WO2021235460A1 - Fluororesin sheet, multilayer sheet, and shield material - Google Patents

Fluororesin sheet, multilayer sheet, and shield material Download PDF

Info

Publication number
WO2021235460A1
WO2021235460A1 PCT/JP2021/018881 JP2021018881W WO2021235460A1 WO 2021235460 A1 WO2021235460 A1 WO 2021235460A1 JP 2021018881 W JP2021018881 W JP 2021018881W WO 2021235460 A1 WO2021235460 A1 WO 2021235460A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
filler
fluororesin sheet
fluororesin
polytetrafluoroethylene
Prior art date
Application number
PCT/JP2021/018881
Other languages
French (fr)
Japanese (ja)
Inventor
誠 中林
洋平 山口
佑輔 坂元
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2021235460A1 publication Critical patent/WO2021235460A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to fluororesin sheets, multilayer sheets and shielding materials.
  • This application claims priority based on Japanese Application No. 2020-87053 filed on May 18, 2020, and incorporates all the contents described in the above Japanese application.
  • a printed wiring board having a fluororesin base material is known. Since the fluororesin has a lower dielectric constant than the epoxy resin, a printed wiring board having a fluororesin base material is used as a circuit board for high-frequency signal processing (see, for example, Japanese Patent Application Laid-Open No. 2001-7466). ). Further, wiring materials such as electric wires and bus bars, shield materials, and heat dissipation materials using the heat resistance and electrical characteristics of fluororesin are known. Further, since the fluororesin has excellent wear resistance, a sliding member having a fluororesin base material has also been proposed (see, for example, Japanese Patent Application Laid-Open No. 2000-326441).
  • the fluororesin sheet according to one aspect of the present disclosure contains polytetrafluoroethylene and a filler, the weight average molecular weight Mw of the polytetrafluoroethylene is 1 million or more, and the filler with respect to the polytetrafluoroethylene is used.
  • the mass ratio is 1.0 or more, and the tensile elongation is 50% or more.
  • FIG. 1 is a schematic cross-sectional view showing a fluororesin sheet according to one aspect of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view showing a multilayer sheet according to one aspect of the present disclosure.
  • the conventional fluororesin base material meets the requirements in that it can be used as a circuit board for high-frequency communication, a wiring material, a shield material, a heat radiating material, and a sliding member.
  • the conventional fluororesin base material is required to be further improved in functions such as control of relative permittivity and heat dissipation, and a technique for adding a filler to the fluororesin is known.
  • the fluororesin base material is often used in a form in which a fluorine sheet and a base material such as metal are integrated, but it is not easy to bond the base material to the fluororesin sheet.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a fluororesin sheet having excellent sheet properties and moldability.
  • the fluororesin sheet according to one aspect of the present disclosure contains polytetrafluoroethylene and a filler, the weight average molecular weight Mw of the polytetrafluoroethylene is 1 million or more, and the filler with respect to the polytetrafluoroethylene is used.
  • the mass ratio is 1.0 or more, and the tensile elongation is 50% or more.
  • the fluororesin sheet contains polytetrafluoroethylene, it has low transmission loss and heat resistance. Further, when the weight average molecular weight Mw of the polytetrafluoroethylene is 1 million or more, the polytetrafluoroethylene molecules are easily entangled with each other by shearing, so that the fibers can be efficiently fiberized. Therefore, even if a large amount of filler is contained, the mass ratio of the filler to polytetrafluoroethylene is 1.0 or more, the properties of the resin sheet are good, and the tensile elongation of the fluororesin sheet is 50% or more. Since the physical properties can be obtained, the flexibility is increased and the moldability can be ensured.
  • the range of industrial application can be expanded, such as post-processing such as circuit formation, adhesion to a base material, and use in a bent state.
  • the mass ratio of the filler to the polytetrafluoroethylene is 1.0 or more, the content of the filler can be dramatically increased, so that the fluororesin sheet is excellent in sheet properties and moldability.
  • the "weight average molecular weight Mw of polytetrafluoroethylene” can be calculated by measuring the heat of crystallization by the differential scanning calorimetry (DSC) method.
  • the polytetrafluoroethylene also includes modified polytetrafluoroethylene.
  • the "modified polytetrafluoroethylene” is a small amount of hexafluoropropylene (HFP), alkyl vinyl ether (AVE), chlorotrifluoroethylene (CTFE), etc., preferably 1/50 (molar ratio) or less with respect to tetrafluoroethylene. Copolymerized polytetrafluoroethylene.
  • the Asker A hardness is 20 or more.
  • Ascar A hardness of the fluororesin sheet is 20 or more, the fibrosis of polytetrafluoroethylene can be confirmed. Further, the strength as a resin sheet required for the above-mentioned applications becomes good.
  • “Asker A hardness” means the hardness measured by a type A durometer based on JIS-K6253-3 (2012).
  • the filler contains silica, titanium oxide, alumina, forsterite or a combination thereof.
  • the fluororesin sheet can further improve transmission performance such as relative permittivity.
  • the filler contains the silica and the mass ratio of the silica to the polytetrafluoroethylene is 1.0 or more and 2.0 or less.
  • the fluororesin sheet can further enhance the transmission performance.
  • the coefficient of linear expansion can be reduced to bring it closer to copper, the accuracy and durability of the circuit can be improved.
  • the "coefficient of linear expansion” is a coefficient of linear expansion measured according to the test method for dynamic mechanical properties described in JIS-K7424-4 (1999).
  • the filler contains ferrite, sendust, a conductive filler, or a combination thereof.
  • the fluororesin sheet can improve the conductivity.
  • the filler contains ferrite, sendust, or a combination thereof.
  • the fluororesin sheet can improve the electromagnetic wave shielding performance.
  • the filler contains alumina, boron nitride, aluminum nitride, sendust, or a combination thereof.
  • the fluororesin sheet can improve heat dissipation.
  • the multilayer sheet according to another aspect of the present disclosure includes the fluororesin sheet, the conductive layer laminated on both sides of the fluororesin sheet, and the adhesive layer laminated between the fluororesin sheet and the conductive layer. And prepare. Since the multilayer sheet contains the fluororesin sheet, the transmission loss in a high frequency signal is low, and the multilayer sheet can be suitably used as a printed wiring board for high frequency. Further, since it is excellent in the effect of reducing the coefficient of linear expansion, heat dissipation, electromagnetic wave shielding performance, and economy, it can be suitably used as an electric wire, a bus bar, an electromagnetic wave shielding component, a heat radiating component, and a sliding component.
  • the total average thickness of the adhesive layers is 0.1 ⁇ m or more and 50 ⁇ m or less.
  • the adhesive strength can be improved and deterioration of transmission performance, heat dissipation and electromagnetic wave shielding performance can be suppressed.
  • the “total average thickness” is a value obtained by totaling the average thickness of each layer in the plurality of adhesive layers.
  • the shield material according to another aspect of the present disclosure includes the fluororesin sheet.
  • the fluororesin sheet provided in the shielding material contains ferrite, sendust, or a combination thereof as the filler. Since the fluororesin sheet provided in the shield material contains ferrite, sendust, or a combination thereof as a filler, the shield material has good electromagnetic wave shielding performance.
  • the fluororesin sheet 1 of FIG. 1 contains polytetrafluoroethylene and a filler.
  • the lower limit of the Asker A hardness of the fluororesin sheet 1 20 is preferable, 30 is more preferable, and 40 is further preferable.
  • the Asker A hardness of the fluororesin sheet 20 or more, the strength becomes good.
  • the hardness of Asker A is less than 20, the sheet shape is not formed, molding is impossible, and the shape may not be maintained by its own weight.
  • the lower limit of the average thickness of the fluororesin sheet 1 is preferably 10 ⁇ m, more preferably 50 ⁇ m.
  • the upper limit of the average thickness of the fluororesin sheet 1 is preferably 3000 ⁇ m, more preferably 1500 ⁇ m. If the average thickness of the fluororesin sheet 1 is less than the above lower limit, the effect of reducing the relative permittivity may be insufficient. On the other hand, when the average thickness of the fluororesin sheet 1 exceeds the above upper limit, the temperature dependence of the transmission performance of the fluororesin sheet 1 may increase or the thickness may become unnecessarily large.
  • the "average thickness” means a value obtained by measuring the thickness of an arbitrary portion at five points and averaging the thickness.
  • the lower limit of the weight average molecular weight Mw of the PTFE is 1 million, preferably 4 million, more preferably 8 million, and even more preferably 10 million.
  • the upper limit of the weight average molecular weight Mw of the PTFE is preferably 20 million.
  • the fluororesin sheet 1 may contain a fluororesin other than PTFE.
  • fluororesin other than PTFE examples include tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-ethylene copolymer (ETFE).
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE tetrafluoroethylene-ethylene copolymer
  • the upper limit of the mass ratio of the fluororesin other than PTFE to PTFE is preferably 1.0, more preferably 0.2.
  • the fluororesin sheet may contain a resin other than the above-mentioned fluororesin.
  • a resin include polyetheretherketone (PEEK), polyamideimide (PAI), polyethersulphon (PES), polyimide (PI), liquid crystal polymer (LCP), etc., which have excellent heat resistance. can.
  • the fluororesin sheet can dramatically increase the content of the filler.
  • the lower limit of the mass ratio of the filler to the polytetrafluoroethylene is 1.0, preferably 1.2, and preferably 1.5.
  • the fluororesin sheet is excellent in sheet properties and moldability.
  • the upper limit of the mass ratio of the filler 35.0 is preferable, and 20.0 is more preferable.
  • the sheet properties of the fluororesin sheet can be maintained satisfactorily.
  • the lower limit of the average particle size of the filler is preferably 0.01 ⁇ m, more preferably 0.10 ⁇ nm.
  • the upper limit of the average particle size of the filler is preferably 300 ⁇ m, more preferably 150 ⁇ m.
  • the filler tends to aggregate when contained in the fluororesin sheet 1, and the dispersion of particles may become non-uniform.
  • the average particle size of the filler exceeds the upper limit, unevenness is likely to occur on the outer surface of the fluororesin sheet 1 and molding of the fluororesin sheet 1 may be difficult.
  • the "average particle size” means a value (D50) of an integrated value of 50% in the integrated distribution of the average particle size on a volume basis.
  • the integrated distribution is created based on the value obtained by volume-converting the value of the circular radius measured by image analysis of 500 particles observed with a scanning electron microscope (SEM).
  • the filler contains silica, titanium oxide, alumina, forsterite or a combination thereof.
  • the fluororesin sheet can further improve transmission performance such as relative permittivity.
  • the lower limit of the mass ratio of the silica, titanium oxide, alumina, forsterite or a combination thereof to the polytetrafluoroethylene is 1. 0 is preferable, 1.3 is more preferable, and 1.9 is even more preferable.
  • the fluororesin sheet can further enhance the transmission performance.
  • the filler contains silica.
  • the lower limit of the mass ratio of the silica to the polytetrafluoroethylene is preferably 1.0, more preferably 1.3.
  • the upper limit of the mass ratio of the silica 2.0 is preferable, and 1.8 is more preferable.
  • the range of the mass ratio of the silica is in the above range, the fluororesin sheet can further enhance the transmission performance. Further, since the coefficient of linear expansion can be reduced to bring it closer to copper, the accuracy and durability of the circuit can be improved.
  • the "coefficient of linear expansion” is a coefficient of linear expansion measured according to the test method for dynamic mechanical properties described in JIS-K7424-4 (1999).
  • silica synthetic silica, natural silica, crushed silica, silica coated with a hydrophobic coating agent on the surface of these silicas, silica reacted with a silane coupling agent, and the like can be used.
  • the transmission loss at 25 ° C. and 80 GHz is preferably ⁇ 7 [dB / 0.1 m] (25 ° C., 80 GHz) or more from the viewpoint of improving the transmission performance. Further, from the viewpoint of improving the transmission performance, a material having a small temperature dependence is required, the rate of change in dielectric constant at ⁇ 40 ° C. to 120 ° C. is less than 2%, and transmission at ⁇ 40 ° C. to 120 ° C. It is more preferable that the amount of change in loss is less than 3 dB.
  • the filler when the filler contains silica, the filler further contains titanium oxide, so that the temperature dependence of the transmission performance can be reduced.
  • the mass ratio of the titanium oxide to the polytetrafluoroethylene is preferably 0.05 or more and 10 or less.
  • the filler contains ferrite, sendust, a conductive filler, or a combination thereof.
  • the filler contains a ferrite, a sendust, a conductive filler or a combination thereof
  • 1.0 is preferable as the lower limit of the mass ratio of the ferrite, the sendust, the conductive filler or a combination thereof to the polytetrafluoroethylene. 2.0 is more preferable.
  • 99.0 is preferable as the upper limit of the mass ratio of the above-mentioned ferrite, sendust, conductive filler or a combination thereof.
  • the fluororesin sheet can further enhance the conductivity.
  • the upper limit of the volume resistivity of the fluororesin sheet 1 is preferably 3 ⁇ 10 13 ⁇ cm, more preferably 1 ⁇ 10 9 ⁇ cm, and 1 ⁇ 10 3 ⁇ cm is more preferable. If the volume resistivity of the fluororesin sheet 1 exceeds the above upper limit, the conductivity may decrease.
  • the volume resistivity means a value measured according to JIS-C2139-3-1 (2018). The larger the volume resistivity, the higher the conductivity.
  • the conductive filler examples include metals such as copper, silver, aluminum, nickel, iron, and stainless steel, tin oxide-doped indium oxide (ITO), fluorine-doped indium oxide (FTO), tin oxide (IO), and neodymium barium indium.
  • ITO tin oxide-doped indium oxide
  • FTO fluorine-doped indium oxide
  • IO tin oxide
  • neodymium barium indium The surface of metal oxides such as oxides, polythiophene-based, polypyrrole-based, polyaniline-based, oligothiophene-based organic substances, inorganic insulators such as alumina and glass, and polymers such as polyethylene and polystyrene is coated with a conductive substance.
  • carbon-based materials such as carbon black, graphite, graphene, carbon nanotubes, fullerene, graphene oxide, and acetylene black are not limited thereto. These may be used
  • the filler contains ferrite, sendust, or a combination thereof.
  • the fluororesin sheet can improve the electromagnetic wave shielding performance.
  • flat sendust is particularly preferable because it can improve the electromagnetic wave shielding performance.
  • the lower limit of the mass ratio of the ferrite, sendust or a combination thereof to the polytetrafluoroethylene is preferably 1.0, more preferably 2.0. 9.8 is more preferable.
  • the fluororesin sheet can further enhance the electromagnetic wave shielding performance.
  • the upper limit of the signal attenuation [dB] in the range of 10 MHz to 100 MHz of the fluororesin sheet 1 is preferably ⁇ 8 dB, more preferably ⁇ 15 dB. If the signal attenuation of the fluororesin sheet 1 exceeds the above upper limit, a sufficient electromagnetic wave shielding effect may not be obtained.
  • the filler contains alumina, boron nitride, aluminum nitride, sendust or a combination thereof.
  • the fluororesin sheet can improve heat dissipation.
  • the filler contains alumina, boron nitride, aluminum nitride, sendust or a combination thereof
  • the lower limit of the mass ratio of the alumina, boron nitride, aluminum nitride, sendust or a combination thereof to the polytetrafluoroethylene or a combination thereof. Is preferably 1.0, more preferably 2.0. Further, 95.0 is preferable as the upper limit of the mass ratio of the alumina, boron nitride, aluminum nitride, sendust or a combination thereof to the polytetrafluoroethylene.
  • the fluororesin sheet can further enhance the heat dissipation.
  • the lower limit of the thermal conductivity of the fluororesin sheet 1 is preferably 0.6 W / m ⁇ K, preferably 1.0 W / m ⁇ K. K is more preferable. If the thermal conductivity of the fluororesin sheet 1 does not reach the above lower limit, the thermal conductivity may be insufficient.
  • the "thermal conductivity" is a value measured by the laser flash method defined in JIS-R1611 (2010).
  • the heat dissipation can be further improved by combining the filler having a large average particle size and the filler having a small average particle size.
  • the average particle size of the large filler is preferably 10 ⁇ m or more, and the average particle size of the small filler is preferably 5 ⁇ m or less.
  • the fluororesin sheet 1 may contain components (arbitrary components) other than the above-mentioned PTFE and the filler.
  • this optional component include a dielectric property-imparting agent such as barium titanate and potassium titanate, a thermal conductivity-imparting agent, a linear expansion coefficient inhibitor, a flame retardant, a flame retardant aid, a pigment, an antioxidant, and a reflection-imparting agent.
  • examples include agents, hiding agents, lubricants, processing stabilizers, plasticizers, foaming agents and the like.
  • the upper limit of the content of the arbitrary component is preferably 10% by mass, more preferably 1% by mass, based on the fluororesin sheet 1.
  • the method for producing the fluororesin sheet is, for example, a step of producing a mixed powder of PTFE or modified PTFE powder and a filler (hereinafter, also referred to as a mixing step), and molding the mixed powder obtained in the above mixing step into a sheet.
  • a molding step a step of firing the sheet-shaped molded product by heating above the melting point of PTFE or a modified PTFE (hereinafter, also referred to as a baking step), and a sheet-like molding after the baking step.
  • It is preferable to have a step of cooling the product hereinafter, also referred to as a cooling step).
  • a cooling step As described above, by producing the fluororesin sheet by the above-mentioned step, the content of the filler in the fluororesin sheet can be dramatically increased.
  • a powder of PTFE or modified PTFE and a filler are mixed to prepare a mixed powder.
  • the powder of PTFE or modified PTFE is mixed with the filler.
  • the above-mentioned "PTFE or modified PTFE powder” is a powder composed of fine particles of PTFE or modified PTFE.
  • the powder of PTFE or modified PTFE is, for example, a powder composed of fine particles of PTFE or modified PTFE, a fine powder of PTFE or modified PTFE produced by emulsion polymerization, or a PTFE or modified PTFE produced by suspension polymerization. Molding powder can be mentioned.
  • the mixed powder obtained in the above mixing step is molded into a sheet.
  • the mixed powder obtained in the above mixing step is used as a raw material and molded into a sheet to obtain a sheet-shaped molded product having a predetermined shape and size.
  • a sheet-forming composition obtained by blending a fine powder of PTFE or modified PTFE with a liquid lubricant is kneaded, and then compression-molded and preformed into a primary molded body.
  • the mass ratio of the liquid lubricant to PTFE or modified PTFE is preferably 0.1 or more and 10.0 or less, and preferably 0.3 or more and 5.0 or less.
  • the sheet-forming composition is compression-molded at a pressure of, for example, about 10 kPa to 500 kPa to form a primary molded product such as a sheet.
  • a primary molded product such as a sheet.
  • the molded product obtained by preforming is extruded by a paste extruder, rolled by a calender roll or the like, or rolled after being extruded to form a sheet-like primary molding having a shape that can be stretched.
  • Manufacture the body is
  • liquid lubricant various known lubricants can be used.
  • petroleum-based solvents such as solvent naphtha and white oil, hydrocarbon oils such as nonan and undecane, aromatic hydrocarbons such as toluol and xylol, alcohols, ketones, esters, silicone oils and fluorochlorocarbon oils.
  • a solution in which a polymer such as polyisobutylene or polyisoprene is dissolved in these solvents, or a water or an aqueous solution containing a mixture thereof and a surfactant can be mentioned.
  • other substances may be added depending on the purpose.
  • the above molding process is usually performed near room temperature.
  • the liquid lubricant is removed from the molded body.
  • the liquid lubricant may be removed before the firing step, which will be described later, and may be removed after the stretching step, but it is more preferable to remove the liquid lubricant before the stretching step.
  • the liquid lubricant is removed by heating, extraction, dissolution, or the like, and is preferably performed by heating.
  • the sheet-shaped primary molded product is fired by heating above the melting point of PTFE or modified PTFE.
  • the sheet-shaped molded product is heated to a temperature equal to or higher than the melting point of PTFE or modified PTFE to obtain a non-porous sheet-shaped molded product.
  • the heating temperature is preferably 450 ° C. or lower in order to suppress the decomposition and denaturation of the resin.
  • the sheet-shaped molded product obtained by compacting the PTFE particles or the modified PTFE particles produced by emulsion polymerization or the like has pores or voids due to the gaps between the particles or the removal of the auxiliary agent, but the PTFE or modified PTFE powder is completely contained. By melting, these pores and voids disappear or the substantially continuous voids are minimized. As a result, a non-porous sheet-shaped molded product is produced.
  • the fluororesin sheet can dramatically increase the filler content. As a result, the fluororesin sheet is excellent in sheet properties and moldability.
  • the multilayer sheet 10 shown in FIG. 2 is laminated between the fluororesin sheet 1, the conductive layer 2 laminated on both sides of the fluororesin sheet 1, and the fluororesin sheet 1 and the conductive layer 2, respectively. It is provided with a two-layer adhesive layer 4. Since the multilayer sheet contains the fluororesin sheet, the transmission loss in a high frequency signal is low, and the multilayer sheet can be suitably used as a printed wiring board for high frequency.
  • the same elements as those of the fluororesin sheet of FIG. 1 are designated by the same reference numerals, and the duplicate description thereof will be omitted below.
  • the conductive layer 2 is formed into a desired planar shape (pattern) by an existing method such as etching the conductive layer laminated on the outer surface of the fluororesin sheet 1 or printing with conductive ink.
  • the conductive layer 2 can be formed of a material having conductivity, but from the viewpoint of further enhancing the transmission performance, the material used for the conductive layer 2 is preferably a foil such as copper, silver, or gold. Further, from the viewpoint of improving heat dissipation, the material used for the conductive layer 2 preferably has a thermal conductivity of 10 [W / m ⁇ k] or more, and specifically, stainless steel, iron, aluminum, silver, copper, etc. Foil is preferred. Further, conductive carbon can also be used as the conductive layer.
  • the average thickness of the total of the two conductive layers is preferably 2 ⁇ m or more and 30 ⁇ m or less.
  • the adhesive constituting the adhesive layer 3 is not particularly limited, but is a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer having high thermal fluidity. It is preferable to use (PFA) or a combination thereof. As described above, by including the above FEP and PFA as the adhesive, the adhesiveness to the fluororesin sheet and the conductive layer is excellent. Further, by including the above FEP and PFA as the adhesive, it is possible to obtain better transmission performance and reduce the temperature dependence of the transmission performance. It is presumed that this is because FEP and PFA have a small crystallinity, and the change in transmission performance due to a change in the crystal structure is small.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer having high
  • the adhesive contains 50% by mass or more of a tetrafluoroethylene-hexafluoropropylene copolymer (FEP), a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), or a combination thereof.
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • the lower limit of the total average thickness of the two adhesive layers is preferably 0.1 ⁇ m, more preferably 2 ⁇ m.
  • the upper limit of the total average thickness of the two adhesive layers is preferably 50 ⁇ m, more preferably 40 ⁇ m. If the total average thickness of the two adhesive layers is less than the above lower limit, the adhesive strength to the fluororesin sheet and the conductive layer may be insufficient. On the other hand, if the total average thickness of the two adhesive layers exceeds the above upper limit, the transmission performance, heat dissipation and electromagnetic wave shielding performance may deteriorate, the multilayer sheet may become unnecessarily thick, and linear expansion in the thickness direction may occur.
  • the coefficient may increase, the temperature dependence of the dielectric constant may increase, and the through-hole plating may break after a heat cycle.
  • a step of laminating a conductive layer on both side surfaces of a fluororesin sheet (hereinafter, also referred to as a conductive layer laminating step) is provided.
  • the conductive layer 2 having conductivity is laminated on both side surfaces of the fluororesin layer 1.
  • foils such as copper, silver, gold, stainless steel, iron, aluminum, and conductive carbon can be used depending on the purpose.
  • the conductive layer 2 in the conductive layer laminating step for example, it can be formed by adhering a foil-shaped conductor to both sides of the fluororesin layer 1 using an adhesive.
  • the adhesive the adhesive constituting the above-mentioned adhesive layer 3 can be used.
  • fusion of a resin film, resin coating, or the like can be used.
  • the multilayer sheet contains the fluororesin sheet, the transmission loss in a high frequency signal is low, and the multilayer sheet can be suitably used as a printed wiring board for high frequency. Further, since it is excellent in the effect of reducing the coefficient of linear expansion, heat dissipation, electromagnetic wave shielding performance, and economy, it can be suitably used as an electric wire, a bus bar, an electromagnetic wave shielding component, a heat radiating component, and a sliding component.
  • the shield material includes the fluororesin sheet.
  • the fluororesin sheet provided in the shielding material contains alumina, boron nitride, aluminum nitride or a combination thereof as the filler. Since the fluororesin sheet provided in the shield material contains alumina, boron nitride, aluminum nitride or a combination thereof as a filler, the shield material has good electromagnetic wave shielding performance.
  • the fluororesin sheet may be a porous sheet having a fine hollow structure. Having a hollow structure can reduce the relative permittivity, so that transmission loss can be suppressed more effectively.
  • a hollow structure can be obtained by stretching the sheet-shaped molded product after the molding step. In the stretching step, it is preferable to stretch in the axial direction and the circumferential direction.
  • the size and shape of the pores of the fluororesin sheet can be adjusted by adjusting the stretching conditions such as the stretching temperature and the stretching rate. Hollow fillers can also be used.
  • the mixed powder obtained in the above mixing step was molded by a roll machine at a temperature of 50 ° C., and the molecules were entangled to promote fibrosis and molded into a sheet (molding step). Idemitsu nonane having the mass ratio shown in Table 1 was added as a liquid lubricant. The pressure during compression molding was 10 kPa.
  • the sheet-shaped molded product was fired by heating (firing step).
  • the firing temperature profile was 90 minutes at a temperature of 350 ° C. under the condition of a pressure of 4.9 MPa. Then, under the condition of the pressure of 4.9 MPa, the sheet-shaped molded product after the firing step was cooled to prepare a fluororesin sheet.
  • the resins and fillers used are as follows. (Fluororesin) (1) PTFE: Asahi Glass Co., Ltd. "CD141E”, weight average molecular weight Mw 4 million (2) PTFE: Mitsui-Kemers Fluoro Products Co., Ltd. "F650J”, weight average molecular weight Mw 20 million (3) PTFE: Daikin Co., Ltd.
  • Multilayer sheet No. 11-No. 16 No. 11, No. 12, No. 14-No.
  • the fluororesin sheet No. 16 was used by using the resin, filler and liquid lubricant having the mass ratio shown in Table 2.
  • a resin sheet was produced by the same procedure as in the production method of 2.
  • No. The fluororesin sheet of No. 13 used a liquid crystal polymer as a resin and did not add a filler.
  • Multi-layer sheet No. 11-No. 12 and No. 15-No. In No. 16 a conductive layer was laminated on both sides of the resin sheet via the adhesive layer shown in Table 2.
  • the multilayer sheet No. 13-No. In No. 14 the conductive layer was laminated by hand laying up.
  • fluororesin sheet No. 17-No. 26 No. 18-No.
  • the fluororesin sheet No. 26 was prepared by using the resin, filler and liquid lubricant having the mass ratios shown in Table 3.
  • a resin sheet was produced by the same procedure as in the production method of 2.
  • No. No. 17 produced a resin sheet without adding a filler.
  • Asker A hardness was measured based on JIS-K6253-3 (2012). Specifically, a test piece of a fluororesin sheet having a thickness of 1.0 mm was prepared, and the hardness was measured by a type A durometer.
  • the coefficient of linear expansion XY (planar direction) [ 10-6 / K] and the coefficient of linear expansion Z (thickness direction) [ 10-6 / K] are used for viscoelasticity measuring devices (for example, "DVA-220" manufactured by IT Measurement Control Co., Ltd.). ”), Calculated from the dimensional change of the multilayer sheet with respect to the temperature change under the conditions of the tensile mode, the temperature range of ⁇ 55 ° C. to 210 ° C., the heating rate of 5 ° C./min, and the load of 5 gf (49.03 mN). ..
  • the linear expansion coefficient XY and the linear expansion coefficient Z are preferably 100 or less, more preferably 60 or less, still more preferably 20 or less.
  • peel strength The peel strength [N / cm] was measured by a method according to JIS-K6854-2 (1999) "Adhesive-Peeling Adhesive Strength Test Method-2 Part: 180 Degree Peeling".
  • the peel strength is preferably 5.0 N / cm or more.
  • volume resistivity The volume resistivity was measured according to JIS-C2139-3-1 (2018).
  • the input signal attenuation [dB] in the range of 10 MHz to 100 MHz was measured using a current probe.
  • the input signal attenuation was evaluated by calculating the difference between the input signal intensity to the probe when the fluororesin sheet was not arranged and the input signal intensity to the probe when each fluororesin sheet was arranged.
  • the fluororesin sheet using the fluororesin sheet having a weight average molecular weight Mw of polytetrafluoroethylene of 1 million or more and a mass ratio of the filler to the polytetrafluoroethylene of 1.0 or more was used.
  • 11-No. 12 and No. 14-No. The 16 multilayer sheets obtained good transmission performance.
  • No. 1 in which a liquid crystal polymer was used as the resin and a fluororesin sheet to which no filler was added was used.
  • the multi-layer sheet of 13 had very poor transmission performance.
  • the multi-layer sheet of 14 had a very low peel strength even though the compression press was performed.
  • the weight average molecular weight Mw of polytetrafluoroethylene is 1 million or more, and the mass ratio of sendust or ferrite to the polytetrafluoroethylene is 1.0 or more.
  • the fluororesin sheet of 26 was shown to have good conductivity and electromagnetic wave shielding performance.
  • 23-No. 24 was also shown to have good electromagnetic shielding performance.
  • No. which does not contain a filler. 17 was inferior in conductivity and electromagnetic wave shielding performance.
  • the fluororesin sheet has a weight average molecular weight Mw of polytetrafluoroethylene of 1 million or more, and the mass ratio of alumina, boron nitride, aluminum nitride, and sentust to the polytetrafluoroethylene is 1.0 or more.
  • No. using No. 28-No. No. The fluororesin sheet of 36 was shown to have good heat dissipation.
  • No. which does not contain a filler. 27 was inferior in heat dissipation.
  • the fluororesin sheet can dramatically increase the filler content. Therefore, the multilayer sheet provided with the fluororesin sheet can effectively reduce the transmission loss in the high frequency signal, and can be suitably used as a double-sided printed wiring board for high frequency.
  • the fluororesin sheet has excellent performance such as moldability, conductivity, electromagnetic wave shielding, and heat dissipation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

The fluororesin sheet according to the present invention contains a polytetrafluoroethylene and a filler. The weight average molecular weight Mw of the polytetrafluoroethylene is 1,000,000 or more. The mass ratio of the filler with respect to the polytetrafluoroethylene is 1.0 or more. The tensile elongation of the fluororesin sheet is 50% or more.

