WO2021235500A1 - Laminated sheet - Google Patents

Laminated sheet Download PDF

Info

Publication number
WO2021235500A1
WO2021235500A1 PCT/JP2021/019069 JP2021019069W WO2021235500A1 WO 2021235500 A1 WO2021235500 A1 WO 2021235500A1 JP 2021019069 W JP2021019069 W JP 2021019069W WO 2021235500 A1 WO2021235500 A1 WO 2021235500A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous cellulose
laminated sheet
less
fiber
fine fibrous
Prior art date
Application number
PCT/JP2021/019069
Other languages
French (fr)
Japanese (ja)
Inventor
英一 三上
義治 錦織
速雄 伏見
利奈 宍戸
一輝 小泉
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2022524522A priority Critical patent/JPWO2021235500A1/ja
Publication of WO2021235500A1 publication Critical patent/WO2021235500A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply

Definitions

  • the present invention relates to a laminated sheet.
  • fibrous cellulose having a fiber diameter of 10 ⁇ m or more and 50 ⁇ m or less has been widely used mainly as paper products.
  • fine fibrous cellulose having a fiber diameter of 1 ⁇ m or less is also known. Fine fibrous cellulose is attracting attention as a new material, and its uses are wide-ranging. For example, sheets containing fine fibrous cellulose, resin complexes, and thickeners are being developed.
  • Patent Document 1 describes (a) a step of introducing a substituent having electrostatic and / or steric functionality into a fine fiber raw material to obtain a substituent-introduced fiber, and (b) introducing a substituent.
  • a method for producing the fine fibers having the same is disclosed.
  • Patent Document 2 describes a method for producing a desester compound, which comprises a step of heating a compound having an ester derived from phosphoric acid and / or an ester derived from carboxylic acid in the presence of a nitrogen-containing compound exhibiting basicity. It has been disclosed. In these documents, it is considered to eliminate the substituent introduced into the fine fiber.
  • Patent Document 3 describes, in the method for producing a fine fiber-containing sheet, at least (a) a step of introducing a substituent having electrostatic and / or steric functionality into a fiber raw material to obtain a substituent-introduced fiber. , (B) The step of mechanically treating the substituent-introduced fiber obtained in the step (a) to obtain the substituent-introduced fine fiber, and (c) a sheet from the substituent-introduced fine fiber obtained in the step (b). (D) A method for producing a fine fiber-containing sheet having a step of removing at least a part of the introduced substituent from the sheet obtained in the step (c) is disclosed. Here, a method of removing a substituent after forming a sheet from a fine fiber having a substituent is studied.
  • Patent Documents 4 and 5 disclose a method for producing cellulose zantate nanofibers, which comprises defibrating a cellulose zantate or a cationic substituent of cellulose zantate.
  • Patent Document 4 a method of returning cellulose zantate nanofibers to non-denatured cellulose by regenerating the cellulose zantate nanofibers as necessary is also studied.
  • Patent Document 5 discloses a derivative functional group-desorbed cellulose fine fiber-containing sheet having an average fiber diameter of 3 nm or more and 300 nm or less, in which a functional group is desorbed from the fine fibers of the cellulose derivative.
  • the present inventors have studied for the purpose of providing a sheet containing fine fibrous cellulose and having both yellowing resistance and curl resistance. I proceeded.
  • the present inventors have conducted a fiber layer containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less. It was found that a laminated sheet having both yellowing resistance and curl resistance can be obtained by laminating two or more layers to form a laminated sheet and varying the content of fibrous cellulose in each fiber layer.
  • the present invention has the following configurations.
  • Each fiber layer is a laminated sheet in which the content of fibrous cellulose differs in the thickness direction.
  • the fiber layer further contains an oxygen-containing organic compound, and the ratio of carbon C to oxygen O of the oxygen-containing organic compound is 1.8 or more.
  • the laminated sheet according to [2] wherein the difference in the ratio of carbon C and oxygen O on the front and back surfaces of the laminated sheet is 0.2 or less.
  • the substituent is an anionic group.
  • the laminated sheet according to [5], wherein the anionic group is a phosphoric acid group or a functional group derived from a phosphoric acid group.
  • the adhesion aid is an isocyanate compound, and the content of the isocyanate compound is 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the resin contained in the resin layer, according to [14] or [15].
  • Laminated sheet [17] The laminated sheet according to any one of [1] to [16], wherein the YI value is 2.5 or less.
  • FIG. 1 is a cross-sectional view illustrating the configuration of the laminated sheet of the present invention.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the pH with respect to the fibrous cellulose-containing slurry having a phosphorus oxo acid group.
  • the present invention relates to a laminated sheet in which two or more fiber layers containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less are directly laminated.
  • each fiber layer in the laminated sheet has a different content of fibrous cellulose in the thickness direction of each fiber layer.
  • FIG. 1 is a cross-sectional view illustrating the configuration of the laminated sheet of the present invention.
  • the laminated sheet of the present invention has two or more fiber layers.
  • a laminated sheet 100 having two fiber layers is exemplified.
  • the laminated sheet 100 includes a fiber layer 10 (first fiber layer) and a fiber layer 20 (second fiber layer). Have.
  • the fiber layers are directly laminated to each other.
  • each fiber layer of the laminated sheet has a different content of fibrous cellulose in the thickness direction. This means that the content of fibrous cellulose in each fiber layer varies in the thickness direction of each fiber layer. In each fiber layer, a concentration gradient of fibrous cellulose may be generated in the thickness direction of each fiber layer. Further, when each fiber layer is divided into three equal parts in the thickness direction, the content of the fibrous cellulose contained in the three regions may be different from each other.
  • the content of fibrous cellulose in each fiber layer is, for example, measured in the fibrous cellulose content on the front and back surfaces of each fiber layer, and when the fibrous cellulose content on the front and back surfaces is different, each in the thickness direction. It can be determined that the content of fibrous cellulose in the fiber layer is fluctuating.
  • the content of fibrous cellulose on the front and back surfaces of each fiber layer can be evaluated, for example, by calculating the ratio of carbon C to oxygen O as described later.
  • the present inventors when the amount of substituents introduced in the fine fibrous cellulose is set to a low amount of substituents such as less than 0.5 mmol / g, the present inventors extremely curl the sheet in the process of producing the sheet and form a flat plate. I found out that I could't get the sheet. Therefore, the present inventors have made extensive studies to produce a sheet in which curl is suppressed even when the amount of substituents introduced in the fine fibrous cellulose is set to a low amount of substituents. As a result, the present inventors laminated two or more fiber layers containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less, and further, in the thickness direction.
  • the present invention has succeeded in suppressing the generation of coloring and curling in the sheet containing the fine fibrous cellulose having a low substituent amount.
  • the YI value of the laminated sheet is preferably 2.5 or less, more preferably 2.0 or less.
  • the lower limit of the YI value of the laminated sheet is not particularly limited, but is preferably 0.1 or more.
  • the YI value of the laminated sheet is a YI value measured in accordance with JIS K 7373: 2006.
  • As the YI value measuring device for example, Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) can be used. Since the above-mentioned YI value is a YI value measured before heating the laminated sheet as described later, it may be referred to as an initial YI value.
  • the YI value after heating the laminated sheet at 160 ° C. for 6 hours is preferably 22 or less, more preferably 20 or less, still more preferably 16 or less.
  • the lower limit of the YI value of the laminated sheet after heating at 160 ° C. for 6 hours is not particularly limited, but is preferably 0.1 or more.
  • the YI value after heating at 160 ° C. for 6 hours may be referred to as a YI value after heating.
  • the YI increase rate in the laminated sheet of the present embodiment is preferably 1400% or less, more preferably 1300% or less, further preferably 1200% or less, still more preferably 1100% or less. , 1000% or less is particularly preferable.
  • the lower limit of the YI increase rate in the laminated sheet is not particularly limited, but is preferably 0.1% or more.
  • the YI increase rate of the laminated sheet is the increase rate of the YI value of the laminated sheet before and after heating the laminated sheet at 160 ° C. for 6 hours.
  • the YI increase rate is a value calculated by the following formula.
  • YI increase rate (%) (YI value of laminated sheet after heating-YI value of laminated sheet before heating) / YI value of laminated sheet before heating ⁇ 100
  • the YI value of the laminated sheet is a YI value measured in accordance with JIS K 7373: 2006.
  • the curl resistance of the laminated sheet of the present embodiment can be evaluated by measuring the height (curl amount) (mm) of the four corners of the sheet after a lapse of a predetermined time. Specifically, the laminated sheet is cut into 100 mm squares and left on a flat place for 4 hours or more in an environment of 23 ° C. and a relative humidity of 50%. After standing, the heights (mm) of the four corners of the sheet are measured, and the average value is taken as the measured curl value (curl amount).
  • the measured curl value (curl amount) is preferably 30 mm or less, more preferably 20 mm or less, further preferably 10 mm or less, and particularly preferably 8 mm or less. If the measured curl value (curl amount) is within the above range, it can be evaluated that the laminated sheet has excellent curl resistance.
  • the total light transmittance of the laminated sheet is preferably 50% or more, more preferably 60% or more, further preferably 70% or more, and particularly preferably 80% or more.
  • the total light transmittance of the laminated sheet is preferably 85% or more, more preferably 90% or more.
  • the haze of the laminated sheet is preferably 80% or less, preferably 70% or less, and even more preferably 60% or less.
  • the haze of the laminated sheet is preferably 10% or less, more preferably 5% or less, and further preferably 2% or less.
  • the lower limit of the haze of the laminated sheet is not particularly limited and may be 0%.
  • the haze is a value measured using a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute) in accordance with JIS K 7136: 2000.
  • the total thickness of the laminated sheet is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, further preferably 15 ⁇ m or more, and particularly preferably 20 ⁇ m or more. .. Further, the total thickness of the laminated sheet is preferably 1000 ⁇ m or less. The thickness of the laminated sheet can be appropriately adjusted according to the intended use.
  • each fiber layer constituting the laminated sheet is preferably 2.5 ⁇ m or more, more preferably 5 ⁇ m or more, further preferably 7.5 ⁇ m or more, and particularly preferably 10 ⁇ m or more.
  • the thickness of each fiber layer is preferably 500 ⁇ m or less.
  • the thickness of the fiber layer constituting the laminated sheet is measured by cutting out a cross section of the laminated sheet with Ultra Microtome UC-7 (manufactured by JEOL Ltd.) and observing the cross section with an electron microscope, a magnifying glass or visually. Value.
  • the overall density of the fiber layer constituting the laminated sheet is preferably 1.0 g / cm 3 or more, more preferably 1.2 g / cm 3 or more, and 1.4 g / cm 3 or more. More preferred. Also, the overall density of the fiber layer constituting the laminated sheet, it is preferably, more preferably 1.65 g / cm 3 or less, 1.6 g / cm 3 or less is 1.7 g / cm 3 or less Is even more preferable.
  • the density of the fiber layer is calculated from the basis weight and thickness of the fiber layer in accordance with JIS P 8118: 2014.
  • the basis weight of the fiber layer can be calculated in accordance with JIS P 8124: 2011.
  • the density of the fiber layer is a density containing an arbitrary component other than the fine fibrous cellulose.
  • the fiber layer is preferably a non-porous layer.
  • the fact that the fiber layer is non-porous means that the density of the entire fiber layer is 1.0 g / cm 3 or more.
  • the density of the entire fiber layer is 1.0 g / cm 3 or more, it means that the porosity contained in the fiber layer is suppressed to a predetermined value or less, and it is distinguished from the porous sheet or layer. ..
  • the non-porous fiber layer is also characterized by a void ratio of 15% by volume or less.
  • the porosity of the fiber layer referred to here is simply obtained by the following formula (a).
  • Porosity (% by volume) ⁇ 1-B / (M ⁇ A ⁇ t) ⁇ ⁇ 100
  • A is the area of the fiber layer (cm 2 )
  • t is the thickness of the fiber layer (cm)
  • B is the mass of the fiber layer (g)
  • M is the density of cellulose.
  • the surface roughness of at least one surface of the fiber layer is preferably 50 nm or less, more preferably 30 nm or less, and further preferably 10 nm or less. It is also particularly preferable that the surface roughness of both sides of the fiber layer is within the above range. By setting the surface roughness within the above range, the transparency of the laminated sheet can be enhanced. Specifically, the haze of the laminated sheet can be made lower.
  • the surface roughness (arithmetic mean) of the fiber layer is the arithmetic average roughness of at least one surface of the fiber layer.
  • the surface roughness (arithmetic mean) is a value obtained by measuring the arithmetic average roughness of 3 ⁇ m square using an atomic force microscope (NanoScope IIIa manufactured by Veeco).
  • the surface pH of the fiber layer is preferably 3 or more, more preferably 4 or more, and even more preferably 5 or more.
  • the surface pH of the fiber layer is preferably 10 or less, more preferably 9 or less, and even more preferably 8 or less.
  • the fiber layer constituting the laminated sheet may be 2 or more layers, preferably 10 layers or less, more preferably 8 layers or less, and further preferably 6 layers or less. Above all, it is particularly preferable that the fiber layer constituting the laminated sheet is two layers. When the fiber layers constituting the laminated sheet are two layers, it is preferable that the fibrous cellulose is unevenly distributed on the surface side where each fiber layer is in contact. That is, in a laminated sheet in which two fiber layers containing fibrous cellulose having an introduction amount of a substituent of less than 0.5 mmol / g and a fiber width of 1000 nm or less are directly laminated, near the interface of each fiber layer. It is preferable that a large amount of fibrous cellulose is present in the region.
  • the fibrous cellulose exists symmetrically with respect to the central surface of all the fiber layers. That is, it is preferable that the content of the fibrous cellulose fluctuates symmetrically from the central surface of all the fiber layers to each surface.
  • the fiber layer further contains an oxygen-containing organic compound.
  • the oxygen-containing organic compound is preferably non-fibrous, and such non-fibrous oxygen-containing organic compound does not include fine fibrous cellulose or thermoplastic resin fiber.
  • the oxygen-containing organic compound is preferably a hydrophilic organic compound. Hydrophilic oxygen-containing organic compounds can improve the strength, density, chemical resistance and the like of the fiber layer.
  • the hydrophilic oxygen-containing organic compound preferably has, for example, an SP value of 9.0 or more.
  • the hydrophilic oxygen-containing organic compound is preferably one in which 1 g or more of the oxygen-containing organic compound is dissolved in 100 ml of ion-exchanged water, for example.
  • oxygen-containing organic compound examples include polyethylene glycol, polyalkylene oxide (polyethylene oxide, polypropylene oxide, etc.), casein, dextrin, starch, modified starch, polyvinyl alcohol, modified polyvinyl alcohol (acetoacetylated polyvinyl alcohol, etc.), polyvinylpyrrolidone.
  • Polyvinylmethyl ether polyacrylic acid salts, polyacrylamide, acrylic acid alkyl ester copolymer, urethane-based copolymer, hydrophilic polymer such as cellulose derivative (hydroxyethyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, etc.); glycerin, sorbitol , Hydrophilic small molecules such as ethylene glycol.
  • those having an oxygen-containing organic compound having an atomic% ratio of carbon C and oxygen O of 1.8 or more are preferably used.
  • each fiber layer in the laminated sheet of the present invention contains fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less, and an atomic% of carbon C and oxygen O. It is preferable that the compound contains an oxygen-containing organic compound having a ratio of 1.8 or more.
  • the oxygen-containing organic compound is preferably an organic compound polymer having a molecular weight of 50,000 or more and 8 million or less.
  • the molecular weight of the oxygen-containing organic compound is preferably 100,000 or more and 5 million or less, but for example, it may be a small molecule having a molecular weight of less than 1000.
  • the content of the oxygen-containing organic compound contained in each fiber layer is preferably 1 part by mass or more, and more preferably 5 parts by mass or more, with respect to 100 parts by mass of the fibrous cellulose contained in each fiber layer. It is preferably 10 parts by mass or more, and more preferably 10 parts by mass or more.
  • the content of the oxygen-containing organic compound contained in the fiber layer is preferably 1000 parts by mass or less, preferably 500 parts by mass or less, with respect to 100 parts by mass of the fine fibrous cellulose contained in each fiber layer. Is more preferable, and it is further preferable that the amount is 200 parts by mass or less.
  • the difference in the ratio of carbon C and oxygen O atomic% on the front and back surfaces is preferably 0.2 or less, and more preferably 0.1 or less. Above all, it is particularly preferable that the difference in the ratio of carbon C and oxygen O on the front and back surfaces is 0.
  • Each fiber layer may contain an additional optional component in addition to the fibrous cellulose and the oxygen-containing organic compound described above.
  • an antifoaming agent for example, an antifoaming agent, a lubricant, an ultraviolet absorber, a dye, a pigment, a stabilizer, a surfactant, a preservative (for example, phenoxyethanol) and the like can be mentioned.
  • each fiber layer may contain organic ions as an optional component.
  • organic ion include tetraalkylammonium ion and tetraalkylphosphonium ion.
  • examples of the tetraalkylammonium ion include tetramethylammonium ion, tetraethylammonium ion, tetrapropylammonium ion, tetrabutylammonium ion, tetrapentylammonium ion, tetrahexylammonium ion, tetraheptylammonium ion, tributylmethylammonium ion and lauryltrimethyl.
  • Examples thereof include ammonium ion, cetyltrimethylammonium ion, stearyltrimethylammonium ion, octyldimethylethylammonium ion, lauryldimethylethylammonium ion, didecyldimethylammonium ion, lauryldimethylbenzylammonium ion and tributylbenzylammonium ion.
  • Examples of the tetraalkylphosphonium ion include tetramethylphosphonium ion, tetraethylphosphonium ion, tetrapropylphosphonium ion, tetrabutylphosphonium ion, and lauryltrimethylphosphonium ion. Further, examples of the tetrapropyl onium ion and the tetrabutyl onium ion include tetra n-propyl onium ion and tetra n-butyl onium ion, respectively.
  • Each fiber layer constituting the laminated sheet contains fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less.
  • fibrous cellulose having a fiber width of 1000 nm or less is also referred to as fine fibrous cellulose or CNF.
  • the amount of the substituent introduced in the fine fibrous cellulose may be less than 0.5 mmol / g, preferably 0.4 mmol / g or less, more preferably 0.3 mmol / g or less, and 0.25 mmol. It is more preferably less than / g, and particularly preferably 0.15 mmol / g or less.
  • the amount of substituents introduced in the fine fibrous cellulose may be 0.0 mmol / g, but is preferably 0.03 mmol / g or more, more preferably 0.04 mmol / g or more. It is more preferably 0.05 mmol / g or more, and particularly preferably 0.07 mmol / g or more.
  • the fibrous cellulose is a fine fibrous cellulose having a fiber width of 1000 nm or less.
  • the fiber width of the fibrous cellulose is more preferably 100 nm or less, further preferably 8 nm or less.
  • the fiber width of the fibrous cellulose is preferably 1 nm or more.
  • the number average fiber width of the fibrous cellulose contained in each fiber layer is preferably 1 to 50 nm, more preferably 1 to 30 nm, further preferably 1 to 10 nm, and 1 to 9 nm. It is even more preferably 1 to 8 nm, even more preferably 1 to 7 nm.
  • the fiber width of the fibrous cellulose is measured as follows, for example, by observing with an electron microscope. First, fibrous cellulose is dispersed in water so that the concentration of cellulose is 0.01% by mass or more and 0.1% by mass or less, and cast on a hydrophilized carbon film-coated grid.
  • a straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y that intersects the straight line perpendicularly is drawn in the same image, and 20 or more fibers intersect the straight line Y.
  • the number average fiber width can be calculated from the fiber width obtained by the above method.
  • the number average fiber width of the fibrous cellulose contained in each fiber layer is 1 to 10 nm means that the fiber layer does not substantially contain coarse cellulose fibers, and more than 70% or more. It means that the fiber width of the fibrous cellulose is 10 nm or less.
  • the proportion of fine fibrous cellulose having a fiber width of 10 nm or less is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more.
  • the fiber length of the fine fibrous cellulose is not particularly limited, but is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 800 ⁇ m or less, and 0.1 ⁇ m or more and 600 ⁇ m or less. More preferred. By setting the fiber length within the above range, it is possible to suppress the destruction of the crystal region of the fine fibrous cellulose. Further, it is possible to set the slurry viscosity of the fine fibrous cellulose in an appropriate range.
  • the fiber length of the fine fibrous cellulose can be obtained by, for example, image analysis by TEM, SEM, or AFM.
  • the fine fibrous cellulose has an I-type crystal structure.
  • the ratio of the type I crystal structure to the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, still more preferably 50% or more.
  • the crystallinity is determined by a conventional method from the X-ray diffraction profile measured and the pattern (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
  • the axial ratio (fiber length / fiber width) of the fine fibrous cellulose is not particularly limited, but is preferably 50 or more and 10000 or less, and more preferably 100 or more and 1000 or less.
  • the axial ratio is not particularly limited, but is preferably 50 or more and 10000 or less, and more preferably 100 or more and 1000 or less.
  • the fine fibrous cellulose in this embodiment has, for example, both a crystalline region and a non-crystalline region.
  • the fine fibrous cellulose having both a crystalline region and a non-crystalline region and having an axial ratio within the above range is realized by a method for producing fine fibrous cellulose described later.
  • the cellulose component in fine fibrous cellulose can be classified into ⁇ -cellulose component and hemicellulose component.
  • a lower ratio of hemicellulose is preferable because it is easy to obtain an effect of suppressing yellowing over time and yellowing by heating.
  • the proportion of hemicellulose in the fine fibrous cellulose of the present invention is preferably less than 30%, more preferably less than 25%, still more preferably less than 20%.
  • nitrogen amount Total amount of nitrogen contained in fine fibrous cellulose and free nitrogen contained in fine fibrous cellulose dispersion
  • amount of nitrogen in the fiber is preferably 0.08 mmol / g or less, more preferably 0.04 mmol / g or less, and even more preferably 0.02 mmol / g or less.
  • the amount of nitrogen contained in the fine fibrous cellulose is preferably 0.001 mmol / g or more.
  • the amount of nitrogen in the fine fibrous cellulose is a value measured by the following method.
  • the dispersion liquid containing fine fibrous cellulose is adjusted to a solid content concentration of 1% by mass, and decomposed by the Kjeldahl method (JIS K 0102 2016 44.1). After decomposition, the amount of ammonium ions (mmol) is measured by cation chromatography and divided by the amount of cellulose (g) used for the measurement to calculate the nitrogen content (mmol / g).
  • the amount of nitrogen is the amount of nitrogen bonded to fine fibrous cellulose by ionic bond and / or covalent bond, and free nitrogen dissolved in the dispersion liquid which is not bound to fine fibrous cellulose by ionic bond and / or covalent bond. The total amount.
  • the amount of the substituent introduced in the fine fibrous cellulose is less than 0.5 mmol / g, and the substituent referred to here is preferably an anionic group. That is, the fine fibrous cellulose of the present invention is obtained by subjecting the fine fibrous cellulose having an anionic group to a substituent removing treatment, and the fine fibrous cellulose of the present invention is a fine fibrous cellulose having a substituent removed. It is fibrous cellulose.
  • anionic group examples include a phosphate group or a substituent derived from a phosphorusoxo acid group (sometimes referred to simply as a phosphorusoxo acid group), a carboxy group or a substituent derived from a carboxy group (sometimes referred to simply as a carboxy group), and the like.
  • examples include a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group), a zantate group or a substituent derived from a zantate group (sometimes simply referred to as a zantate group).
  • the substituent is referred to as a sulfur oxo acid group or a substituent derived from a sulfur oxo acid group (simply referred to as a sulfur oxo acid group).
  • the anionic group is preferably at least one selected from a phosphorus oxo acid group or a substituent derived from a phosphorus oxo acid group, and a sulfone group or a substituent derived from a sulfone group, and is preferably a phosphorus oxo acid group or a substituent. More preferably, it is a substituent derived from a phosphoxoic acid group.
  • the phosphate group or the substituent derived from the phosphorusoxo acid group is, for example, a substituent represented by the following formula (1).
  • a plurality of substituents represented by the following formula (1) may be introduced into each fine fibrous cellulose.
  • the substituents represented by the following formula (1) to be introduced may be the same or different.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, and an unsaturated-branched chain hydrocarbon, respectively.
  • n is preferably 1.
  • Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like, but are not particularly limited.
  • Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but the group is not particularly limited.
  • Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like.
  • Examples of the unsaturated-linear hydrocarbon group include, but are not limited to, a vinyl group, an allyl group and the like.
  • Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but the group is not particularly limited.
  • Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like.
  • Examples of the aromatic group include, but are not limited to, a phenyl group, a naphthyl group and the like.
  • a carboxy group, a carboxylate group (-COO -), hydroxy group selected from the functional groups such as an amino group and an ammonium group
  • the functional group is not particularly limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • monovalent or higher cations composed of organic substances include organic onium ions.
  • the organic onium ion include an organic ammonium ion and an organic onium ion.
  • the organic ammonium ion include aliphatic ammonium ion and aromatic ammonium ion, and examples of the organic onium ion include aliphatic phosphonium ion and aromatic phosphonium ion.
  • Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions.
  • the plurality of ⁇ b + are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the fine fibrous cellulose, the plurality of ⁇ b + are present. They may be the same or different.
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing ⁇ b + is heated and is easily industrially used, but is not particularly limited. ..
  • the phosphoric acid group or the substituent derived from the phosphoric acid group include a phosphoric acid group (-PO 3 H 2 ), a salt of a phosphoric acid group, and a phosphite group (phosphonic acid group) (-PO). 2 H 2), and salts of phosphorous acid (phosphonic acid group).
  • the phosphoric acid group or the substituent derived from the phosphoric acid group includes a group in which a phosphoric acid group is condensed (for example, a pyrophosphate group), a group in which a phosphonic acid is condensed (for example, a polyphosphonic acid group), and a phosphoric acid ester group (for example, a phosphoric acid ester group).
  • it may be a monomethyl phosphate group, a polyoxyethylene alkyl phosphate group), an alkylphosphonic acid group (for example, a methylphosphonic acid group), or the like.
  • the sulfone group (sulfo group or substituent derived from a sulfone group) is preferably a sulfur oxo acid group (sulfur oxo acid group or a substituent derived from a sulfur oxo acid group), for example, the following formula (2). It is preferably a substituent represented by.
  • a plurality of substituents represented by the following formula (2) may be introduced into each fine fibrous cellulose. In this case, the substituents represented by the following formula (2) to be introduced may be the same or different.
  • ⁇ b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
  • monovalent or higher cations composed of organic substances include organic onium ions.
  • organic onium ion examples include an organic ammonium ion and an organic onium ion.
  • Examples of the organic ammonium ion include aliphatic ammonium ion and aromatic ammonium ion, and examples of the organic onium ion include aliphatic phosphonium ion and aromatic phosphonium ion.
  • Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions.
  • the plurality of ⁇ b + may be the same or different.
  • the monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing ⁇ b + is heated and is easily industrially used, but is not particularly limited.
  • the amount of anionic groups introduced into the fine fibrous cellulose can be measured, for example, by the neutralization titration method.
  • the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing the fine fibrous cellulose.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the pH with respect to a slurry containing fine fibrous cellulose having a phosphorus oxo acid group.
  • the amount of the phosphorus oxo acid group introduced into the fine fibrous cellulose is measured, for example, as follows. First, the slurry containing fine fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the same defibration treatment as the defibration treatment step described later may be performed on the measurement target before the treatment with the strong acid ion exchange resin. Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 2 is obtained.
  • the titration curve shown in the upper part of FIG. 2 plots the measured pH with respect to the amount of alkali added
  • the titration curve shown in the lower part of FIG. 2 plots the pH with respect to the amount of alkali added.
  • the increment (differential value) (1 / mmol) is plotted.
  • two points are confirmed in which the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added.
  • the maximum point of the increment obtained first when alkali is added is called the first end point
  • the maximum point of the increment obtained next is called the second end point.
  • the amount of alkali required from the start of titration to the first end point was equal to the amount of first dissociated acid of the fine fibrous cellulose contained in the slurry used for titration, and was required from the first end point to the second end point.
  • the amount of alkali is equal to the amount of second dissociating acid of the fine fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the start to the second end point of titration is contained in the slurry used for titration. Equal to the total amount of dissociated acid in the fibrous cellulose.
  • the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g).
  • the amount of phosphorus oxo acid group introduced (or the amount of phosphorus oxo acid group) simply means the amount of the first dissociated acid.
  • the region from the start of titration to the first end point is referred to as a first region, and the region from the first end point to the second end point is referred to as a second region.
  • the amount of weakly acidic groups in the phosphoric acid group is apparently. It decreases, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region.
  • the amount of strongly acidic groups in the phosphorus oxo acid group is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation.
  • the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero. In this case, there is only one point on the titration curve where the pH increment is maximum.
  • the denominator of the above-mentioned phosphorus oxo acid group introduction amount indicates the mass of the acid-type fine fibrous cellulose
  • the amount of the phosphorus oxo acid group contained in the acid-type fine fibrous cellulose (hereinafter, phosphorus oxo acid). It is called the base amount (acid type)).
  • the amount of phosphorus oxo acid groups (hereinafter, the amount of phosphorus oxo acid groups (C type)) possessed by the fine fibrous cellulose in which the cation C is a counter ion can be obtained. That is, it is calculated by the following formula.
  • Amount of phosphorus oxo acid group (C type) Amount of phosphorus oxo acid group (acid type) / ⁇ 1+ (W-1) ⁇ A / 1000 ⁇ A [mmol / g]: Total anion amount derived from the phosphoric acid group of the fine fibrous cellulose (total dissociated acid amount of the phosphoric acid group) W: Formulated amount of cation C per valence (for example, Na is 23, Al is 9).
  • the amount of the sulfone group introduced into the fine fibrous cellulose can be calculated by freeze-drying the slurry containing the fine fibrous cellulose and measuring the amount of sulfur in the crushed sample. Specifically, a slurry containing fine fibrous cellulose is freeze-dried, and the crushed sample is pressure-heated and decomposed with nitric acid in a closed container, diluted appropriately, and the amount of sulfur is measured by ICP-OES. do. The value calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested is taken as the sulfone group amount (unit: mmol / g) of the fine fibrous cellulose.
  • the amount of the zantate group introduced into the fine fibrous cellulose can be measured by the following method by the Bredee method. First, add 40 mL of saturated ammonium chloride solution to 1.5 parts by mass (absolute dry mass) of fine fibrous cellulose, mix well while crushing the sample with a glass rod, leave it for about 15 minutes, and then GFP filter paper (GS manufactured by ADVANTEC). Filter with -25) and wash thoroughly with saturated ammonium chloride solution. Then, the sample is placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5 ° C.) is added, the mixture is stirred, and the mixture is left for 15 minutes.
  • GFP filter paper GS manufactured by ADVANTEC
  • the fine fibrous cellulose preferably has a carbamide group.
  • the carbamide group is preferably a group represented by the following structural formula.
  • R is a hydrogen atom, saturated-linear hydrocarbon group, saturated-branched chain hydrocarbon group, saturated-cyclic hydrocarbon group, unsaturated-linear hydrocarbon group, unsaturated-branched.
  • R is a hydrogen atom.
  • the amount of carbamide group introduced in the fine fibrous cellulose is preferably 0.001 mmol / g or more.
  • the amount of the carbamide group introduced in the fine fibrous cellulose is preferably 0.08 mmol / g or less, more preferably 0.04 mmol / g or less, and further preferably 0.02 mmol / g or less. preferable.
  • the amount of carbamide group introduced in the fine fibrous cellulose can be calculated by freeze-drying the slurry containing the fine fibrous cellulose and further crushing the sample by performing a trace nitrogen analysis.
  • the amount of carbamide group introduced per unit mass of fine fibrous cellulose is obtained by dividing the nitrogen content (g / g) per unit mass of fine fibrous cellulose obtained by trace nitrogen analysis by the atomic weight of nitrogen. Can be calculated by
  • the nanofiber yield is 95% by mass or more. It is preferably present, and more preferably 96% by mass or more.
  • the nanofiber yield may be 100% by mass.
  • Nanofiber yield [mass%] C / 0.1 ⁇ 100
  • C is the concentration of the fine fibrous cellulose contained in the supernatant obtained by centrifuging the aqueous dispersion having a fine fibrous cellulose concentration of 0.1% by mass under the conditions of 12000 G for 10 minutes. be.
  • the haze of the aqueous dispersion is preferably 5.0% or less. It is more preferably 4.0% or less, and further preferably 3.0% or less.
  • the haze of the aqueous dispersion may be 0%. If the haze of the water dispersion having a concentration of 0.2% by mass is within the above range, it can be determined that the dispersion is transparent.
  • the haze of the aqueous dispersion is a value measured in accordance with JIS K 7136: 2000 using a haze meter and a glass cell for liquid having an optical path length of 1 cm.
  • the zero point measurement is performed with ion-exchanged water contained in the same glass cell.
  • the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement, and the liquid temperature of the dispersion liquid is set to 23 ° C.
  • the pH of the dispersion liquid is preferably 3 or more, preferably 4 or more. It is more preferable to have it, and it is further preferable to have 5 or more.
  • the pH of the dispersion is preferably 10 or less, more preferably 9 or less, and even more preferably 8 or less.
  • the viscosity of the dispersion liquid at 23 ° C. is 100 mPa ⁇ s or more. It is preferably 1000 mPa ⁇ s or more, and even more preferably 2000 mPa ⁇ s or more.
  • the viscosity of the dispersion at 23 ° C. is preferably 200,000 mPa ⁇ s or less, and more preferably 100,000 mPa ⁇ s or less.
  • the viscosity of the dispersion having a fine fibrous cellulose concentration of 0.4% by mass can be measured using a B-type viscometer (analog viscometer T-LVT manufactured by BLOOKFIELD).
  • the measurement conditions are 23 ° C., the rotation speed is 3 rpm, and the viscosity is measured 3 minutes after the start of measurement.
  • the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement, and the liquid temperature of the dispersion liquid is set to 23 ° C.
  • the amount of free nitrogen in the dispersion containing the fine fibrous cellulose used for forming the fiber layer is small.
  • the amount of free nitrogen in the dispersion can be measured by measuring the nitrogen concentration in the filtrate when the fine fibrous cellulose dispersion is filtered.
  • the free nitrogen concentration in the dispersion having a fine fibrous cellulose concentration of 0.2% by mass is preferably 100 ppm or less, more preferably 80 ppm or less, further preferably 70 ppm or less, and even more preferably 60 ppm. It is more preferably less than or equal to, more preferably 50 ppm or less, further preferably 40 ppm or less, and particularly preferably 30 ppm or less.
  • the nitrogen concentration in the dispersion having a fine fibrous cellulose concentration of 0.2% by mass may be 0 ppm. Since free nitrogen present in the dispersion liquid causes coloring, by keeping the nitrogen concentration in the filtrate within the above range, the yellowing of the dispersion liquid containing fine fibrous cellulose and the sheet is more effectively suppressed. can do.
  • the method for measuring the nitrogen concentration in the filtrate is as follows. First, distilled water is added so that the concentration of fine fibrous cellulose is 0.2% by mass, and after stirring for 24 hours, filtration is performed using a filter medium having a pore size of 0.45 ⁇ m to obtain a filtrate. Then, the nitrogen concentration (ppm) in the filtrate is measured by trace nitrogen analysis.
  • the above-mentioned fine fibrous cellulose is preferably obtained through the step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less.
  • the substituent contained in the fine fibrous cellulose used in the step (A) is preferably an anionic group, and more preferably a phosphoxoic acid group or a substituent derived from the phosphoxoic acid group.
  • the fine fibrous cellulose used in the step (A) preferably has a carbamide group.
  • Step (A) The step (A) is a step of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less.
  • fine fibrous cellulose used in step (A) will be described first.
  • the fine fibrous cellulose used in the step (A) is produced from a fiber raw material containing cellulose.
  • the fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Examples of the pulp include wood pulp, non-wood pulp, and deinked pulp.
  • the wood pulp is not particularly limited, but is, for example, broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP).
  • the non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse.
  • the deinking pulp is not particularly limited, and examples thereof include deinking pulp made from recycled paper. As the pulp of this embodiment, one of the above may be used alone, or two or more of them may be mixed and used. Among the above pulps, for example, wood pulp and deinked pulp are preferable from the viewpoint of availability.
  • long-fiber fine fibrous cellulose having a large cellulose ratio and a high yield of fine fibrous cellulose during defibration treatment, and having a small decomposition of cellulose in the pulp and a large axial ratio.
  • chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable.
  • the viscosity tends to be high when the fine fibrous cellulose of long fibers having a large axial ratio is used.
  • the fiber raw material containing cellulose for example, cellulose contained in ascidians and bacterial cellulose produced by acetic acid bacteria can also be used. Further, instead of the fiber raw material containing cellulose, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can also be used.
  • the fine fibrous cellulose used in the step (A) has a substituent. Therefore, the process for producing the fine fibrous cellulose used in the step (A) preferably includes a substituent introduction step, and more preferably an anionic group introduction step.
  • the anionic group introduction step include a phosphorus oxo acid group introduction step.
  • the phosphorus oxo acid group introduction step at least one compound (hereinafter, also referred to as “compound A”) selected from compounds capable of introducing a phosphorus oxo acid group by reacting with a hydroxyl group of a fiber raw material containing cellulose is used as cellulose. It is a step of acting on a fiber raw material containing. By this step, a phosphorus oxo acid group-introduced fiber can be obtained.
  • the reaction between the fiber raw material containing cellulose and compound A is carried out in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “compound B”). Is preferable.
  • the method of allowing the compound A to act on the fiber raw material in the coexistence with the compound B there is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state or a slurry state.
  • a fiber raw material in a dry state or a wet state since the reaction uniformity is high, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state.
  • the form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example.
  • Examples of the compound A and the compound B include a method of adding the compound A and the compound B to the fiber raw material in the form of powder, in the form of a solution dissolved in a solvent, or in the state of being heated to a melting point or higher and melted. Of these, since the reaction uniformity is high, it is preferable to add the solution in the form of a solution dissolved in a solvent, particularly in the state of an aqueous solution. Further, the compound A and the compound B may be added to the fiber raw material at the same time, may be added separately, or may be added as a mixture.
  • the method for adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be dropped into the water. Further, a required amount of compound A and compound B may be added to the fiber raw material, or an excess amount of compound A and compound B may be added to the fiber raw material, respectively, and then the surplus compound A and compound B may be added by pressing or filtering. It may be removed.
  • the compound A used in this embodiment may be any compound having a phosphorus atom and capable of forming an ester bond with cellulose, and may be phosphoric acid or a salt thereof, phosphoric acid or a salt thereof, dehydration condensed phosphoric acid or a salt thereof.
  • Examples thereof include salts and anhydrous phosphoric acid (diphosphoric pentoxide), but the present invention is not particularly limited.
  • the phosphoric acid those having various puritys can be used, and for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used.
  • Examples of phosphorous acid include 99% phosphorous acid (phosphonic acid).
  • the dehydration-condensed phosphoric acid is one in which two or more molecules of phosphoric acid are condensed by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • Examples of the phosphate, sulphate, and dehydration-condensed phosphoric acid include phosphoric acid, sulphite, or lithium salt of dehydration-condensed phosphoric acid, sodium salt, potassium salt, ammonium salt, and the like. It can be a sum.
  • phosphoric acid and sodium phosphate Salt potassium salt of phosphoric acid, ammonium salt or phosphoric acid of phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, ammonium salt of phosphoric acid are preferable, and phosphoric acid, sodium dihydrogen phosphate, Disodium hydrogen phosphate, ammonium dihydrogen phosphate, or phosphoric acid and sodium phosphite are more preferred.
  • the amount of compound A added to the fiber raw material is not particularly limited, but for example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less.
  • the amount of phosphorus atom added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved.
  • the addition amount of the phosphorus atom to the fiber raw material to be equal to or less than the above upper limit value, the effect of improving the yield and the cost can be balanced.
  • the compound B used in this embodiment is at least one selected from urea and its derivatives as described above.
  • Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
  • compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
  • the amount of compound B added to the fiber raw material is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less. It is more preferably 100% by mass or more and 350% by mass or less.
  • amides or amines may be contained in the reaction system in addition to compound B.
  • the amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like.
  • triethylamine in particular is known to act as a good reaction catalyst.
  • the heat treatment temperature it is preferable to select a temperature at which a phosphorus oxo acid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower.
  • equipment having various heat media can be used for the heat treatment, for example, a hot air drying device, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, and a fluidized layer.
  • a drying device, a band type drying device, a filtration drying device, a vibration flow drying device, an air flow drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
  • a method of adding compound A to a thin sheet-shaped fiber raw material by a method such as impregnation and then heating, or a method of heating while kneading or stirring the fiber raw material and compound A with a kneader or the like. can be adopted. This makes it possible to suppress unevenness in the concentration of compound A in the fiber raw material and to more uniformly introduce the phosphoric acid group onto the surface of the cellulose fiber contained in the fiber raw material.
  • the heating device used for the heat treatment always keeps the water content retained by the slurry and the water content generated by the dehydration condensation (phosphate esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. Examples of such a heating device include a ventilation type oven and the like. By constantly discharging the water in the apparatus system, it is possible to suppress the acid hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphate esterification, and also to suppress the acid hydrolysis of the sugar chain in the fiber. can. Therefore, it is possible to obtain fine fibrous cellulose having a high axial ratio.
  • the heat treatment time is preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less after the water is substantially removed from the fiber raw material. Is more preferable.
  • the amount of the phosphorus oxo acid group introduced can be within a preferable range by setting the heating temperature and the heating time within appropriate ranges.
  • the phosphorus oxo acid group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphorus oxo acid group introduction step two or more times, many phosphorus oxo acid groups can be introduced into the fiber raw material.
  • the amount of the phosphorus oxo acid group introduced in the phosphorus oxo acid group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and more preferably 0.80 mmol / g per 1 g (mass) of the fiber raw material. It is more preferably g or more, further preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more.
  • the amount of the phosphorus oxo acid group introduced is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and 3.00 mmol / g or less per 1 g (mass) of the fiber raw material. It is more preferable to have.
  • the fact that the amount of the phosphorus oxo acid group introduced in the phosphorus oxo acid group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range. do.
  • the introduction amount of the phosphoxoic acid group By setting the introduction amount of the phosphoxoic acid group within the above range, the introduction amount of the substituent of the fine fibrous cellulose provided in the step (A) can be within the above range, and as a result, the final fiber width can be obtained. It becomes easy to produce fine fibrous cellulose having a thickness of 10 nm or less. In addition, the transparency of the dispersion liquid or sheet containing the fine fibrous cellulose of the present invention can be more effectively enhanced.
  • the step of producing the fine fibrous cellulose provided in the step (A) may include a sulfone group introduction step as an anionic group introduction step.
  • a sulfone group introduction step cellulose fibers having a sulfone group (sulfone group-introduced fiber) can be obtained by reacting the hydroxyl group of the fiber raw material containing cellulose with sulfonic acid.
  • the sulfone group introduction step at least one selected from compounds capable of introducing a sulfone group by reacting with the hydroxyl group of the fiber raw material containing cellulose instead of the compound A in the above-mentioned ⁇ phosphoroxo acid group introduction step>.
  • a compound (hereinafter, also referred to as “Compound C”) is used.
  • the compound C may be any compound having a sulfur atom and capable of forming an ester bond with cellulose, and examples thereof include sulfuric acid or a salt thereof, sulfurous acid or a salt thereof, and sulfate amide, but the compound C is not particularly limited.
  • the sulfuric acid those having various puritys can be used, and for example, 96% sulfuric acid (concentrated sulfuric acid) can be used.
  • sulfurous acid examples include 5% sulfurous acid water.
  • examples of the sulfate or sulfite include lithium salts, sodium salts, potassium salts and ammonium salts of sulfates or sulfites, and these can have various neutralization degrees.
  • sulfuric acid amide sulfamic acid or the like can be used.
  • sulfone group introduction step it is preferable to use the compound B in the above-mentioned ⁇ phosphoroacid group introduction step> in the same manner.
  • the sulfone group introduction step it is preferable to mix the cellulose raw material with an aqueous solution containing sulfonic acid and urea and / or a urea derivative, and then heat-treat the cellulose raw material.
  • the heat treatment temperature it is preferable to select a temperature at which the sulfone group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber.
  • the heat treatment temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 150 ° C. or higher.
  • the heat treatment temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
  • the heat treatment time varies depending on the amount of water contained in the cellulose raw material and the amount of the aqueous solution containing sulfonic acid and urea and / or a urea derivative, but is, for example, 10 seconds or more and 10,000 seconds or less. Is preferable.
  • Equipment having various heat media can be used for the heat treatment, for example, a hot air drying device, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, and a fluidized layer drying device.
  • Band type drying device, filtration drying device, vibration flow drying device, air flow drying device, vacuum drying device, infrared heating device, far infrared heating device, microwave heating device, high frequency drying device can be used.
  • the amount of the sulfone group introduced in the sulfone group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and 0.80 mmol / g or more per 1 g (mass) of the fiber raw material. It is more preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more.
  • the amount of the sulfone group introduced is, for example, preferably 5.00 mmol / g or less, and more preferably 3.00 mmol / g or less per 1 g (mass) of the fiber raw material.
  • the amount of the sulfone group introduced in the sulfone group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range.
  • the introduction amount of the sulfone group within the above range, the introduction amount of the substituent of the fine fibrous cellulose provided in the step (A) can be within the above range, and as a result, the fiber width is 10 nm or less. It becomes easy to produce fine fibrous cellulose.
  • the transparency of the dispersion liquid or sheet containing the fine fibrous cellulose of the present invention can be more effectively enhanced.
  • the step of producing the fine fibrous cellulose used in the step (A) may include a zantate group introduction step as an anionic group introduction step.
  • a cellulose fiber having a zantate group (zantate group-introduced fiber) can be obtained by substituting the hydroxyl group of the fiber raw material containing cellulose with a zantate group represented by the following formula (2).
  • ⁇ OCSS - M + > (2)
  • M + is at least one selected from hydrogen ions, monovalent metal ions, ammonium ions, aliphatic or aromatic ammonium ions.
  • the fiber raw material containing cellulose is treated with an alkaline solution to obtain alkaline cellulose.
  • the alkaline solution include an aqueous solution of an alkali metal hydroxide and an aqueous solution of an alkaline earth metal hydroxide.
  • the alkaline solution is preferably an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, and particularly preferably an aqueous solution of sodium hydroxide.
  • the alkali metal hydroxide concentration in the alkali metal hydroxide aqueous solution is preferably 4% by mass or more, and more preferably 5% by mass or more. Further, the alkali metal hydroxide concentration in the aqueous alkali metal hydroxide solution is preferably 9% by mass or less.
  • the defibration treatment described later can be performed more effectively.
  • the alkali metal hydroxide concentration to the above upper limit value or less, it is possible to suppress the permeation of the alkali metal hydroxide aqueous solution into the crystal region of cellulose while promoting mercerization, so that the cellulose I
  • the crystal structure of the mold can be easily maintained, and the yield of fine fibrous cellulose can be further increased.
  • the time of the alkali treatment is preferably 30 minutes or more, and more preferably 1 hour or more.
  • the alkali treatment time is preferably 6 hours or less, and more preferably 5 hours or less.
  • the alkaline cellulose obtained by the above alkaline treatment is then solid-liquid separated to remove the aqueous solution as much as possible.
  • the water content in the subsequent zantate treatment can be reduced and the reaction can be promoted.
  • a solid-liquid separation method a general dehydration method such as centrifugation or filtration can be used.
  • the concentration of the alkali metal hydroxide contained in the alkali cellulose after solid-liquid separation is preferably 3% by mass or more and 8% by mass or less with respect to the total mass of the alkali cellulose after solid-liquid separation.
  • the zantate treatment step is performed after the alkali treatment.
  • the xanthate treatment process by reacting carbon disulfide (CS 2) in the alkali cellulose, (- O - Na +) group (-OCSS - Na +) to obtain a xanthate group introduction fibers based on.
  • CS 2 carbon disulfide
  • -OCSS - Na + carbon disulfide
  • the metal ion introduced into the alkali cellulose is represented by Na + , but the same reaction proceeds with other alkali metal ions.
  • the contact time between carbon disulfide and alkaline cellulose is preferably 30 minutes or more, and more preferably 1 hour or more.
  • the reaction time is preferably set within the above range.
  • the contact time between carbon disulfide and alkaline cellulose may be as long as 6 hours or less, which allows sufficient penetration into the dehydrated alkaline cellulose lumps and almost all the reactionable zantate. Can be completed.
  • the reaction temperature in the zantate treatment is preferably 46 ° C. or lower.
  • the amount of the zantate group introduced in the zantate group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and 0.80 mmol / g or more per 1 g (mass) of the fiber raw material. It is more preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more.
  • the amount of the zantate group introduced is, for example, preferably 5.00 mmol / g or less, and more preferably 3.00 mmol / g or less per 1 g (mass) of the fiber raw material.
  • the amount of the zantate group introduced in the zantate group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range.
  • the introduction amount of the zantate group within the above range, the introduction amount of the substituent of the fine fibrous cellulose used in the step (A) can be within the above range, and as a result, the fiber width is 10 nm or less. It becomes easy to produce fine fibrous cellulose.
  • the transparency of the dispersion liquid or sheet containing the fine fibrous cellulose of the present invention can be more effectively enhanced.
  • a washing step can be performed on the anionic group-introduced fiber, if necessary.
  • the washing step is performed by washing the anionic group-introduced fibers with, for example, water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of cleaning steps performed in each cleaning step is not particularly limited.
  • the fiber raw material may be treated with an alkali between the step of introducing an anionic group and the step of the defibration treatment described later.
  • the alkaline treatment method is not particularly limited, and examples thereof include a method of immersing the anionic group-introduced fiber in an alkaline solution.
  • the alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. In this embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkaline compound because of its high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water.
  • an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.
  • the temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower.
  • the immersion time of the anionic group-introduced fiber in the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
  • the amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the anionic group-introduced fiber. Is more preferable.
  • the anionic group-introduced fiber may be washed with water or an organic solvent after the anionic group introduction step and before the alkaline treatment step. After the alkali treatment step and before the defibration treatment step, it is preferable to wash the alkali-treated anionic group-introduced fiber with water or an organic solvent from the viewpoint of improving handleability.
  • the fiber raw material may be acid-treated between the step of introducing an anionic group and the defibration treatment step described later.
  • the anionic group introduction step, the acid treatment, the alkali treatment and the defibration treatment may be performed in this order.
  • the method of acid treatment is not particularly limited, and examples thereof include a method of immersing a fiber raw material in an acidic liquid containing an acid.
  • the concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less.
  • the pH of the acidic liquid used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less.
  • As the acid contained in the acidic liquid for example, an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used.
  • Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chloric acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
  • Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower.
  • the immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less.
  • the amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the fiber raw material. Is more preferable.
  • the step of producing the fine fibrous cellulose provided in the step (A) may further include a step of reducing the amount of nitrogen introduced into the fibrous cellulose and the amount of nitrogen present in the system (nitrogen removal treatment step). By reducing the amount of nitrogen, it is possible to obtain fine fibrous cellulose that can further suppress coloring.
  • the nitrogen removal treatment step may be provided after the uniform dispersion treatment step in the step (B) described later, but is preferably provided before the uniform dispersion treatment step in the step (B) described later. Further, it is preferably provided before the defibration treatment step in the step (A) described later.
  • the nitrogen removal treatment step it is preferable to adjust the pH of the slurry containing the anionic group-introduced fiber to 10 or more and perform the heat treatment.
  • the liquid temperature of the slurry is preferably 50 ° C. or higher and 100 ° C. or lower, and the heating time is preferably 15 minutes or longer and 180 minutes or lower.
  • an alkaline compound that can be used in the above-mentioned alkali treatment step to the slurry.
  • a cleaning step can be performed on the anionic group-introduced fiber as needed.
  • the washing step is performed by washing the anionic group-introduced fibers with, for example, water or an organic solvent. Further, the number of cleanings performed in each cleaning step is not particularly limited.
  • the step of producing the fine fibrous cellulose used in the step (A) includes a defibration treatment step.
  • fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less can be obtained.
  • a defibration treatment apparatus can be used.
  • the defibration processing device is not particularly limited, but for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer or an ultra-high pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disk type refiner, a conical refiner, and a twin shaft.
  • a kneader, a vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, a beater, or the like can be used.
  • the treatment conditions in the defibration treatment step are not particularly limited, but for example, when a high-pressure homogenizer is used, the pressure during treatment is preferably 1 MPa or more and 350 MPa or less, more preferably 10 MPa or more and 300 MPa or less, and further preferably 50 MPa or more and 250 MPa or less.
  • the defibration treatment step for example, it is preferable to dilute the anionic group-introduced fiber with a dispersion medium to form a slurry.
  • a dispersion medium one or more selected from water and an organic solvent such as a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable.
  • alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol and glycerin.
  • Examples of the ketone include acetone, methyl ethyl ketone (MEK) and the like.
  • ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-butyl ether, propylene glycol monomethyl ether and the like.
  • Examples of the esters include ethyl acetate, butyl acetate and the like.
  • Examples of the aprotonic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the solid content concentration of the fine fibrous cellulose during the defibration treatment can be set as appropriate.
  • the slurry obtained by dispersing the anionic group-introduced fiber in a dispersion medium may contain a solid content other than the anionic group-introduced fiber such as urea having a hydrogen bond property.
  • the method for producing fine fibrous cellulose of the present invention includes a step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less.
  • the step of removing at least a part of the substituent from the fine fibrous cellulose is also referred to as a substituent removing treatment step.
