JP2020204041A - Fibrous cellulose, fibrous cellulose containing material, molding and method for manufacturing fibrous cellulose - Google Patents

Fibrous cellulose, fibrous cellulose containing material, molding and method for manufacturing fibrous cellulose Download PDF

Info

Publication number
JP2020204041A
JP2020204041A JP2020151087A JP2020151087A JP2020204041A JP 2020204041 A JP2020204041 A JP 2020204041A JP 2020151087 A JP2020151087 A JP 2020151087A JP 2020151087 A JP2020151087 A JP 2020151087A JP 2020204041 A JP2020204041 A JP 2020204041A
Authority
JP
Japan
Prior art keywords
fibrous cellulose
acid group
cellulose
group
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020151087A
Other languages
Japanese (ja)
Inventor
優作 今村
Yusaku IMAMURA
優作 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2020151087A priority Critical patent/JP2020204041A/en
Publication of JP2020204041A publication Critical patent/JP2020204041A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Paper (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

To provide fibrous cellulose having a phosphorus oxo acid group and excellent in heat resistance.SOLUTION: The present invention relates to fibrous cellulose including a phosphate group and a phosphorous acid group. The method for manufacturing the fibrous cellulose includes the step of mixing a compound having a phosphate group and/or a salt thereof, a compound having a phosphorous acid group and/or a salt thereof and urea and/or an urea derivative with a cellulose raw material to obtain a cellulose raw material having a phosphate group and a phosphorous acid group.SELECTED DRAWING: None

Description

本発明は、繊維状セルロース、繊維状セルロース含有物、成形体及び繊維状セルロースの製造方法に関する。 The present invention relates to fibrous cellulose, a fibrous cellulose-containing material, a molded product, and a method for producing fibrous cellulose.

従来、セルロース繊維は、衣料や吸収性物品、紙製品等に幅広く利用されている。セルロース繊維としては、繊維径が10μm以上50μm以下の繊維状セルロースに加えて、繊維径が1μm以下の微細繊維状セルロースも知られている。微細繊維状セルロースは、新たな素材として注目されており、その用途は多岐にわたる。例えば、微細繊維状セルロースを含むシートや樹脂複合体、増粘剤の開発が進められている。 Conventionally, cellulose fibers have been widely used in clothing, absorbent articles, paper products and the like. As the cellulose fibers, in addition to fibrous cellulose having a fiber diameter of 10 μm or more and 50 μm or less, fine fibrous cellulose having a fiber diameter of 1 μm or less is also known. Fine fibrous cellulose is attracting attention as a new material, and its uses are diverse. For example, development of sheets containing fine fibrous cellulose, resin composites, and thickeners is underway.

微細繊維状セルロースは、従来のセルロース繊維を機械処理することで製造可能であるが、セルロース繊維同士は水素結合により、強く結合している。したがって、単純に機械処理を行うのみでは、微細繊維状セルロースを得るまでに膨大なエネルギーが必要となる。より小さな機械処理エネルギーで微細繊維状セルロースを製造するためには、機械処理と合わせて、化学処理や生物処理といった前処理を行うことが有効であることが知られている。特に、化学処理により、セルロース表面のヒドロキシ基に親水性の官能基(例えば、カルボキシ基、カチオン基、リン酸基など)を導入すると、イオン同士の電気的な反発が生じ、かつイオンが水和することで、特に水系溶媒への分散性が著しく向上する。このため、化学処理を施さない場合に比べて微細化のエネルギー効率が高くなる。 Fine fibrous cellulose can be produced by mechanically treating conventional cellulose fibers, but the cellulose fibers are strongly bonded to each other by hydrogen bonds. Therefore, a huge amount of energy is required to obtain fine fibrous cellulose by simply performing mechanical treatment. It is known that in order to produce fine fibrous cellulose with smaller mechanical processing energy, it is effective to perform pretreatment such as chemical treatment and biological treatment in addition to mechanical treatment. In particular, when a hydrophilic functional group (for example, a carboxy group, a cation group, a phosphoric acid group, etc.) is introduced into a hydroxy group on the surface of cellulose by chemical treatment, electrical repulsion between ions occurs and the ions are hydrated. By doing so, the dispersibility in an aqueous solvent is remarkably improved. Therefore, the energy efficiency of miniaturization is higher than that in the case where no chemical treatment is performed.

例えば、特許文献1及び2には、リン酸基が、セルロースのヒドロキシ基とエステルを形成したリン酸化微細繊維状セルロースが開示されている。また、特許文献3には、セルロース繊維のヒドロキシ基の一部に亜リン酸のエステルが導入されてなるセルロース微細繊維及びその製造方法が開示されている。 For example, Patent Documents 1 and 2 disclose phosphorylated fine fibrous cellulose in which a phosphoric acid group forms an ester with a hydroxy group of cellulose. Further, Patent Document 3 discloses a cellulose fine fiber in which an ester of phosphorous acid is introduced into a part of the hydroxy group of the cellulose fiber, and a method for producing the same.

特開2015−189698号公報JP 2015-189698 国際公開第2014/185505号International Publication No. 2014/185505 特開2018−141249号公報JP-A-2018-141249

上述したように、リンオキソ酸基を有する繊維状セルロースが知られている。ここで、本発明者らが、リンオキソ酸基を有する繊維状セルロースについて検討を進めたところ、従来のリンオキソ酸基を有する繊維状セルロースにおいては、耐熱性に改善の余地があることが分かった。 As mentioned above, fibrous cellulose having a phosphorus oxo acid group is known. Here, when the present inventors proceeded with the study on the fibrous cellulose having a phosphoric acid group, it was found that there is room for improvement in the heat resistance of the conventional fibrous cellulose having a phosphoric acid group.

そこで本発明者らは、このような従来技術の課題を解決するために、リンオキソ酸基を有する繊維状セルロースであって、耐熱性に優れた繊維状セルロースを提供することを目的として検討を進めた。 Therefore, in order to solve the problems of the prior art, the present inventors have proceeded with studies for the purpose of providing a fibrous cellulose having a phosphorus oxo acid group and having excellent heat resistance. It was.

上記の課題を解決するために鋭意検討を行った結果、本発明者らは、繊維状セルロースにリン酸基及び亜リン酸基の両方を導入することにより、繊維状セルロースの耐熱性を高め得ることを見出した。
具体的に、本発明は、以下の構成を有する。
As a result of diligent studies to solve the above problems, the present inventors can enhance the heat resistance of the fibrous cellulose by introducing both a phosphoric acid group and a phosphorous acid group into the fibrous cellulose. I found that.
Specifically, the present invention has the following configuration.

[1] リン酸基及び亜リン酸基を含む繊維状セルロース。
[2] 繊維状セルロースにおける第1解離酸量をA1とし、繊維状セルロースにおける総解離酸量をA2とした場合、A1/A2の値が0.51以上0.97以下であり、A2とA1の差が0.04mmol/g以上である[1]に記載の繊維状セルロース。
[3] [1]又は[2]に記載の繊維状セルロースを含む繊維状セルロース含有物。
[4] [1]又は[2]に記載の繊維状セルロース、もしくは、[3]に記載の繊維状セルロース含有物から形成される成形体。
[5] シート状である[4]に記載の成形体。
[6] セルロース原料に対し、リン酸基を有する化合物及び/又はその塩と、亜リン酸基を有する化合物及び/又はその塩と、尿素及び/又は尿素誘導体とを混合し、リン酸基及び亜リン酸基を有するセルロース原料を得る工程を含む繊維状セルロースの製造方法。
[7] セルロース原料を得る工程では、リン酸基を有する化合物及び/又はその塩と、亜リン酸基を有する化合物及び/又はその塩のモル比率が0.01:99.99〜99.99:0.01となるように混合する[6]に記載の繊維状セルロースの製造方法。
[1] Fibrous cellulose containing a phosphoric acid group and a phosphorous acid group.
[2] When the amount of the first dissociating acid in the fibrous cellulose is A1 and the total amount of the dissociating acid in the fibrous cellulose is A2, the values of A1 / A2 are 0.51 or more and 0.97 or less, and A2 and A1. The fibrous cellulose according to [1], wherein the difference between the two is 0.04 mmol / g or more.
[3] A fibrous cellulose-containing material containing the fibrous cellulose according to [1] or [2].
[4] A molded product formed from the fibrous cellulose according to [1] or [2] or the fibrous cellulose-containing material according to [3].
[5] The molded product according to [4], which is in the form of a sheet.
[6] A compound having a phosphoric acid group and / or a salt thereof, a compound having a phosphorous acid group and / or a salt thereof, and a urea and / or a urea derivative are mixed with the cellulose raw material to obtain a phosphoric acid group and / or a salt thereof. A method for producing fibrous cellulose, which comprises a step of obtaining a cellulose raw material having a phosphorous acid group.
[7] In the step of obtaining the cellulose raw material, the molar ratio of the compound having a phosphoric acid group and / or a salt thereof and the compound having a phosphorous acid group and / or a salt thereof is 0.01: 99.99 to 99.99. The method for producing fibrous cellulose according to [6], which is mixed so as to be 0.01.

本発明によれば、リンオキソ酸基を有する繊維状セルロースであって、耐熱性に優れた繊維状セルロースを得ることができる。 According to the present invention, it is possible to obtain a fibrous cellulose having a phosphorus oxo acid group and having excellent heat resistance.

図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of NaOH added dropwise and the pH of a fibrous cellulose-containing slurry having a phosphorus oxo acid group. 図2は、R(%)(製造時のリンオキソ酸基導入工程における、リン酸と亜リン酸の添加量のうち亜リン酸が占めるモル比率)に対するTd10(℃)(10%重量減温度)の関係を示したグラフである。FIG. 2 shows Td10 (° C.) (10% weight reduction temperature) with respect to R (%) (the molar ratio of phosphorous acid to the amount of phosphoric acid added in the phosphorous acid group introduction step during production). It is a graph showing the relationship between. 図3は、R(%)(製造時のリンオキソ酸基導入工程における、リン酸と亜リン酸の添加量のうち亜リン酸が占めるモル比率)に対するWL(%)(300℃加熱後重量減少率)の関係を示したグラフである。FIG. 3 shows WL (%) (weight reduction after heating at 300 ° C.) with respect to R (%) (the molar ratio of phosphorous acid to the amount of phosphoric acid added in the phosphorous acid group introduction step during production). It is a graph which showed the relationship of rate).

以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。 Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments or specific examples, but the present invention is not limited to such embodiments.

(繊維状セルロース)
本発明はリン酸基及び亜リン酸基を含む繊維状セルロースに関する。本明細書においては、リン酸基はリン酸基に由来する置換基であってもよい。また、亜リン酸基は亜リン酸基に由来する置換基であってもよい。すなわち、本発明の繊維状セルロースは、リン酸基またはリン酸基に由来する置換基(単にリン酸基ともいう)、及び、亜リン酸基又は亜リン酸基に由来する置換基(単に亜リン酸基ともいう)の両方を含む繊維状セルロースである。
(Fibrous cellulose)
The present invention relates to fibrous cellulose containing a phosphate group and a phosphite group. In the present specification, the phosphoric acid group may be a substituent derived from the phosphoric acid group. Further, the phosphorous acid group may be a substituent derived from the phosphorous acid group. That is, the fibrous cellulose of the present invention has a phosphoric acid group or a substituent derived from a phosphoric acid group (also simply referred to as a phosphoric acid group) and a phosphorous acid group or a substituent derived from a phosphorous acid group (simply sub). It is a fibrous cellulose containing both (also called a phosphoric acid group).

本発明の繊維状セルロースは、上記構成を有するものであるため、耐熱性に優れている。ここで、繊維状セルロースの耐熱性は、繊維状セルロースの10%重量減温度もしくは300℃加熱後重量減少率で評価することができる。10%重量減温度及び300℃加熱後重量減少率は、示差熱熱重量同時測定装置を用いて測定される値である。具体的には、まず、繊維状セルロースを23℃、相対湿度50%の環境下で2日間以上、恒量となるまで風乾する。この時、繊維状セルロースの風乾物の固形分濃度が90質量%以上となるまで風乾を行う。次いで、得られた繊維状セルロースの風乾物5〜10mgを、窒素雰囲気下で下記温度プログラムの通り昇温させ、1秒間に1度、重量を測定する。
<温度プログラム>
1.50℃で5分間保持
2.50℃→100℃へ昇温(昇温速度:10℃/分)
3.100℃で10分間保持
4.100℃→600℃へ昇温(昇温速度:10℃/分)
そして、110℃での重量を基準として、重量が10%減少した時点の温度を10%重量減温度(Td10)(℃)とする。なお、10%重量減温度(Td10)(℃)は、その値が高い程、耐熱性が高いことを意味する。
また、110℃での重量をW110(g)とし、300℃での重量をW300(g)とした際に、下記式で算出される値を300℃加熱後重量減少率(WL)(%)とする。300℃加熱後重量減少率(WL)(%)はその絶対値が低い程、耐熱性が高いことを意味する。
300℃加熱後重量減少率(%)=((W300−W110)/W110)×100
Since the fibrous cellulose of the present invention has the above-mentioned structure, it has excellent heat resistance. Here, the heat resistance of the fibrous cellulose can be evaluated by a 10% weight reduction of the fibrous cellulose or a weight reduction rate after heating at 300 ° C. The 10% weight loss temperature and the weight loss rate after heating at 300 ° C. are values measured by using a differential thermogravimetric simultaneous measuring device. Specifically, first, the fibrous cellulose is air-dried in an environment of 23 ° C. and a relative humidity of 50% for 2 days or more until the amount becomes constant. At this time, air-drying is performed until the solid content concentration of the air-dried product of fibrous cellulose becomes 90% by mass or more. Next, 5 to 10 mg of the obtained air-dried material of fibrous cellulose is heated in a nitrogen atmosphere according to the following temperature program, and the weight is measured once per second.
<Temperature program>
Hold at 1.50 ° C for 5 minutes Increase temperature from 2.50 ° C to 100 ° C (heating rate: 10 ° C / min)
3. Hold at 100 ° C for 10 minutes 4. Raise the temperature from 100 ° C to 600 ° C (heating rate: 10 ° C / min)
Then, based on the weight at 110 ° C., the temperature at the time when the weight is reduced by 10% is defined as the 10% weight reduction temperature (Td10) (° C.). The 10% weight reduction temperature (Td10) (° C.) means that the higher the value, the higher the heat resistance.
Further, when the weight at 110 ° C. is W110 (g) and the weight at 300 ° C. is W300 (g), the value calculated by the following formula is the weight loss rate (WL) (%) after heating at 300 ° C. And. The lower the absolute value of the weight loss rate (WL) (%) after heating at 300 ° C., the higher the heat resistance.
Weight loss rate (%) after heating at 300 ° C = ((W300-W110) / W110) × 100

本発明の繊維状セルロースにおいて、繊維状セルロースの繊維幅が1000nm以下の場合、10%重量減温度(Td10)(℃)は、282.00℃以上であることが好ましく、283.00℃以上であることがより好ましく、283.50℃以上であることがさらに好ましい。なお、亜リン酸基とリン酸基の合計モル質量に対する亜リン酸基のモル比率が50%以上の場合であって、繊維状セルロースの繊維幅が1000nm以下の場合、10%重量減温度(Td10)(℃)は、281.50℃以上であることが好ましく、282.00℃以上であることがより好ましい。 In the fibrous cellulose of the present invention, when the fiber width of the fibrous cellulose is 1000 nm or less, the 10% weight reduction temperature (Td10) (° C.) is preferably 282.00 ° C. or higher, preferably 283.00 ° C. or higher. It is more preferable that the temperature is 283.50 ° C. or higher. When the molar ratio of the phosphorous acid group to the total molar mass of the phosphorous acid group and the phosphorous acid group is 50% or more and the fiber width of the fibrous cellulose is 1000 nm or less, the temperature is reduced by 10% (10% weight reduction). Td10) (° C.) is preferably 281.50 ° C. or higher, and more preferably 282.00 ° C. or higher.

また、繊維状セルロースの繊維幅が1000nmより大きい場合、10%重量減温度(Td10)(℃)は、303.00℃以上であることが好ましく、303.50℃以上であることがより好ましく、304.00℃以上であることがさらに好ましい。なお、亜リン酸基とリン酸基の合計モル質量に対する亜リン酸基のモル比率が50%以上の場合であって、繊維状セルロースの繊維幅が1000nmより大きい場合、10%重量減温度(Td10)(℃)は、299.50℃以上であることが好ましく、300.00℃以上であることがより好ましく、301.00℃以上であることがさらに好ましい。 When the fiber width of the fibrous cellulose is larger than 1000 nm, the 10% weight reduction temperature (Td10) (° C.) is preferably 303.00 ° C. or higher, more preferably 303.50 ° C. or higher. It is more preferably 304.00 ° C. or higher. When the molar ratio of the phosphorous acid group to the total molar mass of the phosphorous acid group and the phosphorous acid group is 50% or more and the fiber width of the fibrous cellulose is larger than 1000 nm, the weight is reduced by 10% ( Td10) (° C.) is preferably 299.50 ° C. or higher, more preferably 300.00 ° C. or higher, and even more preferably 301.00 ° C. or higher.