Description

フッ素樹脂シート、多層シート及びシールド材Fluororesin sheet, multi-layer sheet and shield material
 本開示は、フッ素樹脂シート、多層シート及びシールド材に関する。
 本出願は、2020年5月18日出願の日本出願第2020-87053号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to fluororesin sheets, multilayer sheets and shielding materials.
This application claims priority based on Japanese Application No. 2020-87053 filed on May 18, 2020, and incorporates all the contents described in the above Japanese application.
 フッ素樹脂基材を有するプリント配線板が知られている。フッ素樹脂は、エポキシ樹脂に比べて低誘電率であることから、フッ素樹脂基材を有するプリント配線板は、高周波信号処理用の回路基板に用いられている(例えば特開2001-7466号公報参照)。さらにフッ素樹脂の耐熱性や電気特性を用いた電線やバスバなどの配線材、シールド材、放熱材料が知られている。
 また、フッ素樹脂は耐摩耗性に優れていることから、フッ素樹脂基材を有する摺動部材も提案されている(例えば特開2000-326441公報参照)。
A printed wiring board having a fluororesin base material is known. Since the fluororesin has a lower dielectric constant than the epoxy resin, a printed wiring board having a fluororesin base material is used as a circuit board for high-frequency signal processing (see, for example, Japanese Patent Application Laid-Open No. 2001-7466). ). Further, wiring materials such as electric wires and bus bars, shield materials, and heat dissipation materials using the heat resistance and electrical characteristics of fluororesin are known.
Further, since the fluororesin has excellent wear resistance, a sliding member having a fluororesin base material has also been proposed (see, for example, Japanese Patent Application Laid-Open No. 2000-326441).
特開2001-7466号公報Japanese Unexamined Patent Publication No. 2001-7466 特開2000-326441号公報Japanese Unexamined Patent Publication No. 2000-326441
 本開示の一態様に係るフッ素樹脂シートは、ポリテトラフルオロエチレンと、フィラーとを含有し、上記ポリテトラフルオロエチレンの重量平均分子量Mwが100万以上であり、上記ポリテトラフルオロエチレンに対する上記フィラーの質量比が1.0以上であり、引張伸びが50%以上である。 The fluororesin sheet according to one aspect of the present disclosure contains polytetrafluoroethylene and a filler, the weight average molecular weight Mw of the polytetrafluoroethylene is 1 million or more, and the filler with respect to the polytetrafluoroethylene is used. The mass ratio is 1.0 or more, and the tensile elongation is 50% or more.
図1は、本開示の一態様に係るフッ素樹脂シートを示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing a fluororesin sheet according to one aspect of the present disclosure. 図2は、本開示の一態様に係る多層シートを示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a multilayer sheet according to one aspect of the present disclosure.
[本開示が解決しようとする課題]
 上記従来のフッ素樹脂基材は、高周波通信用の回路基板、配線材、シールド材、放熱材、摺動部材に使用可能である点で要求に沿う基材であるといえる。しかしながら、上記従来のフッ素樹脂基材は、比誘電率等の制御や放熱性等の機能において、さらなる向上が求められており、フッ素樹脂にフィラーを添加する技術が知られている。高周波特性、放熱性、シールド性、安価フィラーを使用することでの価格低減のためには、フッ素樹脂に対するフィラーの質量比が1.0以上になるように、フィラーを大量に添加することが望ましい。しかしながら、この場合、表面性状や伸びの物性が大幅に低下して成形しにくくなるという課題がある。また、フッ素樹脂基材は、フッ素シートと、金属等の基材とを一体化させた形状での使用が多いが、上記基材とフッ素樹脂シートとの接着が容易ではない。
[Problems to be solved by this disclosure]
It can be said that the conventional fluororesin base material meets the requirements in that it can be used as a circuit board for high-frequency communication, a wiring material, a shield material, a heat radiating material, and a sliding member. However, the conventional fluororesin base material is required to be further improved in functions such as control of relative permittivity and heat dissipation, and a technique for adding a filler to the fluororesin is known. In order to reduce the price by using high frequency characteristics, heat dissipation, shielding properties, and inexpensive filler, it is desirable to add a large amount of filler so that the mass ratio of the filler to the fluororesin is 1.0 or more. .. However, in this case, there is a problem that the surface texture and the physical characteristics of elongation are significantly deteriorated and it becomes difficult to mold. Further, the fluororesin base material is often used in a form in which a fluorine sheet and a base material such as metal are integrated, but it is not easy to bond the base material to the fluororesin sheet.
 本発明は、上述のような事情に基づいてなされたものであり、シート性状及び成形性に優れるフッ素樹脂シートの提供を目的とする。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide a fluororesin sheet having excellent sheet properties and moldability.
[本開示の効果]
 本開示によれば、シート性状及び成形性に優れるフッ素樹脂シートを提供できる。
[Effect of this disclosure]
According to the present disclosure, it is possible to provide a fluororesin sheet having excellent sheet properties and moldability.
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
 本開示の一態様に係るフッ素樹脂シートは、ポリテトラフルオロエチレンと、フィラーとを含有し、上記ポリテトラフルオロエチレンの重量平均分子量Mwが100万以上であり、上記ポリテトラフルオロエチレンに対する上記フィラーの質量比が1.0以上であり、引張伸びが50%以上である。 The fluororesin sheet according to one aspect of the present disclosure contains polytetrafluoroethylene and a filler, the weight average molecular weight Mw of the polytetrafluoroethylene is 1 million or more, and the filler with respect to the polytetrafluoroethylene is used. The mass ratio is 1.0 or more, and the tensile elongation is 50% or more.
 当該フッ素樹脂シートは、ポリテトラフルオロエチレンを含有するので、伝送損失が低く、耐熱性を有する。また、ポリテトラフルオロエチレンの重量平均分子量Mwが100万以上であることで、ポリテトラフルオロエチレン分子同士が、せん断により絡まりやすくなるため、効率よく繊維化することができる。このため、ポリテトラフルオロエチレンに対する上記フィラーの質量比が1.0以上と大量のフィラーを含有させても、樹脂シートの性状が良好であり、このフッ素樹脂シートの引張伸びが50%以上となる物性を得ることができるため、柔軟性が高くなり、成形性を確保できる。このため、回路形成などの後加工や、基材への接着、曲げた状態での使用など、産業上の応用範囲を拡大することができるという効果が得られる。さらに、上記ポリテトラフルオロエチレンに対する上記フィラーの質量比が1.0以上であることで、フィラーの含有量を飛躍的に高くすることができるため、当該フッ素樹脂シートはシート性状及び成形性に優れる。ここで、「ポリテトラフルオロエチレンの重量平均分子量Mw」は、示差走査熱量測定(DSC)法で結晶化熱を測定することによって、算出することができる。「引張伸び」は、JIS-K7161-1:2014の「プラスチック-引張特性の求め方-第1部:通則」に準拠して測定される伸び率を意味する。また、上記ポリテトラフルオロエチレンには、変性ポリテトラフルオロエチレンも含まれる。「変性ポリテトラフルオロエチレン」とは、ヘキサフルオロプロピレン(HFP)、アルキルビニルエーテル(AVE)、クロロトリフルオロエチレン(CTFE)等が少量、好ましくはテトラフルオロエチレンに対して1/50(モル比)以下共重合されたポリテトラフルオロエチレンをいう。 Since the fluororesin sheet contains polytetrafluoroethylene, it has low transmission loss and heat resistance. Further, when the weight average molecular weight Mw of the polytetrafluoroethylene is 1 million or more, the polytetrafluoroethylene molecules are easily entangled with each other by shearing, so that the fibers can be efficiently fiberized. Therefore, even if a large amount of filler is contained, the mass ratio of the filler to polytetrafluoroethylene is 1.0 or more, the properties of the resin sheet are good, and the tensile elongation of the fluororesin sheet is 50% or more. Since the physical properties can be obtained, the flexibility is increased and the moldability can be ensured. Therefore, it is possible to obtain the effect that the range of industrial application can be expanded, such as post-processing such as circuit formation, adhesion to a base material, and use in a bent state. Further, when the mass ratio of the filler to the polytetrafluoroethylene is 1.0 or more, the content of the filler can be dramatically increased, so that the fluororesin sheet is excellent in sheet properties and moldability. .. Here, the "weight average molecular weight Mw of polytetrafluoroethylene" can be calculated by measuring the heat of crystallization by the differential scanning calorimetry (DSC) method. "Tensile elongation" means the elongation ratio measured in accordance with JIS-K7161-1: 2014 "Plastic-How to determine tensile properties-Part 1: General rules". The polytetrafluoroethylene also includes modified polytetrafluoroethylene. The "modified polytetrafluoroethylene" is a small amount of hexafluoropropylene (HFP), alkyl vinyl ether (AVE), chlorotrifluoroethylene (CTFE), etc., preferably 1/50 (molar ratio) or less with respect to tetrafluoroethylene. Copolymerized polytetrafluoroethylene.
 当該フッ素樹脂シートにおいては、アスカーA硬度が20以上であることが好ましい。当該フッ素樹脂シートのアスカーA硬度が20以上であることで、ポリテトラフルオロエチレンの繊維化が確認できる。さらに、上述したような用途で要求される樹脂シートとしての強度が良好となる。ここで、「アスカーA硬度」とは、JIS-K6253-3(2012)に基づいてタイプAデュロメータによって測定される硬度を意味する。 In the fluororesin sheet, it is preferable that the Asker A hardness is 20 or more. When the Ascar A hardness of the fluororesin sheet is 20 or more, the fibrosis of polytetrafluoroethylene can be confirmed. Further, the strength as a resin sheet required for the above-mentioned applications becomes good. Here, "Asker A hardness" means the hardness measured by a type A durometer based on JIS-K6253-3 (2012).
 上記フィラーがシリカ、酸化チタン、アルミナ、フォルステライト又はこれらの組み合わせを含むことが好ましい。上記フィラーがシリカ、酸化チタン、アルミナ、フォルステライト又はこれらの組み合わせを含むことで、当該フッ素樹脂シートは比誘電率等の伝送性能をより向上できる。 It is preferable that the filler contains silica, titanium oxide, alumina, forsterite or a combination thereof. When the filler contains silica, titanium oxide, alumina, forsterite or a combination thereof, the fluororesin sheet can further improve transmission performance such as relative permittivity.
 上記フィラーが上記シリカを含み、上記ポリテトラフルオロエチレンに対する上記シリカの質量比が1.0以上2.0以下であることが好ましい。上記フィラーが上記シリカを含み、上記ポリテトラフルオロエチレンに対する質量比が上記範囲であることで、当該フッ素樹脂シートは伝送性能をより高めることができる。また、線膨張係数を低減して銅に近づけることができるため、回路の精度や耐久性を向上することができる。「線膨張係数」とは、JIS-K7244-4(1999)に記載の動的機械特性の試験方法に準拠して測定される線膨張率である。 It is preferable that the filler contains the silica and the mass ratio of the silica to the polytetrafluoroethylene is 1.0 or more and 2.0 or less. When the filler contains the silica and the mass ratio to the polytetrafluoroethylene is in the above range, the fluororesin sheet can further enhance the transmission performance. Further, since the coefficient of linear expansion can be reduced to bring it closer to copper, the accuracy and durability of the circuit can be improved. The "coefficient of linear expansion" is a coefficient of linear expansion measured according to the test method for dynamic mechanical properties described in JIS-K7424-4 (1999).
 上記フィラーがフェライト、センダスト、導電性フィラー又はこれらの組み合わせを含むことが好ましい。上記フィラーがフェライト、センダスト、及び、導電性フィラー、又はこれらの組み合わせを含むことで、当該フッ素樹脂シートは導電性を向上できる。 It is preferable that the filler contains ferrite, sendust, a conductive filler, or a combination thereof. When the filler contains ferrite, sendust, a conductive filler, or a combination thereof, the fluororesin sheet can improve the conductivity.
 上記フィラーがフェライト、センダスト又はこれらの組み合わせを含むことが好ましい。上記フィラーがフェライト、センダスト又はこれらの組み合わせを含むことで、当該フッ素樹脂シートは電磁波シールド性能を向上できる。 It is preferable that the filler contains ferrite, sendust, or a combination thereof. When the filler contains ferrite, sendust, or a combination thereof, the fluororesin sheet can improve the electromagnetic wave shielding performance.
 上記フィラーがアルミナ、窒化ホウ素、窒化アルミニウム、センダスト又はこれらの組み合わせを含むことが好ましい。上記フィラーがアルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素又はこれらの組み合わせを含むことで、当該フッ素樹脂シートは放熱性を向上できる。 It is preferable that the filler contains alumina, boron nitride, aluminum nitride, sendust, or a combination thereof. When the filler contains alumina, boron nitride, aluminum nitride, silicon nitride or a combination thereof, the fluororesin sheet can improve heat dissipation.
 本開示の他の一態様に係る多層シートは、当該フッ素樹脂シートと、上記フッ素樹脂シートの両面側に積層される導電層と、上記フッ素樹脂シートと上記導電層の間に積層される接着層とを備える。当該多層シートは、当該フッ素樹脂シートを含むので、高周波信号における伝送損失が低く、高周波用プリント配線板として好適に用いることができる。また、線膨張係数の低減効果、放熱性、電磁波シールド性能、経済性に優れるため、電線、バスバ、電磁波シールド部品、放熱部品、摺動部品として好適に用いることができる。 The multilayer sheet according to another aspect of the present disclosure includes the fluororesin sheet, the conductive layer laminated on both sides of the fluororesin sheet, and the adhesive layer laminated between the fluororesin sheet and the conductive layer. And prepare. Since the multilayer sheet contains the fluororesin sheet, the transmission loss in a high frequency signal is low, and the multilayer sheet can be suitably used as a printed wiring board for high frequency. Further, since it is excellent in the effect of reducing the coefficient of linear expansion, heat dissipation, electromagnetic wave shielding performance, and economy, it can be suitably used as an electric wire, a bus bar, an electromagnetic wave shielding component, a heat radiating component, and a sliding component.
 上記接着層の合計平均厚さが0.1μm以上50μm以下であることが好ましい。上記接着層の合計平均厚さが上記範囲であることで、接着強度を良好にするとともに、伝送性能、放熱性及び電磁波シールド性能の低下を抑制できる。ここで、「合計平均厚さ」とは、複数の接着層におけるそれぞれの層の平均厚さを合計した値である。 It is preferable that the total average thickness of the adhesive layers is 0.1 μm or more and 50 μm or less. When the total average thickness of the adhesive layers is within the above range, the adhesive strength can be improved and deterioration of transmission performance, heat dissipation and electromagnetic wave shielding performance can be suppressed. Here, the "total average thickness" is a value obtained by totaling the average thickness of each layer in the plurality of adhesive layers.
 本開示の他の一態様に係るシールド材は当該フッ素樹脂シートを備える。当該シールド材が備えるフッ素樹脂シートは、上記フィラーとしてフェライト、センダスト又はこれらの組み合わせを含む。当該シールド材が備えるフッ素樹脂シートがフィラーとして、フェライト、センダスト又はこれらの組み合わせを含むことで、当該シールド材は電磁波シールド性能が良好である。 The shield material according to another aspect of the present disclosure includes the fluororesin sheet. The fluororesin sheet provided in the shielding material contains ferrite, sendust, or a combination thereof as the filler. Since the fluororesin sheet provided in the shield material contains ferrite, sendust, or a combination thereof as a filler, the shield material has good electromagnetic wave shielding performance.
