的实施例二涉及一种天线阵列200,该天线阵列200的结构如图7所示,所述天线阵列200包括16个以4×4排列的如实施例一涉及的天线100。
本发明的实施例三涉及一种基站,该基站上述包括如实施例二涉及的天线阵列200,16个以4×4排列的如实施例一涉及的2x3天线100最终组装成为64通道的5G宏基站。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (11)

  1. 一种天线,其包括基板,所述基板包括第一表面及第一表面相对的第二表面,其特征在于,所述基板一体注塑成型,所述天线还包括形成于所述第二表面的金属地层、多个分别沿线性方向延伸形成且并排设置的支撑壁、多个在所述第一表面沿背离所述金属地层方向延伸形成的凸起部、电镀形成于凸起部的辐射单元、电镀形成于所述凸起部且与所述辐射单元相间隔的馈电枝节、电镀形成于所述第一表面且连接多个所述馈电枝节的功分馈电网络及电镀形成于所述支撑壁且与所述金属地层相连接的去耦结构,多个所述凸起部分布于多个并排设置的支撑壁之间。
  2. 根据权利要求1所述的天线,其特征在于:所述凸起部包括与所述第一表面相平行的第三表面及连接第一表面与第三表面的第一侧面,所述辐射单元设于所述第三表面,所述馈电枝节设于所述第一侧面。
  3. 根据权利要求1所述的天线,其特征在于:所述支撑壁包括并排设置的第一支撑壁、第二支撑壁及第三支撑壁,所述辐射单元包括形成于所述第一支撑壁与所述第二支撑壁之间的多个第一辐射单元及形成于所述第二支撑壁与所述第三支撑壁之间的第二辐射单元,所述去耦结构至少设置于所述第二支撑壁靠近所述第一辐射单元的一侧。
  4. 根据权利要求3所述的天线,其特征在于:所述基板在所述第二支撑壁靠近所述第一辐射单元的位置设置有接地孔,所述去耦结构包括经所述第二支撑壁两端及所述接地孔向靠近所述金属地层方向延伸形成且与所述金属地层相连接的接地部及在去耦结构表面镂空形成的去耦缝隙。
  5. 根据权利要求1所述的天线,其特征在于:所述凸起部的对角线一端沿靠近所述第一表面方向去除形成切角部,所述切角部自所述辐射单元沿靠近所述第一表面方向电镀形成寄生单元,所述寄生单元与所述辐射单元电性连接,所述凸起部的对角线另一端形成与所述第三表面相平行的第一台阶,所述馈电枝节自所述凸起部一侧延伸至所述第一平台并向对角线两侧延伸形成Y字型开路传输线。
  6. 根据权利要求1所述的天线,其特征在于:所述馈电枝节包括远离所述去耦结构一侧的第一馈电枝节及靠近所述去耦结构一侧的第二馈电枝节,所述功分馈电网络包括连接多个第一馈电枝节的第一馈电网络及连接多个第二馈电枝节的第二馈电网络。
  7. 根据权利要求3所述的天线,其特征在于:多个所述辐射单元为包括3个排列于所述第一支撑壁与第二支撑壁之间形成1×3排列的第一辐射单元及3个排列于所述第二支撑壁与第三支撑壁之间形成1×3排列的第二辐射单元,所述第一辐射单元与所述第二辐射单元共同形成包括6个所述辐射单元以2×3排列的天线子阵。
  8. 根据权利要求1所述的天线,其特征在于:所述凸起部靠近所述金属地层的一侧镂空形成凹槽,所述基板在多个所述凸起部之间形成有贯穿孔。
  9. 根据权利要求1所述的天线,其特征在于:所述天线还包括固定于所述金属地层远离所述基板一端的反射板及贯穿所述基板且连接所述功分馈电网络与所述金属地层的端口。
  10. 一种天线阵列,其特征在于,所述天线阵列包括若干个阵列排列的如权利要求1~9任一所述的天线。
  11. 一种基站,其特征在于,包括如权利要求10所述的天线阵列。
PCT/CN2020/092145 2020-05-25 2020-05-25 一种天线、天线阵列及基站 WO2021237418A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092145 WO2021237418A1 (zh) 2020-05-25 2020-05-25 一种天线、天线阵列及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092145 WO2021237418A1 (zh) 2020-05-25 2020-05-25 一种天线、天线阵列及基站