また、本発明の繊維状セルロースにおいて、繊維状セルロースの繊維幅が1000nm以下の場合、300℃加熱後重量減少率(WL)(%)の絶対値は、18.10以下であることが好ましく、17.00以下であることがより好ましく、16.00以下であることがさらに好ましい。なお、亜リン酸基とリン酸基の合計モル質量に対する亜リン酸基のモル比率が50%以上の場合であって、繊維状セルロースの繊維幅が1000nm以下の場合、300℃加熱後重量減少率(WL)(%)の絶対値は、18.50以下であることが好ましく、18.30以下であることがより好ましく、18.10以下であることがさらに好ましい。 Further, in the fibrous cellulose of the present invention, when the fiber width of the fibrous cellulose is 1000 nm or less, the absolute value of the weight loss rate (WL) (%) after heating at 300 ° C. is preferably 18.10 or less. It is more preferably 17.00 or less, and even more preferably 16.00 or less. When the molar ratio of the phosphorous acid group to the total molar mass of the phosphorous acid group and the phosphorous acid group is 50% or more and the fiber width of the fibrous cellulose is 1000 nm or less, the weight is reduced after heating at 300 ° C. The absolute value of the rate (WL) (%) is preferably 18.50 or less, more preferably 18.30 or less, and even more preferably 18.10 or less.

また、繊維状セルロースの繊維幅が1000nmより大きい場合、300℃加熱後重量減少率(WL)(%)の絶対値は、9.20以下であることが好ましく、9.00以下であることがより好ましく、8.80以下であることがさらに好ましい。なお、亜リン酸基とリン酸基の合計モル質量に対する亜リン酸基のモル比率が50%以上の場合であって、繊維状セルロースの繊維幅が1000nmより大きい場合、300℃加熱後重量減少率(WL)(%)の絶対値は、10.20以下であることが好ましく、10.10以下であることがより好ましく、10.00以下であることがさらに好ましい。このように、本発明の繊維状セルロースは、300℃程度までの温度にさらされた場合であってもその熱分解が抑制される。このため、本発明の繊維状セルロースは、300℃程度までの温度帯で使用されるシートや、樹脂複合体等に好ましく用いられる。 When the fiber width of the fibrous cellulose is larger than 1000 nm, the absolute value of the weight loss rate (WL) (%) after heating at 300 ° C. is preferably 9.20 or less, and preferably 9.00 or less. More preferably, it is 8.80 or less. When the molar ratio of the phosphorous acid group to the total molar mass of the phosphorous acid group and the phosphorous acid group is 50% or more and the fiber width of the fibrous cellulose is larger than 1000 nm, the weight is reduced after heating at 300 ° C. The absolute value of the rate (WL) (%) is preferably 10.20 or less, more preferably 10.10 or less, and even more preferably 10.00 or less. As described above, the fibrous cellulose of the present invention suppresses its thermal decomposition even when exposed to a temperature of up to about 300 ° C. Therefore, the fibrous cellulose of the present invention is preferably used for sheets and resin composites used in a temperature range up to about 300 ° C.

本発明の繊維状セルロースの繊維幅は特に限定されるものではなく、1000nmより大きくてもよく、1000nm以下であってもよい。また、繊維幅が1000nmよりも大きいセルロース繊維と、繊維幅が1000nm以下のセルロース繊維が混在していてもよい。例えば、透明性に優れたシートを製造する場合には、繊維状セルロースの繊維幅は、1000nm以下であることが好ましく、100nm以下であることがより好ましく、8nm以下であることがさらに好ましい。なお、本明細書において、繊維幅が1000nm以下の繊維状セルロースを微細繊維状セルロース又はCNFと呼ぶこともある。 The fiber width of the fibrous cellulose of the present invention is not particularly limited, and may be larger than 1000 nm and may be 1000 nm or less. Further, cellulose fibers having a fiber width of more than 1000 nm and cellulose fibers having a fiber width of 1000 nm or less may be mixed. For example, in the case of producing a sheet having excellent transparency, the fiber width of the fibrous cellulose is preferably 1000 nm or less, more preferably 100 nm or less, and further preferably 8 nm or less. In the present specification, fibrous cellulose having a fiber width of 1000 nm or less may be referred to as fine fibrous cellulose or CNF.

繊維状セルロースの繊維幅は、たとえば電子顕微鏡観察などにより測定することが可能である。繊維状セルロースの平均繊維幅は、1000nmより大きくてもよく、1000nm以下であってもよい。例えば、繊維状セルロースの平均繊維幅が1000nmより大きい場合は、1μmより大きく50μm以下であることが好ましく、1μmより大きく40μm以下であることがより好ましく、1μmより大きく30μm以下であることがさらに好ましい。また、繊維状セルロースの平均繊維幅が1000nm以下の場合は、2nm以上1000nm以下であることが好ましく、2nm以上100nm以下であることがより好ましく、2nm以上50nm以下であることがさらに好ましく、2nm以上10nm以下であることが特に好ましい。なお、繊維状セルロースは、単繊維状のセルロースであってもよいが、本明細書における繊維状セルロースには、単繊維状のセルロースの繊維集合体も含まれる。 The fiber width of the fibrous cellulose can be measured, for example, by observation with an electron microscope. The average fiber width of the fibrous cellulose may be larger than 1000 nm and may be 1000 nm or less. For example, when the average fiber width of the fibrous cellulose is larger than 1000 nm, it is preferably larger than 1 μm and 50 μm or less, more preferably larger than 1 μm and 40 μm or less, and further preferably larger than 1 μm and 30 μm or less. .. When the average fiber width of the fibrous cellulose is 1000 nm or less, it is preferably 2 nm or more and 1000 nm or less, more preferably 2 nm or more and 100 nm or less, further preferably 2 nm or more and 50 nm or less, and 2 nm or more. It is particularly preferably 10 nm or less. The fibrous cellulose may be monofibrous cellulose, but the fibrous cellulose in the present specification also includes a fiber aggregate of monofibrous cellulose.

繊維状セルロースの平均繊維幅は、たとえば電子顕微鏡を用いて以下のようにして測定される。まず、濃度0.05質量%以上0.1質量%以下の繊維状セルロースの水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。次いで、観察対象となる繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
上記条件を満足する観察画像に対し、直線X、直線Yと交差する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交差する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、繊維状セルロースの平均繊維幅とする。
The average fiber width of fibrous cellulose is measured, for example, using an electron microscope as follows. First, an aqueous suspension of fibrous cellulose having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and this suspension is cast on a hydrophilized carbon film-coated grid to prepare a sample for TEM observation. And. If it contains wide fibers, an SEM image of the surface cast on the glass may be observed. Next, observation is performed using an electron microscope image at a magnification of 1000 times, 5000 times, 10000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification should be adjusted so as to satisfy the following conditions.
(1) A straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
(2) A straight line Y that intersects the straight line perpendicularly is drawn in the same image, and 20 or more fibers intersect the straight line Y.
The width of the fiber intersecting the straight line X and the straight line Y is visually read with respect to the observation image satisfying the above conditions. In this way, at least three sets of observation images of surface portions that do not overlap each other are obtained. Next, for each image, the width of the fiber intersecting the straight line X and the straight line Y is read. As a result, at least 20 fibers × 2 × 3 = 120 fibers are read. Then, the average value of the read fiber widths is taken as the average fiber width of the fibrous cellulose.

繊維状セルロースの繊維長は、特に限定されないが、繊維幅が1000nmより大きい場合、繊維長はたとえば0.1mm以上であることが好ましく、0.6mm以上であることがより好ましい。また、繊維長は50mm以下であることが好ましく、20mm以下であることがより好ましい。繊維幅が1000nm以下の場合、繊維長はたとえば0.1μm以上であることが好ましい。また、繊維長は、1000μm以下であることが好ましく、800μm以下であることがより好ましく、600μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、繊維状セルロースの結晶領域の破壊を抑制できる。また、繊維状セルロースのスラリー粘度を適切な範囲とすることも可能となる。なお、繊維状セルロースの繊維長は、たとえばTEM、SEM、AFMによる画像解析より求めることができる。 The fiber length of the fibrous cellulose is not particularly limited, but when the fiber width is larger than 1000 nm, the fiber length is preferably 0.1 mm or more, more preferably 0.6 mm or more, for example. The fiber length is preferably 50 mm or less, more preferably 20 mm or less. When the fiber width is 1000 nm or less, the fiber length is preferably 0.1 μm or more, for example. The fiber length is preferably 1000 μm or less, more preferably 800 μm or less, and even more preferably 600 μm or less. By setting the fiber length within the above range, destruction of the crystal region of the fibrous cellulose can be suppressed. It is also possible to set the slurry viscosity of the fibrous cellulose in an appropriate range. The fiber length of the fibrous cellulose can be obtained by, for example, image analysis by TEM, SEM, or AFM.

繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。 The fibrous cellulose preferably has an I-type crystal structure. Here, the fact that the fibrous cellulose has an I-type crystal structure can be identified in the diffraction profile obtained from a wide-angle X-ray diffraction photograph using CuKα (λ = 1.5418 Å) monochromatic with graphite. Specifically, it can be identified by having typical peaks at two positions, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less. The ratio of the type I crystal structure to the fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, and further preferably 50% or more. As a result, even better performance can be expected in terms of heat resistance and low coefficient of linear thermal expansion. The crystallinity is determined by a conventional method from the X-ray diffraction profile measured and the pattern (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).

繊維状セルロースの軸比(繊維長/繊維幅)は、特に限定されないが、たとえば20以上10000以下であることが好ましく、50以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、繊維状セルロースを含有するシートを形成しやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。 The axial ratio (fiber length / fiber width) of the fibrous cellulose is not particularly limited, but is preferably 20 or more and 10000 or less, and more preferably 50 or more and 1000 or less. By setting the axial ratio to the above lower limit value or more, it is easy to form a sheet containing fibrous cellulose. By setting the axial ratio to the above upper limit value or less, for example, when fibrous cellulose is treated as a dispersion liquid, it is preferable in that handling such as dilution becomes easy.

本実施形態における繊維状セルロースは、たとえば結晶領域と非結晶領域をともに有している。特に、結晶領域と非結晶領域をともに有し、かつ軸比が高い繊維状セルロースは、後述する繊維状セルロースの製造方法により実現されるものである。 The fibrous cellulose in the present embodiment has, for example, both a crystalline region and a non-crystalline region. In particular, fibrous cellulose having both a crystalline region and a non-crystalline region and having a high axial ratio is realized by the method for producing fibrous cellulose described later.

本発明の繊維状セルロースはリン酸基及び亜リン酸基を有する。繊維状セルロースにおけるリンオキソ酸基(リン酸基及び亜リン酸基を含む)の導入量は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることが特に好ましい。また、繊維状セルロースにおけるリンオキソ酸基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。ここで、単位mmol/gは、リンオキソ酸基対イオンが水素イオン(H)であるときの繊維状セルロースの質量1gあたりの置換基量を示す。リンオキソ酸基の導入量を上記範囲内とすることにより、繊維状セルロースの耐熱性をより効果的に高めることができる。 The fibrous cellulose of the present invention has a phosphoric acid group and a phosphite group. The amount of the phosphorous acid group (including the phosphoric acid group and the phosphorous acid group) introduced into the fibrous cellulose is preferably 0.10 mmol / g or more per 1 g (mass) of the fibrous cellulose, preferably 0.20 mmol / g. The above is more preferable, 0.50 mmol / g or more is further preferable, and 1.00 mmol / g or more is particularly preferable. The amount of the phosphorus oxo acid group introduced into the fibrous cellulose is preferably 5.20 mmol / g or less per 1 g (mass) of the fibrous cellulose, more preferably 3.65 mmol / g or less. It is more preferably 00 mmol / g or less. Here, the unit mmol / g indicates the amount of substituents per 1 g of mass of fibrous cellulose when the phosphorus oxo acid group counterion is a hydrogen ion (H + ). By setting the amount of the phosphorus oxo acid group introduced within the above range, the heat resistance of the fibrous cellulose can be more effectively enhanced.

繊維状セルロースに対するリンオキソ酸基(リン酸基及び亜リン酸基を含む)の導入量は、たとえば中和滴定法により測定することができる。中和滴定法による測定では、得られた繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながらpHの変化を求めることにより、導入量を測定する。 The amount of a phosphorous acid group (including a phosphoric acid group and a phosphorous acid group) introduced into the fibrous cellulose can be measured by, for example, a neutralization titration method. In the measurement by the neutralization titration method, the introduction amount is measured by determining the change in pH while adding an alkali such as an aqueous sodium hydroxide solution to the obtained slurry containing fibrous cellulose.

図1は、リンオキソ酸基を有する繊維状セルロース含有スラリーに対するNaOH滴下量とpHの関係を示すグラフである。繊維状セルロースに対するリンオキソ酸基の導入量は、たとえば次のように測定される。
まず、繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。なお、必要に応じて、強酸性イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。
次いで、水酸化ナトリウム水溶液を加えながらpHの変化を観察し、図1の上側部に示すような滴定曲線を得る。図1の上側部に示した滴定曲線では、アルカリを加えた量に対して測定したpHをプロットしており、図1の下側部に示した滴定曲線では、アルカリを加えた量に対するpHの増分(微分値)(1/mmol)をプロットしている。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ確認される。これらのうち、アルカリを加えはじめて、先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中に含まれる繊維状セルロースの第1解離酸量と等しくなり、第1終点から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの第2解離酸量と等しくなり、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中に含まれる繊維状セルロースの総解離酸量と等しくなる。そして、滴定開始から第1終点までに必要としたアルカリ量を滴定対象スラリー中の固形分(g)で除して得られる値が、リンオキソ酸基導入量(mmol/g)となる。なお、単にリンオキソ酸基導入量(またはリンオキソ酸基量)と言った場合は、第1解離酸量のことを表す。
なお、図1において、滴定開始から第1終点までの領域を第1領域と呼び、第1終点から第2終点までの領域を第2領域と呼ぶ。例えば、リンオキソ酸基がリン酸基の場合であって、このリン酸基が縮合を起こす場合、見かけ上、リンオキソ酸基における弱酸性基量(本明細書では第2解離酸量ともいう)が低下し、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、リンオキソ酸基における強酸性基量(本明細書では第1解離酸量ともいう)は、縮合の有無に関わらずリン原子の量と一致する。また、リンオキソ酸基が亜リン酸基の場合は、リンオキソ酸基に弱酸性基が存在しなくなるため、第2領域に必要としたアルカリ量が少なくなるか、第2領域に必要としたアルカリ量はゼロとなる場合もある。この場合、滴定曲線において、pHの増分が極大となる点は一つとなる。
FIG. 1 is a graph showing the relationship between the amount of NaOH added dropwise and the pH of a fibrous cellulose-containing slurry having a phosphorus oxo acid group. The amount of the phosphorus oxo acid group introduced into the fibrous cellulose is measured, for example, as follows.
First, the slurry containing fibrous cellulose is treated with a strongly acidic ion exchange resin. If necessary, the defibration treatment similar to the defibration treatment step described later may be performed on the measurement target before the treatment with the strongly acidic ion exchange resin.
Next, the change in pH is observed while adding an aqueous sodium hydroxide solution, and a titration curve as shown in the upper part of FIG. 1 is obtained. The titration curve shown in the upper part of FIG. 1 plots the measured pH with respect to the amount of alkali added, and the titration curve shown in the lower part of FIG. 1 plots the pH with respect to the amount of alkali added. The increment (differential value) (1 / mmol) is plotted. In this neutralization titration, two points are confirmed in which the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point. The amount of alkali required from the start of titration to the first end point is equal to the amount of first dissociating acid of the fibrous cellulose contained in the slurry used for titration, and the amount of alkali required from the first end point to the second end point. The amount is equal to the amount of the second dissociating acid of the fibrous cellulose contained in the slurry used for the titration, and the amount of alkali required from the start to the second end point of the titration is the fibrous cellulose contained in the slurry used for the titration. Is equal to the total amount of dissociated acid. Then, the value obtained by dividing the amount of alkali required from the start of titration to the first end point by the solid content (g) in the slurry to be titrated is the amount of phosphorus oxo acid group introduced (mmol / g). The amount of phosphorus oxo acid group introduced (or the amount of phosphorus oxo acid group) simply means the amount of the first dissociated acid.
In FIG. 1, the region from the start of titration to the first end point is referred to as a first region, and the region from the first end point to the second end point is referred to as a second region. For example, when the phosphoric acid group is a phosphoric acid group and the phosphoric acid group causes condensation, the amount of weakly acidic groups in the phosphoric acid group (also referred to as the second dissociated acid amount in the present specification) is apparently It decreases, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region. On the other hand, the amount of strongly acidic groups in the phosphorus oxo acid group (also referred to as the first dissociated acid amount in the present specification) is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation. Further, when the phosphorous acid group is a phosphorous acid group, the weakly acidic group does not exist in the phosphorous acid group, so that the amount of alkali required for the second region is reduced or the amount of alkali required for the second region is reduced. May be zero. In this case, the titration curve has one point where the pH increment is maximized.

なお、滴定法によるリンオキソ酸基量の測定においては、水酸化ナトリウム水溶液1滴の滴下量が多すぎる場合や、滴定間隔が短すぎる場合、本来より低いリンオキソ酸基量となるなど正確な値が得られないことがある。適切な滴下量、滴定間隔としては、例えば、0.1N水酸化ナトリウム水溶液を5〜30秒に10〜50μLずつ滴定するなどが望ましい。また、繊維状セルロース含有スラリーに溶解した二酸化炭素の影響を排除するため、例えば、滴定開始の15分前から滴定終了まで、窒素ガスなどの不活性ガスをスラリーに吹き込みながら測定するなどが望ましい。 In the measurement of the amount of phosphorus oxo acid groups by the titration method, if the amount of one drop of the sodium hydroxide aqueous solution is too large or the titration interval is too short, the amount of phosphorus oxo acid groups will be lower than the original value. It may not be obtained. As an appropriate dropping amount and titration interval, for example, it is desirable to titrate 10 to 50 μL of a 0.1 N sodium hydroxide aqueous solution every 5 to 30 seconds. Further, in order to eliminate the influence of carbon dioxide dissolved in the fibrous cellulose-containing slurry, for example, it is desirable to measure while blowing an inert gas such as nitrogen gas into the slurry from 15 minutes before the start of titration to the end of titration.