[本開示の実施形態の詳細]
 以下、本開示に係るフッ素樹脂シート、多層シート及びシールド材の一実施形態について図面を参照しつつ詳説する。
[Details of Embodiments of the present disclosure]
Hereinafter, an embodiment of the fluororesin sheet, the multilayer sheet and the shielding material according to the present disclosure will be described in detail with reference to the drawings.
<フッ素樹脂シート>
 図1のフッ素樹脂シート1は、ポリテトラフルオロエチレンと、フィラーとを含有する。
<Fluororesin sheet>
The fluororesin sheet 1 of FIG. 1 contains polytetrafluoroethylene and a filler.
 当該フッ素樹脂シート1のアスカーA硬度の下限としては、20が好ましく、30がより好ましく、40がさらに好ましい。当該フッ素樹脂シートのアスカーA硬度が20以上であることで、強度が良好となる。一方、アスカーA硬度が20未満の場合、シート形状にならず、成形が不可であり、自重で形状を保持できないおそれがある。 As the lower limit of the Asker A hardness of the fluororesin sheet 1, 20 is preferable, 30 is more preferable, and 40 is further preferable. When the Asker A hardness of the fluororesin sheet is 20 or more, the strength becomes good. On the other hand, when the hardness of Asker A is less than 20, the sheet shape is not formed, molding is impossible, and the shape may not be maintained by its own weight.
 当該フッ素樹脂シート1の平均厚さの下限としては、10μmが好ましく、50μmがより好ましい。また、当該フッ素樹脂シート1の平均厚さの上限としては、3000μmが好ましく、1500μmがより好ましい。当該フッ素樹脂シート1の平均厚さが上記下限未満である場合、比誘電率の低減効果が不十分となるおそれがある。一方、当該フッ素樹脂シート1の平均厚さが上記上限を超える場合、当該フッ素樹脂シート1の伝送性能の温度依存性が高くなるおそれや、厚さが不要に大きくなるおそれがある。ここで、「平均厚さ」とは、任意の箇所の厚さを5点測定し、平均した値を意味する。 The lower limit of the average thickness of the fluororesin sheet 1 is preferably 10 μm, more preferably 50 μm. The upper limit of the average thickness of the fluororesin sheet 1 is preferably 3000 μm, more preferably 1500 μm. If the average thickness of the fluororesin sheet 1 is less than the above lower limit, the effect of reducing the relative permittivity may be insufficient. On the other hand, when the average thickness of the fluororesin sheet 1 exceeds the above upper limit, the temperature dependence of the transmission performance of the fluororesin sheet 1 may increase or the thickness may become unnecessarily large. Here, the "average thickness" means a value obtained by measuring the thickness of an arbitrary portion at five points and averaging the thickness.
(ポリテトラフルオロエチレン)
 当該フッ素樹脂シートは、比誘電率が低いポリテトラフルオロエチレン(以下、PTFEともいう。)を含有するので、伝送損失が低く、耐熱性を有する。
(Polytetrafluoroethylene)
Since the fluororesin sheet contains polytetrafluoroethylene (hereinafter, also referred to as PTFE) having a low relative permittivity, the transmission loss is low and the fluororesin sheet has heat resistance.
 上記PTFEの重量平均分子量Mwの下限としては、100万であり、400万が好ましく、800万がより好ましく、1000万がさらに好ましい。一方、上記PTFEの重量平均分子量Mwの上限としては、2000万が好ましい。上記PTFEの重量平均分子量Mwが上記範囲であることでPTFEに対するフィラーの質量比が1.0以上であるフッ素樹脂シートの成形性に優れる。 The lower limit of the weight average molecular weight Mw of the PTFE is 1 million, preferably 4 million, more preferably 8 million, and even more preferably 10 million. On the other hand, the upper limit of the weight average molecular weight Mw of the PTFE is preferably 20 million. When the weight average molecular weight Mw of the PTFE is in the above range, the formability of the fluororesin sheet having the mass ratio of the filler to the PTFE of 1.0 or more is excellent.
 当該フッ素樹脂シート1には、PTFE以外のフッ素樹脂が含まれてもよい。このPTFE以外のフッ素樹脂としては、例えばテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリビニリデンフルオライド(PVdF)、フッ素ゴム、テトラフルオロエチレンとヘキサフルオロプロピレンとビニリデンフルオライドとの3種類のモノマーにより形成される熱可塑性フッ素樹脂(THV)、その他のテトラフルオロエチレンの共重合体等が挙げられる。上記PTFE以外のフッ素樹脂のPTFEに対する質量比の上限としては、1.0が好ましく、0.2がより好ましい。また、当該フッ素樹脂シートは、上記フッ素樹脂以外の樹脂を含有しても良い。このような樹脂としては、例えば耐熱性に優れたポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、ポリエーテルスルフォン(PES)、ポリイミド(PI)、液晶ポリマー(LCP)等を例示することができる。 The fluororesin sheet 1 may contain a fluororesin other than PTFE. Examples of the fluororesin other than PTFE include tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-ethylene copolymer (ETFE). , Polyvinylidene fluoride (PVdF), fluororubber, thermoplastic fluororesin (THV) formed from three kinds of monomers of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, and other copolymers of tetrafluoroethylene. And so on. The upper limit of the mass ratio of the fluororesin other than PTFE to PTFE is preferably 1.0, more preferably 0.2. Further, the fluororesin sheet may contain a resin other than the above-mentioned fluororesin. Examples of such a resin include polyetheretherketone (PEEK), polyamideimide (PAI), polyethersulphon (PES), polyimide (PI), liquid crystal polymer (LCP), etc., which have excellent heat resistance. can.
(フィラー)
 当該フッ素樹脂シートはフィラーの含有量を飛躍的に高くすることができる。上記ポリテトラフルオロエチレンに対する上記フィラーの質量比の下限としては、1.0であり、1.2が好ましく、1.5が好ましい。上記フィラーの質量比の下限が上記範囲であることで、当該フッ素樹脂シートはシート性状及び成形性に優れる。一方、上記フィラーの質量比の上限としては、35.0が好ましく、20.0がより好ましい。上記フィラーの質量比の上限が上記範囲であることで、当該フッ素樹脂シートのシート性状を良好に維持できる。
(Filler)
The fluororesin sheet can dramatically increase the content of the filler. The lower limit of the mass ratio of the filler to the polytetrafluoroethylene is 1.0, preferably 1.2, and preferably 1.5. When the lower limit of the mass ratio of the filler is within the above range, the fluororesin sheet is excellent in sheet properties and moldability. On the other hand, as the upper limit of the mass ratio of the filler, 35.0 is preferable, and 20.0 is more preferable. When the upper limit of the mass ratio of the filler is within the above range, the sheet properties of the fluororesin sheet can be maintained satisfactorily.
 上記フィラーの平均粒径の下限としては、0.01μmが好ましく、0.10μnmがより好ましい。また、上記フィラーの平均粒径の上限としては、300μmが好ましく、150μmがより好ましい。上記フィラーの平均粒径が上記下限未満である場合、フッ素樹脂シート1に含有させる際に上記フィラーが凝集し易くなり、粒子の分散が不均一となるおそれがある。一方、上記フィラーの平均粒径が上記上限を超える場合、フッ素樹脂シート1の外面に凹凸が生じ易くなるとともに、当該フッ素樹脂シート1の成形が困難となるおそれがある。ここで「平均粒径」とは、体積基準の平均粒径の積算分布における積算値50%の値(D50)を意味する。なお、積算分布は、走査型電子顕微鏡(SEM)により観察した500個の粒子の画像解析により測定した円半径の値を体積換算して求めた値に基づいて作成される。 The lower limit of the average particle size of the filler is preferably 0.01 μm, more preferably 0.10 μnm. The upper limit of the average particle size of the filler is preferably 300 μm, more preferably 150 μm. When the average particle size of the filler is less than the lower limit, the filler tends to aggregate when contained in the fluororesin sheet 1, and the dispersion of particles may become non-uniform. On the other hand, when the average particle size of the filler exceeds the upper limit, unevenness is likely to occur on the outer surface of the fluororesin sheet 1 and molding of the fluororesin sheet 1 may be difficult. Here, the "average particle size" means a value (D50) of an integrated value of 50% in the integrated distribution of the average particle size on a volume basis. The integrated distribution is created based on the value obtained by volume-converting the value of the circular radius measured by image analysis of 500 particles observed with a scanning electron microscope (SEM).
 上記フィラーがシリカ、酸化チタン、アルミナ、フォルステライト又はこれらの組み合わせを含むことが好ましい。上記フィラーがシリカ、酸化チタン、アルミナ、フォルステライト又はこれらの組み合わせを含むことで、当該フッ素樹脂シートは比誘電率等の伝送性能をより向上できる。上記フィラーがシリカ、酸化チタン、アルミナ、フォルステライト又はこれらの組み合わせを含む場合、上記ポリテトラフルオロエチレンに対する上記シリカ、酸化チタン、アルミナ、フォルステライト又はこれらの組み合わせの質量比の下限としては、1.0が好ましく、1.3がより好ましく、1.9がさらに好ましい。一方、上記シリカ、酸化チタン、アルミナ、フォルステライト又はこれらの組み合わせの質量比の上限としては、99.0が好ましく。10.0がより好ましい。上記シリカ、酸化チタン、アルミナ、フォルステライト又はこれらの組み合わせの質量比の範囲が上記範囲であることで、当該フッ素樹脂シートは伝送性能をより高めることができる。 It is preferable that the filler contains silica, titanium oxide, alumina, forsterite or a combination thereof. When the filler contains silica, titanium oxide, alumina, forsterite or a combination thereof, the fluororesin sheet can further improve transmission performance such as relative permittivity. When the filler contains silica, titanium oxide, alumina, forsterite or a combination thereof, the lower limit of the mass ratio of the silica, titanium oxide, alumina, forsterite or a combination thereof to the polytetrafluoroethylene is 1. 0 is preferable, 1.3 is more preferable, and 1.9 is even more preferable. On the other hand, 99.0 is preferable as the upper limit of the mass ratio of the above silica, titanium oxide, alumina, forsterite or a combination thereof. 10.0 is more preferable. When the range of the mass ratio of the silica, titanium oxide, alumina, forsterite or a combination thereof is within the above range, the fluororesin sheet can further enhance the transmission performance.
 当該フッ素樹脂シートに高絶縁性、線膨張係数の低減効果、及び低誘電率性を付与し、伝送性能をより高める観点からは、上記フィラーがシリカを含むことが好ましい。上記フィラーがシリカを含有する場合、上記ポリテトラフルオロエチレンに対する上記シリカの質量比の下限としては、1.0が好ましく、1.3がより好ましい。一方、上記シリカの質量比の上限としては、2.0が好ましく、1.8がより好ましい。上記シリカの質量比の範囲が上記範囲であることで、当該フッ素樹脂シートは伝送性能をより高めることができる。また、線膨張係数を低減して銅に近づけることができるため、回路の精度や耐久性を向上することができる。「線膨張係数」とは、JIS-K7244-4(1999)に記載の動的機械特性の試験方法に準拠して測定される線膨張率である。 From the viewpoint of imparting high insulation, reducing the coefficient of linear expansion, and low dielectric constant to the fluororesin sheet and further enhancing the transmission performance, it is preferable that the filler contains silica. When the filler contains silica, the lower limit of the mass ratio of the silica to the polytetrafluoroethylene is preferably 1.0, more preferably 1.3. On the other hand, as the upper limit of the mass ratio of the silica, 2.0 is preferable, and 1.8 is more preferable. When the range of the mass ratio of the silica is in the above range, the fluororesin sheet can further enhance the transmission performance. Further, since the coefficient of linear expansion can be reduced to bring it closer to copper, the accuracy and durability of the circuit can be improved. The "coefficient of linear expansion" is a coefficient of linear expansion measured according to the test method for dynamic mechanical properties described in JIS-K7424-4 (1999).
 上記シリカとしては、合成シリカ、天然シリカ、破砕シリカ、これらのシリカの表面に疎水性コーティング剤を塗工したシリカ、シランカップリング剤と反応させたシリカ等を用いることができる。 As the silica, synthetic silica, natural silica, crushed silica, silica coated with a hydrophobic coating agent on the surface of these silicas, silica reacted with a silane coupling agent, and the like can be used.
 当該フッ素樹脂シートにおいては、伝送性能を向上する観点から25℃、80GHzにおける伝送損失が-7[dB/0.1m](25℃、80GHz)以上であることが好ましい。また、伝送性能を向上する観点からは、温度依存性が小さい材料が求められており、-40℃~120℃における誘電率変化率が2%未満であり、かつ-40℃~120℃における伝送損失変化量が3dB未満であることがより好ましい。 In the fluororesin sheet, the transmission loss at 25 ° C. and 80 GHz is preferably −7 [dB / 0.1 m] (25 ° C., 80 GHz) or more from the viewpoint of improving the transmission performance. Further, from the viewpoint of improving the transmission performance, a material having a small temperature dependence is required, the rate of change in dielectric constant at −40 ° C. to 120 ° C. is less than 2%, and transmission at −40 ° C. to 120 ° C. It is more preferable that the amount of change in loss is less than 3 dB.
 上記フィラーがシリカを含む場合、上記フィラーがさらに酸化チタンを含むことで、し、伝送性能の温度依存性を低減できる。上記フィラーがシリカ及び酸化チタンを含む場合の上記ポリテトラフルオロエチレンに対する上記酸化チタンの質量比としては、0.05以上10以下が好ましい。 When the filler contains silica, the filler further contains titanium oxide, so that the temperature dependence of the transmission performance can be reduced. When the filler contains silica and titanium oxide, the mass ratio of the titanium oxide to the polytetrafluoroethylene is preferably 0.05 or more and 10 or less.
 当該フッ素樹脂シートの導電性を向上する観点からは、上記フィラーがフェライト、センダスト、導電性フィラー又はこれらの組み合わせを含むことが好ましい。上記フィラーがフェライト、センダスト、導電性フィラー又はこれらの組み合わせを含む場合、上記ポリテトラフルオロエチレンに対する上記フェライト、センダスト、導電性フィラー又はこれらの組み合わせの質量比の下限としては、1.0が好ましく、2.0がより好ましい。一方、上記フェライト、センダスト、導電性フィラー又はこれらの組み合わせの質量比の上限としては、99.0が好ましい。上記フェライト、センダスト、導電性フィラー又はこれらの組み合わせの質量比の範囲が上記範囲であることで、当該フッ素樹脂シートは導電性をより高めることができる。 From the viewpoint of improving the conductivity of the fluororesin sheet, it is preferable that the filler contains ferrite, sendust, a conductive filler, or a combination thereof. When the filler contains a ferrite, a sendust, a conductive filler or a combination thereof, 1.0 is preferable as the lower limit of the mass ratio of the ferrite, the sendust, the conductive filler or a combination thereof to the polytetrafluoroethylene. 2.0 is more preferable. On the other hand, 99.0 is preferable as the upper limit of the mass ratio of the above-mentioned ferrite, sendust, conductive filler or a combination thereof. When the range of the mass ratio of the ferrite, the sendust, the conductive filler or a combination thereof is within the above range, the fluororesin sheet can further enhance the conductivity.