  • the substituent removing treatment step examples include a step of heat-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, an enzyme treatment step, an acid treatment step, an alkali treatment step and the like. These may be performed alone or in combination. Above all, the substituent removing treatment step is preferably a heat treatment step or an enzyme treatment step. Through the above treatment step, at least a part of the substituent is removed from the fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, and the amount of the substituent introduced is less than 0.5 mmol / g. Fibrous cellulose can be obtained.
  • the substituent removing treatment step is preferably performed in the form of a slurry. That is, the substituent removing treatment step is a step of heat-treating a slurry having a substituent and containing fine fibrous cellulose having a fiber width of 1000 nm or less, an enzyme treatment step, an acid treatment step, and an alkali treatment step. Etc. are preferable.
  • the substituent removing treatment step By carrying out the substituent removing treatment step in the form of a slurry, it is possible to prevent the coloring substances generated by heating and the like during the substituent removing treatment and the residual of the acid, alkali, salt and the like added or generated. This makes it possible to suppress coloring when the fine fibrous cellulose obtained through the step (B) is used as a slurry or a sheet. Further, when the salt derived from the substituent removed after the substituent removal treatment is performed, the salt removal efficiency can be improved.
  • the concentration of the fine fibrous cellulose in the slurry is 0.05% by mass or more. It is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further preferably 0.2% by mass or more.
  • the concentration of the fine fibrous cellulose in the slurry is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less.
  • the concentration of the fine fibrous cellulose in the slurry within the above range, it is possible to prevent the coloring substances generated by heating during the substituent removal treatment and the residual of the acid, alkali, salt and the like added or generated. can. This makes it possible to suppress coloring when the fine fibrous cellulose obtained through the step (B) is used as a slurry or a sheet. Further, when the salt derived from the substituent removed after the substituent removal treatment is performed, the salt removal efficiency can be improved.
  • the heating temperature in the heat-treating step is preferably 40 ° C. or higher. , 50 ° C. or higher, more preferably 60 ° C. or higher.
  • the heating temperature in the heat treatment step is preferably 250 ° C. or lower, more preferably 230 ° C. or lower, and even more preferably 200 ° C. or lower.
  • the heating temperature in the heat treatment step is preferably 80 ° C. or higher, preferably 100 ° C. or higher. It is more preferable that the temperature is 120 ° C. or higher.
  • the heating device that can be used in the heat treatment step is not particularly limited, but is not particularly limited, but is a hot air heating device, a steam heating device, an electric heat heating device, a water heat heating device, and a thermal heating device.
  • Infrared heating device, Far infrared heating device, Microwave heating device, High frequency heating device, Stirring drying device, Rotating drying device, Disk drying device, Roll type heating device, Plate type heating device, Flow layer drying device, Band type drying device , A filtration drying device, a vibration flow drying device, an air flow drying device, and a vacuum drying device can be used.
  • heating is preferably performed in a closed system, and from the viewpoint of further increasing the heating temperature, it is preferably performed in a pressure-resistant device or a container.
  • the heat treatment may be a batch treatment, a batch continuous treatment, or a continuous treatment.
  • the substituent removing treatment step is a step of enzymatically treating fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less
  • a phosphate ester hydrolyzing enzyme or a sulfate ester hydrolysis is performed in the enzymatic treatment step. It is preferable to use an enzyme or the like.
  • the enzyme treatment step it is preferable to add the enzyme so that the enzyme activity is 0.1 nkat or more, more preferably 1.0 nkat or more, and 10 nkat or more to 1 g of fine fibrous cellulose. It is more preferable to add the enzyme so that it becomes. Further, it is preferable to add the enzyme so that the enzyme activity is 100,000 nkat or less with respect to 1 g of the fine fibrous cellulose, and it is more preferable to add the enzyme so that the enzyme activity is 50,000 nkat or less. More preferred. After adding the enzyme to the fine fibrous cellulose dispersion (slurry), it is preferable to carry out the treatment under the conditions of 0 ° C. or higher and lower than 50 ° C. for 1 minute or longer and 100 hours or shorter.
  • a step of inactivating the enzyme may be provided.
  • a method of inactivating the enzyme a method of adding an acid component or an alkaline component to the slurry treated with the enzyme to inactivate the enzyme, or raising the temperature of the slurry treated with the enzyme to 90 ° C. or higher to inactivate the enzyme.
  • a method of deactivating There is a method of deactivating.
  • the acid treatment step is an acid that can be used in the above-mentioned acid treatment step. It is preferred to add the compound to the slurry.
  • the alkali-treating step is an alkali that can be used in the above-mentioned alkali-treating step. It is preferable to add the compound to the slurry.
  • the substituent removal reaction proceeds uniformly.
  • the slurry containing fine fibrous cellulose may be stirred, or the specific surface area of the slurry may be increased.
  • a mechanical share from the outside may be given, or self-stirring may be promoted by increasing the liquid feeding rate of the slurry during the reaction.
  • Spacer molecules may be added in the substituent removal treatment step.
  • the spacer molecule penetrates between the adjacent fine fibrous celluloses, thereby acting as a spacer for providing a fine space between the fine fibrous celluloses.
  • the spacer molecule is preferably a water-soluble organic compound.
  • the water-soluble organic compound include sugars, water-soluble polymers, urea and the like. Specific examples thereof include trehalose, urea, polyethylene glycol (PEG), polyethylene oxide (PEO), carboxymethyl cellulose, polyvinyl alcohol (PVA) and the like.
  • PEG polyethylene glycol
  • PEO polyethylene oxide
  • PVA polyvinyl alcohol
  • Xanthan gum guar gum, tamarind gum, carrageenan, locust bean gum, quince seed, alginic acid, purulan, carrageenan, pectin, cationized starch, raw starch, oxidized starch, etherified starch, esterified starch, starches such as amylose, glycerin , Diglycerin, polyglycerin, hyaluronic acid, metal salts of hyaluronic acid can also be used.
  • a known pigment can be used as the spacer molecule.
  • kaolin including clay
  • calcium carbonate titanium oxide, zinc oxide, amorphous silica (containing colloidal silica), aluminum oxide, zeolite, sepiolite, smectite, synthetic smectite, magnesium silicate, magnesium carbonate, magnesium oxide, diatomaceous earth
  • styrene-based plastic pigments hydrotalcites, urea resin-based plastic pigments, and benzoguanamine-based plastic pigments.
  • a step of adjusting the pH of the slurry containing the fine fibrous cellulose may be provided before the substituent removing treatment step.
  • the slurry containing the fine fibrous cellulose after defibration shows weak alkalinity.
  • monosaccharides which are one of the coloring factors, may be generated due to the decomposition of cellulose. Therefore, it is preferable to adjust the pH of the slurry to 8 or less, and it is more preferable to adjust it to 6 or less. preferable. Further, since monosaccharides may be generated under acidic conditions as well, it is preferable to adjust the pH of the slurry to 3 or more, and more preferably to 4 or more.
  • the fine fibrous cellulose having a substituent is a fine fibrous cellulose having a phosphoric acid group
  • the phosphorus of the phosphate group is vulnerable to a nucleophilic attack from the viewpoint of improving the removal efficiency of the substituent.
  • the pH of the slurry is preferably adjusted to 3 or more and 8 or less, and more preferably 4 or more and 6 or less.
  • the means for adjusting the pH is not particularly limited, but for example, an acid component or an alkaline component may be added to a slurry containing fine fibrous cellulose.
  • the acid component may be either an inorganic acid or an organic acid, and examples of the inorganic acid include sulfuric acid, hydrochloric acid, nitrate, and phosphoric acid.
  • examples of the organic acid include malic acid, acetic acid, citric acid, malic acid, lactic acid, adipic acid, sebacic acid, stearic acid, maleic acid, succinic acid, tartrate acid, fumaric acid, gluconic acid and the like.
  • the alkaline component may be an inorganic alkaline compound or an organic alkaline compound.
  • Examples of the inorganic alkaline compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, lithium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, sodium carbonate, sodium hydrogencarbonate and the like.
  • Examples of organic alkaline compounds include ammonia, hydrazine, methylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, butylamine, diaminoethane, diaminopropane, diaminobutane, diaminopentane, diaminohexane, cyclohexylamine, aniline, and tetramethyl.
  • ammonium hydroxide examples thereof include ammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, pyridine, N, N-dimethyl-4-aminopyridine and the like.
  • an ion exchange treatment may be performed to adjust the pH.
  • a strongly acidic cation exchange resin or a weakly acidic ion exchange resin can be used.
  • a slurry containing fine fibrous cellulose having a desired pH can be obtained.
  • the addition of an acid component or an alkaline component may be combined with an ion exchange treatment.
  • ⁇ Salt removal treatment> After the substituent removal treatment step, it is preferable to perform a substituent removal treatment for the removed substituent-derived salt.
  • the means for removing the salt derived from the substituent is not particularly limited, and examples thereof include a washing treatment.
  • the washing treatment is performed by washing the fine fibrous cellulose aggregated in the substituent removing treatment with, for example, water or an organic solvent. From the viewpoint of more effectively suppressing yellowing, the washing treatment is preferably performed by filtration dehydration, centrifugal dehydration, or centrifugal separation.
  • Step (B) The method for producing fine fibrous cellulose includes a step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, and after the step (A).
  • the step (B) for uniform dispersion processing may be included.
  • the step (B) for uniform dispersion treatment is a step for uniform dispersion treatment of the fine fibrous cellulose obtained through the substituent removal treatment in step (A). By going through the step (B), it becomes easy to reduce the fiber width of the fine fibrous cellulose even though the amount of the substituents introduced is as low as less than 0.5 mmol / g. ..
  • step (B) of uniform dispersion processing for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, a conical refiner, a twin-screw kneader, a vibration mill, etc.
  • a homomixer, ultrasonic disperser, beater, etc. at high speed rotation can be used.
  • the treatment conditions in the step (B) for the uniform dispersion treatment are not particularly limited, but it is preferable to increase the maximum moving speed of the fine fibrous cellulose during the treatment and the pressure during the treatment.
  • the peripheral speed is preferably 20 m / sec or more, more preferably 25 m / sec or more, and further preferably 30 m / sec or more.
  • the high-pressure homogenizer can be used more preferably than the high-speed defibrator because the maximum moving speed of the fine fibrous cellulose during the treatment and the pressure during the treatment are higher.
  • the pressure at the time of treatment is preferably 1 MPa or more, more preferably 10 MPa or more, further preferably 50 MPa or more, and particularly preferably 100 MPa or more. Further, in the high-pressure homogenizer treatment, the pressure at the time of treatment is preferably 350 MPa or less, more preferably 300 MPa or less, still more preferably 250 MPa or less.
  • the above-mentioned spacer molecule may be newly added.
  • the uniform dispersion treatment step of the step (B) the uniform dispersion treatment of the fine fibrous cellulose can be performed more smoothly. This makes it possible to more effectively enhance the transparency of the dispersion liquid or the sheet containing the fine fibrous cellulose.
  • the laminated sheet of the present invention may further have a resin layer on at least one surface side of the fiber layer.
  • the resin layer is a layer directly laminated on the fiber layer, and the resin layer and the fiber layer are in contact with each other on either surface.
  • the resin layer is preferably a resin layer (coated resin layer) formed by coating.
  • the resin layer may be provided on both sides of the fiber layer. That is, the laminated sheet of the present invention may be composed of a resin layer / a first fiber layer / a second fiber layer / ... / a fifth fiber layer / a resin layer, and may be a resin layer / a first.
  • the structure of the fiber layer / the second fiber layer / the resin layer is preferable.
  • the resin layer is a layer whose main component is a natural resin or a synthetic resin.
  • the main component refers to a component contained in an amount of 50% by mass or more with respect to the total mass of the resin layer.
  • the content of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass, based on the total mass of the resin layer. The above is particularly preferable.
  • the content of the resin may be 100% by mass or 95% by mass or less.
  • Examples of the natural resin include rosin-based resins such as rosin, rosin ester, and hydrogenated rosin ester.
  • the synthetic resin is preferably at least one selected from, for example, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin, cyclic olefin resin, polyimide resin, polystyrene resin and acrylic resin.
  • the synthetic resin is preferably at least one selected from the polycarbonate resin and the acrylic resin, and more preferably the polycarbonate resin.
  • the acrylic resin is preferably at least one selected from polyacrylonitrile and poly (meth) acrylate.
  • polycarbonate resin constituting the resin layer examples include aromatic polycarbonate-based resins and aliphatic polycarbonate-based resins. These specific polycarbonate-based resins are known, and examples thereof include the polycarbonate-based resins described in JP-A-2010-023275.
  • the resin layer preferably contains an adhesion aid.
  • the adhesion aid include a compound containing at least one selected from an isocyanate group, a carbodiimide group, an epoxy group, an oxazoline group, an amino group, a silanol group and an alkoxysilyl group, and an organic silicon compound.
  • the adhesion aid is preferably at least one selected from a compound containing an isocyanate group (isocyanate compound) and an organosilicon compound.
  • the organosilicon compound include a silane coupling agent condensate and a silane coupling agent.
  • the isocyanate compound examples include polyisocyanate compounds and polyfunctional isocyanates.
  • Specific examples of the polyisocyanate compound include aromatic polyisocyanates having 6 or more and 20 or less carbon atoms excluding carbon in the NCO group, aliphatic polyisocyanates having 2 or more and 18 or less carbon atoms, and 6 or more and 15 or less carbon atoms.
  • Examples thereof include alicyclic polyisocyanates, aralkyl-type polyisocyanates having 8 or more and 15 or less carbon atoms, modified products of these polyisocyanates, and mixtures of two or more of these. Of these, an alicyclic polyisocyanate having 6 or more and 15 or less carbon atoms, that is, isocyanurate is preferably used.
  • alicyclic polyisocyanate examples include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, and bis (2-isocyanatoethyl).
  • IPDI isophorone diisocyanate
  • MDI dicyclohexylmethane-4,4'-diisocyanate
  • cyclohexylene diisocyanate methylcyclohexylene diisocyanate
  • bis (2-isocyanatoethyl bis
  • the organosilicon compound examples include a compound having a siloxane structure and a compound forming a siloxane structure by condensation.
  • examples of the organosilicon compound include a silane coupling agent or a condensate of a silane coupling agent.
  • the silane coupling agent may have a functional group other than the alkoxysilyl group, or may have no other functional group.
  • examples of the functional group other than the alkoxysilyl group include a vinyl group, an epoxy group, a styryl group, a methacrylox group, an acryloxy group, an amino group, a ureido group, a mercapto group, a sulfide group, an isocyanate group and the like.
  • the silane coupling agent used in the present embodiment is preferably a silane coupling agent containing a methacryloxy group.
  • the silane coupling agent having a methacryloxy group in the molecule include, for example, methacryloxypropylmethyldimethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, and methacryloxypropyltriethoxysilane.
  • examples thereof include 1,3-bis (3-methacryloxypropyl) tetramethyldisiloxane.
  • at least one selected from methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane and 1,3-bis (3-methacryloxypropyl) tetramethyldisiloxane is preferably used.
  • the silane coupling agent preferably contains 3 or more alkoxysilyl groups.
  • the silane coupling agent one having an alkoxysilyl group may be used, or one in which a silanol group is generated after hydrolysis may be used. In this case, it is preferable that at least a part of the alkoxysilyl group and the silanol group is present even after laminating the fiber layer. Since the silanol group is a hydrophilic group, it is possible to more effectively enhance the adhesion between the resin layer and the fiber layer by increasing the hydrophilicity of the surface of the resin layer on the fiber layer side.
  • the adhesion aid may be contained in a state of being uniformly dispersed in the resin layer.
  • the state in which the adhesion aid is uniformly dispersed in the resin layer means that the concentrations in the following three regions ((a) to (c)) are measured and the concentrations in any of the two regions are compared.
  • a state in which there is no difference of 2 times or more. (A) Region from the surface of the resin layer on the fiber layer side to 10% of the total thickness of the resin layer (b) 10 of the total thickness of the resin layer from the surface opposite to the surface of the resin layer on the fiber layer side Region up to% (c) Region of ⁇ 5% (total 10%) of the total thickness from the central surface in the thickness direction of the resin layer
  • the adhesion aid may be unevenly distributed in the region on the fiber layer side of the resin layer.
  • the organosilicon compound when used as the adhesion aid, the organosilicon compound may be unevenly distributed in the region on the fiber layer side of the resin layer.
  • the state of being unevenly distributed in the region on the fiber layer side of the resin layer means that the two concentrations of the following regions ((d) and (e)) are measured and the difference between these concentrations is more than twice. It means the state where it comes out.
  • e Region of ⁇ 5% (total 10%) of the total thickness from the central surface in the thickness direction of the resin layer.
  • the concentration of the adhesion aid is a numerical value measured by an X-ray electron spectroscope or an infrared spectrophotometer, and a cross section of a predetermined region of the laminated sheet is cut out by Ultramicrotome UC-7 (manufactured by JEOL). , A value obtained by measuring the cross section with the device.
  • An organosilicon compound-containing layer may be provided on the surface of the resin layer on the fiber layer side, and such a state is also included in the state where the organosilicon compound is unevenly distributed in the region on the fiber layer side of the resin layer. Is done.
  • the organosilicon compound-containing layer may be a coating layer formed by applying an organosilicon compound-containing coating liquid.
  • the content of the adhesion aid is preferably 0.1 part by mass or more, and more preferably 0.5 part by mass or more with respect to 100 parts by mass of the resin contained in the resin layer.
  • the content of the adhesion aid is preferably 40 parts by mass or less, and more preferably 35 parts by mass or less, with respect to 100 parts by mass of the resin contained in the resin layer.
  • the adhesion aid is an isocyanate compound
  • the content of the isocyanate compound is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, based on 100 parts by mass of the resin contained in the resin layer. It is more preferably 18 parts by mass or more.
  • the content of the isocyanate compound is preferably 40 parts by mass or less, more preferably 35 parts by mass or less, and more preferably 30 parts by mass or less with respect to 100 parts by mass of the resin contained in the resin layer. More preferred.
  • the adhesion aid is an organosilicon compound
  • the content of the organosilicon compound is preferably 0.1 part by mass or more, and 0.5 part by mass or more with respect to 100 parts by mass of the resin contained in the resin layer. It is more preferable to have.
  • the content of the organosilicon compound is preferably 10 parts by mass or less, and more preferably 5 parts by mass or less, based on 100 parts by mass of the resin contained in the resin layer.
  • the content of the isocyanate group contained in the resin layer is preferably 0.5 mmol / g or more, more preferably 0.6 mmol / g or more, and 0.8 mmol or more. It is more preferably / g or more, and particularly preferably 0.9 mmol / g or more.
  • the content of the isocyanate group contained in the resin layer is preferably 3.0 mmol / g or less, more preferably 2.5 mmol / g or less, and further preferably 2.0 mmol / g or less. It is preferably 1.5 mmol / g or less, and particularly preferably 1.5 mmol / g or less.
  • the surface of the resin layer on the fiber layer side may be surface-treated.
  • the surface treatment method include corona treatment, plasma discharge treatment, UV irradiation treatment, electron beam irradiation treatment, flame treatment and the like.
  • the surface treatment is preferably at least one selected from the corona treatment and the plasma discharge treatment.
  • the plasma discharge process is preferably a vacuum plasma discharge process.
  • the surface of the resin layer on the fiber layer side may form a fine uneven structure. Since the surface of the resin layer on the fiber layer side has a fine uneven structure, the adhesion between the fiber layer and the resin layer can be more effectively enhanced.
  • a fine concavo-convex structure such a structure is formed by, for example, a processing step such as a blasting process, an embossing process, an etching process, a corona process, or a plasma discharge process. Is preferable.
  • the fine concavo-convex structure means a structure in which the number of recesses existing on a straight line with a length of 1 mm drawn at an arbitrary position is 10 or more.
  • the laminated sheet When measuring the number of recesses, the laminated sheet is immersed in ion-exchanged water for 24 hours, and then the fiber layer is peeled off from the resin layer. After that, the measurement can be performed by scanning the surface of the resin layer on the fiber layer side with a stylus type surface roughness meter (Surfcoder series manufactured by Kosaka Research Institute). When the pitch of the unevenness is extremely small on the submicron and nano-order, the number of unevenness can be measured from the observation image of the scanning probe microscope (AFM5000II and AFM5100N manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the resin layer may contain an arbitrary component other than the synthetic resin.
  • the optional component include known components used in the field of resin films such as fillers, pigments, dyes, and ultraviolet absorbers.
  • the fiber layer and the resin layer have high interlayer adhesion.
  • 100 1 mm 2 crosscuts are placed on the surface of the laminated sheet on the fiber layer side, and cellophane tape (manufactured by Nichiban Co., Ltd.) is attached onto the surface, pressed, and then 90.
  • cellophane tape manufactured by Nichiban Co., Ltd.
  • the number of masses of the fiber layer peeled from the resin layer is less than five points. In such a case, it can be determined that the interlayer adhesion between the fiber layer and the resin layer is good.
  • the number of peeled cells is more preferably 3 points or less, further preferably 1 point or less, and particularly preferably 0 points.
  • the fiber layer can also function as a layer for reinforcing the resin layer. Therefore, the strength of the laminated sheet itself is increased. Further, even when the laminated sheet is attached to an adherend such as another resin film or resin plate, the fiber layer functions as a layer for reinforcing the adherend. For example, by using a resin plate such as a polycarbonate plate as an adherend and attaching a laminated sheet to the resin plate, the mechanical strength of the resin plate can be reinforced. As described above, the laminated sheet having the fiber layer also has an effect of reinforcing the adherend.
  • the thickness of the resin layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 2 ⁇ m or more, and further preferably 3 ⁇ m or more. Is particularly preferable.
  • the thickness of the resin layer is preferably 15,000 ⁇ m or less, more preferably 5000 ⁇ m or less, and even more preferably 500 ⁇ m or less.
  • the thickness of the resin layer constituting the laminated sheet is measured by cutting out a cross section of the laminated sheet with Ultra Microtome UC-7 (manufactured by JEOL Ltd.) and observing the cross section with an electron microscope, a magnifying glass or visually. Value.
  • the ratio of the total thickness of the resin layer to the total thickness of the fiber layer is preferably 10 or less, more preferably 5 or less, and further preferably 1 or less. preferable. Further, for example, when the resin layer is a coated layer formed by coating, the ratio of the total thickness of the resin layer to the total thickness of the fiber layers (thickness of the resin layer / thickness of the fiber layer) is 0. It may be 5 or less, 0.2 or less, 0.15 or less, or 0.1 or less.
  • the method for producing a laminated sheet of the present invention comprises a step of forming a first fiber layer containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less, and a first step. It comprises a step of forming a second fiber layer containing fibrous cellulose having a pressure-sensitive adhesive layer with a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less on the fiber layer.
  • the method for producing a laminated sheet of the present invention may further include a step of forming a third fiber layer, a fourth fiber layer, and so on.
  • the step of forming the first fiber layer containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less is a step of forming a fine fibrous cellulose dispersion liquid (fine fibrous cellulose-containing slurry). ) Is applied onto the substrate, or a step of making a fine fibrous cellulose dispersion is preferably included. Further, in the step of forming the second fiber layer containing the fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less, the step of forming the second fiber layer is a fine fibrous cellulose on the first fiber layer. It may be a step of applying a dispersion liquid (fine fibrous cellulose-containing slurry) or a step of laminating a second fiber layer formed by making a fine fibrous cellulose dispersion on a first fiber layer. preferable.
  • the fine fibrous cellulose dispersion may contain an oxygen-containing organic compound contained in the fiber layer or an arbitrary component, and the nanofiber yield of the fine fibrous cellulose dispersion.
  • Haze, pH, viscosity, amount of free nitrogen and the like are preferably within the numerical range described in the above-mentioned item of ⁇ fine fibrous cellulose>.
  • the fine fibrous cellulose dispersion liquid fine fibrous cellulose-containing slurry
  • the fine fibrous cellulose dispersion liquid is applied on the base material, and this is applied.
  • This is a step of obtaining a sheet by peeling off the fine fibrous cellulose-containing sheet formed by drying.
  • the concentration of the fine fibrous cellulose dispersion to be coated is not particularly limited, but is preferably 0.05% by mass or more and 10% by mass or less.
  • the quality of the base material used in the coating process is not particularly limited, but a material having higher wettability to the fine fibrous cellulose dispersion may suppress shrinkage of the sheet during drying, but is formed after drying. It is preferable to select a sheet that can be easily peeled off.
  • a resin plate or a metal plate is preferable, but it is not particularly limited.
  • resin plates such as acrylic plates, polyethylene terephthalate plates, vinyl chloride plates, polystyrene plates and polyvinylidene chloride plates, metal plates such as aluminum plates, zinc plates, copper plates and iron plates, and those whose surfaces are oxidized, stainless steel.
  • a plate, brass plate, etc. can be used.
  • the viscosity of the fine fibrous cellulose dispersion when the viscosity of the fine fibrous cellulose dispersion is low and it develops on the base material, it is used for blocking on the base material in order to obtain a fine fibrous cellulose-containing sheet having a predetermined thickness and basis weight.
  • the frame may be fixed and used.
  • the quality of the dammed frame is not particularly limited, but it is preferable to select one in which the end portion of the sheet to be attached after drying can be easily peeled off. Of these, those obtained by molding a resin plate or a metal plate are preferable, but are not particularly limited.
  • resin plates such as acrylic plates, polyethylene terephthalate plates, vinyl chloride plates, polystyrene plates and polyvinylidene chloride plates, metal plates such as aluminum plates, zinc plates, copper plates and iron plates, and those whose surfaces are oxidized, stainless steel. Molded plates, brass plates, etc. can be used.
  • a coating machine for applying the fine fibrous cellulose dispersion for example, a bar coater, a roll coater, a gravure coater, a die coater, a curtain coater, an air doctor coater, or the like can be used.
  • a bar coater, a die coater, a curtain coater, and a spray coater are preferable because the thickness can be made more uniform.
  • the coating temperature is not particularly limited, but is preferably 20 ° C or higher and 45 ° C or lower.
  • the coating temperature is at least the above lower limit value, the fine fibrous cellulose dispersion liquid can be easily applied, and when it is at least the above upper limit value, volatilization of the dispersion medium during coating can be suppressed.
  • the coating step it is preferable to coat the fine fibrous cellulose dispersion so that the finished basis weight of the sheet is 10 g / m 2 or more and 100 g / m 2 or less.
  • the basis weight is within the above range, a fiber layer having excellent strength can be obtained.
  • the manufacturing process of the fine fibrous cellulose-containing sheet preferably includes a step of drying the fine fibrous cellulose dispersion coated on the base material.
  • the drying method is not particularly limited, but may be either a non-contact drying method or a method of drying while restraining the sheet, and these may be combined.
  • the non-contact drying method is not particularly limited, but a method of heating and drying with hot air, infrared rays, far infrared rays or near infrared rays (heat drying method) and a method of vacuum drying (vacuum drying method) are applied. Can be done. Although the heat drying method and the vacuum drying method may be combined, the heat drying method is usually applied. Drying with infrared rays, far infrared rays or near infrared rays can be performed using an infrared device, a far infrared device or a near infrared device, but is not particularly limited.
  • the heating temperature in the heat drying method is not particularly limited, but is preferably 20 ° C. or higher and 150 ° C.
  • the heating temperature is at least the above lower limit value, the dispersion medium can be rapidly volatilized, and when it is at least the above upper limit value, the cost required for heating can be suppressed and the discoloration of fine fibrous cellulose can be suppressed due to heat. ..
  • the obtained fine fibrous cellulose-containing sheet is peeled off from the base material.
  • the base material is a sheet
  • the fine fibrous cellulose-containing sheet and the base material are wound while being laminated to form fine fibers.
  • the fine fibrous cellulose-containing sheet may be peeled off from the process substrate immediately before the use of the cellulose-containing sheet. In this way, a fine fibrous cellulose-containing sheet to be a fiber layer can be obtained.
  • the step of manufacturing the fine fibrous cellulose-containing sheet to be the fiber layer may include a step of making a papermaking of the fine fibrous cellulose dispersion.
  • Examples of the paper machine in the paper making process include continuous paper machines such as a long net type, a circular net type, and an inclined type, and a multi-layer paper making machine combining these.
  • known papermaking such as hand papermaking may be performed.
  • the fine fibrous cellulose dispersion is filtered on a wire and dehydrated to obtain a wet paper sheet, which is then pressed and dried to obtain the sheet.
  • concentration of the fine fibrous cellulose dispersion is not particularly limited, but is preferably 0.05% by mass or more and 5% by mass or less.
  • the filter cloth at the time of filtration is not particularly limited, but it is important that the fine fibrous cellulose does not pass through and the filtration rate does not become too slow.
  • the filter cloth is not particularly limited, but a sheet made of an organic polymer, a woven fabric, and a porous membrane are preferable.
  • the organic polymer is not particularly limited, but non-cellulosic organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, and polytetrafluoroethylene (PTFE) are preferable. Specific examples thereof include a porous membrane of polytetrafluoroethylene having a pore size of 0.1 ⁇ m or more and 20 ⁇ m or less, for example, 1 ⁇ m, polyethylene terephthalate having a pore diameter of 0.1 ⁇ m or more and 20 ⁇ m or less, for example, 1 ⁇ m, or a polyethylene woven fabric, but the present invention is not particularly limited.
  • non-cellulosic organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, and polytetrafluoroethylene (PTFE) are preferable. Specific examples thereof include a porous membrane of polytetrafluoroethylene having a pore size of 0.1 ⁇ m or more and 20 ⁇ m or less, for example, 1 ⁇ m, poly
  • the method for producing a sheet from the fine fibrous cellulose dispersion is not particularly limited, and examples thereof include a method using the manufacturing apparatus described in WO2011 / 013567.
  • This manufacturing device discharges the fine fibrous cellulose dispersion onto the upper surface of the endless belt, squeezes the dispersion medium from the discharged fine fibrous cellulose dispersion to generate a web, and dries the web. It has a drying section to produce a fiber sheet.
  • An endless belt is disposed from the watering section to the drying section, and the web generated in the watering section is conveyed to the drying section while being placed on the endless belt.
  • the dehydration method that can be used in the present invention is not particularly limited, and examples thereof include a dehydration method that is normally used in the production of paper. Is preferable.
  • the drying method is not particularly limited, and examples thereof include methods used in the production of paper, and for example, methods such as a cylinder dryer, a Yankee dryer, hot air drying, a near infrared heater, and an infrared heater are preferable.
  • the method for producing a laminated sheet of the present invention preferably includes a step of inverting the formed fiber layer between the steps of forming each fiber layer.
  • the surface (upper surface) of the formed single or multiple fiber layers is inverted so as to be the back surface (bottom surface).
  • the method for producing a laminated sheet of the present invention forms a first fiber layer containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less.
  • the laminated sheet of the present invention has a resin layer
  • the step of forming the resin layer is preferably a step of applying the resin composition on the fiber layer.
  • a first method comprising a pre-formed resin layer containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less.
  • the second fiber containing fibrous cellulose having a pressure-sensitive adhesive layer having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less on the first fiber layer. It may include a step of forming a layer.
  • the resin composition containing the resin When applying the resin composition on the fiber layer or forming the resin layer, it is preferable to apply the resin composition containing the resin and provide a drying step after forming the coating film.
  • a method for manufacturing a laminated sheet in addition to the above-mentioned method, a method in which a resin layer is placed on a fiber layer and heat-pressed can also be mentioned. Another method is to install a fiber layer in a mold for injection molding, inject a heated and melted resin into the mold, and bond the resin layer to the fiber layer.
  • the present invention may relate to a laminated body formed by laminating the above-mentioned laminated sheet and an adherend.
  • the adherend include an organic film (hereinafter, also referred to as an organic layer) and an inorganic film (hereinafter, also referred to as an inorganic layer).
  • the laminated body of the present invention is preferably a laminated body formed by laminating the above-mentioned laminated sheet and an organic film.
  • the organic film include a resin film, a resin plate, a resin molded body, and the like.
  • a resin film, a resin plate, and a resin molded body are layers containing a natural resin or a synthetic resin as a main component.
  • the main component refers to a component contained in an amount of 50% by mass or more with respect to the total mass of the resin film.
  • the content of the resin component is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass, based on the total mass of the resin film. % Or more is particularly preferable.
  • the content of the resin component may be 100% by mass with respect to the total mass of the resin film.
  • Examples of the natural resin include rosin-based resins such as rosin, rosin ester, and hydrogenated rosin ester.
  • the synthetic resin examples include polyolefin resin, cyclic olefin resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyimide resin, polystyrene resin, acrylic resin and the like.
  • the synthetic resin is preferably a polyolefin resin, and preferably has at least one selected from a polyethylene resin and a polypropylene resin.
  • the method for forming the organic layer is not particularly limited, and examples thereof include a coating method, an injection molding method, and a heating and pressurizing method.
  • the coating method it is preferable that the resin composition forming the organic layer is coated on the resin layer of the laminated sheet and then heat-cured or photo-cured.
  • the heating and pressurizing method it is preferable to heat-press the resin film in a state of being laminated on the resin layer of the laminated sheet.
  • the heat pressing conditions at this time can be appropriately selected with reference to the glass transition temperature of the resin film and the like.
  • the substance constituting the inorganic layer is not particularly limited, and is, for example, aluminum, silicon, magnesium, zinc, tin, nickel, titanium; these oxides, carbides, nitrides, oxide carbides, oxide nitrides, or oxide carbides. Objects; or mixtures thereof. From the viewpoint that high moisture resistance can be stably maintained, silicon oxide, silicon nitride, silicon oxide carbide, silicon nitride, silicon oxide, aluminum oxide, aluminum nitride, aluminum oxide, aluminum nitride, or any of these. Mixtures are preferred.
  • the method for forming the inorganic layer is not particularly limited, and examples thereof include a chemical vapor deposition (CVD) and a physical vapor deposition (PVD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • Specific examples of the CVD method include plasma CVD using plasma, catalytic chemical vapor deposition (Cat-CVD) for catalytically pyrolyzing a material gas using a heating catalyst, and the like.
  • Specific examples of the PVD method include vacuum deposition, ion plating, sputtering and the like.
  • an atomic layer deposition method (Atomic Layer Deposition, ALD) can also be adopted as a method for forming the inorganic layer.
  • ALD atomic layer deposition method
  • the ALD method is a method of forming a thin film in atomic layer units by alternately supplying the raw material gas of each element constituting the film to be formed to the surface on which the layer is formed.
  • the laminated sheet of the present invention is a transparent laminated sheet having high mechanical strength and suppressed coloring. From the viewpoint of utilizing such excellent optical characteristics, it is suitable for optical members. For example, it can be used for various display devices, various solar cells, and other light-transmitting substrates. Further, the laminated sheet of the present invention is also suitable for applications such as substrates of electronic devices, members of home appliances, window materials of various vehicles and buildings, interior materials, exterior materials, packaging materials and the like.
  • the washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went.
  • the electrical conductivity of the filtrate became 100 ⁇ S / cm or less, the washing end point was set.
  • the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp that had been neutralized. Next, the phosphorylated pulp after the neutralization treatment was subjected to the above washing treatment.
  • the infrared absorption spectrum of the resulting phosphorus oxo oxide pulp was measured using FT-IR.
  • the amount of phosphate groups (first dissociated acid amount, strong acid group amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.35 mmol / g. The total amount of dissociated acid was 2.30 mmol / g.
  • the infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR.
  • P O-based absorption of the phosphonic acid group, which is a metamorphic form of the phosphite group, was observed near 1210 cm -1 , and a (sub) phosphorous acid group (phosphonic acid group) was added to the pulp. It was confirmed that there was. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal.
  • the (sub) phosphoric acid group amount (first dissociated acid amount) measured by the measuring method described in [Measurement of Phosphoric Acid Group Amount] described later is 1.51 mmol / g, and the total dissociated acid amount is. It was 1.54 mmol / g.
  • the infrared absorption spectrum of the sulfated pulp thus obtained was measured using FT-IR.
  • absorption based on a sulfate group (sulfone group) was observed in the vicinity of 1220-1260 cm-1 , and it was confirmed that a sulfate group (sulfone group) was added to the pulp. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal.
  • the amount of sulfone groups measured by the measuring method described in [Measurement of Sulfone Group Amount] described later was 1.12 mmol / g.
  • ⁇ Manufacturing example 5> The same operation as in Production Example 1 was carried out except that the following zantate treatment was performed instead of the phosphorylation treatment to obtain a fine fibrous cellulose dispersion containing the zantate pulp and fine fibrous cellulose.
  • the amount of zantate group measured by the measuring method described in [Measurement of Zantate Group Amount] described later was 1.73 mmol / g.
  • Measurement of haze of dispersion To measure the haze of the dispersion, dilute the fibrous cellulose dispersion with ion-exchanged water to 0.2% by mass, and then use a haze meter (HM-150, manufactured by Murakami Color Technology Research Institute) to measure the optical path length. Measurements were made in accordance with JIS K 7136: 2000 using a 1 cm liquid glass cell (manufactured by Fujiwara Seisakusho, MG-40, backlit path). The zero point measurement was performed with ion-exchanged water contained in the same glass cell. The dispersion to be measured was allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement. The liquid temperature of the dispersion liquid at the time of measurement was 23 ° C.
  • Nanofiber yield The yield of nanofibers after centrifuging the fibrous cellulose dispersion was measured by the method described below.
  • the nanofiber yield is an index of the yield of fine fibrous cellulose, and the higher the nanofiber yield, the higher the yield of fine fibrous cellulose.
  • Each dispersion was adjusted to a cellulose concentration of 0.1% by mass, and centrifuged at 12000 G for 10 minutes using a cooling high-speed centrifuge (Koksan, H-2000B). The obtained supernatant was collected, and the cellulose concentration in the supernatant was measured.
  • the yield of fine fibrous cellulose was determined based on the following formula.
  • Nanofiber yield (mass%) supernatant cellulose concentration (mass%) /0.1 ⁇ 100
  • the total amount of nitrogen contained in the fibrous cellulose and free nitrogen contained in the fibrous cellulose dispersion was measured by the method described below. Each dispersion was adjusted to a solid content concentration of 1% by mass and decomposed by the Kjeldahl method (JIS K 0102 44.1). After decomposition, the amount of ammonium ions (mmol) was measured by cation chromatography and divided by the amount of cellulose (g) used for the measurement to calculate the nitrogen content (mmol / g).
  • Example 1 [Substituent removal treatment (high temperature heat treatment)] A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion containing the fine fibrous cellulose obtained in Production Example 1, and the pH of the dispersion was adjusted to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphoric acid groups became less than 0.08 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
  • the number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later is 4 nm, and among all the fibrous celluloses contained in the dispersion liquid, the fine fibrous cellulose having a fiber width of 10 nm or less. The ratio was 98%.
  • the substituent-removed fine fibrous cellulose dispersion and the above polyvinyl alcohol aqueous solution were diluted with ion-exchanged water so that the solid content concentration was 0.6% by mass.
  • 50 parts by mass of the diluted polyvinyl alcohol aqueous solution was mixed with 50 parts by mass of the diluted substituent-removed fine fibrous cellulose dispersion liquid to obtain a mixed liquid.
  • the mixed solution was weighed so that the finished thickness of the sheet was 12.5 ⁇ m, and developed on a commercially available glass plate.
  • a dammed frame (inner size 250 mm ⁇ 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness.
  • Example 2 The mixed solution obtained in [Preparation of Sheet 1] of Example 1 was weighed so that the finished thickness of the sheet was 25 ⁇ m, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm ⁇ 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. After that, it was dried in a dryer at 140 ° C. for 1 hour. Further, the same mixed solution was weighed and developed so as to have a finished thickness of 25 ⁇ m, and dried in a dryer at 140 ° C. for 1 hour. By peeling the sheet from the glass plate, a laminated sheet having a total thickness of 50 ⁇ m was obtained.
  • a dammed frame inner size 250 mm ⁇ 250 mm, height 5 cm
  • Example 3 The mixed solution obtained in [Preparation of Sheet 1] of Example 1 was weighed so that the finished thickness of the sheet was 12.5 ⁇ m, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm ⁇ 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. After that, it was dried in a dryer at 140 ° C. for 1 hour. By peeling the sheet from the glass plate, a sheet A having a thickness of 12.5 ⁇ m was obtained.
  • the sheet A is inverted, the surface opposite to the glass plate peeling surface is attached to the glass plate, a frame for damming (inner dimensions 200 mm ⁇ 200 mm, height 5 cm) is placed, and the same mixed solution is placed from above.
  • a frame for damming inner dimensions 200 mm ⁇ 200 mm, height 5 cm
  • the same mixed solution is placed from above.
  • a laminated sheet having a total thickness of 25 ⁇ m was obtained.
  • Example 4 The mixed solution obtained in [Preparation of Sheet 1] of Example 1 was weighed so that the finished thickness of the sheet was 25 ⁇ m, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm ⁇ 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. After that, it was dried in a dryer at 140 ° C. for 1 hour. By peeling the sheet from the glass plate, a sheet B having a thickness of 25 ⁇ m was obtained.
  • the sheet B is inverted, the surface opposite to the glass plate peeling surface is attached to the glass plate, a frame for damming (inner dimensions 200 mm ⁇ 200 mm, height 5 cm) is placed, and the same mixed solution is placed from above.
  • a frame for damming inner dimensions 200 mm ⁇ 200 mm, height 5 cm
  • the same mixed solution is placed from above.
  • a laminated sheet having a total thickness of 50 ⁇ m was obtained.
  • Example 5 In [Preparation 1 of Sheet] of Example 1, a mixed solution was obtained by mixing 40 parts by mass of the substituent-removed fine fibrous cellulose dispersion with 60 parts by mass of the diluted polyvinyl alcohol aqueous solution. The same operation as in Example 4 was performed except that the mixed solution was used, to obtain a laminated sheet having a total thickness of 50 ⁇ m.
  • Example 6 In [Preparation 1 of Sheet] of Example 1, a mixed solution was obtained by mixing 30 parts by mass of a substituent-removed fine fibrous cellulose dispersion with 70 parts by mass of a diluted polyvinyl alcohol aqueous solution. The same operation as in Example 4 was performed except that the mixed solution was used, to obtain a laminated sheet having a total thickness of 50 ⁇ m.
  • Example 7 In [Preparation 1 of Sheet] of Example 1, a mixed solution was obtained by mixing 10 parts by mass of the substituent-removed fine fibrous cellulose dispersion with 90 parts by mass of the diluted polyvinyl alcohol aqueous solution. The same operation as in Example 4 was performed except that the mixed solution was used, to obtain a laminated sheet having a total thickness of 50 ⁇ m.
  • Example 8 In [Preparation 1 of Sheet] of Example 1, 70 parts by mass of the substituent-removed fine fibrous cellulose dispersion was mixed with 30 parts by mass of the diluted polyvinyl alcohol aqueous solution to obtain a mixed solution. The same operation as in Example 4 was performed except that the mixed solution was used, to obtain a laminated sheet having a total thickness of 50 ⁇ m.
  • Example 9 In [Preparation 1 of Sheet] of Example 1, 90 parts by mass of the substituent-removed fine fibrous cellulose dispersion was mixed with 10 parts by mass of the diluted polyvinyl alcohol aqueous solution to obtain a mixed solution. The same operation as in Example 4 was performed except that the mixed solution was used, to obtain a laminated sheet having a total thickness of 50 ⁇ m.
  • Example 10 The mixed solution obtained in [Preparation of Sheet 1] of Example 1 was weighed so that the finished thickness of the sheet was 50 ⁇ m, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm ⁇ 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. Then, it was dried in a dryer at 140 ° C. for 1 hour and peeled from the glass plate to obtain a sheet C having a thickness of 50 ⁇ m.
  • the sheet C is inverted, the surface opposite to the glass plate peeling surface is attached to the glass plate, a frame for damming (inner dimensions 200 mm ⁇ 200 mm, height 5 cm) is placed, and the same mixed solution is placed from above.
  • a frame for damming inner dimensions 200 mm ⁇ 200 mm, height 5 cm
  • the same mixed solution is placed from above.
  • a laminated sheet having a total thickness of 100 ⁇ m was obtained.
  • Example 11 The mixed solution obtained in [Preparation of Sheet 1] of Example 1 was weighed so that the finished thickness of the sheet was 50 ⁇ m, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm ⁇ 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. Then, it was dried in a dryer at 140 ° C. for 1 hour and peeled from the glass plate to obtain a sheet C (first layer) having a thickness of 50 ⁇ m.
  • the sheet C is inverted, the surface opposite to the glass plate peeling surface is attached to the glass plate, a frame for damming (inner dimensions 200 mm ⁇ 200 mm, height 5 cm) is placed, and the same mixed liquid is placed from above.
  • the mixed solution is lightly developed so that the finished thickness is 50 ⁇ m, dried in a dryer at 140 ° C. for 1 hour (second layer), and the same mixed solution is further applied on top of the mixed solution to a finished thickness of 50 ⁇ m.
  • the sheet D was weighed and developed in such a manner, dried in a dryer at 140 ° C. for 1 hour (third layer), and peeled from the glass plate to obtain a sheet D having a total thickness of 150 ⁇ m.
  • the sheet D is inverted, the surface opposite to the glass plate peeling surface is attached to the glass plate, a frame for damming (inner dimensions 150 mm ⁇ 150 mm, height 5 cm) is arranged, and the above-mentioned first layer is above.
  • the same mixed solution is lightly weighed and developed so that the finished thickness becomes 50 ⁇ m, dried in a dryer at 140 ° C. for 1 hour (4th layer), and peeled off from the glass plate to achieve a total thickness of 200 ⁇ m.
  • Laminated sheet was obtained.
  • the fourth layer / the first layer / the second layer / the third layer are laminated in this order.
  • Example 12 100 parts by mass of an acrylic resin graft-polymerized with an acryloyl group having a hydroxyl group (Acryt 8KX-012C, manufactured by Taisei Fine Chemicals Co., Ltd., solid content concentration is 39% by mass) and 38 parts by mass of a polyisocyanate compound (manufactured by Asahi Kasei Chemicals Co., Ltd., TPA-100). And 100 parts by mass of methyl ethyl ketone were mixed to obtain a resin composition. Next, the laminated sheet having a thickness of 50 ⁇ m obtained in Example 4 was coated with a bar coater so as to have a thickness of 3 g / m 2, and then heated at 100 ° C. for 1 hour to cover one surface with a resin layer. A laminated sheet containing the above was obtained.
  • an acrylic resin graft-polymerized with an acryloyl group having a hydroxyl group (Acryt 8KX-012C, manufactured by Taise
  • Example 13 A modified polycarbonate resin (manufactured by Mitsubishi Gas Chemical Company, Inc., Iupizeta FPC-2136) was mixed with 15 parts by mass, 57 parts by mass of toluene, and 28 parts by mass of methyl ethyl ketone to obtain a resin coating liquid. Next, 2.25 parts by mass of an isocyanate compound (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Co., Ltd.) was added to the resin coating liquid as an adhesion aid and mixed to obtain a resin composition.
  • an isocyanate compound Duranate TPA-100, manufactured by Asahi Kasei Chemicals Co., Ltd.
  • the above resin composition was applied to one surface of the 50 ⁇ m-thick laminated sheet obtained in Example 4 after drying with a bar coater so that the amount of each surface after drying was 3 g / m 2. Then, it was cured by heating at 100 ° C. for 1 hour. Further, the same resin composition was applied to the opposite surfaces with a bar coater so that the applied amount of each surface after drying was 3 g / m 2, and then heated at 100 ° C. for 1 hour to cure. In this way, a laminated sheet containing a resin layer on both sides was obtained.
  • Example 14 The substituent removal treatment in Example 1 was carried out at a liquid temperature of 140 ° C. for 20 minutes, and the amount of phosphate groups was 0.40 mmol / g. Other than that, the same operation as in Example 4 was performed to obtain a laminated sheet.
  • Example 15 In the substituent removal treatment in Example 1, the heat treatment was performed without adjusting the pH, and the amount of the phosphate group was set to 0.29 mmol / g. Other than that, the same operation as in Example 4 was performed to obtain a laminated sheet.
  • Example 16 The substituent removal treatment in Example 1 was carried out by the following enzyme treatment instead of the heat treatment, and the slurry was washed after the substituent removal by the following method. Other than that, the same operation as in Example 4 was performed to obtain a laminated sheet.
  • the obtained slurry after removing the substituents contains a 1/5 volume of a strong basic ion exchange resin (Amberjet 4400; Organo Corporation, conditioned) and a weakly acidic ion exchange resin (Amberlite IRC76; Organo Corporation, conditioning). After adding (finished) and shaking for 1 hour, the slurry was washed by pouring it onto a mesh having an opening of 90 ⁇ m to separate the resin and the slurry.
  • a strong basic ion exchange resin Amberjet 4400; Organo Corporation, conditioned
  • Amberlite IRC76 Organo Corporation, conditioning
  • Example 17 A laminated sheet was obtained by performing the same operation as in Example 4 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used instead of the fine fibrous cellulose dispersion obtained in Production Example 2.
  • Example 18 A laminated sheet was obtained by performing the same operation as in Example 4 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used instead of the fine fibrous cellulose dispersion obtained in Production Example 3. ..
  • Example 19 A laminated sheet was obtained by performing the same operation as in Example 4 except that the fine fibrous cellulose dispersion obtained in Production Example 4 was used instead of the fine fibrous cellulose dispersion obtained in Production Example 4. ..
  • Example 20> Instead of the fine fibrous cellulose dispersion obtained in Production Example 1, the fine fibrous cellulose dispersion obtained in Production Example 5 was used. Further, the same operation as in Example 4 was performed except that the substituent removal treatment (low temperature heat treatment) described later was performed instead of the substituent removal treatment (high temperature heat treatment) to obtain a laminated sheet.
  • the substituent removal treatment low temperature heat treatment
  • the substituent removal treatment high temperature heat treatment
  • Example 21 A laminated sheet containing fine fibrous cellulose was obtained in the same manner as in Example 4 except that the slurry was not uniformly dispersed after removing the substituent.
  • Example 22 A laminated sheet containing fine fibrous cellulose was obtained in the same manner as in Example 18 except that the slurry was not uniformly dispersed after removing the substituent.
  • Example 23 A laminated sheet containing fine fibrous cellulose was obtained in the same manner as in Example 19 except that the slurry was not uniformly dispersed after removing the substituent.
  • Example 24 A laminated sheet containing fine fibrous cellulose was obtained in the same manner as in Example 20 except that the slurry was not uniformly dispersed after removing the substituent.
  • Example 25> (PEO-15, manufactured by Sumitomo Seika Chemical Co., Ltd.) was added to ion-exchanged water in an amount of 6% by mass, and the mixture was stirred at room temperature for 30 minutes to dissolve.
  • an aqueous polyethylene oxide solution was obtained.
  • the substituent-removed fine fibrous cellulose dispersion and the above polyethylene oxide aqueous solution were diluted with ion-exchanged water so that the solid content concentration was 0.6% by mass.
  • a mixed solution was obtained by mixing 50 parts by mass of a diluted polyethylene oxide aqueous solution with 50 parts by mass of a fine fibrous cellulose dispersion for removing substituents after dilution.
  • the same operation as in Example 4 was carried out except that the mixed solution was used in place of the polyvinyl alcohol aqueous solution to obtain a laminated sheet having a total thickness of 50 ⁇ m.
  • the fiber width of the fibrous cellulose was measured by the following method. Each fibrous cellulose dispersion was diluted with water so that the concentration of cellulose was 0.01% by mass or more and 0.1% by mass or less, and cast onto a hydrophilized carbon film-coated grid. After drying this, it was stained with uranyl acetate and observed with a transmission electron microscope (TEM, manufactured by JEOL Ltd., JEOL-2000EX). At that time, an axis having an arbitrary vertical and horizontal image width was assumed in the obtained image, and the magnification was adjusted so that 20 or more fibers intersected the axis.
  • TEM transmission electron microscope
  • the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 2).
  • the amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration. Further, the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration.
  • the amount of alkali (mmol) required from the start of titration to the first end point was divided by the solid content (g) in the slurry to be titrated, and the value was defined as the amount of phosphoroxo acid groups (mmol / g).
  • the amount of sulfone groups was measured as follows.
  • the fine fibrous cellulose was frozen in a freezer and then dried in a freeze-dryer (FreeZone manufactured by Loveconco) for 3 days.
  • the obtained freeze-dried product was pulverized at a rotation speed of 20,000 rpm for 60 seconds using a hand mixer (manufactured by Osaka Chemical Co., Ltd., Lab Miller PLUS) to form a powder.
  • the sample after freeze-drying and pulverization treatment was decomposed by heating under pressure using nitric acid in a closed container. Then, it was diluted appropriately and the amount of sulfur was measured by ICP-OES.
  • the value calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested was taken as the amount of sulfate ester groups (unit: mmol / g).
  • the amount of zantate group was measured by the Bredee method. Specifically, 40 mL of saturated ammonium chloride solution was added to 1.5 parts by mass (absolute dry mass) of fibrous cellulose, mixed well while crushing the sample with a glass rod, left for about 15 minutes, and then GFP filter paper (ADVANTEC). It was filtered with GS-25) manufactured by GS-25) and thoroughly washed with a saturated ammonium chloride solution. The sample was placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5 ° C.) was added, and the mixture was stirred.
  • ADVANTEC GFP filter paper
  • Example 101 (Laminating with resin film) A modified polycarbonate resin (manufactured by Mitsubishi Gas Chemical Company, Inc., Iupizeta FPC-2136) was mixed with 15 parts by mass, 57 parts by mass of toluene, and 28 parts by mass of methyl ethyl ketone to obtain a resin coating liquid. Next, 2.25 parts by mass of an isocyanate compound (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Co., Ltd.) was added to the resin coating liquid as an adhesion aid and mixed to obtain a resin composition.
  • an isocyanate compound Duranate TPA-100, manufactured by Asahi Kasei Chemicals Co., Ltd.
  • the above resin composition was applied to one side of a polycarbonate sheet (manufactured by Teijin Limited, Panlite PC-2151) having a thickness of 0.3 mm as a resin film, and the amount applied after drying with a bar coater was 3 g / m 2 . After the coating was applied so as to be, it was cured by heating at 100 ° C. for 1 hour. Then, instead of the commercially available glass plate of the sheet preparation 1 in Example 1, the same operation as in the sheet preparation 1 in Example 1 was performed using the laminate of the resin film and the resin composition, and the laminated sheet of 25 ⁇ m was performed. And a laminate of resin film was obtained.
  • a resin composition was obtained by mixing 76 parts by mass of a specially modified polyester resin (Arakawa Chemical Industry Co., Ltd., Alacoat AP2510), 10 parts by mass of a curing agent (CL2502 manufactured by Arakawa Chemical Industry Co., Ltd.), and 14 parts by mass of methyl ethyl ketone.
  • the above resin composition was applied to one side of a polyester sheet (manufactured by Toray Industries, Inc., Lumirror S10) having a thickness of 0.35 mm as a resin film so that the amount of the resin composition after drying with a bar coater was 3 g / m 2. After coating, it was cured by heating at 100 ° C. for 1 hour.
  • Example 103 Two laminated sheets obtained in Example 13 trimmed to a 100 mm square were prepared. A polycarbonate plate having a size of 100 mm square and a thickness of 0.5 mm was sandwiched between two laminated sheets, and these were further sandwiched between two stainless steel plates having a size of 200 mm square. Then, it was inserted into a mini test press (manufactured by Toyo Seiki Kogyo Co., Ltd., MP-WCH) set at room temperature, and the temperature was raised to 160 ° C. over 3 minutes under a press pressure of 0.2 MPa. After holding in this state for 30 seconds, it was cooled to 30 ° C. over 3 minutes. By the above procedure, a laminated body with a polycarbonate plate was obtained.
  • a mini test press manufactured by Toyo Seiki Kogyo Co., Ltd., MP-WCH
  • Example 104 A resin composition was obtained by mixing 76 parts by mass of a specially modified polyester resin (Arakawa Chemical Industry Co., Ltd., Alacoat AP2510), 10 parts by mass of a curing agent (CL2502 manufactured by Arakawa Chemical Industry Co., Ltd.), and 14 parts by mass of methyl ethyl ketone. Next, the above resin composition was applied to one side of the 50 ⁇ m-thick laminated sheet obtained in Example 4 with a bar coater so that the coating amount after drying was 3 g / m 2, and then 1 at 100 ° C. Heated for hours to cure.
  • a specially modified polyester resin Arakawa Chemical Industry Co., Ltd., Alacoat AP2510
  • CL2502 manufactured by Arakawa Chemical Industry Co., Ltd.
  • methyl ethyl ketone 14 parts by mass of methyl ethyl ketone.
  • Example 103 A laminated body with a polyethylene terephthalate plate was obtained in the same manner as in Example 103 except that the above-mentioned laminated sheet was used instead of the laminated sheet of Example 13 and a polyethylene terephthalate plate was used instead of the polycarbonate plate.
  • Fiber layer (first fiber layer) 20 Fiber layer (second fiber layer) 100 laminated sheets