繊維状セルロースにおける第1解離酸量(mmol/g)をA1とし、繊維状セルロースにおける総解離酸量(mmol/g)をA2とした場合、A1/A2の値は0.51以上であることが好ましく、0.64以上であることがより好ましく、0.70以上であることがさらに好ましい。また、A1/A2の値は0.97以下であることが好ましく、0.8以下であることがより好ましく、0.75以下であることがさらに好ましい。さらに、A2とA1の差は、0.04mmol/g以上であることが好ましく、0.2mmol/g以上であることがより好ましく、0.4mmol/g以上であることがさらに好ましい。なお、A2とA1の差は、1.5mmol/g以下であることが好ましい。ここで、繊維状セルロースにおける第1解離酸量(A1)は、上述した滴定曲線において、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値である。すなわち、第1解離酸量(A1)は第1段階で電離し、中和される酸の物質量(mmol)を滴定対象スラリー中の固形分(g)で除した値である。また、繊維状セルロースにおける総解離酸量(A2)は滴定開始から第2終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値である。すなわち、総解離酸量(A2)は全段階で電離し、中和される全ての酸の物質量(mmol)を滴定対象スラリー中の固形分(g)で除した値である。このため、A1/A2の値が1に近いほど弱酸量(リンオキソ酸基における弱酸性基数など)が少ないことを意味する。また、A2とA1の差が大きいほど、亜リン酸基に対するリン酸基の導入量が多いことを意味する。本発明の実施形態では、A1及びA2を上記条件を満たす値とすることにより、繊維状セルロースの耐熱性をより効果的に高めることができる。 When the first dissociative acid amount (mmol / g) in the fibrous cellulose is A1 and the total dissociative acid amount (mmol / g) in the fibrous cellulose is A2, the value of A1 / A2 is 0.51 or more. Is more preferable, 0.64 or more is more preferable, and 0.70 or more is further preferable. Further, the value of A1 / A2 is preferably 0.97 or less, more preferably 0.8 or less, and further preferably 0.75 or less. Further, the difference between A2 and A1 is preferably 0.04 mmol / g or more, more preferably 0.2 mmol / g or more, and further preferably 0.4 mmol / g or more. The difference between A2 and A1 is preferably 1.5 mmol / g or less. Here, the amount of the first dissociating acid (A1) in the fibrous cellulose is the amount of alkali (mmol) required from the start of the titration to the first end point in the above-mentioned titration curve, and the solid content (g) in the slurry to be titrated. ) Divided by. That is, the first dissociated acid amount (A1) is a value obtained by dividing the amount of substance (mmol) of the acid that is ionized and neutralized in the first step by the solid content (g) in the slurry to be titrated. The total amount of dissociated acid (A2) in the fibrous cellulose is a value obtained by dividing the amount of alkali (mmol) required from the start of titration to the second end point by the solid content (g) in the slurry to be titrated. That is, the total dissociated acid amount (A2) is a value obtained by dividing the substance amount (mmol) of all the acids that are ionized and neutralized at all stages by the solid content (g) in the slurry to be titrated. Therefore, the closer the value of A1 / A2 is to 1, the smaller the amount of weak acid (the number of weakly acidic groups in the phosphorus oxo acid group, etc.). Further, the larger the difference between A2 and A1, the larger the amount of phosphoric acid group introduced into the phosphite group. In the embodiment of the present invention, the heat resistance of the fibrous cellulose can be more effectively enhanced by setting A1 and A2 to values satisfying the above conditions.

なお、A1/A2の値は、リン酸基が縮合した場合、亜リン酸基が存在する場合、どちらの場合でも1に近づく。A1/A2が1に近づく要因が、リン酸基の縮合か、亜リン酸基の存在か、どちらに因るものか判断する方法としては、例えば、酸加水分解などのリン酸の縮合構造を切断する処理を行ってから上記の滴定操作を行う方法、酸化処理などの亜リン酸基をリン酸基へ変換する処理を行ってから上記の滴定操作を行う方法などが挙げられる。 The value of A1 / A2 approaches 1 in both cases when the phosphate group is condensed and when the phosphite group is present. As a method for determining whether the factor that A1 / A2 approaches 1 is the condensation of a phosphoric acid group or the presence of a phosphite group, for example, a condensed structure of a phosphoric acid such as acid hydrolysis is used. Examples thereof include a method of performing the above-mentioned titration operation after performing a cutting treatment, and a method of performing the above-mentioned titration operation after performing a treatment of converting a phosphite group into a phosphate group such as an oxidation treatment.

繊維状セルロースは、リンオキソ酸基としてリン酸基及び亜リン酸基の両方を有する。ここで、リン酸基はリン酸基に由来する置換基であってもよく、亜リン酸基は亜リン酸基に由来する置換基であってもよい。リン酸基に由来する置換基は、リン酸基の塩やリン酸エステル基であってもよい。また、亜リン酸基に由来する置換基は、亜リン酸基の塩であってもよい。 Fibrous cellulose has both a phosphoric acid group and a phosphite group as a phosphorous acid group. Here, the phosphoric acid group may be a substituent derived from a phosphoric acid group, and the phosphorous acid group may be a substituent derived from a phosphorous acid group. The substituent derived from the phosphoric acid group may be a salt of the phosphoric acid group or a phosphoric acid ester group. Further, the substituent derived from the phosphorous acid group may be a salt of the phosphorous acid group.

リン酸基及び亜リン酸基は同一のセルロース分子鎖(セルロース単繊維)に存在してもよい。例えば、セルロースを構成する基本構造である2つのグルコースユニットのうち、1つのグルコースにリン酸基が導入されており、他方のグルコースに亜リン酸基が導入されていてもよい。また、本発明の繊維状セルロースは、リン酸基を有するセルロース分子鎖(セルロース単繊維)と、亜リン酸基を有するセルロース分子鎖(セルロース単繊維)の繊維集合体であってもよい。なお、本発明の繊維状セルロースは、リン酸基及び亜リン酸基の両方を有するセルロース分子鎖(セルロース単繊維)と、リン酸基を有するセルロース分子鎖(セルロース単繊維)と、亜リン酸基を有するセルロース分子鎖(セルロース単繊維)の3種単繊維の繊維集合体であってもよい。 The phosphoric acid group and the phosphorous acid group may be present in the same cellulose molecular chain (cellulose single fiber). For example, a phosphate group may be introduced into one glucose and a phosphite group may be introduced into the other glucose among the two glucose units which are the basic structures constituting cellulose. Further, the fibrous cellulose of the present invention may be a fiber aggregate of a cellulose molecular chain having a phosphorous acid group (cellulose single fiber) and a cellulose molecular chain having a phosphorous acid group (cellulose single fiber). The fibrous cellulose of the present invention includes a cellulose molecular chain having both a phosphate group and a phosphite group (cellulose monofiber), a cellulose molecular chain having a phosphate group (cellulose monofiber), and phosphite. It may be a fiber aggregate of three kinds of single fibers of a cellulose molecular chain (cellulose single fiber) having a group.

本明細書において、リン酸基は、例えば、下記式(1)で表される置換基であり、亜リン酸基は、例えば、下記式(2)で表される置換基である。 In the present specification, the phosphoric acid group is, for example, a substituent represented by the following formula (1), and the phosphorous acid group is, for example, a substituent represented by the following formula (2).

Figure 2020204041
Figure 2020204041

式(1)中、a及びbは自然数であり、mは任意の数である(ただし、a=b×mである)。α及びα’のうちa個がOであり、残りはORである。ここで、Rは、水素原子、飽和−直鎖状炭化水素基、飽和−分岐鎖状炭化水素基、飽和−環状炭化水素基、不飽和−直鎖状炭化水素基、不飽和−分岐鎖状炭化水素基、不飽和−環状炭化水素基、芳香族基、またはこれらの誘導基である。なお、式(1)におけるαは、セルロース分子鎖に由来する基であってもよい。 In the formula (1), a and b are natural numbers, and m is an arbitrary number (where a = b × m). Of α and α', a are O and the rest are OR. Here, R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, or an unsaturated-branched chain. A hydrocarbon group, an unsaturated-cyclic hydrocarbon group, an aromatic group, or an inducing group thereof. In addition, α in the formula (1) may be a group derived from a cellulose molecular chain.

Figure 2020204041
Figure 2020204041

式(2)中、bは自然数であり、mは任意の数であり、b×m=1である。αは、水素原子、飽和−直鎖状炭化水素基、飽和−分岐鎖状炭化水素基、飽和−環状炭化水素基、不飽和−直鎖状炭化水素基、不飽和−分岐鎖状炭化水素基、不飽和−環状炭化水素基、芳香族基、またはこれらの誘導基である。中でも、αは水素原子であることが特に好ましい。なお、式(2)におけるαには、セルロース分子鎖に由来する基は含まれない。 In equation (2), b is a natural number, m is an arbitrary number, and b × m = 1. α is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched chain hydrocarbon group. , An unsaturated-cyclic hydrocarbon group, an aromatic group, or an inducing group thereof. Above all, it is particularly preferable that α is a hydrogen atom. The α in the formula (2) does not include a group derived from the cellulose molecular chain.

式(2)のα、もしくは、式(1)のRで表される飽和−直鎖状炭化水素基としては、メチル基、エチル基、n−プロピル基、又はn−ブチル基等が挙げられるが、特に限定されない。飽和−分岐鎖状炭化水素基としては、i−プロピル基、又はt−ブチル基等が挙げられるが、特に限定されない。飽和−環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和−直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和−分岐鎖状炭化水素基としては、i−プロペニル基、又は3−ブテニル基等が挙げられるが、特に限定されない。不飽和−環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。 Examples of the saturated-linear hydrocarbon group represented by α of the formula (2) or R of the formula (1) include a methyl group, an ethyl group, an n-propyl group, an n-butyl group and the like. However, it is not particularly limited. Examples of the saturated-branched chain hydrocarbon group include an i-propyl group and a t-butyl group, but are not particularly limited. Examples of the saturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentyl group, a cyclohexyl group and the like. Examples of the unsaturated-linear hydrocarbon group include a vinyl group, an allyl group and the like, but are not particularly limited. Examples of the unsaturated-branched chain hydrocarbon group include an i-propenyl group and a 3-butenyl group, but are not particularly limited. Examples of the unsaturated-cyclic hydrocarbon group include, but are not limited to, a cyclopentenyl group, a cyclohexenyl group and the like. Examples of the aromatic group include a phenyl group and a naphthyl group, but are not particularly limited.

また、式(2)のα、もしくは、式(1)のRにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リンオキソ酸基の分子量を適切な範囲とすることができ、繊維原料への浸透性を高めることもできる。 Further, as the inducing group in α of the formula (2) or R of the formula (1), a functional group such as a carboxy group, a hydroxy group, or an amino group is used with respect to the main chain or side chain of the various hydrocarbon groups. Of these, functional groups in which at least one type is added or substituted can be mentioned, but the functional group is not particularly limited. The number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R to the above range, the molecular weight of the phosphorus oxo acid group can be set to an appropriate range, and the permeability to the fiber raw material can be enhanced.

式(1)及び(2)におけるβb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。 Β b + in the formulas (1) and (2) is a monovalent or higher cation composed of an organic substance or an inorganic substance. Examples of monovalent or higher cations composed of organic substances include aliphatic ammonium or aromatic ammonium, and examples of monovalent or higher valent cations composed of inorganic substances include ions of alkali metals such as sodium, potassium, and lithium. Examples thereof include cations of divalent metals such as calcium and magnesium, hydrogen ions, and the like, but the present invention is not particularly limited. These may be applied alone or in combination of two or more. The monovalent or higher cation composed of an organic substance or an inorganic substance is preferably sodium or potassium ion which is hard to yellow when the fiber raw material containing β is heated and is easily industrially used, but is not particularly limited.

また、本発明の繊維状セルロースは、縮合リンオキソ酸基を有していてもよく、縮合リンオキソ酸基としては、例えば、下記式(3)で表される置換基を挙げることができる。 Further, the fibrous cellulose of the present invention may have a condensed phosphorus oxo acid group, and examples of the condensed phosphorus oxo acid group include a substituent represented by the following formula (3).

Figure 2020204041
Figure 2020204041

式(3)中、a及びbは自然数であり、mは任意の数であり、nは2以上の自然数である(ただし、a=b×mである)。α,α,・・・,α及びα’のうちa個がOであり、残りはR又はORのいずれかである。ここで、Rは、水素原子、飽和−直鎖状炭化水素基、飽和−分岐鎖状炭化水素基、飽和−環状炭化水素基、不飽和−直鎖状炭化水素基、不飽和−分岐鎖状炭化水素基、不飽和−環状炭化水素基、芳香族基、またはこれらの誘導基である。なお、式(3)におけるαは、セルロース分子鎖に由来する基であってもよい。 In the formula (3), a and b are natural numbers, m is an arbitrary number, and n is a natural number of 2 or more (where a = b × m). Of α 1 , α 2 , ..., α n and α', a are O , and the rest are either R or OR. Here, R is a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched chain hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, or an unsaturated-branched chain. A hydrocarbon group, an unsaturated-cyclic hydrocarbon group, an aromatic group, or an inducing group thereof. In addition, α in the formula (3) may be a group derived from a cellulose molecular chain.

式(3)における各基の具体的例示は、式(1)における各基の具体的例示と同様であり、また、式(3)におけるβb+の具体的例示は、式(1)におけるβb+の具体的例示と同様である。 The specific example of each group in the formula (3) is the same as the specific example of each group in the formula (1), and the specific example of β b + in the formula (3) is β in the formula (1). It is the same as the specific example of b + .

繊維状セルロースにおける、リン酸基と亜リン酸基のモル比率(リン酸基:亜リン酸基)は、0.01:99.99〜99.99:0.01であることが好ましく、1:99〜99:1であることがより好ましく、10:90〜90:10であることがさらに好ましい。すなわち、上記式(1)で表される置換基と、上記式(2)で表される置換基のモル比率(式(1):式(2))は、0.01:99.99〜99.99:0.01であることが好ましく、1:99〜99:1であることがより好ましく、10:90〜90:10であることがさらに好ましい。なお、繊維状セルロースにおける、リン酸基と亜リン酸基のモル比率は、繊維状セルロースの製造方法のリンオキソ酸基導入工程におけるリン酸基を有する化合物及び/又はその塩と、亜リン酸基を有する化合物及び/又はその塩のモル比率と同じ比率となる。リン酸基と亜リン酸基のモル比率を上記範囲内とすることにより、繊維状セルロースの耐熱性をより効果的に高めることができる。 The molar ratio of phosphoric acid group to phosphorous acid group (phosphoric acid group: phosphorous acid group) in the fibrous cellulose is preferably 0.01: 99.99 to 99.99: 0.01. : 99 to 99: 1 is more preferable, and 10:90 to 90:10 is even more preferable. That is, the molar ratio of the substituent represented by the above formula (1) to the substituent represented by the above formula (2) (formula (1): formula (2)) is 0.01: 99.99 to It is preferably 99.99: 0.01, more preferably 1:99 to 99: 1, and even more preferably 10:90 to 90:10. The molar ratio of phosphoric acid group to phosphorous acid group in the fibrous cellulose is the compound having a phosphoric acid group and / or a salt thereof in the phosphorous acid group introduction step of the method for producing fibrous cellulose, and the phosphorous acid group. The ratio is the same as the molar ratio of the compound having the above and / or its salt. By setting the molar ratio of the phosphoric acid group to the phosphorous acid group within the above range, the heat resistance of the fibrous cellulose can be more effectively enhanced.

繊維状セルロースが亜リン酸基を置換基として有することは、繊維状セルロースを含有する分散液について赤外線吸収スペクトルの測定を行い、1210cm−1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収を観察することで確認できる。また、繊維状セルロースがリン酸基を置換基として有することは、繊維状セルロースを含有する分散液について赤外線吸収スペクトルの測定を行い、1230cm−1付近にリン酸基のP=Oに基づく吸収を観察することで確認できる。また、繊維状セルロースが亜リン酸基やリン酸基を置換基として有することは、NMRを用いて化学シフトを確認する方法や、元素分析に滴定を組み合わせる方法などでも確認できる。 The fact that fibrous cellulose has a phosphite group as a substituent means that the infrared absorption spectrum of the dispersion containing fibrous cellulose is measured, and phosphones, which are tautomers of phosphorous acid groups, are measured around 1210 cm- 1. It can be confirmed by observing the absorption of the acid group based on P = O. In addition, the fact that the fibrous cellulose has a phosphoric acid group as a substituent means that the infrared absorption spectrum of the dispersion containing the fibrous cellulose is measured, and the absorption of the phosphoric acid group based on P = O is performed in the vicinity of 1230 cm -1. It can be confirmed by observing. Further, the fact that fibrous cellulose has a phosphite group or a phosphorous acid group as a substituent can be confirmed by a method of confirming a chemical shift by using NMR or a method of combining titration with elemental analysis.

なお、繊維状セルロースは上述したようなリン酸基及び亜リン酸基に加えて、他のアニオン性基を有していてもよい。このようなアニオン性基としては、例えば、パルプが元来含むカルボキシ基等を挙げることができる。 The fibrous cellulose may have other anionic groups in addition to the phosphoric acid group and the phosphorous acid group as described above. Examples of such anionic groups include carboxy groups originally contained in pulp.