 上記フィラーがフェライト、センダスト、導電性フィラー又はこれらの組み合わせを含む場合、当該フッ素樹脂シート1の体積抵抗率の上限としては、3×1013Ωcmが好ましく、1×10Ωcmがより好ましく、1×10Ωcmがさらに好ましい。当該フッ素樹脂シート1の体積抵抗率が上記上限を超えると、導電性が低下するおそれがある。体積抵抗率とは、JIS-C2139-3-1(2018)に準拠して測定される値を意味する。体積抵抗率が大きいほど、導電性が高い。 When the filler contains ferrite, sendust, a conductive filler, or a combination thereof, the upper limit of the volume resistivity of the fluororesin sheet 1 is preferably 3 × 10 13 Ωcm, more preferably 1 × 10 9 Ωcm, and 1 × 10 3 Ωcm is more preferable. If the volume resistivity of the fluororesin sheet 1 exceeds the above upper limit, the conductivity may decrease. The volume resistivity means a value measured according to JIS-C2139-3-1 (2018). The larger the volume resistivity, the higher the conductivity.
 上記導電性フィラーとしては、銅、銀、アルミニウム、ニッケル、鉄、ステンレス鋼などの金属、酸化スズドープ酸化インジウム(ITO)、フッ素ドープ酸化インジウム(FTO)、酸化スズ(IO)、ネオジム・バリウム・インジウム酸化物などの金属酸化物、ポリチオフェン系、ポリピロール系、ポリアニリン系、オリゴチオフェン系等の有機物、アルミナ、ガラスなどの無機絶縁体やポリエチレンやポリスチレンなどの高分子などの表面を導電性物質でコーティングしたもの、カーボンブラック、黒鉛、グラフェン、カーボンナノチューブ、フラーレン、酸化グラフェン、アセチレンブラックなどカーボン系が挙げられるが、これらに限定されるものではない。これらは単独で用いても2種以上を併用してもよい。 Examples of the conductive filler include metals such as copper, silver, aluminum, nickel, iron, and stainless steel, tin oxide-doped indium oxide (ITO), fluorine-doped indium oxide (FTO), tin oxide (IO), and neodymium barium indium. The surface of metal oxides such as oxides, polythiophene-based, polypyrrole-based, polyaniline-based, oligothiophene-based organic substances, inorganic insulators such as alumina and glass, and polymers such as polyethylene and polystyrene is coated with a conductive substance. However, carbon-based materials such as carbon black, graphite, graphene, carbon nanotubes, fullerene, graphene oxide, and acetylene black are not limited thereto. These may be used alone or in combination of two or more.
 上記フィラーがフェライト、センダスト又はこれらの組み合わせを含むことが好ましい。上記フィラーがフェライト、センダスト又はこれらの組み合わせを含むことで、当該フッ素樹脂シートは電磁波シールド性能を向上できる。特に、扁平状センダストは電磁波シールド性能を向上できるため特に好ましい。上記フィラーが上記フェライト、センダスト又はこれらの組み合わせを含む場合、上記ポリテトラフルオロエチレンに対する上記フェライト、センダスト又はこれらの組み合わせの質量比の下限としては、1.0が好ましく、2.0がより好ましく、9.8がさらに好ましい。また、上記ポリテトラフルオロエチレンに対する上記フェライト、センダスト又はこれらの組み合わせの質量比の上限としては、95.0が好ましい。上記フェライト、センダスト又はこれらの組み合わせの質量比の範囲が上記範囲であることで、当該フッ素樹脂シートは電磁波シールド性能をより高めることができる。 It is preferable that the filler contains ferrite, sendust, or a combination thereof. When the filler contains ferrite, sendust, or a combination thereof, the fluororesin sheet can improve the electromagnetic wave shielding performance. In particular, flat sendust is particularly preferable because it can improve the electromagnetic wave shielding performance. When the filler contains the ferrite, sendust or a combination thereof, the lower limit of the mass ratio of the ferrite, sendust or a combination thereof to the polytetrafluoroethylene is preferably 1.0, more preferably 2.0. 9.8 is more preferable. Further, as the upper limit of the mass ratio of the above-mentioned ferrite, sendust or a combination thereof to the above-mentioned polytetrafluoroethylene, 95.0 is preferable. When the range of the mass ratio of the above-mentioned ferrite, sendust or a combination thereof is within the above-mentioned range, the fluororesin sheet can further enhance the electromagnetic wave shielding performance.
 上記フィラーが上記フェライト、センダスト又はこれらの組み合わせを含む場合、当該フッ素樹脂シート1の10MHz~100MHzの範囲における信号の減衰量[dB]の上限としては、-8dBが好ましく、-15dBがより好ましい。当該フッ素樹脂シート1の信号減衰量が上記上限を超える場合、十分な電磁波シールド効果が得られないおそれがある。 When the filler contains the ferrite, sendust, or a combination thereof, the upper limit of the signal attenuation [dB] in the range of 10 MHz to 100 MHz of the fluororesin sheet 1 is preferably −8 dB, more preferably −15 dB. If the signal attenuation of the fluororesin sheet 1 exceeds the above upper limit, a sufficient electromagnetic wave shielding effect may not be obtained.
 当該フッ素樹脂シートの放熱性を向上する観点からは、上記フィラーがアルミナ、窒化ホウ素、窒化アルミニウム、センダスト又はこれらの組み合わせを含むことが好ましい。上記フィラーがアルミナ、窒化ホウ素、窒化アルミニウム、センダスト又はこれらの組み合わせを含むことで、当該フッ素樹脂シートは放熱性を向上できる。上記フィラーがアルミナ、窒化ホウ素、窒化アルミニウム、センダスト又はこれらの組み合わせを含む場合、上記ポリテトラフルオロエチレン又はこれらの組み合わせに対する上記アルミナ、窒化ホウ素、窒化アルミニウム、センダスト又はこれらの組み合わせの質量比の下限としては、1.0が好ましく、2.0がより好ましい。また、上記ポリテトラフルオロエチレンに対する上記アルミナ、窒化ホウ素、窒化アルミニウム、センダスト又はこれらの組み合わせの質量比の上限としては、95.0が好ましい。上記アルミナ、窒化ホウ素、窒化アルミニウム、センダスト又はこれらの組み合わせの質量比の範囲が上記範囲であることで、当該フッ素樹脂シートは放熱性をより高めることができる。 From the viewpoint of improving the heat dissipation of the fluororesin sheet, it is preferable that the filler contains alumina, boron nitride, aluminum nitride, sendust or a combination thereof. When the filler contains alumina, boron nitride, aluminum nitride, sendust or a combination thereof, the fluororesin sheet can improve heat dissipation. When the filler contains alumina, boron nitride, aluminum nitride, sendust or a combination thereof, as the lower limit of the mass ratio of the alumina, boron nitride, aluminum nitride, sendust or a combination thereof to the polytetrafluoroethylene or a combination thereof. Is preferably 1.0, more preferably 2.0. Further, 95.0 is preferable as the upper limit of the mass ratio of the alumina, boron nitride, aluminum nitride, sendust or a combination thereof to the polytetrafluoroethylene. When the range of the mass ratio of the alumina, boron nitride, aluminum nitride, sendust or a combination thereof is within the above range, the fluororesin sheet can further enhance the heat dissipation.
 上記フィラーがアルミナ、窒化ホウ素、窒化アルミニウム、センダスト又はこれらの組み合わせを含む場合、当該フッ素樹脂シート1の熱伝導率の下限としては、0.6W/m・Kが好ましく、1.0W/m・Kがより好ましい。当該フッ素樹脂シート1の熱伝導率が上記下限に満たない場合、熱伝導が不足するおそれがある。「熱伝導率」とは、JIS-R1611(2010)に規定されるレーザーフラッシュ法により測定される値である。 When the filler contains alumina, boron nitride, aluminum nitride, sendust, or a combination thereof, the lower limit of the thermal conductivity of the fluororesin sheet 1 is preferably 0.6 W / m · K, preferably 1.0 W / m · K. K is more preferable. If the thermal conductivity of the fluororesin sheet 1 does not reach the above lower limit, the thermal conductivity may be insufficient. The "thermal conductivity" is a value measured by the laser flash method defined in JIS-R1611 (2010).
 上記フィラーが上記アルミナ、窒化ホウ素、窒化アルミニウム、センダスト又はこれらの組み合わせを含む場合、平均粒径が大きいフィラーと小さいフィラーとを組合せることで、放熱性をより向上できる。この場合、大きいフィラーの平均粒径としては10μm以上が好ましく、小さいフィラーの平均粒径としては5μm以下が好ましい。 When the filler contains the above alumina, boron nitride, aluminum nitride, sendust, or a combination thereof, the heat dissipation can be further improved by combining the filler having a large average particle size and the filler having a small average particle size. In this case, the average particle size of the large filler is preferably 10 μm or more, and the average particle size of the small filler is preferably 5 μm or less.
 当該フッ素樹脂シート1は、上記PTFE及びフィラー以外の成分(任意成分)が含まれてもよい。この任意成分としては、例えば、チタン酸バリウム、チタン酸カリウム等の誘電特性付与剤、熱伝導性付与剤、線膨張係数抑制剤、難燃剤、難燃助剤、顔料、酸化防止剤、反射付与剤、隠蔽剤、滑剤、加工安定剤、可塑剤、発泡剤などが挙げられる。これらは、公知の種々のものを使用することができ、任意成分の含有量の上限としては、当該フッ素樹脂シート1に対して10質量%が好ましく、1質量%がより好ましい。 The fluororesin sheet 1 may contain components (arbitrary components) other than the above-mentioned PTFE and the filler. Examples of this optional component include a dielectric property-imparting agent such as barium titanate and potassium titanate, a thermal conductivity-imparting agent, a linear expansion coefficient inhibitor, a flame retardant, a flame retardant aid, a pigment, an antioxidant, and a reflection-imparting agent. Examples include agents, hiding agents, lubricants, processing stabilizers, plasticizers, foaming agents and the like. As these, various known substances can be used, and the upper limit of the content of the arbitrary component is preferably 10% by mass, more preferably 1% by mass, based on the fluororesin sheet 1.
[フッ素樹脂シートの製造方法]
 当該フッ素樹脂シートの製造方法は、例えばPTFE又は変性PTFEの粉末とフィラーとの混合粉末を作製する工程(以下、混合工程ともいう。)、上記混合工程で得られた混合粉末をシート状に成形する工程(以下、成形工程ともいう。)、上記シート状成形品をPTFE又は変性PTFEの融点以上の加熱により焼成する工程(以下、焼成工程ともいう。)、及び上記焼成工程後のシート状成形品を冷却する工程(以下、冷却工程ともいう。)を有することが好ましい。このように、当該フッ素樹脂シートは、上記工程により製造することで、当該フッ素樹脂シートにおけるフィラーの含有量を飛躍的に高くすることができる。
[Manufacturing method of fluororesin sheet]
The method for producing the fluororesin sheet is, for example, a step of producing a mixed powder of PTFE or modified PTFE powder and a filler (hereinafter, also referred to as a mixing step), and molding the mixed powder obtained in the above mixing step into a sheet. (Hereinafter, also referred to as a molding step), a step of firing the sheet-shaped molded product by heating above the melting point of PTFE or a modified PTFE (hereinafter, also referred to as a baking step), and a sheet-like molding after the baking step. It is preferable to have a step of cooling the product (hereinafter, also referred to as a cooling step). As described above, by producing the fluororesin sheet by the above-mentioned step, the content of the filler in the fluororesin sheet can be dramatically increased.
(混合工程)
 混合工程では、PTFE又は変性PTFEの粉末とフィラーとを混合して混合粉末を作製する。本工程では、始めに、PTFE又は変性PTFEの粉末と、フィラーとを混合する。上記「PTFE又は変性PTFEの粉末」とは、PTFE又は変性PTFEの微細粒子からなる粉体である。PTFE又は変性PTFEの粉末としては、例えば、PTFE又は変性PTFEの微細粒子からなる粉体であり乳化重合により製造されるPTFE又は変性PTFEのファインパウダーや懸濁重合により製造されるPTFE又は変性PTFEのモールディングパウダーを挙げることができる。
(Mixing process)
In the mixing step, a powder of PTFE or modified PTFE and a filler are mixed to prepare a mixed powder. In this step, first, the powder of PTFE or modified PTFE is mixed with the filler. The above-mentioned "PTFE or modified PTFE powder" is a powder composed of fine particles of PTFE or modified PTFE. The powder of PTFE or modified PTFE is, for example, a powder composed of fine particles of PTFE or modified PTFE, a fine powder of PTFE or modified PTFE produced by emulsion polymerization, or a PTFE or modified PTFE produced by suspension polymerization. Molding powder can be mentioned.
(成形工程)
 成形工程では、上記混合工程で得られた混合粉末をシート状に成形する。本工程では、上記混合工程で得られた混合粉末を原料として、シート状に成形して所定の形状寸法のシート状成形品を得る。始めにPTFE又は変性PTFEのファインパウダーに液状潤滑剤をブレンドしたシート形成用組成物を混錬した後、圧縮成形して1次成形体に予備成形する。通常、PTFE又は変性PTFEに対する液状潤滑剤の質量比としては、0.1以上10.0以下が好ましく、0.3以上5.0以下が好ましい。予備成形は、シート形成用組成物を例えば10kPaから500kPa程度の圧力で圧縮成形して、シート状等の1次成形体にする。具体的には、予備成形で得られる成形体をペースト押出機により押出し、又はカレンダーロールなどにより圧延し、あるいは押出した後に圧延するなどして、延伸処理し得る形状であるシート状の1次成形体を製造する。
(Molding process)
In the molding step, the mixed powder obtained in the above mixing step is molded into a sheet. In this step, the mixed powder obtained in the above mixing step is used as a raw material and molded into a sheet to obtain a sheet-shaped molded product having a predetermined shape and size. First, a sheet-forming composition obtained by blending a fine powder of PTFE or modified PTFE with a liquid lubricant is kneaded, and then compression-molded and preformed into a primary molded body. Usually, the mass ratio of the liquid lubricant to PTFE or modified PTFE is preferably 0.1 or more and 10.0 or less, and preferably 0.3 or more and 5.0 or less. In the preforming, the sheet-forming composition is compression-molded at a pressure of, for example, about 10 kPa to 500 kPa to form a primary molded product such as a sheet. Specifically, the molded product obtained by preforming is extruded by a paste extruder, rolled by a calender roll or the like, or rolled after being extruded to form a sheet-like primary molding having a shape that can be stretched. Manufacture the body.
 上記液状潤滑剤としては、公知の各種潤滑剤を使用することができる。例えば、ソルベント・ナフサ、ホワイトオイルなどの石油系溶剤、ノナン、ウンデカン等の炭化水素油、トルオール、キシロールなどの芳香族炭化水素類、アルコール類、ケトン類、エステル類、シリコーンオイル、フルオロクロロカーボンオイル、これらの溶剤にポリイソブチレン、ポリイソプレンなどのポリマーを溶かした溶液、あるいは、これらの混合物及び界面活性剤を含む水又は水溶液などが挙げられる。なお、液状潤滑剤の他に目的に応じて、他の物質を添加してもよい。 As the liquid lubricant, various known lubricants can be used. For example, petroleum-based solvents such as solvent naphtha and white oil, hydrocarbon oils such as nonan and undecane, aromatic hydrocarbons such as toluol and xylol, alcohols, ketones, esters, silicone oils and fluorochlorocarbon oils. , A solution in which a polymer such as polyisobutylene or polyisoprene is dissolved in these solvents, or a water or an aqueous solution containing a mixture thereof and a surfactant can be mentioned. In addition to the liquid lubricant, other substances may be added depending on the purpose.
 上記成形工程は、通常は室温付近で行われる。押出成形を行った後に成形体から液状潤滑剤を除去する。液状潤滑剤は後述する焼成工程前に除去すればよく、延伸する工程後に除去してもよいが、延伸する工程前に除去しておくことがより好ましい。液状潤滑剤の除去は、加熱、抽出又は溶解などにより行っており、加熱により行うことが好ましい。 The above molding process is usually performed near room temperature. After extrusion molding, the liquid lubricant is removed from the molded body. The liquid lubricant may be removed before the firing step, which will be described later, and may be removed after the stretching step, but it is more preferable to remove the liquid lubricant before the stretching step. The liquid lubricant is removed by heating, extraction, dissolution, or the like, and is preferably performed by heating.
(焼成工程)
 焼成工程では、上記シート状の一次成形品をPTFE又は変性PTFEの融点以上の加熱により焼成する。焼成工程では、上記シート状成形品をPTFE又は変性PTFEの融点以上に加熱して無孔質シート状の成形品を得る。また、樹脂の分解や変性を抑制するために加熱温度は、450℃以下の温度が好ましい。乳化重合等により製造されたPTFE粒子又は変性PTFE粒子を押し固めたシート状成形品は、粒子の間隙や助剤の抜けに起因する孔や空隙が存在するが、PTFE又は変性PTFEの粉末を完全溶融することにより、これらの孔や空隙は消滅するか、実質的に連続する空隙が極小化する。その結果、無孔質のシート状成形品が作製される。
