WO2021235388A1 - Furnace monitoring device - Google Patents

Furnace monitoring device Download PDF

Info

Publication number
WO2021235388A1
WO2021235388A1 PCT/JP2021/018592 JP2021018592W WO2021235388A1 WO 2021235388 A1 WO2021235388 A1 WO 2021235388A1 JP 2021018592 W JP2021018592 W JP 2021018592W WO 2021235388 A1 WO2021235388 A1 WO 2021235388A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
furnace
boiler
combustion
image
Prior art date
Application number
PCT/JP2021/018592
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 佐藤
辰朗 田之上
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to DE112021002810.3T priority Critical patent/DE112021002810T5/en
Priority to AU2021275268A priority patent/AU2021275268B2/en
Priority to US17/997,310 priority patent/US20230168037A1/en
Priority to JP2022524458A priority patent/JPWO2021235388A1/ja
Publication of WO2021235388A1 publication Critical patent/WO2021235388A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/02Cleaning furnace tubes; Cleaning flues or chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0859Sighting arrangements, e.g. cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • H04N23/23Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only from thermal infrared radiation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices
    • F27D2021/026Observation or illuminating devices using a video installation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance

Definitions

  • Patent Document 1 discloses an in-core monitoring device that takes a picture of the inside of a boiler in a furnace with a monitoring TV camera and monitors the inside of the furnace based on the image.
  • This in-furnace monitoring device supplies the light of the light source to the light projecting lens via the light projecting optical fiber, and provides an in-core imaging optical fiber between the light projecting lens and the monitoring TV camera. , The condition inside the furnace is confirmed even when the inside of the furnace is dark.
  • the above-mentioned background technology is for monitoring the inside of the furnace of the boiler by using a TV camera for monitoring, but it is not intended to monitor the state of combustion ash, but to monitor the bottom of the furnace. It is a thing.
  • ash combustion ash
  • combustion ash fuels that are difficult to adhere to such combustion ash are selected, combustion ash is artificially removed, and / and additives are injected.
  • the present disclosure has been made in view of the above-mentioned circumstances, and an object of the present disclosure is to provide a furnace monitoring device capable of evaluating the adhesion state of combustion ash more effectively than before.
  • the first aspect according to the present disclosure is an image pickup device for photographing the combustion ash adhering to the monitoring point in the furnace, and the combustion ash based on the monitoring image output by the image pickup device. It is a furnace monitoring device including an evaluation device for evaluating the adhesion state and a notification device for notifying the combustion ash based on the evaluation result of the evaluation device.
  • the furnace is a boiler combustion furnace.
  • the monitoring point is a superheater in the second aspect.
  • the monitoring point is around the burner provided in the furnace.
  • a fifth aspect according to the present disclosure is, in any one of the first to fourth aspects, the image pickup apparatus is an infrared camera that excludes a flame and captures the combustion ash.
  • the furnace monitoring device A monitors the combustion furnace of the boiler. That is, the furnace X in this embodiment is a boiler combustion furnace.
  • the boiler has a curved shape when viewed from the front, and is a facility that generates steam by using heat (combustion heat) obtained by burning a predetermined fuel.
  • This boiler is, for example, equipment installed in a power plant, and generates steam as a working fluid for driving a steam turbine.
  • Such a boiler includes, for example, a boiler wall x1, a plurality of burners x2, a superheater x3, a reheater x4, a preheater x5, and a bent portion x6.
  • the boiler wall x1 is a plate-shaped member that forms the outer shape of the boiler, and is formed on a flat plate by joining a plurality of heat transfer tubes in parallel to each other. Water flows from one end to the other end of the plurality of heat transfer tubes forming such a boiler wall x1. This water is heated by the above-mentioned combustion heat, and a part of it becomes steam.
  • a plurality of burners x2 are provided in a part of such a boiler wall x1 to form a combustion chamber R. That is, in the boiler shown in FIG. 1, the left side portion of the bent portion x6 constitutes a combustion chamber R in which fuel burns, and a plurality of burners x2 are provided in the vicinity of the lower end portion.
  • the combustion chamber R has a rectangular shape in a horizontal cross section.
  • a plurality of burners x2 are each provided on a boiler wall x1 that forms a combustion chamber R and faces in parallel. That is, the plurality of burners x2 are provided so as to face each other.
  • the other of the pair of boiler walls x1 is also provided with a plurality of burners x2 arranged in the same manner as the above one.
  • the installation form of the burner x2 shown in FIG. 2 is just an example.
  • the boiler can take various installation forms of the burner x2 depending on the scale, application, and the like.
  • a plurality of burners x2 may be arranged and installed in a predetermined form only on one of a pair of boiler walls x1 facing in parallel.
  • Such a plurality of burners x2 inject fuel such as pulverized coal and biomass supplied from a fuel supply system (not shown) into the combustion chamber R, and the combustion air separately taken into the combustion chamber R by the air supply system is injected.
  • Combust fuel as an oxidizer That is, in the combustion chamber R, high-temperature combustion gas is generated by burning the fuel injected from each burner x2.
  • combustion ash is generated as the fuel burns. Most of this combustion ash falls below the combustion chamber R and is collected, but a part of it rises together with the combustion gas and flows from the combustion chamber R toward the exhaust port E in the boiler.
  • the high-temperature combustion gas functions as a heat source for generating water vapor in the boiler, but also functions as a powder carrier for transporting the combustion ash toward the exhaust port E.
  • the superheater x3 is a heat exchanger for further heating the saturated steam generated in the boiler, and is provided directly above the combustion chamber R in the internal space of the boiler surrounded by the boiler wall x1.
  • the superheater x3 generates superheated steam having a heat energy higher than that of the saturated steam by exchanging heat with the combustion gas.
  • the reheater x4 is a heat exchanger for reheating the steam used to drive the steam turbine, and is provided immediately after the bent portion x6 in the internal space of the boiler.
  • the reheater x4 reheats, for example, the steam used to drive the high-pressure steam turbine before supplying it to the low-pressure steam turbine.
  • the economizer x5 is a heat exchanger (preheater) also called an economizer, and is provided on the downstream side of the reheater x4 in the flow direction of the combustion gas in the internal space of the boiler. This coal saver x5 heats (preheats) the boiler feed water before vaporization in order to improve the thermal efficiency of the boiler.
  • the heat exchanger shown in FIG. 1, that is, the superheater x3, the reheater x4, and the economizer x5 is merely an example.
  • the boiler in the present embodiment may include, for example, an economizer x5 that preheats the boiler water supply, and an air preheater that preheats the combustion air taken in from the outside air and supplies it to the combustion chamber R. ..
  • the bent portion x6 is a portion in the internal space of the boiler where the flow path area of the combustion gas generated in the combustion chamber R is the narrowest, and the flow direction of the combustion gas changes from an ascending flow to a descending flow.
  • the bent portion x6 is also a portion to which the combustion ash contained in the combustion gas easily adheres.
  • the furnace monitoring device A includes an infrared camera 1, a control device 2, an analysis device 3, and a monitoring panel 4, as shown in FIG.
  • the infrared camera 1 is an imaging device whose imaging location is a predetermined monitoring location in the combustion furnace X (fire furnace), and photographs combustion ash adhering to the monitoring location. That is, the infrared camera 1 detects infrared rays radiated from the monitoring point, generates a two-dimensional thermal image of the monitoring point as a monitoring image, and outputs the two-dimensional thermal image to the control device 2.