(繊維状セルロースの製造方法)
繊維状セルロースの製造方法は、セルロース原料に対し、リン酸基を有する化合物及び/又はその塩と、亜リン酸基を有する化合物及び/又はその塩と、尿素及び/又は尿素誘導体とを混合し、リン酸基及び亜リン酸基を有するセルロース原料を得る工程を含む。なお、以下では、リン酸基及び亜リン酸基を有するセルロース原料を得る工程を、リンオキソ酸基導入工程ともいう。
(Manufacturing method of fibrous cellulose)
In the method for producing fibrous cellulose, a compound having a phosphoric acid group and / or a salt thereof, a compound having a phosphorous acid group and / or a salt thereof, and a urea and / or a urea derivative are mixed with a cellulose raw material. , Including the step of obtaining a cellulose raw material having a phosphoric acid group and a phosphorous acid group. In the following, the step of obtaining a cellulose raw material having a phosphoric acid group and a phosphorous acid group is also referred to as a phosphorous acid group introduction step.

<セルロース原料>
繊維状セルロースは、セルロースを含む繊維原料(セルロース原料)から製造される。セルロースを含む繊維原料としては、特に限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、特に限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、特に限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、特に限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施形態のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。
<Cellulose raw material>
Fibrous cellulose is produced from a fiber raw material (cellulose raw material) containing cellulose. The fiber raw material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive. Examples of pulp include wood pulp, non-wood pulp, and deinked pulp. The wood pulp is not particularly limited, and is, for example, broadleaf kraft pulp (LBKP), coniferous kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP). ) And chemical pulp such as oxygen bleached kraft pulp (OKP), semi-chemical pulp such as semi-chemical pulp (SCP) and chemiground wood pulp (CGP), crushed wood pulp (GP) and thermomechanical pulp (TMP, BCTMP), etc. Examples include mechanical pulp. The non-wood pulp is not particularly limited, and examples thereof include cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse. The deinking pulp is not particularly limited, and examples thereof include deinking pulp made from used paper. As the pulp of the present embodiment, one of the above types may be used alone, or two or more types may be mixed and used. Among the above pulps, for example, wood pulp and deinked pulp are preferable from the viewpoint of availability. Further, among wood pulps, for example, chemical pulp is more preferable, and kraft pulp and sulfite pulp are further preferable, from the viewpoint of obtaining long-fiber fibrous cellulose having a small decomposition of cellulose in the pulp and a large axial ratio.

セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。 As the fiber raw material containing cellulose, for example, cellulose contained in ascidians and bacterial cellulose produced by acetobacter can be used. Further, instead of the fiber raw material containing cellulose, a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can also be used.

<リンオキソ酸基導入工程>
リンオキソ酸基導入工程は、セルロース原料に対し、リン酸基を有する化合物及び/又はその塩と、亜リン酸基を有する化合物及び/又はその塩と、尿素及び/又は尿素誘導体とを混合し、リン酸基及び亜リン酸基を有するセルロース原料を得る工程である。リンオキソ酸基導入工程では、セルロースを含む繊維原料が有する水酸基と、リン酸基を有する化合物及び/又はその塩、並びに亜リン酸基を有する化合物及び/又はその塩が反応することで、リン酸基及び亜リン酸基を含むリンオキソ酸基を導入することができる。この工程により、リン酸基及び亜リン酸基を導入したセルロース原料が得られることとなる。なお、本明細書においては、リン酸基を有する化合物及び/又はその塩、並びに、亜リン酸基を有する化合物及び/又はその塩を含む化合物群を化合物Aと呼ぶことがあり、尿素及び/又は尿素誘導体を化合物Bと呼ぶことがある。
<Linoxo acid group introduction process>
In the phosphorous acid group introduction step, a compound having a phosphoric acid group and / or a salt thereof, a compound having a phosphorous acid group and / or a salt thereof, and urea and / or a urea derivative are mixed with the cellulose raw material. This is a step of obtaining a cellulose raw material having a phosphoric acid group and a phosphorous acid group. In the phosphorous acid group introduction step, phosphoric acid is formed by reacting a hydroxyl group of a fiber raw material containing cellulose with a compound having a phosphoric acid group and / or a salt thereof, and a compound having a phosphorous acid group and / or a salt thereof. A phosphorus oxo acid group containing a group and a phosphite group can be introduced. By this step, a cellulose raw material into which a phosphoric acid group and a phosphorous acid group have been introduced can be obtained. In the present specification, a compound having a phosphorous acid group and / or a salt thereof, and a compound group containing a compound having a phosphorous acid group and / or a salt thereof may be referred to as compound A, and urea and / or a compound thereof. Alternatively, the urea derivative may be referred to as compound B.

化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、特に限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、特に限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。 As an example of the method of allowing the compound A to act on the fiber raw material in the coexistence with the compound B, there is a method of mixing the compound A and the compound B with the fiber raw material in a dry state, a wet state or a slurry state. Of these, since the reaction uniformity is high, it is preferable to use a fiber raw material in a dry state or a wet state, and it is particularly preferable to use a fiber raw material in a dry state. The form of the fiber raw material is not particularly limited, but is preferably cotton-like or thin sheet-like, for example. Examples of the compound A and the compound B include a method of adding the compound A and the compound B to the fiber raw material in the form of a powder or a solution dissolved in a solvent, or in a state of being heated to a melting point or higher and melted. Of these, since the reaction is highly homogeneous, it is preferable to add the mixture in the form of a solution dissolved in a solvent, particularly in the form of an aqueous solution. Further, the compound A and the compound B may be added to the fiber raw material at the same time, may be added separately, or may be added as a mixture. The method of adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in the form of a solution, the fiber raw material may be immersed in the solution to absorb the liquid and then taken out, or the fiber raw material may be taken out. The solution may be dropped into the water. Further, the required amounts of Compound A and Compound B may be added to the fiber raw material, or after the excess amounts of Compound A and Compound B are added to the fiber raw material, the surplus Compound A and Compound B are added by pressing or filtering. It may be removed.

本実施形態で使用する化合物Aは、少なくともリン酸基を有する化合物及び/又はその塩、並びに、亜リン酸基を有する化合物及び/又はその塩とを含む。リン酸基を有する化合物としてはリン酸を挙げることができ、リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。また、リン酸基を有する化合物として無水リン酸(五酸化二リン)を用いてもよい。リン酸基を有する化合物の塩としては、リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。なお、リン酸として、リン酸が脱水反応により2分子以上縮合した脱水縮合リン酸(例えばピロリン酸、ポリリン酸等)を用いてもよい。亜リン酸基を有する化合物としては亜リン酸を挙げることができ、亜リン酸としては、たとえば99%亜リン酸(ホスホン酸)が挙げられる。亜リン酸基を有する化合物の塩としては、亜リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リンオキソ酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸及び亜リン酸、リン酸もしくは亜リン酸のナトリウム塩、リン酸もしくは亜リン酸のカリウム塩、または、リン酸もしくは亜リン酸のアンモニウム塩が好ましく用いられる。 Compound A used in this embodiment includes at least a compound having a phosphoric acid group and / or a salt thereof, and a compound having a phosphorous acid group and / or a salt thereof. Examples of the compound having a phosphoric acid group include phosphoric acid, and as the phosphoric acid, those having various puritys can be used, for example, 100% phosphoric acid (normal phosphoric acid) or 85% phosphoric acid is used. can do. Further, anhydrous phosphoric acid (diphosphorus pentoxide) may be used as the compound having a phosphoric acid group. Examples of the salt of the compound having a phosphoric acid group include a lithium salt, a sodium salt, a potassium salt, an ammonium salt and the like of phosphoric acid, and these can have various neutralization degrees. As the phosphoric acid, dehydration-condensed phosphoric acid (for example, pyrophosphoric acid, polyphosphoric acid, etc.) in which two or more molecules of phosphoric acid are condensed by a dehydration reaction may be used. Examples of the compound having a phosphorous acid group include phosphorous acid, and examples of phosphorous acid include 99% phosphorous acid (phosphonic acid). Examples of the salt of the compound having a phosphorous acid group include a lithium salt, a sodium salt, a potassium salt, and an ammonium salt of phosphorous acid, and these can have various neutralization degrees. Of these, phosphoric acid and phosphorous acid are highly efficient in introducing phosphoric acid groups, are more likely to improve defibration efficiency in the defibration step described later, are low in cost, and are easy to apply industrially. , Sodium salt of phosphoric acid or phosphorous acid, potassium salt of phosphoric acid or phosphorous acid, or ammonium salt of phosphoric acid or phosphorous acid is preferably used.

繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。なお、上記化合物Aの添加量は、リン酸及び亜リン酸の合計添加量である。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。 The amount of compound A added to the fiber raw material is not particularly limited, but for example, when the amount of compound A added is converted to the phosphorus atomic weight, the amount of phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, and further preferably 2% by mass or more and 30% by mass or less. The amount of the compound A added is the total amount of phosphoric acid and phosphorous acid added. By setting the amount of phosphorus atom added to the fiber raw material within the above range, the yield of fibrous cellulose can be further improved. On the other hand, by setting the addition amount of the phosphorus atom to the fiber raw material to be equal to or less than the above upper limit value, the effect of improving the yield and the cost can be balanced.

リン酸基及び亜リン酸基を導入したセルロース原料を得る工程では、化合物Aとして混合するリン酸基を有する化合物及び/又はその塩と、亜リン酸基を有する化合物及び/又はその塩のモル比率(リン酸:亜リン酸)は0.01:99.99〜99.99:0.01であることが好ましく、1:99〜99:1であることがより好ましく、10:90〜90:10であることがさらに好ましい。化合物Aとして混合する各化合物の割合を上記範囲内とすることにより、繊維状セルロースの耐熱性をより効果的に高めることができる。 In the step of obtaining a cellulose raw material into which a phosphoric acid group and a phosphorous acid group have been introduced, a molar of a compound having a phosphoric acid group and / or a salt thereof and a compound having a phosphorous acid group and / or a salt thereof to be mixed as compound A. The ratio (phosphoric acid: phosphorous acid) is preferably 0.01: 99.99 to 99.99: 0.01, more preferably 1: 99 to 99: 1, and 10: 90 to 90. It is more preferably: 10. By setting the ratio of each compound to be mixed as compound A within the above range, the heat resistance of the fibrous cellulose can be more effectively enhanced.

本実施形態で使用する化合物Bは、上述のとおり尿素及び/又は尿素誘導体である。化合物Bとしては、たとえば尿素、ビウレット、1−フェニル尿素、1−ベンジル尿素、1−メチル尿素、および1−エチル尿素などが挙げられる。反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。 Compound B used in this embodiment is urea and / or a urea derivative as described above. Examples of compound B include urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like. From the viewpoint of improving the uniformity of the reaction, compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the uniformity of the reaction, it is preferable to use an aqueous solution in which both compound A and compound B are dissolved.

繊維原料(絶乾質量)に対する化合物Bの添加量は、特に限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。 The amount of compound B added to the fiber raw material (absolute dry mass) is not particularly limited, but is preferably 1% by mass or more and 500% by mass or less, and more preferably 10% by mass or more and 400% by mass or less. It is more preferably 100% by mass or more and 350% by mass or less.

セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。 In the reaction between the fiber raw material containing cellulose and compound A, for example, amides or amines may be contained in the reaction system in addition to compound B. Examples of amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like. Among these, triethylamine is known to act as a good reaction catalyst.

リンオキソ酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リンオキソ酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置、高周波乾燥装置を用いることができる。 In the phosphorus oxo acid group introduction step, it is preferable to add or mix the compound A or the like to the fiber raw material and then heat-treat the fiber raw material. As the heat treatment temperature, it is preferable to select a temperature at which a phosphorus oxo acid group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis reaction of the fiber. The heat treatment temperature is, for example, preferably 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 250 ° C. or lower, and further preferably 130 ° C. or higher and 200 ° C. or lower. In addition, equipment having various heat media can be used for the heat treatment, for example, a stirring drying device, a rotary drying device, a disk drying device, a roll type heating device, a plate type heating device, a fluidized layer drying device, and an air stream. A drying device, a vacuum drying device, an infrared heating device, a far infrared heating device, a microwave heating device, and a high frequency drying device can be used.

本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリンオキソ酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。 In the heat treatment according to the present embodiment, for example, compound A is added to a thin sheet-shaped fiber raw material by a method such as impregnation and then heated, or the fiber raw material and compound A are heated while kneading or stirring with a kneader or the like. Can be adopted. This makes it possible to suppress uneven concentration of the compound A in the fiber raw material and more uniformly introduce the phosphorus oxo acid group onto the surface of the cellulose fiber contained in the fiber raw material. This is because when the water molecules move to the surface of the fiber raw material due to drying, the dissolved compound A is attracted to the water molecules by the surface tension and also moves to the surface of the fiber raw material (that is, the concentration unevenness of the compound A is caused. It is considered that this is due to the fact that it can be suppressed.

また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い繊維状セルロースを得ることが可能となる。 Further, the heating device used for the heat treatment always keeps the water content retained by the slurry and the water content generated by the dehydration condensation (phosphate esterification) reaction between the compound A and the hydroxyl group contained in the cellulose or the like in the fiber raw material. It is preferable that the device can be discharged to the outside of the device system. Examples of such a heating device include a ventilation type oven and the like. By constantly discharging the water in the apparatus system, in addition to being able to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of phosphate esterification, it is also possible to suppress the acid hydrolysis of the sugar chain in the fiber. it can. Therefore, it is possible to obtain fibrous cellulose having a high axial ratio.

加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リンオキソ酸基の導入量を好ましい範囲内とすることができる。 The heat treatment time is preferably 1 second or more and 300 minutes or less, more preferably 1 second or more and 1000 seconds or less, and 10 seconds or more and 800 seconds or less after the water is substantially removed from the fiber raw material. Is more preferable. In the present embodiment, the amount of the phosphorus oxo acid group introduced can be within a preferable range by setting the heating temperature and the heating time within an appropriate range.

リンオキソ酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリンオキソ酸基導入工程を行うことにより、繊維原料に対して多くのリンオキソ酸基を導入することができる。本実施形態においては、好ましい態様の一例として、リンオキソ酸基導入工程を2回行う場合が挙げられる。 The phosphorus oxo acid group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphorus oxo acid group introduction step two or more times, many phosphorus oxo acid groups can be introduced into the fiber raw material. In the present embodiment, as an example of a preferable embodiment, there is a case where the phosphorus oxo acid group introduction step is performed twice.

<洗浄工程>
本実施形態における繊維状セルロースの製造方法においては、必要に応じてリンオキソ酸基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりリンオキソ酸基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、特に限定されない。
<Washing process>
In the method for producing fibrous cellulose in the present embodiment, a washing step can be performed on the linoxoic acid group-introduced fiber as needed. The washing step is performed, for example, by washing the phosphorus oxo acid group-introduced fibers with water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of cleanings performed in each cleaning step is not particularly limited.

<アルカリ処理工程>
繊維状セルロースを製造する場合、リンオキソ酸基導入工程と、後述する解繊処理工程との間に、リンオキソ酸基導入繊維に対してアルカリ処理を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、リンオキソ酸基導入繊維を浸漬する方法が挙げられる。
<Alkaline treatment process>
In the case of producing fibrous cellulose, the phosphoric acid group-introduced fiber may be subjected to an alkali treatment between the phosphorus oxo acid group-introducing step and the defibration treatment step described later. The alkaline treatment method is not particularly limited, and examples thereof include a method of immersing the phosphoxoic acid group-introduced fiber in an alkaline solution.

アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。 The alkaline compound contained in the alkaline solution is not particularly limited, and may be an inorganic alkaline compound or an organic alkaline compound. In the present embodiment, for example, sodium hydroxide or potassium hydroxide is preferably used as the alkaline compound because of its high versatility. Further, the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water. As the alkaline solution, for example, an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of its high versatility.

アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるリンオキソ酸基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばリンオキソ酸基導入繊維の絶乾質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the alkaline solution in the alkaline treatment step is not particularly limited, but is preferably 5 ° C. or higher and 80 ° C. or lower, and more preferably 10 ° C. or higher and 60 ° C. or lower. The immersion time of the phosphorus oxo acid group-introduced fiber in the alkaline solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less. The amount of the alkaline solution used in the alkaline treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the phosphorus oxo acid group-introduced fiber. Is more preferable.

アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、リンオキソ酸基導入工程の後であってアルカリ処理工程の前に、リンオキソ酸基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったリンオキソ酸基導入繊維を水や有機溶媒により洗浄することが好ましい。 In order to reduce the amount of the alkaline solution used in the alkaline treatment step, the phosphoric acid group-introduced fiber may be washed with water or an organic solvent after the phosphoric acid group introduction step and before the alkaline treatment step. After the alkali treatment step and before the defibration treatment step, it is preferable to wash the alkali-treated phosphorus oxo acid group-introduced fiber with water or an organic solvent from the viewpoint of improving handleability.

<酸処理工程>
繊維状セルロースを製造する場合、リンオキソ酸基を導入する工程と、後述する解繊処理工程の間に、リンオキソ酸基導入繊維に対して酸処理を行ってもよい。例えば、リンオキソ酸基導入工程、酸処理、アルカリ処理及び解繊処理をこの順で行ってもよい。
<Acid treatment process>
In the case of producing fibrous cellulose, the phosphoric acid group-introduced fiber may be acid-treated between the step of introducing the phosphoric acid group and the defibration treatment step described later. For example, the phosphorus oxo acid group introduction step, the acid treatment, the alkali treatment and the defibration treatment may be performed in this order.

酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることが特に好ましい。 The method of the acid treatment is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acidic liquid containing an acid. The concentration of the acidic liquid used is not particularly limited, but is preferably 10% by mass or less, and more preferably 5% by mass or less, for example. The pH of the acidic solution used is not particularly limited, but is preferably 0 or more and 4 or less, and more preferably 1 or more and 3 or less. As the acid contained in the acidic solution, for example, an inorganic acid, a sulfonic acid, a carboxylic acid or the like can be used. Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chloric acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like. Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like. Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.

酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえばリンオキソ酸基導入繊維の絶乾質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。 The temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or higher and 100 ° C. or lower, and more preferably 20 ° C. or higher and 90 ° C. or lower. The immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less. The amount of the acid solution used in the acid treatment is not particularly limited, but is preferably 100% by mass or more and 100,000% by mass or less, and 1,000% by mass or more and 10,000% by mass or less, for example, with respect to the absolute dry mass of the phosphorus oxo acid group-introduced fiber. Is more preferable.

<解繊処理工程>
繊維幅が1000nm以下の繊維状セルロースを製造する場合、繊維状セルロースの製造方法は、解繊処理工程を含んでもよい。解繊処理工程は、リン酸基及び亜リン酸基を有するセルロース原料(リンオキソ酸基導入繊維)に微細化処理を施し、繊維幅が1000nm以下であり、かつリン酸基及び亜リン酸基を有する繊維状セルロースを得る工程である。解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いるのがより好ましい。
<Fiber processing process>
When producing fibrous cellulose having a fiber width of 1000 nm or less, the method for producing fibrous cellulose may include a defibration treatment step. In the defibration treatment step, a cellulose raw material having a phosphoric acid group and a phosphorous acid group (phosphorous acid group-introduced fiber) is subjected to a micronization treatment, the fiber width is 1000 nm or less, and the phosphoric acid group and the phosphorous acid group are formed. This is a step of obtaining the fibrous cellulose to have. In the defibration treatment step, for example, a defibration treatment apparatus can be used. The defibrating apparatus is not particularly limited, but for example, a high-speed defibrator, a grinder (stone mill type crusher), a high-pressure homogenizer or an ultra-high pressure homogenizer, a high-pressure collision type crusher, a ball mill, a bead mill, a disc type refiner, a conical refiner, and a biaxial A kneader, a vibration mill, a homomixer under high speed rotation, an ultrasonic disperser, or a beater can be used. Among the above-mentioned defibration processing devices, it is more preferable to use a high-speed defibrator, a high-pressure homogenizer, and an ultra-high-pressure homogenizer, which are less affected by crushed media and less likely to cause contamination.

解繊処理工程においては、たとえばリンオキソ酸基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、特に限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n−ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn−ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリジノン(NMP)等が挙げられる。 In the defibration treatment step, for example, it is preferable to dilute the phosphorus oxo acid group-introduced fiber with a dispersion medium to form a slurry. As the dispersion medium, one or more selected from water and an organic solvent such as a polar organic solvent can be used. The polar organic solvent is not particularly limited, but for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents and the like are preferable. Examples of alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like. Examples of polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like. Examples of ketones include acetone, methyl ethyl ketone (MEK) and the like. Examples of ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-butyl ether, propylene glycol monomethyl ether and the like. Examples of the esters include ethyl acetate, butyl acetate and the like. Examples of the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.

解繊処理時の微細繊維状セルロースの固形分濃度は適宜設定できる。また、リンオキソ酸基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのリンオキソ酸基導入繊維以外の固形分が含まれていてもよい。 The solid content concentration of the fine fibrous cellulose during the defibration treatment can be appropriately set. Further, the slurry obtained by dispersing the phosphorus oxo acid group-introduced fiber in the dispersion medium may contain a solid content other than the phosphorus oxo acid group-introduced fiber such as urea having a hydrogen bond property.

(繊維状セルロース含有物)
本発明は、上述した繊維状セルロースを含む繊維状セルロース含有物に関するものであってもよい。繊維状セルロース含有物は、上述した繊維状セルロースに加えて、さらに溶媒や後述するような任意成分を含んでいることが好ましい。
(Filamentous cellulose-containing material)
The present invention may relate to the fibrous cellulose-containing material containing the fibrous cellulose described above. The fibrous cellulose-containing material preferably further contains a solvent and an optional component as described later, in addition to the above-mentioned fibrous cellulose.

繊維状セルロース含有物が含み得る溶媒としては、水が挙げられる。また、溶媒は有機溶媒であってもよい。有機溶媒としては、例えば、アルコール類、多価アルコール類、ケトン類、エーテル類、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF),ジメチルアセトアミド(DMAc)等が挙げられる。アルコール類としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブチルアルコール等が挙げられる。多価アルコール類としては、エチレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン等が挙げられる。エーテル類としては、ジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn−ブチルエーテル、エチレングリコールモノt−ブチルエーテル等が挙げられる。なお、溶媒は、水と有機溶媒の混合溶媒であってもよい。 Examples of the solvent that the fibrous cellulose-containing substance may contain include water. Moreover, the solvent may be an organic solvent. Examples of the organic solvent include alcohols, polyhydric alcohols, ketones, ethers, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc) and the like. Examples of alcohols include methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butyl alcohol and the like. Examples of polyhydric alcohols include ethylene glycol and glycerin. Examples of the ketones include acetone, methyl ethyl ketone and the like. Examples of ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, ethylene glycol mono t-butyl ether and the like. The solvent may be a mixed solvent of water and an organic solvent.

繊維状セルロース含有物は、液状であってもよく、固形状やゲル状であってもよい。繊維状セルロース含有物が液状である場合、繊維状セルロース含有物は、繊維状セルロース含有スラリーであってもよい。繊維状セルロースの繊維幅が1000nm以下である場合、上述した解繊処理工程で得られる微細繊維状セルロース含有スラリーが繊維状セルロース含有物であってもよい。なお、微細繊維状セルロース含有スラリーを濃縮したり、乾燥した後に、溶媒に再分散させることで微細繊維状セルロース含有スラリーとしてもよく、この場合は、再分散液が繊維状セルロース含有物となる。 The fibrous cellulose-containing material may be liquid, solid or gel-like. When the fibrous cellulose-containing material is liquid, the fibrous cellulose-containing material may be a fibrous cellulose-containing slurry. When the fiber width of the fibrous cellulose is 1000 nm or less, the fine fibrous cellulose-containing slurry obtained in the above-mentioned defibration treatment step may be a fibrous cellulose-containing substance. A fine fibrous cellulose-containing slurry may be obtained by concentrating or drying the fine fibrous cellulose-containing slurry and then redispersing it in a solvent. In this case, the redispersed liquid becomes a fibrous cellulose-containing substance.

繊維状セルロースの繊維幅が1000nm以下である場合、微細繊維状セルロース含有スラリーのヘーズは、25%以下であることが好ましく、20%以下であることがより好ましく、15%以下であることがさらに好ましく、10%以下であることが一層好ましく、5%以下であることが特に好ましい。微細繊維状セルロース含有スラリーのヘーズは、0%であってもよい。微細繊維状セルロース含有スラリーのヘーズは、微細繊維状セルロース含有スラリーの固形分濃度が0.2質量%となるように希釈した後に、JIS K 7136に準拠して測定する。ヘーズの測定にはヘーズメータを用い、光路長1cmの液体用ガラスセルに分散液を充填する。なお、ゼロ点測定は、同ガラスセルに入れたイオン交換水で行う。 When the fiber width of the fibrous cellulose is 1000 nm or less, the haze of the fine fibrous cellulose-containing slurry is preferably 25% or less, more preferably 20% or less, and further preferably 15% or less. It is preferably 10% or less, more preferably 5% or less, and particularly preferably 5% or less. The haze of the fine fibrous cellulose-containing slurry may be 0%. The haze of the fine fibrous cellulose-containing slurry is measured according to JIS K 7136 after being diluted so that the solid content concentration of the fine fibrous cellulose-containing slurry is 0.2% by mass. A haze meter is used to measure the haze, and a glass cell for liquid having an optical path length of 1 cm is filled with a dispersion liquid. The zero point measurement is performed with ion-exchanged water contained in the glass cell.

繊維状セルロースの繊維幅が1000nm以下である場合、微細繊維状セルロース含有スラリーの粘度は、1000mPa・s以上であることが好ましく、2000mPa・s以上であることがより好ましく、4000mPa・s以上であることがさらに好ましく、10000mPa・s以上であることが特に好ましい。なお、微細繊維状セルロース含有スラリーの粘度の上限値は特に限定されるものではないが、40000mPa・sであることが好ましい。なお、上記粘度は、微細繊維状セルロース含有スラリーを固形分濃度が0.2質量%となるように希釈した後に、ディスパーザーにて1500rpmで撹拌し、スラリーを十分に均一にし、23℃、相対湿度50%の環境下に24時間静置した後にB型粘度計を用いて測定した値である。測定条件は、23℃の条件とし、3rpmで3分間回転させた際の、2分30秒経過後から回転終了までの粘度の平均値を測定する。なお、測定装置としては、BLOOKFIELD社製のデジタル粘度計DV−2Tを用いることができる。 When the fiber width of the fibrous cellulose is 1000 nm or less, the viscosity of the fine fibrous cellulose-containing slurry is preferably 1000 mPa · s or more, more preferably 2000 mPa · s or more, and 4000 mPa · s or more. It is more preferable, and it is particularly preferable that it is 10,000 mPa · s or more. The upper limit of the viscosity of the fine fibrous cellulose-containing slurry is not particularly limited, but is preferably 40,000 mPa · s. The viscosity is determined by diluting the fine fibrous cellulose-containing slurry so that the solid content concentration becomes 0.2% by mass, and then stirring the slurry at 1500 rpm with a disperser to make the slurry sufficiently uniform and relative to 23 ° C. It is a value measured using a B-type viscometer after being allowed to stand in an environment of 50% humidity for 24 hours. The measurement condition is 23 ° C., and the average value of the viscosity from the lapse of 2 minutes and 30 seconds to the end of the rotation when rotated at 3 rpm for 3 minutes is measured. As the measuring device, a digital viscometer DV-2T manufactured by BLOOKFIELD can be used.

本発明の繊維状セルロース含有物が固形状であることが好ましい。この場合、その形態は特に限定されるものではないが、例えば、シート状物や粉粒物であることが好ましく、粉粒物であることがより好ましい。ここで、粉粒物は、粉状及び/又は粒状の物質である。なお、粉状物質は、粒状物質よりも小さいものをいう。一般的には、粉状物質は粒子径が1nm以上0.1mm未満の微粒子をいい、粒状物質は、粒子径が0.1mm以上10mm以下の粒子をいうが、特に限定されない。なお、本明細書においては、粉粒物は粉体と呼ぶこともある。本明細書における粉粒物の粒子径はレーザー回折法を用いて測定・算出することができる。具体的には、レーザー回折散乱式粒子径分布測定装置(Microtrac3300EXII、日機装株式会社)を用いて測定した値とする。 It is preferable that the fibrous cellulose-containing material of the present invention is in a solid state. In this case, the form is not particularly limited, but for example, it is preferably a sheet or a powder, and more preferably a powder. Here, the powdery substance is a powdery and / or granular substance. The powdery substance is smaller than the granular substance. Generally, the powdery substance refers to fine particles having a particle size of 1 nm or more and less than 0.1 mm, and the granular substance refers to particles having a particle size of 0.1 mm or more and 10 mm or less, but is not particularly limited. In addition, in this specification, a powder or granular material may be referred to as a powder. The particle size of the powder or granule in the present specification can be measured and calculated by using a laser diffraction method. Specifically, it is a value measured using a laser diffraction / scattering type particle size distribution measuring device (Microtrac 3300EXII, Nikkiso Co., Ltd.).

繊維状セルロース含有物の全質量に対する繊維状セルロースの含有量は50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。なお、繊維状セルロース含有物の全質量に対する繊維状セルロースの含有量の上限値は99.9質量%以下であることが好ましく、99質量%以下であることがより好ましく、90質量%以下であることがさらに好ましい。 The content of the fibrous cellulose with respect to the total mass of the fibrous cellulose-containing material is preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 70% by mass or more. The upper limit of the content of fibrous cellulose with respect to the total mass of the fibrous cellulose-containing material is preferably 99.9% by mass or less, more preferably 99% by mass or less, and 90% by mass or less. Is even more preferable.

なお、繊維状セルロース含有物の全質量に対する繊維状セルロースの含有量は50質量%未満であっても構わない。この場合であって、たとえば、繊維状セルロース以外の組成物が水である場合は、繊維状セルロース含有物から水を適切な方法で除去することによって得られる固形物が、優れた耐熱性を示すことになる。 The content of the fibrous cellulose with respect to the total mass of the fibrous cellulose-containing material may be less than 50% by mass. In this case, for example, when the composition other than the fibrous cellulose is water, the solid obtained by removing water from the fibrous cellulose-containing material by an appropriate method exhibits excellent heat resistance. It will be.

<任意成分>
繊維状セルロース含有物は、さらに任意成分を含んでいてもよい。任意成分としては、例えば、消泡剤、潤滑剤、紫外線吸収剤、染料、顔料、安定剤、界面活性剤、防腐剤等を挙げることができる。また、繊維状セルロース含有スラリーは、任意成分として、親水性高分子、親水性低分子、有機イオン等を含有していてもよい。
<Arbitrary ingredient>
The fibrous cellulose-containing material may further contain an optional component. Examples of the optional component include antifoaming agents, lubricants, ultraviolet absorbers, dyes, pigments, stabilizers, surfactants, preservatives and the like. Further, the fibrous cellulose-containing slurry may contain a hydrophilic polymer, a hydrophilic low molecule, an organic ion and the like as optional components.

親水性高分子は、親水性の含酸素有機化合物(但し、上記セルロース繊維は除く)であることが好ましく、含酸素有機化合物としては、例えば、ポリエチレングリコール、ポリエチレンオキサイド、カゼイン、デキストリン、澱粉、変性澱粉、ポリビニルアルコール、変性ポリビニルアルコール(アセトアセチル化ポリビニルアルコール等)、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリアクリル酸塩類、アクリル酸アルキルエステル共重合体、ウレタン系共重合体、セルロース誘導体(ヒドロキシエチルセルロース、カルボキシエチルセルロース、カルボキシメチルセルロース等)等が挙げられる。 The hydrophilic polymer is preferably a hydrophilic oxygen-containing organic compound (excluding the above-mentioned cellulose fibers), and examples of the oxygen-containing organic compound include polyethylene glycol, polyethylene oxide, casein, dextrin, starch, and modification. Distillate, polyvinyl alcohol, modified polyvinyl alcohol (acetoacetylated polyvinyl alcohol, etc.), polyvinylpyrrolidone, polyvinylmethyl ether, polyacrylates, acrylic acid alkyl ester copolymer, urethane-based copolymer, cellulose derivative (hydroxyethyl cellulose, carboxy) Ethyl cellulose, carboxymethyl cellulose, etc.) and the like.

親水性低分子は、親水性の含酸素有機化合物であることが好ましく、多価アルコールであることがさらに好ましい。多価アルコールとしては、例えば、グリセリン、ソルビトール、エチレングリコール等が挙げられる。 The hydrophilic low molecule is preferably a hydrophilic oxygen-containing organic compound, and more preferably a polyhydric alcohol. Examples of the polyhydric alcohol include glycerin, sorbitol, ethylene glycol and the like.

有機イオンとしては、テトラアルキルアンモニウムイオンやテトラアルキルホスホニウムイオンを挙げることができる。テトラアルキルアンモニウムイオンとしては、例えば、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラペンチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、テトラヘプチルアンモニウムイオン、トリブチルメチルアンモニウムイオン、ラウリルトリメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ステアリルトリメチルアンモニウムイオン、オクチルジメチルエチルアンモニウムイオン、ラウリルジメチルエチルアンモニウムイオン、ジデシルジメチルアンモニウムイオン、ラウリルジメチルベンジルアンモニウムイオン、トリブチルベンジルアンモニウムイオンが挙げられる。テトラアルキルホスホニウムイオンとしては、例えばテトラメチルホスホニウムイオン、テトラエチルホスホニウムイオン、テトラプロピルホスホニウムイオン、テトラブチルホスホニウムイオン、およびラウリルトリメチルホスホニウムイオンが挙げられる。また、テトラプロピルオニウムイオン、テトラブチルオニウムイオンとして、それぞれテトラn−プロピルオニウムイオン、テトラn−ブチルオニウムイオンなども挙げることができる。 Examples of the organic ion include tetraalkylammonium ion and tetraalkylphosphonium ion. Examples of the tetraalkylammonium ion include tetramethylammonium ion, tetraethylammonium ion, tetrapropylammonium ion, tetrabutylammonium ion, tetrapentylammonium ion, tetrahexylammonium ion, tetraheptylammonium ion, tributylmethylammonium ion, and lauryltrimethyl. Examples thereof include ammonium ion, cetyltrimethylammonium ion, stearyltrimethylammonium ion, octyldimethylethylammonium ion, lauryldimethylethylammonium ion, didecyldimethylammonium ion, lauryldimethylbenzylammonium ion and tributylbenzylammonium ion. Examples of the tetraalkylphosphonium ion include tetramethylphosphonium ion, tetraethylphosphonium ion, tetrapropylphosphonium ion, tetrabutylphosphonium ion, and lauryltrimethylphosphonium ion. Further, examples of the tetrapropyl onium ion and the tetrabutyl onium ion include tetra n-propyl onium ion and tetra n-butyl onium ion, respectively.