(Baking process)
In the firing step, the sheet-shaped primary molded product is fired by heating above the melting point of PTFE or modified PTFE. In the firing step, the sheet-shaped molded product is heated to a temperature equal to or higher than the melting point of PTFE or modified PTFE to obtain a non-porous sheet-shaped molded product. Further, the heating temperature is preferably 450 ° C. or lower in order to suppress the decomposition and denaturation of the resin. The sheet-shaped molded product obtained by compacting the PTFE particles or the modified PTFE particles produced by emulsion polymerization or the like has pores or voids due to the gaps between the particles or the removal of the auxiliary agent, but the PTFE or modified PTFE powder is completely contained. By melting, these pores and voids disappear or the substantially continuous voids are minimized. As a result, a non-porous sheet-shaped molded product is produced.
(冷却工程)
 上記焼成工程後は、PTFE又は変性PTFEを徐冷することにより冷却する工程を行うことが好ましい。このようにして、当該フッ素樹脂シートを製造することができる。
(Cooling process)
After the firing step, it is preferable to perform a step of cooling the PTFE or the modified PTFE by slowly cooling it. In this way, the fluororesin sheet can be manufactured.
 当該フッ素樹脂シートは、フィラーの含有量を飛躍的に高くすることができる。その結果、当該フッ素樹脂シートはシート性状及び成形性に優れる。 The fluororesin sheet can dramatically increase the filler content. As a result, the fluororesin sheet is excellent in sheet properties and moldability.
<多層シート>
 図2に示す当該多層シート10は、当該フッ素樹脂シート1と、当該フッ素樹脂シート1の両面側に積層される導電層2と、当該フッ素樹脂シート1と上記導電層2の間にそれぞれ積層される2層の接着層4とを備える。当該多層シートは、当該フッ素樹脂シートを含むので、高周波信号における伝送損失が低く、高周波用プリント配線板として好適に用いることができる。なお、図2においては、図1のフッ素樹脂シートと同一の要素について同一の符号を付してあり、以下における重複説明を省略する。
<Multi-layer sheet>
The multilayer sheet 10 shown in FIG. 2 is laminated between the fluororesin sheet 1, the conductive layer 2 laminated on both sides of the fluororesin sheet 1, and the fluororesin sheet 1 and the conductive layer 2, respectively. It is provided with a two-layer adhesive layer 4. Since the multilayer sheet contains the fluororesin sheet, the transmission loss in a high frequency signal is low, and the multilayer sheet can be suitably used as a printed wiring board for high frequency. In FIG. 2, the same elements as those of the fluororesin sheet of FIG. 1 are designated by the same reference numerals, and the duplicate description thereof will be omitted below.
[導電層]
 上記導電層2は、フッ素樹脂シート1の外面に積層された導電層をエッチングすることや、導電性インクによる印刷等の既存の方法によって所望の平面形状(パターン)に形成されている。導電層2は、導電性を有する材料で形成可能であるが、伝送性能をより高める観点から、導電層2に用いる材料としては、銅、銀、金等の箔が好ましい。また、放熱性を向上する観点から、導電層2に用いる材料としては、熱伝導率が10[W/m・k]以上が好ましく、具体的にはステンレス鋼、鉄、アルミニウム、銀、銅等の箔が好ましい。また、導電性カーボンを導電層として使用することもできる。
[Conductive layer]
The conductive layer 2 is formed into a desired planar shape (pattern) by an existing method such as etching the conductive layer laminated on the outer surface of the fluororesin sheet 1 or printing with conductive ink. The conductive layer 2 can be formed of a material having conductivity, but from the viewpoint of further enhancing the transmission performance, the material used for the conductive layer 2 is preferably a foil such as copper, silver, or gold. Further, from the viewpoint of improving heat dissipation, the material used for the conductive layer 2 preferably has a thermal conductivity of 10 [W / m · k] or more, and specifically, stainless steel, iron, aluminum, silver, copper, etc. Foil is preferred. Further, conductive carbon can also be used as the conductive layer.
 伝送性能及び放熱性をより高める観点から、上記2層の導電層合計の平均厚さとしては、2μm以上30μm以下が好ましい。 From the viewpoint of further enhancing transmission performance and heat dissipation, the average thickness of the total of the two conductive layers is preferably 2 μm or more and 30 μm or less.
[接着層]
 接着層3を構成する接着剤としては、特に限定されるものではないが、熱流動性の高いテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)又はこれらの組み合わせを用いることが好ましい。このように、接着剤として上記FEPやPFAを含むことで、当該フッ素樹脂シート及び導電層に対する接着性が優れる。また、接着剤として上記FEPやPFAを含むことで、より良好な伝送性能を得つつ、伝送性能の温度依存性をより少なくできる。これは、FEP及びPFAは結晶化度が小さく、さらに結晶構造の変化に伴う伝送性能の変化が小さいためと推測される。
[Adhesive layer]
The adhesive constituting the adhesive layer 3 is not particularly limited, but is a tetrafluoroethylene-hexafluoropropylene copolymer (FEP) or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer having high thermal fluidity. It is preferable to use (PFA) or a combination thereof. As described above, by including the above FEP and PFA as the adhesive, the adhesiveness to the fluororesin sheet and the conductive layer is excellent. Further, by including the above FEP and PFA as the adhesive, it is possible to obtain better transmission performance and reduce the temperature dependence of the transmission performance. It is presumed that this is because FEP and PFA have a small crystallinity, and the change in transmission performance due to a change in the crystal structure is small.
 上記接着剤が、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)又はこれらの組み合わせを50質量%以上含有することが好ましい。このように接着層の主成分としてFEPやPFAを含むことで、より良好な伝送性能を得つつ、伝送性能の温度依存性をより少なくできる。これは、FEP及びPFAは、結晶化度が小さく、さらに温度変化による結晶構造の変化に伴う伝送性能の変化が小さいためと推測される。 It is preferable that the adhesive contains 50% by mass or more of a tetrafluoroethylene-hexafluoropropylene copolymer (FEP), a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), or a combination thereof. By including FEP and PFA as the main components of the adhesive layer in this way, it is possible to obtain better transmission performance and reduce the temperature dependence of the transmission performance. It is presumed that this is because FEP and PFA have a small crystallinity, and the change in transmission performance due to a change in the crystal structure due to a temperature change is small.
 2層の接着層の合計平均厚さの下限としては、0.1μmが好ましく、2μmがより好ましい。また、2層の接着層の合計平均厚さの上限としては、50μmが好ましく、40μmがより好ましい。2層の接着層の合計平均厚さが上記下限未満である場合、当該フッ素樹脂シート及び導電層に対する接着強度が不十分となるおそれがある。一方、2層の接着層の合計平均厚さが上記上限を超える場合、伝送性能、放熱性及び電磁波シールド性能が低下するとともに、当該多層シートが無用に厚くなるおそれや、厚さ方向の線膨張係数が高くなって、誘電率の温度依存性が大きくなったり、ヒートサイクル後にスルーホールメッキが破断する可能性がある。 The lower limit of the total average thickness of the two adhesive layers is preferably 0.1 μm, more preferably 2 μm. The upper limit of the total average thickness of the two adhesive layers is preferably 50 μm, more preferably 40 μm. If the total average thickness of the two adhesive layers is less than the above lower limit, the adhesive strength to the fluororesin sheet and the conductive layer may be insufficient. On the other hand, if the total average thickness of the two adhesive layers exceeds the above upper limit, the transmission performance, heat dissipation and electromagnetic wave shielding performance may deteriorate, the multilayer sheet may become unnecessarily thick, and linear expansion in the thickness direction may occur. The coefficient may increase, the temperature dependence of the dielectric constant may increase, and the through-hole plating may break after a heat cycle.
[多層シートの製造方法]
 当該多層シートの製造方法としては、例えば、フッ素樹脂シートの両面側に導電層を積層する工程(以下、導電層積層工程ともいう。)を備える。
[Manufacturing method of multilayer sheet]
As a method for manufacturing the multilayer sheet, for example, a step of laminating a conductive layer on both side surfaces of a fluororesin sheet (hereinafter, also referred to as a conductive layer laminating step) is provided.
(導電層積層工程)
 導電層積層工程では、図2に示すように、導電性を有する導電層2をフッ素樹脂層1の両面側に積層する。導電層2に用いる材料としては、上述したように、目的に応じて銅、銀、金、ステンレス鋼、鉄、アルミニウム、導電性カーボン等の箔を用いることができる。
(Conductive layer laminating process)
In the conductive layer laminating step, as shown in FIG. 2, the conductive layer 2 having conductivity is laminated on both side surfaces of the fluororesin layer 1. As the material used for the conductive layer 2, as described above, foils such as copper, silver, gold, stainless steel, iron, aluminum, and conductive carbon can be used depending on the purpose.
 上記導電層積層工程で導電層2を積層する方法としては、例えば接着剤を用いて箔状の導体をフッ素樹脂層1の両面に接着することにより形成できる。接着剤としては、上述の接着層3を構成する接着剤を使用することができる。接着層3の積層方法としては、樹脂フィルムの融着、樹脂塗装等を用いることができる。 As a method of laminating the conductive layer 2 in the conductive layer laminating step, for example, it can be formed by adhering a foil-shaped conductor to both sides of the fluororesin layer 1 using an adhesive. As the adhesive, the adhesive constituting the above-mentioned adhesive layer 3 can be used. As a method for laminating the adhesive layer 3, fusion of a resin film, resin coating, or the like can be used.
 当該多層シートは、当該フッ素樹脂シートを含むので、高周波信号における伝送損失が低く、高周波用プリント配線板として好適に用いることができる。また、線膨張係数の低減効果、放熱性、電磁波シールド性能、経済性に優れるため、電線、バスバ、電磁波シールド部品、放熱部品、摺動部品として好適に用いることができる。 Since the multilayer sheet contains the fluororesin sheet, the transmission loss in a high frequency signal is low, and the multilayer sheet can be suitably used as a printed wiring board for high frequency. Further, since it is excellent in the effect of reducing the coefficient of linear expansion, heat dissipation, electromagnetic wave shielding performance, and economy, it can be suitably used as an electric wire, a bus bar, an electromagnetic wave shielding component, a heat radiating component, and a sliding component.
<シールド材>
 当該シールド材は当該フッ素樹脂シートを備える。当該シールド材が備えるフッ素樹脂シートは、上記フィラーとしてアルミナ、窒化ホウ素、窒化アルミニウム又はこれらの組み合わせを含む。当該シールド材が備えるフッ素樹脂シートがフィラーとしてアルミナ、窒化ホウ素、窒化アルミニウム又はこれらの組み合わせを含むことで、当該シールド材は電磁波シールド性能が良好である。
<Shield material>
The shield material includes the fluororesin sheet. The fluororesin sheet provided in the shielding material contains alumina, boron nitride, aluminum nitride or a combination thereof as the filler. Since the fluororesin sheet provided in the shield material contains alumina, boron nitride, aluminum nitride or a combination thereof as a filler, the shield material has good electromagnetic wave shielding performance.
[その他の実施形態]
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other embodiments]
It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present disclosure is not limited to the configuration of the above embodiment, but is indicated by the scope of claims and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. NS.
 当該フッ素樹脂シートは、微細な中空構造を有する多孔質化シートであってもよい。中空構造を有すると比誘電率をより小さくできるため、伝送損失をより効果的に抑制できる。このような中空構造は、上記成形工程後のシート状成形品を延伸することにより得ることができる。上記延伸する工程では、軸方向及び周方向に延伸することが好ましい。当該フッ素樹脂シートは、延伸温度、延伸率等の延伸条件を調節することで、空孔の大きさや形状を調節することができる。また中空フィラーを使用することもできる。 The fluororesin sheet may be a porous sheet having a fine hollow structure. Having a hollow structure can reduce the relative permittivity, so that transmission loss can be suppressed more effectively. Such a hollow structure can be obtained by stretching the sheet-shaped molded product after the molding step. In the stretching step, it is preferable to stretch in the axial direction and the circumferential direction. The size and shape of the pores of the fluororesin sheet can be adjusted by adjusting the stretching conditions such as the stretching temperature and the stretching rate. Hollow fillers can also be used.
 以下、本開示を実施例に基づいて具体的に説明するが、本開示は、これらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be specifically described based on examples, but the present disclosure is not limited to these examples.
[フッ素樹脂シートNo.1~No.10]
 表1に記載の質量比のPTFE粉末又はPFA粉末とフィラーの混合粉末とを容器回転型混合機を用いて混合し、混合粉末を作製した(混合工程)。
[Fluororesin sheet No. 1 to No. 10]
The PTFE powder or the mixed powder of the PFA powder and the filler having the mass ratio shown in Table 1 was mixed using a container rotary mixer to prepare a mixed powder (mixing step).
 次に、上記混合工程で得られた混合粉末を温度50℃のロール機による成形を行い、分子間を絡ませることで繊維化を進行させてシート状に成形した(成形工程)。液状潤滑剤として表1に記載の質量比の出光製ノナンを添加した。圧縮成形時の圧力は、10kPaとした。 Next, the mixed powder obtained in the above mixing step was molded by a roll machine at a temperature of 50 ° C., and the molecules were entangled to promote fibrosis and molded into a sheet (molding step). Idemitsu nonane having the mass ratio shown in Table 1 was added as a liquid lubricant. The pressure during compression molding was 10 kPa.
 次に、上記シート状成形品を加熱により焼成した(焼成工程)。焼成の温度プロファイルは、圧力4.9MPaの条件下、温度350℃で90分間とした。その後、圧力4.9MPaの条件下、上記焼成工程後のシート状成形品を冷却し、フッ素樹脂シートを作製した。 Next, the sheet-shaped molded product was fired by heating (firing step). The firing temperature profile was 90 minutes at a temperature of 350 ° C. under the condition of a pressure of 4.9 MPa. Then, under the condition of the pressure of 4.9 MPa, the sheet-shaped molded product after the firing step was cooled to prepare a fluororesin sheet.
 用いた樹脂及びフィラーは以下の通りである。
(フッ素樹脂)
(1)PTFE:旭硝子社製「CD141E」、重量平均分子量Mw400万
(2)PTFE:三井・ケマーズフロロプロダクツ社製「F650J」、重量平均分子量Mw2000万
(3)PTFE:ダイキン社製「ルブロンL-5」、重量平均分子量Mw40万
(4)PTFE:ダイキン社製「F181」、重量平均分子量Mw700万
(5)PFA:ダイキン社製「AD―2CRER」、重量平均分子量40万
(液晶ポリマー)
 クラレ社製「ベクスターCTQ-100」
(フィラー)
(1)シリカ:アドマテックス社製「SC2500-SQ」、平均粒径0.5μm