Abstract

The present invention addresses the problem of providing a laminated sheet which has a fiber layer containing microfibrous cellulose, and is provided with yellowing resistance and curling resistance. The present invention pertains to a laminated sheet obtained by directly layering at least two fiber layers containing fibrous cellulose, the substituent group introduction amount of which is less than 0.5mmol/g, and the fiber width of which is no greater than 1,000nm, wherein each fiber layer has a different fibrous cellulose content percentage in the thickness direction thereof.

Description

積層シートLaminated sheet
 本発明は、積層シートに関する。 The present invention relates to a laminated sheet.
 近年、石油資源の代替及び環境意識の高まりから、再生産可能な天然繊維を利用した材料が着目されている。天然繊維の中でも、繊維径が10μm以上50μm以下の繊維状セルロース、特に木材由来の繊維状セルロース(パルプ)は、主に紙製品としてこれまで幅広く使用されてきた。 In recent years, due to the substitution of petroleum resources and heightened environmental awareness, materials using reproducible natural fibers have been attracting attention. Among natural fibers, fibrous cellulose having a fiber diameter of 10 μm or more and 50 μm or less, particularly fibrous cellulose (pulp) derived from wood, has been widely used mainly as paper products.
 繊維状セルロースとしては、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシートや樹脂複合体、増粘剤の開発が進められている。 As the fibrous cellulose, fine fibrous cellulose having a fiber diameter of 1 μm or less is also known. Fine fibrous cellulose is attracting attention as a new material, and its uses are wide-ranging. For example, sheets containing fine fibrous cellulose, resin complexes, and thickeners are being developed.
 例えば、特許文献1には、(a)微細繊維原料に静電的および/または立体的な官能性を持つ置換基を導入して、置換基導入繊維を得る工程と、(b)置換基導入繊維を機械処理する工程と、(c)工程(b)で得られた置換基導入微細繊維より、導入置換基を一部或いは全部を脱離させて、置換基脱離微細繊維を得る工程を有する微細繊維の製造方法が開示されている。また、特許文献2には、塩基性を示す窒素含有化合物の存在下において、リン酸由来のエステルおよび/またはカルボン酸由来のエステルを有する化合物を加熱する工程を含む、脱エステル化合物の製造方法が開示されている。これらの文献では、微細繊維に導入した置換基を脱離させることが検討されている。 For example, Patent Document 1 describes (a) a step of introducing a substituent having electrostatic and / or steric functionality into a fine fiber raw material to obtain a substituent-introduced fiber, and (b) introducing a substituent. A step of mechanically treating the fiber and a step of (c) removing a part or all of the introduced substituent from the substituent-introduced fine fiber obtained in the step (b) to obtain a substituent-desorbed fine fiber. A method for producing the fine fibers having the same is disclosed. Further, Patent Document 2 describes a method for producing a desester compound, which comprises a step of heating a compound having an ester derived from phosphoric acid and / or an ester derived from carboxylic acid in the presence of a nitrogen-containing compound exhibiting basicity. It has been disclosed. In these documents, it is considered to eliminate the substituent introduced into the fine fiber.
 特許文献3には、微細繊維含有シートの製造方法において、少なくとも(a)繊維原料に静電的および/または立体的な官能性を持つ置換基を導入して、置換基導入繊維を得る工程と、(b)工程(a)で得られた置換基導入繊維を機械処理して、置換基導入微細繊維を得る工程と、(c)工程(b)で得られた置換基導入微細繊維からシートを調製する工程と、(d)工程(c)で得られたシートから導入置換基の少なくとも一部を脱離させる工程を有する微細繊維含有シートの製造方法が開示されている。ここでは、置換基を有する微細繊維からシートを形成した後に、置換基を脱離させる方法が検討されている。 Patent Document 3 describes, in the method for producing a fine fiber-containing sheet, at least (a) a step of introducing a substituent having electrostatic and / or steric functionality into a fiber raw material to obtain a substituent-introduced fiber. , (B) The step of mechanically treating the substituent-introduced fiber obtained in the step (a) to obtain the substituent-introduced fine fiber, and (c) a sheet from the substituent-introduced fine fiber obtained in the step (b). (D) A method for producing a fine fiber-containing sheet having a step of removing at least a part of the introduced substituent from the sheet obtained in the step (c) is disclosed. Here, a method of removing a substituent after forming a sheet from a fine fiber having a substituent is studied.
 さらに、特許文献4及び5においては、セルロースザンテート又はセルロースザンテートのカチオン置換体を解繊処理する、セルロースザンテートナノファイバーの製造方法が開示されている。特許文献4では、必要に応じてセルロースザンテートナノファイバーを再生処理することで、無変性セルロースに戻す方法の検討もなされている。また、特許文献5においては、セルロース誘導体の微細繊維から官能基を脱離させた、平均繊維径が3nm以上300nm以下である誘導体官能基脱離セルロース微細繊維含有シートが開示されている。 Further, Patent Documents 4 and 5 disclose a method for producing cellulose zantate nanofibers, which comprises defibrating a cellulose zantate or a cationic substituent of cellulose zantate. In Patent Document 4, a method of returning cellulose zantate nanofibers to non-denatured cellulose by regenerating the cellulose zantate nanofibers as necessary is also studied. Further, Patent Document 5 discloses a derivative functional group-desorbed cellulose fine fiber-containing sheet having an average fiber diameter of 3 nm or more and 300 nm or less, in which a functional group is desorbed from the fine fibers of the cellulose derivative.
国際公開第2013/176049号International Publication No. 2013/176049 特開2015-098526号公報Japanese Patent Application Laid-Open No. 2015-098526 国際公開第2015/182438号International Publication No. 2015/182438 国際公開第2017/111103号International Publication No. 2017/111033 特開2019-7101号公報Japanese Unexamined Patent Publication No. 2019-7101
 本発明者らは、微細繊維状セルロースを含むシートについて研究を進める中で、微細繊維状セルロースを含むシートを製造する工程や保管する工程において着色が生じたり、カールが発生する場合があることを突き止めた。 While conducting research on a sheet containing fine fibrous cellulose, the present inventors have found that coloring or curling may occur in the process of manufacturing or storing the sheet containing fine fibrous cellulose. I found out.
 そこで本発明者らは、このような従来技術の課題を解決するために、微細繊維状セルロースを含むシートであって、耐黄変性と耐カール性を兼ね備えたシートを提供することを目的として検討を進めた。 Therefore, in order to solve the problems of the prior art, the present inventors have studied for the purpose of providing a sheet containing fine fibrous cellulose and having both yellowing resistance and curl resistance. I proceeded.
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下である繊維状セルロースを含む繊維層を2層以上積層して積層シートとし、各繊維層における繊維状セルロースの含有率を変動させることにより、耐黄変性と耐カール性を兼ね備えた積層シートが得られることを見出した。
 具体的に、本発明は、以下の構成を有する。
As a result of diligent studies to solve the above problems, the present inventors have conducted a fiber layer containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less. It was found that a laminated sheet having both yellowing resistance and curl resistance can be obtained by laminating two or more layers to form a laminated sheet and varying the content of fibrous cellulose in each fiber layer.
Specifically, the present invention has the following configurations.
[1] 置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下である繊維状セルロースを含む繊維層を2層以上直接積層してなる積層シートであって、
 各繊維層は、厚み方向において、繊維状セルロースの含有率が異なる、積層シート。
[2] 繊維層は、含酸素有機化合物をさらに含み、含酸素有機化合物の炭素Cと酸素Oのatomic%の比率は1.8以上である、[1]に記載の積層シート。
[3] 積層シートにおける表裏面の炭素Cと酸素Oのatomic%の比率の差が0.2以下である、[2]に記載の積層シート。
[4] 置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下である繊維状セルロースを含む繊維層を2層直接積層してなる積層シートであって、
 各繊維層が接する面側に繊維状セルロースが偏在している、[1]~[3]のいずれかに記載の積層シート。
[5] 置換基がアニオン性基である、[1]~[4]のいずれかに記載の積層シート。
[6] アニオン性基が、リンオキソ酸基又はリンオキソ酸基に由来する官能基である、[5]に記載の積層シート。
[7] 繊維状セルロースはカルバミド基を有する、[1]~[6]のいずれかに記載の積層シート。
[8] 繊維層の全体厚みは20μm以上である、[1]~[7]のいずれかに記載の積層シート。
[9] 繊維層の全体密度は1.0g/cm以上である、[1]~[8]のいずれかに記載の積層シート。
[10] 繊維層に含まれる繊維状セルロースの数平均繊維幅が1~10nmである、[1]~[9]のいずれかに記載の積層シート。
[11] 繊維層の少なくとも一方の面側に樹脂層をさらに有する、[1]~[10]のいずれかに記載の積層シート。
[12] 樹脂層は、繊維層に直接積層されている、[11]に記載の積層シート。
[13] 樹脂層は、ポリカーボネート樹脂及びアクリル樹脂から選択される少なくとも1種を含む、[11]又は[12]に記載の積層シート。
[14] 樹脂層は、密着助剤をさらに含む、[11]~[13]のいずれかに記載の積層シート。
[15] 密着助剤はイソシアネート化合物及び有機ケイ素化合物から選択される少なくとも1種である、[14]に記載の積層シート。
[16] 密着助剤はイソシアネート化合物であり、イソシアネート化合物の含有量は樹脂層に含まれる樹脂100質量部に対して10質量部以上40質量部以下である、[14]又は[15]に記載の積層シート。
[17] YI値が2.5以下である、[1]~[16]のいずれかに記載の積層シート。
[18] ヘーズが80%以下である、[1]~[17]のいずれかに記載の積層シート。
[19] 光学部材用である、[1]~[18]のいずれかに記載の積層シート。
[20] [1]~[19]のいずれかに記載の積層シートと、被着体とを含む積層体。
[1] A laminated sheet obtained by directly laminating two or more fiber layers containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less.
Each fiber layer is a laminated sheet in which the content of fibrous cellulose differs in the thickness direction.
[2] The laminated sheet according to [1], wherein the fiber layer further contains an oxygen-containing organic compound, and the ratio of carbon C to oxygen O of the oxygen-containing organic compound is 1.8 or more.
[3] The laminated sheet according to [2], wherein the difference in the ratio of carbon C and oxygen O on the front and back surfaces of the laminated sheet is 0.2 or less.
[4] A laminated sheet obtained by directly laminating two fiber layers containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less.
The laminated sheet according to any one of [1] to [3], wherein the fibrous cellulose is unevenly distributed on the surface side in which each fiber layer is in contact.
[5] The laminated sheet according to any one of [1] to [4], wherein the substituent is an anionic group.
[6] The laminated sheet according to [5], wherein the anionic group is a phosphoric acid group or a functional group derived from a phosphoric acid group.
[7] The laminated sheet according to any one of [1] to [6], wherein the fibrous cellulose has a carbamide group.
[8] The laminated sheet according to any one of [1] to [7], wherein the total thickness of the fiber layer is 20 μm or more.
[9] The laminated sheet according to any one of [1] to [8], wherein the total density of the fiber layer is 1.0 g / cm 3 or more.
[10] The laminated sheet according to any one of [1] to [9], wherein the number average fiber width of the fibrous cellulose contained in the fiber layer is 1 to 10 nm.
[11] The laminated sheet according to any one of [1] to [10], further having a resin layer on at least one surface side of the fiber layer.
[12] The laminated sheet according to [11], wherein the resin layer is directly laminated on the fiber layer.
[13] The laminated sheet according to [11] or [12], wherein the resin layer contains at least one selected from a polycarbonate resin and an acrylic resin.
[14] The laminated sheet according to any one of [11] to [13], wherein the resin layer further contains an adhesion aid.
[15] The laminated sheet according to [14], wherein the adhesion aid is at least one selected from an isocyanate compound and an organosilicon compound.
[16] The adhesion aid is an isocyanate compound, and the content of the isocyanate compound is 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the resin contained in the resin layer, according to [14] or [15]. Laminated sheet.
[17] The laminated sheet according to any one of [1] to [16], wherein the YI value is 2.5 or less.
[18] The laminated sheet according to any one of [1] to [17], wherein the haze is 80% or less.
[19] The laminated sheet according to any one of [1] to [18], which is used for an optical member.
[20] A laminated body including the laminated sheet according to any one of [1] to [19] and an adherend.
 本発明によれば、耐黄変性と耐カール性を兼ね備えた積層シートを得ることができる。 According to the present invention, it is possible to obtain a laminated sheet having both yellowing resistance and curl resistance.
図1は、本発明の積層シートの構成を説明する断面図である。FIG. 1 is a cross-sectional view illustrating the configuration of the laminated sheet of the present invention. 図2は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the pH with respect to the fibrous cellulose-containing slurry having a phosphorus oxo acid group.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments and specific examples, but the present invention is not limited to such embodiments. In addition, the numerical range represented by using "-" in this specification means the range including the numerical values before and after "-" as the lower limit value and the upper limit value.
(積層シート)
 本発明は、置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下である繊維状セルロースを含む繊維層を2層以上直接積層してなる積層シートに関する。ここで、積層シートにおける各繊維層は、各繊維層の厚み方向において、繊維状セルロースの含有率が異なっている。
(Laminated sheet)
The present invention relates to a laminated sheet in which two or more fiber layers containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less are directly laminated. Here, each fiber layer in the laminated sheet has a different content of fibrous cellulose in the thickness direction of each fiber layer.
 図1は、本発明の積層シートの構成を説明する断面図である。図1に示されているように、本発明の積層シートは、繊維層を2層以上有する。図1においては、繊維層を2層有する積層シート100が例示されており、この場合、積層シート100は、繊維層10(第1の繊維層)と繊維層20(第2の繊維層)を有する。また、各繊維層は互いに直接積層されている。 FIG. 1 is a cross-sectional view illustrating the configuration of the laminated sheet of the present invention. As shown in FIG. 1, the laminated sheet of the present invention has two or more fiber layers. In FIG. 1, a laminated sheet 100 having two fiber layers is exemplified. In this case, the laminated sheet 100 includes a fiber layer 10 (first fiber layer) and a fiber layer 20 (second fiber layer). Have. In addition, the fiber layers are directly laminated to each other.
 本発明においては、積層シートの各繊維層は、厚み方向における繊維状セルロースの含有率が異なっている。これは、各繊維層の厚み方向において、各繊維層中の繊維状セルロースの含有率が変動していることを意味している。各繊維層は、各繊維層の厚み方向に対して、繊維状セルロースの濃度勾配が発生していてもよい。また、各繊維層を厚み方向に3等分した場合に、3領域に含まれる繊維状セルロースの含有率がそれぞれ異なるものであってもよい。 In the present invention, each fiber layer of the laminated sheet has a different content of fibrous cellulose in the thickness direction. This means that the content of fibrous cellulose in each fiber layer varies in the thickness direction of each fiber layer. In each fiber layer, a concentration gradient of fibrous cellulose may be generated in the thickness direction of each fiber layer. Further, when each fiber layer is divided into three equal parts in the thickness direction, the content of the fibrous cellulose contained in the three regions may be different from each other.
 前記各繊維層の繊維状セルロースの含有率は、例えば、各繊維層の表裏面の繊維状セルロースの含有率を測定し、表裏面の繊維状セルロースの含有率が異なる場合に、厚み方向において各繊維層の繊維状セルロースの含有率が変動していると判定できる。各繊維層の表裏面の繊維状セルロースの含有率は、例えば、後述するような炭素Cと酸素Oのatomic%の比率を算出することで評価できる。 The content of fibrous cellulose in each fiber layer is, for example, measured in the fibrous cellulose content on the front and back surfaces of each fiber layer, and when the fibrous cellulose content on the front and back surfaces is different, each in the thickness direction. It can be determined that the content of fibrous cellulose in the fiber layer is fluctuating. The content of fibrous cellulose on the front and back surfaces of each fiber layer can be evaluated, for example, by calculating the ratio of carbon C to oxygen O as described later.
 従来、透明性が高いシートを得るために微細繊維状セルロースの置換基導入量を高め、それにより繊維幅が小さい微細繊維状セルロースを得ることが検討されていた。しかしながら、このように、高置換基量の微細繊維状セルロースをシートに配合した場合、シートの製造工程や使用環境において加熱されることでシートが着色する傾向があった。このような問題を解決するためには、置換基導入工程をコントロールして微細繊維状セルロースの置換基導入量を低く抑えることが考えられる。しかしながら、本発明者らは、微細繊維状セルロースにおける置換基導入量を0.5mmol/g未満といった低置換基量とした場合に、シートを製造する工程において、シートが極端にカールし、平板状のシートが得られないことを突き止めた。そこで、本発明者らは、微細繊維状セルロースにおける置換基導入量を低置換基量とした場合であっても、カールが抑制されたシートを製造すべく鋭意検討を重ねた。その結果、本発明者らは、置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下である繊維状セルロースを含む繊維層を2層以上積層し、さらに、厚み方向における各繊維層の繊維状セルロースの含有率を変動させることにより、シートにおける着色を抑制しつつ、カールの発生を抑制できることを見出した。このように、本発明は、低置換基量の微細繊維状セルロースを含むシートにおいて、着色とカールの発生を抑制することに成功したものである。 Conventionally, it has been studied to increase the amount of a substituent of fine fibrous cellulose to be introduced in order to obtain a highly transparent sheet, thereby obtaining fine fibrous cellulose having a small fiber width. However, when fine fibrous cellulose having a high amount of substituents is blended in the sheet as described above, the sheet tends to be colored by being heated in the sheet manufacturing process or the usage environment. In order to solve such a problem, it is conceivable to control the substituent introduction step to keep the amount of the substituent of the fine fibrous cellulose low. However, when the amount of substituents introduced in the fine fibrous cellulose is set to a low amount of substituents such as less than 0.5 mmol / g, the present inventors extremely curl the sheet in the process of producing the sheet and form a flat plate. I found out that I couldn't get the sheet. Therefore, the present inventors have made extensive studies to produce a sheet in which curl is suppressed even when the amount of substituents introduced in the fine fibrous cellulose is set to a low amount of substituents. As a result, the present inventors laminated two or more fiber layers containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less, and further, in the thickness direction. It has been found that by varying the content of fibrous cellulose in each fiber layer, it is possible to suppress the generation of curls while suppressing the coloring in the sheet. As described above, the present invention has succeeded in suppressing the generation of coloring and curling in the sheet containing the fine fibrous cellulose having a low substituent amount.
 本実施態様において、積層シートのYI値は2.5以下であることが好ましく、2.0以下であることがより好ましい。なお、積層シートのYI値の下限値は特に限定されるものではないが、0.1以上であることが好ましい。ここで、積層シートのYI値は、JIS K 7373:2006に準拠して測定されるYI値である。YI値の測定装置としては、例えば、Colour Cute i(スガ試験機株式会社製)を用いることができる。なお、上述したYI値は、後述するように積層シートを加熱する前に測定されたYI値であるため、初期YI値と呼ぶこともある。 In this embodiment, the YI value of the laminated sheet is preferably 2.5 or less, more preferably 2.0 or less. The lower limit of the YI value of the laminated sheet is not particularly limited, but is preferably 0.1 or more. Here, the YI value of the laminated sheet is a YI value measured in accordance with JIS K 7373: 2006. As the YI value measuring device, for example, Color Cute i (manufactured by Suga Test Instruments Co., Ltd.) can be used. Since the above-mentioned YI value is a YI value measured before heating the laminated sheet as described later, it may be referred to as an initial YI value.
 本実施態様において、積層シートを160℃で6時間加熱した後のYI値は22以下であることが好ましく、20以下であることがより好ましく、16以下であることがさらに好ましい。なお、160℃で6時間加熱した後の積層シートのYI値の下限値は特に限定されるものではないが、0.1以上であることが好ましい。なお、160℃で6時間加熱した後のYI値は、加熱後YI値と呼ぶこともある。 In this embodiment, the YI value after heating the laminated sheet at 160 ° C. for 6 hours is preferably 22 or less, more preferably 20 or less, still more preferably 16 or less. The lower limit of the YI value of the laminated sheet after heating at 160 ° C. for 6 hours is not particularly limited, but is preferably 0.1 or more. The YI value after heating at 160 ° C. for 6 hours may be referred to as a YI value after heating.
 本実施形態の積層シートにおけるYI増加率は、1400%以下であることが好ましく、1300%以下であることがより好ましく、1200%以下であることがさらに好ましく、1100%以下であることが一層好ましく、1000%以下であることが特に好ましい。なお、積層シートにおけるYI増加率の下限値は特に限定されるものではないが、0.1%以上であることが好ましい。ここで、積層シートのYI増加率とは、積層シートを160℃で6時間加熱した前後の積層シートのYI値の増加率である。具体的に、YI増加率は以下の式で算出される値である。
 YI増加率(%)=(加熱後の積層シートのYI値-加熱前の積層シートのYI値)/加熱前の積層シートのYI値×100
 なお、上記式において、積層シートのYI値はJIS K 7373:2006に準拠して測定したYI値である。
The YI increase rate in the laminated sheet of the present embodiment is preferably 1400% or less, more preferably 1300% or less, further preferably 1200% or less, still more preferably 1100% or less. , 1000% or less is particularly preferable. The lower limit of the YI increase rate in the laminated sheet is not particularly limited, but is preferably 0.1% or more. Here, the YI increase rate of the laminated sheet is the increase rate of the YI value of the laminated sheet before and after heating the laminated sheet at 160 ° C. for 6 hours. Specifically, the YI increase rate is a value calculated by the following formula.
YI increase rate (%) = (YI value of laminated sheet after heating-YI value of laminated sheet before heating) / YI value of laminated sheet before heating × 100
In the above formula, the YI value of the laminated sheet is a YI value measured in accordance with JIS K 7373: 2006.
 本実施形態の積層シートにおける耐カール性は、所定時間経過後のシートの四隅の高さ(カール量)(mm)を測定することで評価することができる。具体的には、積層シートを100mm四方にカットし、23℃、相対湿度50%の環境下で、平らな場所に4時間以上放置する。放置後に、シートの四隅の高さ(mm)を測定し、その平均値をカールの測定値(カール量)とする。カールの測定値(カール量)は、30mm以下であることが好ましく、20mm以下であることがより好ましく、10mm以下であることがさらに好ましく、8mm以下であることが特に好ましい。カールの測定値(カール量)が上記範囲内であれば、積層シートは耐カール性に優れていると評価できる。 The curl resistance of the laminated sheet of the present embodiment can be evaluated by measuring the height (curl amount) (mm) of the four corners of the sheet after a lapse of a predetermined time. Specifically, the laminated sheet is cut into 100 mm squares and left on a flat place for 4 hours or more in an environment of 23 ° C. and a relative humidity of 50%. After standing, the heights (mm) of the four corners of the sheet are measured, and the average value is taken as the measured curl value (curl amount). The measured curl value (curl amount) is preferably 30 mm or less, more preferably 20 mm or less, further preferably 10 mm or less, and particularly preferably 8 mm or less. If the measured curl value (curl amount) is within the above range, it can be evaluated that the laminated sheet has excellent curl resistance.
 積層シートの全光線透過率は、50%以上が好ましく、60%以上がより好ましく、70%以上がさらに好ましく、80%以上が特に好ましい。なお、光学部材用としてさらなる透明度が求められる場合には、積層シートの全光線透過率は85%以上であることが好ましく、90%以上であることがより好ましい。積層シートの全光線透過率を上記範囲とすることにより、従来は透明なガラスが適用されていた用途に本発明の積層シートを適用することも可能となる。ここで、全光線透過率は、JIS K 7361-1:1997に準拠し、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いて測定される値である。 The total light transmittance of the laminated sheet is preferably 50% or more, more preferably 60% or more, further preferably 70% or more, and particularly preferably 80% or more. When further transparency is required for an optical member, the total light transmittance of the laminated sheet is preferably 85% or more, more preferably 90% or more. By setting the total light transmittance of the laminated sheet within the above range, it is possible to apply the laminated sheet of the present invention to applications to which transparent glass has been conventionally applied. Here, the total light transmittance is a value measured using a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute) in accordance with JIS K 7361-1: 1997.
 積層シートのヘーズは、80%以下であることが好ましく、70%以下であることが好ましく、60%以下であることがさらに好ましい。なお、光学部材用としてさらなる透明度が求められる場合には、積層シートのヘーズは10%以下であることが好ましく、5%以下であることがより好ましく、2%以下であることがさらに好ましい。なお、積層シートのヘーズの下限値は特に限定されるものではなく、0%であってもよい。ここで、ヘーズは、JIS K 7136:2000に準拠し、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いて測定される値である。 The haze of the laminated sheet is preferably 80% or less, preferably 70% or less, and even more preferably 60% or less. When further transparency is required for an optical member, the haze of the laminated sheet is preferably 10% or less, more preferably 5% or less, and further preferably 2% or less. The lower limit of the haze of the laminated sheet is not particularly limited and may be 0%. Here, the haze is a value measured using a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute) in accordance with JIS K 7136: 2000.
 積層シートの全体厚みは、特に制限されるものではないが、5μm以上であることが好ましく、10μm以上であることがより好ましく、15μm以上であることがさらに好ましく、20μm以上であることが特に好ましい。また、積層シートの全体厚みは、1000μm以下であることが好ましい。積層シートの厚みは用途に応じて適宜調整することができる。 The total thickness of the laminated sheet is not particularly limited, but is preferably 5 μm or more, more preferably 10 μm or more, further preferably 15 μm or more, and particularly preferably 20 μm or more. .. Further, the total thickness of the laminated sheet is preferably 1000 μm or less. The thickness of the laminated sheet can be appropriately adjusted according to the intended use.
 積層シートを構成する各繊維層の厚みは2.5μm以上であることが好ましく、5μm以上であることがより好ましく、7.5μm以上であることがさらに好ましく、10μm以上であることが特に好ましい。また、各繊維層の厚みは、500μm以下であることが好ましい。ここで、積層シートを構成する繊維層の厚さは、ウルトラミクロトームUC-7(JEOL社製)によって積層シートの断面を切り出し、当該断面を電子顕微鏡、拡大鏡又は目視で観察して、測定される値である。 The thickness of each fiber layer constituting the laminated sheet is preferably 2.5 μm or more, more preferably 5 μm or more, further preferably 7.5 μm or more, and particularly preferably 10 μm or more. The thickness of each fiber layer is preferably 500 μm or less. Here, the thickness of the fiber layer constituting the laminated sheet is measured by cutting out a cross section of the laminated sheet with Ultra Microtome UC-7 (manufactured by JEOL Ltd.) and observing the cross section with an electron microscope, a magnifying glass or visually. Value.
 積層シートを構成する繊維層の全体密度は、1.0g/cm以上であることが好ましく、1.2g/cm以上であることがより好ましく、1.4g/cm以上であることがさらに好ましい。また、積層シートを構成する繊維層の全体密度は、1.7g/cm以下であることが好ましく、1.65g/cm以下であることがより好ましく、1.6g/cm以下であることがさらに好ましい。 The overall density of the fiber layer constituting the laminated sheet is preferably 1.0 g / cm 3 or more, more preferably 1.2 g / cm 3 or more, and 1.4 g / cm 3 or more. More preferred. Also, the overall density of the fiber layer constituting the laminated sheet, it is preferably, more preferably 1.65 g / cm 3 or less, 1.6 g / cm 3 or less is 1.7 g / cm 3 or less Is even more preferable.
 繊維層の密度は、繊維層の坪量と厚さから、JIS P 8118:2014に準拠して算出される。繊維層の坪量は、JIS P 8124:2011に準拠し、算出することができる。なお、繊維層が微細繊維状セルロース以外の任意成分を含む場合は、繊維層の密度は、微細繊維状セルロース以外の任意成分を含む密度である。 The density of the fiber layer is calculated from the basis weight and thickness of the fiber layer in accordance with JIS P 8118: 2014. The basis weight of the fiber layer can be calculated in accordance with JIS P 8124: 2011. When the fiber layer contains an arbitrary component other than the fine fibrous cellulose, the density of the fiber layer is a density containing an arbitrary component other than the fine fibrous cellulose.
 本実施態様においては、繊維層は非多孔性の層であることが好ましい。ここで、繊維層が非多孔性であるとは、繊維層全体の密度が1.0g/cm以上であることを意味する。繊維層全体の密度が1.0g/cm以上であれば、繊維層に含まれる空隙率が、所定値以下に抑えられていることを意味し、多孔性のシートや層とは区別される。また、繊維層が非多孔性であることは、空隙率が15体積%以下であることからも特徴付けられる。ここでいう繊維層の空隙率は簡易的に下記式(a)により求めるものである。
 式(a):空隙率(体積%)={1-B/(M×A×t)}×100
 ここで、Aは繊維層の面積(cm)、tは繊維層の厚み(cm)、Bは繊維層の質量(g)、Mはセルロースの密度である。
In this embodiment, the fiber layer is preferably a non-porous layer. Here, the fact that the fiber layer is non-porous means that the density of the entire fiber layer is 1.0 g / cm 3 or more. When the density of the entire fiber layer is 1.0 g / cm 3 or more, it means that the porosity contained in the fiber layer is suppressed to a predetermined value or less, and it is distinguished from the porous sheet or layer. .. The non-porous fiber layer is also characterized by a void ratio of 15% by volume or less. The porosity of the fiber layer referred to here is simply obtained by the following formula (a).
Formula (a): Porosity (% by volume) = {1-B / (M × A × t)} × 100
Here, A is the area of the fiber layer (cm 2 ), t is the thickness of the fiber layer (cm), B is the mass of the fiber layer (g), and M is the density of cellulose.
 本実施形態において、繊維層の少なくとも一方の面の表面粗さは50nm以下であることが好ましく、30nm以下であることがより好ましく、10nm以下であることがさらに好ましい。なお、繊維層の両面の表面粗さが上記範囲内であることも特に好ましい。表面粗さを上記範囲内とすることにより、積層シートの透明性を高めることができる。具体的には、積層シートのヘーズをより低くすることができる。ここで、繊維層の表面粗さ(算術平均)は、繊維層の少なくとも一方の表面の算術平均粗さである。表面粗さ(算術平均)は、原子間力顕微鏡(Veeco社製、NanoScope IIIa)を用いて、3μm四方の算術平均粗さを測定し、得られる値である。 In the present embodiment, the surface roughness of at least one surface of the fiber layer is preferably 50 nm or less, more preferably 30 nm or less, and further preferably 10 nm or less. It is also particularly preferable that the surface roughness of both sides of the fiber layer is within the above range. By setting the surface roughness within the above range, the transparency of the laminated sheet can be enhanced. Specifically, the haze of the laminated sheet can be made lower. Here, the surface roughness (arithmetic mean) of the fiber layer is the arithmetic average roughness of at least one surface of the fiber layer. The surface roughness (arithmetic mean) is a value obtained by measuring the arithmetic average roughness of 3 μm square using an atomic force microscope (NanoScope IIIa manufactured by Veeco).
 本実施形態において、繊維層の表面pHは、3以上であることが好ましく、4以上であることがより好ましく、5以上であることがさらに好ましい。また、繊維層の表面pHは、10以下であることが好ましく、9以下であることがさらに好ましく、8以下であることがより好ましい。繊維層の表面pHを上記範囲とすることで、黄変抑制の効果が得られやすくなる。繊維層の表面pHを上記範囲とするためには、後述する製造工程で得られる微細繊維状セルロース分散液のpHを適宜調整することが好ましい。なお、繊維層の表面pHを測定する際には、繊維層表面の1cm四方の範囲内に10μLのイオン交換水をマイクロピペットで滴下し、その部分のpHをフラット形pH複合電極(6261-10C;HORIBA製)を用いて測定する。 In the present embodiment, the surface pH of the fiber layer is preferably 3 or more, more preferably 4 or more, and even more preferably 5 or more. The surface pH of the fiber layer is preferably 10 or less, more preferably 9 or less, and even more preferably 8 or less. By setting the surface pH of the fiber layer in the above range, the effect of suppressing yellowing can be easily obtained. In order to keep the surface pH of the fiber layer within the above range, it is preferable to appropriately adjust the pH of the fine fibrous cellulose dispersion obtained in the manufacturing process described later. When measuring the surface pH of the fiber layer, 10 μL of ion-exchanged water is dropped into a 1 cm square area on the surface of the fiber layer with a micropipette, and the pH of that portion is set to a flat pH composite electrode (6261-10C). Measured using HORIBA).
 積層シートを構成する繊維層は、2層以上であればよく、10層以下であることが好ましく、8層以下であることがより好ましく、6層以下であることがさらに好ましい。中でも、積層シートを構成する繊維層は、2層であることが特に好ましい。なお、積層シートを構成する繊維層が2層である場合、各繊維層が接する面側に繊維状セルロースが偏在していることが好ましい。すなわち、換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下である繊維状セルロースを含む繊維層を2層直接積層してなる積層シートにおいて、各繊維層の界面付近の領域に繊維状セルロースが多く存在していることが好ましい。 The fiber layer constituting the laminated sheet may be 2 or more layers, preferably 10 layers or less, more preferably 8 layers or less, and further preferably 6 layers or less. Above all, it is particularly preferable that the fiber layer constituting the laminated sheet is two layers. When the fiber layers constituting the laminated sheet are two layers, it is preferable that the fibrous cellulose is unevenly distributed on the surface side where each fiber layer is in contact. That is, in a laminated sheet in which two fiber layers containing fibrous cellulose having an introduction amount of a substituent of less than 0.5 mmol / g and a fiber width of 1000 nm or less are directly laminated, near the interface of each fiber layer. It is preferable that a large amount of fibrous cellulose is present in the region.
 また、積層シートを構成する繊維層が偶数層から構成される場合、全繊維層の中心面に対して、繊維状セルロースは対称に存在していることが好ましい。すなわち、繊維状セルロースの含有率は、全繊維層の中心面から各表面までの間において、対称となるように変動していることが好ましい。 Further, when the fiber layer constituting the laminated sheet is composed of an even number layer, it is preferable that the fibrous cellulose exists symmetrically with respect to the central surface of all the fiber layers. That is, it is preferable that the content of the fibrous cellulose fluctuates symmetrically from the central surface of all the fiber layers to each surface.
 ここで、本実施形態の積層シートにおいて、繊維層は、含酸素有機化合物をさらに含むことが好ましい。含酸素有機化合物は非繊維状であることが好ましく、このような非繊維状の含酸素有機化合物には、微細繊維状セルロースや熱可塑性樹脂繊維は含まれない。 Here, in the laminated sheet of the present embodiment, it is preferable that the fiber layer further contains an oxygen-containing organic compound. The oxygen-containing organic compound is preferably non-fibrous, and such non-fibrous oxygen-containing organic compound does not include fine fibrous cellulose or thermoplastic resin fiber.
 含酸素有機化合物は、親水性の有機化合物であることが好ましい。親水性の含酸素有機化合物は、繊維層の強度、密度及び化学的耐性などを向上させることができる。親水性の含酸素有機化合物は、たとえばSP値が9.0以上であることが好ましい。また、親水性の含酸素有機化合物は、たとえば100mlのイオン交換水に含酸素有機化合物が1g以上溶解するものであることが好ましい。 The oxygen-containing organic compound is preferably a hydrophilic organic compound. Hydrophilic oxygen-containing organic compounds can improve the strength, density, chemical resistance and the like of the fiber layer. The hydrophilic oxygen-containing organic compound preferably has, for example, an SP value of 9.0 or more. Further, the hydrophilic oxygen-containing organic compound is preferably one in which 1 g or more of the oxygen-containing organic compound is dissolved in 100 ml of ion-exchanged water, for example.
 含酸素有機化合物としては、例えば、ポリエチレングリコール、ポリアルキレンオキサイド(ポリエチレンオキサイド、ポリプロピレンオキサイド等)、カゼイン、デキストリン、澱粉、変性澱粉、ポリビニルアルコール、変性ポリビニルアルコール(アセトアセチル化ポリビニルアルコール等)、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリアクリル酸塩類、ポリアクリルアミド、アクリル酸アルキルエステル共重合体、ウレタン系共重合体、セルロース誘導体(ヒドロキシエチルセルロース、カルボキシエチルセルロース、カルボキシメチルセルロース等)等の親水性高分子;グリセリン、ソルビトール、エチレングリコール等の親水性低分子が挙げられる。これらの中でも、含酸素有機化合物の炭素Cと酸素Oのatomic%の比率が1.8以上のものは好ましく用いられる。具体的には、含酸素有機化合物として、ポリビニルアルコール、変性ポリビニルアルコール、ポリアルキレンオキサイド(ポリエチレンオキサイド、ポリプロピレンオキサイド等)、ポリアクリルアミド等は好ましく用いられる。なお、含酸素有機化合物の炭素Cと酸素Oのatomic%の比率は炭素原子と酸素原子の数から算出される理論値である。このように、本発明の積層シートにおける各繊維層は、置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下である繊維状セルロースと、炭素Cと酸素Oのatomic%の比率が1.8以上の含酸素有機化合物を含むものであることが好ましい。 Examples of the oxygen-containing organic compound include polyethylene glycol, polyalkylene oxide (polyethylene oxide, polypropylene oxide, etc.), casein, dextrin, starch, modified starch, polyvinyl alcohol, modified polyvinyl alcohol (acetoacetylated polyvinyl alcohol, etc.), polyvinylpyrrolidone. , Polyvinylmethyl ether, polyacrylic acid salts, polyacrylamide, acrylic acid alkyl ester copolymer, urethane-based copolymer, hydrophilic polymer such as cellulose derivative (hydroxyethyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, etc.); glycerin, sorbitol , Hydrophilic small molecules such as ethylene glycol. Among these, those having an oxygen-containing organic compound having an atomic% ratio of carbon C and oxygen O of 1.8 or more are preferably used. Specifically, as the oxygen-containing organic compound, polyvinyl alcohol, modified polyvinyl alcohol, polyalkylene oxide (polyethylene oxide, polypropylene oxide, etc.), polyacrylamide and the like are preferably used. The ratio of carbon C to oxygen O of the oxygen-containing organic compound is a theoretical value calculated from the number of carbon atoms and oxygen atoms. As described above, each fiber layer in the laminated sheet of the present invention contains fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less, and an atomic% of carbon C and oxygen O. It is preferable that the compound contains an oxygen-containing organic compound having a ratio of 1.8 or more.
 含酸素有機化合物は、分子量が5万以上800万以下の有機化合物高分子であることが好ましい。含酸素有機化合物の分子量は、10万以上500万以下であることも好ましいが、例えば分子量が1000未満の低分子であってもよい。 The oxygen-containing organic compound is preferably an organic compound polymer having a molecular weight of 50,000 or more and 8 million or less. The molecular weight of the oxygen-containing organic compound is preferably 100,000 or more and 5 million or less, but for example, it may be a small molecule having a molecular weight of less than 1000.
 各繊維層に含まれる含酸素有機化合物の含有量は、各繊維層に含まれる繊維状セルロース100質量部に対して、1質量部以上であることが好ましく、5質量部以上であることがより好ましく、10質量部以上であることがさらに好ましい。また、繊維層に含まれる含酸素有機化合物の含有量は、各繊維層に含まれる微細繊維状セルロース100質量部に対して、1000質量部以下であることが好ましく、500質量部以下であることがより好ましく、200質量部以下であることがさらに好ましい。 The content of the oxygen-containing organic compound contained in each fiber layer is preferably 1 part by mass or more, and more preferably 5 parts by mass or more, with respect to 100 parts by mass of the fibrous cellulose contained in each fiber layer. It is preferably 10 parts by mass or more, and more preferably 10 parts by mass or more. The content of the oxygen-containing organic compound contained in the fiber layer is preferably 1000 parts by mass or less, preferably 500 parts by mass or less, with respect to 100 parts by mass of the fine fibrous cellulose contained in each fiber layer. Is more preferable, and it is further preferable that the amount is 200 parts by mass or less.
 本実施形態の積層シートにおいて、表裏面の炭素Cと酸素Oのatomic%の比率の差は0.2以下であることが好ましく、0.1以下であることがより好ましい。中でも、表裏面の炭素Cと酸素Oのatomic%の比率の差は0であることが特に好ましい。積層シートにおける表裏面の炭素Cと酸素Oのatomic%の比率の差を上記範囲内とすることにより、積層シートの耐カール性をより効果的に高めることができる。 In the laminated sheet of the present embodiment, the difference in the ratio of carbon C and oxygen O atomic% on the front and back surfaces is preferably 0.2 or less, and more preferably 0.1 or less. Above all, it is particularly preferable that the difference in the ratio of carbon C and oxygen O on the front and back surfaces is 0. By setting the difference in the ratio of carbon C and oxygen O on the front and back surfaces of the laminated sheet to the above range, the curl resistance of the laminated sheet can be more effectively enhanced.
 各繊維層には、繊維状セルロースや上述した含酸素有機化合物に加えて、さらなる任意成分が含まれていてもよい。任意成分としては、例えば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、防腐剤(例えば、フェノキシエタノール)等を上げることができる。 Each fiber layer may contain an additional optional component in addition to the fibrous cellulose and the oxygen-containing organic compound described above. As the optional component, for example, an antifoaming agent, a lubricant, an ultraviolet absorber, a dye, a pigment, a stabilizer, a surfactant, a preservative (for example, phenoxyethanol) and the like can be mentioned.
 また、各繊維層には任意成分として有機イオンが含まれていてもよい。有機イオンとしては、テトラアルキルアンモニウムイオンやテトラアルキルホスホニウムイオンを挙げることができる。テトラアルキルアンモニウムイオンとしては、例えば、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラペンチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラヘプチルアンモニウムイオン、トリブチルメチルアンモニウムイオン、ラウリルトリメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ステアリルトリメチルアンモニウムイオン、オクチルジメチルエチルアンモニウムイオン、ラウリルジメチルエチルアンモニウムイオン、ジデシルジメチルアンモニウムイオン、ラウリルジメチルベンジルアンモニウムイオン、トリブチルベンジルアンモニウムイオンが挙げられる。テトラアルキルホスホニウムイオンとしては、例えばテトラメチルホスホニウムイオン、テトラエチルホスホニウムイオン、テトラプロピルホスホニウムイオン、テトラブチルホスホニウムイオン、およびラウリルトリメチルホスホニウムイオンが挙げられる。また、テトラプロピルオニウムイオン、テトラブチルオニウムイオンとして、それぞれテトラn-プロピルオニウムイオン、テトラn-ブチルオニウムイオンなども挙げることができる。 Further, each fiber layer may contain organic ions as an optional component. Examples of the organic ion include tetraalkylammonium ion and tetraalkylphosphonium ion. Examples of the tetraalkylammonium ion include tetramethylammonium ion, tetraethylammonium ion, tetrapropylammonium ion, tetrabutylammonium ion, tetrapentylammonium ion, tetrahexylammonium ion, tetraheptylammonium ion, tributylmethylammonium ion and lauryltrimethyl. Examples thereof include ammonium ion, cetyltrimethylammonium ion, stearyltrimethylammonium ion, octyldimethylethylammonium ion, lauryldimethylethylammonium ion, didecyldimethylammonium ion, lauryldimethylbenzylammonium ion and tributylbenzylammonium ion. Examples of the tetraalkylphosphonium ion include tetramethylphosphonium ion, tetraethylphosphonium ion, tetrapropylphosphonium ion, tetrabutylphosphonium ion, and lauryltrimethylphosphonium ion. Further, examples of the tetrapropyl onium ion and the tetrabutyl onium ion include tetra n-propyl onium ion and tetra n-butyl onium ion, respectively.
<微細繊維状セルロース>
 積層シートを構成する各繊維層は置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下である繊維状セルロースを含む。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロース又はCNFともいう。
<Fine fibrous cellulose>
Each fiber layer constituting the laminated sheet contains fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less. In the present specification, fibrous cellulose having a fiber width of 1000 nm or less is also referred to as fine fibrous cellulose or CNF.
 微細繊維状セルロースにおける置換基導入量は、0.5mmol/g未満であればよく、0.4mmol/g以下であることが好ましく、0.3mmol/g以下であることがより好ましく、0.25mmol/g以下であることがさらに好ましく、0.15mmol/g以下であることが特に好ましい。なお、微細繊維状セルロースにおける置換基導入量は、0.0mmol/gであってもよいが、0.03mmol/g以上であることが好ましく、0.04mmol/g以上であることがより好ましく、0.05mmol/g以上であることがさらに好ましく、0.07mmol/g以上であることが特に好ましい。 The amount of the substituent introduced in the fine fibrous cellulose may be less than 0.5 mmol / g, preferably 0.4 mmol / g or less, more preferably 0.3 mmol / g or less, and 0.25 mmol. It is more preferably less than / g, and particularly preferably 0.15 mmol / g or less. The amount of substituents introduced in the fine fibrous cellulose may be 0.0 mmol / g, but is preferably 0.03 mmol / g or more, more preferably 0.04 mmol / g or more. It is more preferably 0.05 mmol / g or more, and particularly preferably 0.07 mmol / g or more.
 繊維状セルロースは、繊維幅が1000nm以下である微細繊維状セルロースである。繊維状セルロースの繊維幅は100nm以下であることがより好ましく、8nm以下であることがさらに好ましい。なお、繊維状セルロースの繊維幅は1nm以上であることが好ましい。 The fibrous cellulose is a fine fibrous cellulose having a fiber width of 1000 nm or less. The fiber width of the fibrous cellulose is more preferably 100 nm or less, further preferably 8 nm or less. The fiber width of the fibrous cellulose is preferably 1 nm or more.
 各繊維層に含まれる繊維状セルロースの数平均繊維幅は、1~50nmであることが好ましく、1~30nmであることがより好ましく、1~10nmであることがさらに好ましく、1~9nmであることが一層好ましく、1~8nmであることがより一層好ましく、1~7nmであることが特に好ましい。ここで、繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察を用いて以下のようにして測定される。まず、繊維状セルロースを、セルロースの濃度が0.01質量%以上0.1質量%以下となるように水に分散し、親水化処理したカーボン膜被覆グリッド上にキャストする。これを乾燥した後、酢酸ウラニルで染色し、透過型電子顕微鏡(TEM、日本電子社製、JEOL-2000EX)により観察する。その際、得られた画像内に縦横任意の画像幅の軸を想定し、その軸に対し、20本以上の繊維が交差するよう、倍率を調節する。この条件を満たす観察画像を得た後、この画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交差する繊維の繊維幅を目視で読み取る。このようにして3枚の重複しない観察画像を撮影し、各々2つの軸に交差する繊維の繊維幅の値を読み取る(20本以上×2×3=120本以上)。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 なお、繊維層に含まれる微細繊維状セルロースについては、上記方法で得られた繊維幅から数平均繊維幅を算出することができる。
The number average fiber width of the fibrous cellulose contained in each fiber layer is preferably 1 to 50 nm, more preferably 1 to 30 nm, further preferably 1 to 10 nm, and 1 to 9 nm. It is even more preferably 1 to 8 nm, even more preferably 1 to 7 nm. Here, the fiber width of the fibrous cellulose is measured as follows, for example, by observing with an electron microscope. First, fibrous cellulose is dispersed in water so that the concentration of cellulose is 0.01% by mass or more and 0.1% by mass or less, and cast on a hydrophilized carbon film-coated grid. After drying this, it is stained with uranyl acetate and observed with a transmission electron microscope (TEM, manufactured by JEOL Ltd., JEOL-2000EX). At that time, an axis having an arbitrary vertical and horizontal image width is assumed in the obtained image, and the magnification is adjusted so that 20 or more fibers intersect the axis. After obtaining an observation image satisfying this condition, two random axes in each of the vertical and horizontal directions are drawn for this image, and the fiber width of the fiber intersecting the axis is visually read. In this way, three non-overlapping observation images are taken, and the value of the fiber width of the fiber intersecting each of the two axes is read (20 or more × 2 × 3 = 120 or more).
(1) A straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y that intersects the straight line perpendicularly is drawn in the same image, and 20 or more fibers intersect the straight line Y.
For the fine fibrous cellulose contained in the fiber layer, the number average fiber width can be calculated from the fiber width obtained by the above method.
 なお、各繊維層に含まれる繊維状セルロースの数平均繊維幅が1~10nmであるということは、繊維層には、粗大セルロース繊維が実質的に含まれておらず、さらに、70%以上の繊維状セルロースの繊維幅が10nm以下であることを意味している。繊維層に含まれる全繊維状セルロースのうち、繊維幅が10nm以下の微細繊維状セルロースの割合は、70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。
 ここで、繊維幅が10nm以下の微細繊維状セルロースの割合とは、下記式で表される値である。
 繊維幅が10nm以下の微細繊維状セルロースの割合(%)=(繊維幅が10nm以下の微細繊維状セルロースの本数/全繊維状セルロースの本数)×100
The fact that the number average fiber width of the fibrous cellulose contained in each fiber layer is 1 to 10 nm means that the fiber layer does not substantially contain coarse cellulose fibers, and more than 70% or more. It means that the fiber width of the fibrous cellulose is 10 nm or less. Of the total fibrous cellulose contained in the fiber layer, the proportion of fine fibrous cellulose having a fiber width of 10 nm or less is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more.
Here, the ratio of the fine fibrous cellulose having a fiber width of 10 nm or less is a value represented by the following formula.
Percentage of fine fibrous cellulose having a fiber width of 10 nm or less (%) = (number of fine fibrous cellulose having a fiber width of 10 nm or less / number of total fibrous cellulose) × 100
 微細繊維状セルロースの繊維長は、特に限定されないが、たとえば0.1μm以上1000μm以下であることが好ましく、0.1μm以上800μm以下であることがより好ましく、0.1μm以上600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、微細繊維状セルロースの結晶領域の破壊を抑制できる。また、微細繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、微細繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。 The fiber length of the fine fibrous cellulose is not particularly limited, but is preferably 0.1 μm or more and 1000 μm or less, more preferably 0.1 μm or more and 800 μm or less, and 0.1 μm or more and 600 μm or less. More preferred. By setting the fiber length within the above range, it is possible to suppress the destruction of the crystal region of the fine fibrous cellulose. Further, it is possible to set the slurry viscosity of the fine fibrous cellulose in an appropriate range. The fiber length of the fine fibrous cellulose can be obtained by, for example, image analysis by TEM, SEM, or AFM.
 微細繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、微細繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。微細繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。 It is preferable that the fine fibrous cellulose has an I-type crystal structure. Here, the fact that the fine fibrous cellulose has an I-type crystal structure can be identified in the diffraction profile obtained from the wide-angle X-ray diffraction photograph using CuKα (λ = 1.5418 Å) monochromatic with graphite. Specifically, it can be identified by having typical peaks at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. The ratio of the type I crystal structure to the fine fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, still more preferably 50% or more. The crystallinity is determined by a conventional method from the X-ray diffraction profile measured and the pattern (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
 微細繊維状セルロースの軸比(繊維長/繊維幅)は、特に限定されないが、たとえば50以上10000以下であることが好ましく、100以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、微細繊維状セルロースを含有するシートを形成しやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。 The axial ratio (fiber length / fiber width) of the fine fibrous cellulose is not particularly limited, but is preferably 50 or more and 10000 or less, and more preferably 100 or more and 1000 or less. By setting the axial ratio to the above lower limit value or more, it is easy to form a sheet containing fine fibrous cellulose. By setting the axial ratio to the above upper limit value or less, it is preferable in that handling such as dilution becomes easy when, for example, fibrous cellulose is treated as a dispersion liquid.
 本実施形態における微細繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。結晶領域と非結晶領域をともに有し、かつ軸比が上記範囲内にある微細繊維状セルロースは、後述する微細繊維状セルロースの製造方法により実現されるものである。 The fine fibrous cellulose in this embodiment has, for example, both a crystalline region and a non-crystalline region. The fine fibrous cellulose having both a crystalline region and a non-crystalline region and having an axial ratio within the above range is realized by a method for producing fine fibrous cellulose described later.
 微細繊維状セルロースにおけるセルロース成分はα-セルロース成分とヘミセルロース成分に分類できる。ヘミセルロースの比率が低い方が、経時黄変や加熱黄変の抑制効果が得られやすいため好ましい。本発明の微細繊維状セルロースのヘミセルロースの比率は30%未満であることが好ましく、25%未満であることがより好ましく、20%未満であることがさらに好ましい。 The cellulose component in fine fibrous cellulose can be classified into α-cellulose component and hemicellulose component. A lower ratio of hemicellulose is preferable because it is easy to obtain an effect of suppressing yellowing over time and yellowing by heating. The proportion of hemicellulose in the fine fibrous cellulose of the present invention is preferably less than 30%, more preferably less than 25%, still more preferably less than 20%.
 微細繊維状セルロースに含まれる窒素と微細繊維状セルロース分散液中に含まれる遊離窒素の合計量(以下、「窒素量」、「微細繊維状セルロースに含まれる窒素量」もしくは、「微細繊維状セルロース中の窒素量」と呼ぶこともある)は0.08mmol/g以下であることが好ましく、0.04mmol/g以下であることがより好ましく、0.02mmol/g以下であることがさらに好ましい。また、微細繊維状セルロースに含まれる窒素量は0.001mmol/g以上であることが好ましい。なお、微細繊維状セルロース中の窒素量は、以下の方法で測定される値である。まず、微細繊維状セルロースを含む分散液を固形分濃度1質量%に調整し、ケルダール法(JIS K 0102 2016 44.1)で分解する。分解後、陽イオンクロマトグラフィでアンモニウムイオン量(mmol)を測定し、測定に使用したセルロース量(g)で除して窒素含有量(mmol/g)を算出する。上記窒素量は、微細繊維状セルロースにイオン結合および/または共有結合で結合した窒素と、微細繊維状セルロースにイオン結合および/または共有結合で結合していない、分散液中に溶存した遊離窒素の合計量である。 Total amount of nitrogen contained in fine fibrous cellulose and free nitrogen contained in fine fibrous cellulose dispersion (hereinafter, "nitrogen amount", "nitrogen amount contained in fine fibrous cellulose" or "fine fibrous cellulose" The amount of nitrogen in the fiber) is preferably 0.08 mmol / g or less, more preferably 0.04 mmol / g or less, and even more preferably 0.02 mmol / g or less. The amount of nitrogen contained in the fine fibrous cellulose is preferably 0.001 mmol / g or more. The amount of nitrogen in the fine fibrous cellulose is a value measured by the following method. First, the dispersion liquid containing fine fibrous cellulose is adjusted to a solid content concentration of 1% by mass, and decomposed by the Kjeldahl method (JIS K 0102 2016 44.1). After decomposition, the amount of ammonium ions (mmol) is measured by cation chromatography and divided by the amount of cellulose (g) used for the measurement to calculate the nitrogen content (mmol / g). The amount of nitrogen is the amount of nitrogen bonded to fine fibrous cellulose by ionic bond and / or covalent bond, and free nitrogen dissolved in the dispersion liquid which is not bound to fine fibrous cellulose by ionic bond and / or covalent bond. The total amount.
 本実施形態において、微細繊維状セルロースにおける置換基導入量は0.5mmol/g未満であり、ここで言う置換基は、アニオン性基であることが好ましい。すなわち、本発明の微細繊維状セルロースは、アニオン性基を有する微細繊維状セルロースに対して置換基除去処理を施して得られたものであり、本発明の微細繊維状セルロースは、置換基除去微細繊維状セルロースである。 In the present embodiment, the amount of the substituent introduced in the fine fibrous cellulose is less than 0.5 mmol / g, and the substituent referred to here is preferably an anionic group. That is, the fine fibrous cellulose of the present invention is obtained by subjecting the fine fibrous cellulose having an anionic group to a substituent removing treatment, and the fine fibrous cellulose of the present invention is a fine fibrous cellulose having a substituent removed. It is fibrous cellulose.