Publications (1)

Publication Number Publication Date
WO2021237418A1 true WO2021237418A1 (zh) 2021-12-02

Family

ID=78745159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092145 WO2021237418A1 (zh) 2020-05-25 2020-05-25 一种天线、天线阵列及基站

Country Status (1)

Country Link
WO (1) WO2021237418A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124599A1 (zh) * 2021-12-28 2023-07-06 武汉凡谷电子技术股份有限公司 天线模块
EP4362229A1 (en) * 2022-10-28 2024-05-01 Wuhan Fingu Electronic Technology Co., Ltd. Antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115548A1 (en) * 2010-11-09 2012-05-10 Hitachi Cable, Ltd. Mobile communication base station antenna and mobile communication base station antenna system
CN106099394A (zh) * 2016-06-28 2016-11-09 武汉虹信通信技术有限责任公司 一种用于5g系统的密集阵列天线
CN110011027A (zh) * 2018-12-28 2019-07-12 瑞声科技(新加坡)有限公司 一种天线、天线阵列和基站
CN110190382A (zh) * 2019-06-11 2019-08-30 武汉虹信通信技术有限责任公司 低剖面辐射单元及基站天线
CN110518333A (zh) * 2019-06-29 2019-11-29 瑞声光电科技(苏州)有限公司 天线振子、天线阵列和基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115548A1 (en) * 2010-11-09 2012-05-10 Hitachi Cable, Ltd. Mobile communication base station antenna and mobile communication base station antenna system
CN106099394A (zh) * 2016-06-28 2016-11-09 武汉虹信通信技术有限责任公司 一种用于5g系统的密集阵列天线
CN110011027A (zh) * 2018-12-28 2019-07-12 瑞声科技(新加坡)有限公司 一种天线、天线阵列和基站
CN110190382A (zh) * 2019-06-11 2019-08-30 武汉虹信通信技术有限责任公司 低剖面辐射单元及基站天线
CN110518333A (zh) * 2019-06-29 2019-11-29 瑞声光电科技(苏州)有限公司 天线振子、天线阵列和基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124599A1 (zh) * 2021-12-28 2023-07-06 武汉凡谷电子技术股份有限公司 天线模块
EP4362229A1 (en) * 2022-10-28 2024-05-01 Wuhan Fingu Electronic Technology Co., Ltd. Antenna

Similar Documents

Publication Publication Date Title
US8558746B2 (en) Flat panel array antenna
US6480167B2 (en) Flat panel array antenna
US7345632B2 (en) Multibeam planar antenna structure and method of fabrication
TWI496346B (zh) 介質天線以及天線模組
US8847841B2 (en) Multi-beam antenna device
US6225950B1 (en) Polarization isolation in antennas
US6285323B1 (en) Flat plate antenna arrays
CA2250292C (en) Flat plate antenna arrays
US20190081412A1 (en) Adapter structure with waveguide channels
CN111613887A (zh) 一种天线、天线阵列及基站
CA2294206A1 (en) Antenna system
WO2021237418A1 (zh) 一种天线、天线阵列及基站
CN110247188B (zh) 一种天线及基站
WO2023025100A1 (zh) 天线振子及天线阵列
CN102983406B (zh) 天线
WO2018121256A9 (zh) 低剖面天线
CN112886282A (zh) 一种模块化拼接的集成网络阵列天线
US6208313B1 (en) Sectoral antenna with changeable sector beamwidth capability
CN212810537U (zh) 空气微带线天线单元及天线系统
CN210430092U (zh) 一种移动通信天线的单元结构及阵列结构
CN214477925U (zh) 一种模块化拼接的集成网络阵列天线
CN216648568U (zh) 一种功分网络及天线结构
TWI674704B (zh) 低旁波瓣陣列天線
CN113594669A (zh) 一种天线及其制备方法
CN114188727A (zh) 阵列天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938143

Country of ref document: EP

Kind code of ref document: A1