(2)アルミナ:日鉄ケミカル&マテリアル社製「AZ4-75」、平均粒径4μm
The resins and fillers used are as follows.
(Fluororesin)
(1) PTFE: Asahi Glass Co., Ltd. "CD141E", weight average molecular weight Mw 4 million (2) PTFE: Mitsui-Kemers Fluoro Products Co., Ltd. "F650J", weight average molecular weight Mw 20 million (3) PTFE: Daikin Co., Ltd. "Lubron L" -5 ”, Weight average molecular weight Mw 400,000 (4) PTFE: Daikin Corporation“ F181 ”, Weight average molecular weight Mw 7 million (5) PFA: Daikin Corporation“ AD-2CERR ”, Weight average molecular weight 400,000 (liquid crystal polymer)
"Vecstar CTQ-100" manufactured by Kuraray
(Filler)
(1) Silica: "SC2500-SQ" manufactured by Admatex, average particle size 0.5 μm
(2) Alumina: "AZ4-75" manufactured by Nittetsu Chemical & Materials Co., Ltd., average particle size 4 μm
[多層シートNo.11~No.16]
 No.11、No.12、No.14~No.16については、表2に記載の質量比の樹脂、フィラー及び液状潤滑剤を用いて、上記フッ素樹脂シートNo.2の製造方法と同様の手順で、樹脂シートを作製した。No.13のフッ素樹脂シートは、樹脂として液晶ポリマーを用い、フィラーを添加しなかった。
[Multilayer sheet No. 11-No. 16]
No. 11, No. 12, No. 14-No. For No. 16, the fluororesin sheet No. 16 was used by using the resin, filler and liquid lubricant having the mass ratio shown in Table 2. A resin sheet was produced by the same procedure as in the production method of 2. No. The fluororesin sheet of No. 13 used a liquid crystal polymer as a resin and did not add a filler.
 次に、樹脂シートの両面側に表2に記載の導電層を積層した。多層シートNo.11~No.12及びNo.15~No.16においては、樹脂シートの両面側に表2に記載の接着層を介して導電層を積層した。また、多層シートNo.13~No.14においては、ハンドレイアップにより導電層を積層した。 Next, the conductive layers shown in Table 2 were laminated on both sides of the resin sheet. Multi-layer sheet No. 11-No. 12 and No. 15-No. In No. 16, a conductive layer was laminated on both sides of the resin sheet via the adhesive layer shown in Table 2. In addition, the multilayer sheet No. 13-No. In No. 14, the conductive layer was laminated by hand laying up.
[フッ素樹脂シートNo.17~No.26]
 No.18~No.26については、表3に記載の質量比の樹脂、フィラー及び液状潤滑剤を用いて、上記フッ素樹脂シートNo.2の製造方法と同様の手順で、樹脂シートを作製した。No.17は、フィラーを添加しないで樹脂シートを作製した。
[Fluororesin sheet No. 17-No. 26]
No. 18-No. For No. 26, the fluororesin sheet No. 26 was prepared by using the resin, filler and liquid lubricant having the mass ratios shown in Table 3. A resin sheet was produced by the same procedure as in the production method of 2. No. No. 17 produced a resin sheet without adding a filler.
[フッ素樹脂シートNo.27~No.36]
 No.28~No.36については、表4に記載の質量比の樹脂、フィラー及び液状潤滑剤を用いて、上記フッ素樹脂シートNo.2の製造方法と同様の手順で、樹脂シートを作製した。No.27は、フィラーを添加しないで樹脂シートを作製した。
[Fluororesin sheet No. 27-No. 36]
No. 28-No. For 36, the fluororesin sheet No. 36 was used with the resin, filler and liquid lubricant having the mass ratio shown in Table 4. A resin sheet was produced by the same procedure as in the production method of 2. No. No. 27 produced a resin sheet without adding a filler.
[評価]
 上記No.1~No.10のフッ素樹脂シートについて、引張伸び、アスカーA硬度及びシート性状の評価を行った。上記No.11~No.16の多層シートについて、引張伸び、シート性状、比誘電率、伝送損失、誘電率変化量、伝送損失変化量、線膨張係数及び剥離強度を測定した。また、No.17~No.26のフッ素樹脂シートについて、引張伸び、シート性状、体積抵抗率及び入力信号減衰量の評価を行い、No.27~No.36のフッ素樹脂シートについて、引張伸び、シート性状及び放熱性の評価を行った。
[evaluation]
The above No. 1 to No. Ten fluororesin sheets were evaluated for tensile elongation, Asker A hardness, and sheet properties. The above No. 11-No. Tensile elongation, sheet properties, relative permittivity, transmission loss, change in dielectric constant, change in transmission loss, coefficient of linear expansion and peel strength were measured for 16 multilayer sheets. In addition, No. 17-No. With respect to the fluororesin sheet of No. 26, tensile elongation, sheet properties, volume resistivity and input signal attenuation were evaluated, and No. 27-No. Thirty-six fluororesin sheets were evaluated for tensile elongation, sheet properties, and heat dissipation.
(アスカーA硬度)
 JIS-K6253-3(2012)に基づいてアスカーA硬度を測定した。具体的には厚さ1.0mmのフッ素樹脂シートの試験片を作製し、タイプAデュロメータによって硬度を測定した。
(Asker A hardness)
Asker A hardness was measured based on JIS-K6253-3 (2012). Specifically, a test piece of a fluororesin sheet having a thickness of 1.0 mm was prepared, and the hardness was measured by a type A durometer.
(シート性状)
 フッ素樹脂シートのシート性状は、シートが自重で破断しない、又は目視で穴が観察されないことを基準として評価した。シートが自重で破断せず、かつ目視で穴が観察されない場合を良好と判断した。
(Sheet properties)
The sheet properties of the fluororesin sheet were evaluated on the basis that the sheet did not break due to its own weight or no holes were visually observed. It was judged to be good when the sheet did not break due to its own weight and no holes were visually observed.
(比誘電率)
 JIS-C-2138(2007)に規定される測定方法に準拠して25℃、80GHzにおける比誘電率を測定した。
(Relative permittivity)
The relative permittivity at 25 ° C. and 80 GHz was measured according to the measuring method specified in JIS-C-2138 (2007).
(伝送損失)
 100mm等の種々の線路長のストリップラインを形成し、ネットワークアナライザを用い、25℃、80GHzにおける伝送損失[dB/0.1m]を測定した。
(Transmission loss)
Strip lines with various line lengths such as 100 mm were formed, and the transmission loss [dB / 0.1 m] at 25 ° C. and 80 GHz was measured using a network analyzer.
(誘電率変化量)
 円筒空洞共振器(10GHz)を用いて、-40℃~120℃における誘電率変化率[%]を測定した。
(Amount of change in permittivity)
Using a cylindrical cavity resonator (10 GHz), the rate of change in dielectric constant [%] from −40 ° C. to 120 ° C. was measured.
(伝送損失変化量)
 円筒空洞共振器(10GHz)を用いて、-40℃~120℃における伝送損失変化量[dB]を測定した。
(Change in transmission loss)
Using a cylindrical cavity resonator (10 GHz), the amount of change in transmission loss [dB] from −40 ° C. to 120 ° C. was measured.
(線膨張係数)
 線膨張係数XY(平面方向)[10-6/K]及び線膨張係数Z(厚さ方向)[10-6/K]は、粘弾性測定装置(例えばアイティー計測制御社製「DVA-220」)を用いて、引張モード、-55℃から210℃の温度範囲で、昇温速度5℃/分、荷重5gf(49.03mN)の条件で、温度変化に対する多層シートの寸法変化から算出した。
 線膨張係数XY及び線膨張係数Zとしては、100以下が好ましく、60以下がより好ましく、20以下がさらに好ましい。
(Linear expansion coefficient)
The coefficient of linear expansion XY (planar direction) [ 10-6 / K] and the coefficient of linear expansion Z (thickness direction) [ 10-6 / K] are used for viscoelasticity measuring devices (for example, "DVA-220" manufactured by IT Measurement Control Co., Ltd.). ”), Calculated from the dimensional change of the multilayer sheet with respect to the temperature change under the conditions of the tensile mode, the temperature range of −55 ° C. to 210 ° C., the heating rate of 5 ° C./min, and the load of 5 gf (49.03 mN). ..
The linear expansion coefficient XY and the linear expansion coefficient Z are preferably 100 or less, more preferably 60 or less, still more preferably 20 or less.
(剥離強度)
 剥離強度[N/cm]は、JIS-K6854-2(1999)「接着剤-はく離接着強さ試験方法-2部:180度はく離」に準じた方法により測定した。
 剥離強度としては、5.0N/cm以上が良好である。
(Peeling strength)
The peel strength [N / cm] was measured by a method according to JIS-K6854-2 (1999) "Adhesive-Peeling Adhesive Strength Test Method-2 Part: 180 Degree Peeling".
The peel strength is preferably 5.0 N / cm or more.
(引張伸び)
 引張伸びはJIS-K7161-1:2014の「プラスチック-引張特性の求め方-第1部:通則」に準拠して、常温下で引っ張り速度50mm/minで測定した。
(Tensile elongation)
The tensile elongation was measured at a tensile speed of 50 mm / min at room temperature in accordance with JIS-K7161-1: 2014 "Plastic-How to determine tensile properties-Part 1: General rules".
(体積抵抗率)
 体積抵抗率はJIS-C2139-3-1(2018)に準拠して測定した。
(Volume resistivity)
The volume resistivity was measured according to JIS-C2139-3-1 (2018).
(入力信号減衰量)
 10MHz~100MHzの範囲における入力信号減衰量[dB]を、カレントプローブを用いて測定した。入力信号減衰量は、フッ素樹脂シートを配置していない場合のプローブへの入力信号強度と、各フッ素樹脂シートを配置したときのプローブへの入力信号強度との差異を算出することにより評価した。
(Input signal attenuation)
The input signal attenuation [dB] in the range of 10 MHz to 100 MHz was measured using a current probe. The input signal attenuation was evaluated by calculating the difference between the input signal intensity to the probe when the fluororesin sheet was not arranged and the input signal intensity to the probe when each fluororesin sheet was arranged.
(熱伝導率)
 JIS-R1611(2010)に規定されるレーザーフラッシュ法により測定した。
(Thermal conductivity)
It was measured by the laser flash method specified in JIS-R1611 (2010).
 No.1~No.10のフッ素樹脂シートの評価結果を表1に示し、No.11~No.16の多層シートの伝送性能の評価結果を表2に示す。また、No.17~No.26のフッ素樹脂シートの評価結果を表3に示し、No.27~No.36のフッ素樹脂シートの評価結果を表4に示す。なお、「-」は、該当する成分を含まないことを表す。 No. 1 to No. The evaluation results of the fluororesin sheet of No. 10 are shown in Table 1, and No. 11-No. Table 2 shows the evaluation results of the transmission performance of the 16 multilayer sheets. In addition, No. 17-No. The evaluation results of the fluororesin sheets of No. 26 are shown in Table 3, and No. 27-No. Table 4 shows the evaluation results of the 36 fluororesin sheets. In addition, "-" indicates that the corresponding component is not included.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1の結果より、ポリテトラフルオロエチレンの重量平均分子量Mwが100万以上であるNo.2~No.7のフッ素樹脂シートは、フィラーの含有量が高いにも係わらず、フィラーを含有していないNo.1と同様、良好なシート性状及び伸び性状が得られた。
 一方、ポリテトラフルオロエチレンの重量平均分子量Mwが100万未満であるNo.8~No.11のフッ素樹脂シートは、シートを作製することができなかった。
From the results in Table 1, No. 1 in which the weight average molecular weight Mw of polytetrafluoroethylene is 1 million or more. 2-No. The fluororesin sheet of No. 7 contains no filler even though the filler content is high. Similar to No. 1, good sheet properties and elongation properties were obtained.
On the other hand, No. 1 in which the weight average molecular weight Mw of polytetrafluoroethylene is less than 1 million. 8 to No. The fluororesin sheet of No. 11 could not be produced.
 表2の結果より、ポリテトラフルオロエチレンの重量平均分子量Mwが100万以上であり、上記ポリテトラフルオロエチレンに対する上記フィラーの質量比が1.0以上であるフッ素樹脂シートを用いたNo.11~No.12及びNo.14~No.16の多層シートは、良好な伝送性能が得られた。
 一方、樹脂として液晶ポリマーを用い、フィラーを添加しなかったフッ素樹脂シートを用いたNo.13の多層シートは、伝送性能が非常に劣っていた。また、ポリテトラフルオロエチレンを含有しているが、接着層を備えていないNo.14の多層シートは、圧縮プレスが行われているにもかかわらず、剥離強度が非常に低くかった。
From the results in Table 2, the fluororesin sheet using the fluororesin sheet having a weight average molecular weight Mw of polytetrafluoroethylene of 1 million or more and a mass ratio of the filler to the polytetrafluoroethylene of 1.0 or more was used. 11-No. 12 and No. 14-No. The 16 multilayer sheets obtained good transmission performance.
On the other hand, No. 1 in which a liquid crystal polymer was used as the resin and a fluororesin sheet to which no filler was added was used. The multi-layer sheet of 13 had very poor transmission performance. In addition, No. 1 containing polytetrafluoroethylene but not having an adhesive layer. The multi-layer sheet of 14 had a very low peel strength even though the compression press was performed.
 表3の結果より、ポリテトラフルオロエチレンの重量平均分子量Mwが100万以上であり、上記ポリテトラフルオロエチレンに対するセンダスト又はフェライトの質量比が1.0以上であるNo.18~No.22及びNo.25~No.26のフッ素樹脂シートは、良好な導電性及び電磁波シールド性能を有することが示された。また、上記ポリテトラフルオロエチレンに対するNi系フェライト又はMn系フェライトフィラーの質量比が1.0以上であるフッ素樹脂シートを用いたNo.23~No.24も、良好な電磁波シールド性能を有することが示された。
 一方、フィラーを含有していないNo.17は、導電性及び電磁波シールド性能が劣っていた。
From the results in Table 3, the weight average molecular weight Mw of polytetrafluoroethylene is 1 million or more, and the mass ratio of sendust or ferrite to the polytetrafluoroethylene is 1.0 or more. 18-No. 22 and No. 25-No. The fluororesin sheet of 26 was shown to have good conductivity and electromagnetic wave shielding performance. Further, No. 1 using a fluororesin sheet having a mass ratio of Ni-based ferrite or Mn-based ferrite filler to the above polytetrafluoroethylene of 1.0 or more. 23-No. 24 was also shown to have good electromagnetic shielding performance.
On the other hand, No. which does not contain a filler. 17 was inferior in conductivity and electromagnetic wave shielding performance.
 表4の結果より、ポリテトラフルオロエチレンの重量平均分子量Mwが100万以上であり、上記ポリテトラフルオロエチレンに対するアルミナ、窒化ホウ素、窒化アルミニウム、センダストの質量比が1.0以上であるフッ素樹脂シートを用いたNo.28~No.No.36のフッ素樹脂シートは、良好な放熱性を有することが示された。
 一方、フィラーを含有していないNo.27は、放熱性が劣っていた。
From the results in Table 4, the fluororesin sheet has a weight average molecular weight Mw of polytetrafluoroethylene of 1 million or more, and the mass ratio of alumina, boron nitride, aluminum nitride, and sentust to the polytetrafluoroethylene is 1.0 or more. No. using No. 28-No. No. The fluororesin sheet of 36 was shown to have good heat dissipation.
On the other hand, No. which does not contain a filler. 27 was inferior in heat dissipation.
 以上のように、当該フッ素樹脂シートは、フィラーの含有量を飛躍的に増大することができる。従って、当該フッ素樹脂シートを備える当該多層シートは、高周波信号における伝送損失を効果的に低減でき、高周波用両面プリント配線板として好適に用いることができる。また、当該フッ素樹脂シートは、成形性、導電性、電磁波シールド、放熱性等の優れた性能を有する。 As described above, the fluororesin sheet can dramatically increase the filler content. Therefore, the multilayer sheet provided with the fluororesin sheet can effectively reduce the transmission loss in the high frequency signal, and can be suitably used as a double-sided printed wiring board for high frequency. In addition, the fluororesin sheet has excellent performance such as moldability, conductivity, electromagnetic wave shielding, and heat dissipation.
1 フッ素樹脂シート
2 導電層
3 接着層
10 多層シート
1 Fluororesin sheet 2 Conductive layer 3 Adhesive layer 10 Multilayer sheet