 アニオン性基としては、たとえばリンオキソ酸基又はリンオキソ酸基に由来する置換基(単にリンオキソ酸基ということもある)、カルボキシ基又はカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、スルホン基又はスルホン基に由来する置換基(単にスルホン基ということもある)、ザンテート基又はザンテート基に由来する置換基(単にザンテート基ということもある)を挙げることができる。スルホン基またはスルホン基に由来する置換基が、エステル結合を介して導入されている場合、同置換基を、硫黄オキソ酸基又は硫黄オキソ酸基に由来する置換基(単に硫黄オキソ酸基ということもある)ということもある。この中でも、アニオン性基は、リンオキソ酸基又はリンオキソ酸基に由来する置換基、及び、スルホン基又はスルホン基に由来する置換基から選択される少なくとも1種であることが好ましく、リンオキソ酸基又はリンオキソ酸基に由来する置換基であることがより好ましい。 Examples of the anionic group include a phosphate group or a substituent derived from a phosphorusoxo acid group (sometimes referred to simply as a phosphorusoxo acid group), a carboxy group or a substituent derived from a carboxy group (sometimes referred to simply as a carboxy group), and the like. Examples include a sulfone group or a substituent derived from a sulfone group (sometimes simply referred to as a sulfone group), a zantate group or a substituent derived from a zantate group (sometimes simply referred to as a zantate group). When a sulfone group or a substituent derived from a sulfone group is introduced via an ester bond, the substituent is referred to as a sulfur oxo acid group or a substituent derived from a sulfur oxo acid group (simply referred to as a sulfur oxo acid group). There is also). Among these, the anionic group is preferably at least one selected from a phosphorus oxo acid group or a substituent derived from a phosphorus oxo acid group, and a sulfone group or a substituent derived from a sulfone group, and is preferably a phosphorus oxo acid group or a substituent. More preferably, it is a substituent derived from a phosphoxoic acid group.
 リンオキソ酸基又はリンオキソ酸基に由来する置換基は、例えば下記式(1)で表される置換基である。各微細繊維状セルロースには、下記式(1)で表される置換基が複数導入されていてもよい。この場合、複数導入される下記式(1)で表される置換基はそれぞれ同一であっても異なっていてもよい。 The phosphate group or the substituent derived from the phosphorusoxo acid group is, for example, a substituent represented by the following formula (1). A plurality of substituents represented by the following formula (1) may be introduced into each fine fibrous cellulose. In this case, the substituents represented by the following formula (1) to be introduced may be the same or different.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、bおよびnは自然数であり、mは任意の数である(ただし、a=b×mである)。n個あるαおよびα’のうち少なくとも1つはOであり、残りはR又はORである。なお、各αおよびα’の全てがOであっても構わない。n個あるαは全て同じでも、それぞれ異なっていてもよい。βb+は有機物又は無機物からなる1価以上の陽イオンである。 In the formula (1), a, b and n are natural numbers, and m is an arbitrary number (where a = b × m). At least one of the n α and α'is O and the rest are R or OR. It is also possible that all of each α and α'are O −. The n αs may all be the same or different from each other. β b + is a monovalent or higher cation composed of an organic substance or an inorganic substance.
 Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。また、式(1)においては、nは1であることが好ましい。 R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, and an unsaturated-branched chain hydrocarbon, respectively. A hydrogen group, an unsaturated-cyclic hydrocarbon group, an aromatic group, or an inducing group thereof. Further, in the formula (1), n is preferably 1.
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。 Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like, but are not particularly limited. Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but the group is not particularly limited. Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like. Examples of the unsaturated-linear hydrocarbon group include, but are not limited to, a vinyl group, an allyl group and the like. Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but the group is not particularly limited. Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like. Examples of the aromatic group include, but are not limited to, a phenyl group, a naphthyl group and the like.
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、カルボキシレート基(-COO)、ヒドロキシ基、アミノ基及びアンモニウム基などの官能基から選択される少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、微細セルロース繊維の収率を高めることもできる。なお、式(1)中にRが複数個存在する場合や微細繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するRはそれぞれ同一であっても異なっていてもよい。 As the derivative groups in R, to the main chain or side chain of the various hydrocarbon group, a carboxy group, a carboxylate group (-COO -), hydroxy group, selected from the functional groups such as an amino group and an ammonium group Examples thereof include functional groups in which at least one of them is added or substituted, but the functional group is not particularly limited. The number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R to the above range, the molecular weight of the phosphorus oxo acid group can be set to an appropriate range, the penetration into the fiber raw material is facilitated, and the yield of the fine cellulose fiber is increased. You can also do it. When a plurality of Rs are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the fine fibrous cellulose, the plurality of Rs present are the same. It may be different.
 βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機オニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機オニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、式(1)中にβb+が複数個存在する場合や微細繊維状セルロースに上記式(1)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。 β b + is a monovalent or higher cation composed of an organic substance or an inorganic substance. Examples of monovalent or higher cations composed of organic substances include organic onium ions. Examples of the organic onium ion include an organic ammonium ion and an organic onium ion. Examples of the organic ammonium ion include aliphatic ammonium ion and aromatic ammonium ion, and examples of the organic onium ion include aliphatic phosphonium ion and aromatic phosphonium ion. Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions. When a plurality of β b + are present in the formula (1) or when a plurality of types of substituents represented by the above formula (1) are introduced into the fine fibrous cellulose, the plurality of β b + are present. They may be the same or different. The monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing β b + is heated and is easily industrially used, but is not particularly limited. ..
 リンオキソ酸基又はリンオキソ酸基に由来する置換基としては、より具体的には、リン酸基(-PO)、リン酸基の塩、亜リン酸基(ホスホン酸基)(-PO)、亜リン酸基(ホスホン酸基)の塩が挙げられる。また、リンオキソ酸基又はリンオキソ酸基に由来する置換基は、リン酸基が縮合した基(例えば、ピロリン酸基)、ホスホン酸が縮合した基(例えば、ポリホスホン酸基)、リン酸エステル基(例えば、モノメチルリン酸基、ポリオキシエチレンアルキルリン酸基)、アルキルホスホン酸基(例えば、メチルホスホン酸基)などであってもよい。 Specific examples of the phosphoric acid group or the substituent derived from the phosphoric acid group include a phosphoric acid group (-PO 3 H 2 ), a salt of a phosphoric acid group, and a phosphite group (phosphonic acid group) (-PO). 2 H 2), and salts of phosphorous acid (phosphonic acid group). Further, the phosphoric acid group or the substituent derived from the phosphoric acid group includes a group in which a phosphoric acid group is condensed (for example, a pyrophosphate group), a group in which a phosphonic acid is condensed (for example, a polyphosphonic acid group), and a phosphoric acid ester group (for example, a phosphoric acid ester group). For example, it may be a monomethyl phosphate group, a polyoxyethylene alkyl phosphate group), an alkylphosphonic acid group (for example, a methylphosphonic acid group), or the like.
 また、スルホン基(スルホン基又はスルホン基に由来する置換基)は、硫黄オキソ酸基(硫黄オキソ酸基又は硫黄オキソ酸基に由来する置換基)であることが好ましく、例えば下記式(2)で表される置換基であることが好ましい。各微細繊維状セルロースには、下記式(2)で表される置換基が複数導入されていてもよい。この場合、複数導入される下記式(2)で表される置換基はそれぞれ同一であっても異なっていてもよい。 Further, the sulfone group (sulfo group or substituent derived from a sulfone group) is preferably a sulfur oxo acid group (sulfur oxo acid group or a substituent derived from a sulfur oxo acid group), for example, the following formula (2). It is preferably a substituent represented by. A plurality of substituents represented by the following formula (2) may be introduced into each fine fibrous cellulose. In this case, the substituents represented by the following formula (2) to be introduced may be the same or different.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記構造式中、bおよびnは自然数であり、pは0または1であり、mは任意の数である(ただし、1=b×mである)。なお、nが2以上である場合、複数あるpは同一の数であってもよく、異なる数であってもよい。上記構造式中、βb+は有機物または無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、有機オニウムイオンを挙げることができる。有機オニウムイオンとしては、例えば、有機アンモニウムイオンや有機オニウムイオンを挙げることができる。有機アンモニウムイオンとしては、例えば、脂肪族アンモニウムイオンや芳香族アンモニウムイオンを挙げることができ、有機オニウムイオンとしては、例えば、脂肪族ホスホニウムイオンや芳香族ホスホニウムイオンを挙げることができる。無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属のイオン、水素イオン、アンモニウムイオン等が挙げられる。なお、微細繊維状セルロースに上記式(2)で表される複数種の置換基が導入される場合には、複数存在するβb+はそれぞれ同一であっても異なっていてもよい。有機物又は無機物からなる1価以上の陽イオンとしては、βb+を含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム又はカリウムのイオンが好ましいが、特に限定されない。 In the above structural formula, b and n are natural numbers, p is 0 or 1, and m is an arbitrary number (where 1 = b × m). When n is 2 or more, a plurality of ps may be the same number or different numbers. In the above structural formula, β b + is a monovalent or higher cation composed of an organic substance or an inorganic substance. Examples of monovalent or higher cations composed of organic substances include organic onium ions. Examples of the organic onium ion include an organic ammonium ion and an organic onium ion. Examples of the organic ammonium ion include aliphatic ammonium ion and aromatic ammonium ion, and examples of the organic onium ion include aliphatic phosphonium ion and aromatic phosphonium ion. Examples of monovalent or higher cations composed of inorganic substances include alkali metal ions such as sodium, potassium, and lithium, divalent metal ions such as calcium and magnesium, hydrogen ions, and ammonium ions. When a plurality of types of substituents represented by the above formula (2) are introduced into the fine fibrous cellulose, the plurality of β b + may be the same or different. The monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing β b + is heated and is easily industrially used, but is not particularly limited.
 微細繊維状セルロースに対するアニオン性基の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた微細繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。 The amount of anionic groups introduced into the fine fibrous cellulose can be measured, for example, by the neutralization titration method. In the measurement by the neutralization titration method, the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing the fine fibrous cellulose.
 図2は、リンオキソ酸基を有する微細繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。微細繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば次のように測定される。
 まず、微細繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
 次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図2の上側部に示すような滴定曲線を得る。図2の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図2の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる微細繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる微細繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる微細繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(又はリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
 なお、図2において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the pH with respect to a slurry containing fine fibrous cellulose having a phosphorus oxo acid group. The amount of the phosphorus oxo acid group introduced into the fine fibrous cellulose is measured, for example, as follows.
First, the slurry containing fine fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the same defibration treatment as the defibration treatment step described later may be performed on the measurement target before the treatment with the strong acid ion exchange resin.
Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 2 is obtained. The titration curve shown in the upper part of FIG. 2 plots the measured pH with respect to the amount of alkali added, and the titration curve shown in the lower part of FIG. 2 plots the pH with respect to the amount of alkali added. The increment (differential value) (1 / mmol) is plotted. In this neutralization titration, two points are confirmed in which the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point. The amount of alkali required from the start of titration to the first end point was equal to the amount of first dissociated acid of the fine fibrous cellulose contained in the slurry used for titration, and was required from the first end point to the second end point. The amount of alkali is equal to the amount of second dissociating acid of the fine fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the start to the second end point of titration is contained in the slurry used for titration. Equal to the total amount of dissociated acid in the fibrous cellulose. Then, the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g). The amount of phosphorus oxo acid group introduced (or the amount of phosphorus oxo acid group) simply means the amount of the first dissociated acid.
In FIG. 2, the region from the start of titration to the first end point is referred to as a first region, and the region from the first end point to the second end point is referred to as a second region. For example, when the phosphoric acid group is a phosphoric acid group and the phosphoric acid group causes condensation, the amount of weakly acidic groups in the phosphoric acid group (also referred to as the second dissociated acid amount in the present specification) is apparently. It decreases, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region. On the other hand, the amount of strongly acidic groups in the phosphorus oxo acid group (also referred to as the first dissociated acid amount in the present specification) is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation. When the phosphorous acid group is a phosphorous acid group, the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero. In this case, there is only one point on the titration curve where the pH increment is maximum.
 なお、上述のリンオキソ酸基導入量(mmol/g)は、分母が酸型の微細繊維状セルロースの質量を示すことから、酸型の微細繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(酸型)と呼ぶ)を示している。一方で、リンオキソ酸基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの微細繊維状セルロースの質量に変換することで、陽イオンCが対イオンである微細繊維状セルロースが有するリンオキソ酸基量(以降、リンオキソ酸基量(C型))を求めることができる。
すなわち、下記計算式によって算出する。
リンオキソ酸基量(C型)=リンオキソ酸基量(酸型)/{1+(W-1)×A/1000}
A[mmol/g]:微細繊維状セルロースが有するリンオキソ酸基由来の総アニオン量(リンオキソ酸基の総解離酸量)
W:陽イオンCの1価あたりの式量(たとえば、Naは23、Alは9)
Since the denominator of the above-mentioned phosphorus oxo acid group introduction amount (mmol / g) indicates the mass of the acid-type fine fibrous cellulose, the amount of the phosphorus oxo acid group contained in the acid-type fine fibrous cellulose (hereinafter, phosphorus oxo acid). It is called the base amount (acid type)). On the other hand, when the counterion of the phosphorus oxo acid group is replaced with an arbitrary cation C so as to have a charge equivalent, the denominator is converted to the mass of the fine fibrous cellulose when the cation C is a counterion. By doing so, the amount of phosphorus oxo acid groups (hereinafter, the amount of phosphorus oxo acid groups (C type)) possessed by the fine fibrous cellulose in which the cation C is a counter ion can be obtained.
That is, it is calculated by the following formula.
Amount of phosphorus oxo acid group (C type) = Amount of phosphorus oxo acid group (acid type) / {1+ (W-1) × A / 1000}
A [mmol / g]: Total anion amount derived from the phosphoric acid group of the fine fibrous cellulose (total dissociated acid amount of the phosphoric acid group)
W: Formulated amount of cation C per valence (for example, Na is 23, Al is 9).
 滴定法によるアニオン性基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いアニオン性基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5~30秒に10~50μLずつ滴定するなどが望ましい。また、微細繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。 In the measurement of the amount of anionic groups by the titration method, accurate values can be obtained, such as when the amount of one drop of sodium hydroxide aqueous solution is too large, or when the titration interval is too short, the amount of anionic groups is lower than originally intended. Sometimes not. As an appropriate dropping amount and titration interval, for example, it is desirable to titrate 10 to 50 μL of a 0.1 N sodium hydroxide aqueous solution every 5 to 30 seconds. Further, in order to eliminate the influence of carbon dioxide dissolved in the fine fibrous cellulose-containing slurry, for example, it is desirable to measure while blowing an inert gas such as nitrogen gas into the slurry from 15 minutes before the start of titration to the end of titration. ..
 また、微細繊維状セルロースに対するスルホン基の導入量は、微細繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料の硫黄量を測定することで算出することができる。具体的には、微細繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料を、密閉容器中で硝酸を用いて加圧加熱分解した後、適宜希釈してICP-OESで硫黄量を測定する。供試した微細繊維状セルロースの絶乾質量で割り返して算出した値を微細繊維状セルロースのスルホン基量(単位:mmol/g)とする。 Further, the amount of the sulfone group introduced into the fine fibrous cellulose can be calculated by freeze-drying the slurry containing the fine fibrous cellulose and measuring the amount of sulfur in the crushed sample. Specifically, a slurry containing fine fibrous cellulose is freeze-dried, and the crushed sample is pressure-heated and decomposed with nitric acid in a closed container, diluted appropriately, and the amount of sulfur is measured by ICP-OES. do. The value calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested is taken as the sulfone group amount (unit: mmol / g) of the fine fibrous cellulose.
 微細繊維状セルロースに対するザンテート基量の導入量は、Bredee法により以下の方法で測定することができる。まず、微細繊維状セルロース1.5質量部(絶乾質量)に飽和塩化アンモニウム溶液を40mL添加し、ガラス棒でサンプルを潰しながらよく混合し、約15分間放置後、GFPろ紙(ADVANTEC社製GS-25)でろ過して、飽和塩化アンモニウム溶液で十分に洗浄する。次いで、サンプルをGFPろ紙ごと500mLのトールビーカーに入れ、0.5M水酸化ナトリウム溶液(5℃)を50mL添加して撹拌し、15分間放置する。溶液がピンク色になるまでフェノールフタレイン溶液を添加した後、1.5M酢酸を添加して、溶液がピンク色から無色になった点を中和点とする。中和後蒸留水を250mL添加してよく撹拌し、1.5M酢酸10mL、0.05mol/Lヨウ素溶液10mLをホールピペットを使用して添加する。そして、この溶液を0.05mol/Lチオ硫酸ナトリウム溶液で滴定し、チオ硫酸ナトリウムの滴定量、微細繊維状セルロースの絶乾質量より次式からザンテート基量を算出する。
 ザンテート基量(mmol/g)=(0.05×10×2-0.05×チオ硫酸ナトリウム滴定量(mL))/1000/微細繊維状セルロースの絶乾質量(g)
The amount of the zantate group introduced into the fine fibrous cellulose can be measured by the following method by the Bredee method. First, add 40 mL of saturated ammonium chloride solution to 1.5 parts by mass (absolute dry mass) of fine fibrous cellulose, mix well while crushing the sample with a glass rod, leave it for about 15 minutes, and then GFP filter paper (GS manufactured by ADVANTEC). Filter with -25) and wash thoroughly with saturated ammonium chloride solution. Then, the sample is placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5 ° C.) is added, the mixture is stirred, and the mixture is left for 15 minutes. After adding the phenolphthalein solution until the solution turns pink, 1.5 M acetic acid is added, and the point at which the solution turns from pink to colorless is defined as the neutralization point. After neutralization, add 250 mL of distilled water, stir well, and add 10 mL of 1.5 M acetic acid and 10 mL of 0.05 mol / L iodine solution using a whole pipette. Then, this solution is titrated with a 0.05 mol / L sodium thiosulfate solution, and the amount of zantate group is calculated from the following formula from the titration amount of sodium thiosulfate and the absolute dry mass of the fine fibrous cellulose.
Zantate group amount (mmol / g) = (0.05 x 10 x 2-0.05 x sodium thiosulfate titration (mL)) / 1000 / absolute dry mass of fine fibrous cellulose (g)
 本実施形態において、微細繊維状セルロースは、カルバミド基を有していることが好ましい。本明細書において、カルバミド基は、下記構造式で表される基であることが好ましい。 In the present embodiment, the fine fibrous cellulose preferably has a carbamide group. In the present specification, the carbamide group is preferably a group represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記構造式中、Rは、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族基、又はこれらの誘導基である。中でも、Rは水素原子であることが特に好ましい。 In the above structural formula, R is a hydrogen atom, saturated-linear hydrocarbon group, saturated-branched chain hydrocarbon group, saturated-cyclic hydrocarbon group, unsaturated-linear hydrocarbon group, unsaturated-branched. A chain hydrocarbon group, an aromatic group, or an inducing group thereof. Above all, it is particularly preferable that R is a hydrogen atom.
 微細繊維状セルロースにおけるカルバミド基の導入量は、0.001mmol/g以上であることが好ましい。また、微細繊維状セルロースにおけるカルバミド基の導入量は、0.08mmol/g以下であることが好ましく、0.04mmol/g以下であることがより好ましく、0.02mmol/g以下であることがさらに好ましい。ここで、微細繊維状セルロースにおけるカルバミド基の導入量は、微細繊維状セルロースを含むスラリーを凍結乾燥し、さらに粉砕した試料を、微量窒素分析することで算出することができる。微細繊維状セルロース単位質量あたりのカルバミド基の導入量(mmol/g)は、微量窒素分析で得られた微細繊維状セルロース単位質量あたりの窒素含有量(g/g)を窒素の原子量で除することで算出できる。 The amount of carbamide group introduced in the fine fibrous cellulose is preferably 0.001 mmol / g or more. The amount of the carbamide group introduced in the fine fibrous cellulose is preferably 0.08 mmol / g or less, more preferably 0.04 mmol / g or less, and further preferably 0.02 mmol / g or less. preferable. Here, the amount of carbamide group introduced in the fine fibrous cellulose can be calculated by freeze-drying the slurry containing the fine fibrous cellulose and further crushing the sample by performing a trace nitrogen analysis. The amount of carbamide group introduced per unit mass of fine fibrous cellulose (mmol / g) is obtained by dividing the nitrogen content (g / g) per unit mass of fine fibrous cellulose obtained by trace nitrogen analysis by the atomic weight of nitrogen. Can be calculated by
 本実施形態において、繊維層の形成に用いる微細繊維状セルロースを0.1質量%濃度の水分散液とし、下記式でナノファイバー収率を算出した場合、ナノファイバー収率は95質量%以上であることが好ましく、96質量%以上であることがより好ましい。なお、ナノファイバー収率は100質量%であってもよい。
 ナノファイバー収率[質量%]=C/0.1×100
 ここで、Cは、微細繊維状セルロースの濃度が0.1質量%の水分散液を、12000G、10分の条件で遠心分離した際に得られる上澄み液に含まれる微細繊維状セルロースの濃度である。
In the present embodiment, when the fine fibrous cellulose used for forming the fiber layer is used as an aqueous dispersion having a concentration of 0.1% by mass and the nanofiber yield is calculated by the following formula, the nanofiber yield is 95% by mass or more. It is preferably present, and more preferably 96% by mass or more. The nanofiber yield may be 100% by mass.
Nanofiber yield [mass%] = C / 0.1 × 100
Here, C is the concentration of the fine fibrous cellulose contained in the supernatant obtained by centrifuging the aqueous dispersion having a fine fibrous cellulose concentration of 0.1% by mass under the conditions of 12000 G for 10 minutes. be.
 また、本実施形態において、繊維層の形成に用いる微細繊維状セルロースを0.2質量%濃度の水分散液とした場合、該水分散液のヘーズは5.0%以下であることが好ましく、4.0%以下であることがより好ましく、3.0%以下であることがさらに好ましい。なお、水分散液のヘーズは0%であってもよい。0.2質量%濃度の水分散液のヘーズが上記範囲内であれば、分散液が透明であると判定できる。ここで、水分散液のヘーズは、ヘーズメーターと光路長1cmの液体用ガラスセルを用い、JIS K 7136:2000に準拠して測定される値である。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。また、測定対象の分散液は測定前に23℃、相対湿度50%の環境下に24時間静置し、分散液の液温を23℃とする。 Further, in the present embodiment, when the fine fibrous cellulose used for forming the fiber layer is used as an aqueous dispersion having a concentration of 0.2% by mass, the haze of the aqueous dispersion is preferably 5.0% or less. It is more preferably 4.0% or less, and further preferably 3.0% or less. The haze of the aqueous dispersion may be 0%. If the haze of the water dispersion having a concentration of 0.2% by mass is within the above range, it can be determined that the dispersion is transparent. Here, the haze of the aqueous dispersion is a value measured in accordance with JIS K 7136: 2000 using a haze meter and a glass cell for liquid having an optical path length of 1 cm. The zero point measurement is performed with ion-exchanged water contained in the same glass cell. Further, the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement, and the liquid temperature of the dispersion liquid is set to 23 ° C.
 本実施形態において、繊維層の形成に用いる微細繊維状セルロースを1質量%濃度の分散液(水分散液)とした場合、該分散液のpHは、3以上であることが好ましく、4以上であることがより好ましく、5以上であることがさらに好ましい。また、該分散液のpHは10以下であることが好ましく、9以下であることがより好ましく、8以下であることがさらに好ましい。分散液のpHを上記範囲とすることで、分散液やシートの黄変をより効果的に抑制することができる。なお、分散液のpHを上記範囲とするために、後述する<pH調整工程>と同様の手法を取ることもできる。 In the present embodiment, when the fine fibrous cellulose used for forming the fiber layer is used as a dispersion liquid (water dispersion liquid) having a concentration of 1% by mass, the pH of the dispersion liquid is preferably 3 or more, preferably 4 or more. It is more preferable to have it, and it is further preferable to have 5 or more. The pH of the dispersion is preferably 10 or less, more preferably 9 or less, and even more preferably 8 or less. By setting the pH of the dispersion liquid in the above range, yellowing of the dispersion liquid and the sheet can be suppressed more effectively. In order to keep the pH of the dispersion in the above range, the same method as in the <pH adjustment step> described later can be taken.
 本実施形態において、繊維層の形成に用いる微細繊維状セルロースを0.4質量%濃度の分散液(水分散液)とした場合、該分散液の23℃における粘度は、100mPa・s以上であることが好ましく、1000mPa・s以上であることがより好ましく、2000mPa・s以上であることがさらに好ましい。また、該分散液の23℃における粘度は、200000mPa・s以下であることが好ましく、100000mPa・s以下であることがより好ましい。微細繊維状セルロース濃度が0.4質量%の分散液の粘度は、B型粘度計(BLOOKFIELD社製、アナログ粘度計T-LVT)を用いて測定することができる。測定条件は23℃とし、回転速度3rpmとし、測定開始から3分後の粘度を測定する。また、測定対象の分散液は測定前に23℃、相対湿度50%の環境下に24時間静置し、分散液の液温を23℃とする。 In the present embodiment, when the fine fibrous cellulose used for forming the fiber layer is a dispersion liquid (water dispersion liquid) having a concentration of 0.4% by mass, the viscosity of the dispersion liquid at 23 ° C. is 100 mPa · s or more. It is preferably 1000 mPa · s or more, and even more preferably 2000 mPa · s or more. The viscosity of the dispersion at 23 ° C. is preferably 200,000 mPa · s or less, and more preferably 100,000 mPa · s or less. The viscosity of the dispersion having a fine fibrous cellulose concentration of 0.4% by mass can be measured using a B-type viscometer (analog viscometer T-LVT manufactured by BLOOKFIELD). The measurement conditions are 23 ° C., the rotation speed is 3 rpm, and the viscosity is measured 3 minutes after the start of measurement. Further, the dispersion liquid to be measured is allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement, and the liquid temperature of the dispersion liquid is set to 23 ° C.
 繊維層の形成に用いる微細繊維状セルロースを含む分散液中の遊離窒素量は少ないことが好ましい。分散液中の遊離窒素量は微細繊維状セルロース分散液を濾過した際の濾液中の窒素濃度を測定することで測定が可能である。例えば、微細繊維状セルロース濃度が0.2質量%の分散液中の遊離窒素濃度は、100ppm以下であることが好ましく、80ppm以下であることがより好ましく、70ppm以下であることがさらに好ましく、60ppm以下であることが一層好ましく、50ppm以下であることがより一層好ましく、40ppm以下であることがさらに一層好ましく、30ppm以下であることが特に好ましい。なお、微細繊維状セルロース濃度が0.2質量%の分散液中の窒素濃度は0ppmであってもよい。分散液中に存在する遊離窒素は、着色の原因となるため、濾液中の窒素濃度を上記範囲内とすることにより、微細繊維状セルロースを含む分散液やシートの黄変をより効果的に抑制することができる。ここで、濾液中の窒素濃度の測定方法は以下のとおりである。まず、微細繊維状セルロース濃度が0.2質量%となるように蒸留水を添加し、24時間撹拌後、孔径0.45μmの濾材を使用して濾過を行い濾液を得る。そして、微量窒素分析により濾液中の窒素濃度(ppm)を測定する。 It is preferable that the amount of free nitrogen in the dispersion containing the fine fibrous cellulose used for forming the fiber layer is small. The amount of free nitrogen in the dispersion can be measured by measuring the nitrogen concentration in the filtrate when the fine fibrous cellulose dispersion is filtered. For example, the free nitrogen concentration in the dispersion having a fine fibrous cellulose concentration of 0.2% by mass is preferably 100 ppm or less, more preferably 80 ppm or less, further preferably 70 ppm or less, and even more preferably 60 ppm. It is more preferably less than or equal to, more preferably 50 ppm or less, further preferably 40 ppm or less, and particularly preferably 30 ppm or less. The nitrogen concentration in the dispersion having a fine fibrous cellulose concentration of 0.2% by mass may be 0 ppm. Since free nitrogen present in the dispersion liquid causes coloring, by keeping the nitrogen concentration in the filtrate within the above range, the yellowing of the dispersion liquid containing fine fibrous cellulose and the sheet is more effectively suppressed. can do. Here, the method for measuring the nitrogen concentration in the filtrate is as follows. First, distilled water is added so that the concentration of fine fibrous cellulose is 0.2% by mass, and after stirring for 24 hours, filtration is performed using a filter medium having a pore size of 0.45 μm to obtain a filtrate. Then, the nitrogen concentration (ppm) in the filtrate is measured by trace nitrogen analysis.
(微細繊維状セルロースの製造方法)
 上述した微細繊維状セルロースは、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去させる工程(A)を経て得られるものであることが好ましい。ここで、工程(A)に供される微細繊維状セルロースが有する置換基はアニオン性基であることが好ましく、リンオキソ酸基又はリンオキソ酸基に由来する置換基であることがより好ましい。さらに、工程(A)に供される微細繊維状セルロースはカルバミド基を有することが好ましい。
(Manufacturing method of fine fibrous cellulose)
The above-mentioned fine fibrous cellulose is preferably obtained through the step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less. .. Here, the substituent contained in the fine fibrous cellulose used in the step (A) is preferably an anionic group, and more preferably a phosphoxoic acid group or a substituent derived from the phosphoxoic acid group. Further, the fine fibrous cellulose used in the step (A) preferably has a carbamide group.
(工程(A))
 工程(A)は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去させる工程である。以下では、まず、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロース(工程(A)に供される微細繊維状セルロース)の製造方法について説明する。
(Step (A))
The step (A) is a step of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less. Hereinafter, a method for producing fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less (fine fibrous cellulose used in step (A)) will be described first.
<繊維原料>
 工程(A)に供される微細繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、及び脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)及び酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)及びケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)及びサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンター及びコットンリント等の綿系パルプ、麻、麦わら及びバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプ及び脱墨パルプが好ましい。また、木材パルプの中でも、セルロース比率が大きく解繊処理時の微細繊維状セルロースの収率が高い観点や、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の微細繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。なお、軸比の大きい長繊維の微細繊維状セルロースを用いると粘度が高くなる傾向がある。
<Fiber raw material>
The fine fibrous cellulose used in the step (A) is produced from a fiber raw material containing cellulose. The fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Examples of the pulp include wood pulp, non-wood pulp, and deinked pulp. The wood pulp is not particularly limited, but is, for example, broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP). ) And chemical pulp such as oxygen bleached kraft pulp (OKP), semi-chemical pulp such as semi-chemical pulp (SCP) and chemiground wood pulp (CGP), crushed wood pulp (GP) and thermomechanical pulp (TMP, BCTMP), etc. Examples include mechanical pulp. The non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse. The deinking pulp is not particularly limited, and examples thereof include deinking pulp made from recycled paper. As the pulp of this embodiment, one of the above may be used alone, or two or more of them may be mixed and used. Among the above pulps, for example, wood pulp and deinked pulp are preferable from the viewpoint of availability. Further, among wood pulps, it is possible to obtain long-fiber fine fibrous cellulose having a large cellulose ratio and a high yield of fine fibrous cellulose during defibration treatment, and having a small decomposition of cellulose in the pulp and a large axial ratio. From the viewpoint, for example, chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable. It should be noted that the viscosity tends to be high when the fine fibrous cellulose of long fibers having a large axial ratio is used.
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。 As the fiber raw material containing cellulose, for example, cellulose contained in ascidians and bacterial cellulose produced by acetic acid bacteria can also be used. Further, instead of the fiber raw material containing cellulose, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can also be used.
<リンオキソ酸基導入工程>
 工程(A)に供される微細繊維状セルロースは置換基を有する。このため、工程(A)に供される微細繊維状セルロースの製造工程は、置換基導入工程を有することが好ましく、アニオン性基導入工程を有することがより好ましい。アニオン性基導入工程としては、例えば、リンオキソ酸基導入工程が挙げられる。リンオキソ酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リンオキソ酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リンオキソ酸基導入繊維が得られることとなる。
<Linoxo acid group introduction process>
The fine fibrous cellulose used in the step (A) has a substituent. Therefore, the process for producing the fine fibrous cellulose used in the step (A) preferably includes a substituent introduction step, and more preferably an anionic group introduction step. Examples of the anionic group introduction step include a phosphorus oxo acid group introduction step. In the phosphorus oxo acid group introduction step, at least one compound (hereinafter, also referred to as “compound A”) selected from compounds capable of introducing a phosphorus oxo acid group by reacting with a hydroxyl group of a fiber raw material containing cellulose is used as cellulose. It is a step of acting on a fiber raw material containing. By this step, a phosphorus oxo acid group-introduced fiber can be obtained.
 本実施形態に係るリンオキソ酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行うことが好ましい。 In the phosphorus oxo acid group introduction step according to the present embodiment, the reaction between the fiber raw material containing cellulose and compound A is carried out in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “compound B”). Is preferable.
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態又はスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態又は湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物A及び化合物Bは、それぞれ粉末状又は溶媒に溶解させた溶液状又は融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。 As an example of the method of allowing the compound A to act on the fiber raw material in the coexistence with the compound B, there is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state or a slurry state. Of these, since the reaction uniformity is high, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state. The form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example. Examples of the compound A and the compound B include a method of adding the compound A and the compound B to the fiber raw material in the form of powder, in the form of a solution dissolved in a solvent, or in the state of being heated to a melting point or higher and melted. Of these, since the reaction uniformity is high, it is preferable to add the solution in the form of a solution dissolved in a solvent, particularly in the state of an aqueous solution. Further, the compound A and the compound B may be added to the fiber raw material at the same time, may be added separately, or may be added as a mixture. The method for adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be dropped into the water. Further, a required amount of compound A and compound B may be added to the fiber raw material, or an excess amount of compound A and compound B may be added to the fiber raw material, respectively, and then the surplus compound A and compound B may be added by pressing or filtering. It may be removed.
 本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸又は脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、リン酸のアンモニウム塩又は亜リン酸、亜リン酸のナトリウム塩、亜リン酸のカリウム塩、亜リン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素アンモニウム、又は亜リン酸、亜リン酸ナトリウムがより好ましい。 The compound A used in this embodiment may be any compound having a phosphorus atom and capable of forming an ester bond with cellulose, and may be phosphoric acid or a salt thereof, phosphoric acid or a salt thereof, dehydration condensed phosphoric acid or a salt thereof. Examples thereof include salts and anhydrous phosphoric acid (diphosphoric pentoxide), but the present invention is not particularly limited. As the phosphoric acid, those having various puritys can be used, and for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid can be used. Examples of phosphorous acid include 99% phosphorous acid (phosphonic acid). The dehydration-condensed phosphoric acid is one in which two or more molecules of phosphoric acid are condensed by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid. Examples of the phosphate, sulphate, and dehydration-condensed phosphoric acid include phosphoric acid, sulphite, or lithium salt of dehydration-condensed phosphoric acid, sodium salt, potassium salt, ammonium salt, and the like. It can be a sum. Of these, from the viewpoints of high efficiency of introducing phosphoric acid group, easy improvement of defibration efficiency in the defibration process described later, low cost, and easy industrial application, phosphoric acid and sodium phosphate Salt, potassium salt of phosphoric acid, ammonium salt or phosphoric acid of phosphoric acid, sodium salt of phosphoric acid, potassium salt of phosphoric acid, ammonium salt of phosphoric acid are preferable, and phosphoric acid, sodium dihydrogen phosphate, Disodium hydrogen phosphate, ammonium dihydrogen phosphate, or phosphoric acid and sodium phosphite are more preferred.
 繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。 The amount of compound A added to the fiber raw material is not particularly limited, but for example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less. By setting the amount of phosphorus atom added to the fiber raw material within the above range, the yield of fine fibrous cellulose can be further improved. On the other hand, by setting the addition amount of the phosphorus atom to the fiber raw material to be equal to or less than the above upper limit value, the effect of improving the yield and the cost can be balanced.
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、及び1-エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
The compound B used in this embodiment is at least one selected from urea and its derivatives as described above. Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
From the viewpoint of improving the uniformity of the reaction, compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.
 繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。 The amount of compound B added to the fiber raw material (absolute dry mass) is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less. It is more preferably 100% by mass or more and 350% by mass or less.
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類又はアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。 In the reaction between the fiber raw material containing cellulose and compound A, for example, amides or amines may be contained in the reaction system in addition to compound B. Examples of the amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like. Among these, triethylamine in particular is known to act as a good reaction catalyst.
 リンオキソ酸基導入工程においては、繊維原料に化合物A及び化合物Bを添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば熱風乾燥装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。 In the phosphorus oxo acid group introduction step, it is preferable to add or mix the compound A and the compound B to the fiber raw material and then heat-treat the fiber raw material. As the heat treatment temperature, it is preferable to select a temperature at which a phosphorus oxo acid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber. The heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower. In addition, equipment having various heat media can be used for the heat treatment, for example, a hot air drying device, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, and a fluidized layer. A drying device, a band type drying device, a filtration drying device, a vibration flow drying device, an air flow drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。 In the heat treatment according to the present embodiment, for example, a method of adding compound A to a thin sheet-shaped fiber raw material by a method such as impregnation and then heating, or a method of heating while kneading or stirring the fiber raw material and compound A with a kneader or the like. Can be adopted. This makes it possible to suppress unevenness in the concentration of compound A in the fiber raw material and to more uniformly introduce the phosphoric acid group onto the surface of the cellulose fiber contained in the fiber raw material. This is because when the water molecules move to the surface of the fiber raw material due to drying, the dissolved compound A is attracted to the water molecules by the surface tension and also moves to the surface of the fiber raw material (that is, the concentration unevenness of the compound A is caused. It is considered that this is due to the fact that it can be suppressed.
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い微細繊維状セルロースを得ることが可能となる。 Further, the heating device used for the heat treatment always keeps the water content retained by the slurry and the water content generated by the dehydration condensation (phosphate esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. Examples of such a heating device include a ventilation type oven and the like. By constantly discharging the water in the apparatus system, it is possible to suppress the acid hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphate esterification, and also to suppress the acid hydrolysis of the sugar chain in the fiber. can. Therefore, it is possible to obtain fine fibrous cellulose having a high axial ratio.
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。 The heat treatment time is preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less after the water is substantially removed from the fiber raw material. Is more preferable. In the present embodiment, the amount of the phosphorus oxo acid group introduced can be within a preferable range by setting the heating temperature and the heating time within appropriate ranges.
 リンオキソ酸基導入工程は、少なくとも1回行えばよいが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。 The phosphorus oxo acid group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphorus oxo acid group introduction step two or more times, many phosphorus oxo acid groups can be introduced into the fiber raw material.
 リンオキソ酸基導入工程におけるリンオキソ酸基の導入量は、繊維原料1g(質量)あたり0.60mmol/g以上であることが好ましく、0.70mmol/g以上であることがより好ましく、0.80mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが一層好ましく、1.20mmol/g以上であることが特に好ましい。また、リンオキソ酸基の導入量は、たとえば繊維原料1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。なお、リンオキソ酸基導入工程におけるリンオキソ酸基の導入量が上記範囲内であるということは、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内であることを意味する。リンオキソ酸基の導入量を上記範囲内とすることにより、工程(A)に供される微細繊維状セルロースの置換基導入量を上記範囲内とすることができ、その結果、最終的な繊維幅が10nm以下の微細繊維状セルロースを製造しやすくなる。また、本発明の微細繊維状セルロースを含む分散液やシートの透明性をより効果的に高めることができる。 The amount of the phosphorus oxo acid group introduced in the phosphorus oxo acid group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and more preferably 0.80 mmol / g per 1 g (mass) of the fiber raw material. It is more preferably g or more, further preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more. The amount of the phosphorus oxo acid group introduced is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and 3.00 mmol / g or less per 1 g (mass) of the fiber raw material. It is more preferable to have. The fact that the amount of the phosphorus oxo acid group introduced in the phosphorus oxo acid group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range. do. By setting the introduction amount of the phosphoxoic acid group within the above range, the introduction amount of the substituent of the fine fibrous cellulose provided in the step (A) can be within the above range, and as a result, the final fiber width can be obtained. It becomes easy to produce fine fibrous cellulose having a thickness of 10 nm or less. In addition, the transparency of the dispersion liquid or sheet containing the fine fibrous cellulose of the present invention can be more effectively enhanced.
<スルホン基(硫黄オキソ酸基)導入工程>
 工程(A)に供される微細繊維状セルロースの製造工程は、アニオン性基導入工程として、スルホン基導入工程を含んでもよい。スルホン基導入工程は、セルロースを含む繊維原料が有する水酸基とスルホン酸が反応することで、スルホン基を有するセルロース繊維(スルホン基導入繊維)を得ることができる。
<Sulfone group (sulfur oxoacid group) introduction process>
The step of producing the fine fibrous cellulose provided in the step (A) may include a sulfone group introduction step as an anionic group introduction step. In the sulfone group introduction step, cellulose fibers having a sulfone group (sulfone group-introduced fiber) can be obtained by reacting the hydroxyl group of the fiber raw material containing cellulose with sulfonic acid.
 スルホン基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Aに代えて、セルロースを含む繊維原料が有する水酸基と反応することで、スルホン基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物C」ともいう)を用いる。化合物Cとしては、硫黄原子を有し、セルロースとエステル結合を形成可能な化合物であればよく、硫酸もしくはその塩、亜硫酸もしくはその塩、硫酸アミドなどが挙げられるが特に限定されない。硫酸としては、種々の純度のものを使用することができ、たとえば96%硫酸(濃硫酸)を使用することができる。亜硫酸としては、5%亜硫酸水が挙げられる。硫酸塩又は亜硫酸塩としては、硫酸塩又は亜硫酸塩のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。硫酸アミドとしては、スルファミン酸などを使用することができる。スルホン基導入工程では、上述した<リンオキソ酸基導入工程>における化合物Bを同様に用いることが好ましい。 In the sulfone group introduction step, at least one selected from compounds capable of introducing a sulfone group by reacting with the hydroxyl group of the fiber raw material containing cellulose instead of the compound A in the above-mentioned <phosphoroxo acid group introduction step>. A compound (hereinafter, also referred to as “Compound C”) is used. The compound C may be any compound having a sulfur atom and capable of forming an ester bond with cellulose, and examples thereof include sulfuric acid or a salt thereof, sulfurous acid or a salt thereof, and sulfate amide, but the compound C is not particularly limited. As the sulfuric acid, those having various puritys can be used, and for example, 96% sulfuric acid (concentrated sulfuric acid) can be used. Examples of sulfurous acid include 5% sulfurous acid water. Examples of the sulfate or sulfite include lithium salts, sodium salts, potassium salts and ammonium salts of sulfates or sulfites, and these can have various neutralization degrees. As the sulfuric acid amide, sulfamic acid or the like can be used. In the sulfone group introduction step, it is preferable to use the compound B in the above-mentioned <phosphoroacid group introduction step> in the same manner.
 スルホン基導入工程においては、セルロース原料にスルホン酸、並びに、尿素及び/又は尿素誘導体を含む水溶液を混合した後、当該セルロース原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、スルホン基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましい。また、加熱処理温度は、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましい。 In the sulfone group introduction step, it is preferable to mix the cellulose raw material with an aqueous solution containing sulfonic acid and urea and / or a urea derivative, and then heat-treat the cellulose raw material. As the heat treatment temperature, it is preferable to select a temperature at which the sulfone group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber. The heat treatment temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and even more preferably 150 ° C. or higher. The heat treatment temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.
 加熱処理工程では、実質的に水分がなくなるまで加熱をすることが好ましい。このため、加熱処理時間は、セルロース原料に含まれる水分量や、スルホン酸、並びに、尿素及び/又は尿素誘導体を含む水溶液の添加量によって、変動するが、例えば、10秒以上10000秒以下とすることが好ましい。加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば熱風乾燥装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。 In the heat treatment step, it is preferable to heat until the water content is substantially eliminated. Therefore, the heat treatment time varies depending on the amount of water contained in the cellulose raw material and the amount of the aqueous solution containing sulfonic acid and urea and / or a urea derivative, but is, for example, 10 seconds or more and 10,000 seconds or less. Is preferable. Equipment having various heat media can be used for the heat treatment, for example, a hot air drying device, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, and a fluidized layer drying device. , Band type drying device, filtration drying device, vibration flow drying device, air flow drying device, vacuum drying device, infrared heating device, far infrared heating device, microwave heating device, high frequency drying device can be used.
 スルホン基導入工程におけるスルホン基の導入量は、繊維原料1g(質量)あたり0.60mmol/g以上であることが好ましく、0.70mmol/g以上であることがより好ましく、0.80mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが一層好ましく、1.20mmol/g以上であることが特に好ましい。また、スルホン基の導入量は、たとえば繊維原料1g(質量)あたり5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましい。なお、スルホン基導入工程におけるスルホン基の導入量が上記範囲内であるということは、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内であることを意味する。スルホン基の導入量を上記範囲内とすることにより、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内とすることができ、その結果、繊維幅が10nm以下の微細繊維状セルロースを製造しやすくなる。また、本発明の微細繊維状セルロースを含む分散液やシートの透明性をより効果的に高めることができる。 The amount of the sulfone group introduced in the sulfone group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and 0.80 mmol / g or more per 1 g (mass) of the fiber raw material. It is more preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more. The amount of the sulfone group introduced is, for example, preferably 5.00 mmol / g or less, and more preferably 3.00 mmol / g or less per 1 g (mass) of the fiber raw material. The fact that the amount of the sulfone group introduced in the sulfone group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range. By setting the introduction amount of the sulfone group within the above range, the introduction amount of the substituent of the fine fibrous cellulose provided in the step (A) can be within the above range, and as a result, the fiber width is 10 nm or less. It becomes easy to produce fine fibrous cellulose. In addition, the transparency of the dispersion liquid or sheet containing the fine fibrous cellulose of the present invention can be more effectively enhanced.