(成形体)
本発明は、上述した繊維状セルロース、もしくは、上述した繊維状セルロース含有物から形成される成形体に関するものであってもよい。本明細書において成形体とは、所望の形状となるように成形された固形状体や、シート状に抄紙された固形状体をいう。成形体としては、例えば、シート(紙を含む)、ビーズ、フィラメント等を挙げることができる。中でも、成形体は、シート、ビーズ又はフィラメントであることが好ましい。成形体がビーズ状である場合、ビーズの粒子径は、0.1mm以上10mm以下であることが好ましい。また、成形体がフィラメント状である場合、フィラメントの幅は0.1mm以上10mm以下であることが好ましく、フィラメントの長さは1mm以上10000mm以下であることが好ましい。
(Molded body)
The present invention may relate to the above-mentioned fibrous cellulose or a molded product formed from the above-mentioned fibrous cellulose-containing material. In the present specification, the molded body means a solid body formed into a desired shape or a solid body formed into a sheet. Examples of the molded product include sheets (including paper), beads, filaments, and the like. Above all, the molded product is preferably a sheet, beads or filament. When the molded product is bead-shaped, the particle size of the beads is preferably 0.1 mm or more and 10 mm or less. When the molded product is in the form of a filament, the width of the filament is preferably 0.1 mm or more and 10 mm or less, and the length of the filament is preferably 1 mm or more and 10000 mm or less.

中でも、成形体はシート状であることが好ましい。成形体がシートである場合、シートの厚みは、特に限定されないが、たとえば5μm以上であることが好ましく、10μm以上であることがより好ましく、20μm以上であることがさらに好ましい。またシートの厚みの上限値は、特に限定されないが、たとえば1000μmとすることができる。シートの厚みは、たとえば触針式厚さ計(マール社製、ミリトロン1202D)で測定することができる。 Above all, the molded body is preferably in the form of a sheet. When the molded product is a sheet, the thickness of the sheet is not particularly limited, but is preferably, for example, 5 μm or more, more preferably 10 μm or more, and further preferably 20 μm or more. The upper limit of the thickness of the sheet is not particularly limited, but may be, for example, 1000 μm. The thickness of the sheet can be measured, for example, with a stylus type thickness gauge (Millitron 1202D manufactured by Marl).

繊維状セルロースの繊維幅が1000nmよりも大きい場合には、シートは紙であってもよい。また、シートは不織布であってもよい。本発明の繊維状セルロースは水や塩分含有水溶液の吸水性に優れており、かつ繊維の離解性にも優れているため、シートや不織布は各種衛生用紙や吸収性物品の構成部材として用いられてもよい。 If the fiber width of the fibrous cellulose is larger than 1000 nm, the sheet may be paper. Moreover, the sheet may be a non-woven fabric. Since the fibrous cellulose of the present invention has excellent water absorption of water and salt-containing aqueous solutions and also has excellent fiber disintegration property, sheets and non-woven fabrics are used as constituent members of various sanitary papers and absorbent articles. May be good.

繊維状セルロースの繊維幅が1000nm以下である場合には、シートは高透明なシートとすることもできる。このような場合、シートのヘーズは、たとえば2%以下であることが好ましく、1.5%以下であることがより好ましく、1%以下であることがさらに好ましい。一方で、シートのヘーズの下限値は、特に限定されず、たとえば0%であってもよい。ここで、シートのヘーズは、たとえばJIS K 7136に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM−150)を用いて測定される値である。 When the fiber width of the fibrous cellulose is 1000 nm or less, the sheet can be a highly transparent sheet. In such a case, the haze of the sheet is, for example, preferably 2% or less, more preferably 1.5% or less, and even more preferably 1% or less. On the other hand, the lower limit of the haze of the sheet is not particularly limited and may be, for example, 0%. Here, the haze of the sheet is a value measured, for example, in accordance with JIS K 7136 and using a haze meter (HM-150, manufactured by Murakami Color Technology Research Institute).

シートの全光線透過率は、たとえば85%以上であることが好ましく、90%以上であることがより好ましく、91%以上であることがさらに好ましい。一方で、シートの全光線透過率の上限値は、特に限定されず、たとえば100%であってもよい。ここで、シートの全光線透過率は、たとえばJIS K 7361に準拠し、ヘーズメータ(村上色彩技術研究所社製、HM−150)を用いて測定される値である。 The total light transmittance of the sheet is, for example, preferably 85% or more, more preferably 90% or more, and further preferably 91% or more. On the other hand, the upper limit of the total light transmittance of the sheet is not particularly limited and may be, for example, 100%. Here, the total light transmittance of the sheet is a value measured using, for example, JIS K 7361 and a haze meter (HM-150, manufactured by Murakami Color Technology Research Institute).

シートの坪量は、特に限定されないが、たとえば10g/m以上であることが好ましく、20g/m以上であることがより好ましく、30g/m以上であることがさらに好ましい。また、シートの坪量は、特に限定されないが、たとえば200g/m以下であることが好ましく、180g/m以下であることがより好ましい。ここで、シートの坪量は、たとえばJIS P 8124に準拠し、算出することができる。 The basis weight of the sheet is not particularly limited, but is preferably 10 g / m 2 or more, more preferably 20 g / m 2 or more, and further preferably 30 g / m 2 or more. The basis weight of the sheet is not particularly limited, but is preferably 200 g / m 2 or less, and more preferably 180 g / m 2 or less. Here, the basis weight of the sheet can be calculated in accordance with, for example, JIS P 8124.

シートの密度は、特に限定されないが、たとえば0.1g/cm以上であることが好ましく、0.5g/cm以上であることがより好ましく、1.0g/cm以上であることがさらに好ましい。また、シートの密度は、特に限定されないが、たとえば5.0g/cm以下であることが好ましく、3.0g/cm以下であることがより好ましい。ここで、シートの密度は、50mm角のシートを23℃、50%RH条件下で24時間調湿した後、シートの厚みおよび質量を測定することにより算出することができる。 The density of the sheet is not particularly limited, but is preferably 0.1 g / cm 3 or more, more preferably 0.5 g / cm 3 or more, and further preferably 1.0 g / cm 3 or more. preferable. The density of the sheet is not particularly limited, but is preferably 5.0 g / cm 3 or less, and more preferably 3.0 g / cm 3 or less, for example. Here, the density of the sheet can be calculated by measuring the thickness and mass of the sheet after adjusting the humidity of a 50 mm square sheet under the conditions of 23 ° C. and 50% RH for 24 hours.

シート中における繊維状セルロースの含有量は、たとえばシートの全質量に対して、0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、5質量%以上であることがさらに好ましく、10質量%以上であることが特に好ましい。一方で、シート中における繊維状セルロースの含有量の上限値は、特に限定されず、シートの全質量に対して100質量%であってもよく、95質量%であってもよい。 The content of fibrous cellulose in the sheet is, for example, preferably 0.5% by mass or more, more preferably 1% by mass or more, and 5% by mass or more, based on the total mass of the sheet. Is more preferable, and 10% by mass or more is particularly preferable. On the other hand, the upper limit of the content of fibrous cellulose in the sheet is not particularly limited, and may be 100% by mass or 95% by mass with respect to the total mass of the sheet.

シートは、繊維状セルロース含有スラリーに含まれ得る任意成分を含んでいてもよい。また、シートには、水や有機溶媒が含まれていてもよい。 The sheet may contain any component that may be included in the fibrous cellulose-containing slurry. Further, the sheet may contain water or an organic solvent.

(繊維状セルロース含有シートの製造方法)
成形体がシートである場合、シートの製造方法は、後述するように、繊維状セルロース含有スラリーを基材上に塗工する塗工工程、または当該スラリーを抄紙する抄紙工程を含むことが好ましい。
(Manufacturing method of fibrous cellulose-containing sheet)
When the molded product is a sheet, the method for producing the sheet preferably includes a coating step of coating the fibrous cellulose-containing slurry on the substrate or a papermaking step of making the slurry as described later.

<塗工工程>
塗工工程では、たとえば繊維状セルロース含有スラリー(以下、単にスラリーともいう)を基材上に塗工し、これを乾燥して形成されたシートを基材から剥離することによりシートを得ることができる。また、塗工装置と長尺の基材を用いることで、シートを連続的に生産することができる。
<Coating process>
In the coating step, for example, a fibrous cellulose-containing slurry (hereinafter, also simply referred to as slurry) can be applied onto a base material, and the sheet formed by drying the slurry can be peeled off from the base material to obtain a sheet. it can. Further, by using a coating device and a long base material, sheets can be continuously produced.

塗工工程で用いる基材の材質は、特に限定されないが、繊維状セルロース含有スラリー(スラリー)に対する濡れ性が高いものの方が乾燥時のシートの収縮等を抑制することができて良いが、乾燥後に形成されたシートが容易に剥離できるものを選択することが好ましい。中でも樹脂製のフィルムや板または金属製のフィルムや板が好ましいが、特に限定されない。たとえばポリプロピレン、アクリル、ポリエチレンテレフタレート、塩化ビニル、ポリスチレン、ポリカーボネート、ポリ塩化ビニリデン等の樹脂のフィルムや板、アルミ、亜鉛、銅、鉄板の金属のフィルムや板、および、それらの表面を酸化処理したもの、ステンレスのフィルムや板、真ちゅうのフィルムや板等を用いることができる。 The material of the base material used in the coating process is not particularly limited, but a material having higher wettability to the fibrous cellulose-containing slurry (slurry) may suppress shrinkage of the sheet during drying, but drying It is preferable to select a sheet in which the sheet formed later can be easily peeled off. Of these, a resin film or plate or a metal film or plate is preferable, but is not particularly limited. For example, resin films and plates such as polypropylene, acrylic, polyethylene terephthalate, vinyl chloride, polystyrene, polycarbonate, and polyvinylidene chloride, metal films and plates of aluminum, zinc, copper, and iron plates, and their surfaces are oxidized. , Stainless film or plate, brass film or plate, etc. can be used.

塗工工程において、スラリーの粘度が低く、基材上で展開してしまう場合には、所定の厚みおよび坪量のシートを得るため、基材上に堰止用の枠を固定して使用してもよい。堰止用の枠としては、特に限定されないが、たとえば乾燥後に付着するシートの端部が容易に剥離できるものを選択することが好ましい。このような観点から、樹脂板または金属板を成形したものがより好ましい。本実施形態においては、たとえばポリプロピレン板、アクリル板、ポリエチレンテレフタレート板、塩化ビニル板、ポリスチレン板、ポリカーボネート板、ポリ塩化ビニリデン板等の樹脂板や、アルミ板、亜鉛板、銅板、鉄板等の金属板、およびこれらの表面を酸化処理したもの、ステンレス板、真ちゅう板等を成形したものを用いることができる。スラリーを基材に塗工する塗工機としては、特に限定されないが、たとえばロールコーター、グラビアコーター、ダイコーター、カーテンコーター、エアドクターコーター等を使用することができる。シートの厚みをより均一にできることから、ダイコーター、カーテンコーター、スプレーコーターが特に好ましい。 In the coating process, when the viscosity of the slurry is low and it develops on the base material, a dammed frame is fixed on the base material to obtain a sheet with a predetermined thickness and basis weight. You may. The frame for damming is not particularly limited, but it is preferable to select, for example, a frame in which the end portion of the sheet that adheres after drying can be easily peeled off. From this point of view, a resin plate or a metal plate molded is more preferable. In the present embodiment, for example, a resin plate such as a polypropylene plate, an acrylic plate, a polyethylene terephthalate plate, a vinyl chloride plate, a polystyrene plate, a polycarbonate plate, a polyvinylidene chloride plate, or a metal plate such as an aluminum plate, a zinc plate, a copper plate, or an iron plate. , And those whose surfaces are oxidized, stainless steel plates, brass plates and the like can be used. The coating machine for coating the slurry on the base material is not particularly limited, and for example, a roll coater, a gravure coater, a die coater, a curtain coater, an air doctor coater, or the like can be used. A die coater, a curtain coater, and a spray coater are particularly preferable because the thickness of the sheet can be made more uniform.

スラリーを基材へ塗工する際のスラリー温度および雰囲気温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましく、15℃以上50℃以下であることがさらに好ましく、20℃以上40℃以下であることが特に好ましい。塗工温度が上記下限値以上であれば、スラリーをより容易に塗工できる。塗工温度が上記上限値以下であれば、塗工中の分散媒の揮発を抑制できる。 The slurry temperature and the atmospheric temperature at the time of coating the slurry on the substrate are not particularly limited, but are preferably, for example, 5 ° C. or higher and 80 ° C. or lower, more preferably 10 ° C. or higher and 60 ° C. or lower, and 15 ° C. It is more preferably 50 ° C. or lower, and particularly preferably 20 ° C. or higher and 40 ° C. or lower. When the coating temperature is equal to or higher than the above lower limit, the slurry can be coated more easily. When the coating temperature is not more than the above upper limit value, volatilization of the dispersion medium during coating can be suppressed.

塗工工程においては、シートの仕上がり坪量が好ましくは10g/m以上200g/m以下となるように、より好ましくは20g/m以上180g/m以下となるように、スラリーを基材に塗工することが好ましい。坪量が上記範囲内となるように塗工することで、強度に優れたシートが得られる。 In the coating process, the slurry is based so that the finished basis weight of the sheet is preferably 10 g / m 2 or more and 200 g / m 2 or less, and more preferably 20 g / m 2 or more and 180 g / m 2 or less. It is preferable to coat the material. By coating so that the basis weight is within the above range, a sheet having excellent strength can be obtained.

塗工工程は、上述のとおり、基材上に塗工したスラリーを乾燥させる工程を含む。スラリーを乾燥させる工程は、特に限定されないが、たとえば非接触の乾燥方法、もしくはシートを拘束しながら乾燥する方法、またはこれらの組み合わせにより行われる。 As described above, the coating step includes a step of drying the slurry coated on the substrate. The step of drying the slurry is not particularly limited, but is performed by, for example, a non-contact drying method, a method of drying while restraining the sheet, or a combination thereof.

非接触の乾燥方法としては、特に限定されないが、たとえば熱風、赤外線、遠赤外線もしくは近赤外線により加熱して乾燥する方法(加熱乾燥法)、または真空にして乾燥する方法(真空乾燥法)を適用することができる。加熱乾燥法と真空乾燥法を組み合わせてもよいが、通常は、加熱乾燥法が適用される。赤外線、遠赤外線または近赤外線による乾燥は、特に限定されないが、たとえば赤外線装置、遠赤外線装置または近赤外線装置を用いて行うことができる。 The non-contact drying method is not particularly limited, and for example, a method of heating and drying with hot air, infrared rays, far infrared rays or near infrared rays (heat drying method) or a method of vacuum drying (vacuum drying method) is applied. can do. The heat drying method and the vacuum drying method may be combined, but the heat drying method is usually applied. Drying with infrared rays, far infrared rays or near infrared rays is not particularly limited, but can be performed by using, for example, an infrared device, a far infrared device or a near infrared device.

加熱乾燥法における加熱温度は、特に限定されないが、たとえば20℃以上150℃以下とすることが好ましく、25℃以上105℃以下とすることがより好ましい。加熱温度を上記下限値以上とすれば、分散媒を速やかに揮発させることができる。また、加熱温度を上記上限値以下であれば、加熱に要するコストの抑制および繊維状セルロースの熱による変色の抑制を実現できる。 The heating temperature in the heat drying method is not particularly limited, but is preferably 20 ° C. or higher and 150 ° C. or lower, and more preferably 25 ° C. or higher and 105 ° C. or lower. When the heating temperature is at least the above lower limit value, the dispersion medium can be rapidly volatilized. Further, when the heating temperature is not more than the above upper limit value, it is possible to suppress the cost required for heating and suppress the discoloration of the fibrous cellulose due to heat.

<抄紙工程>
抄紙工程は、抄紙機によりスラリーを抄紙することにより行われる。抄紙工程で用いられる抄紙機としては、特に限定されないが、たとえば長網式、円網式、傾斜式等の連続抄紙機、またはこれらを組み合わせた多層抄き合わせ抄紙機等が挙げられる。抄紙工程では、手抄き等の公知の抄紙方法を採用してもよい。
<Papermaking process>
The papermaking process is performed by making a slurry with a paper machine. The paper machine used in the paper making process is not particularly limited, and examples thereof include continuous paper machines such as a long net type, a circular net type, and an inclined type, and a multi-layer paper making machine combining these. In the papermaking process, a known papermaking method such as hand-making may be adopted.

抄紙工程は、スラリーをワイヤーにより濾過、脱水して湿紙状態のシートを得た後、このシートをプレス、乾燥することにより行われる。スラリーを濾過、脱水する際に用いられる濾布としては、特に限定されないが、たとえば繊維状セルロースは通過せず、かつ濾過速度が遅くなりすぎないものであることがより好ましい。このような濾布としては、特に限定されないが、たとえば有機ポリマーからなるシート、織物、多孔膜が好ましい。有機ポリマーとしては特に限定されないが、たとえばポリエチレンテレフタレートやポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)等のような非セルロース系の有機ポリマーが好ましい。本実施形態においては、たとえば孔径0.1μm以上20μm以下であるポリテトラフルオロエチレンの多孔膜や、孔径0.1μm以上20μm以下であるポリエチレンテレフタレートやポリエチレンの織物等が挙げられる。 The papermaking process is performed by filtering and dehydrating the slurry with a wire to obtain a wet paper sheet, and then pressing and drying the sheet. The filter cloth used for filtering and dehydrating the slurry is not particularly limited, but it is more preferable that, for example, fibrous cellulose does not pass through and the filtration rate does not become too slow. Such a filter cloth is not particularly limited, but for example, a sheet made of an organic polymer, a woven fabric, or a porous membrane is preferable. The organic polymer is not particularly limited, but non-cellulosic organic polymers such as polyethylene terephthalate, polyethylene, polypropylene, and polytetrafluoroethylene (PTFE) are preferable. In the present embodiment, for example, a porous membrane of polytetrafluoroethylene having a pore size of 0.1 μm or more and 20 μm or less, polyethylene terephthalate having a pore size of 0.1 μm or more and 20 μm or less, a polyethylene woven fabric, or the like can be mentioned.

シート化工程において、スラリーからシートを製造する方法は、たとえば繊維状セルロースを含むスラリーを無端ベルトの上面に吐出し、吐出されたスラリーから分散媒を搾水してウェブを生成する搾水セクションと、ウェブを乾燥させてシートを生成する乾燥セクションとを備える製造装置を用いて行うことができる。搾水セクションから乾燥セクションにかけて無端ベルトが配設され、搾水セクションで生成されたウェブが無端ベルトに載置されたまま乾燥セクションに搬送される。 In the sheeting process, a method of producing a sheet from a slurry is, for example, a water-squeezed section in which a slurry containing fibrous cellulose is discharged onto the upper surface of an endless belt and a dispersion medium is squeezed from the discharged slurry to generate a web. It can be done using a manufacturing apparatus with a drying section that dries the web to produce a sheet. An endless belt is arranged from the watering section to the drying section, and the web generated in the watering section is conveyed to the drying section while being placed on the endless belt.

抄紙工程において用いられる脱水方法としては、特に限定されないが、たとえば紙の製造で通常に使用している脱水方法が挙げられる。これらの中でも、長網、円網、傾斜ワイヤーなどで脱水した後、さらにロールプレスで脱水する方法が好ましい。また、抄紙工程において用いられる乾燥方法としては、特に限定されないが、たとえば紙の製造で用いられている方法が挙げられる。これらの中でも、シリンダードライヤー、ヤンキードライヤー、熱風乾燥、近赤外線ヒーター、赤外線ヒーターなどを用いた乾燥方法がより好ましい。 The dehydration method used in the papermaking process is not particularly limited, and examples thereof include a dehydration method usually used in the production of paper. Among these, a method of dehydrating with a long net, a circular net, an inclined wire or the like and then further dehydrating with a roll press is preferable. The drying method used in the papermaking process is not particularly limited, and examples thereof include a method used in the production of paper. Among these, a drying method using a cylinder dryer, a Yankee dryer, hot air drying, a near infrared heater, an infrared heater, or the like is more preferable.

(用途)
本発明の繊維状セルロースは、増粘剤や粒子分散安定剤として使用することができる。また、本発明の繊維状セルロースと溶媒を混合することで、繊維状セルロース含有スラリーとしたり、該スラリーから繊維状セルロースが均一に分散したシートを形成することもできる。また、本発明の繊維状セルロースは、樹脂成分を含む有機溶媒との混合に好ましく用いることもできる。本発明の繊維状セルロースと、樹脂成分を含む有機溶媒を混合することで、繊維状セルロースが均一に分散した樹脂複合体を形成することができる。同様に繊維状セルロース再分散スラリーを用いて製膜し、各種フィルムとして使用することができる。
(Use)
The fibrous cellulose of the present invention can be used as a thickener or a particle dispersion stabilizer. Further, by mixing the fibrous cellulose of the present invention with a solvent, a fibrous cellulose-containing slurry can be obtained, or a sheet in which fibrous cellulose is uniformly dispersed can be formed from the slurry. Further, the fibrous cellulose of the present invention can also be preferably used for mixing with an organic solvent containing a resin component. By mixing the fibrous cellulose of the present invention with an organic solvent containing a resin component, a resin composite in which the fibrous cellulose is uniformly dispersed can be formed. Similarly, a film can be formed using the fibrous cellulose redispersion slurry and used as various films.

また、本発明の繊維状セルロースは、例えば、補強剤や添加剤として、セメント、塗料、インク、潤滑剤などに使用することができる。また、繊維状セルロースを基材上に塗工することで得られる成形体は、補強材、内装材、外装材、包装用資材、電子材料、光学材料、音響材料、プロセス材料、輸送機器の部材、電子機器の部材、電気化学素子の部材等の用途にも適している。 Further, the fibrous cellulose of the present invention can be used, for example, as a reinforcing agent or an additive in cement, paints, inks, lubricants and the like. In addition, the molded product obtained by coating fibrous cellulose on a base material is a reinforcing material, an interior material, an exterior material, a packaging material, an electronic material, an optical material, an acoustic material, a process material, and a member of a transportation device. It is also suitable for applications such as electronic device members and electrochemical element members.

以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The features of the present invention will be described in more detail with reference to Examples and Comparative Examples. The materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limiting by the specific examples shown below.

<製造例1>
原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量245g/mシート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
<Manufacturing example 1>
As a raw material pulp, softwood kraft pulp made by Oji Paper (solid content 93% by mass, basis weight 245 g / m 2 sheets, separated and measured according to JIS P 8121, Canadian standard drainage degree (CSF) is 700 ml) It was used.

この原料パルプに対してリンオキソ酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸、亜リン酸(ホスホン酸)及び尿素の混合水溶液を添加して、リン酸28.5質量部、亜リン酸(ホスホン酸)7.9質量部、尿素120質量部、水150質量部となるように調製し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で250秒加熱し、パルプ中のセルロースにリンオキソ酸基を導入し、リンオキソ酸化パルプを得た。 The raw material pulp was subjected to phosphorus oxo oxidation treatment as follows. First, a mixed aqueous solution of phosphoric acid, phosphorous acid (phosphonic acid) and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to add 28.5 parts by mass of phosphoric acid and phosphorous acid (phosphonic acid). The contents were adjusted to 7.9 parts by mass, 120 parts by mass of urea, and 150 parts by mass of water to obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated in a hot air dryer at 165 ° C. for 250 seconds to introduce a phosphorus oxo acid group into the cellulose in the pulp to obtain a phosphorus oxo oxidized pulp.

次いで、得られたリンオキソ酸化パルプに対して洗浄処理を行った。洗浄処理は、リンオキソ酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。 Then, the obtained phosphorus oxo oxide pulp was washed. The washing treatment is carried out by repeating the operation of pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of phosphorus oxo oxide pulp, stirring the pulp dispersion liquid so that the pulp is uniformly dispersed, and then filtering and dehydrating the pulp. went. When the electrical conductivity of the filtrate became 100 μS / cm or less, the washing end point was set.

次いで、洗浄後のリンオキソ酸化パルプに対して中和処理を次のようにして行った。まず、洗浄後のリンオキソ酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリンオキソ酸化パルプスラリーを得た。次いで、当該リンオキソ酸化パルプスラリーを脱水して、中和処理が施されたリンオキソ酸化パルプを得た。次いで、中和処理後のリンオキソ酸化パルプに対して、上記洗浄処理を行い、リンオキソ酸化パルプ(中和済み)を得た。 Next, the washed phosphorus oxo oxide pulp was neutralized as follows. First, the washed phosphorus oxo oxide pulp was diluted with 10 L of ion-exchanged water, and then a 1N aqueous sodium hydroxide solution was added little by little with stirring to obtain a phosphorus oxo oxide pulp slurry having a pH of 12 or more and 13 or less. .. Then, the phosphorus oxo oxide pulp slurry was dehydrated to obtain a neutralized phosphorus oxo oxide pulp. Next, the neutralized phosphooxidized pulp was subjected to the above-mentioned washing treatment to obtain phosphooxo-oxidized pulp (neutralized).

得られたリンオキソ酸化パルプ(中和済み)にイオン交換水を添加後、撹拌し、固形分濃度が0.3質量%のスラリーにした。このスラリーを、高圧ホモジナイザー(株式会社美粒製、BERYU MINI)を用いて、150MPaの条件で3回処理し、微細繊維状セルロース含有スラリーを得た。 Ion-exchanged water was added to the obtained phosphorus oxo-oxidized pulp (neutralized) and then stirred to prepare a slurry having a solid content concentration of 0.3% by mass. This slurry was treated three times under the condition of 150 MPa using a high-pressure homogenizer (BERYU MINI, manufactured by Bitsubu Co., Ltd.) to obtain a fine fibrous cellulose-containing slurry.

<製造例2>
リン酸、亜リン酸及び尿素の混合水溶液において、リン酸及び亜リン酸(ホスホン酸)の添加量を、リン酸19.0質量部、亜リン酸(ホスホン酸)15.9質量部に変更した以外は、製造例1と同様にして、リンオキソ酸化パルプ(中和済み)及び微細繊維状セルロース含有スラリーを得た。
<Manufacturing example 2>
In the mixed aqueous solution of phosphoric acid, phosphorous acid and urea, the amount of phosphoric acid and phosphorous acid (phosphonic acid) added was changed to 19.0 parts by mass of phosphoric acid and 15.9 parts by mass of phosphorous acid (phosphonic acid). Phosphate-oxidized pulp (neutralized) and fine fibrous cellulose-containing slurry were obtained in the same manner as in Production Example 1.

<製造例3>
リン酸、亜リン酸及び尿素の混合水溶液において、リン酸及び亜リン酸(ホスホン酸)の添加量を、リン酸9.5質量部、亜リン酸(ホスホン酸)23.8質量部に変更した以外は、製造例1と同様にして、リンオキソ酸化パルプ(中和済み)及び微細繊維状セルロース含有スラリーを得た。
<Manufacturing example 3>
In the mixed aqueous solution of phosphoric acid, phosphorous acid and urea, the amount of phosphoric acid and phosphorous acid (phosphonic acid) added was changed to 9.5 parts by mass of phosphoric acid and 23.8 parts by mass of phosphorous acid (phosphonic acid). Phosphate-oxidized pulp (neutralized) and fine fibrous cellulose-containing slurry were obtained in the same manner as in Production Example 1.

<製造例4>
リン酸、亜リン酸及び尿素の混合水溶液において、リン酸及び亜リン酸(ホスホン酸)の添加量を、リン酸1.1質量部、亜リン酸(ホスホン酸)30.8質量部に変更した以外は、製造例1と同様にして、リンオキソ酸化パルプ(中和済み)及び微細繊維状セルロース含有スラリーを得た。
<Manufacturing example 4>
In the mixed aqueous solution of phosphoric acid, phosphorous acid and urea, the amount of phosphoric acid and phosphorous acid (phosphonic acid) added was changed to 1.1 parts by mass of phosphoric acid and 30.8 parts by mass of phosphorous acid (phosphonic acid). Phosphate-oxidized pulp (neutralized) and fine fibrous cellulose-containing slurry were obtained in the same manner as in Production Example 1.

<製造例5>
リン酸、亜リン酸及び尿素の混合水溶液において、リン酸の添加量を37.9質量部に変更し、亜リン酸を添加しなかった以外は、製造例1と同様にして、リンオキソ酸化パルプ(中和済み)及び微細繊維状セルロース含有スラリーを得た。
<Manufacturing example 5>
In a mixed aqueous solution of phosphoric acid, phosphorous acid and urea, the amount of phosphoric acid added was changed to 37.9 parts by mass, and phosphorous acid was not added, except that phosphorous acid oxide pulp was added in the same manner as in Production Example 1. (Neutralized) and fine fibrous cellulose-containing slurry were obtained.

<製造例6>
リン酸、亜リン酸及び尿素の混合水溶液において、亜リン酸の添加量を31.7質量部に変更し、リン酸を添加しなかった以外は、製造例1と同様にして、リンオキソ酸化パルプ(中和済み)及び微細繊維状セルロース含有スラリーを得た。
<Manufacturing example 6>
In a mixed aqueous solution of phosphoric acid, phosphorous acid and urea, the amount of phosphorous acid added was changed to 31.7 parts by mass, and phosphorous acid was not added, except that phosphorous acid oxide pulp was added in the same manner as in Production Example 1. (Neutralized) and fine fibrous cellulose-containing slurry were obtained.

<製造例7>
製造例5で得たリンオキソ酸化パルプ(中和済み)と、製造例6で得たリンオキソ酸化パルプ(中和済み)にイオン交換水を添加後、リンオキソ酸化パルプの質量比が1:1となるよう混合し、濾過脱水して、(混合)リンオキソ酸化パルプを得た。また、製造例5で得た微細繊維状セルロース含有スラリーと、製造例6で得た微細繊維状セルロース含有スラリーとを、微細繊維状セルロースの質量が1:1となるよう混合し、(混合)微細繊維状セルロース含有スラリーとした。
<Manufacturing example 7>
After adding ion-exchanged water to the phosphorus oxo oxide pulp (neutralized) obtained in Production Example 5 and the phosphorus oxo oxide pulp (neutralized) obtained in Production Example 6, the mass ratio of the phosphorus oxo oxide pulp becomes 1: 1. The pulp was mixed and filtered and dehydrated to obtain (mixed) phosphorusoxo oxide pulp. Further, the fine fibrous cellulose-containing slurry obtained in Production Example 5 and the fine fibrous cellulose-containing slurry obtained in Production Example 6 were mixed so that the mass of the fine fibrous cellulose was 1: 1 (mixing). A slurry containing fine fibrous cellulose was prepared.

<赤外線吸収スペクトルの測定>
製造例1〜6で得られたリンオキソ酸化パルプ(中和済み)及び微細繊維状セルロースに対しFT−IRを用いて赤外線吸収スペクトルの測定を行った。その結果、製造例1〜3、製造例5で得られたリンオキソ酸化パルプ(中和済み)及び微細繊維状セルロースでは1230cm−1付近にリン酸基のP=Oに基づく吸収が観察され、セルロースにリン酸基が付加されていることが確認された。また、製造例1〜4、製造例6では、1210cm−1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、セルロースに亜リン酸基(ホスホン酸基)が付加されていることが確認された。
<Measurement of infrared absorption spectrum>
The infrared absorption spectrum of the phosphorus oxo oxidized pulp (neutralized) and fine fibrous cellulose obtained in Production Examples 1 to 6 was measured using FT-IR. As a result, in the phosphorus oxo-oxidized pulp (neutralized) and fine fibrous cellulose obtained in Production Examples 1 to 3 and Production Examples 5, absorption based on P = O of the phosphoric acid group was observed around 1230 cm -1. It was confirmed that a phosphate group was added to. Further, in Production Examples 1 to 4 and Production Example 6, absorption based on P = O of the phosphonic acid group, which is a tautomer of the phosphorous acid group, was observed in the vicinity of 1210 cm -1 , and the phosphite group (phosphorous acid group) was observed in cellulose. It was confirmed that a phosphonic acid group) was added.

<X線回折分析>
製造例1〜6で得られたリンオキソ酸化パルプ(中和済み)を供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。また、製造例1〜6で得られた微細繊維状セルロースがセルロースI型結晶を維持していることが確認された。微細繊維状セルロースの繊維幅を、透過型電子顕微鏡を用いて測定したところ、3〜5nmであった。
<X-ray diffraction analysis>
When the phosphorus oxo oxide pulp (neutralized) obtained in Production Examples 1 to 6 was tested and analyzed by an X-ray diffractometer, 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23. Typical peaks were confirmed at two positions near ° or less, and it was confirmed that they had cellulose type I crystals. Further, it was confirmed that the fine fibrous celluloses obtained in Production Examples 1 to 6 maintained the cellulose type I crystals. The fiber width of the fine fibrous cellulose was measured using a transmission electron microscope and found to be 3 to 5 nm.

<実施例1>
製造例1で得た微細繊維状セルロース含有スラリーについて、後述する方法によりセルロースに導入された第1解離酸量及び総解離酸量を測定した。また、製造例1で得たリンオキソ酸化パルプ(中和済み)及び微細繊維状セルロースのそれぞれについて、後述する方法により10%重量減温度及び300℃加熱後重量減少率を測定した。
<Example 1>
With respect to the fine fibrous cellulose-containing slurry obtained in Production Example 1, the amount of the first dissociated acid and the total amount of the dissociated acid introduced into the cellulose were measured by the method described later. Further, for each of the phosphorus oxo-oxidized pulp (neutralized) and the fine fibrous cellulose obtained in Production Example 1, the weight reduction rate of 10% and the weight reduction rate after heating at 300 ° C. were measured by the methods described later.

<実施例2>
製造例2で得た微細繊維状セルロース含有スラリーについて、実施例1と同様にして、セルロースに導入された第1解離酸量、総解離酸量を測定した。また、製造例2で得たリンオキソ酸化パルプ(中和済み)及び微細繊維状セルロースのそれぞれについて、実施例1と同様にして、10%重量減温度及び300℃加熱後重量減少率を測定した。
<Example 2>
With respect to the fine fibrous cellulose-containing slurry obtained in Production Example 2, the amount of the first dissociated acid and the total amount of dissociated acid introduced into the cellulose were measured in the same manner as in Example 1. Further, for each of the phosphorus oxo-oxidized pulp (neutralized) and the fine fibrous cellulose obtained in Production Example 2, the weight reduction rate of 10% and the weight loss rate after heating at 300 ° C. were measured in the same manner as in Example 1.

<実施例3>
製造例3で得た微細繊維状セルロース含有スラリーについて、実施例1と同様にして、セルロースに導入された第1解離酸量、総解離酸量を測定した。また、製造例3で得たリンオキソ酸化パルプ(中和済み)及び微細繊維状セルロースのそれぞれについて、実施例1と同様にして、10%重量減温度及び300℃加熱後重量減少率を測定した。
<Example 3>
With respect to the fine fibrous cellulose-containing slurry obtained in Production Example 3, the amount of the first dissociated acid and the total amount of dissociated acid introduced into the cellulose were measured in the same manner as in Example 1. Further, for each of the phosphorus oxo oxidized pulp (neutralized) and the fine fibrous cellulose obtained in Production Example 3, the weight reduction rate of 10% and the weight loss rate after heating at 300 ° C. were measured in the same manner as in Example 1.

<実施例4>
製造例4で得た微細繊維状セルロース含有スラリーについて、実施例1と同様にして、セルロースに導入された第1解離酸量、総解離酸量を測定した。また、製造例4で得たリンオキソ酸化パルプ(中和済み)及び微細繊維状セルロースのそれぞれについて、実施例1と同様にして、10%重量減温度及び300℃加熱後重量減少率を測定した。
<Example 4>
With respect to the fine fibrous cellulose-containing slurry obtained in Production Example 4, the amount of the first dissociated acid and the total amount of dissociated acid introduced into the cellulose were measured in the same manner as in Example 1. Further, for each of the phosphorus oxo oxidized pulp (neutralized) and the fine fibrous cellulose obtained in Production Example 4, the weight reduction rate of 10% and the weight loss rate after heating at 300 ° C. were measured in the same manner as in Example 1.

<実施例5>
製造例7で得た(混合)微細繊維状セルロース含有スラリーについて、実施例1と同様にして、セルロースに導入された第1解離酸量、総解離酸量を測定した。また、製造例7で得た(混合)リンオキソ酸化パルプ(中和済み)及び(混合)微細繊維状セルロースのそれぞれについて、実施例1と同様にして、10%重量減温度及び300℃加熱後重量減少率を測定した。
<Example 5>
With respect to the (mixed) fine fibrous cellulose-containing slurry obtained in Production Example 7, the amount of the first dissociated acid and the total amount of the dissociated acid introduced into the cellulose were measured in the same manner as in Example 1. Further, for each of the (mixed) phosphorusoxo-oxidized pulp (neutralized) and the (mixed) fine fibrous cellulose obtained in Production Example 7, the weight was reduced by 10% and the weight after heating at 300 ° C. was the same as in Example 1. The rate of decrease was measured.

<比較例1>
製造例5で得た微細繊維状セルロース含有スラリーについて、実施例1と同様にして、セルロースに導入された第1解離酸量、総解離酸量を測定した。また、製造例5で得たリンオキソ酸化パルプ(中和済み)及び微細繊維状セルロースのそれぞれについて、実施例1と同様にして、10%重量減温度及び300℃加熱後重量減少率を測定した。
<Comparative example 1>
With respect to the fine fibrous cellulose-containing slurry obtained in Production Example 5, the amount of the first dissociated acid and the total amount of dissociated acid introduced into the cellulose were measured in the same manner as in Example 1. Further, for each of the phosphorus oxo-oxidized pulp (neutralized) and the fine fibrous cellulose obtained in Production Example 5, the weight reduction rate of 10% and the weight loss rate after heating at 300 ° C. were measured in the same manner as in Example 1.

<比較例2>
製造例6で得た微細繊維状セルロース含有スラリーについて、実施例1と同様にして、セルロースに導入された第1解離酸量、総解離酸量を測定した。また、製造例6で得たリンオキソ酸化パルプ(中和済み)及び微細繊維状セルロースのそれぞれについて、実施例1と同様にして、10%重量減温度及び300℃加熱後重量減少率を測定した。
<Comparative example 2>
With respect to the fine fibrous cellulose-containing slurry obtained in Production Example 6, the amount of the first dissociated acid and the total amount of dissociated acid introduced into the cellulose were measured in the same manner as in Example 1. Further, for each of the phosphorus oxo oxidized pulp (neutralized) and the fine fibrous cellulose obtained in Production Example 6, the weight reduction rate of 10% and the weight loss rate after heating at 300 ° C. were measured in the same manner as in Example 1.

<測定方法>
<第1解離酸量、総解離酸量の測定>
微細繊維状セルロースの第1解離酸量および総解離酸量(微細化前のリンオキソ酸化パルプの第1解離酸量および総解離酸量もこれと等しい)は、中和滴定法により測定した。具体的には、微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。
イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を5秒に10μLずつ加えながら、スラリーが示すpHの値の変化を計測することにより行った。なお、滴定開始の15分前から窒素ガスをスラリーに吹き込みながら滴定を行った。この中和滴定では、アルカリを加えた量に対して測定したpHをプロットした曲線において、増分(pHのアルカリ滴下量に対する微分値)が極大となる点が二つ観測される。これらのうち、アルカリを加えはじめて先に得られる増分の極大点を第1終点と呼び、次に得られる増分の極大点を第2終点と呼ぶ(図1)。滴定開始から第1終点までに必要としたアルカリ量が、滴定に使用したスラリー中の第1解離酸量と等しくなる。また、滴定開始から第2終点までに必要としたアルカリ量が滴定に使用したスラリー中の総解離酸量と等しくなる。なお、滴定開始から第1終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値を第1解離酸量(mmol/g)とした。また、滴定開始から第2終点までに必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除した値を総解離酸量(mmol/g)とした。
<Measurement method>
<Measurement of first dissociated acid amount and total dissociated acid amount>
The amount of the first dissociated acid and the total amount of the total dissociated acid of the fine fibrous cellulose (the amount of the first dissociated acid and the total amount of the total dissociated acid of the phosphorylated pulp before micronization are also equal to this) were measured by the neutralization titration method. Specifically, an ion exchange resin is used with respect to a fibrous cellulose-containing slurry prepared by diluting a fine fibrous cellulose dispersion containing fine fibrous cellulose with ion-exchanged water so that the content is 0.2% by mass. After the treatment with, the measurement was carried out by performing a titration using an alkali.
In the treatment with the ion exchange resin, a strongly acidic ion exchange resin (Amberjet 1024; Organo Corporation, conditioned) with a volume of 1/10 is added to the above fibrous cellulose-containing slurry, and the slurry is shaken for 1 hour. , The resin and the slurry were separated by pouring on a mesh having a mesh size of 90 μm.
For titration using alkali, the change in pH value indicated by the slurry is measured while adding 10 μL of a 0.1 N sodium hydroxide aqueous solution to the fibrous cellulose-containing slurry treated with an ion exchange resin every 5 seconds. I went by doing. The titration was carried out while blowing nitrogen gas into the slurry from 15 minutes before the start of the titration. In this neutralization titration, two points are observed where the increment (differential value of pH with respect to the amount of alkali dropped) becomes maximum in the curve plotting the measured pH with respect to the amount of alkali added. Of these, the maximum point of the increment obtained first when alkali is added is called the first end point, and the maximum point of the increment obtained next is called the second end point (FIG. 1). The amount of alkali required from the start of the titration to the first end point is equal to the amount of the first dissociated acid in the slurry used for the titration. Further, the amount of alkali required from the start of titration to the second end point becomes equal to the total amount of dissociated acid in the slurry used for titration. The amount of alkali (mmol) required from the start of titration to the first end point divided by the solid content (g) in the slurry to be titrated was defined as the amount of first dissociating acid (mmol / g). Further, the value obtained by dividing the amount of alkali (mmol) required from the start of titration to the second end point by the solid content (g) in the slurry to be titrated was defined as the total amount of dissociated acid (mmol / g).

<10%重量減温度及び300℃加熱後重量減少率の測定>
10%重量減温度及び300℃加熱後重量減少率は、示差熱熱重量同時測定装置(セイコーインスツルメンツ株式会社(現株式会社日立ハイテクサイエンス)製、TG/DTA6300)を用いて測定した。具体的には、まず、製造例で得られたリンオキソ酸化パルプ及び微細繊維状セルロースを23℃、相対湿度50%の環境下で2日間以上、恒量となるまで風乾した。この時のリンオキソ酸化パルプ及び微細繊維状セルロースの風乾物の固形分濃度は、全ての製造例について90質量%以上であった。得られたリンオキソ酸化パルプ及び微細繊維状セルロースの風乾物5〜10mgを、窒素雰囲気下で下記温度プログラムの通り昇温させ、1秒間に1度、重量を測定した。110℃での重量を基準として、重量が10%減少した時点の温度を10%重量減温度(℃)とした。また、110℃での重量をW110(g)とし、300℃での重量をW300(g)とした際に、下記式で算出される値を300℃加熱後重量減少率(%)とした。
300℃加熱後重量減少率(%)=((W300−W110)/W110)×100
<温度プログラム>
1.50℃で5分間保持
2.50℃→100℃へ昇温(昇温速度:10℃/分)
3.100℃で10分間保持
4.100℃→600℃へ昇温(昇温速度:10℃/分)
<Measurement of 10% weight loss temperature and weight loss rate after heating at 300 ° C>
The 10% weight reduction and the weight loss rate after heating at 300 ° C. were measured using a differential thermogravimetric simultaneous measuring device (TG / DTA6300, manufactured by Seiko Instruments Inc. (currently Hitachi High-Tech Science Corporation)). Specifically, first, the phosphorus oxo-oxidized pulp and fine fibrous cellulose obtained in the production example were air-dried in an environment of 23 ° C. and a relative humidity of 50% for 2 days or more until the amount became constant. The solid content concentration of the air-dried product of the phosphorus oxo-oxidized pulp and the fine fibrous cellulose at this time was 90% by mass or more in all the production examples. 5 to 10 mg of the obtained air-dried product of phosphorus oxo-oxidized pulp and fine fibrous cellulose was heated in a nitrogen atmosphere according to the following temperature program, and the weight was measured once per second. Based on the weight at 110 ° C., the temperature at the time when the weight was reduced by 10% was defined as the 10% weight reduction temperature (° C.). Further, when the weight at 110 ° C. was W110 (g) and the weight at 300 ° C. was W300 (g), the value calculated by the following formula was defined as the weight loss rate (%) after heating at 300 ° C.
Weight loss rate (%) after heating at 300 ° C = ((W300-W110) / W110) × 100
<Temperature program>
Hold at 1.50 ° C for 5 minutes Increase temperature from 2.50 ° C to 100 ° C (heating rate: 10 ° C / min)
3. Hold at 100 ° C for 10 minutes 4. Raise the temperature from 100 ° C to 600 ° C (heating rate: 10 ° C / min)

図2は、R(%)(製造時のリンオキソ酸基導入工程における、リン酸と亜リン酸の添加量のうち亜リン酸が占めるモル比率)に対するTd10(℃)(10%重量減温度)の関係を示したグラフである。また、図3はR(%)(製造時のリンオキソ酸基導入工程における、リン酸と亜リン酸の添加量のうち亜リン酸が占めるモル比率)に対するWL(%)(300℃加熱後重量減少率)の関係を示したグラフである。実施例5の結果については、R=0%の繊維状セルロースと、R=100%の繊維状セルロースを、質量比1:1で混合していることから、R=50%とし、図2および図3中に△印のプロットで示した。 FIG. 2 shows Td10 (° C.) (10% weight reduction temperature) with respect to R (%) (the molar ratio of phosphorous acid to the amount of phosphoric acid added in the phosphorous acid group introduction step during production). It is a graph showing the relationship between. Further, FIG. 3 shows WL (%) (weight after heating at 300 ° C.) with respect to R (%) (the molar ratio of phosphorous acid to the amount of phosphoric acid and phosphorous acid added in the phosphorous acid group introduction step during production). It is a graph which showed the relationship (decrease rate). Regarding the result of Example 5, since R = 0% fibrous cellulose and R = 100% fibrous cellulose were mixed at a mass ratio of 1: 1, R = 50% was set, and FIG. 2 and FIG. It is shown by the plot of Δ in FIG.

Figure 2020204041
Figure 2020204041

比較例で得られたリンオキソ酸化パルプ及び微細繊維状セルロースと比較して、実施例で得られたリンオキソ酸化パルプ及び微細繊維状セルロースでは、Td10の値が高く、WLの絶対値が低い傾向が見られ、実施例では耐熱性が向上していることがわかった。 Compared with the phosphorus oxo oxidized pulp and fine fibrous cellulose obtained in Comparative Example, the phosphorus oxo oxidized pulp and fine fibrous cellulose obtained in Example tended to have a high Td10 value and a low WL absolute value. It was found that the heat resistance was improved in the examples.

Claims (7)

リン酸基及び亜リン酸基を含む繊維状セルロース。 Fibrous cellulose containing a phosphoric acid group and a phosphite group. 前記繊維状セルロースにおける第1解離酸量をA1とし、前記繊維状セルロースにおける総解離酸量をA2とした場合、A1/A2の値が0.51以上0.97以下であり、A2とA1の差が0.04mmol/g以上である請求項1に記載の繊維状セルロース。 When the amount of the first dissociating acid in the fibrous cellulose is A1 and the total amount of dissociating acid in the fibrous cellulose is A2, the values of A1 / A2 are 0.51 or more and 0.97 or less, and A2 and A1. The fibrous cellulose according to claim 1, wherein the difference is 0.04 mmol / g or more. 請求項1又は2に記載の繊維状セルロースを含む繊維状セルロース含有物。 A fibrous cellulose-containing product containing the fibrous cellulose according to claim 1 or 2. 請求項1又は2に記載の繊維状セルロース、もしくは、請求項3に記載の繊維状セルロース含有物から形成される成形体。 A molded product formed from the fibrous cellulose according to claim 1 or 2, or the fibrous cellulose-containing material according to claim 3. シート状である請求項4に記載の成形体。 The molded product according to claim 4, which is in the form of a sheet. セルロース原料に対し、リン酸基を有する化合物及び/又はその塩と、亜リン酸基を有する化合物及び/又はその塩と、尿素及び/又は尿素誘導体とを混合し、リン酸基及び亜リン酸基を有するセルロース原料を得る工程を含む繊維状セルロースの製造方法。 A compound having a phosphoric acid group and / or a salt thereof, a compound having a phosphorous acid group and / or a salt thereof, and a urea and / or a urea derivative are mixed with respect to a cellulose raw material, and a phosphoric acid group and a phosphorous acid are mixed. A method for producing fibrous cellulose, which comprises a step of obtaining a cellulose raw material having a group. 前記セルロース原料を得る工程では、リン酸基を有する化合物及び/又はその塩と、亜リン酸基を有する化合物及び/又はその塩のモル比率が0.01:99.99〜99.99:0.01となるように混合する請求項6に記載の繊維状セルロースの製造方法。 In the step of obtaining the cellulose raw material, the molar ratio of the compound having a phosphoric acid group and / or a salt thereof and the compound having a phosphorous acid group and / or a salt thereof is 0.01: 99.99 to 99.99: 0. The method for producing fibrous cellulose according to claim 6, wherein the fibrous cellulose is mixed so as to be 0.01.
JP2020151087A 2020-09-09 2020-09-09 Fibrous cellulose, fibrous cellulose containing material, molding and method for manufacturing fibrous cellulose Pending JP2020204041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020151087A JP2020204041A (en) 2020-09-09 2020-09-09 Fibrous cellulose, fibrous cellulose containing material, molding and method for manufacturing fibrous cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020151087A JP2020204041A (en) 2020-09-09 2020-09-09 Fibrous cellulose, fibrous cellulose containing material, molding and method for manufacturing fibrous cellulose

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018248489A Division JP7090023B2 (en) 2018-12-28 2018-12-28 Fibrous Cellulose, Fibrous Cellulose Containing Material, Molded Body and Method for Producing Fibrous Cellulose

Publications (1)

Publication Number Publication Date
JP2020204041A true JP2020204041A (en) 2020-12-24

Family

ID=73836937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020151087A Pending JP2020204041A (en) 2020-09-09 2020-09-09 Fibrous cellulose, fibrous cellulose containing material, molding and method for manufacturing fibrous cellulose

Country Status (1)

Country Link
JP (1) JP2020204041A (en)

Similar Documents

Publication Publication Date Title
JP2021036048A (en) Fibrous cellulose production method and fibrous cellulose
JP7327340B2 (en) Method for producing fibrous cellulose, fibrous cellulose dispersion and sheet
JP6683242B1 (en) Fibrous cellulose, fibrous cellulose-containing material, molded article and method for producing fibrous cellulose
JP7090023B2 (en) Fibrous Cellulose, Fibrous Cellulose Containing Material, Molded Body and Method for Producing Fibrous Cellulose
WO2019124364A1 (en) Sheet
JP6763423B2 (en) Method for producing fibrous cellulose and fibrous cellulose
JP2020165018A (en) Manufacturing method of sheet
JP2020152926A (en) Fibrous cellulose and method for manufacturing the same
JP2020204041A (en) Fibrous cellulose, fibrous cellulose containing material, molding and method for manufacturing fibrous cellulose
JP2020158736A (en) Method for producing dispersion liquid containing finely fibrous cellulose
JP2020165062A (en) Sheet
JP2020105470A (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and formed body
JP2020165019A (en) Method for producing fine fibrous cellulose-containing dispersion liquid and method for producing fine fibrous cellulose-containing sheet
JP6978403B2 (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and molded product
JP2020172035A (en) Laminate
JP2020185680A (en) Pattern formation substrate
JP6828759B2 (en) Sheets and laminates
JP7327236B2 (en) Fibrous cellulose, fibrous cellulose-containing material, molded article, and method for producing fibrous cellulose
JP7126982B2 (en) sheet
JP6680382B1 (en) Composition
JP7047369B2 (en) Composition
JP6579284B1 (en) Fibrous cellulose-containing resin composition, sheet and molded article
JP2021161353A (en) Fibrous cellulose, fibrous cellulose-containing material, and molding
JP2020122156A (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and formed body
JP2020109153A (en) Fibrous cellulose-containing material, fibrous cellulose-containing liquid composition and formed body