  • Such an infrared camera 1 excludes the flame radiated into the combustion furnace X from the burner x2, for example, and captures the combustion ash. That is, the infrared camera 1 detects only infrared rays in a specific wavelength band that does not include infrared rays in the wavelength band in which the flame is emitted in the infrared region of the electromagnetic wave.
  • a surveillance image (thermal image) of the infrared camera 1 is a two-dimensional image that faithfully shows the state of the surveillance portion where the flame does not act as a disturbance.
  • Such a monitoring image is, for example, a black-and-white image in which the brightness value increases as the amount of combustion ash adhered increases. That is, the monitoring image (thermal image) is a two-dimensional image in which the amount of combustion ash adhered correlates with the brightness value. The brightness value is close to black.
  • an infrared camera for example, an in-core surveillance camera manufactured by Lumasense (Lumasense Technologies, Inc.) can be adopted.
  • the monitoring points in the present embodiment are, for example, the boiler wall x1 in the vicinity of the burner x2, that is, the periphery of the burner x2 (the wall surrounding the burner x2 in the boiler wall x1), the superheater x3, the bent portion x6, and the reheater.
  • the boiler wall x1 and the superheater x3 in the vicinity of the burner x2, which are a part of the combustion chamber R, are places where the combustion ash easily adheres in the internal space of the boiler, that is, in the flow path of the combustion gas and the combustion ash.
  • a monitoring window x7 for monitoring the state of the burner x2 is provided on each of the pair of boiler walls x1 (side wall) intersecting with the pair of boiler walls x1 provided with the burner x2. Often.
  • the infrared camera 1 captures, for example, the boiler wall x1 in the vicinity of the burner x2 through the monitoring window x7.
  • the infrared camera 1 can be installed without any processing such as providing an opening in the boiler wall x1. Therefore, according to the present embodiment, the infrared camera 1 can be easily installed in the existing boiler.
  • the above-mentioned infrared camera 1 is installed so that such a monitoring point has an angle of view. Although one infrared camera 1 is shown in FIG. 1, the number of infrared cameras 1 is not limited to one. That is, an infrared camera 1 may be provided for each monitoring location, or a plurality of monitoring locations may be simultaneously imaged by one infrared camera 1.
  • the control device 2 controls the infrared camera 1 and captures a surveillance image (thermal image) input from the infrared camera 1. That is, the control device 2 controls the shooting timing of the surveillance image (thermal image) in the infrared camera 1. Further, the control device 2 captures the surveillance image (thermal image) taken at the shooting timing specified by itself from the infrared camera 1 and provides the analysis device 3.
  • a control device 2 is a computer that functions based on a control program stored in advance. That is, the control device 2 is a main storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory) or a ROM (Read Only Memory), and an auxiliary storage such as an SSD (Solid State Drive) or an HDD (Hard Disc Drive). It is a kind of computer composed of devices and the like.
  • the analysis device 3 evaluates the adhesion state of combustion ash at the monitoring location based on the monitoring image (thermal image). That is, the analysis device 3 acquires the surveillance image (thermal image) output by the infrared camera 1 via the control device 2, and performs predetermined image processing on the surveillance image (thermal image) to deposit combustion ash. Evaluate the quantity t.
  • the analysis device 3 constitutes an evaluation device together with the control device 2 described above.
  • Such an analysis device 3 is a computer that performs image processing on a monitoring image (thermal image) based on an analysis program stored in advance and evaluates the accumulated amount t of combustion ash based on the result of the image processing. .. That is, the analysis device 3 is a main storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory) or a ROM (Read Only Memory), and an auxiliary storage such as an SSD (Solid State Drive) or an HDD (Hard Disc Drive). It is a kind of computer composed of devices and the like.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • an auxiliary storage such as an SSD (Solid State Drive) or an HDD (Hard Disc Drive). It is a kind of computer composed of devices and the like.
  • the analyzer 3 stores in advance a deposit amount table showing the relationship between the brightness value of the monitoring image (thermal image) and the deposit amount t of the combustion ash, and by using this deposit amount table, the combustion ash is deposited. Evaluate the quantity t.
  • the analysis device 3 will be described in detail in the operation description described later.
  • the monitoring panel 4 is provided in a monitoring room for monitoring the operation of the boiler.
  • This monitoring panel 4 is provided to an observer who monitors the operation of the boiler, and various information (boiler operation information) indicating the operating state of the boiler is posted.
  • Such a monitoring panel 4 notifies about combustion ash based on the evaluation result of the analysis device 3 as one of the boiler operation information. That is, the monitoring panel 4 is a notification device in the present embodiment.
  • the control device 2 instructs the infrared camera 1 to acquire a monitoring image (thermal image) based on a preset time schedule. That is, the control device 2 outputs a monitoring image (thermal image) acquisition instruction to the infrared camera 1 at a time set based on the control program. Then, the infrared camera 1 sequentially acquires the monitoring image (thermal image) of the monitoring location based on this acquisition instruction (step S1).
  • the surveillance image (thermal image) acquired by the infrared camera 1 in this way is input from the infrared camera 1 to the analysis device 3 via the control device 2.
  • the analysis device 3 performs image processing, that is, filter processing, on the monitored image (thermal image) (step S2). This filtering process removes noise contained in the surveillance image (thermal image).
  • the analyzer 3 acquires the luminance value of the monitoring image (thermal image), and searches the accumulated amount table stored in advance using this luminance value, so that the accumulated amount of combustion ash corresponding to the luminance value is accumulated. Acquire t (step S3). Then, the analysis device 3 determines whether or not the accumulated amount t exceeds the limit value by comparing the accumulated amount t thus acquired with the evaluation threshold value Tref stored in advance (step S4). ).
  • step S5 the analysis device 3 outputs an alert to the monitoring panel 4 (step S5).
  • This alert alerts the observer regarding the adhesion of combustion ash and is notified as audio or / and video. The observer can know from such an alert that the combustion ash is attached beyond the limit value.
  • the evaluation of the adhesion state of the combustion ash is more effective than before. It is possible to provide.
  • the present disclosure is not limited to the above embodiment, and for example, the following modifications can be considered.
  • the combustion furnace X of the boiler is set as the furnace to be monitored, but the present invention is not limited to this.
  • the present disclosure can be applied to various furnaces other than the combustion furnace X of the boiler.
  • the infrared camera 1 for capturing the combustion ash by excluding the flame radiated from the burner x2 into the combustion furnace X is used, the present disclosure is not limited to this.
  • a general infrared camera is used. You may use it.
  • the infrared camera 1 excluding the flame of the burner x2 is used, but the present disclosure is not limited to this.
  • a general infrared camera may be used as the image pickup device by providing the analysis device 3 with a function of excluding the flame of the burner x2.
  • control device 2 and the analysis device 3 are provided as separate devices, but the present disclosure is not limited to this. That is, the function of the control device 2 and the function of the analysis device 3 may be integrated into a single device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Incineration Of Waste (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