Claims (10)

  1.  ポリテトラフルオロエチレンと、フィラーとを含有し、
     上記ポリテトラフルオロエチレンの重量平均分子量Mwが100万以上であり、
     上記ポリテトラフルオロエチレンに対する上記フィラーの質量比が1.0以上であり、
     引張伸びが50%以上であるフッ素樹脂シート。
    Contains polytetrafluoroethylene and filler,
    The weight average molecular weight Mw of the above polytetrafluoroethylene is 1 million or more.
    The mass ratio of the filler to the polytetrafluoroethylene is 1.0 or more, and the mass ratio is 1.0 or more.
    Fluororesin sheet with a tensile elongation of 50% or more.
  2.  アスカーA硬度が20以上である請求項1に記載のフッ素樹脂シート。 The fluororesin sheet according to claim 1, which has an Asker A hardness of 20 or more.
  3.  上記フィラーがシリカ、酸化チタン、アルミナ、フォルステライト又はこれらの組み合わせを含む請求項1又は請求項2に記載のフッ素樹脂シート。 The fluororesin sheet according to claim 1 or 2, wherein the filler contains silica, titanium oxide, alumina, forsterite, or a combination thereof.
  4.  上記フィラーがシリカを含み、
     上記ポリテトラフルオロエチレンに対する上記シリカの質量比が1.0以上2.0以下である請求項3に記載のフッ素樹脂シート。
    The filler contains silica and
    The fluororesin sheet according to claim 3, wherein the mass ratio of the silica to the polytetrafluoroethylene is 1.0 or more and 2.0 or less.
  5.  上記フィラーがフェライト、センダスト、導電性フィラー又はこれらの組み合わせを含む請求項1から請求項4のいずれか1項に記載のフッ素樹脂シート。 The fluororesin sheet according to any one of claims 1 to 4, wherein the filler contains a ferrite, a sendust, a conductive filler, or a combination thereof.
  6.  上記フィラーがフェライト、センダスト又はこれらの組み合わせを含む請求項1から請求項5のいずれか1項に記載のフッ素樹脂シート。 The fluororesin sheet according to any one of claims 1 to 5, wherein the filler contains ferrite, sendust, or a combination thereof.
  7.  上記フィラーがアルミナ、窒化ホウ素、窒化アルミニウム、センダスト又はこれらの組み合わせを含む請求項1から請求項6のいずれか1項に記載のフッ素樹脂シート。 The fluororesin sheet according to any one of claims 1 to 6, wherein the filler contains alumina, boron nitride, aluminum nitride, sendust, or a combination thereof.
  8.  請求項1から請求項7のいずれか1項に記載のフッ素樹脂シートと、
     上記フッ素樹脂シートの両面側に積層される導電層と、
     上記フッ素樹脂シートと上記導電層の間に積層される接着層と
     を備える多層シート。
    The fluororesin sheet according to any one of claims 1 to 7.
    The conductive layers laminated on both sides of the fluororesin sheet and
    A multilayer sheet provided with an adhesive layer laminated between the fluororesin sheet and the conductive layer.
  9.  上記接着層の合計平均厚さが0.1μm以上50μm以下である請求項8に記載の多層シート。 The multilayer sheet according to claim 8, wherein the total average thickness of the adhesive layers is 0.1 μm or more and 50 μm or less.
  10.  請求項6に記載のフッ素樹脂シートを備えるシールド材。
     