<ザンテート基導入工程>
 工程(A)に供される微細繊維状セルロースの製造工程は、アニオン性基導入工程として、ザンテート基導入工程を含んでもよい。ザンテート基導入工程は、セルロースを含む繊維原料が有する水酸基を下記式(2)で表されるザンテート基で置換することで、ザンテート基を有するセルロース繊維(ザンテート基導入繊維)を得ることができる。
 ―OCSS……(2)
 ここで、Mは水素イオン、一価金属イオン、アンモニウムイオン、脂肪族又は芳香族アンモニウムイオンから選ばれる少なくとも一種である。
<Zantate group introduction process>
The step of producing the fine fibrous cellulose used in the step (A) may include a zantate group introduction step as an anionic group introduction step. In the zantate group introduction step, a cellulose fiber having a zantate group (zantate group-introduced fiber) can be obtained by substituting the hydroxyl group of the fiber raw material containing cellulose with a zantate group represented by the following formula (2).
―OCSS M …… (2)
Here, M + is at least one selected from hydrogen ions, monovalent metal ions, ammonium ions, aliphatic or aromatic ammonium ions.
 ザンテート基導入工程では、まず、上記セルロースを含む繊維原料をアルカリ溶液で処理するアルカリ処理を行って、アルカリセルロースを得る。アルカリ溶液としては、水酸化アルカリ金属水溶液、水酸化アルカリ土類金属水溶液などが挙げられる。中でも、アルカリ溶液は、水酸化ナトリウムや水酸化カリウムなどの水酸化アルカリ金属水溶液であることが好ましく、水酸化ナトリウム水溶液であることが特に好ましい。アルカリ溶液が水酸化アルカリ金属水溶液の場合、水酸化アルカリ金属水溶液中の水酸化アルカリ金属濃度は4質量%以上であることが好ましく、5質量%以上であることがより好ましい。また、水酸化アルカリ金属水溶液中の水酸化アルカリ金属濃度は9質量%以下であることが好ましい。水酸化アルカリ金属濃度を上記下限値以上とすることにより、セルロースのマーセル化を十分に進行させることができ、その後のザンテート化の際に生じる副生成物の量を減らすことができ、結果として、ザンテート基導入繊維の収率を高めることができる。これにより、後述する解繊処理をより効果的に行うことができる。また、水酸化アルカリ金属濃度を上記上限値以下とすることにより、マーセル化を進行させつつも、セルロースの結晶領域にまで水酸化アルカリ金属水溶液が浸透することを抑制することができるため、セルロースI型の結晶構造が維持されやすくなり、微細繊維状セルロースの収率をより高めることができる。 In the zantate group introduction step, first, the fiber raw material containing cellulose is treated with an alkaline solution to obtain alkaline cellulose. Examples of the alkaline solution include an aqueous solution of an alkali metal hydroxide and an aqueous solution of an alkaline earth metal hydroxide. Above all, the alkaline solution is preferably an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, and particularly preferably an aqueous solution of sodium hydroxide. When the alkaline solution is an alkaline alkali metal hydroxide aqueous solution, the alkali metal hydroxide concentration in the alkali metal hydroxide aqueous solution is preferably 4% by mass or more, and more preferably 5% by mass or more. Further, the alkali metal hydroxide concentration in the aqueous alkali metal hydroxide solution is preferably 9% by mass or less. By setting the alkali metal hydroxide concentration to the above lower limit or higher, the mercerization of cellulose can be sufficiently promoted, and the amount of by-products generated during the subsequent zantate formation can be reduced, and as a result, it is possible to reduce the amount of by-products. The yield of the zantate group-introduced fiber can be increased. As a result, the defibration treatment described later can be performed more effectively. Further, by setting the alkali metal hydroxide concentration to the above upper limit value or less, it is possible to suppress the permeation of the alkali metal hydroxide aqueous solution into the crystal region of cellulose while promoting mercerization, so that the cellulose I The crystal structure of the mold can be easily maintained, and the yield of fine fibrous cellulose can be further increased.
 上記アルカリ処理の時間は、30分間以上であることが好ましく、1時間以上であることがより好ましい。また、アルカリ処理の時間は、6時間以下であることが好ましく、5時間以下であることがより好ましい。アルカリ処理の時間を上記範囲内とすることにより、最終的な収率を高めることができ、生産性を高めることができる。 The time of the alkali treatment is preferably 30 minutes or more, and more preferably 1 hour or more. The alkali treatment time is preferably 6 hours or less, and more preferably 5 hours or less. By setting the alkali treatment time within the above range, the final yield can be increased and the productivity can be increased.
 上記アルカリ処理で得られたアルカリセルロースは、その後に固液分離して水溶液分をできるだけ除去しておくことが好ましい。これにより、次いで行われるザンテート化処理時の水分含有量を減らすことができ、反応を促進できる。固液分離の方法としては、例えば遠心分離や濾別などの一般的な脱水方法を用いることができる。なお、固液分離後のアルカリセルロースに含まれる水酸化アルカリ金属の濃度は固液分離後のアルカリセルロースの全質量に対して3質量%以上8質量%以下であることが好ましい。 It is preferable that the alkaline cellulose obtained by the above alkaline treatment is then solid-liquid separated to remove the aqueous solution as much as possible. As a result, the water content in the subsequent zantate treatment can be reduced and the reaction can be promoted. As a solid-liquid separation method, a general dehydration method such as centrifugation or filtration can be used. The concentration of the alkali metal hydroxide contained in the alkali cellulose after solid-liquid separation is preferably 3% by mass or more and 8% by mass or less with respect to the total mass of the alkali cellulose after solid-liquid separation.
 ザンテート基導入工程では、アルカリ処理の後にザンテート化処理工程を行う。ザンテート化処理工程ではアルカリセルロースに二硫化炭素(CS)を反応させて、(-ONa)基を(-OCSSNa)基にしてザンテート基導入繊維を得る。なお、上記において、アルカリセルロースに導入された金属イオンは、代表してNaで記述しているが、他のアルカリ金属イオンでも同様の反応が進行する。 In the zantate group introduction step, the zantate treatment step is performed after the alkali treatment. The xanthate treatment process by reacting carbon disulfide (CS 2) in the alkali cellulose, (- O - Na +) group (-OCSS - Na +) to obtain a xanthate group introduction fibers based on. In the above, the metal ion introduced into the alkali cellulose is represented by Na + , but the same reaction proceeds with other alkali metal ions.
 ザンテート化処理では、アルカリセルロース中のセルロースの絶乾質量に対して、10質量%以上の二硫化炭素を供給することが好ましい。また、ザンテート化処理において、二硫化炭素とアルカリセルロースとが接触する時間は、30分以上であることが好ましく、1時間以上であることがより好ましい。アルカリセルロースに二硫化炭素が接触することでザンテート化は速やかに進行するが、アルカリセルロースの内部にまで二硫化炭素が浸透するには時間がかかるため、反応時間を上記範囲とすることが好ましい。一方で、二硫化炭素とアルカリセルロースとが接触する時間は6時間以下であればよく、これにより脱水後のアルカリセルロースの塊に対しても十分に浸透が進んで、反応可能なザンテート化をほぼ完了させることができる。 In the zantate treatment, it is preferable to supply 10% by mass or more of carbon disulfide with respect to the absolute dry mass of cellulose in alkaline cellulose. Further, in the zantate treatment, the contact time between carbon disulfide and alkaline cellulose is preferably 30 minutes or more, and more preferably 1 hour or more. When carbon disulfide comes into contact with the alkaline cellulose, zantate formation proceeds rapidly, but it takes time for the carbon disulfide to penetrate into the inside of the alkaline cellulose, so the reaction time is preferably set within the above range. On the other hand, the contact time between carbon disulfide and alkaline cellulose may be as long as 6 hours or less, which allows sufficient penetration into the dehydrated alkaline cellulose lumps and almost all the reactionable zantate. Can be completed.
 ザンテート化処理における反応温度は、46℃以下であることが好ましい。反応温度を上記範囲内とすることにより、アルカリセルロースの分解を抑制し易くなる。また、反応温度を上記範囲内とすることにより、均一に反応し易くなるため、副生成物の生成を抑制でき、さらには、生成したザンテート基の除去を抑制することもできる。 The reaction temperature in the zantate treatment is preferably 46 ° C. or lower. By setting the reaction temperature within the above range, it becomes easy to suppress the decomposition of alkaline cellulose. Further, by setting the reaction temperature within the above range, it becomes easy to react uniformly, so that the formation of by-products can be suppressed, and further, the removal of the formed zantate groups can be suppressed.
 ザンテート基導入工程におけるザンテート基の導入量は、繊維原料1g(質量)あたり0.60mmol/g以上であることが好ましく、0.70mmol/g以上であることがより好ましく、0.80mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが一層好ましく、1.20mmol/g以上であることが特に好ましい。また、ザンテート基の導入量は、たとえば繊維原料1g(質量)あたり5.00mmol/g以下であることが好ましく、3.00mmol/g以下であることがより好ましい。なお、ザンテート基導入工程におけるザンテート基の導入量が上記範囲内であるということは、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内であることを意味する。ザンテート基の導入量を上記範囲内とすることにより、工程(A)に供される微細繊維状セルロースの置換基導入量が上記範囲内とすることができ、その結果、繊維幅が10nm以下の微細繊維状セルロースを製造しやすくなる。また、本発明の微細繊維状セルロースを含む分散液やシートの透明性をより効果的に高めることができる。 The amount of the zantate group introduced in the zantate group introduction step is preferably 0.60 mmol / g or more, more preferably 0.70 mmol / g or more, and 0.80 mmol / g or more per 1 g (mass) of the fiber raw material. It is more preferably 1.00 mmol / g or more, and particularly preferably 1.20 mmol / g or more. The amount of the zantate group introduced is, for example, preferably 5.00 mmol / g or less, and more preferably 3.00 mmol / g or less per 1 g (mass) of the fiber raw material. The fact that the amount of the zantate group introduced in the zantate group introduction step is within the above range means that the amount of the substituent of the fine fibrous cellulose provided in the step (A) is within the above range. By setting the introduction amount of the zantate group within the above range, the introduction amount of the substituent of the fine fibrous cellulose used in the step (A) can be within the above range, and as a result, the fiber width is 10 nm or less. It becomes easy to produce fine fibrous cellulose. In addition, the transparency of the dispersion liquid or sheet containing the fine fibrous cellulose of the present invention can be more effectively enhanced.
<洗浄工程>
 工程(A)に供される微細繊維状セルロースの製造工程においては、必要に応じてアニオン性基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりアニオン性基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
<Washing process>
In the step of producing the fine fibrous cellulose used in the step (A), a washing step can be performed on the anionic group-introduced fiber, if necessary. The washing step is performed by washing the anionic group-introduced fibers with, for example, water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of cleaning steps performed in each cleaning step is not particularly limited.
<アルカリ処理工程>
 工程(A)に供される微細繊維状セルロースの製造工程においては、アニオン性基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、アニオン性基導入繊維を浸漬する方法が挙げられる。
<Alkaline treatment process>
In the step of producing the fine fibrous cellulose used in the step (A), the fiber raw material may be treated with an alkali between the step of introducing an anionic group and the step of the defibration treatment described later. The alkaline treatment method is not particularly limited, and examples thereof include a method of immersing the anionic group-introduced fiber in an alkaline solution.
 アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウム又は水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水又は有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、又はアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、又は水酸化カリウム水溶液が好ましい。 The alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. In this embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkaline compound because of its high versatility. Further, the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water. As the alkaline solution, for example, an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるアニオン性基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばアニオン性基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower. The immersion time of the anionic group-introduced fiber in the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less. The amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the anionic group-introduced fiber. Is more preferable.
 アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、アニオン性基導入工程の後であってアルカリ処理工程の前に、アニオン性基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったアニオン性基導入繊維を水や有機溶媒により洗浄することが好ましい。 In order to reduce the amount of the alkaline solution used in the alkaline treatment step, the anionic group-introduced fiber may be washed with water or an organic solvent after the anionic group introduction step and before the alkaline treatment step. After the alkali treatment step and before the defibration treatment step, it is preferable to wash the alkali-treated anionic group-introduced fiber with water or an organic solvent from the viewpoint of improving handleability.
<酸処理工程>
 工程(A)に供される微細繊維状セルロースの製造工程においては、アニオン性基を導入する工程と、後述する解繊処理工程の間に、繊維原料に対して酸処理を行ってもよい。例えば、アニオン性基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
<Acid treatment process>
In the step of producing the fine fibrous cellulose used in the step (A), the fiber raw material may be acid-treated between the step of introducing an anionic group and the defibration treatment step described later. For example, the anionic group introduction step, the acid treatment, the alkali treatment and the defibration treatment may be performed in this order.
 酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸又は硫酸を用いることが特に好ましい。 The method of acid treatment is not particularly limited, and examples thereof include a method of immersing a fiber raw material in an acidic liquid containing an acid. The concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less. The pH of the acidic liquid used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less. As the acid contained in the acidic liquid, for example, an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used. Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chloric acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like. Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like. Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
 酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower. The immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less. The amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the fiber raw material. Is more preferable.
<窒素除去処理>
 工程(A)に供される微細繊維状セルロースの製造工程は、繊維状セルロースに導入された窒素量や系内に存在する窒素量を低減させる工程(窒素除去処理工程)をさらに含んでもよい。窒素量を低減させることで、さらに着色を抑制し得る微細繊維状セルロースを得ることができる。窒素除去処理工程は、後述する工程(B)における均一分散処理工程の後に設けられてもよいが、後述する工程(B)における均一分散処理工程の前に設けられることが好ましい。また、後述する工程(A)における解繊処理工程の前に設けられることが好ましい。
<Nitrogen removal treatment>
The step of producing the fine fibrous cellulose provided in the step (A) may further include a step of reducing the amount of nitrogen introduced into the fibrous cellulose and the amount of nitrogen present in the system (nitrogen removal treatment step). By reducing the amount of nitrogen, it is possible to obtain fine fibrous cellulose that can further suppress coloring. The nitrogen removal treatment step may be provided after the uniform dispersion treatment step in the step (B) described later, but is preferably provided before the uniform dispersion treatment step in the step (B) described later. Further, it is preferably provided before the defibration treatment step in the step (A) described later.
 窒素除去処理工程においては、アニオン性基導入繊維を含むスラリーのpHを10以上に調整し、加熱処理を行うことが好ましい。加熱処理においては、スラリーの液温を50℃以上100℃以下とすることが好ましく、加熱時間は15分以上180分以下とすることが好ましい。アニオン性基導入繊維を含むスラリーのpHを調整する際には、上述したアルカリ処理工程で用いることができるアルカリ化合物をスラリーに添加することが好ましい。 In the nitrogen removal treatment step, it is preferable to adjust the pH of the slurry containing the anionic group-introduced fiber to 10 or more and perform the heat treatment. In the heat treatment, the liquid temperature of the slurry is preferably 50 ° C. or higher and 100 ° C. or lower, and the heating time is preferably 15 minutes or longer and 180 minutes or lower. When adjusting the pH of the slurry containing the anionic group-introduced fiber, it is preferable to add an alkaline compound that can be used in the above-mentioned alkali treatment step to the slurry.
 窒素除去処理工程の後、必要に応じてアニオン性基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりアニオン性基導入繊維を洗浄することにより行われる。また、各洗浄工程において実施される洗浄回数は、特に限定されない。 After the nitrogen removal treatment step, a cleaning step can be performed on the anionic group-introduced fiber as needed. The washing step is performed by washing the anionic group-introduced fibers with, for example, water or an organic solvent. Further, the number of cleanings performed in each cleaning step is not particularly limited.
<解繊処理>
 工程(A)に供される微細繊維状セルロースの製造工程は、解繊処理工程を含む。これにより、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースが得られる。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、又はビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
<Defibration treatment>
The step of producing the fine fibrous cellulose used in the step (A) includes a defibration treatment step. As a result, fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less can be obtained. In the defibration treatment step, for example, a defibration treatment apparatus can be used. The defibration processing device is not particularly limited, but for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer or an ultra-high pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disk type refiner, a conical refiner, and a twin shaft. A kneader, a vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, a beater, or the like can be used. Among the above-mentioned defibration processing devices, it is more preferable to use a high-speed defibrator, a high-pressure homogenizer, and an ultra-high-pressure homogenizer, which are less affected by crushed media and have less risk of contamination.
 解繊処理工程における処理条件は特に限定されないが、例えば高圧ホモジナイザーを用いる場合は、処理時の圧力は1MPa以上350MPa以下が好ましく、10MPa以上300MPa以下がより好ましく、50MPa以上250MPa以下がさらに好ましい。 The treatment conditions in the defibration treatment step are not particularly limited, but for example, when a high-pressure homogenizer is used, the pressure during treatment is preferably 1 MPa or more and 350 MPa or less, more preferably 10 MPa or more and 300 MPa or less, and further preferably 50 MPa or more and 250 MPa or less.
 解繊処理工程においては、たとえばアニオン性基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、及び極性有機溶媒などの有機溶媒から選択される1種又は2種以上を使用することができる。極性有機溶媒としては、特に限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。 In the defibration treatment step, for example, it is preferable to dilute the anionic group-introduced fiber with a dispersion medium to form a slurry. As the dispersion medium, one or more selected from water and an organic solvent such as a polar organic solvent can be used. The polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable. Examples of alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like. Examples of polyhydric alcohols include ethylene glycol, propylene glycol and glycerin. Examples of the ketone include acetone, methyl ethyl ketone (MEK) and the like. Examples of ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-butyl ether, propylene glycol monomethyl ether and the like. Examples of the esters include ethyl acetate, butyl acetate and the like. Examples of the aprotonic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
 解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、アニオン性基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのアニオン性基導入繊維以外の固形分が含まれていてもよい。 The solid content concentration of the fine fibrous cellulose during the defibration treatment can be set as appropriate. Further, the slurry obtained by dispersing the anionic group-introduced fiber in a dispersion medium may contain a solid content other than the anionic group-introduced fiber such as urea having a hydrogen bond property.
<置換基除去処理>
 本発明の微細繊維状セルロースの製造方法は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去させる工程(A)を含む。本明細書において、微細繊維状セルロースから、置換基の少なくとも一部を除去させる工程は、置換基除去処理工程とも言う。
<Substituent removal treatment>
The method for producing fine fibrous cellulose of the present invention includes a step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less. In the present specification, the step of removing at least a part of the substituent from the fine fibrous cellulose is also referred to as a substituent removing treatment step.
 置換基除去処理工程としては、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを加熱処理する工程、酵素処理する工程、酸処理する工程、アルカリ処理する工程等が挙げられる。これらは単独で行ってもよく、組み合わせて行ってもよい。中でも、置換基除去処理工程は、加熱処理する工程又は酵素処理する工程であることが好ましい。上記処理工程を経ることで、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去し、置換基導入量が0.5mmol/g未満の微細繊維状セルロースを得ることができる。 Examples of the substituent removing treatment step include a step of heat-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, an enzyme treatment step, an acid treatment step, an alkali treatment step and the like. These may be performed alone or in combination. Above all, the substituent removing treatment step is preferably a heat treatment step or an enzyme treatment step. Through the above treatment step, at least a part of the substituent is removed from the fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, and the amount of the substituent introduced is less than 0.5 mmol / g. Fibrous cellulose can be obtained.
 置換基除去処理工程は、スラリー状で行われることが好ましい。すなわち、置換基除去処理工程は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを含むスラリーを、加熱処理する工程、酵素処理する工程、酸処理する工程、アルカリ処理する工程等であることが好ましい。置換基除去処理工程をスラリー状で実施することによって、置換基除去処理時の加熱等によって生じる着色物質や、添加もしくは発生する酸、アルカリ、塩などの残留を防ぐことができる。これにより、工程(B)を経て得られる微細繊維状セルロースをスラリーやシートとした場合の着色を抑制することができる。また、置換基除去処理後に除去した置換基由来の塩の除去処理を行う場合、塩の除去効率を高めることも可能となる。 The substituent removing treatment step is preferably performed in the form of a slurry. That is, the substituent removing treatment step is a step of heat-treating a slurry having a substituent and containing fine fibrous cellulose having a fiber width of 1000 nm or less, an enzyme treatment step, an acid treatment step, and an alkali treatment step. Etc. are preferable. By carrying out the substituent removing treatment step in the form of a slurry, it is possible to prevent the coloring substances generated by heating and the like during the substituent removing treatment and the residual of the acid, alkali, salt and the like added or generated. This makes it possible to suppress coloring when the fine fibrous cellulose obtained through the step (B) is used as a slurry or a sheet. Further, when the salt derived from the substituent removed after the substituent removal treatment is performed, the salt removal efficiency can be improved.
 置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを含むスラリーに対して置換基除去処理を行う場合、該スラリー中の微細繊維状セルロースの濃度は、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることがさらに好ましい。また、該スラリー中の微細繊維状セルロースの濃度は、20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましい。スラリー中の微細繊維状セルロースの濃度を上記範囲内とすることにより、置換基除去処理をより効率よく行うことができる。さらに、スラリー中の微細繊維状セルロースの濃度を上記範囲内とすることにより、置換基除去処理時の加熱等によって生じる着色物質や、添加もしくは発生する酸、アルカリ、塩などの残留を防ぐことができる。これにより、工程(B)を経て得られる微細繊維状セルロースをスラリーやシートとした場合の着色を抑制することができる。また、置換基除去処理後に除去した置換基由来の塩の除去処理を行う場合、塩の除去効率を高めることも可能となる。 When the substituent removing treatment is performed on a slurry having a substituent and containing fine fibrous cellulose having a fiber width of 1000 nm or less, the concentration of the fine fibrous cellulose in the slurry is 0.05% by mass or more. It is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and further preferably 0.2% by mass or more. The concentration of the fine fibrous cellulose in the slurry is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less. By setting the concentration of the fine fibrous cellulose in the slurry within the above range, the substituent removing treatment can be performed more efficiently. Further, by setting the concentration of the fine fibrous cellulose in the slurry within the above range, it is possible to prevent the coloring substances generated by heating during the substituent removal treatment and the residual of the acid, alkali, salt and the like added or generated. can. This makes it possible to suppress coloring when the fine fibrous cellulose obtained through the step (B) is used as a slurry or a sheet. Further, when the salt derived from the substituent removed after the substituent removal treatment is performed, the salt removal efficiency can be improved.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを加熱処理する工程である場合、加熱処理する工程における加熱温度は、40℃以上であることが好ましく、50℃以上であることがより好ましく、60℃以上であることがさらに好ましい。また、加熱処理する工程における加熱温度は、250℃以下であることが好ましく、230℃以下であることがより好ましく、200℃以下であることがさらに好ましい。中でも、置換基除去処理工程に供する微細繊維状セルロースが有する置換基がリンオキソ酸基又はスルホン基である場合、加熱処理する工程における加熱温度は、80℃以上であることが好ましく、100℃以上であることがより好ましく、120℃以上であることがさらに好ましい。 When the substituent removing treatment step is a step of heat-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, the heating temperature in the heat-treating step is preferably 40 ° C. or higher. , 50 ° C. or higher, more preferably 60 ° C. or higher. The heating temperature in the heat treatment step is preferably 250 ° C. or lower, more preferably 230 ° C. or lower, and even more preferably 200 ° C. or lower. Above all, when the substituent contained in the fine fibrous cellulose used in the substituent removing treatment step is a phosphoroxo acid group or a sulfone group, the heating temperature in the heat treatment step is preferably 80 ° C. or higher, preferably 100 ° C. or higher. It is more preferable that the temperature is 120 ° C. or higher.
 置換基除去処理工程が加熱処理する工程である場合、加熱処理工程において使用できる加熱装置としては、特に限定されないが、熱風加熱装置、蒸気加熱装置、電熱加熱装置、水熱加熱装置、火力加熱装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波加熱装置、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、バンド型乾燥装置、ろ過乾燥装置、振動流動乾燥装置、気流乾燥装置、減圧乾燥装置を用いることができる。蒸発を防ぐ観点から、加熱は密閉系で行われることが好ましく、さらに加熱温度を高める観点から、耐圧性の装置内や容器内で行われることが好ましい。加熱処理はバッチ処理であってもよく、バッチ連続処理であってもよく、連続処理であってもよい。 When the substituent removal treatment step is a heat treatment step, the heating device that can be used in the heat treatment step is not particularly limited, but is not particularly limited, but is a hot air heating device, a steam heating device, an electric heat heating device, a water heat heating device, and a thermal heating device. , Infrared heating device, Far infrared heating device, Microwave heating device, High frequency heating device, Stirring drying device, Rotating drying device, Disk drying device, Roll type heating device, Plate type heating device, Flow layer drying device, Band type drying device , A filtration drying device, a vibration flow drying device, an air flow drying device, and a vacuum drying device can be used. From the viewpoint of preventing evaporation, heating is preferably performed in a closed system, and from the viewpoint of further increasing the heating temperature, it is preferably performed in a pressure-resistant device or a container. The heat treatment may be a batch treatment, a batch continuous treatment, or a continuous treatment.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを酵素処理する工程である場合、酵素処理する工程では、リン酸エステル加水分解酵素、硫酸エステル加水分解酵素等を用いることが好ましい。 When the substituent removing treatment step is a step of enzymatically treating fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less, in the enzymatic treatment step, a phosphate ester hydrolyzing enzyme or a sulfate ester hydrolysis is performed. It is preferable to use an enzyme or the like.
 酵素処理工程では、微細繊維状セルロース1gに対して酵素活性が0.1nkat以上となるよう酵素を添加することが好ましく、1.0nkat以上となるよう酵素を添加することがより好ましく、10nkat以上となるよう酵素を添加することがさらに好ましい。また、微細繊維状セルロース1gに対して酵素活性が100000nkat以下となるよう酵素を添加することが好ましく、50000nkat以下となるよう酵素を添加することがより好ましく10000nkat以下となるよう酵素を添加することがさらに好ましい。微細繊維状セルロース分散液(スラリー)に酵素を添加した後には、0℃以上50℃未満の条件下で1分以上100時間以下処理を行うことが好ましい。 In the enzyme treatment step, it is preferable to add the enzyme so that the enzyme activity is 0.1 nkat or more, more preferably 1.0 nkat or more, and 10 nkat or more to 1 g of fine fibrous cellulose. It is more preferable to add the enzyme so that it becomes. Further, it is preferable to add the enzyme so that the enzyme activity is 100,000 nkat or less with respect to 1 g of the fine fibrous cellulose, and it is more preferable to add the enzyme so that the enzyme activity is 50,000 nkat or less. More preferred. After adding the enzyme to the fine fibrous cellulose dispersion (slurry), it is preferable to carry out the treatment under the conditions of 0 ° C. or higher and lower than 50 ° C. for 1 minute or longer and 100 hours or shorter.
 酵素反応の後、酵素を失活させる工程を設けてもよい。酵素を失活させる方法としては、酵素処理を施したスラリーに酸成分もしくはアルカリ成分を添加して酵素を失活させる方法、酵素処理を施したスラリーの温度を90℃以上に上昇させて酵素を失活させる方法が挙げられる。 After the enzyme reaction, a step of inactivating the enzyme may be provided. As a method of inactivating the enzyme, a method of adding an acid component or an alkaline component to the slurry treated with the enzyme to inactivate the enzyme, or raising the temperature of the slurry treated with the enzyme to 90 ° C. or higher to inactivate the enzyme. There is a method of deactivating.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースを酸処理する工程である場合、酸処理する工程では、上述した酸処理工程で用いることができる酸化合物をスラリーに添加することが好ましい。 When the substituent removing treatment step is a step of acid-treating fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, the acid treatment step is an acid that can be used in the above-mentioned acid treatment step. It is preferred to add the compound to the slurry.
 置換基除去処理工程が、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースをアルカリ処理する工程である場合、アルカリ処理する工程では、上述したアルカリ処理工程で用いることができるアルカリ化合物をスラリーに添加することが好ましい。 When the substituent removing treatment step is a step of alkali-treating fine fibrous cellulose having a substituent and having a fiber width of 1000 nm or less, the alkali-treating step is an alkali that can be used in the above-mentioned alkali-treating step. It is preferable to add the compound to the slurry.
 置換基除去処理工程では、置換基除去反応が均一に進むことが好ましい。反応を均一に進めるためには、例えば微細繊維状セルロースを含むスラリーを撹拌してもよく、スラリーの比表面積を高めてもよい。スラリーを撹拌する方法としては、外部からの機械的シェアを与えてもよく、反応中のスラリーの送液速度を上げることで自己撹拌を促してもよい。 In the substituent removal treatment step, it is preferable that the substituent removal reaction proceeds uniformly. In order to proceed the reaction uniformly, for example, the slurry containing fine fibrous cellulose may be stirred, or the specific surface area of the slurry may be increased. As a method of stirring the slurry, a mechanical share from the outside may be given, or self-stirring may be promoted by increasing the liquid feeding rate of the slurry during the reaction.
 置換基除去処理工程では、スペーサー分子を添加してもよい。スペーサー分子は、隣接する微細繊維状セルロースの間に入り込み、それにより微細繊維状セルロース間に微細なスペースを設けるためのスペーサーとして働く。置換基除去処理工程において、このようなスペーサー分子を添加することで、置換基除去処理後の微細繊維状セルロースの凝集を抑制することができる。これにより、微細繊維状セルロースを含む分散液やシートの透明性をより効果的に高めることができる。 Spacer molecules may be added in the substituent removal treatment step. The spacer molecule penetrates between the adjacent fine fibrous celluloses, thereby acting as a spacer for providing a fine space between the fine fibrous celluloses. By adding such a spacer molecule in the substituent removing treatment step, aggregation of fine fibrous cellulose after the substituent removing treatment can be suppressed. This makes it possible to more effectively enhance the transparency of the dispersion liquid or the sheet containing the fine fibrous cellulose.
 スペーサー分子は水溶性有機化合物であることが好ましい。水溶性有機化合物としては、例えば、糖や水溶性高分子、尿素等を挙げることができる。具体的には、トレハロース、尿素、ポリエチレングリコール(PEG)、ポリエチレンオキサイド(PEO)、カルボキシメチルセルロース、ポリビニルアルコール(PVA)等を挙げることができる。また、水溶性有機化合物として、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、ポリアクリルアミド、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチン、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、グリセリン、ジグリセリン、ポリグリセリン、ヒアルロン酸、ヒアルロン酸の金属塩を用いることもできる。 The spacer molecule is preferably a water-soluble organic compound. Examples of the water-soluble organic compound include sugars, water-soluble polymers, urea and the like. Specific examples thereof include trehalose, urea, polyethylene glycol (PEG), polyethylene oxide (PEO), carboxymethyl cellulose, polyvinyl alcohol (PVA) and the like. In addition, as water-soluble organic compounds, alkyl methacrylate / acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, propylene glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, polyacrylamide. , Xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed, alginic acid, purulan, carrageenan, pectin, cationized starch, raw starch, oxidized starch, etherified starch, esterified starch, starches such as amylose, glycerin , Diglycerin, polyglycerin, hyaluronic acid, metal salts of hyaluronic acid can also be used.
 また、スペーサー分子として公知の顔料を使用することができる。例えば、カオリン(含クレー)、炭酸カルシウム、酸化チタン、酸化亜鉛、非晶質シリカ(含コロイダルシリカ)、酸化アルミニウム、ゼオライト、セピオライト、スメクタイト、合成スメクタイト、珪酸マグネシウム、炭酸マグネシウム、酸化マグネシウム、珪藻土、スチレン系プラスチックピグメント、ハイドロタルサイト、尿素樹脂系プラスチックピグメント、ベンゾグアナミン系プラスチックピグメント等が挙げられる。 Further, a known pigment can be used as the spacer molecule. For example, kaolin (including clay), calcium carbonate, titanium oxide, zinc oxide, amorphous silica (containing colloidal silica), aluminum oxide, zeolite, sepiolite, smectite, synthetic smectite, magnesium silicate, magnesium carbonate, magnesium oxide, diatomaceous earth, Examples thereof include styrene-based plastic pigments, hydrotalcites, urea resin-based plastic pigments, and benzoguanamine-based plastic pigments.
<pH調整工程>
 置換基除去処理工程がスラリー状で行われる場合、置換基除去処理工程の前に、微細繊維状セルロースを含むスラリーのpHを調整する工程を設けてもよい。例えば、セルロース繊維にアニオン性基を導入し、このアニオン性基の対イオンがNaである場合、解繊後の微細繊維状セルロースを含むスラリーは弱アルカリ性を示す。この状態で加熱を行うと、セルロースの分解により着色要因の一つである単糖が発生する場合があるため、スラリーのpHを8以下に調整することが好ましく、6以下に調整することがより好ましい。また、酸性条件においても同様に単糖が発生する場合があるため、スラリーのpHを3以上に調整することが好ましく、4以上に調整することがより好ましい。
<pH adjustment process>
When the substituent removing treatment step is performed in the form of a slurry, a step of adjusting the pH of the slurry containing the fine fibrous cellulose may be provided before the substituent removing treatment step. For example, when an anionic group is introduced into a cellulose fiber and the counterion of the anionic group is Na + , the slurry containing the fine fibrous cellulose after defibration shows weak alkalinity. When heating is performed in this state, monosaccharides, which are one of the coloring factors, may be generated due to the decomposition of cellulose. Therefore, it is preferable to adjust the pH of the slurry to 8 or less, and it is more preferable to adjust it to 6 or less. preferable. Further, since monosaccharides may be generated under acidic conditions as well, it is preferable to adjust the pH of the slurry to 3 or more, and more preferably to 4 or more.
 また、置換基を有する微細繊維状セルロースがリン酸基を有する微細繊維状セルロースである場合、置換基の除去効率向上の観点から、リン酸基のリンが求核攻撃を受けやすい状態であることが好ましい。求核攻撃を受けやすいのは、セルロース-O-P(=O)(-O-H)(-O-Na)と表される中和度1の状態であり、この状態とするには、スラリーのpHを3以上8以下に調整することが好ましく、pHを4以上6以下に調整することがさらに好ましい。 Further, when the fine fibrous cellulose having a substituent is a fine fibrous cellulose having a phosphoric acid group, the phosphorus of the phosphate group is vulnerable to a nucleophilic attack from the viewpoint of improving the removal efficiency of the substituent. Is preferable. The vulnerable to nucleophilic attack is a state of neutralization degree 1 represented by cellulose-OP (= O) (-OH + ) ( -O-Na +). The pH of the slurry is preferably adjusted to 3 or more and 8 or less, and more preferably 4 or more and 6 or less.
 pHを調整する手段は特に限定されないが、例えば微細繊維状セルロースを含むスラリーに酸成分やアルカリ成分を添加してもよい。酸成分は無機酸および有機酸のいずれであってもよく、無機酸としては、硫酸、塩酸、硝酸、リン酸等が挙げられる。有機酸としては、ギ酸、酢酸、クエン酸、リンゴ酸、乳酸、アジピン酸、セバシン酸、ステアリン酸、マレイン酸、コハク酸、酒石酸、フマル酸、グルコン酸等が挙げられる。アルカリ成分は、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。無機アルカリ化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸リチウム、炭酸水素リチウム、炭酸カリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどが挙げられる。有機アルカリ化合物としては、アンモニア、ヒドラジン、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、ブチルアミン、ジアミノエタン、ジアミノプロパン、ジアミノブタン、ジアミノペンタン、ジアミノヘキサン、シクロヘキシルアミン、アニリン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ベンジルトリメチルアンモニウムヒドロキシド、ピリジン、N,N-ジメチル-4-アミノピリジン等が挙げられる。 The means for adjusting the pH is not particularly limited, but for example, an acid component or an alkaline component may be added to a slurry containing fine fibrous cellulose. The acid component may be either an inorganic acid or an organic acid, and examples of the inorganic acid include sulfuric acid, hydrochloric acid, nitrate, and phosphoric acid. Examples of the organic acid include malic acid, acetic acid, citric acid, malic acid, lactic acid, adipic acid, sebacic acid, stearic acid, maleic acid, succinic acid, tartrate acid, fumaric acid, gluconic acid and the like. The alkaline component may be an inorganic alkaline compound or an organic alkaline compound. Examples of the inorganic alkaline compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium carbonate, lithium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, sodium carbonate, sodium hydrogencarbonate and the like. Examples of organic alkaline compounds include ammonia, hydrazine, methylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, butylamine, diaminoethane, diaminopropane, diaminobutane, diaminopentane, diaminohexane, cyclohexylamine, aniline, and tetramethyl. Examples thereof include ammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, pyridine, N, N-dimethyl-4-aminopyridine and the like.
 また、pH調整工程では、pHを調整するためにイオン交換処理を行ってもよい。イオン交換処理に際しては、強酸性陽イオン交換樹脂もしくは弱酸性イオン交換樹脂を用いることができる。適切な量の陽イオン交換樹脂で十分な時間処理することにより、目的とするpHの微細繊維状セルロースを含むスラリーを得ることができる。さらに、pH調整工程では酸成分やアルカリ成分の添加とイオン交換処理を組み合わせてもよい。 Further, in the pH adjusting step, an ion exchange treatment may be performed to adjust the pH. In the ion exchange treatment, a strongly acidic cation exchange resin or a weakly acidic ion exchange resin can be used. By treating with an appropriate amount of cation exchange resin for a sufficient time, a slurry containing fine fibrous cellulose having a desired pH can be obtained. Further, in the pH adjusting step, the addition of an acid component or an alkaline component may be combined with an ion exchange treatment.
<塩の除去処理>
 置換基除去処理工程の後には、除去した置換基由来の塩の除去処理を行うことが好ましい。置換基由来の塩を除去することで、着色を抑制し得る微細繊維状セルロースが得られ易くなる。置換基由来の塩を除去する手段は特に限定されないが、例えば洗浄処理が挙げられる。洗浄処理は、たとえば水や有機溶媒により、置換基除去処理で凝集した微細繊維状セルロースを洗浄することにより行われる。黄変をより効果的に抑制する観点から、洗浄処理は濾過脱水や、遠心脱水、遠心分離により行うことが好ましい。
<Salt removal treatment>
After the substituent removal treatment step, it is preferable to perform a substituent removal treatment for the removed substituent-derived salt. By removing the salt derived from the substituent, it becomes easy to obtain fine fibrous cellulose capable of suppressing coloring. The means for removing the salt derived from the substituent is not particularly limited, and examples thereof include a washing treatment. The washing treatment is performed by washing the fine fibrous cellulose aggregated in the substituent removing treatment with, for example, water or an organic solvent. From the viewpoint of more effectively suppressing yellowing, the washing treatment is preferably performed by filtration dehydration, centrifugal dehydration, or centrifugal separation.
(工程(B))
 微細繊維状セルロースの製造方法は、置換基を有し、かつ繊維幅が1000nm以下の微細繊維状セルロースから、置換基の少なくとも一部を除去させる工程(A)と、工程(A)の後に、均一分散処理する工程(B)と、を含んでもよい。均一分散処理する工程(B)は、工程(A)の置換基除去処理を経て得られた微細繊維状セルロースを均一分散処理する工程である。工程(B)を経ることで、微細繊維状セルロースは、置換基導入量が0.5mmol/g未満という低置換基導入量であるにも関わらず、その繊維幅を小さくすることが容易となる。
(Step (B))
The method for producing fine fibrous cellulose includes a step (A) of removing at least a part of the substituent from the fine fibrous cellulose having a substituent and a fiber width of 1000 nm or less, and after the step (A). The step (B) for uniform dispersion processing may be included. The step (B) for uniform dispersion treatment is a step for uniform dispersion treatment of the fine fibrous cellulose obtained through the substituent removal treatment in step (A). By going through the step (B), it becomes easy to reduce the fiber width of the fine fibrous cellulose even though the amount of the substituents introduced is as low as less than 0.5 mmol / g. ..
 均一分散処理する工程(B)では、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザー高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機又はビーターなどを使用することができる。上記均一分散処理装置の中でも、高速解繊機、高圧ホモジナイザーを用いることがより好ましい。 In the step (B) of uniform dispersion processing, for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, a conical refiner, a twin-screw kneader, a vibration mill, etc. A homomixer, ultrasonic disperser, beater, etc. at high speed rotation can be used. Among the uniform dispersion processing devices, it is more preferable to use a high-speed defibrator and a high-pressure homogenizer.
 均一分散処理する工程(B)における処理条件は特に限定されないが、処理中の微細繊維状セルロースの最高移動速度や、処理時の圧力を大きくすることが好ましい。高速解繊機においては、その周速が20m/sec以上であることが好ましく、25m/sec以上であることがより好ましく、30m/sec以上であることがさらに好ましい。高圧ホモジナイザーは、高速解繊機よりも、処理中の微細繊維状セルロースの最高移動速度や、処理時の圧力が大きくなるため、より好ましく使用できる。高圧ホモジナイザー処理においては、処理時の圧力は1MPa以上であることが好ましく、10MPa以上であることがより好ましく、50MPa以上であることがさらに好ましく、100MPa以上であることが特に好ましい。また、高圧ホモジナイザー処理においては、処理時の圧力は350MPa以下であることが好ましく、300MPa以下であることがより好ましく、250MPa以下がさらに好ましい。 The treatment conditions in the step (B) for the uniform dispersion treatment are not particularly limited, but it is preferable to increase the maximum moving speed of the fine fibrous cellulose during the treatment and the pressure during the treatment. In the high-speed defibrator, the peripheral speed is preferably 20 m / sec or more, more preferably 25 m / sec or more, and further preferably 30 m / sec or more. The high-pressure homogenizer can be used more preferably than the high-speed defibrator because the maximum moving speed of the fine fibrous cellulose during the treatment and the pressure during the treatment are higher. In the high-pressure homogenizer treatment, the pressure at the time of treatment is preferably 1 MPa or more, more preferably 10 MPa or more, further preferably 50 MPa or more, and particularly preferably 100 MPa or more. Further, in the high-pressure homogenizer treatment, the pressure at the time of treatment is preferably 350 MPa or less, more preferably 300 MPa or less, still more preferably 250 MPa or less.
 なお、工程(B)においては、上述したスペーサー分子を新たに添加してもよい。工程(B)の均一分散処理工程において、このようなスペーサー分子を添加することで、微細繊維状セルロースの均一分散処理をよりスムーズに行うことができる。これにより、微細繊維状セルロースを含む分散液やシートの透明性をより効果的に高めることができる。 In the step (B), the above-mentioned spacer molecule may be newly added. By adding such a spacer molecule in the uniform dispersion treatment step of the step (B), the uniform dispersion treatment of the fine fibrous cellulose can be performed more smoothly. This makes it possible to more effectively enhance the transparency of the dispersion liquid or the sheet containing the fine fibrous cellulose.
(樹脂層)
 本発明の積層シートは、繊維層の少なくとも一方の面側に樹脂層をさらに有するものであってもよい。積層シートが樹脂層をさらに有する場合、樹脂層は、繊維層に直接積層される層であり、樹脂層と繊維層は、いずれか一方の面で接した状態となっていることが好ましい。また、樹脂層は、塗工により形成された樹脂層(塗工樹脂層)であることが好ましい。
(Resin layer)
The laminated sheet of the present invention may further have a resin layer on at least one surface side of the fiber layer. When the laminated sheet further has a resin layer, it is preferable that the resin layer is a layer directly laminated on the fiber layer, and the resin layer and the fiber layer are in contact with each other on either surface. Further, the resin layer is preferably a resin layer (coated resin layer) formed by coating.
 本発明の積層シートは、樹脂層は繊維層の両面に設けられていてもよい。すなわち、本発明の積層シートは、樹脂層/第1の繊維層/第2の繊維層/・・・/第Xの繊維層/樹脂層との構成であってもよく、樹脂層/第1の繊維層/第2の繊維層/樹脂層の構成であることが好ましい。 In the laminated sheet of the present invention, the resin layer may be provided on both sides of the fiber layer. That is, the laminated sheet of the present invention may be composed of a resin layer / a first fiber layer / a second fiber layer / ... / a fifth fiber layer / a resin layer, and may be a resin layer / a first. The structure of the fiber layer / the second fiber layer / the resin layer is preferable.
 樹脂層は、天然樹脂や合成樹脂を主成分とする層である。ここで、主成分とは、樹脂層の全質量に対して、50質量%以上含まれている成分を指す。樹脂の含有量は、樹脂層の全質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。なお、樹脂の含有量は、100質量%とすることもでき、95質量%以下であってもよい。 The resin layer is a layer whose main component is a natural resin or a synthetic resin. Here, the main component refers to a component contained in an amount of 50% by mass or more with respect to the total mass of the resin layer. The content of the resin is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass, based on the total mass of the resin layer. The above is particularly preferable. The content of the resin may be 100% by mass or 95% by mass or less.
 天然樹脂としては、例えば、ロジン、ロジンエステル、水添ロジンエステル等のロジン系樹脂を挙げることができる。 Examples of the natural resin include rosin-based resins such as rosin, rosin ester, and hydrogenated rosin ester.
 合成樹脂としては、例えば、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、環状オレフィン樹脂、ポリイミド樹脂、ポリスチレン樹脂及びアクリル樹脂から選択される少なくとも1種であることが好ましい。中でも、合成樹脂はポリカーボネート樹脂及びアクリル樹脂から選択される少なくとも1種であることが好ましく、ポリカーボネート樹脂であることがより好ましい。なお、アクリル樹脂は、ポリアクリロニトリル及びポリ(メタ)アクリレートから選択される少なくともいずれか1種であることが好ましい。 The synthetic resin is preferably at least one selected from, for example, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin, cyclic olefin resin, polyimide resin, polystyrene resin and acrylic resin. Among them, the synthetic resin is preferably at least one selected from the polycarbonate resin and the acrylic resin, and more preferably the polycarbonate resin. The acrylic resin is preferably at least one selected from polyacrylonitrile and poly (meth) acrylate.
 樹脂層を構成するポリカーボネート樹脂としては、例えば、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート系樹脂が挙げられる。これらの具体的なポリカーボネート系樹脂は公知であり、例えば特開2010-023275号公報に記載されたポリカーボネート系樹脂が挙げられる。 Examples of the polycarbonate resin constituting the resin layer include aromatic polycarbonate-based resins and aliphatic polycarbonate-based resins. These specific polycarbonate-based resins are known, and examples thereof include the polycarbonate-based resins described in JP-A-2010-023275.
 積層シートにおいて、樹脂層は密着助剤を含有することが好ましい。密着助剤としては、例えば、イソシアネート基、カルボジイミド基、エポキシ基、オキサゾリン基、アミノ基、シラノール基及びアルコキシシリル基から選択される少なくとも1種を含む化合物や、有機ケイ素化合物が挙げられる。中でも、密着助剤はイソシアネート基を含む化合物(イソシアネート化合物)及び有機ケイ素化合物から選択される少なくとも1種であることが好ましい。有機ケイ素化合物としては、例えば、シランカップリング剤縮合物や、シランカップリング剤を挙げることができる。 In the laminated sheet, the resin layer preferably contains an adhesion aid. Examples of the adhesion aid include a compound containing at least one selected from an isocyanate group, a carbodiimide group, an epoxy group, an oxazoline group, an amino group, a silanol group and an alkoxysilyl group, and an organic silicon compound. Among them, the adhesion aid is preferably at least one selected from a compound containing an isocyanate group (isocyanate compound) and an organosilicon compound. Examples of the organosilicon compound include a silane coupling agent condensate and a silane coupling agent.
 イソシアネート化合物としては、ポリイソシアネート化合物又は多官能イソシアネートが挙げられる。ポリイソシアネート化合物としては、具体的には、NCO基中の炭素を除く炭素数が6以上20以下の芳香族ポリイソシアネート、炭素数2以上18以下の脂肪族ポリイソシアネート、炭素数6以上15以下の脂環式ポリイソシアネート、炭素数8以上15以下のアラルキル型ポリイソシアネート、これらのポリイソシアネートの変性物、およびこれらの2種以上の混合物を挙げることができる。中でも、炭素数6以上15以下の脂環式ポリイソシアネート、すなわちイソシアヌレートは好ましく用いられる。 Examples of the isocyanate compound include polyisocyanate compounds and polyfunctional isocyanates. Specific examples of the polyisocyanate compound include aromatic polyisocyanates having 6 or more and 20 or less carbon atoms excluding carbon in the NCO group, aliphatic polyisocyanates having 2 or more and 18 or less carbon atoms, and 6 or more and 15 or less carbon atoms. Examples thereof include alicyclic polyisocyanates, aralkyl-type polyisocyanates having 8 or more and 15 or less carbon atoms, modified products of these polyisocyanates, and mixtures of two or more of these. Of these, an alicyclic polyisocyanate having 6 or more and 15 or less carbon atoms, that is, isocyanurate is preferably used.
 脂環式ポリイソシアネートの具体例としては、例えばイソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、ビス(2-イソシアナトエチル)-4-シクロヘキセン-1,2-ジカルボキシレート、2,5-ノルボルナンジイソシアネート、2,6-ノルボルナンジイソシアネート等が挙げられる。 Specific examples of the alicyclic polyisocyanate include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate, and bis (2-isocyanatoethyl). -4-Cyclohexene-1,2-dicarboxylate, 2,5-norbornane diisocyanate, 2,6-norbornane diisocyanate and the like can be mentioned.
 有機ケイ素化合物としては、シロキサン構造を有する化合物、または縮合によりシロキサン構造を形成する化合物を挙げることができる。例えば、有機ケイ素化合物としては、シランカップリング剤、またはシランカップリング剤の縮合物を挙げることができる。シランカップリング剤としては、アルコキシシリル基以外の官能基を有するものであってもよいし、それ以外の官能基を有しないものであってもよい。アルコキシシリル基以外の官能基としては、ビニル基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基などが挙げられる。本実施形態で用いるシランカップリング剤は、メタクリロキシ基を含有するシランカップリング剤であることが好ましい。 Examples of the organosilicon compound include a compound having a siloxane structure and a compound forming a siloxane structure by condensation. For example, examples of the organosilicon compound include a silane coupling agent or a condensate of a silane coupling agent. The silane coupling agent may have a functional group other than the alkoxysilyl group, or may have no other functional group. Examples of the functional group other than the alkoxysilyl group include a vinyl group, an epoxy group, a styryl group, a methacrylox group, an acryloxy group, an amino group, a ureido group, a mercapto group, a sulfide group, an isocyanate group and the like. The silane coupling agent used in the present embodiment is preferably a silane coupling agent containing a methacryloxy group.
 分子内にメタクリロキシ基を有するシランカップリング剤の具体的な例としては、例えば、メタクリロキシプロピルメチルジメトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルトリエトキシシラン、1,3-ビス(3-メタクリロキシプロピル)テトラメチルジシロキサンなどが挙げられる。中でも、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン及び1,3-ビス(3-メタクリロキシプロピル)テトラメチルジシロキサンから選択される少なくとも1種は好ましく用いられる。シランカップリング剤は、アルコキシシリル基を3つ以上含有するものであることが好ましい。 Specific examples of the silane coupling agent having a methacryloxy group in the molecule include, for example, methacryloxypropylmethyldimethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, and methacryloxypropyltriethoxysilane. Examples thereof include 1,3-bis (3-methacryloxypropyl) tetramethyldisiloxane. Among them, at least one selected from methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane and 1,3-bis (3-methacryloxypropyl) tetramethyldisiloxane is preferably used. The silane coupling agent preferably contains 3 or more alkoxysilyl groups.
 シランカップリング剤としては、アルコキシシリル基を有するものを用いてもよく、また、加水分解後にシラノール基が生成するものを用いてもよい。この場合、アルコキシシリル基及びシラノール基の少なくとも一部は繊維層を積層した後にも存在していることが好ましい。シラノール基は親水性基であるため、樹脂層の繊維層側の面の親水性を高めることで、樹脂層と繊維層の密着性をより効果的に高めることもできる。 As the silane coupling agent, one having an alkoxysilyl group may be used, or one in which a silanol group is generated after hydrolysis may be used. In this case, it is preferable that at least a part of the alkoxysilyl group and the silanol group is present even after laminating the fiber layer. Since the silanol group is a hydrophilic group, it is possible to more effectively enhance the adhesion between the resin layer and the fiber layer by increasing the hydrophilicity of the surface of the resin layer on the fiber layer side.
 密着助剤は、樹脂層に均一に分散した状態で含まれていてもよい。ここで、密着助剤が樹脂層中に均一に分散した状態とは、以下の3つの領域((a)~(c))の濃度を測定して、どの2領域の濃度を比較しても2倍以上の差がでない状態をいう。
(a)樹脂層の繊維層側の面から樹脂層の全体の厚みの10%までの領域
(b)樹脂層の繊維層側の面とは反対側の面から樹脂層の全体の厚みの10%までの領域
(c)樹脂層の厚み方向の中心面から全体の厚みの±5%(合計10%)の領域
The adhesion aid may be contained in a state of being uniformly dispersed in the resin layer. Here, the state in which the adhesion aid is uniformly dispersed in the resin layer means that the concentrations in the following three regions ((a) to (c)) are measured and the concentrations in any of the two regions are compared. A state in which there is no difference of 2 times or more.
(A) Region from the surface of the resin layer on the fiber layer side to 10% of the total thickness of the resin layer (b) 10 of the total thickness of the resin layer from the surface opposite to the surface of the resin layer on the fiber layer side Region up to% (c) Region of ± 5% (total 10%) of the total thickness from the central surface in the thickness direction of the resin layer
 また、密着助剤は、樹脂層の繊維層側の領域に偏在していてもよい。例えば、密着助剤として有機ケイ素化合物が用いられる場合、有機ケイ素化合物は、樹脂層の繊維層側の領域に偏在していてもよい。
 ここで、樹脂層の繊維層側の領域に偏在している状態とは、以下の領域((d)及び(e))の2つの濃度を測定して、これらの濃度に2倍以上の差がでる状態をいう。
(d)樹脂層の繊維層側の面から樹脂層の全体の厚みの10%までの領域
(e)樹脂層の厚み方向の中心面から全体の厚みの±5%(合計10%)の領域
 ここで、密着助剤の濃度は、X線電子分光装置又は赤外分光光度計によって測定される数値であり、ウルトラミクロトームUC-7(JEOL社製)によって積層シートの所定の領域の断面を切り出し、当該断面を当該装置によって測定して得る値である。
Further, the adhesion aid may be unevenly distributed in the region on the fiber layer side of the resin layer. For example, when the organosilicon compound is used as the adhesion aid, the organosilicon compound may be unevenly distributed in the region on the fiber layer side of the resin layer.
Here, the state of being unevenly distributed in the region on the fiber layer side of the resin layer means that the two concentrations of the following regions ((d) and (e)) are measured and the difference between these concentrations is more than twice. It means the state where it comes out.
(D) Region from the surface of the resin layer on the fiber layer side to 10% of the total thickness of the resin layer (e) Region of ± 5% (total 10%) of the total thickness from the central surface in the thickness direction of the resin layer. Here, the concentration of the adhesion aid is a numerical value measured by an X-ray electron spectroscope or an infrared spectrophotometer, and a cross section of a predetermined region of the laminated sheet is cut out by Ultramicrotome UC-7 (manufactured by JEOL). , A value obtained by measuring the cross section with the device.
 樹脂層の繊維層側の面上には、有機ケイ素化合物含有層が設けられていてもよく、このような状態も有機ケイ素化合物が樹脂層の繊維層側の領域に偏在している状態に含まれる。有機ケイ素化合物含有層は、有機ケイ素化合物含有塗工液を塗工することで形成された塗工層であってもよい。
 なお、樹脂層の繊維層側の面上に有機ケイ素化合物含有層が設けられている場合は、上記領域(d)において、「樹脂層の繊維層側の面」は、「有機ケイ素化合物含有層の露出表面」と読み替えるものとし、「樹脂層全体の厚み」は「樹脂層と有機ケイ素化合物含有層の合計厚み」と読み替えるものとする。
An organosilicon compound-containing layer may be provided on the surface of the resin layer on the fiber layer side, and such a state is also included in the state where the organosilicon compound is unevenly distributed in the region on the fiber layer side of the resin layer. Is done. The organosilicon compound-containing layer may be a coating layer formed by applying an organosilicon compound-containing coating liquid.
When the organosilicon compound-containing layer is provided on the surface of the resin layer on the fiber layer side, in the above region (d), the “surface on the fiber layer side of the resin layer” is the “organosilicon compound-containing layer”. It shall be read as "exposed surface", and "thickness of the entire resin layer" shall be read as "total thickness of the resin layer and the organosilicon compound-containing layer".
 密着助剤の含有量は、樹脂層に含まれる樹脂100質量部に対して、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましい。また、密着助剤の含有量は、樹脂層に含まれる樹脂100質量部に対して、40質量部以下であることが好ましく、35質量部以下であることがより好ましい。
 密着助剤がイソシアネート化合物である場合、イソシアネート化合物の含有量は樹脂層に含まれる樹脂100質量部に対して、10質量部以上であることが好ましく、15質量部以上であることがより好ましく、18質量部以上であることがさらに好ましい。また、イソシアネート化合物の含有量は樹脂層に含まれる樹脂100質量部に対して、40質量部以下であることが好ましく、35質量部以下であることがより好ましく、30質量部以下であることがさらに好ましい。
 密着助剤が有機ケイ素化合物である場合、有機ケイ素化合物の含有量は樹脂層に含まれる樹脂100質量部に対して、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましい。また、有機ケイ素化合物の含有量は樹脂層に含まれる樹脂100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。
 密着助剤の含有量を上記範囲内とすることにより、より効果的に、繊維層と樹脂層の密着性を高めることができる。
The content of the adhesion aid is preferably 0.1 part by mass or more, and more preferably 0.5 part by mass or more with respect to 100 parts by mass of the resin contained in the resin layer. The content of the adhesion aid is preferably 40 parts by mass or less, and more preferably 35 parts by mass or less, with respect to 100 parts by mass of the resin contained in the resin layer.
When the adhesion aid is an isocyanate compound, the content of the isocyanate compound is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, based on 100 parts by mass of the resin contained in the resin layer. It is more preferably 18 parts by mass or more. The content of the isocyanate compound is preferably 40 parts by mass or less, more preferably 35 parts by mass or less, and more preferably 30 parts by mass or less with respect to 100 parts by mass of the resin contained in the resin layer. More preferred.
When the adhesion aid is an organosilicon compound, the content of the organosilicon compound is preferably 0.1 part by mass or more, and 0.5 part by mass or more with respect to 100 parts by mass of the resin contained in the resin layer. It is more preferable to have. The content of the organosilicon compound is preferably 10 parts by mass or less, and more preferably 5 parts by mass or less, based on 100 parts by mass of the resin contained in the resin layer.
By setting the content of the adhesion aid within the above range, the adhesion between the fiber layer and the resin layer can be enhanced more effectively.
 密着助剤がイソシアネート化合物である場合、樹脂層に含まれるイソシアネート基の含有量は、0.5mmol/g以上であることが好ましく、0.6mmol/g以上であることがより好ましく、0.8mmol/g以上であることがさらに好ましく、0.9mmol/g以上であることが特に好ましい。また、樹脂層に含まれるイソシアネート基の含有量は、3.0mmol/g以下であることが好ましく、2.5mmol/g以下であることがより好ましく、2.0mmol/g以下であることがさらに好ましく、1.5mmol/g以下であることが特に好ましい。 When the adhesion aid is an isocyanate compound, the content of the isocyanate group contained in the resin layer is preferably 0.5 mmol / g or more, more preferably 0.6 mmol / g or more, and 0.8 mmol or more. It is more preferably / g or more, and particularly preferably 0.9 mmol / g or more. The content of the isocyanate group contained in the resin layer is preferably 3.0 mmol / g or less, more preferably 2.5 mmol / g or less, and further preferably 2.0 mmol / g or less. It is preferably 1.5 mmol / g or less, and particularly preferably 1.5 mmol / g or less.
 樹脂層の繊維層側の面には表面処理を施してもよい。表面処理の方法としては、例えば、コロナ処理、プラズマ放電処理、UV照射処理、電子線照射処理、火炎処理等を挙げることができる。中でも、表面処理は、コロナ処理及びプラズマ放電処理から選択される少なくとも1種であることが好ましい。なお、プラズマ放電処理は真空プラズマ放電処理であることが好ましい。 The surface of the resin layer on the fiber layer side may be surface-treated. Examples of the surface treatment method include corona treatment, plasma discharge treatment, UV irradiation treatment, electron beam irradiation treatment, flame treatment and the like. Above all, the surface treatment is preferably at least one selected from the corona treatment and the plasma discharge treatment. The plasma discharge process is preferably a vacuum plasma discharge process.
 樹脂層の繊維層側の面は微細凹凸構造を形成してもよい。樹脂層の繊維層側の面が微細凹凸構造を有することにより、繊維層と樹脂層の密着性をより効果的に高めることができる。樹脂層の繊維層側の面が微細凹凸構造を有する場合、このような構造は、例えば、ブラスト加工処理、エンボス加工処理、エッチング処理、コロナ処理、プラズマ放電処理等の処理工程により形成されることが好ましい。なお、本明細書において、微細凹凸構造とは、任意箇所に引いた長さ1mmの一本の直線上に存在する凹部の数が10個以上である構造をいう。凹部の数を測定する際には、積層シートをイオン交換水中に24時間浸漬した後、樹脂層から繊維層をはく離する。その後、樹脂層の繊維層側の面を触針式表面粗さ計(小坂研究所社製、サーフコーダシリーズ)で走査することにより測定ができる。凹凸のピッチがサブミクロン、ナノオーダーの極めて小さいものである場合、走査型プローブ顕微鏡(日立ハイテクサイエンス社製、AFM5000II、およびAFM5100N)の観察画像から凹凸の数を測定することができる。 The surface of the resin layer on the fiber layer side may form a fine uneven structure. Since the surface of the resin layer on the fiber layer side has a fine uneven structure, the adhesion between the fiber layer and the resin layer can be more effectively enhanced. When the surface of the resin layer on the fiber layer side has a fine concavo-convex structure, such a structure is formed by, for example, a processing step such as a blasting process, an embossing process, an etching process, a corona process, or a plasma discharge process. Is preferable. In the present specification, the fine concavo-convex structure means a structure in which the number of recesses existing on a straight line with a length of 1 mm drawn at an arbitrary position is 10 or more. When measuring the number of recesses, the laminated sheet is immersed in ion-exchanged water for 24 hours, and then the fiber layer is peeled off from the resin layer. After that, the measurement can be performed by scanning the surface of the resin layer on the fiber layer side with a stylus type surface roughness meter (Surfcoder series manufactured by Kosaka Research Institute). When the pitch of the unevenness is extremely small on the submicron and nano-order, the number of unevenness can be measured from the observation image of the scanning probe microscope (AFM5000II and AFM5100N manufactured by Hitachi High-Tech Science Co., Ltd.).
 樹脂層には合成樹脂以外の任意成分が含まれていてもよい。任意成分としては、例えば、フィラー、顔料、染料、紫外線吸収剤等の樹脂フィルム分野で使用される公知成分が挙げられる。 The resin layer may contain an arbitrary component other than the synthetic resin. Examples of the optional component include known components used in the field of resin films such as fillers, pigments, dyes, and ultraviolet absorbers.
 本発明の積層シートが樹脂層を有する場合、繊維層と樹脂層の層間密着性が高いことが好ましい。具体的には、JIS K 5400に準拠して積層シートの繊維層側の表面に1mmのクロスカットを100個入れ、セロハンテープ(ニチバン社製)をその上に貼り付け、押し付けた後、90°方向に剥離した場合、繊維層が樹脂層から剥離したマス数が5点未満となることが好ましい。このような場合に、繊維層と樹脂層の層間密着性が良好であると判定できる。剥離したマス数は3点以下であることがより好ましく、1点以下であることがさらに好ましく、0点であることが特に好ましい。 When the laminated sheet of the present invention has a resin layer, it is preferable that the fiber layer and the resin layer have high interlayer adhesion. Specifically, in accordance with JIS K 5400, 100 1 mm 2 crosscuts are placed on the surface of the laminated sheet on the fiber layer side, and cellophane tape (manufactured by Nichiban Co., Ltd.) is attached onto the surface, pressed, and then 90. When peeled in the ° direction, it is preferable that the number of masses of the fiber layer peeled from the resin layer is less than five points. In such a case, it can be determined that the interlayer adhesion between the fiber layer and the resin layer is good. The number of peeled cells is more preferably 3 points or less, further preferably 1 point or less, and particularly preferably 0 points.
 本発明の積層シートが樹脂層を有する場合、繊維層は樹脂層を補強するための層としても機能し得る。このため、積層シート自体の強度が高められている。また、積層シートを他の樹脂フィルムや樹脂板といった被着体に貼合する場合においても、繊維層は、被着体を補強するための層としての機能を果たす。例えば、被着体としてポリカーボネート板といった樹脂板を用い、この樹脂板に積層シートを貼合することで、樹脂板の力学的強度を補強することができる。このように、繊維層を有する積層シートは、被着体を補強する効果も持ち合わせている。 When the laminated sheet of the present invention has a resin layer, the fiber layer can also function as a layer for reinforcing the resin layer. Therefore, the strength of the laminated sheet itself is increased. Further, even when the laminated sheet is attached to an adherend such as another resin film or resin plate, the fiber layer functions as a layer for reinforcing the adherend. For example, by using a resin plate such as a polycarbonate plate as an adherend and attaching a laminated sheet to the resin plate, the mechanical strength of the resin plate can be reinforced. As described above, the laminated sheet having the fiber layer also has an effect of reinforcing the adherend.
 本発明の積層シートが樹脂層を有する場合、樹脂層の厚みは0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることがさらに好ましく、3μm以上であることが特に好ましい。また、樹脂層の厚みは、15000μm以下であることが好ましく、5000μm以下であることがより好ましく、500μm以下であることがさらに好ましい。ここで、積層シートを構成する樹脂層の厚さは、ウルトラミクロトームUC-7(JEOL社製)によって積層シートの断面を切り出し、当該断面を電子顕微鏡、拡大鏡又は目視で観察して、測定される値である。 When the laminated sheet of the present invention has a resin layer, the thickness of the resin layer is preferably 0.5 μm or more, more preferably 1 μm or more, further preferably 2 μm or more, and further preferably 3 μm or more. Is particularly preferable. The thickness of the resin layer is preferably 15,000 μm or less, more preferably 5000 μm or less, and even more preferably 500 μm or less. Here, the thickness of the resin layer constituting the laminated sheet is measured by cutting out a cross section of the laminated sheet with Ultra Microtome UC-7 (manufactured by JEOL Ltd.) and observing the cross section with an electron microscope, a magnifying glass or visually. Value.
 繊維層の合計厚みに対する樹脂層の合計厚みの比(樹脂層の厚み/繊維層の厚み)は、10以下であることが好ましく、5以下であることがより好ましく、1以下であることがさらに好ましい。また、例えば、樹脂層が塗工により形成された塗工層である場合には、繊維層の合計厚みに対する樹脂層の合計厚みの比(樹脂層の厚み/繊維層の厚み)は、0.5以下であってもよく、0.2以下であってもよく、0.15以下であってもよく、0.1以下であってもよい。 The ratio of the total thickness of the resin layer to the total thickness of the fiber layer (thickness of the resin layer / thickness of the fiber layer) is preferably 10 or less, more preferably 5 or less, and further preferably 1 or less. preferable. Further, for example, when the resin layer is a coated layer formed by coating, the ratio of the total thickness of the resin layer to the total thickness of the fiber layers (thickness of the resin layer / thickness of the fiber layer) is 0. It may be 5 or less, 0.2 or less, 0.15 or less, or 0.1 or less.
(積層シートの製造方法)
 本発明の積層シートの製造方法は、置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下ある繊維状セルロースを含む第1の繊維層を形成する工程と、第1の繊維層上に粘着剤層の置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下ある繊維状セルロースを含む第2の繊維層を形成する工程と、を含む。なお、本発明の積層シートの製造方法は、さらに、第3の繊維層、第4の繊維層・・・・第Xの繊維層を形成する工程を含んでもよい。
(Manufacturing method of laminated sheet)
The method for producing a laminated sheet of the present invention comprises a step of forming a first fiber layer containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less, and a first step. It comprises a step of forming a second fiber layer containing fibrous cellulose having a pressure-sensitive adhesive layer with a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less on the fiber layer. The method for producing a laminated sheet of the present invention may further include a step of forming a third fiber layer, a fourth fiber layer, and so on.
 置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下ある繊維状セルロースを含む第1の繊維層を形成する工程は、微細繊維状セルロース分散液(微細繊維状セルロース含有スラリー)を基材上に塗工する工程又は、微細繊維状セルロース分散液を抄紙する工程を含むことが好ましい。また、置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下ある繊維状セルロースを含む第2の繊維層を形成する工程は、第1の繊維層上に微細繊維状セルロース分散液(微細繊維状セルロース含有スラリー)を塗工する工程又は、微細繊維状セルロース分散液を抄紙することで形成した第2の繊維層を第1の繊維層上に積層する工程であることが好ましい。 The step of forming the first fiber layer containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less is a step of forming a fine fibrous cellulose dispersion liquid (fine fibrous cellulose-containing slurry). ) Is applied onto the substrate, or a step of making a fine fibrous cellulose dispersion is preferably included. Further, in the step of forming the second fiber layer containing the fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less, the step of forming the second fiber layer is a fine fibrous cellulose on the first fiber layer. It may be a step of applying a dispersion liquid (fine fibrous cellulose-containing slurry) or a step of laminating a second fiber layer formed by making a fine fibrous cellulose dispersion on a first fiber layer. preferable.
 なお、微細繊維状セルロース分散液(微細繊維状セルロース含有スラリー)には、繊維層に含まれる含酸素有機化合物や任意成分が含まれていてもよく、微細繊維状セルロース分散液のナノファイバー収率、ヘーズ、pH、粘度、遊離窒素量等は、上述した<微細繊維状セルロース>の項目で記載した数値範囲内であることが好ましい。 The fine fibrous cellulose dispersion (slurry containing fine fibrous cellulose) may contain an oxygen-containing organic compound contained in the fiber layer or an arbitrary component, and the nanofiber yield of the fine fibrous cellulose dispersion. , Haze, pH, viscosity, amount of free nitrogen and the like are preferably within the numerical range described in the above-mentioned item of <fine fibrous cellulose>.
<塗工工程>
 微細繊維状セルロース分散液(微細繊維状セルロース含有スラリー)を基材上に塗工する工程(以下、塗工工程ともいう)は、微細繊維状セルロース分散液を基材上に塗工し、これを乾燥して形成された微細繊維状セルロース含有シートを基材から剥離することにより、シートを得る工程である。塗工装置と長尺の基材を用いることで、シートを連続的に生産することができる。塗工する微細繊維状セルロース分散液の濃度は特に限定されないが、0.05質量%以上10質量%以下が好ましい。
<Coating process>
In the step of coating the fine fibrous cellulose dispersion liquid (fine fibrous cellulose-containing slurry) on the base material (hereinafter, also referred to as the coating step), the fine fibrous cellulose dispersion liquid is applied on the base material, and this is applied. This is a step of obtaining a sheet by peeling off the fine fibrous cellulose-containing sheet formed by drying. By using a coating device and a long base material, sheets can be continuously produced. The concentration of the fine fibrous cellulose dispersion to be coated is not particularly limited, but is preferably 0.05% by mass or more and 10% by mass or less.
 塗工工程で用いる基材の質は、特に限定されないが、微細繊維状セルロース分散液に対する濡れ性が高いものの方が乾燥時のシートの収縮等を抑制することができてよいが、乾燥後に形成されたシートが容易に剥離できるものを選択することが好ましい。中でも樹脂板または金属板が好ましいが、特に限定されない。例えばアクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛版、銅版、鉄板等の金属板および、それらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を用いることができる。 The quality of the base material used in the coating process is not particularly limited, but a material having higher wettability to the fine fibrous cellulose dispersion may suppress shrinkage of the sheet during drying, but is formed after drying. It is preferable to select a sheet that can be easily peeled off. Of these, a resin plate or a metal plate is preferable, but it is not particularly limited. For example, resin plates such as acrylic plates, polyethylene terephthalate plates, vinyl chloride plates, polystyrene plates and polyvinylidene chloride plates, metal plates such as aluminum plates, zinc plates, copper plates and iron plates, and those whose surfaces are oxidized, stainless steel. A plate, brass plate, etc. can be used.
 塗工工程において、微細繊維状セルロース分散液の粘度が低く、基材上で展開してしまう場合、所定の厚み、坪量の微細繊維状セルロース含有シートを得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠の質は特に限定されないが、乾燥後に付着するシートの端部が容易に剥離できるものを選択することが好ましい。中でも樹脂板または金属板を成形したものが好ましいが、特に限定されない。例えばアクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛版、銅版、鉄板等の金属板および、それらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したもの用いることができる。 In the coating process, when the viscosity of the fine fibrous cellulose dispersion is low and it develops on the base material, it is used for blocking on the base material in order to obtain a fine fibrous cellulose-containing sheet having a predetermined thickness and basis weight. The frame may be fixed and used. The quality of the dammed frame is not particularly limited, but it is preferable to select one in which the end portion of the sheet to be attached after drying can be easily peeled off. Of these, those obtained by molding a resin plate or a metal plate are preferable, but are not particularly limited. For example, resin plates such as acrylic plates, polyethylene terephthalate plates, vinyl chloride plates, polystyrene plates and polyvinylidene chloride plates, metal plates such as aluminum plates, zinc plates, copper plates and iron plates, and those whose surfaces are oxidized, stainless steel. Molded plates, brass plates, etc. can be used.
 微細繊維状セルロース分散液を塗工する塗工機としては、例えば、バーコーター、ロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。厚みをより均一にできることから、バーコーター、ダイコーター、カーテンコーター、スプレーコーターが好ましい。 As a coating machine for applying the fine fibrous cellulose dispersion, for example, a bar coater, a roll coater, a gravure coater, a die coater, a curtain coater, an air doctor coater, or the like can be used. A bar coater, a die coater, a curtain coater, and a spray coater are preferable because the thickness can be made more uniform.
 塗工温度は特に限定されないが、20℃以上45℃以下であることが好ましい。塗工温度が上記下限値以上であれば、微細繊維状セルロース分散液を容易に塗工でき、上記上限値以下であれば、塗工中の分散媒の揮発を抑制できる。 The coating temperature is not particularly limited, but is preferably 20 ° C or higher and 45 ° C or lower. When the coating temperature is at least the above lower limit value, the fine fibrous cellulose dispersion liquid can be easily applied, and when it is at least the above upper limit value, volatilization of the dispersion medium during coating can be suppressed.
 塗工工程においては、シートの仕上がり坪量が10g/m以上100g/m以下になるように微細繊維状セルロース分散液を塗工することが好ましい。坪量が上記範囲内となるように塗工することで、強度に優れた繊維層が得られる。 In the coating step, it is preferable to coat the fine fibrous cellulose dispersion so that the finished basis weight of the sheet is 10 g / m 2 or more and 100 g / m 2 or less. By coating so that the basis weight is within the above range, a fiber layer having excellent strength can be obtained.
 微細繊維状セルロース含有シートの製造工程は、基材上に塗工した微細繊維状セルロース分散液を乾燥させる工程を含むことが好ましい。乾燥方法としては、特に限定されないが、非接触の乾燥方法でも、シートを拘束しながら乾燥する方法の何れでもよく、これらを組み合わせてもよい。 The manufacturing process of the fine fibrous cellulose-containing sheet preferably includes a step of drying the fine fibrous cellulose dispersion coated on the base material. The drying method is not particularly limited, but may be either a non-contact drying method or a method of drying while restraining the sheet, and these may be combined.
 非接触の乾燥方法としては、特に限定されないが、熱風、赤外線、遠赤外線または近赤外線により加熱して乾燥する方法(加熱乾燥法)、真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができるが、特に限定されない。加熱乾燥法における加熱温度は特に限定されないが、20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができ、上記上限値以下であれば、加熱に要するコストの抑制及び微細繊維状セルロースが熱によって変色することを抑制できる。 The non-contact drying method is not particularly limited, but a method of heating and drying with hot air, infrared rays, far infrared rays or near infrared rays (heat drying method) and a method of vacuum drying (vacuum drying method) are applied. Can be done. Although the heat drying method and the vacuum drying method may be combined, the heat drying method is usually applied. Drying with infrared rays, far infrared rays or near infrared rays can be performed using an infrared device, a far infrared device or a near infrared device, but is not particularly limited. The heating temperature in the heat drying method is not particularly limited, but is preferably 20 ° C. or higher and 150 ° C. or lower, and more preferably 25 ° C. or higher and 105 ° C. or lower. When the heating temperature is at least the above lower limit value, the dispersion medium can be rapidly volatilized, and when it is at least the above upper limit value, the cost required for heating can be suppressed and the discoloration of fine fibrous cellulose can be suppressed due to heat. ..
 乾燥後に、得られた微細繊維状セルロース含有シートを基材から剥離するが、基材がシートの場合には、微細繊維状セルロース含有シートと基材とを積層したまま巻き取って、微細繊維状セルロース含有シートの使用直前に微細繊維状セルロース含有シートを工程基材から剥離してもよい。このようにして、繊維層となる微細繊維状セルロース含有シートが得られる。 After drying, the obtained fine fibrous cellulose-containing sheet is peeled off from the base material. When the base material is a sheet, the fine fibrous cellulose-containing sheet and the base material are wound while being laminated to form fine fibers. The fine fibrous cellulose-containing sheet may be peeled off from the process substrate immediately before the use of the cellulose-containing sheet. In this way, a fine fibrous cellulose-containing sheet to be a fiber layer can be obtained.
<抄紙工程>
 繊維層となる微細繊維状セルロース含有シートの製造工程は、微細繊維状セルロース分散液を抄紙する工程を含んでもよい。抄紙工程で抄紙機としては、長網式、円網式、傾斜式等の連続抄紙機、これらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等公知の抄紙を行ってもよい。
<Papermaking process>
The step of manufacturing the fine fibrous cellulose-containing sheet to be the fiber layer may include a step of making a papermaking of the fine fibrous cellulose dispersion. Examples of the paper machine in the paper making process include continuous paper machines such as a long net type, a circular net type, and an inclined type, and a multi-layer paper making machine combining these. In the papermaking process, known papermaking such as hand papermaking may be performed.
 抄紙工程では、微細繊維状セルロース分散液をワイヤー上で濾過、脱水して湿紙状態のシートを得た後、プレス、乾燥することでシートを得る。微細繊維状セルロース分散液の濃度は特に限定されないが、0.05質量%以上5質量%以下が好ましい。微細繊維状セルロース分散液を濾過、脱水する場合、濾過時の濾布としては特に限定されないが、微細繊維状セルロースは通過せず、かつ濾過速度が遅くなりすぎないことが重要である。このような濾布としては特に限定されないが、有機ポリマーからなるシート、織物、多孔膜が好ましい。有機ポリマーとしては特に限定されないが、ポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。具体的には孔径0.1μm以上20μm以下、例えば1μmのポリテトラフルオロエチレンの多孔膜、孔径0.1μm以上20μm以下、例えば1μmのポリエチレンテレフタレートやポリエチレンの織物等が挙げられるが、特に限定されない。 In the papermaking process, the fine fibrous cellulose dispersion is filtered on a wire and dehydrated to obtain a wet paper sheet, which is then pressed and dried to obtain the sheet. The concentration of the fine fibrous cellulose dispersion is not particularly limited, but is preferably 0.05% by mass or more and 5% by mass or less. When the fine fibrous cellulose dispersion is filtered and dehydrated, the filter cloth at the time of filtration is not particularly limited, but it is important that the fine fibrous cellulose does not pass through and the filtration rate does not become too slow. The filter cloth is not particularly limited, but a sheet made of an organic polymer, a woven fabric, and a porous membrane are preferable. The organic polymer is not particularly limited, but non-cellulosic organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, and polytetrafluoroethylene (PTFE) are preferable. Specific examples thereof include a porous membrane of polytetrafluoroethylene having a pore size of 0.1 μm or more and 20 μm or less, for example, 1 μm, polyethylene terephthalate having a pore diameter of 0.1 μm or more and 20 μm or less, for example, 1 μm, or a polyethylene woven fabric, but the present invention is not particularly limited.
 微細繊維状セルロース分散液からシートを製造する方法としては、特に限定されないが、例えばWO2011/013567に記載の製造装置を用いる方法等が挙げられる。この製造装置は、微細繊維状セルロース分散液を無端ベルトの上面に吐出し、吐出された微細繊維状セルロース分散液から分散媒を搾水してウェブを生成する搾水セクションと、ウェブを乾燥させて繊維シートを生成する乾燥セクションとを備えている。搾水セクションから乾燥セクションにかけて無端ベルトが配設され、搾水セクションで生成されたウェブが無端ベルトに載置されたまま乾燥セクションに搬送される。 The method for producing a sheet from the fine fibrous cellulose dispersion is not particularly limited, and examples thereof include a method using the manufacturing apparatus described in WO2011 / 013567. This manufacturing device discharges the fine fibrous cellulose dispersion onto the upper surface of the endless belt, squeezes the dispersion medium from the discharged fine fibrous cellulose dispersion to generate a web, and dries the web. It has a drying section to produce a fiber sheet. An endless belt is disposed from the watering section to the drying section, and the web generated in the watering section is conveyed to the drying section while being placed on the endless belt.
 本発明において使用できる脱水方法としては特に限定されないが、紙の製造で通常に使用している脱水方法が挙げられ、長網、円網、傾斜ワイヤーなどで脱水した後、ロールプレスで脱水する方法が好ましい。また、乾燥方法としては特に限定されないが、紙の製造で用いられている方法が挙げられ、例えば、シリンダードライヤー、ヤンキードライヤー、熱風乾燥、近赤外線ヒーター、赤外線ヒーターなどの方法が好ましい。 The dehydration method that can be used in the present invention is not particularly limited, and examples thereof include a dehydration method that is normally used in the production of paper. Is preferable. Further, the drying method is not particularly limited, and examples thereof include methods used in the production of paper, and for example, methods such as a cylinder dryer, a Yankee dryer, hot air drying, a near infrared heater, and an infrared heater are preferable.
<反転工程>
 本発明の積層シートの製造方法は、各繊維層を形成する工程の間に、形成された繊維層を反転させる工程を含むことが好ましい。反転させる工程では、形成された単数もしくは複数の繊維層の表面(上面)が裏面(底面)になるように反転させる。このような工程を設けることにより、シートの耐カール性をより効果的に高めることができる。
<Reversal process>
The method for producing a laminated sheet of the present invention preferably includes a step of inverting the formed fiber layer between the steps of forming each fiber layer. In the step of inverting, the surface (upper surface) of the formed single or multiple fiber layers is inverted so as to be the back surface (bottom surface). By providing such a process, the curl resistance of the sheet can be enhanced more effectively.
 より具体的には、本発明の積層シートの製造方法は、置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下ある繊維状セルロースを含む第1の繊維層を形成する工程と、第1の繊維層を反転させる工程と、第1の繊維層上に置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下ある繊維状セルロースを含む第2の繊維層を形成する工程と、をこの順で含むことが好ましい。このような工程を経て形成された積層シートにおいては、カールの発生がより抑制されている。 More specifically, the method for producing a laminated sheet of the present invention forms a first fiber layer containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less. The step, the step of inverting the first fiber layer, and the second step containing fibrous cellulose having a amount of substituents introduced on the first fiber layer of less than 0.5 mmol / g and a fiber width of 1000 nm or less. It is preferable to include the step of forming the fiber layer in this order. In the laminated sheet formed through such a step, the generation of curl is further suppressed.
<樹脂層の積層>
 本発明の積層シートが樹脂層を有するものである場合、繊維層の少なくとも一方の面側に樹脂層を形成する工程を含むことが好ましい。この場合、樹脂層を形成する工程は、繊維層上に樹脂組成物を塗工する工程であることが好ましい。また、本発明の積層シートの製造方法は、予め形成された樹脂層の上に、置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下ある繊維状セルロースを含む第1の繊維層を形成する工程と、第1の繊維層上に粘着剤層の置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下ある繊維状セルロースを含む第2の繊維層を形成する工程とを含むものであってもよい。
<Lamination of resin layer>
When the laminated sheet of the present invention has a resin layer, it is preferable to include a step of forming a resin layer on at least one surface side of the fiber layer. In this case, the step of forming the resin layer is preferably a step of applying the resin composition on the fiber layer. Further, in the method for producing a laminated sheet of the present invention, a first method comprising a pre-formed resin layer containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less. And the second fiber containing fibrous cellulose having a pressure-sensitive adhesive layer having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less on the first fiber layer. It may include a step of forming a layer.
 繊維層上に樹脂組成物を塗工する工程や樹脂層を形成する際には、樹脂を含む樹脂組成物を塗工し、塗膜を形成した後に乾燥工程を設けることが好ましい。 When applying the resin composition on the fiber layer or forming the resin layer, it is preferable to apply the resin composition containing the resin and provide a drying step after forming the coating film.
 積層シートの製造方法としては、上述した方法以外に、繊維層上に樹脂層を載置して熱プレスする方法も挙げられる。また、射出成形用の金型内に繊維層を設置して、当該金型内に加熱されて溶融した樹脂を射出して、繊維層に樹脂層を接合させる方法も挙げられる。 As a method for manufacturing a laminated sheet, in addition to the above-mentioned method, a method in which a resin layer is placed on a fiber layer and heat-pressed can also be mentioned. Another method is to install a fiber layer in a mold for injection molding, inject a heated and melted resin into the mold, and bond the resin layer to the fiber layer.
(積層体)
 本発明は、上述した積層シートと、被着体を積層してなる積層体に関するものであってもよい。被着体としては、例えば、有機膜(以下、有機層ともいう)や無機膜(以下、無機層ともいう)を挙げることができる。中でも、本発明の積層体は、上述した積層シートと、有機膜を有する積層してなる積層体であることが好ましい。なお、有機膜としては、例えば、樹脂フィルムや樹脂板、樹脂成形体等が挙げられる。
(Laminated body)
The present invention may relate to a laminated body formed by laminating the above-mentioned laminated sheet and an adherend. Examples of the adherend include an organic film (hereinafter, also referred to as an organic layer) and an inorganic film (hereinafter, also referred to as an inorganic layer). Above all, the laminated body of the present invention is preferably a laminated body formed by laminating the above-mentioned laminated sheet and an organic film. Examples of the organic film include a resin film, a resin plate, a resin molded body, and the like.
 樹脂フィルム、樹脂板及び樹脂成形体(以下、単に樹脂フィルムともいう)は、天然樹脂や合成樹脂を主成分とする層である。ここで、主成分とは、樹脂フィルムの全質量に対して、50質量%以上含まれている成分を指す。樹脂成分の含有量は、樹脂フィルムの全質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。なお、樹脂成分の含有量は、樹脂フィルムの全質量に対して、100質量%であってもよい。 A resin film, a resin plate, and a resin molded body (hereinafter, also simply referred to as a resin film) are layers containing a natural resin or a synthetic resin as a main component. Here, the main component refers to a component contained in an amount of 50% by mass or more with respect to the total mass of the resin film. The content of the resin component is preferably 60% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and 90% by mass, based on the total mass of the resin film. % Or more is particularly preferable. The content of the resin component may be 100% by mass with respect to the total mass of the resin film.
 天然樹脂としては、例えば、ロジン、ロジンエステル、水添ロジンエステル等のロジン系樹脂を挙げることができる。 Examples of the natural resin include rosin-based resins such as rosin, rosin ester, and hydrogenated rosin ester.
 合成樹脂としては、例えば、ポリオレフィン樹脂、環状オレフィン樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリイミド樹脂、ポリスチレン樹脂、アクリル樹脂等が挙げられる。中でも、合成樹脂は、ポリオレフィン樹脂であることが好ましく、ポリエチレン樹脂及びポリプロピレン樹脂から選択される少なくとも1種を有することが好ましい。 Examples of the synthetic resin include polyolefin resin, cyclic olefin resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyimide resin, polystyrene resin, acrylic resin and the like. Among them, the synthetic resin is preferably a polyolefin resin, and preferably has at least one selected from a polyethylene resin and a polypropylene resin.
 有機層の形成方法は、特に限定されないが、例えば、塗工法や射出成形法、加熱加圧法等が挙げられる。塗工法においては、有機層を形成する樹脂組成物を積層シートの樹脂層上に塗工し、熱硬化もしくは光硬化することが好ましい。また、加熱加圧法においては、樹脂フィルムを積層シートの樹脂層上に重ね合わせた状態で熱プレスすることが好ましい。この際の熱プレス条件は樹脂フィルムのガラス転移温度等を参考に適宜選択できる。 The method for forming the organic layer is not particularly limited, and examples thereof include a coating method, an injection molding method, and a heating and pressurizing method. In the coating method, it is preferable that the resin composition forming the organic layer is coated on the resin layer of the laminated sheet and then heat-cured or photo-cured. Further, in the heating and pressurizing method, it is preferable to heat-press the resin film in a state of being laminated on the resin layer of the laminated sheet. The heat pressing conditions at this time can be appropriately selected with reference to the glass transition temperature of the resin film and the like.
 無機層を構成する物質としては、特に限定されないが、例えばアルミニウム、ケイ素、マグネシウム、亜鉛、錫、ニッケル、チタン;これらの酸化物、炭化物、窒化物、酸化炭化物、酸化窒化物、もしくは酸化炭化窒化物;またはこれらの混合物が挙げられる。高い防湿性が安定に維持できるとの観点からは、酸化ケイ素、窒化ケイ素、酸化炭化ケイ素、酸化窒化ケイ素、酸化炭化窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化炭化アルミニウム、酸化窒化アルミニウム、またはこれらの混合物が好ましい。 The substance constituting the inorganic layer is not particularly limited, and is, for example, aluminum, silicon, magnesium, zinc, tin, nickel, titanium; these oxides, carbides, nitrides, oxide carbides, oxide nitrides, or oxide carbides. Objects; or mixtures thereof. From the viewpoint that high moisture resistance can be stably maintained, silicon oxide, silicon nitride, silicon oxide carbide, silicon nitride, silicon oxide, aluminum oxide, aluminum nitride, aluminum oxide, aluminum nitride, or any of these. Mixtures are preferred.
 無機層の形成方法は、特に限定されないが、例えば、化学的気相成長法(Chemical Vapor Deposition、CVD)や物理成膜法(Physical Vapor Deposition、PVD)を挙げることができる。CVD法としては、具体的には、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。PVD法としては、具体的には、真空蒸着、イオンプレーティング、スパッタリング等が挙げられる。また、無機層の形成方法としては、原子層堆積法(AtomicLayer Deposition、ALD)を採用することもできる。ALD法は、形成しようとする膜を構成する各元素の原料ガスを、層を形成する面に交互に供給することにより、原子層単位で薄膜を形成する方法である。 The method for forming the inorganic layer is not particularly limited, and examples thereof include a chemical vapor deposition (CVD) and a physical vapor deposition (PVD). Specific examples of the CVD method include plasma CVD using plasma, catalytic chemical vapor deposition (Cat-CVD) for catalytically pyrolyzing a material gas using a heating catalyst, and the like. Specific examples of the PVD method include vacuum deposition, ion plating, sputtering and the like. Further, as a method for forming the inorganic layer, an atomic layer deposition method (Atomic Layer Deposition, ALD) can also be adopted. The ALD method is a method of forming a thin film in atomic layer units by alternately supplying the raw material gas of each element constituting the film to be formed to the surface on which the layer is formed.
(用途)
 本発明の積層シートは、透明で機械的強度が高く、着色が抑制された積層シートである。このような優れた光学特性を活かす観点から、光学部材用に適している。例えば、各種のディスプレイ装置、各種の太陽電池等の光透過性基板の用途に用いることができる。また、本発明の積層シートは、電子機器の基板、家電の部材、各種の乗り物や建物の窓材、内装材、外装材、包装用資材等の用途にも適している。
(Use)
The laminated sheet of the present invention is a transparent laminated sheet having high mechanical strength and suppressed coloring. From the viewpoint of utilizing such excellent optical characteristics, it is suitable for optical members. For example, it can be used for various display devices, various solar cells, and other light-transmitting substrates. Further, the laminated sheet of the present invention is also suitable for applications such as substrates of electronic devices, members of home appliances, window materials of various vehicles and buildings, interior materials, exterior materials, packaging materials and the like.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be described in more detail below with reference to Examples and Comparative Examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the specific examples shown below.
<製造例1>
[リン酸化処理]
 原料パルプとして、王子製紙製の広葉樹溶解パルプ(ドライシート)を使用した。この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
<Manufacturing example 1>
[Phosphorylation]
Hardwood pulp (dry sheet) made by Oji Paper was used as the raw material pulp. The raw material pulp was subjected to phosphorylation treatment as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphate group into the cellulose in the pulp to obtain a phosphorylated pulp.
[洗浄処理]
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
[Washing process]
Then, the obtained phosphorylated pulp was washed. The washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.
[中和処理]
 次いで、洗浄後のリン酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプを得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。
[Neutralization treatment]
Next, the phosphorylated pulp after washing was neutralized as follows. First, the washed phosphorylated pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorylated pulp slurry having a pH of 12 or more and 13 or less. .. Next, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp that had been neutralized. Next, the phosphorylated pulp after the neutralization treatment was subjected to the above washing treatment.
 これにより得られたリンオキソ酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。 The infrared absorption spectrum of the resulting phosphorus oxo oxide pulp was measured using FT-IR. As a result, absorption of the phosphate group based on P = O was observed near 1230 cm-1 , and it was confirmed that the phosphate group was added to the pulp. Further, when the obtained phosphorylated pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. A typical peak was confirmed, and it was confirmed that it had cellulose type I crystals.
[解繊処理]
 得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて6回処理し、微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。X線回折により、この微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[リンオキソ酸基量]の測定に記載の測定方法で測定されるリン酸基量(第1解離酸量強酸性基量)は、1.45mmol/gだった。なお、総解離酸量は、2.45mmol/gであった。
[Defibration processing]
Ion-exchanged water was added to the obtained phosphorylated pulp to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated with a wet atomizing device (manufactured by Sugino Machine Limited, Starburst) 6 times at a pressure of 200 MPa to obtain a fine fibrous cellulose dispersion containing fine fibrous cellulose. By X-ray diffraction, it was confirmed that this fine fibrous cellulose maintained the cellulose type I crystal. The amount of phosphoric acid group (first dissociated acid amount, strong acid group amount) measured by the measuring method described in the measurement of [phosphoroxo acid group amount] described later was 1.45 mmol / g. The total amount of dissociated acid was 2.45 mmol / g.
<製造例2>
 リン酸化パルプの洗浄処理及び中和処理後に、下記の窒素除去処理を行った以外は製造例1と同様にして、リン酸化パルプ及び微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
<Manufacturing example 2>
After the washing treatment and the neutralization treatment of the phosphorylated pulp, a fine fibrous cellulose dispersion containing the phosphorylated pulp and the fine fibrous cellulose was obtained in the same manner as in Production Example 1 except that the following nitrogen removal treatment was performed.
[窒素除去処理]
 リン酸化パルプにイオン交換水を添加し、固形分濃度が4質量%のスラリーを調製した。スラリーに48質量%の水酸化ナトリウム水溶液を添加してpH13.4に調整し、液温85℃の条件で1時間加熱した。その後、このパルプスラリーを脱水し、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌し、濾過脱水する操作を繰り返すことにより余剰の水酸化ナトリウムを除去した。ろ液の電気伝導度が100μS/cm以下となった時点で、除去の終点とした。
[Nitrogen removal treatment]
Ion-exchanged water was added to the phosphorylated pulp to prepare a slurry having a solid content concentration of 4% by mass. A 48% by mass sodium hydroxide aqueous solution was added to the slurry to adjust the pH to 13.4, and the slurry was heated at a liquid temperature of 85 ° C. for 1 hour. Then, the pulp slurry is dehydrated, and the pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorylated pulp is stirred so that the pulp is uniformly dispersed, and filtered and dehydrated. The excess sodium hydroxide was removed by repeating. When the electrical conductivity of the filtrate became 100 μS / cm or less, the end point of removal was set.
 これにより得られたリンオキソ酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基のP=Oに基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[リンオキソ酸基量の測定]に記載の測定方法で測定されるリン酸基量(第1解離酸量強酸性基量)は、1.35mmol/gだった。なお、総解離酸量は、2.30mmol/gであった。 The infrared absorption spectrum of the resulting phosphorus oxo oxide pulp was measured using FT-IR. As a result, absorption of the phosphate group based on P = O was observed near 1230 cm-1 , and it was confirmed that the phosphate group was added to the pulp. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The amount of phosphate groups (first dissociated acid amount, strong acid group amount) measured by the measuring method described in [Measurement of phosphorus oxo acid group amount] described later was 1.35 mmol / g. The total amount of dissociated acid was 2.30 mmol / g.
<製造例3>
[亜リン酸化処理]
 リン酸化処理においてリン酸二水素アンモニウムの代わりに亜リン酸(ホスホン酸)33質量部を用いた以外は、製造例1と同様に操作を行い、リン酸化パルプ及び微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
<Manufacturing example 3>
[Subphosphorylation treatment]
The same operation as in Production Example 1 was carried out except that 33 parts by mass of phosphorous acid (phosphonic acid) was used instead of ammonium dihydrogen phosphate in the phosphorylation treatment, and the fine fibers containing phosphorous pulp and fine fibrous cellulose were used. A phosphorous acid dispersion was obtained.
 これにより得られたリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに(亜)リン酸基(ホスホン酸基)が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[リンオキソ酸基量の測定]に記載の測定方法で測定される(亜)リン酸基量(第1解離酸量)は1.51mmol/gであり、総解離酸量は、1.54mmol/gであった。 The infrared absorption spectrum of the phosphorylated pulp thus obtained was measured using FT-IR. As a result, P = O-based absorption of the phosphonic acid group, which is a metamorphic form of the phosphite group, was observed near 1210 cm -1 , and a (sub) phosphorous acid group (phosphonic acid group) was added to the pulp. It was confirmed that there was. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The (sub) phosphoric acid group amount (first dissociated acid amount) measured by the measuring method described in [Measurement of Phosphoric Acid Group Amount] described later is 1.51 mmol / g, and the total dissociated acid amount is. It was 1.54 mmol / g.
<製造例4>
[硫酸化処理]
 リン酸化処理においてリン酸二水素アンモニウムの代わりにアミド硫酸(スルファミン酸)38質量部を用いて、加熱時間を19分間に延長した以外は、製造例1と同様に操作を行い、硫酸化パルプ及び微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
<Manufacturing example 4>
[Sulfation treatment]
In the phosphorylation treatment, 38 parts by mass of amide sulfuric acid (sulfamic acid) was used instead of ammonium dihydrogen phosphate, and the same operation as in Production Example 1 was carried out except that the heating time was extended to 19 minutes. A fine fibrous cellulose dispersion containing fine fibrous cellulose was obtained.
 これにより得られた硫酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1220-1260cm-1付近に硫酸基(スルホン基)に基づく吸収が観察され、パルプに硫酸基(スルホン基)が付加されていることが確認された。また、X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[スルホン基量の測定]に記載の測定方法で測定されるスルホン基量は1.12mmol/gであった。 The infrared absorption spectrum of the sulfated pulp thus obtained was measured using FT-IR. As a result, absorption based on a sulfate group (sulfone group) was observed in the vicinity of 1220-1260 cm-1 , and it was confirmed that a sulfate group (sulfone group) was added to the pulp. Further, it was confirmed by X-ray diffraction that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The amount of sulfone groups measured by the measuring method described in [Measurement of Sulfone Group Amount] described later was 1.12 mmol / g.
<製造例5>
 リン酸化処理に代えて下記のザンテート化処理を行った以外は、製造例1と同様に操作を行い、ザンテート化パルプ及び微細繊維状セルロースを含む微細繊維状セルロース分散液を得た。
<Manufacturing example 5>
The same operation as in Production Example 1 was carried out except that the following zantate treatment was performed instead of the phosphorylation treatment to obtain a fine fibrous cellulose dispersion containing the zantate pulp and fine fibrous cellulose.
[ザンテート化処理]
 原料パルプ(王子製紙製の広葉樹溶解パルプ(ドライシート))100質量部(絶乾質量)に、8.5質量%の水酸化ナトリウム水溶液2500質量部を添加し、室温にて3時間撹拌してアルカリ処理を行った。このアルカリ処理後のパルプを遠心分離(ろ布400メッシュ、3000rpmで5分間)により固液分離してアルカリセルロースの脱水物を得た。得られたアルカリセルロース10質量部(絶乾質量)に対して、二硫化炭素を3.5質量部添加し、室温で4.5時間硫化反応を進行させてザンテート化処理を行った。
[Zantate processing]
To 100 parts by mass (absolute dry mass) of raw material pulp (dissolving pulp of broadleaf tree (dry sheet) made by Oji Paper), 2500 parts by mass of 8.5 mass% sodium hydroxide aqueous solution was added, and the mixture was stirred at room temperature for 3 hours. Alkaline treatment was performed. The pulp after the alkali treatment was separated into solid and liquid by centrifugation (filter cloth 400 mesh, 3000 rpm for 5 minutes) to obtain a dehydrated product of alkaline cellulose. To 10 parts by mass (absolute dry mass) of the obtained alkaline cellulose, 3.5 parts by mass of carbon disulfide was added, and the sulfurization reaction was allowed to proceed at room temperature for 4.5 hours to carry out a zantate treatment.
 X線回折により、得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。なお、後述する[ザンテート基量の測定]に記載の測定方法で測定されるザンテート基量は1.73mmol/gであった。 By X-ray diffraction, it was confirmed that the obtained fine fibrous cellulose maintained the cellulose type I crystal. The amount of zantate group measured by the measuring method described in [Measurement of Zantate Group Amount] described later was 1.73 mmol / g.
[測定]
[分散液のヘーズの測定]
 分散液のヘーズの測定は、繊維状セルロース分散液をイオン交換水で0.2質量%となるように希釈した後、ヘーズメーター(村上色彩技術研究所社製、HM-150)で、光路長1cmの液体用ガラスセル(藤原製作所製、MG-40、逆光路)を用いて、JIS K 7136:2000に準拠して測定した。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行った。また、測定対象の分散液は測定前に23℃、相対湿度50%の環境下に24時間静置した。測定時の分散液の液温は23℃であった。
[measurement]
[Measurement of haze of dispersion]
To measure the haze of the dispersion, dilute the fibrous cellulose dispersion with ion-exchanged water to 0.2% by mass, and then use a haze meter (HM-150, manufactured by Murakami Color Technology Research Institute) to measure the optical path length. Measurements were made in accordance with JIS K 7136: 2000 using a 1 cm liquid glass cell (manufactured by Fujiwara Seisakusho, MG-40, backlit path). The zero point measurement was performed with ion-exchanged water contained in the same glass cell. The dispersion to be measured was allowed to stand in an environment of 23 ° C. and a relative humidity of 50% for 24 hours before the measurement. The liquid temperature of the dispersion liquid at the time of measurement was 23 ° C.
[ナノファイバー収率の測定]
 繊維状セルロース分散液を遠心分離した後のナノファイバー収率を以下に記載の方法により測定した。ナノファイバー収率は、微細繊維状セルロースの収率の指標となり、ナノファイバー収率が高い程、微細繊維状セルロースの収率が高い。各分散液をセルロース濃度0.1質量%に調整し、冷却高速遠心分離機(コクサン社、H-2000B)を用い、12000G、10分の条件で遠心分離した。得られた上澄み液を回収し、上澄み液のセルロース濃度を測定した。下記式に基づいて、微細繊維状セルロースの収率を求めた。
 ナノファイバー収率(質量%)=上澄みのセルロース濃度(質量%)/0.1×100
[Measurement of nanofiber yield]
The yield of nanofibers after centrifuging the fibrous cellulose dispersion was measured by the method described below. The nanofiber yield is an index of the yield of fine fibrous cellulose, and the higher the nanofiber yield, the higher the yield of fine fibrous cellulose. Each dispersion was adjusted to a cellulose concentration of 0.1% by mass, and centrifuged at 12000 G for 10 minutes using a cooling high-speed centrifuge (Koksan, H-2000B). The obtained supernatant was collected, and the cellulose concentration in the supernatant was measured. The yield of fine fibrous cellulose was determined based on the following formula.
Nanofiber yield (mass%) = supernatant cellulose concentration (mass%) /0.1 × 100
[窒素量の測定]
 繊維状セルロースに含まれる窒素と繊維状セルロース分散液中に含まれる遊離窒素の合計量を以下に記載の方法により測定した。各分散液を固形分濃度1質量%に調整し、ケルダール法(JIS K 0102 44.1)で分解した。分解後、陽イオンクロマトグラフィでアンモニウムイオン量(mmol)を測定し、測定に使用したセルロース量(g)で除して窒素含有量(mmol/g)を算出した。
[Measurement of nitrogen content]
The total amount of nitrogen contained in the fibrous cellulose and free nitrogen contained in the fibrous cellulose dispersion was measured by the method described below. Each dispersion was adjusted to a solid content concentration of 1% by mass and decomposed by the Kjeldahl method (JIS K 0102 44.1). After decomposition, the amount of ammonium ions (mmol) was measured by cation chromatography and divided by the amount of cellulose (g) used for the measurement to calculate the nitrogen content (mmol / g).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<実施例1>
[置換基除去処理(高温熱処理)]
 製造例1で得られた微細繊維状セルロースを含む微細繊維状セルロース分散液に、20質量%のクエン酸水溶液を添加し、分散液のpHを5.5に調整した。得られたスラリーを耐圧容器に入れ、液温160℃で15分間、リン酸基量が0.08mmol/g未満となるまで加熱を行った。この操作により微細繊維状セルロース凝集物の生成が確認された。
<Example 1>
[Substituent removal treatment (high temperature heat treatment)]
A 20% by mass citric acid aqueous solution was added to the fine fibrous cellulose dispersion containing the fine fibrous cellulose obtained in Production Example 1, and the pH of the dispersion was adjusted to 5.5. The obtained slurry was placed in a pressure-resistant container and heated at a liquid temperature of 160 ° C. for 15 minutes until the amount of phosphoric acid groups became less than 0.08 mmol / g. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
[置換基除去後スラリーの洗浄処理]
 加熱後のスラリーに、スラリーと同量のイオン交換水を加えて固形分濃度が約1質量%のスラリーとし、スラリーを撹拌した後、濾過脱水する操作を繰り返すことにより、スラリーの洗浄を行った。ろ液の電気伝導度が10μS/cm以下となった時点で、再びイオン交換水を添加して約1質量%のスラリーとし、24時間静置した。そこからさらに濾過脱水する操作を繰り返し、再びろ液の電気伝導度が10μS/cm以下となった時点を洗浄終点とした。得られた微細繊維状セルロース凝集物にイオン交換水を加え、置換基除去後スラリーを得た。このスラリーの固形分濃度は1.7質量%であった。
[Washing of slurry after removal of substituents]
The slurry was washed by repeating the operation of adding ion-exchanged water in the same amount as the slurry to make a slurry having a solid content concentration of about 1% by mass, stirring the slurry, and then filtering and dehydrating the slurry. .. When the electrical conductivity of the filtrate became 10 μS / cm or less, ion-exchanged water was added again to obtain a slurry of about 1% by mass, and the slurry was allowed to stand for 24 hours. The operation of further filtering and dehydrating was repeated from there, and the time when the electrical conductivity of the filtrate became 10 μS / cm or less was set as the washing end point. Ion-exchanged water was added to the obtained fine fibrous cellulose aggregate to remove substituents, and then a slurry was obtained. The solid content concentration of this slurry was 1.7% by mass.
[置換基除去後スラリーの均一分散処理]
 得られた置換基除去後スラリーにイオン交換水を加え、固形分濃度が1.0質量%のスラリーとした。このスラリーはpH5.5であった。湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて3回処理し、置換基除去微細繊維状セルロースを含む置換基除去微細繊維状セルロース分散液を得た。後述する[繊維幅の測定]で測定した置換基除去微細繊維状セルロースの数平均繊維幅は4nmであり、分散液中に含まれる全繊維状セルロースのうち繊維幅が10nm以下の微細繊維状セルロースの割合は98%であった。
[Uniform dispersion treatment of slurry after removal of substituents]
Ion-exchanged water was added to the obtained slurry after removing the substituents to prepare a slurry having a solid content concentration of 1.0% by mass. This slurry had a pH of 5.5. The treatment was carried out three times at a pressure of 200 MPa with a wet atomizer (Sugino Machine Limited, Starburst) to obtain a substituent-removed fine fibrous cellulose dispersion containing a substituent-removed fine fibrous cellulose. The number average fiber width of the substituent-removed fine fibrous cellulose measured in [Measurement of fiber width] described later is 4 nm, and among all the fibrous celluloses contained in the dispersion liquid, the fine fibrous cellulose having a fiber width of 10 nm or less. The ratio was 98%.
[シートの作製1]
 イオン交換水に、アセトアセチル基変性ポリビニルアルコール(三菱ケミカル株式会社製、ゴーセネックスZ-200)を12質量%になるように加え、95℃で1時間撹拌し、溶解した。以上の手順により、ポリビニルアルコール水溶液を得た。
[Preparation of sheet 1]
Acetacetyl group-modified polyvinyl alcohol (Gosenex Z-200, manufactured by Mitsubishi Chemical Corporation) was added to ion-exchanged water in an amount of 12% by mass, and the mixture was stirred at 95 ° C. for 1 hour to dissolve. By the above procedure, an aqueous polyvinyl alcohol solution was obtained.
 置換基除去微細繊維状セルロース分散液、および上記ポリビニルアルコール水溶液をそれぞれ固形分濃度が0.6質量%となるようにイオン交換水で希釈した。次いで、希釈後の置換基除去微細繊維状セルロース分散液50質量部に対し、希釈後のポリビニルアルコール水溶液が50質量部になるように混合し、混合液を得た。さらに、シートの仕上がり厚さが12.5μmになるように混合液を計量して、市販のガラス板上に展開した。なお、所定の厚さとなるようガラス板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後140℃の乾燥機で1時間乾燥した。更にその上から同じ混合液を仕上がり厚さが12.5μmになるように計量して展開し、140℃の乾燥機で1時間乾燥した。シートをガラス板から剥離することで、合計の厚みが25μmの積層シートを得た。 The substituent-removed fine fibrous cellulose dispersion and the above polyvinyl alcohol aqueous solution were diluted with ion-exchanged water so that the solid content concentration was 0.6% by mass. Next, 50 parts by mass of the diluted polyvinyl alcohol aqueous solution was mixed with 50 parts by mass of the diluted substituent-removed fine fibrous cellulose dispersion liquid to obtain a mixed liquid. Further, the mixed solution was weighed so that the finished thickness of the sheet was 12.5 μm, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. After that, it was dried in a dryer at 140 ° C. for 1 hour. Further, the same mixed solution was weighed and developed so as to have a finished thickness of 12.5 μm, and dried in a dryer at 140 ° C. for 1 hour. By peeling the sheet from the glass plate, a laminated sheet having a total thickness of 25 μm was obtained.
<実施例2>
 実施例1の[シートの作製1]で得られた混合液を、シートの仕上がり厚さが25μmになるように計量して、市販のガラス板上に展開した。なお、所定の厚さとなるようガラス板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後140℃の乾燥機で1時間乾燥した。更にその上から同じ混合液を仕上がり厚さが25μmになるように計量して展開し、140℃の乾燥機で1時間乾燥した。シートをガラス板から剥離することで、合計の厚みが50μmの積層シートを得た。
<Example 2>
The mixed solution obtained in [Preparation of Sheet 1] of Example 1 was weighed so that the finished thickness of the sheet was 25 μm, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. After that, it was dried in a dryer at 140 ° C. for 1 hour. Further, the same mixed solution was weighed and developed so as to have a finished thickness of 25 μm, and dried in a dryer at 140 ° C. for 1 hour. By peeling the sheet from the glass plate, a laminated sheet having a total thickness of 50 μm was obtained.
<実施例3>
 実施例1の[シートの作製1]で得られた混合液を、シートの仕上がり厚さが12.5μmになるように計量して、市販のガラス板上に展開した。なお、所定の厚さとなるようガラス板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後140℃の乾燥機で1時間乾燥した。シートをガラス板から剥離することで、厚みが12.5μmのシートAを得た。次にシートAを反転させ、ガラス板剥離面の反対側の面をガラス板に貼付し、堰止用の枠(内寸200mm×200mm、高さ5cm)を配置し、この上から同じ混合液を仕上がり厚さが12.5μmになるように計量して展開し、140℃の乾燥機で1時間乾燥した。シートをガラス板から剥離することで、合計の厚みが25μmの積層シートを得た。
<Example 3>
The mixed solution obtained in [Preparation of Sheet 1] of Example 1 was weighed so that the finished thickness of the sheet was 12.5 μm, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. After that, it was dried in a dryer at 140 ° C. for 1 hour. By peeling the sheet from the glass plate, a sheet A having a thickness of 12.5 μm was obtained. Next, the sheet A is inverted, the surface opposite to the glass plate peeling surface is attached to the glass plate, a frame for damming (inner dimensions 200 mm × 200 mm, height 5 cm) is placed, and the same mixed solution is placed from above. Was weighed and developed so that the finished thickness was 12.5 μm, and dried in a dryer at 140 ° C. for 1 hour. By peeling the sheet from the glass plate, a laminated sheet having a total thickness of 25 μm was obtained.
<実施例4>
 実施例1の[シートの作製1]で得られた混合液を、シートの仕上がり厚さが25μmになるように計量して、市販のガラス板上に展開した。なお、所定の厚さとなるようガラス板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後140℃の乾燥機で1時間乾燥した。シートをガラス板から剥離することで、厚みが25μmのシートBを得た。次にシートBを反転させ、ガラス板剥離面の反対側の面をガラス板に貼付し、堰止用の枠(内寸200mm×200mm、高さ5cm)を配置し、この上から同じ混合液を仕上がり厚さが25μmになるように計量して展開し、140℃の乾燥機で1時間乾燥した。シートをガラス板から剥離することで、合計の厚みが50μmの積層シートを得た。
<Example 4>
The mixed solution obtained in [Preparation of Sheet 1] of Example 1 was weighed so that the finished thickness of the sheet was 25 μm, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. After that, it was dried in a dryer at 140 ° C. for 1 hour. By peeling the sheet from the glass plate, a sheet B having a thickness of 25 μm was obtained. Next, the sheet B is inverted, the surface opposite to the glass plate peeling surface is attached to the glass plate, a frame for damming (inner dimensions 200 mm × 200 mm, height 5 cm) is placed, and the same mixed solution is placed from above. Was weighed and developed so that the finished thickness was 25 μm, and dried in a dryer at 140 ° C. for 1 hour. By peeling the sheet from the glass plate, a laminated sheet having a total thickness of 50 μm was obtained.
<実施例5>
 実施例1の[シートの作製1]において、置換基除去微細繊維状セルロース分散液40質量部に対し、希釈後のポリビニルアルコール水溶液が60質量部になるように混合して混合液を得た。該混合液を使用した以外は、実施例4と同様の操作を行い合計の厚みが50μmの積層シートを得た。
<Example 5>
In [Preparation 1 of Sheet] of Example 1, a mixed solution was obtained by mixing 40 parts by mass of the substituent-removed fine fibrous cellulose dispersion with 60 parts by mass of the diluted polyvinyl alcohol aqueous solution. The same operation as in Example 4 was performed except that the mixed solution was used, to obtain a laminated sheet having a total thickness of 50 μm.
<実施例6>
 実施例1の[シートの作製1]において、置換基除去微細繊維状セルロース分散液30質量部に対し、希釈後のポリビニルアルコール水溶液が70質量部になるように混合して混合液を得た。該混合液を使用した以外は、実施例4と同様の操作を行い合計の厚みが50μmの積層シートを得た。
<Example 6>
In [Preparation 1 of Sheet] of Example 1, a mixed solution was obtained by mixing 30 parts by mass of a substituent-removed fine fibrous cellulose dispersion with 70 parts by mass of a diluted polyvinyl alcohol aqueous solution. The same operation as in Example 4 was performed except that the mixed solution was used, to obtain a laminated sheet having a total thickness of 50 μm.
<実施例7>
 実施例1の[シートの作製1]において、置換基除去微細繊維状セルロース分散液10質量部に対し、希釈後のポリビニルアルコール水溶液が90質量部になるように混合して混合液を得た。該混合液を使用した以外は、実施例4と同様の操作を行い合計の厚みが50μmの積層シートを得た。
<Example 7>
In [Preparation 1 of Sheet] of Example 1, a mixed solution was obtained by mixing 10 parts by mass of the substituent-removed fine fibrous cellulose dispersion with 90 parts by mass of the diluted polyvinyl alcohol aqueous solution. The same operation as in Example 4 was performed except that the mixed solution was used, to obtain a laminated sheet having a total thickness of 50 μm.
<実施例8>
 実施例1の[シートの作製1]において、置換基除去微細繊維状セルロース分散液70質量部に対し、希釈後のポリビニルアルコール水溶液が30質量部になるように混合して混合液を得た。該混合液を使用した以外は、実施例4と同様の操作を行い合計の厚みが50μmの積層シートを得た。
<Example 8>
In [Preparation 1 of Sheet] of Example 1, 70 parts by mass of the substituent-removed fine fibrous cellulose dispersion was mixed with 30 parts by mass of the diluted polyvinyl alcohol aqueous solution to obtain a mixed solution. The same operation as in Example 4 was performed except that the mixed solution was used, to obtain a laminated sheet having a total thickness of 50 μm.
<実施例9>
 実施例1の[シートの作製1]において、置換基除去微細繊維状セルロース分散液90質量部に対し、希釈後のポリビニルアルコール水溶液が10質量部になるように混合して混合液を得た。該混合液を使用した以外は、実施例4と同様の操作を行い合計の厚みが50μmの積層シートを得た。
<Example 9>
In [Preparation 1 of Sheet] of Example 1, 90 parts by mass of the substituent-removed fine fibrous cellulose dispersion was mixed with 10 parts by mass of the diluted polyvinyl alcohol aqueous solution to obtain a mixed solution. The same operation as in Example 4 was performed except that the mixed solution was used, to obtain a laminated sheet having a total thickness of 50 μm.
<実施例10>
 実施例1の[シートの作製1]で得られた混合液を、シートの仕上がり厚さが50μmになるように計量して、市販のガラス板上に展開した。なお、所定の厚さとなるようガラス板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後140℃の乾燥機で1時間乾燥し、ガラス板から剥離することで、厚みが50μmのシートCを得た。次にシートCを反転させ、ガラス板剥離面の反対側の面をガラス板に貼付し、堰止用の枠(内寸200mm×200mm、高さ5cm)を配置し、この上から同じ混合液を仕上がり厚さが50μmになるように計量して展開し、140℃の乾燥機で1時間乾燥した。シートをガラス板から剥離することで、合計の厚みが100μmの積層シートを得た。
<Example 10>
The mixed solution obtained in [Preparation of Sheet 1] of Example 1 was weighed so that the finished thickness of the sheet was 50 μm, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. Then, it was dried in a dryer at 140 ° C. for 1 hour and peeled from the glass plate to obtain a sheet C having a thickness of 50 μm. Next, the sheet C is inverted, the surface opposite to the glass plate peeling surface is attached to the glass plate, a frame for damming (inner dimensions 200 mm × 200 mm, height 5 cm) is placed, and the same mixed solution is placed from above. Was weighed and developed so that the finished thickness was 50 μm, and dried in a dryer at 140 ° C. for 1 hour. By peeling the sheet from the glass plate, a laminated sheet having a total thickness of 100 μm was obtained.
<実施例11>
 実施例1の[シートの作製1]で得られた混合液を、シートの仕上がり厚さが50μmになるように計量して、市販のガラス板上に展開した。なお、所定の厚さとなるようガラス板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後140℃の乾燥機で1時間乾燥し、ガラス板から剥離することで、厚みが50μmのシートC(1層目)を得た。次にシートCを反転させ、ガラス板剥離面の反対側の面をガラス板に貼付し、堰止用の枠(内寸200mm×200mm、高さ5cm)を配置し、この上から同じ混合液を仕上がり厚さが50μmになるように混合液を軽量して展開し、140℃の乾燥機で1時間乾燥し(2層目)、更にその上から同じ混合液を仕上がり厚さが50μmになるように計量して展開し、140℃の乾燥機で1時間乾燥し(3層目)、ガラス板から剥離することで、合計の厚みが150μmのシートDを得た。次にシートDを反転させ、ガラス板剥離面の反対側の面をガラス板に貼付し、堰止用の枠(内寸150mm×150mm、高さ5cm)を配置し、上述した1層目上に同じ混合液を仕上がり厚さが50μmになるように軽計量して展開し、140℃の乾燥機で1時間乾燥し(4層目)、ガラス板から剥離することで、合計の厚みが200μmの積層シートを得た。なお、実施例11で得られた積層シートにおいては、4層目/1層目/2層目/3層目の順に積層されている。
<Example 11>
The mixed solution obtained in [Preparation of Sheet 1] of Example 1 was weighed so that the finished thickness of the sheet was 50 μm, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. Then, it was dried in a dryer at 140 ° C. for 1 hour and peeled from the glass plate to obtain a sheet C (first layer) having a thickness of 50 μm. Next, the sheet C is inverted, the surface opposite to the glass plate peeling surface is attached to the glass plate, a frame for damming (inner dimensions 200 mm × 200 mm, height 5 cm) is placed, and the same mixed liquid is placed from above. The mixed solution is lightly developed so that the finished thickness is 50 μm, dried in a dryer at 140 ° C. for 1 hour (second layer), and the same mixed solution is further applied on top of the mixed solution to a finished thickness of 50 μm. The sheet D was weighed and developed in such a manner, dried in a dryer at 140 ° C. for 1 hour (third layer), and peeled from the glass plate to obtain a sheet D having a total thickness of 150 μm. Next, the sheet D is inverted, the surface opposite to the glass plate peeling surface is attached to the glass plate, a frame for damming (inner dimensions 150 mm × 150 mm, height 5 cm) is arranged, and the above-mentioned first layer is above. The same mixed solution is lightly weighed and developed so that the finished thickness becomes 50 μm, dried in a dryer at 140 ° C. for 1 hour (4th layer), and peeled off from the glass plate to achieve a total thickness of 200 μm. Laminated sheet was obtained. In the laminated sheet obtained in Example 11, the fourth layer / the first layer / the second layer / the third layer are laminated in this order.
<実施例12>
 水酸基を有するアクリロイル基がグラフト重合したアクリル樹脂(大成ファインケミカル社製、アクリット8KX-012C、固形分濃度は39質量%)100質量部と、ポリイソシアネート化合物(旭化成ケミカルズ社製、TPA-100)38質量部と、メチルエチルケトン100質量部を混合して樹脂組成物を得た。次いで、実施例4で得た厚さ50μmの積層シートの一方の面に、バーコーターにて乾燥後3g/mとなるように塗布した後、100℃で1時間加熱して片面に樹脂層を含有する積層シートを得た。
<Example 12>
100 parts by mass of an acrylic resin graft-polymerized with an acryloyl group having a hydroxyl group (Acryt 8KX-012C, manufactured by Taisei Fine Chemicals Co., Ltd., solid content concentration is 39% by mass) and 38 parts by mass of a polyisocyanate compound (manufactured by Asahi Kasei Chemicals Co., Ltd., TPA-100). And 100 parts by mass of methyl ethyl ketone were mixed to obtain a resin composition. Next, the laminated sheet having a thickness of 50 μm obtained in Example 4 was coated with a bar coater so as to have a thickness of 3 g / m 2, and then heated at 100 ° C. for 1 hour to cover one surface with a resin layer. A laminated sheet containing the above was obtained.
<実施例13>
 変性ポリカーボネート樹脂(三菱ガス化学株式会社製、ユピゼータFPC-2136)15質量部、トルエン57質量部、メチルエチルケトン28質量部を混合し、樹脂塗工液を得た。次いで上記樹脂塗工液に密着助剤としてイソシアネート化合物(旭化成ケミカルズ株式会社製、デュラネートTPA-100)を2.25質量部添加し、混合して樹脂組成物を得た。次いで、上記樹脂組成物を、実施例4で得た厚さ50μmの積層シートの片面に、バーコーターにて乾燥後各々の面の乾燥後の塗布量が3g/mとなるように塗布した後、100℃で1時間加熱して硬化させた。さらに、反対面に同じ樹脂組成物をバーコーターにて乾燥後各々の面の乾燥後の塗布量が3g/mとなるように塗布した後、100℃で1時間加熱して硬化させた。このようにして、両面に樹脂層を含有する積層シートを得た。
<Example 13>
A modified polycarbonate resin (manufactured by Mitsubishi Gas Chemical Company, Inc., Iupizeta FPC-2136) was mixed with 15 parts by mass, 57 parts by mass of toluene, and 28 parts by mass of methyl ethyl ketone to obtain a resin coating liquid. Next, 2.25 parts by mass of an isocyanate compound (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Co., Ltd.) was added to the resin coating liquid as an adhesion aid and mixed to obtain a resin composition. Next, the above resin composition was applied to one surface of the 50 μm-thick laminated sheet obtained in Example 4 after drying with a bar coater so that the amount of each surface after drying was 3 g / m 2. Then, it was cured by heating at 100 ° C. for 1 hour. Further, the same resin composition was applied to the opposite surfaces with a bar coater so that the applied amount of each surface after drying was 3 g / m 2, and then heated at 100 ° C. for 1 hour to cure. In this way, a laminated sheet containing a resin layer on both sides was obtained.
<実施例14>
 実施例1における置換基除去処理を液温140℃で20分間行い、リン酸基量を0.40mmol/gとした。それ以外は、実施例4と同様の操作を行い、積層シートを得た。
<Example 14>
The substituent removal treatment in Example 1 was carried out at a liquid temperature of 140 ° C. for 20 minutes, and the amount of phosphate groups was 0.40 mmol / g. Other than that, the same operation as in Example 4 was performed to obtain a laminated sheet.
<実施例15>
 実施例1における置換基除去処理において、pH調整を行わず加熱処理を行い、リン酸基量を0.29mmol/gとした。それ以外は、実施例4と同様の操作を行い、積層シートを得た。
<Example 15>
In the substituent removal treatment in Example 1, the heat treatment was performed without adjusting the pH, and the amount of the phosphate group was set to 0.29 mmol / g. Other than that, the same operation as in Example 4 was performed to obtain a laminated sheet.
<実施例16>
 実施例1における置換基除去処理を、加熱処理ではなく下記の酵素処理で行い、さらに置換基除去後スラリーの洗浄処理を下記の方法で行った。それ以外は、実施例4と同様の操作を行い、積層シートを得た。
<Example 16>
The substituent removal treatment in Example 1 was carried out by the following enzyme treatment instead of the heat treatment, and the slurry was washed after the substituent removal by the following method. Other than that, the same operation as in Example 4 was performed to obtain a laminated sheet.
[置換基除去処理(酵素処理)]
 得られた微細繊維状セルロース分散液に、20質量%のクエン酸水溶液を添加し、スラリーをpH5.5に調整した。得られたスラリーに、酸性ホスファターゼ(新日本化学工業製スミチームPM)を微細繊維状セルロース100質量部に対して3質量部となるように添加し、37℃の湯浴中で2.5時間酵素処理を行った。この操作により微細繊維状セルロース凝集物の生成が確認された。
[Substituent removal treatment (enzyme treatment)]
A 20% by mass citric acid aqueous solution was added to the obtained fine fibrous cellulose dispersion to adjust the slurry to pH 5.5. Acid phosphatase (Sumiteam PM manufactured by Shin Nihon Kagaku Kogyo Co., Ltd.) was added to the obtained slurry so as to be 3 parts by mass with respect to 100 parts by mass of fine fibrous cellulose, and the enzyme was added to the obtained slurry in a hot water bath at 37 ° C. for 2.5 hours. Processing was performed. The formation of fine fibrous cellulose aggregates was confirmed by this operation.
[酵素処理による置換基除去後スラリーの洗浄処理]
 得られた置換基除去後スラリーに、体積で1/5の強塩基性イオン交換樹脂(アンバージェット4400;オルガノ株式会社、コンディショニング済)および弱酸性イオン交換樹脂(アンバーライトIRC76;オルガノ株式会社、コンディショニング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することによりスラリーを洗浄した。
[Washing treatment of slurry after removal of substituents by enzyme treatment]
The obtained slurry after removing the substituents contains a 1/5 volume of a strong basic ion exchange resin (Amberjet 4400; Organo Corporation, conditioned) and a weakly acidic ion exchange resin (Amberlite IRC76; Organo Corporation, conditioning). After adding (finished) and shaking for 1 hour, the slurry was washed by pouring it onto a mesh having an opening of 90 μm to separate the resin and the slurry.
<実施例17>
 製造例1で得られた微細繊維状セルロース分散液に代えて、製造例2で得られた微細繊維状セルロース分散液を用いた以外、実施例4と同様の操作を行い積層シートを得た。
<Example 17>
A laminated sheet was obtained by performing the same operation as in Example 4 except that the fine fibrous cellulose dispersion obtained in Production Example 2 was used instead of the fine fibrous cellulose dispersion obtained in Production Example 2.
<実施例18>
 製造例1で得られた微細繊維状セルロース分散液に代えて、製造例3で得られた微細繊維状セルロース分散液を用いた以外、実施例4と同様の操作を行い、積層シートを得た。
<Example 18>
A laminated sheet was obtained by performing the same operation as in Example 4 except that the fine fibrous cellulose dispersion obtained in Production Example 3 was used instead of the fine fibrous cellulose dispersion obtained in Production Example 3. ..
<実施例19>
 製造例1で得られた微細繊維状セルロース分散液に代えて、製造例4で得られた微細繊維状セルロース分散液を用いた以外、実施例4と同様の操作を行い、積層シートを得た。
<Example 19>
A laminated sheet was obtained by performing the same operation as in Example 4 except that the fine fibrous cellulose dispersion obtained in Production Example 4 was used instead of the fine fibrous cellulose dispersion obtained in Production Example 4. ..
<実施例20>
 製造例1で得られた微細繊維状セルロース分散液に代えて、製造例5で得られた微細繊維状セルロース分散液を用いた。さらに置換基除去処理(高温熱処理)の代わりに後述する置換基除去処理(低温熱処理)を行った以外、実施例4と同様の操作を行い、積層シートを得た。
<Example 20>
Instead of the fine fibrous cellulose dispersion obtained in Production Example 1, the fine fibrous cellulose dispersion obtained in Production Example 5 was used. Further, the same operation as in Example 4 was performed except that the substituent removal treatment (low temperature heat treatment) described later was performed instead of the substituent removal treatment (high temperature heat treatment) to obtain a laminated sheet.
[置換基除去(低温熱処理)]
 得られた微細繊維状セルロース分散液を、液温40℃で45分間加熱し、ザンテート基量が0.08mmol/g未満となるまで加熱を行った。
[Removal of substituents (low temperature heat treatment)]
The obtained fine fibrous cellulose dispersion was heated at a liquid temperature of 40 ° C. for 45 minutes until the amount of zantate groups became less than 0.08 mmol / g.
<実施例21>
 置換基除去後スラリーの均一分散処理を行わなかった以外は実施例4と同様にして、微細繊維状セルロース含有積層シートを得た。
<Example 21>
A laminated sheet containing fine fibrous cellulose was obtained in the same manner as in Example 4 except that the slurry was not uniformly dispersed after removing the substituent.
<実施例22>
 置換基除去後スラリーの均一分散処理を行わなかった以外は実施例18同様にして、微細繊維状セルロース含有積層シートを得た。
<Example 22>
A laminated sheet containing fine fibrous cellulose was obtained in the same manner as in Example 18 except that the slurry was not uniformly dispersed after removing the substituent.
<実施例23>
 置換基除去後スラリーの均一分散処理を行わなかった以外は実施例19と同様にして、微細繊維状セルロース含有積層シートを得た。
<Example 23>
A laminated sheet containing fine fibrous cellulose was obtained in the same manner as in Example 19 except that the slurry was not uniformly dispersed after removing the substituent.
<実施例24>
 置換基除去後スラリーの均一分散処理を行わなかった以外は実施例20と同様にして、微細繊維状セルロース含有積層シートを得た。
<Example 24>
A laminated sheet containing fine fibrous cellulose was obtained in the same manner as in Example 20 except that the slurry was not uniformly dispersed after removing the substituent.
<実施例25>
 イオン交換水に、(住友精化株式会社製、PEO-15)を6質量%になるように加え、室温で30分撹拌し、溶解した。以上の手順により、ポリエチレンオキサイド水溶液を得た。次いで、置換基除去微細繊維状セルロース分散液、および上記ポリエチレンオキサイド水溶液をそれぞれ固形分濃度が0.6質量%となるようにイオン交換水で希釈した。希釈後の置換基除去微細繊維状セルロース分散液50質量部に対し、希釈後のポリエチレンオキサイド水溶液が50質量部になるように混合して混合液を得た。該混合液をポリビニルアルコール水溶液の代わりに使用した以外は、実施例4と同様の操作を行い合計の厚みが50μmの積層シートを得た。
<Example 25>
(PEO-15, manufactured by Sumitomo Seika Chemical Co., Ltd.) was added to ion-exchanged water in an amount of 6% by mass, and the mixture was stirred at room temperature for 30 minutes to dissolve. By the above procedure, an aqueous polyethylene oxide solution was obtained. Next, the substituent-removed fine fibrous cellulose dispersion and the above polyethylene oxide aqueous solution were diluted with ion-exchanged water so that the solid content concentration was 0.6% by mass. A mixed solution was obtained by mixing 50 parts by mass of a diluted polyethylene oxide aqueous solution with 50 parts by mass of a fine fibrous cellulose dispersion for removing substituents after dilution. The same operation as in Example 4 was carried out except that the mixed solution was used in place of the polyvinyl alcohol aqueous solution to obtain a laminated sheet having a total thickness of 50 μm.
<比較例1>
 置換基除去微細繊維状セルロース分散液に代えて、製造例1で得た微細繊維状セルロース分散液を用い、該微細繊維状セルロース分散液50質量部に対し、希釈後のポリビニルアルコール水溶液が50質量部になるように混合し、混合液を得た。さらにシートの仕上がり厚さが25μmになるように混合液を計量して、市販のガラス板上に展開した。なお、所定の厚さとなるようガラス板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後140℃の乾燥機で1時間乾燥し、ガラス板から剥離することで、厚みが25μmのシートを得た。
<Comparative Example 1>
Instead of the substituent-removed fine fibrous cellulose dispersion, the fine fibrous cellulose dispersion obtained in Production Example 1 was used, and 50 parts by mass of the diluted polyvinyl alcohol aqueous solution was used with respect to 50 parts by mass of the fine fibrous cellulose dispersion. The mixture was mixed so as to form a part, and a mixed solution was obtained. Further, the mixed solution was weighed so that the finished thickness of the sheet was 25 μm, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. Then, it was dried in a dryer at 140 ° C. for 1 hour and peeled from the glass plate to obtain a sheet having a thickness of 25 μm.
<比較例2>
 置換基除去微細繊維状セルロース分散液に代えて、製造例3で得た微細繊維状セルロース分散液を用い、該微細繊維状セルロース分散液50質量部に対し、希釈後のポリビニルアルコール水溶液が50質量部になるように混合し、混合液を得た。さらにシートの仕上がり厚さ50μmになるように混合液を計量して、市販のガラス板上に展開した。なお、所定の厚さとなるようガラス板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後140℃の乾燥機で1時間乾燥し、ガラス板から剥離することで、厚みが50μmのシートを得た。
<Comparative Example 2>
Instead of the substituent-removed fine fibrous cellulose dispersion, the fine fibrous cellulose dispersion obtained in Production Example 3 was used, and 50 parts by mass of the diluted polyvinyl alcohol aqueous solution was used with respect to 50 parts by mass of the fine fibrous cellulose dispersion. The mixture was mixed so as to form a part, and a mixed solution was obtained. Further, the mixed solution was weighed so that the finished thickness of the sheet was 50 μm, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. Then, it was dried in a dryer at 140 ° C. for 1 hour and peeled from the glass plate to obtain a sheet having a thickness of 50 μm.
<比較例3>
 置換基除去微細繊維状セルロース分散液に代えて、製造例4で得た微細繊維状セルロース分散液を用い、該微細繊維状セルロース分散液50質量部に対し、希釈後のポリビニルアルコール水溶液が50質量部になるように混合し、混合液を得た。さらにシートの仕上がり厚さ50μmになるように混合液を計量して、市販のガラス板上に展開した。なお、所定の厚さとなるようガラス板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後140℃の乾燥機で1時間乾燥し、ガラス板から剥離することで、厚みが50μmのシートを得た。
<Comparative Example 3>
Instead of the substituent-removed fine fibrous cellulose dispersion, the fine fibrous cellulose dispersion obtained in Production Example 4 was used, and 50 parts by mass of the diluted polyvinyl alcohol aqueous solution was used with respect to 50 parts by mass of the fine fibrous cellulose dispersion. The mixture was mixed so as to form a part, and a mixed solution was obtained. Further, the mixed solution was weighed so that the finished thickness of the sheet was 50 μm, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. Then, it was dried in a dryer at 140 ° C. for 1 hour and peeled from the glass plate to obtain a sheet having a thickness of 50 μm.
<比較例4>
 置換基除去微細繊維状セルロース分散液に代えて、製造例5で得た微細繊維状セルロース分散液を用い、該微細繊維状セルロース分散液50質量部に対し、希釈後のポリビニルアルコール水溶液が50質量部になるように混合し、混合液を得た。さらにシートの仕上がり厚さ200μmになるように混合液を計量して、市販のガラス板上に展開した。なお、所定の厚さとなるようガラス板上には堰止用の枠(内寸250mm×250mm、高さ5cm)を配置した。その後140℃の乾燥機で1時間乾燥し、ガラス板から剥離することで、厚みが200μmのシートを得た。
<Comparative Example 4>
Instead of the substituent-removed fine fibrous cellulose dispersion, the fine fibrous cellulose dispersion obtained in Production Example 5 was used, and 50 parts by mass of the diluted polyvinyl alcohol aqueous solution was used with respect to 50 parts by mass of the fine fibrous cellulose dispersion. The mixture was mixed so as to form a part, and a mixed solution was obtained. Further, the mixed solution was weighed so that the finished thickness of the sheet was 200 μm, and developed on a commercially available glass plate. A dammed frame (inner size 250 mm × 250 mm, height 5 cm) was placed on the glass plate so as to have a predetermined thickness. Then, it was dried in a dryer at 140 ° C. for 1 hour and peeled from the glass plate to obtain a sheet having a thickness of 200 μm.
<比較例5>
 比較例1の混合液に代えて実施例1の混合液を用いた以外、比較例1と同様の操作を行い、シートを得た。
<Comparative Example 5>
A sheet was obtained by performing the same operation as in Comparative Example 1 except that the mixed solution of Example 1 was used instead of the mixed solution of Comparative Example 1.
<比較例6>
 比較例2の混合液に代えて実施例1の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 6>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 1 was used instead of the mixed solution of Comparative Example 2.
<比較例7>
 比較例4の混合液に代えて実施例1の混合液を用いた以外、比較例4と同様の操作を行い、シートを得た。
<Comparative Example 7>
A sheet was obtained by performing the same operation as in Comparative Example 4 except that the mixed solution of Example 1 was used instead of the mixed solution of Comparative Example 4.
<比較例8>
 比較例2の混合液に代えて実施例14の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 8>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 14 was used instead of the mixed solution of Comparative Example 2.
<比較例9>
 比較例2の混合液に代えて実施例15の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 9>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 15 was used instead of the mixed solution of Comparative Example 2.
<比較例10>
 比較例2の混合液に代えて実施例16の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 10>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 16 was used instead of the mixed solution of Comparative Example 2.
<比較例11>
 比較例2の混合液に代えて実施例17の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 11>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 17 was used instead of the mixed solution of Comparative Example 2.
<比較例12>
 比較例2の混合液に代えて実施例18の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 12>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 18 was used instead of the mixed solution of Comparative Example 2.
<比較例13>
 比較例2の混合液に代えて実施例19の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 13>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 19 was used instead of the mixed solution of Comparative Example 2.
<比較例14>
 比較例2の混合液に代えて実施例20の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 14>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 20 was used instead of the mixed solution of Comparative Example 2.
<比較例15>
 比較例2の混合液に代えて実施例21の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 15>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 21 was used instead of the mixed solution of Comparative Example 2.
<比較例16>
 比較例2の混合液に代えて実施例22の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 16>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 22 was used instead of the mixed solution of Comparative Example 2.
<比較例17>
 比較例2の混合液に代えて実施例23の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 17>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 23 was used instead of the mixed solution of Comparative Example 2.
<比較例18>
 比較例2の混合液に代えて実施例24の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 18>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 24 was used instead of the mixed solution of Comparative Example 2.
<比較例19>
 比較例2の混合液に代えて実施例7の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 19>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 7 was used instead of the mixed solution of Comparative Example 2.
<比較例20>
 比較例2の混合液に代えて実施例8の混合液を用いた以外、比較例2と同様の操作を行い、シートを得た。
<Comparative Example 20>
A sheet was obtained by performing the same operation as in Comparative Example 2 except that the mixed solution of Example 8 was used instead of the mixed solution of Comparative Example 2.
<比較例21>
 実施例12の積層シートに代えて比較例6で得た厚さ50μmのシートを用いた以外、実施例12と同様の操作を行い、シートを得た。
<Comparative Example 21>
A sheet was obtained by performing the same operation as in Example 12 except that the sheet having a thickness of 50 μm obtained in Comparative Example 6 was used instead of the laminated sheet of Example 12.
<比較例22>
 実施例13の積層シートに代えて比較例6で得た厚さ50μmのシートを用いた以外、実施例13と同様の操作を行い、シートを得た。
<Comparative Example 22>
A sheet was obtained by performing the same operation as in Example 13 except that the sheet having a thickness of 50 μm obtained in Comparative Example 6 was used instead of the laminated sheet of Example 13.
[評価]
 実施例及び比較例で得られた積層シートもしくはシートについて、下記の方法で評価を行った。
[evaluation]
The laminated sheets or sheets obtained in Examples and Comparative Examples were evaluated by the following methods.
[繊維幅の測定]
 繊維状セルロースの繊維幅を下記の方法で測定した。各繊維状セルロース分散液を、セルロースの濃度が0.01質量%以上0.1質量%以下となるように水で希釈し、親水化処理したカーボン膜被覆グリッド上にキャストした。これを乾燥した後、酢酸ウラニルで染色し、透過型電子顕微鏡(TEM、日本電子社製、JEOL-2000EX)により観察した。その際、得られた画像内に縦横任意の画像幅の軸を想定し、その軸に対し、20本以上の繊維が交差するよう、倍率を調節した。この条件を満たす観察画像を得た後、この画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交差する繊維の繊維幅を目視で読み取っていった。各分散液につき3枚の重複しない観察画像を撮影し、各々2つの軸に交差する繊維の繊維幅の値を読み取った(20本以上×2×3=120本以上)。なお、このようにして得られた繊維幅から数平均繊維幅を算出した。但し、実施例1~25および比較例5~22については、置換基除去微細繊維状セルロース分散液を、比較例1~4については微細繊維状セルロース分散液を使用して測定を行った。
[Measurement of fiber width]
The fiber width of the fibrous cellulose was measured by the following method. Each fibrous cellulose dispersion was diluted with water so that the concentration of cellulose was 0.01% by mass or more and 0.1% by mass or less, and cast onto a hydrophilized carbon film-coated grid. After drying this, it was stained with uranyl acetate and observed with a transmission electron microscope (TEM, manufactured by JEOL Ltd., JEOL-2000EX). At that time, an axis having an arbitrary vertical and horizontal image width was assumed in the obtained image, and the magnification was adjusted so that 20 or more fibers intersected the axis. After obtaining an observation image satisfying this condition, two random axes in each of the vertical and horizontal directions were drawn for this image, and the fiber width of the fibers intersecting the axes was visually read. Three non-overlapping observation images were taken for each dispersion, and the value of the fiber width of the fibers intersecting each of the two axes was read (20 or more × 2 × 3 = 120 or more). The number average fiber width was calculated from the fiber width obtained in this way. However, the measurements were carried out using the substituent-removed fine fibrous cellulose dispersion for Examples 1 to 25 and Comparative Examples 5 to 22, and the fine fibrous cellulose dispersion for Comparative Examples 1 to 4.
[リンオキソ酸基量の測定]
 リンオキソ酸基量(リン酸基もしくは亜リン酸基量)の測定においては、まず、対象となる微細繊維状セルロースにイオン交換水を添加し、固形分濃度が0.2質量%のスラリーを調製した。得られたスラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
 イオン交換樹脂による処理は、上記微細繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショニング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の微細繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を、5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図2)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値をリンオキソ酸基量(mmol/g)とした。
[Measurement of phosphorus oxo acid group amount]
In measuring the amount of phosphorous acid group (phosphoric acid group or phosphorous acid group amount), first, ion-exchanged water is added to the target fine fibrous cellulose to prepare a slurry having a solid content concentration of 0.2% by mass. bottom. The obtained slurry was treated with an ion exchange resin and then titrated with an alkali for measurement.
For the treatment with the ion exchange resin, a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) with a volume of 1/10 is added to the fine fibrous cellulose-containing slurry, and the mixture is shaken for 1 hour. This was done by pouring onto a mesh with an opening of 90 μm to separate the resin and the slurry.
In the titration using alkali, the pH value indicated by the slurry is changed while adding 10 μL of 0.1 N sodium hydroxide aqueous solution to the fine fibrous cellulose-containing slurry treated with the ion exchange resin every 5 seconds. Was performed by measuring. Titration was performed while blowing nitrogen gas into the slurry from 15 minutes before the start of titration. In this neutralization titration, two points are observed where the increment (differential value of pH with respect to the amount of alkaline drop) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 2). The amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociated acid in the slurry used for titration. Further, the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration. The amount of alkali (mmol) required from the start of titration to the first end point was divided by the solid content (g) in the slurry to be titrated, and the value was defined as the amount of phosphoroxo acid groups (mmol / g).
[スルホン基量の測定]
 スルホン基量は、次のように測定した。微細繊維状セルロースを冷凍庫で凍結させた後、凍結乾燥機(ラブコンコ社製FreeZone)で3日間乾燥させた。得られた凍結乾燥物をハンドミキサー(大阪ケミカル製、ラボミルサーPLUS)を用い、回転数20,000rpmで60秒、粉砕処理を行って粉末状にした。凍結乾燥及び粉砕処理後の試料を密閉容器中で硝酸を用いて加圧加熱分解した。その後、適宜希釈してICP-OESで硫黄量を測定した。供試した微細繊維状セルロースの絶乾質量で割り返して算出した値を硫酸エステル基量(単位:mmol/g)とした。
[Measurement of sulfone group amount]
The amount of sulfone groups was measured as follows. The fine fibrous cellulose was frozen in a freezer and then dried in a freeze-dryer (FreeZone manufactured by Loveconco) for 3 days. The obtained freeze-dried product was pulverized at a rotation speed of 20,000 rpm for 60 seconds using a hand mixer (manufactured by Osaka Chemical Co., Ltd., Lab Miller PLUS) to form a powder. The sample after freeze-drying and pulverization treatment was decomposed by heating under pressure using nitric acid in a closed container. Then, it was diluted appropriately and the amount of sulfur was measured by ICP-OES. The value calculated by dividing by the absolute dry mass of the fine fibrous cellulose tested was taken as the amount of sulfate ester groups (unit: mmol / g).
[ザンテート基量の測定]
 ザンテート基量は、Bredee法により測定した。具体的には、繊維状セルロース1.5質量部(絶乾質量)に飽和塩化アンモニウム溶液を40mL添加し、ガラス棒でサンプルを潰しながらよく混合し、約15分間放置後、GFPろ紙(ADVANTEC社製GS-25)でろ過して、飽和塩化アンモニウム溶液で十分に洗浄した。サンプルをGFPろ紙ごと500mLのトールビーカーに入れ、0.5M水酸化ナトリウム溶液(5℃)を50mL添加して撹拌した。15分間放置後、溶液がピンク色になるまでフェノールフタレイン溶液を添加した後、1.5M酢酸を添加して、溶液がピンク色から無色になった点を中和点とした。中和後蒸留水を250mL添加してよく撹拌し、1.5M酢酸10mL、0.05mol/Lヨウ素溶液10mLをホールピペットを使用して添加した。この溶液を0.05mol/Lチオ硫酸ナトリウム溶液で滴定した。チオ硫酸ナトリウムの滴定量、繊維状セルロースの絶乾質量より次式からザンテート基量を算出した。
 ザンテート基量(mmol/g)=(0.05×10×2-0.05×チオ硫酸ナトリウム滴定量(mL))/1000/繊維状セルロースの絶乾質量(g)
[Measurement of Zantate group amount]
The amount of zantate group was measured by the Bredee method. Specifically, 40 mL of saturated ammonium chloride solution was added to 1.5 parts by mass (absolute dry mass) of fibrous cellulose, mixed well while crushing the sample with a glass rod, left for about 15 minutes, and then GFP filter paper (ADVANTEC). It was filtered with GS-25) manufactured by GS-25) and thoroughly washed with a saturated ammonium chloride solution. The sample was placed in a 500 mL tall beaker together with the GFP filter paper, 50 mL of 0.5 M sodium hydroxide solution (5 ° C.) was added, and the mixture was stirred. After leaving for 15 minutes, a phenolphthalein solution was added until the solution turned pink, and then 1.5 M acetic acid was added, and the point at which the solution turned from pink to colorless was defined as a neutralization point. After neutralization, 250 mL of distilled water was added and stirred well, and 10 mL of 1.5 M acetic acid and 10 mL of 0.05 mol / L iodine solution were added using a whole pipette. This solution was titrated with a 0.05 mol / L sodium thiosulfate solution. The amount of zantate group was calculated from the following formula from the titration amount of sodium thiosulfate and the absolute dry mass of fibrous cellulose.
Zantate group amount (mmol / g) = (0.05 × 10 × 2-0.05 × sodium thiosulfate titration (mL)) / 1000 / Absolute dry mass of fibrous cellulose (g)
[積層シートの全光線透過率測定]
 JIS K 7361-1:1997に準拠し、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いて積層シートの全光線透過率を測定した。
[Measurement of total light transmittance of laminated sheet]
In accordance with JIS K 7631-1: 1997, the total light transmittance of the laminated sheet was measured using a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute).
[積層シートのヘーズ測定]
 JIS K 7136:2000に準拠し、ヘーズメーター(村上色彩技術研究所社製、HM-150)を用いて積層シートのヘーズを測定した。
[Haze measurement of laminated sheet]
According to JIS K 7136: 2000, the haze of the laminated sheet was measured using a haze meter (HM-150 manufactured by Murakami Color Technology Research Institute).
[積層シートの加熱前後の黄色度測定]
 JIS K 7373:2006に準拠し、Colour Cute i(スガ試験機株式会社製)を用いて積層シートの加熱前後の黄色度(YI値)を測定した。なお、加熱後のYI値は、160℃で6時間加熱した積層シートのYI値とした。また、下記の方法でYI増加率を測定した。
 YI増加率(%)=(加熱後のシートのYI値-加熱前のシートのYI値)/加熱前のシートのYI値×100
[Measurement of yellowness before and after heating of laminated sheet]
According to JIS K 7373: 2006, the yellowness (YI value) of the laminated sheet before and after heating was measured using Color Cute i (manufactured by Suga Test Instruments Co., Ltd.). The YI value after heating was the YI value of the laminated sheet heated at 160 ° C. for 6 hours. In addition, the YI increase rate was measured by the following method.
YI increase rate (%) = (YI value of the sheet after heating-YI value of the sheet before heating) / YI value of the sheet before heating × 100
[カール測定]
 得られた積層シートを100mm四方にカットし、23℃、相対湿度50%の環境下で、平らな場所に4時間以上放置した。放置後の四隅の高さ(mm)を測定し、その平均値をカールの測定値とした。なお、極端にシートがカールし丸まってしまう場合には∞とした。
[Curl measurement]
The obtained laminated sheet was cut into 100 mm squares and left on a flat place for 4 hours or more in an environment of 23 ° C. and a relative humidity of 50%. The heights (mm) of the four corners after being left to stand were measured, and the average value was taken as the measured value of curl. If the sheet is extremely curled and curled, it is set to ∞.
[C/O比の算出(繊維層の微細繊維セルロースの偏在評価)]
 繊維層における微細繊維セルロースの分布は、XPS(X線光電子分光分析)により炭素Cと酸素Oのatomic%の比率(C/O比)を算出することで把握した。分析対象が積層シートである場合、XPSによる炭素Cと酸素Oのatomic%の比率は積層シート表裏面と各層の境界面について算出した。例えば、各繊維層の厚みが25μmであり、この繊維層を2層積層して得られた、厚みが50μmの積層シートにおいて、XPS分析を行う場合、積層シート表面のXPS分析を行った後に、積層シートを市販の剃刀で丁寧に削っていき、表層から25μm削った箇所のXPS分析を行い、同様にして積層シートの裏面のXPS分析を行った後に、積層シートを市販の剃刀で丁寧に削っていき、表層から25μm削った箇所のXPS分析を行った。XPS分析では、測定深さ5nmとして測定を行った。なお、削る面積は1mm四方あれば十分だが、操作の都合上、さらに大きな面積を削っても問題ない。積層シートが樹脂層を有する場合は、MEK等の溶剤で樹脂層を拭き取り繊維層を露出させた後に上記測定を行った。
[Calculation of C / O ratio (evaluation of uneven distribution of fine fiber cellulose in the fiber layer)]
The distribution of fine fiber cellulose in the fiber layer was grasped by calculating the ratio (C / O ratio) of atomic% of carbon C and oxygen O by XPS (X-ray photoelectron spectroscopy). When the analysis target was a laminated sheet, the ratio of carbon C and oxygen O atomic% by XPS was calculated for the front and back surfaces of the laminated sheet and the boundary surface of each layer. For example, in the case of performing XPS analysis on a laminated sheet having a thickness of 50 μm obtained by laminating two layers of each fiber layer having a thickness of 25 μm, after performing XPS analysis on the surface of the laminated sheet, Carefully scrape the laminated sheet with a commercially available razor, perform XPS analysis of the part cut 25 μm from the surface layer, perform XPS analysis of the back surface of the laminated sheet in the same way, and then carefully scrape the laminated sheet with a commercially available razor. Then, XPS analysis was performed on the portion cut 25 μm from the surface layer. In the XPS analysis, the measurement was performed at a measurement depth of 5 nm. It should be noted that a 1 mm square is sufficient for the area to be scraped, but there is no problem even if a larger area is scraped for convenience of operation. When the laminated sheet had a resin layer, the above measurement was performed after wiping the resin layer with a solvent such as MEK to expose the fiber layer.
[積層シート表面pHの測定]
 得られた積層シート表面の1cm四方の範囲内に10μLのイオン交換水をマイクロピペットで滴下し、その部分のpHをフラット形pH複合電極(6261-10C;HORIBA製)を用いて測定した。シートの表側と裏側について測定を行い、その平均値を当該シートの表面pHとした。
[Measurement of laminated sheet surface pH]
10 μL of ion-exchanged water was dropped into a 1 cm square area on the surface of the obtained laminated sheet with a micropipette, and the pH of that portion was measured using a flat pH composite electrode (6261-10C; manufactured by HORIBA). Measurements were made on the front and back sides of the sheet, and the average value was taken as the surface pH of the sheet.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
AC:アクリル
PIC:ポリイソシアネート
PC:ポリカーボネート
OSi:オルガノシラン
AC: Acrylic PIC: Polyisocyanate PC: Polycarbonate OSI: Organosilane
 実施例で得られた積層シートにおいては、耐黄変性と耐カール性が両立されていた。 In the laminated sheet obtained in the examples, both yellowing resistance and curl resistance were achieved.
<実施例101>
(樹脂フィルムとの積層)
 変性ポリカーボネート樹脂(三菱ガス化学株式会社製、ユピゼータFPC-2136)15質量部、トルエン57質量部、メチルエチルケトン28質量部を混合し、樹脂塗工液を得た。次いで上記樹脂塗工液に密着助剤としてイソシアネート化合物(旭化成ケミカルズ株式会社製、デュラネートTPA-100)を2.25質量部添加し、混合して樹脂組成物を得た。次いで、上記樹脂組成物を、樹脂フィルムとして厚さ0.3mmのポリカーボネートシート(帝人株式会社製、パンライトPC-2151)の片面に、バーコーターにて乾燥後の塗布量が3g/mとなるように塗布した後、100℃で1時間加熱して硬化させた。その後、実施例1におけるシートの作製1の市販のガラス板の代わりに上記樹脂フィルムと樹脂組成物の積層体を用いて実施例1におけるシートの作製1と同様の操作を行い、25μmの積層シートと樹脂フィルムの積層体を得た。
<Example 101>
(Laminating with resin film)
A modified polycarbonate resin (manufactured by Mitsubishi Gas Chemical Company, Inc., Iupizeta FPC-2136) was mixed with 15 parts by mass, 57 parts by mass of toluene, and 28 parts by mass of methyl ethyl ketone to obtain a resin coating liquid. Next, 2.25 parts by mass of an isocyanate compound (Duranate TPA-100, manufactured by Asahi Kasei Chemicals Co., Ltd.) was added to the resin coating liquid as an adhesion aid and mixed to obtain a resin composition. Next, the above resin composition was applied to one side of a polycarbonate sheet (manufactured by Teijin Limited, Panlite PC-2151) having a thickness of 0.3 mm as a resin film, and the amount applied after drying with a bar coater was 3 g / m 2 . After the coating was applied so as to be, it was cured by heating at 100 ° C. for 1 hour. Then, instead of the commercially available glass plate of the sheet preparation 1 in Example 1, the same operation as in the sheet preparation 1 in Example 1 was performed using the laminate of the resin film and the resin composition, and the laminated sheet of 25 μm was performed. And a laminate of resin film was obtained.
<実施例102>
 特殊変性ポリエステル樹脂(荒川化学工業株式会社製、アラコートAP2510)76質量部、硬化剤(荒川化学工業株式会社製、CL2502)10質量部、メチルエチルケトン14質量部を混合し、樹脂組成物を得た。次いで、上記樹脂組成物を、樹脂フィルムとして厚さ0.35mmのポリエステルシート(東レ株式会社製、ルミラーS10)の片面に、バーコーターにて乾燥後の塗布量が3g/mとなるように塗布した後、100℃で1時間加熱して硬化させた。その後、市販のガラス板の代わりに上記樹脂フィルムと樹脂組成物の積層体を用いて実施例1におけるシートの作製1と同様の操作を行い、繊維層が25μmである積層シートと樹脂フィルムの積層体を得た。
<Example 102>
A resin composition was obtained by mixing 76 parts by mass of a specially modified polyester resin (Arakawa Chemical Industry Co., Ltd., Alacoat AP2510), 10 parts by mass of a curing agent (CL2502 manufactured by Arakawa Chemical Industry Co., Ltd.), and 14 parts by mass of methyl ethyl ketone. Next, the above resin composition was applied to one side of a polyester sheet (manufactured by Toray Industries, Inc., Lumirror S10) having a thickness of 0.35 mm as a resin film so that the amount of the resin composition after drying with a bar coater was 3 g / m 2. After coating, it was cured by heating at 100 ° C. for 1 hour. Then, the same operation as in Preparation 1 of the sheet in Example 1 was performed using the laminated body of the resin film and the resin composition instead of the commercially available glass plate, and the laminated sheet and the resin film having a fiber layer of 25 μm were laminated. I got a body.
<実施例103>
 実施例13で得た積層シートを100mm角にトリミングしたものを2枚用意した。寸法100mm角、厚み0.5mmのポリカーボネート板を、この積層シート2枚で挟み、さらにこれらを寸法200mm角のステンレス板2枚で挟んだ。その後、常温に設定したミニテストプレス(東洋精機工業社製、MP-WCH)に挿入して0.2MPaのプレス圧力下、3分かけて160℃まで昇温した。この状態で30秒間保持した後、3分かけて30℃まで冷却した。上記の手順により、ポリカーボネート板との積層体を得た。
<Example 103>
Two laminated sheets obtained in Example 13 trimmed to a 100 mm square were prepared. A polycarbonate plate having a size of 100 mm square and a thickness of 0.5 mm was sandwiched between two laminated sheets, and these were further sandwiched between two stainless steel plates having a size of 200 mm square. Then, it was inserted into a mini test press (manufactured by Toyo Seiki Kogyo Co., Ltd., MP-WCH) set at room temperature, and the temperature was raised to 160 ° C. over 3 minutes under a press pressure of 0.2 MPa. After holding in this state for 30 seconds, it was cooled to 30 ° C. over 3 minutes. By the above procedure, a laminated body with a polycarbonate plate was obtained.
<実施例104>
 特殊変性ポリエステル樹脂(荒川化学工業株式会社製、アラコートAP2510)76質量部、硬化剤(荒川化学工業株式会社製、CL2502)10質量部、メチルエチルケトン14質量部を混合し、樹脂組成物を得た。次いで、上記樹脂組成物を、実施例4で得た厚さ50μmの積層シートの片面に、バーコーターにて乾燥後の塗布量が3g/mとなるように塗布した後、100℃で1時間加熱して硬化させた。さらに、反対面に同じ樹脂組成物をバーコーターにて乾燥後の塗布量が3g/mとなるように塗布した後、100℃で1時間加熱して硬化させた。このようにして、両面に樹脂層を含有する積層シートを得た。実施例13の積層シートを用いる代わりに上記の積層シートを用い、ポリカーボネート板の代わりにポリエチレンテレフタレート板を用いる以外は実施例103と同様にして、ポリエチレンテレフタレート板との積層体を得た。
<Example 104>
A resin composition was obtained by mixing 76 parts by mass of a specially modified polyester resin (Arakawa Chemical Industry Co., Ltd., Alacoat AP2510), 10 parts by mass of a curing agent (CL2502 manufactured by Arakawa Chemical Industry Co., Ltd.), and 14 parts by mass of methyl ethyl ketone. Next, the above resin composition was applied to one side of the 50 μm-thick laminated sheet obtained in Example 4 with a bar coater so that the coating amount after drying was 3 g / m 2, and then 1 at 100 ° C. Heated for hours to cure. Further, the same resin composition was applied to the opposite surface with a bar coater so that the coating amount after drying was 3 g / m 2, and then heated at 100 ° C. for 1 hour to cure. In this way, a laminated sheet containing a resin layer on both sides was obtained. A laminated body with a polyethylene terephthalate plate was obtained in the same manner as in Example 103 except that the above-mentioned laminated sheet was used instead of the laminated sheet of Example 13 and a polyethylene terephthalate plate was used instead of the polycarbonate plate.
10   繊維層(第1の繊維層)
20   繊維層(第2の繊維層)
100 積層シート
10 Fiber layer (first fiber layer)
20 Fiber layer (second fiber layer)
100 laminated sheets

Claims (20)

  1.  置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下である繊維状セルロースを含む繊維層を2層以上直接積層してなる積層シートであって、
     各繊維層は、厚み方向において、前記繊維状セルロースの含有率が異なる、積層シート。
    A laminated sheet obtained by directly laminating two or more fiber layers containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less.
    Each fiber layer is a laminated sheet in which the content of the fibrous cellulose differs in the thickness direction.
  2.  前記繊維層は、含酸素有機化合物をさらに含み、前記含酸素有機化合物の炭素Cと酸素Oのatomic%の比率は1.8以上である、請求項1に記載の積層シート。 The laminated sheet according to claim 1, wherein the fiber layer further contains an oxygen-containing organic compound, and the ratio of carbon C to oxygen O in the oxygen-containing organic compound is 1.8 or more.
  3.  前記積層シートにおける表裏面の炭素Cと酸素Oのatomic%の比率の差が0.2以下である、請求項2に記載の積層シート。 The laminated sheet according to claim 2, wherein the difference in the ratio of carbon C and oxygen O on the front and back surfaces of the laminated sheet is 0.2 or less.
  4.  置換基導入量が0.5mmol/g未満であり、かつ繊維幅が1000nm以下である繊維状セルロースを含む繊維層を2層直接積層してなる積層シートであって、
     各繊維層が接する面側に前記繊維状セルロースが偏在している、請求項1~3のいずれか1項に記載の積層シート。
    A laminated sheet obtained by directly laminating two fiber layers containing fibrous cellulose having a substituent introduction amount of less than 0.5 mmol / g and a fiber width of 1000 nm or less.
    The laminated sheet according to any one of claims 1 to 3, wherein the fibrous cellulose is unevenly distributed on the surface side in which each fiber layer is in contact.
  5.  前記置換基がアニオン性基である、請求項1~4のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 4, wherein the substituent is an anionic group.
  6.  前記アニオン性基が、リンオキソ酸基又はリンオキソ酸基に由来する官能基である、請求項5に記載の積層シート。 The laminated sheet according to claim 5, wherein the anionic group is a phosphoric acid group or a functional group derived from a phosphoric acid group.
  7.  前記繊維状セルロースはカルバミド基を有する、請求項1~6のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 6, wherein the fibrous cellulose has a carbamide group.
  8.  前記繊維層の全体厚みは20μm以上である、請求項1~7のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 7, wherein the total thickness of the fiber layer is 20 μm or more.
  9.  前記繊維層の全体密度は1.0g/cm以上である、請求項1~8のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 8, wherein the total density of the fiber layer is 1.0 g / cm 3 or more.
  10.  前記繊維層に含まれる繊維状セルロースの数平均繊維幅が1~10nmである、請求項1~9のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 9, wherein the number average fiber width of the fibrous cellulose contained in the fiber layer is 1 to 10 nm.
  11.  前記繊維層の少なくとも一方の面側に樹脂層をさらに有する、請求項1~10のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 10, further comprising a resin layer on at least one surface side of the fiber layer.
  12.  前記樹脂層は、前記繊維層に直接積層されている、請求項11に記載の積層シート。 The laminated sheet according to claim 11, wherein the resin layer is directly laminated on the fiber layer.
  13.  前記樹脂層は、ポリカーボネート樹脂及びアクリル樹脂から選択される少なくとも1種を含む、請求項11又は12に記載の積層シート。 The laminated sheet according to claim 11 or 12, wherein the resin layer contains at least one selected from a polycarbonate resin and an acrylic resin.
  14.  前記樹脂層は、密着助剤をさらに含む、請求項11~13のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 11 to 13, wherein the resin layer further contains an adhesion aid.
  15.  前記密着助剤はイソシアネート化合物及び有機ケイ素化合物から選択される少なくとも1種である、請求項14に記載の積層シート。 The laminated sheet according to claim 14, wherein the adhesion aid is at least one selected from an isocyanate compound and an organosilicon compound.
  16.  前記密着助剤はイソシアネート化合物であり、前記イソシアネート化合物の含有量は前記樹脂層に含まれる樹脂100質量部に対して10質量部以上40質量部以下である、請求項14又は15に記載の積層シート。 The laminate according to claim 14 or 15, wherein the adhesion aid is an isocyanate compound, and the content of the isocyanate compound is 10 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the resin contained in the resin layer. Sheet.
  17.  YI値が2.5以下である、請求項1~16のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 16, wherein the YI value is 2.5 or less.
  18.  ヘーズが80%以下である、請求項1~17のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 17, wherein the haze is 80% or less.
  19.  光学部材用である、請求項1~18のいずれか1項に記載の積層シート。 The laminated sheet according to any one of claims 1 to 18, which is for an optical member.
  20.  請求項1~19のいずれか1項に記載の積層シートと、被着体とを含む積層体。 A laminated body including the laminated sheet according to any one of claims 1 to 19 and an adherend.
PCT/JP2021/019069 2020-05-19 2021-05-19 Laminated sheet WO2021235500A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022524522A JPWO2021235500A1 (en) 2020-05-19 2021-05-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020087682 2020-05-19
JP2020-087682 2020-05-19

Publications (1)

Publication Number Publication Date
WO2021235500A1 true WO2021235500A1 (en) 2021-11-25

Family

ID=78707911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019069 WO2021235500A1 (en) 2020-05-19 2021-05-19 Laminated sheet

Country Status (2)

Country Link
JP (1) JPWO2021235500A1 (en)
WO (1) WO2021235500A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176049A1 (en) * 2012-05-21 2013-11-28 王子ホールディングス株式会社 Method for producing fine fiber and fine-fiber-containing sheet
WO2015182438A1 (en) * 2014-05-26 2015-12-03 王子ホールディングス株式会社 Method for manufacturing fine fiber and fine-fiber-containing sheet, sheet obtained using said method, and resin complex in which resin is layered
WO2017073555A1 (en) * 2015-10-27 2017-05-04 王子ホールディングス株式会社 Laminated sheet and laminate
WO2017126432A1 (en) * 2016-01-20 2017-07-27 王子ホールディングス株式会社 Laminate and method for producing laminate
JP6680392B1 (en) * 2018-12-28 2020-04-15 王子ホールディングス株式会社 Fibrous cellulose production method, fibrous cellulose dispersion and sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176049A1 (en) * 2012-05-21 2013-11-28 王子ホールディングス株式会社 Method for producing fine fiber and fine-fiber-containing sheet
WO2015182438A1 (en) * 2014-05-26 2015-12-03 王子ホールディングス株式会社 Method for manufacturing fine fiber and fine-fiber-containing sheet, sheet obtained using said method, and resin complex in which resin is layered
WO2017073555A1 (en) * 2015-10-27 2017-05-04 王子ホールディングス株式会社 Laminated sheet and laminate
WO2017126432A1 (en) * 2016-01-20 2017-07-27 王子ホールディングス株式会社 Laminate and method for producing laminate
JP6680392B1 (en) * 2018-12-28 2020-04-15 王子ホールディングス株式会社 Fibrous cellulose production method, fibrous cellulose dispersion and sheet

Also Published As

Publication number Publication date
JPWO2021235500A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP7283606B2 (en) LAMINATED PRODUCT AND METHOD FOR MANUFACTURING LAMINATED BODY
EP3677653A1 (en) Fibrous-cellulose-containing composition and coating
US11034806B2 (en) Resin composite and method for producing resin composite
WO2021235501A1 (en) Microfilament-like cellulose, dispersion liquid, sheet, layered sheet, laminate, and method for producing microfilament-like cellulose
JP2021004374A (en) Method for producing fibrous cellulose, fibrous cellulose dispersion, and sheet
EP3730542A1 (en) Sheet
JP6988269B2 (en) Fibrous Cellulose-Containing Compositions and Paints
JP6617576B2 (en) Laminate and method for producing laminate
JP2020105473A (en) Fibrous cellulose, fibrous cellulose-containing material, formed body, and method for producing fibrous cellulose
WO2021235500A1 (en) Laminated sheet
WO2021107079A1 (en) Method for producing laminate
WO2020138159A1 (en) Fibrous cellulose, fibrous cellulose-containing substance, molded body, and method for producing fibrous cellulose
JP2021181673A (en) Laminated sheet
JP6965912B2 (en) Laminated body and manufacturing method of laminated body
JP6828759B2 (en) Sheets and laminates
EP4293069A1 (en) Sheet and layered body
JP6696600B1 (en) Fibrous cellulose-containing composition and paint
JP7126982B2 (en) sheet
JP2021144220A (en) Lens, optical member, and optical member laminate
WO2019203239A1 (en) Sheet and layered product
JP2022175939A (en) sheet
JP2022157194A (en) Fibrous cellulose, dispersion and sheet
JP2020204041A (en) Fibrous cellulose, fibrous cellulose containing material, molding and method for manufacturing fibrous cellulose
JP2021175800A (en) Sheet and laminate
JP2020109190A (en) Fibrous cellulose, fibrous cellulose-containing material, formed body, and method for producing fibrous cellulose

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524522

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809773

Country of ref document: EP

Kind code of ref document: A1