This disclosure relates to a furnace monitoring device (A) including: an imaging device (1) for photographing combustion ashes adhered to a monitor location in a furnace (X); evaluation systems (2, 3) for evaluating the adhesion situation of the combustion ashes according to a monitor image output by the imaging device (1); and a notification device (4) for notifying information about the combustion ashes according to the evaluation result of the evaluation systems (2, 3).

Description

火炉監視装置Fire furnace monitoring device
 本開示は、火炉監視装置に関する。本願は、2020年5月18日に日本に出願された日本国特願2020-086657号に基づき優先権を主張し、その内容をここに援用する。 This disclosure relates to a furnace monitoring device. This application claims priority based on Japanese Patent Application No. 2020-086657 filed in Japan on May 18, 2020, the contents of which are incorporated herein by reference.
 下記特許文献1には、ボイラの炉内を監視用テレビカメラで撮影し、その映像に基づいて炉内状態を監視する炉内監視装置が開示されている。この炉内監視装置は、光源の光を投光用光ファイバを介して投光用レンズに供給し、投光用レンズと監視用テレビカメラとの間に炉内撮像用光ファイバを設けることにより、炉内が暗い状態においても炉内の状態を確認するものである。 The following Patent Document 1 discloses an in-core monitoring device that takes a picture of the inside of a boiler in a furnace with a monitoring TV camera and monitors the inside of the furnace based on the image. This in-furnace monitoring device supplies the light of the light source to the light projecting lens via the light projecting optical fiber, and provides an in-core imaging optical fiber between the light projecting lens and the monitoring TV camera. , The condition inside the furnace is confirmed even when the inside of the furnace is dark.
日本国実開昭60-86749号公報Japan Minor Kaisho 60-8647A Gazette
 ところで、上記背景技術は、監視用テレビカメラを用いてボイラの炉内を監視するものであるが、燃焼灰の状態を監視することを目的とするものではなく、炉底部の監視を目的とするものである。周知のように、ボイラでは燃料を燃やして生成される灰(燃焼灰)が各所の伝熱管に付着する。そして、ボイラの技術分野では、このような燃焼灰に対して、付着し難い燃料の選定、燃焼灰の人為的な除去あるいは/及び添加材の注入等を行っている。 By the way, the above-mentioned background technology is for monitoring the inside of the furnace of the boiler by using a TV camera for monitoring, but it is not intended to monitor the state of combustion ash, but to monitor the bottom of the furnace. It is a thing. As is well known, in boilers, ash (combustion ash) produced by burning fuel adheres to heat transfer tubes in various places. In the technical field of boilers, fuels that are difficult to adhere to such combustion ash are selected, combustion ash is artificially removed, and / and additives are injected.
 しかしながら、このような従来の燃焼灰対策には限界がある。特に燃料の種類が増加している昨今では、燃料毎に効果的な燃焼灰の付着対策を実行することは極めて困難である。 However, there is a limit to such conventional measures against combustion ash. Especially in recent years when the types of fuels are increasing, it is extremely difficult to take effective measures against the adhesion of combustion ash for each fuel.
 本開示は、上述した事情に鑑みてなされたものであり、従来よりも実効的な燃焼灰の付着状態の評価が可能な火炉監視装置の提供を目的とするものである。 The present disclosure has been made in view of the above-mentioned circumstances, and an object of the present disclosure is to provide a furnace monitoring device capable of evaluating the adhesion state of combustion ash more effectively than before.
 上記目的を達成するために、本開示に係る第1の態様は、火炉内の監視箇所に付着する燃焼灰を撮影する撮像装置と、前記撮像装置が出力する監視画像に基づいて前記燃焼灰の付着状況を評価する評価装置と、前記評価装置の評価結果に基づいて前記燃焼灰に関する報知を行う報知装置とを備える、火炉監視装置である。 In order to achieve the above object, the first aspect according to the present disclosure is an image pickup device for photographing the combustion ash adhering to the monitoring point in the furnace, and the combustion ash based on the monitoring image output by the image pickup device. It is a furnace monitoring device including an evaluation device for evaluating the adhesion state and a notification device for notifying the combustion ash based on the evaluation result of the evaluation device.
 本開示に係る第2の態様は、上記第1の態様において、前記火炉はボイラの燃焼炉である。 In the second aspect of the present disclosure, in the first aspect, the furnace is a boiler combustion furnace.
 本開示に係る第3の態様は、上記第2の態様において、前記監視箇所は過熱器である。 In the third aspect of the present disclosure, the monitoring point is a superheater in the second aspect.
 本開示に係る第4の態様は、上記第1~第3の態様のうちいずれかの態様において、前記監視箇所は前記火炉に設けられたバーナの周囲である。 In the fourth aspect according to the present disclosure, in any one of the first to third aspects, the monitoring point is around the burner provided in the furnace.
 本開示に係る第5の態様は、上記第1~第4の態様のうちいずれかの態様において、前記撮像装置は炎を除外して前記燃焼灰を撮像する赤外線カメラである。 A fifth aspect according to the present disclosure is, in any one of the first to fourth aspects, the image pickup apparatus is an infrared camera that excludes a flame and captures the combustion ash.
 本開示によれば、従来よりも実効的な燃焼灰の付着状態の評価が可能な火炉監視装置を提供することが可能である。 According to the present disclosure, it is possible to provide a furnace monitoring device capable of evaluating the adhesion state of combustion ash more effectively than before.
本開示の一実施形態に係る火炉監視装置の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the furnace monitoring apparatus which concerns on one Embodiment of this disclosure. 本開示の一実施形態におけるバーナ周辺の監視状態を示す模式図である。It is a schematic diagram which shows the monitoring state around a burner in one Embodiment of this disclosure. 本開示の一実施形態に係る火炉監視装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the furnace monitoring apparatus which concerns on one Embodiment of this disclosure.
 以下、図面を参照して、本発明の一実施形態について説明する。
 本実施形態に係る火炉監視装置Aは、ボイラの燃焼炉を監視対象とする。すなわち、本実施形態における火炉Xは、ボイラの燃焼炉である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The furnace monitoring device A according to the present embodiment monitors the combustion furnace of the boiler. That is, the furnace X in this embodiment is a boiler combustion furnace.
 図1に示すように、ボイラは、正面から見た形状が屈曲した形状であり、所定の燃料を燃焼させることによって得られた熱(燃焼熱)を用いて水蒸気を発生させる設備である。このボイラは、例えば発電所に備えられる設備であり、蒸気タービンを駆動するための作動流体として水蒸気を発生させる。このようなボイラは、例えば、ボイラ壁x1、複数のバーナx2、過熱器x3、再熱器x4、予熱器x5及び屈曲部x6を備えている。 As shown in FIG. 1, the boiler has a curved shape when viewed from the front, and is a facility that generates steam by using heat (combustion heat) obtained by burning a predetermined fuel. This boiler is, for example, equipment installed in a power plant, and generates steam as a working fluid for driving a steam turbine. Such a boiler includes, for example, a boiler wall x1, a plurality of burners x2, a superheater x3, a reheater x4, a preheater x5, and a bent portion x6.
 ボイラ壁x1は、ボイラの外形を形成する板状部材であり、複数の伝熱管が並列状態で相互に接合されることによって平板上をなしている。このようなボイラ壁x1を形成する複数の伝熱管には、一端から他端に向かって水が流れている。この水は、上述した燃焼熱によって加熱され、一部が水蒸気となる。 The boiler wall x1 is a plate-shaped member that forms the outer shape of the boiler, and is formed on a flat plate by joining a plurality of heat transfer tubes in parallel to each other. Water flows from one end to the other end of the plurality of heat transfer tubes forming such a boiler wall x1. This water is heated by the above-mentioned combustion heat, and a part of it becomes steam.
 このようなボイラ壁x1の一部領域には、図示するように複数のバーナx2が設けられており、燃焼室Rを構成している。すなわち、図1に示すボイラにおいて、屈曲部x6の左側部位は、燃料が燃焼する燃焼室Rを構成しており、下端近傍部位に複数のバーナx2が設けられている。なお、この燃焼室Rは、水平断面における形状が矩形である。 As shown in the figure, a plurality of burners x2 are provided in a part of such a boiler wall x1 to form a combustion chamber R. That is, in the boiler shown in FIG. 1, the left side portion of the bent portion x6 constitutes a combustion chamber R in which fuel burns, and a plurality of burners x2 are provided in the vicinity of the lower end portion. The combustion chamber R has a rectangular shape in a horizontal cross section.
 複数のバーナx2は、燃焼室Rを形成すると共に並行対峙するボイラ壁x1に各々設けられている。すなわち、複数のバーナx2は、互いに対向するように設けられている。並行対峙する一対のボイラ壁x1の一方には、例えば図2に示すように上下方向に多段(3個)及び左右方向に複数(6個)のバーナx2が設けられている。また、一対のボイラ壁x1の他方にも、上記一方と同様に配列した複数のバーナx2が設けられている。 A plurality of burners x2 are each provided on a boiler wall x1 that forms a combustion chamber R and faces in parallel. That is, the plurality of burners x2 are provided so as to face each other. On one of the pair of boiler walls x1 facing in parallel, for example, as shown in FIG. 2, a plurality of (3) burners x 2 in the vertical direction and a plurality (6) burners x 2 in the horizontal direction are provided. Further, the other of the pair of boiler walls x1 is also provided with a plurality of burners x2 arranged in the same manner as the above one.
 なお、図2に示すバーナx2の設置形態は、あくまでも一例である。ボイラは、規模や用途等に応じて様々なバーナx2の設置形態を取り得る。例えば、並行対峙する一対のボイラ壁x1の一方のみに複数のバーナx2を所定の形態で配列設置してもよい。 The installation form of the burner x2 shown in FIG. 2 is just an example. The boiler can take various installation forms of the burner x2 depending on the scale, application, and the like. For example, a plurality of burners x2 may be arranged and installed in a predetermined form only on one of a pair of boiler walls x1 facing in parallel.
 このような複数のバーナx2は、図示しない燃料供給系から供給される微粉炭やバイオマス等の燃料を燃焼室Rに噴射し、空気供給系によって燃焼室R内に別途取り込まれた燃焼用空気を酸化剤として燃料を燃焼させる。すなわち、燃焼室Rでは、各バーナx2から噴射される燃料が燃焼することによって高温な燃焼ガスが発生する。 Such a plurality of burners x2 inject fuel such as pulverized coal and biomass supplied from a fuel supply system (not shown) into the combustion chamber R, and the combustion air separately taken into the combustion chamber R by the air supply system is injected. Combust fuel as an oxidizer. That is, in the combustion chamber R, high-temperature combustion gas is generated by burning the fuel injected from each burner x2.
 また、燃焼室Rでは、燃料の燃焼に伴って燃焼灰が発生する。この燃焼灰の多くは、燃焼室Rの下方に落下して捕集されるが、一部は燃焼ガスと共に上昇し、燃焼室Rから排気口Eに向けてボイラ内を流れる。高温の燃焼ガスは、ボイラで水蒸気を発生させるための熱源として機能するが、燃焼灰を排気口Eに向かって搬送する紛体キャリアとしても機能する。 Also, in the combustion chamber R, combustion ash is generated as the fuel burns. Most of this combustion ash falls below the combustion chamber R and is collected, but a part of it rises together with the combustion gas and flows from the combustion chamber R toward the exhaust port E in the boiler. The high-temperature combustion gas functions as a heat source for generating water vapor in the boiler, but also functions as a powder carrier for transporting the combustion ash toward the exhaust port E.
 過熱器x3は、ボイラで発生させた飽和水蒸気をさらに加熱するための熱交換器であり、ボイラ壁x1で囲まれたボイラの内部空間において燃焼室Rの直上に設けられている。この過熱器x3は、飽和水蒸気を燃焼ガスと熱交換させることにより、熱エネルギーが飽和水蒸気よりも高い過熱水蒸気を発生させる。 The superheater x3 is a heat exchanger for further heating the saturated steam generated in the boiler, and is provided directly above the combustion chamber R in the internal space of the boiler surrounded by the boiler wall x1. The superheater x3 generates superheated steam having a heat energy higher than that of the saturated steam by exchanging heat with the combustion gas.
 再熱器x4は、蒸気タービンの駆動に供された水蒸気を再加熱するための熱交換器であり、ボイラの内部空間において屈曲部x6の直後に設けられている。発電所における蒸気タービンの構成は、様々であり、発電所によっては、高圧用の蒸気タービンに加えて低圧用の蒸気タービンを備えるものがある。再熱器x4は、例えば、高圧用の蒸気タービンの駆動に供された水蒸気を低圧用の蒸気タービンに供給する前に再加熱する。 The reheater x4 is a heat exchanger for reheating the steam used to drive the steam turbine, and is provided immediately after the bent portion x6 in the internal space of the boiler. There are various configurations of steam turbines in power plants, and some power plants are equipped with a steam turbine for low pressure in addition to a steam turbine for high pressure. The reheater x4 reheats, for example, the steam used to drive the high-pressure steam turbine before supplying it to the low-pressure steam turbine.
 節炭器x5は、エコノマイザとも言われる熱交換器(予熱器)であり、ボイラの内部空間における燃焼ガスの流れ方向において、再熱器x4の下流側に設けられている。この節炭器x5は、ボイラの熱効率の向上を図るために、気化させる前のボイラ給水を加熱(予熱)する。 The economizer x5 is a heat exchanger (preheater) also called an economizer, and is provided on the downstream side of the reheater x4 in the flow direction of the combustion gas in the internal space of the boiler. This coal saver x5 heats (preheats) the boiler feed water before vaporization in order to improve the thermal efficiency of the boiler.
 ここで、ボイラにおける熱交換器の構成形態には様々なものがある。図1に示す熱交換器、つまり過熱器x3、再熱器x4、及び節炭器x5は、あくまで一例である。本実施形態におけるボイラは、例えば、ボイラ給水を予熱する節炭器x5に加えて、外気から取り込んだ燃焼用空気を予熱して燃焼室Rに供給する空気予熱器を備えるものであってもよい。 Here, there are various configurations of heat exchangers in the boiler. The heat exchanger shown in FIG. 1, that is, the superheater x3, the reheater x4, and the economizer x5 is merely an example. The boiler in the present embodiment may include, for example, an economizer x5 that preheats the boiler water supply, and an air preheater that preheats the combustion air taken in from the outside air and supplies it to the combustion chamber R. ..
 屈曲部x6は、ボイラの内部空間において燃焼室Rで発生した燃焼ガスの流路面積が最も狭い部位であり、また燃焼ガスの流れ方向が上昇流から下降流に転じる部位である。この屈曲部x6は、燃焼ガスに含まれる燃焼灰が付着し易い部位でもある。 The bent portion x6 is a portion in the internal space of the boiler where the flow path area of the combustion gas generated in the combustion chamber R is the narrowest, and the flow direction of the combustion gas changes from an ascending flow to a descending flow. The bent portion x6 is also a portion to which the combustion ash contained in the combustion gas easily adheres.
 このようなボイラの燃焼炉Xに対して、本実施形態に係る火炉監視装置Aは、図1に示すように、赤外線カメラ1、制御装置2、解析装置3及び監視パネル4を備えている。 For such a boiler combustion furnace X, the furnace monitoring device A according to the present embodiment includes an infrared camera 1, a control device 2, an analysis device 3, and a monitoring panel 4, as shown in FIG.
 赤外線カメラ1は、燃焼炉X(火炉)内の所定の監視箇所を撮影箇所とする撮像装置であり、監視箇所に付着する燃焼灰を撮影する。すなわち、この赤外線カメラ1は、監視箇所から放射される赤外線を検出することにより、監視箇所に関する二次元の熱画像を監視画像として生成して制御装置2に出力する。 The infrared camera 1 is an imaging device whose imaging location is a predetermined monitoring location in the combustion furnace X (fire furnace), and photographs combustion ash adhering to the monitoring location. That is, the infrared camera 1 detects infrared rays radiated from the monitoring point, generates a two-dimensional thermal image of the monitoring point as a monitoring image, and outputs the two-dimensional thermal image to the control device 2.
 このような赤外線カメラ1は、例えばバーナx2から燃焼炉X内に放射される炎を除外して燃焼灰を撮像する。すなわち、この赤外線カメラ1は、電磁波の赤外域において炎が発する波長帯の赤外線を含まない特定の波長帯の赤外線のみを検出する。このような赤外線カメラ1の監視画像(熱画像)は、炎が外乱として作用することのない監視箇所の状態を忠実に示す二次元画像である。 Such an infrared camera 1 excludes the flame radiated into the combustion furnace X from the burner x2, for example, and captures the combustion ash. That is, the infrared camera 1 detects only infrared rays in a specific wavelength band that does not include infrared rays in the wavelength band in which the flame is emitted in the infrared region of the electromagnetic wave. Such a surveillance image (thermal image) of the infrared camera 1 is a two-dimensional image that faithfully shows the state of the surveillance portion where the flame does not act as a disturbance.
 このような監視画像(熱画像)は、例えば、燃焼灰の付着量が増加する程に輝度値が上昇する白黒画像である。すなわち、監視画像(熱画像)は、燃焼灰の付着量が輝度値に相関する二次元画像であり、燃焼灰の付着量が多い程に白に近い輝度値となり、燃焼灰の付着量が少ない程に黒に近い輝度値となる。なお、このような赤外線カメラ1として、例えばLumasense社(Lumasense Technologies, Inc.)の炉内監視カメラを採用することができる。 Such a monitoring image (thermal image) is, for example, a black-and-white image in which the brightness value increases as the amount of combustion ash adhered increases. That is, the monitoring image (thermal image) is a two-dimensional image in which the amount of combustion ash adhered correlates with the brightness value. The brightness value is close to black. As such an infrared camera 1, for example, an in-core surveillance camera manufactured by Lumasense (Lumasense Technologies, Inc.) can be adopted.
 ここで、本実施形態における上記監視箇所は、例えば、バーナx2近傍のボイラ壁x1つまりバーナx2の周囲(ボイラ壁x1のうちバーナx2を囲む壁)、過熱器x3、屈曲部x6、再熱器x4及び節炭器x5のうち、いずれか1つあるいは複数である。特に、燃焼室Rの一部となるバーナx2近傍のボイラ壁x1及び過熱器x3は、ボイラの内部空間つまり燃焼ガス及び燃焼灰の流路において燃焼灰が付着し易い箇所である。 Here, the monitoring points in the present embodiment are, for example, the boiler wall x1 in the vicinity of the burner x2, that is, the periphery of the burner x2 (the wall surrounding the burner x2 in the boiler wall x1), the superheater x3, the bent portion x6, and the reheater. One or more of x4 and the coal saver x5. In particular, the boiler wall x1 and the superheater x3 in the vicinity of the burner x2, which are a part of the combustion chamber R, are places where the combustion ash easily adheres in the internal space of the boiler, that is, in the flow path of the combustion gas and the combustion ash.
 バーナx2が設けられている一対のボイラ壁x1と交差する一対のボイラ壁x1(側壁)には、図2に示すようにバーナx2の状態を監視するための監視窓x7がそれぞれ設けられていることが多い。バーナx2近傍のボイラ壁x1を監視箇所とする場合、赤外線カメラ1は、例えば、監視窓x7越しにバーナx2近傍のボイラ壁x1を撮像する。 As shown in FIG. 2, a monitoring window x7 for monitoring the state of the burner x2 is provided on each of the pair of boiler walls x1 (side wall) intersecting with the pair of boiler walls x1 provided with the burner x2. Often. When the boiler wall x1 in the vicinity of the burner x2 is used as the monitoring point, the infrared camera 1 captures, for example, the boiler wall x1 in the vicinity of the burner x2 through the monitoring window x7.
 すなわち、バーナx2近傍のボイラ壁x1を監視箇所とする場合には、ボイラ壁x1に開口を設ける等の加工を施すことなく、赤外線カメラ1を据え付けることができる。したがって、本実施形態によれば、既設のボイラに対して容易に赤外線カメラ1を据え付けることが可能である。 That is, when the boiler wall x1 in the vicinity of the burner x2 is used as the monitoring point, the infrared camera 1 can be installed without any processing such as providing an opening in the boiler wall x1. Therefore, according to the present embodiment, the infrared camera 1 can be easily installed in the existing boiler.
 上述した赤外線カメラ1は、このような監視箇所を画角とするように設置されている。なお、図1では、1台の赤外線カメラ1を記載したが、赤外線カメラ1の台数は1台に限定されない。すなわち、監視箇所毎に赤外線カメラ1を設けてもよく、あるいは1台の赤外線カメラ1で複数の監視箇所を同時に撮像してもよい。 The above-mentioned infrared camera 1 is installed so that such a monitoring point has an angle of view. Although one infrared camera 1 is shown in FIG. 1, the number of infrared cameras 1 is not limited to one. That is, an infrared camera 1 may be provided for each monitoring location, or a plurality of monitoring locations may be simultaneously imaged by one infrared camera 1.
 制御装置2は、赤外線カメラ1を制御すると共に赤外線カメラ1から入力された監視画像(熱画像)を取り込む。すなわち、この制御装置2は、赤外線カメラ1における監視画像(熱画像)の撮影タイミングを制御する。また、この制御装置2は、自らが指定した撮影タイミングで撮影された監視画像(熱画像)を赤外線カメラ1から取り込んで解析装置3に提供する。このような制御装置2は、予め記憶された制御プログラムに基づいて機能するコンピュータである。すなわち、制御装置2は、CPU(Central Processing Unit)、RAM(Random Access Memory)やROM(Read Only Memory)等の主記憶装置、SSD(Solid State Drive)やHDD(Hard Disc Drive)等の補助記憶装置、等から構成された一種のコンピュータである。 The control device 2 controls the infrared camera 1 and captures a surveillance image (thermal image) input from the infrared camera 1. That is, the control device 2 controls the shooting timing of the surveillance image (thermal image) in the infrared camera 1. Further, the control device 2 captures the surveillance image (thermal image) taken at the shooting timing specified by itself from the infrared camera 1 and provides the analysis device 3. Such a control device 2 is a computer that functions based on a control program stored in advance. That is, the control device 2 is a main storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory) or a ROM (Read Only Memory), and an auxiliary storage such as an SSD (Solid State Drive) or an HDD (Hard Disc Drive). It is a kind of computer composed of devices and the like.
 解析装置3は、監視画像(熱画像)に基づいて監視箇所における燃焼灰の付着状況を評価する。すなわち、この解析装置3は、赤外線カメラ1が出力する監視画像(熱画像)を制御装置2を介して取得し、当該監視画像(熱画像)に所定の画像処理を施すことにより燃焼灰の堆積量tを評価する。この解析装置3は、上述した制御装置2と共に評価装置を構成している。 The analysis device 3 evaluates the adhesion state of combustion ash at the monitoring location based on the monitoring image (thermal image). That is, the analysis device 3 acquires the surveillance image (thermal image) output by the infrared camera 1 via the control device 2, and performs predetermined image processing on the surveillance image (thermal image) to deposit combustion ash. Evaluate the quantity t. The analysis device 3 constitutes an evaluation device together with the control device 2 described above.
 このような解析装置3は、予め記憶された解析プログラムに基づいて監視画像(熱画像)に画像処理を施すと共に、当該画像処理の結果に基づいて燃焼灰の堆積量tを評価するコンピュータである。すなわち、解析装置3は、CPU(Central Processing Unit)、RAM(Random Access Memory)やROM(Read Only Memory)等の主記憶装置、SSD(Solid State Drive)やHDD(Hard Disc Drive)等の補助記憶装置、等から構成された一種のコンピュータである。例えば、解析装置3は、監視画像(熱画像)の輝度値と燃焼灰の堆積量tとの関係を示す堆積量テーブルを予め記憶しており、この堆積量テーブルを用いることにより燃焼灰の堆積量tを評価する。なお、この解析装置3については、後述する動作説明で詳しく説明する。 Such an analysis device 3 is a computer that performs image processing on a monitoring image (thermal image) based on an analysis program stored in advance and evaluates the accumulated amount t of combustion ash based on the result of the image processing. .. That is, the analysis device 3 is a main storage device such as a CPU (Central Processing Unit), a RAM (Random Access Memory) or a ROM (Read Only Memory), and an auxiliary storage such as an SSD (Solid State Drive) or an HDD (Hard Disc Drive). It is a kind of computer composed of devices and the like. For example, the analyzer 3 stores in advance a deposit amount table showing the relationship between the brightness value of the monitoring image (thermal image) and the deposit amount t of the combustion ash, and by using this deposit amount table, the combustion ash is deposited. Evaluate the quantity t. The analysis device 3 will be described in detail in the operation description described later.
 監視パネル4は、ボイラの運転を監視するための監視室に備えられている。この監視パネル4は、ボイラの運転を監視する監視員に対して提供されるものであり、ボイラの運転状態を示す様々な情報(ボイラ運転情報)が掲載される。このような監視パネル4は、ボイラ運転情報の1つとして、解析装置3の評価結果に基づいて燃焼灰に関する報知を行う。すなわち、監視パネル4は、本実施形態における報知装置である。 The monitoring panel 4 is provided in a monitoring room for monitoring the operation of the boiler. This monitoring panel 4 is provided to an observer who monitors the operation of the boiler, and various information (boiler operation information) indicating the operating state of the boiler is posted. Such a monitoring panel 4 notifies about combustion ash based on the evaluation result of the analysis device 3 as one of the boiler operation information. That is, the monitoring panel 4 is a notification device in the present embodiment.
 次に、本実施形態に係る火炉監視装置Aの動作について、図3をも参照して詳しく説明する。 Next, the operation of the furnace monitoring device A according to the present embodiment will be described in detail with reference to FIG.
 この火炉監視装置Aでは、制御装置2が予め設定されたタイムスケジュールに基づいて赤外線カメラ1に監視画像(熱画像)の取得を指示する。すなわち、制御装置2は、制御プログラムに基づいて設定された時刻になると、監視画像(熱画像)の取得指示を赤外線カメラ1に出力する。そして、赤外線カメラ1は、この取得指示に基づいて監視箇所の監視画像(熱画像)を順次取得する(ステップS1)。 In this furnace monitoring device A, the control device 2 instructs the infrared camera 1 to acquire a monitoring image (thermal image) based on a preset time schedule. That is, the control device 2 outputs a monitoring image (thermal image) acquisition instruction to the infrared camera 1 at a time set based on the control program. Then, the infrared camera 1 sequentially acquires the monitoring image (thermal image) of the monitoring location based on this acquisition instruction (step S1).
 そして、このようにして赤外線カメラ1が取得した監視画像(熱画像)は、赤外線カメラ1から制御装置2を経由して解析装置3に入力される。解析装置3は、監視画像(熱画像)に画像処理つまりフィルタ処理を施す(ステップS2)。このフィルタ処理によって、監視画像(熱画像)に含まれるノイズが除去される。 Then, the surveillance image (thermal image) acquired by the infrared camera 1 in this way is input from the infrared camera 1 to the analysis device 3 via the control device 2. The analysis device 3 performs image processing, that is, filter processing, on the monitored image (thermal image) (step S2). This filtering process removes noise contained in the surveillance image (thermal image).
 そして、解析装置3は、監視画像(熱画像)の輝度値を取得し、この輝度値を用いて予め記憶している堆積量テーブルを検索することにより、輝度値に対応する燃焼灰の堆積量tを取得する(ステップS3)。そして、この解析装置3は、このように取得した堆積量tを予め記憶している評価しきい値Trefと比較することにより、堆積量tが制限値を超えたか否かを判断する(ステップS4)。 Then, the analyzer 3 acquires the luminance value of the monitoring image (thermal image), and searches the accumulated amount table stored in advance using this luminance value, so that the accumulated amount of combustion ash corresponding to the luminance value is accumulated. Acquire t (step S3). Then, the analysis device 3 determines whether or not the accumulated amount t exceeds the limit value by comparing the accumulated amount t thus acquired with the evaluation threshold value Tref stored in advance (step S4). ).
 そして、解析装置3は、このステップS4の判断結果が「Yes」となると、監視パネル4に対してアラートを出力する(ステップS5)。このアラートは、監視員に対して燃焼灰の付着に関する注意喚起を促すものであり、音声あるいは/及び映像として報知される。監視員は、このようなアラートによって燃焼灰が制限値を超えて付着している状態であることを知ることができる。 Then, when the determination result in step S4 is "Yes", the analysis device 3 outputs an alert to the monitoring panel 4 (step S5). This alert alerts the observer regarding the adhesion of combustion ash and is notified as audio or / and video. The observer can know from such an alert that the combustion ash is attached beyond the limit value.
 このような本実施形態によれば、赤外線カメラ1の監視画像(熱画像)に基づいて燃焼灰の堆積量tを自動的に評価するので、従来よりも実効的な燃焼灰の付着状態の評価を提供することが可能である。 According to the present embodiment as described above, since the accumulated amount t of the combustion ash is automatically evaluated based on the monitoring image (thermal image) of the infrared camera 1, the evaluation of the adhesion state of the combustion ash is more effective than before. It is possible to provide.
 なお、本開示は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、ボイラの燃焼炉Xを監視対象の火炉としたが、本発明はこれに限定されない。本開示は、ボイラの燃焼炉X以外の様々な火炉に適用することができる。
The present disclosure is not limited to the above embodiment, and for example, the following modifications can be considered.
(1) In the above embodiment, the combustion furnace X of the boiler is set as the furnace to be monitored, but the present invention is not limited to this. The present disclosure can be applied to various furnaces other than the combustion furnace X of the boiler.
(2)バーナx2から燃焼炉X内に放射される炎を除外して燃焼灰を撮像する赤外線カメラ1を用いたが、本開示はこれに限定されない。バーナx2近傍のボイラ壁x1を監視箇所とする場合には、炎の影響を除去する必要があるが、他の監視箇所については炎の影響を考慮する必要がないので、一般的な赤外線カメラを用いてもよい。 (2) Although the infrared camera 1 for capturing the combustion ash by excluding the flame radiated from the burner x2 into the combustion furnace X is used, the present disclosure is not limited to this. When the boiler wall x1 near the burner x2 is used as the monitoring point, it is necessary to remove the influence of the flame, but since it is not necessary to consider the influence of the flame for other monitoring points, a general infrared camera is used. You may use it.
(3)また、上記実施形態では、バーナx2の炎を除外する赤外線カメラ1を用いたが、本開示はこれに限定されない。例えば、バーナx2の炎を除外する機能を解析装置3に設けることにより、撮像装置として一般的な赤外線カメラを用いてもよい。 (3) Further, in the above embodiment, the infrared camera 1 excluding the flame of the burner x2 is used, but the present disclosure is not limited to this. For example, a general infrared camera may be used as the image pickup device by providing the analysis device 3 with a function of excluding the flame of the burner x2.
(4)上記実施形態では、制御装置2と解析装置3とを個別の装置として設けたが、本開示はこれに限定されない。すなわち、制御装置2の機能と解析装置3の機能とを単一の装置に集約して設けてもよい。 (4) In the above embodiment, the control device 2 and the analysis device 3 are provided as separate devices, but the present disclosure is not limited to this. That is, the function of the control device 2 and the function of the analysis device 3 may be integrated into a single device.
 本開示によれば、従来よりも実効的な燃焼灰の付着状態の評価が可能な火炉監視装置を提供することが可能である。 According to the present disclosure, it is possible to provide a furnace monitoring device capable of evaluating the adhesion state of combustion ash more effectively than before.
 X 燃焼炉(火炉) 
 x1 ボイラ壁 
 x2 バーナ 
 x3 過熱器 
 x4 再熱器 
 x5 節炭器 
 x6 屈曲部 
 x7 監視窓
 R 燃焼室
 E 排気口
 1 赤外線カメラ(撮像装置)
 2 制御装置(評価装置)
 3 解析装置(評価装置)
 4 監視パネル(報知装置)
X Combustion furnace (fire furnace)
x1 boiler wall
x2 burner
x3 superheater
x4 reheater
x5 economizer
x6 bend
x7 Monitoring window R Combustion chamber E Exhaust port 1 Infrared camera (imaging device)
2 Control device (evaluation device)
3 Analytical device (evaluation device)
4 Monitoring panel (notification device)

Claims (5)

  1.  火炉内の監視箇所に付着する燃焼灰を撮影する撮像装置と、
     前記撮像装置が出力する監視画像に基づいて前記燃焼灰の付着状況を評価する評価装置と、
     前記評価装置の評価結果に基づいて前記燃焼灰に関する報知を行う報知装置と
     を備える、火炉監視装置。
    An imaging device that captures the combustion ash adhering to the monitoring points in the furnace, and
    An evaluation device that evaluates the adhesion state of the combustion ash based on the monitoring image output by the image pickup device, and an evaluation device.
    A furnace monitoring device including a notification device for notifying the combustion ash based on the evaluation result of the evaluation device.
  2.  前記火炉は、ボイラの燃焼炉である、請求項1に記載の火炉監視装置。 The furnace monitoring device according to claim 1, wherein the furnace is a boiler combustion furnace.
  3.  前記監視箇所は、過熱器である、請求項2に記載の火炉監視装置。 The monitoring location is a superheater, the furnace monitoring device according to claim 2.
  4.  前記監視箇所は、前記火炉に設けられたバーナの周囲である、請求項1~3のいずれか一項に記載の火炉監視装置。 The furnace monitoring device according to any one of claims 1 to 3, wherein the monitoring location is around a burner provided in the furnace.
  5.  前記撮像装置は、炎を除外して前記燃焼灰を撮像する赤外線カメラである、請求項1~4のいずれか一項に記載の火炉監視装置。 The furnace monitoring device according to any one of claims 1 to 4, wherein the image pickup device is an infrared camera that captures the combustion ash by excluding flames.
PCT/JP2021/018592 2020-05-18 2021-05-17 Furnace monitoring device WO2021235388A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021002810.3T DE112021002810T5 (en) 2020-05-18 2021-05-17 FURNACE MONITORING DEVICE
AU2021275268A AU2021275268B2 (en) 2020-05-18 2021-05-17 Furnace monitoring device
US17/997,310 US20230168037A1 (en) 2020-05-18 2021-05-17 Furnace monitoring device
JP2022524458A JPWO2021235388A1 (en) 2020-05-18 2021-05-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020086657 2020-05-18
JP2020-086657 2020-05-18

Publications (1)

Publication Number Publication Date
WO2021235388A1 true WO2021235388A1 (en) 2021-11-25

Family

ID=78708520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018592 WO2021235388A1 (en) 2020-05-18 2021-05-17 Furnace monitoring device

Country Status (5)

Country Link
US (1) US20230168037A1 (en)
JP (1) JPWO2021235388A1 (en)
AU (1) AU2021275268B2 (en)
DE (1) DE112021002810T5 (en)
WO (1) WO2021235388A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629113A (en) * 1985-07-04 1987-01-17 Babcock Hitachi Kk Device for controlling soot blower in furnace
JP2019134316A (en) * 2018-01-31 2019-08-08 三菱日立パワーシステムズ株式会社 Control device, boiler, monitoring image acquisition method of boiler and monitoring image acquisition program of boiler

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985867B2 (en) * 2003-01-06 2007-10-03 カワサキプラントシステムズ株式会社 Clinker amount measuring device for dry ash conveyor
US20070006656A1 (en) * 2005-07-11 2007-01-11 General Electric Company System and method for monitoring deposition within tubes of a heating system
US8714970B2 (en) * 2009-09-21 2014-05-06 Kailash & Stefan Pty Ltd Combustion control system
US20120292523A1 (en) * 2010-01-20 2012-11-22 Enertechnix, Inc. Detection of pluggage in apparatus operating in hot, particle-laden environments
US9509923B2 (en) * 2012-01-10 2016-11-29 General Electric Company Continuous infrared thermography monitoring and life management system for heat recovery steam generators
US10416092B2 (en) * 2013-02-15 2019-09-17 Lam Research Corporation Remote detection of plating on wafer holding apparatus
US10428429B2 (en) * 2014-09-30 2019-10-01 Agency For Science, Technology And Research Formulation and method for inhibiting carbon-based deposits
JP6413157B1 (en) * 2017-04-28 2018-10-31 三菱重工環境・化学エンジニアリング株式会社 Device for preventing clogging of gasification melting system and method for preventing clogging of gasification melting system
JP7386434B2 (en) 2018-11-19 2023-11-27 パナソニックIpマネジメント株式会社 Information processing method and information processing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629113A (en) * 1985-07-04 1987-01-17 Babcock Hitachi Kk Device for controlling soot blower in furnace
JP2019134316A (en) * 2018-01-31 2019-08-08 三菱日立パワーシステムズ株式会社 Control device, boiler, monitoring image acquisition method of boiler and monitoring image acquisition program of boiler

Also Published As

Publication number Publication date
JPWO2021235388A1 (en) 2021-11-25
US20230168037A1 (en) 2023-06-01
AU2021275268B2 (en) 2024-02-01
AU2021275268A1 (en) 2022-12-01
DE112021002810T5 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
JP6596121B1 (en) In-furnace situation determination method and combustion control method
JP6983684B2 (en) Control device, boiler, boiler monitoring image acquisition method and boiler monitoring image acquisition program
WO2011072730A1 (en) Optical flame sensor
CN102495473A (en) Visible light and infrared light splitting system
WO2021235388A1 (en) Furnace monitoring device
CN102252334A (en) Intelligent soot blowing method based on laser ranging principle
JP2013234775A (en) System for controlling number of multi-boiler type through-flow boiler
KR101245548B1 (en) Fouling monitoring system of boiler tube using the difference of luminosity between boiler tube and fouling
RU2355944C1 (en) Steam boiler with mechanical stoker for solid fuel combustion
CN103423763A (en) Method for correcting radiation energy signal static deviation
JP2002533643A (en) Fossil fuel once-through boiler
CN105972600A (en) Low-concentration gas and coal mixed combustion system
JP7180093B2 (en) In-core monitoring device and in-core monitoring method
CN106195996A (en) A kind of ossicated circulation boiler furnace apparatus
US10527278B2 (en) Radiant to convection transition for fired equipment
JP2008215765A (en) Combustion method for external combustion engine
JPS58117917A (en) Combustion controller
CN217131290U (en) High-temperature high-pressure boiler structure for incinerating solid waste
RU2601783C1 (en) Direct-flow steam boiler on solid fuel with inverted combustion chamber for steam-turbine power unit of ultra-supercritical steam parameters
JP7243491B2 (en) In-core monitoring device and in-core monitoring method
US10260740B2 (en) Method and device for producing superheated steam by means of the heat produced in the boiler of an incineration plant
US11586192B2 (en) Operation assistance method for executing recommended action in response to alert
RU48216U1 (en) WATER BOILER
CN109882866A (en) A kind of regenerated resources electricity generating method by burning
Hume Enabling Staged Pressurized Oxy Combustion (SPOC): Improving Flexibility and Performance at Reduced Cost

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524458

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021275268

Country of ref document: AU

Date of ref document: 20210517

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21808956

Country of ref document: EP

Kind code of ref document: A1