    A shield material provided with the fluororesin sheet according to claim 6.
PCT/JP2021/018881 2020-05-18 2021-05-18 Fluororesin sheet, multilayer sheet, and shield material WO2021235460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020087053 2020-05-18
JP2020-087053 2020-05-18

Publications (1)

Publication Number Publication Date
WO2021235460A1 true WO2021235460A1 (en) 2021-11-25

Family

ID=78707876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018881 WO2021235460A1 (en) 2020-05-18 2021-05-18 Fluororesin sheet, multilayer sheet, and shield material

Country Status (1)

Country Link
WO (1) WO2021235460A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080113A1 (en) * 2021-11-08 2023-05-11 住友電気工業株式会社 Dielectric sheet, substrate for high frequency printed circuit board, and high frequency printed circuit board
WO2023100817A1 (en) * 2021-11-30 2023-06-08 日東電工株式会社 Thermally conductive sheet
CN117601478A (en) * 2023-11-27 2024-02-27 江苏耀鸿电子有限公司 High-frequency heat-resistant epoxy resin-based copper-clad plate and preparation method thereof
WO2024128221A1 (en) * 2022-12-13 2024-06-20 ダイキン工業株式会社 Composition, sheet and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026860A1 (en) * 1996-12-04 1998-06-25 Daikin Industries, Ltd. Filter medium and air filter unit using the same
JP2002301321A (en) * 2001-04-05 2002-10-15 Daikin Ind Ltd Filter medium, filter pack and filter unit which use the same, and method for manufacturing filter medium
JP2003301048A (en) * 2002-04-10 2003-10-21 Polymatech Co Ltd Thermally conductive molded product
WO2007135994A1 (en) * 2006-05-19 2007-11-29 Fujifilm Corporation Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
WO2010055878A1 (en) * 2008-11-12 2010-05-20 日東電工株式会社 Method for producing insulating thermally conductive sheet, insulating thermally conductive sheet and heat dissipating member
KR20140074755A (en) * 2012-12-10 2014-06-18 도레이케미칼 주식회사 Multi-layer PTFE membrane and preparation method thereof
WO2019004377A1 (en) * 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber and transplant device
WO2019031071A1 (en) * 2017-08-08 2019-02-14 住友電気工業株式会社 High-frequency printed circuit board base material
US20190264005A1 (en) * 2018-02-23 2019-08-29 Rogers Corporation Polytetrafluoroethylene hexaferrite composites
WO2019189214A1 (en) * 2018-03-30 2019-10-03 ダイキン工業株式会社 Radio wave absorbing material and radio wave absorbing sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026860A1 (en) * 1996-12-04 1998-06-25 Daikin Industries, Ltd. Filter medium and air filter unit using the same
JP2002301321A (en) * 2001-04-05 2002-10-15 Daikin Ind Ltd Filter medium, filter pack and filter unit which use the same, and method for manufacturing filter medium
JP2003301048A (en) * 2002-04-10 2003-10-21 Polymatech Co Ltd Thermally conductive molded product
WO2007135994A1 (en) * 2006-05-19 2007-11-29 Fujifilm Corporation Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
WO2010055878A1 (en) * 2008-11-12 2010-05-20 日東電工株式会社 Method for producing insulating thermally conductive sheet, insulating thermally conductive sheet and heat dissipating member
KR20140074755A (en) * 2012-12-10 2014-06-18 도레이케미칼 주식회사 Multi-layer PTFE membrane and preparation method thereof
WO2019004377A1 (en) * 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber and transplant device
WO2019031071A1 (en) * 2017-08-08 2019-02-14 住友電気工業株式会社 High-frequency printed circuit board base material
US20190264005A1 (en) * 2018-02-23 2019-08-29 Rogers Corporation Polytetrafluoroethylene hexaferrite composites
WO2019189214A1 (en) * 2018-03-30 2019-10-03 ダイキン工業株式会社 Radio wave absorbing material and radio wave absorbing sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080113A1 (en) * 2021-11-08 2023-05-11 住友電気工業株式会社 Dielectric sheet, substrate for high frequency printed circuit board, and high frequency printed circuit board
WO2023100817A1 (en) * 2021-11-30 2023-06-08 日東電工株式会社 Thermally conductive sheet
WO2024128221A1 (en) * 2022-12-13 2024-06-20 ダイキン工業株式会社 Composition, sheet and method for producing same
CN117601478A (en) * 2023-11-27 2024-02-27 江苏耀鸿电子有限公司 High-frequency heat-resistant epoxy resin-based copper-clad plate and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2021235460A1 (en) Fluororesin sheet, multilayer sheet, and shield material
TWI827562B (en) Dielectric layer with improved thermally conductivity
JP6997104B2 (en) Base material for high frequency printed wiring boards
KR102097222B1 (en) Resin composition, metal laminate and printed circuit board using the same, and method for manufacturing the metal laminate
TWI725538B (en) Metal-clad laminate, printed circuit board, and method for manufacturing the same
WO2015182696A1 (en) Fluororesin base material and flexible printed circuit board
WO2021235276A1 (en) Method for manufacturing dielectric sheet, method for manufacturing substrate for high-frequency printed circuit board, dielectric sheet, and substrate for high-frequency printed circuit board
WO2019049519A1 (en) Circuit board and manufacturing method therefor
WO2021070805A1 (en) Plate-shaped composite material
KR20230010621A (en) Method for producing a laminate having a layer containing a thermally meltable tetrafluoroethylene-based polymer
CN113910715A (en) High-frequency high-speed flexible copper clad laminate containing polyimide/fluoropolymer/conductive polymer and preparation method thereof
JP2006198993A (en) Laminate of thermoplastic resin
JP6569936B2 (en) PCB for printed wiring board
JP7421156B1 (en) Dielectric and its manufacturing method
WO2024128221A1 (en) Composition, sheet and method for producing same
WO2023189794A1 (en) Metal-clad laminated board and method for producing same
WO2022259981A1 (en) Composition, metal-clad laminate, and method for producing same
JPWO2008099954A1 (en) Fluororesin composition, fluororesin molded article and method for producing the same
KR20220162146A (en) Flexible Dielectric Material Comprising a Biaxially-Oriented Polytetrafluoroethylene Reinforced Layer
JP2023141133A (en) Nanofiber sheet and laminate
JP2004323651A (en) Styrene-based resin composition, film, circuit-board and molded product
TW202413449A (en) Resin composition, fluorine-based resin film, fluorine-based resin metal-coated laminate, and printed wiring board
CN114729198A (en) Powder composition, film, and method for producing film
WO2024070495A1 (en) Resin composition, fluororesin film using same, and fluororesin metal-clad laminate
JP2004231842A (en) Styrenic resin composition, film, base and molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21808192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP