WO2021235383A1 - Hot water storage plan creation system, hot water storage plan creation method, and program - Google Patents
Hot water storage plan creation system, hot water storage plan creation method, and program Download PDFInfo
- Publication number
- WO2021235383A1 WO2021235383A1 PCT/JP2021/018580 JP2021018580W WO2021235383A1 WO 2021235383 A1 WO2021235383 A1 WO 2021235383A1 JP 2021018580 W JP2021018580 W JP 2021018580W WO 2021235383 A1 WO2021235383 A1 WO 2021235383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot water
- water storage
- amount
- unit
- demand
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 472
- 238000000034 method Methods 0.000 title claims description 38
- 230000002265 prevention Effects 0.000 claims description 20
- 238000010801 machine learning Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 13
- 230000002354 daily effect Effects 0.000 description 7
- 238000009835 boiling Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 3
- 230000003203 everyday effect Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/10—Control of fluid heaters characterised by the purpose of the control
- F24H15/172—Scheduling based on user demand, e.g. determining starting point of heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/0026—Domestic hot-water supply systems with conventional heating means
- F24D17/0031—Domestic hot-water supply systems with conventional heating means with accumulation of the heated water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/10—Control of fluid heaters characterised by the purpose of the control
- F24H15/144—Measuring or calculating energy consumption
- F24H15/152—Forecasting future energy consumption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/212—Temperature of the water
- F24H15/223—Temperature of the water in the water storage tank
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/246—Water level
- F24H15/248—Water level of water storage tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/18—Water-storage heaters
Definitions
- This disclosure relates to a hot water storage plan creation system, a hot water storage plan creation method, and a program.
- the present application claims priority to Japanese Patent Application No. 2020-87372 filed on May 19, 2020, the contents of which are incorporated herein by reference.
- Patent Document 1 discloses a control method of a water heater that stores a required amount of hot water in a hot water storage tank even when an unexpected hot water is discharged.
- the purpose of this disclosure is to provide a hot water storage plan creation system, a hot water storage plan creation method, and a program that can solve the above-mentioned problems.
- the hot water storage plan creation system of the present disclosure has a forecast data acquisition unit that acquires forecast data of hot water storage demand for each unit time in a predetermined period, and a target hot water storage amount for each unit time in the predetermined period based on the forecast data. It is equipped with a planning department that creates a defined hot water storage plan.
- the hot water storage plan creation method of the present disclosure is a hot water storage plan creation method executed by the hot water storage plan creation system, and is based on a step of acquiring forecast data of hot water storage demand for each unit time in a predetermined period and the forecast data. It has a step of creating a hot water storage plan that defines a target hot water storage amount for each unit time in the predetermined period.
- a step of acquiring forecast data of hot water storage demand for each unit time in a predetermined period and a target hot water storage amount for each unit time in the predetermined period are determined based on the forecast data. To execute the steps to create a hot water storage plan.
- hot water storage plan creation method and program it is possible to automatically set the amount of water heater that satisfies the daily demand forecast amount of hot water supply.
- FIG. 1 is a diagram illustrating a process of creating a hot water storage plan in one embodiment.
- FIG. 2 is a diagram illustrating a process of creating a hot water storage plan in one embodiment.
- FIG. 3 is a diagram illustrating a process of creating a hot water storage plan in one embodiment.
- FIG. 4 is a diagram illustrating a process of creating a hot water storage plan in one embodiment.
- FIG. 1 is a diagram illustrating a process of creating a long-term hot water storage plan in one embodiment.
- FIG. 2 is a diagram illustrating a process of creating a long-term hot water storage plan in one embodiment.
- FIG. 1 is a diagram illustrating how to deal with fluctuations in hot water supply demand in one embodiment.
- FIG. 2 is a diagram illustrating how to deal with fluctuations in hot water supply demand in one embodiment. It is a figure explaining the switching of the planning mode in one embodiment. It is a flowchart which shows an example of the hot water storage plan making process in one Embodiment. It is a figure which shows an example of the hardware composition of the control system in one Embodiment.
- FIG. 1 is a diagram showing an example of a hot water supply system according to an embodiment of the present disclosure.
- the hot water supply system 1 includes a water heater 2, a hot water storage tank 3, a facility 4, and a control system 100.
- the water heater 2 and the hot water storage tank 3 are connected by a pipe 6B, and the hot water storage tank 3 and the facility 4 are connected by a pipe 6C. Water is supplied to the water heater 2 through the pipe 6A.
- the water heater 2 includes, for example, a refrigerant circuit including a compressor, a condenser, an expansion valve, and an evaporator, and heats water to generate hot water by exchanging heat with the condenser.
- the water heater 2 sends the generated hot water to the hot water storage tank 3 through the pipe 6B.
- the hot water storage tank 3 stores hot water.
- the hot water storage tank 3 is provided with a sensor 5 for measuring the amount of hot water stored.
- the sensor 5 is, for example, a water level sensor.
- the control system 100 acquires the measured value of the sensor 5 and controls the water heater 2 so that the amount of hot water stored by the sensor 5 becomes the target value.
- An amount of hot water corresponding to the demand of the facility 4 is supplied from the hot water storage tank 3 to the facility 4 through the pipe 6C.
- the control system 100 predicts the demand amount of hot water required for a predetermined target period, and calculates the target value (hot water storage plan) of the hot water storage amount according to the demand amount prediction. Then, the control system 100 operates the water heater 2 based on the hot water storage plan. Next, the control system 100 will be described.
- FIG. 2 is a functional block diagram showing an example of a control system according to an embodiment of the present disclosure.
- the control system 100 controls the demand amount forecasting device 10 for predicting the demand amount of hot water, the hot water storage plan creating device 20 for creating a hot water storage plan for storing hot water in the hot water storage tank 3 based on the demand amount prediction, and the water supply machine 2.
- the device 30 is provided.
- the demand amount forecasting device 10, the hot water storage plan creating device 20, and the control device 30 are communicably connected to each other.
- the demand amount prediction device 10 includes a data acquisition unit 11, a prediction model creation unit 12, a demand amount prediction unit 13, and a storage unit 14.
- the data acquisition unit 11 acquires various data necessary for forecasting the demand amount.
- the prediction model creation unit 12 learns the relationship between various parameters (explanatory variables) and the amount of hot water used (objective variable), and creates a prediction model for predicting the demand for hot water.
- the explanatory variables of the prediction model are, for example, the demand for hot water such as the outside temperature, the day of the week, the weather, the month, the season, the time, and the time zone of the day (morning, noon, evening) in the environment where the hot water supply system 1 operates. It is a parameter that affects.
- the amount of hot water used is, for example, the amount of hot water supplied from the hot water storage tank 3 to the facility 4. In the present disclosure, it is assumed that the amount of hot water supplied to the facility 4 is known.
- the data acquisition unit 11 acquires the explanatory variables exemplified above and the use of hot water (objective variable) at that time, associates them, and stores them in the storage unit 14 as learning data.
- the prediction model creation unit 12 reads the accumulated learning data and creates a prediction model showing the relationship between the explanatory variables such as the outside air temperature and the day of the week and the amount of hot water used as the objective variable by processing such as multiple regression analysis. ..
- the prediction model creation unit 12 creates a prediction model based on actual operation data (explanatory variables and objective variables described above) regardless of the equipment configuration of the hot water supply system 1. As a result, it can be introduced into any system and a highly accurate demand forecast model can be created. Since the demand of the facility 4 may change due to the convenience of the facility, the prediction model creation unit 12 may periodically recreate the prediction model.
- the demand amount prediction unit 13 predicts the demand amount of hot water for each unit time in the prediction target period based on the prediction model created by the prediction model creation unit 12.
- the demand amount prediction unit 13 outputs the demand amount prediction value for each unit time as prediction data.
- the forecast data includes data expressing the demand amount of hot water for each unit time as the amount of hot water stored in the hot water storage tank 3. For example, assuming that the unit time is one hour, the prediction data includes information such as "7:00, 1%", “8:00, 2%", and so on. Here, "7:00, 1%” indicates that the demand for hot water corresponding to 1% of the total amount of hot water stored in the hot water storage tank 3 is expected from 7:00 to 8:00.
- the storage unit 14 stores the data acquired by the data acquisition unit 11 and the prediction model created by the prediction model creation unit 12.
- the hot water storage plan creating device 20 includes a prediction data acquisition unit 21, an actual data acquisition unit 22, a setting reception unit 23, a plan creation unit 24, and a storage unit 25.
- the forecast data acquisition unit 21 acquires the forecast data output by the demand amount forecasting device 10, and writes the acquired forecast data in the storage unit 25.
- the actual data acquisition unit 22 acquires actual data indicating the actual usage of hot water in the hot water storage tank 3, and writes the acquired actual data in the storage unit 25.
- the actual data is, for example, the amount of hot water stored in the hot water storage tank 3 for each unit time.
- the actual data includes information such as "7:00, 80%", "8:00, 80%", and so on.
- 7:00, 80% and “8:00, 80%” indicate that the amount of hot water stored in the hot water storage tank 3 was 80% at 7:00 and 8:00. There is. Further, it is shown that the amount of hot water supplied from the hot water storage tank 3 to the facility 4 between 7:00 and 8:00 was equal to the amount of hot water supplied by the water heater 2 to the hot water storage tank 3.
- the actual data is used to determine whether to create a hot water storage plan that prioritizes efficiency or a hot water storage plan that prioritizes prevention of running out of hot water when creating a hot water storage plan.
- the setting reception unit 23 receives the settings necessary for the process of creating the hot water storage plan.
- the plan creation unit 24 creates a hot water storage plan based on the forecast data.
- the hot water storage plan is, for example, the amount of hot water stored in the hot water storage tank 3 for each unit time.
- the hot water storage plan includes information such as "6:00, 80%", “7:00, 80%", “8:00, 90%”, and the like.
- "7:00, 80%” means that the amount of hot water stored by the sensor 5 at 7:00 is compared with 80%, and if the amount of hot water stored is less than 80%, it becomes 80%. Indicates to drive.
- the control device 30 starts the operation of the water heater 2 so that the amount of hot water stored becomes 80%.
- a hot water storage plan is created so that 80% can be achieved at 7:00. For example, if it is necessary to boil water from 1:00 in order to achieve 80% of the hot water storage amount at 7:00, the water heater 2 creates a hot water storage plan so that the water heater can start boiling from 1:00.
- the storage unit 25 stores various information such as prediction data, actual data, and various settings.
- the control device 30 acquires the hot water storage amount of the hot water storage tank 3 measured by the sensor 5, and is based on the hot water storage amount measured by the sensor 5 and the target hot water storage amount set in the hot water storage plan created by the hot water storage plan creation device 20. Controls the operation of the water heater 2. For example, if the amount of hot water stored at 7:00 in the hot water storage plan is 80% and the amount of hot water stored by the sensor 5 at 7:00 is 70%, the amount of hot water stored in the hot water storage tank 3 of the control device 30 is 80%. The water heater 2 is operated as described above.
- FIGS. 1 to 4 are FIGS. 1 to 4 illustrating a process of creating a hot water storage plan in each embodiment.
- the planning unit 24 prepares the following variables. -Demand (i): Demand forecast amount in the frame i included in the forecast data. Units%. -Necessary (i): The amount of hot water that should be secured at the start time of each frame. Units%. ⁇ C1: The amount of hot water that can be boiled in one frame. The unit is% / frame. ⁇ C2: The amount of hot water to be stored at the end of the planned period. Units%.
- -Favord (i): A flag indicating whether or not the demand forecast amount of the frame i is C1 or less. If the demand forecast amount is C1 or less (even if boiling water is started from the start time of the frame, the demand forecast amount can be covered by the end time of the frame), it is "1", and if it is larger than C1, it is "0".
- -Target (i): Target hot water storage amount of coma i. Units%. The hot water storage plan is composed of Target (i) for each unit time in the target period.
- -Lowlim The lower limit of the amount of hot water stored in the hot water storage tank 3. Always try not to fall below this value. Units%. For example, the values of C1, C2, and Lowlim are set by the user, the setting receiving unit 23 accepts the settings for these variables, and each value is registered in the storage unit 25.
- the plan creation unit 24 creates a hot water storage plan by the following processes [1] to [7]. [1] First, the plan creation unit 24 acquires the forecast data output by the demand amount forecasting device 10. The circles in FIGS. 3A to 3D indicate Demand (i) in each frame i (each time). [2] Next, the plan creation unit 24 sets Lowlim as the initial value of the Target (i) of each frame i. The asterisk in FIG. 3B indicates the initial value of Target (i) in each frame i.
- the plan creation unit 24 calculates the amount of hot water to be secured at the start time of each frame i.
- the sensitivity (24) of the final frame is calculated by the following equation (1).
- Demand (24) Demand (24) + C2 ... (1)
- Demand (i) Demand (i) + Demand (i + 1) ... (2) That is, all the future demand forecast amounts are added to the demand forecast amount of the frame i.
- the diamond-shaped mark in FIG. 3B indicates the Necessary (i) in each frame i.
- the asterisks from 9:00 to 16:00 in FIG. 3C indicate Target (i) after this processing.
- the planning unit 24 determines the Demand (i ⁇ ) of the frame i ⁇ for the first frame (referred to as the frame i ⁇ ) in which the Friend (i) changes from “1” to “0”.
- the time (number of frames) K required to boil the amount of hot water indicated by is calculated, and the target amount of hot water stored up to the frame i calculated from the frame i ⁇ is set as the Necessary (i ⁇ ).
- the plan creation unit 24 calculates K by the following equation (3).
- K ceil ⁇ (Necessary (i ⁇ ) -Lowlim) / C1 ⁇ + 1 ... (3)
- ceil means rounding up an integer.
- the asterisks from 1:00 to 8:00 in FIG. 3C indicate Target (i) after this processing.
- the planning unit 24 sets the value of the Target (i) to 100% for the Target (i) exceeding 100%, and rounds up the value of the Target (i) including the decimal to an integer. ..
- Figure 3D shows the hot water storage plan.
- the black star in FIG. 3D is the hot water storage plan.
- the plan creation unit 24 automatically calculates the hot water storage plan including the target hot water storage amount for each unit time.
- the plan creation unit 24 outputs the created hot water storage plan to the control device 30.
- the above process is an example.
- a value (larger value) safer than Lowlim may be set as the initial value of Target (i).
- a value that can avoid running out of hot water can be set in C1.
- the setting of C1 may be performed by the user, or the planning unit 24 may acquire the measured value of the sensor 5 and set it by the above calculation.
- the ability of the water heater 2 to boil water includes the system configuration and operating conditions such as piping diameter, piping length, piping height, type (open type, closed type) and number of hot water storage tanks 3, outside air temperature, and set temperature. It is preferable to set it for each hot water supply system 1 because it differs depending on the hot water supply system 1. Therefore, for example, the plan creation unit 24 creates a learning model for calculating the amount of water heater per unit time by machine learning or the like, calculates the amount of water heater by this learning model, and sets it to C1 based on the calculated amount of water heater. You may.
- the learning model outputs the amount of hot water that can be boiled per unit time by inputting the outside air temperature, the temperature of the supplied water, and the set temperature of the hot water.
- the planning unit 24 is a learning model based on the amount of hot water stored by the sensor 5 during the time when the water heater 2 is operating and there is no outflow of hot water from the hot water storage tank 3, and the outside air temperature and water temperature during the same time.
- the plan creation unit 24 inputs the estimated values of the outside air temperature and the water temperature for each hour in the target period of the hot water storage plan into the learning model, calculates the C1 for each hour, and stores the hot water using the C1 for each hour. You may make a plan.
- FIGS. 4A and 4B are FIGS. 1 and 2, respectively, illustrating the process of creating a long-term hot water storage plan according to the embodiment of the present disclosure.
- the planning unit 24 creates a longer-term hot water storage plan in order to reduce the risk of running out of hot water.
- the demand amount forecasting device 10 creates forecast data including a demand forecasting amount for each time up to 48 hours ahead.
- the forecast data acquisition unit 21 acquires forecast data for 48 hours, and the plan creation unit 24 creates a hot water storage plan for 48 hours.
- FIG. 4B shows a hot water storage plan created by the plan creation unit 24 by further performing the process of [7] above.
- the plan creation unit 24 creates a hot water storage plan by accumulating the amount of hot water required in the future while considering the time required to boil that amount of hot water. Therefore, it is possible to reduce the risk of running out of hot water by creating a hot water storage plan based on a long-term demand forecast.
- creating a hot water storage plan based on a long-term (for example, N> 1) demand forecast is created based on a hot water shortage prevention mode and a short-term (for example, N ⁇ 1) demand forecast. This is called the efficiency priority mode, and these are collectively called the planning mode.
- the planning unit 24 may switch to either the hot water shortage prevention mode or the efficiency priority mode to create a hot water storage plan based on the user's settings or the recent tendency of the amount of hot water used. can. For example, if efficiency is prioritized over the risk of running out of hot water (priority is given to reducing the energy consumed for boiling water as much as possible), the user sets the efficiency priority mode.
- the period for creating the hot water storage plan in the efficiency priority mode is not limited to 24 hours, but may be 12 hours or 6 hours. By setting the efficiency priority mode and creating a hot water storage plan, the operating cost of the hot water supply system 1 can be suppressed. Further, the period for creating the hot water storage plan in the hot water shortage prevention mode is not limited to 48 hours, but may be 72 hours or one week.
- a hot water storage plan up to N days ahead may be created based on the demand forecast up to N days ahead every day.
- FIGS. 5A and 5B are FIGS. 1 and 2, respectively, illustrating how to deal with fluctuations in hot water supply demand in one embodiment.
- FIG. 5A shows a hot water storage plan created by the plan creation unit 24 based on the corrected forecast data. It can be seen that the hot water storage target value before 11:00 is increased as compared with FIG. 3D. This makes it possible to create a hot water storage plan that responds to increasing demand.
- FIG. 6 is a diagram illustrating switching of a planning mode in one embodiment.
- the actual data of one day shown in FIG. 6 is shown.
- the actual data P1 is the actual data when the decrease in the hot water storage amount is small with respect to the hot water storage plan
- the actual data P2 is the actual data when the decrease in the hot water storage amount is large with respect to the hot water storage plan.
- the planning unit 24 refers to the latest actual data for one week, and if the transition of the amount of hot water stored for one week tends to be as shown by the actual data P1, the error of the predicted data is within the permissible range. And select the efficiency priority mode to create a hot water storage plan.
- the plan creation unit 24 determines that the error of the predicted data is large, selects the hot water shortage prevention mode, and plans the hot water storage. To create. More specifically, the planning unit 24 acquires actual data for a predetermined period in the past (for example, the same day one week before, one week before), and for example, the difference between the remaining amount of hot water stored and Lowlim is predetermined. If the number of frames within the range is more than a predetermined number, the hot water shortage prevention mode is selected, and if the number of such frames is less than a predetermined number, the efficiency priority mode is selected. By selecting the planning mode for the next day or later according to the remaining amount of hot water stored on a daily basis in this way, it is possible to automatically create a lean hot water storage plan in line with the demand forecast while avoiding running out of hot water.
- the planning unit 24 does not select either the efficiency priority mode or the hot water shortage prevention mode, but may set the length of the target period in multiple stages according to the difference between the remaining amount of hot water stored and Lowlim. good. For example, the planning unit 24 calculates a representative value (for example, average value, mode value, minimum value, maximum value, median value, etc.) of the difference between the remaining amount of hot water stored and Lowlim from the actual data of the past predetermined period. .. Then, the planning unit 24 sets the length of the target period to 48 hours if the representative value is 10% or less, and sets the length of the target period to 36 hours if the representative value is 10% to 20%, and 20% to 20%.
- a representative value for example, average value, mode value, minimum value, maximum value, median value, etc.
- the length of the target period is set to 30 hours, if it is 30% or more, it is set to 24 hours, and the target period is set according to the difference between the remaining amount of hot water stored and Lowlim.
- the difference between the remaining amount of hot water stored and Lowlim is considered as the magnitude of the error of the prediction model, and the target period is set according to the magnitude of the error of the prediction model.
- the plan creation unit 24 may revise the hot water storage plan instead of the length of the target period. For example, if the plan creation unit 24 has a predetermined number or more of frames in which the difference between the remaining amount of hot water and Lowlim is within a predetermined range based on the actual data of the past predetermined period, each frame of the hot water storage plan after creation is created. (Or, each frame in the time zone when hot water consumption tends to be high) Target hot water storage amount: Create a hot water storage plan by adding a predetermined value to Target (i) (for example, + 5%), and set the remaining hot water storage amount and Lowlim. If the number of frames whose difference is within a predetermined range is less than a predetermined number, the hot water storage plan created by the processes of [1] to [7] may be output to the control device 30.
- the plan creation unit 24 for example, with respect to the hot water storage plan created in the efficiency priority mode, the remaining amount of hot water and the Lowlim based on the actual data of the past predetermined period. For frames whose difference is within a predetermined range, add an arbitrary correction amount to Target (i) of that frame (for example, + 5%), and for frames where the difference between the remaining amount of hot water and Lowlim is larger than the predetermined value. Subtracts an arbitrary correction amount (for example, -3%) from the Target (i) of the frame, learns the correction amount added or subtracted for each frame, and creates a hot water storage plan that is just right for the demand. It may be calculated.
- the difference between the remaining amount of hot water and Lowlim and the magnitude of the appropriate correction amount may be learned together with the parameters such as the outside air temperature, the time, and the weather.
- the target amount of hot water stored from the next day onward according to the remaining amount of hot water stored on a daily basis
- by correcting the target hot water storage amount based on the daily results for example, it is possible to create a hot water storage plan close to the actual demand even while the forecast model cannot cope with the change in the demand in the facility 4. ..
- FIG. 7 is a flowchart showing an example of the hot water storage plan creation process in one embodiment.
- the user makes various settings in the hot water storage plan creating device 20. For example, the user sets the variables C1, C2, and Lowlim used to create the hot water storage plan, automatically sets or fixes the planning mode, or sets the target period according to the difference between the remaining hot water storage amount and Lowlim. Set whether to set.
- the user sets either the efficiency priority mode or the hot water shortage prevention mode.
- the user sets the target period in each of the efficiency priority mode and the hot water shortage prevention mode.
- the user sets the target period according to the difference.
- the setting receiving unit 23 accepts these settings (step S1) and writes them in the storage unit 25.
- the plan creation unit 24 determines whether or not the target period is variable (step S2).
- the planning unit 24 determines that the target period is variable when automatic is set in the planning mode, or when it is selected to set the target period according to the difference between the remaining amount of hot water stored and Lowlim, and the planning mode is determined.
- the efficiency priority mode or the hot water shortage prevention mode is set in, it is determined that the target period is not variable.
- the actual data acquisition unit 22 acquires the actual data (step S3).
- the planning unit 24 determines the risk of running out of hot water based on the actual data, selects the hot water running out prevention mode when the hot water running out risk is above a predetermined standard, and when the hot water running out risk is less than the standard. Selects efficiency priority mode.
- the planning unit 24 sets the target period corresponding to the selected planning mode (step S4).
- the plan creation unit 24 sets a target period according to the difference between the remaining amount of hot water stored and Lowlim based on the actual data (step S4).
- the hot water storage plan creating device 20 designates a target period to the demand amount forecasting device 10 and instructs the demand amount forecasting device 10 to create forecast data.
- the demand amount prediction unit 13 inputs the value (prediction value) of the explanatory variable in the designated target period into the prediction model, and includes the demand prediction amount of hot water for each unit time in the target period. Prediction data is created (step S5).
- the demand amount forecasting unit 13 outputs the forecast data to the hot water storage plan creating device 20.
- the prediction data acquisition unit 21 acquires the prediction data (step S6).
- step S7 the user determines whether or not the demand in the target period is expected to change, and if the change is expected (step S7; Yes), the frame to be changed and the correction amount are input to the hot water storage plan creating device 20.
- the setting reception unit 23 acquires a correction amount for changing the demand, and corrects the forecast data as described with reference to FIG. 5A (step S8).
- the planning unit 24 performs the above processes [1] to [7] and is set by the above process. Create a hot water storage plan for the target period (step S9).
- the target hot water storage amount (command value to the water heater 2) for each unit time in the target period can be automatically calculated based on the demand forecast of hot water. Further, in order to calculate the target hot water storage amount based on the predicted data calculated based on the operation data of the hot water supply system 1, the equipment configuration of the hot water supply system 1 (type and number of hot water storage tanks 3, capacity and number of water heater 2 and piping). It can be applied to any system regardless of the diameter (diameter and pipe length) and operating conditions.
- hot water storage plan that takes into account the time required to boil water, so if the actual demand is less than the forecast data, the hot water will run out. It can be prevented in advance.
- a hot water storage plan hot water shortage prevention mode
- a hot water storage plan that prioritizes efficiency with less waste efficiency priority mode
- a hot water storage plan that achieves both efficiency and prevention of running out of hot water may be created by designating an intermediate length between the hot water running out prevention mode and the efficiency priority mode in the target period.
- the efficiency priority mode and the hot water shortage prevention mode can be automatically selected based on the actual data, the user does not need to think about which planning mode to adopt. Furthermore, by flexibly changing the target period according to the remaining amount of hot water stored in the actual data, it is possible to create a hot water storage plan that compensates for the error of the prediction model. In addition, if the actual demand is expected to deviate from the forecast data due to a sudden event that is difficult to predict, it is possible to create a hot water storage plan that responds to fluctuations in demand by manually correcting the forecast data. ..
- FIG. 8 is a diagram showing an example of the hardware configuration of the control system in one embodiment.
- the computer 900 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, an input / output interface 904, and a communication interface 905.
- the demand amount forecasting device 10, the hot water storage plan creating device 20, and the control device 30 described above are mounted on the computer 900.
- Each of the above-mentioned functions is stored in the auxiliary storage device 903 in the form of a program.
- the CPU 901 reads the program from the auxiliary storage device 903, expands it to the main storage device 902, and executes the above processing according to the program. Further, the CPU 901 secures a storage area in the main storage device 902 according to the program. Further, the CPU 901 secures a storage area for storing the data being processed in the auxiliary storage device 903 according to the program.
- a program for realizing all or part of the functions of the demand amount forecasting device 10, the hot water storage plan creating device 20, and the control device 30 is recorded on a computer-readable recording medium, and the program recorded on the recording medium. May be processed by each functional unit by loading and executing the above in the computer system.
- the term "computer system” as used herein includes hardware such as an OS and peripheral devices. Further, the “computer system” includes the homepage providing environment (or display environment) if the WWW system is used. Further, the "computer-readable recording medium” refers to a portable medium such as a CD, DVD, or USB, or a storage device such as a hard disk built in a computer system.
- the distributed computer 900 may expand the program to the main storage device 902 and execute the above processing. Further, the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. ..
- the hot water storage plan creation system, the hot water storage plan creation method, and the program described in each embodiment are grasped as follows, for example.
- the hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the first aspect has a forecast data acquisition unit 21 that acquires forecast data of hot water storage demand for each unit time in a predetermined period, and the forecast.
- a plan creation unit 24 that creates a hot water storage plan that defines a target hot water storage amount for each unit time in the predetermined period based on the data is provided. As a result, it is possible to automatically set a lean water heater amount that satisfies the daily demand forecast amount of hot water supply.
- the hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the second aspect is the hot water storage plan creation system of (1), and the setting reception unit 23 that accepts the setting of the predetermined period. Further prepare.
- This makes it possible to create a hot water storage plan for any target period. For example, if efficiency is prioritized, a short period is set for a predetermined period, and if you want to create a more conservative hot water storage plan that anticipates future fluctuations in demand, you can set a long period for a predetermined period.
- the desired hot water storage plan can be created.
- the hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the third aspect is the hot water storage plan creation system of (2), and the setting reception unit 23 changes the prediction data. Accept. This makes it possible to create a hot water storage plan that responds to sudden changes in demand.
- the hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the fourth aspect is the hot water storage plan creation system of (1) to (3), and is the remaining amount of hot water stored in the hot water storage tank 3. Further, the actual data acquisition unit 22 for acquiring the actual data is further provided, and the plan creation unit 24 sets the predetermined period based on the actual data.
- the hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the fifth aspect is the hot water storage plan creation system of (4), and the plan creation unit 24 is shown by the actual data.
- the first period for example, 48 hours
- the remaining amount of hot water is equal to or more than the threshold value
- efficiency is prioritized.
- a second period for example, 24 hours
- the hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the sixth aspect is the hot water storage plan creation system of (4), and the plan creation unit 24 is shown by the actual data.
- the planning unit 24 takes 48 hours in the target period if the representative value of the difference is 10% or less, 36 hours if it is 10% to 20%, and 30 hours if it is 20% to 30%. If it is% or more, set 24 hours)
- the hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the seventh aspect is the hot water storage plan creation system of (1) to (6), and the plan creation unit 24 is the first.
- the hot water storage demand (Demand (i)) in the unit time of 1 exceeds the amount of hot water C1 that can be created per unit time, the hot water storage demand in the first unit time and the first unit time in the predetermined period
- the total of the hot water storage demand for each unit time in the future is set as the target hot water storage amount (Target (i)) in the first unit time (process of the above [5]).
- the hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the eighth aspect is the hot water storage plan creation system of (7), and the plan creation unit 24 is the first unit.
- the hot water storage demand for the time exceeds the amount of hot water C1 that can be created per unit time
- the number of the unit hours corresponding to the time required to create the hot water for the hot water storage demand is calculated, and the number of the unit hours is calculated before the first unit time.
- the target hot water storage amount for the first unit time is set for the target hot water storage amount for each of the unit times for the number of minutes (process of [6] above). According to the seventh to eighth aspects, even if the demand amount exceeds the hot water preparation capacity per unit time, it is possible to create a hot water storage plan that can produce the hot water amount that meets the demand by the required time.
- the hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the ninth aspect is the hot water storage plan creation system of (8), and the plan creation unit 24 per unit time.
- the amount of hot water C1 that can be created is calculated by machine learning based on the amount of hot water actually created per unit time. This makes it possible to improve the accuracy of the hot water storage plan.
- the hot water storage plan creation system (control system 100, hot water storage plan creation device 20 and demand amount prediction device 10) according to the tenth aspect is the hot water storage plan creation system (control system 100, hot water storage) of (1) to (9).
- the planning model 20 and the demand forecasting device 10 the forecasting model creating unit 12 that creates a forecasting model that outputs the demand for hot water under the conditions when a condition that affects the demand for hot water is input, and the above.
- the demand amount prediction unit 13 for creating the prediction data based on the condition and the prediction model in a predetermined period is further provided.
- the hot water storage plan creation method is a hot water storage plan creation method executed by the hot water storage plan creation system (control system 100, hot water storage plan creation device 20), and hot water is stored every unit time in a predetermined period. It has a step of acquiring demand forecast data and a step of creating a hot water storage plan that defines a target hot water storage amount for each unit time in the predetermined period based on the forecast data.
- the program according to the twelfth aspect has a step of acquiring forecast data of hot water storage demand for each unit time in a predetermined period on a computer 900, and based on the forecast data, for each unit time in the predetermined period. To execute the step of creating a hot water storage plan that defines the target hot water storage amount.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
This hot water storage plan creation system comprises a prediction data acquisition unit which acquires prediction data of hot water storage demand for each unit time in a prescribed future period of time, and a plan creation unit which creates a hot water storage plan setting target hot water amount for each unit of time during the prescribed period of time on the basis of the prediction data.
Description
本開示は、貯湯計画作成システム、貯湯計画作成方法及びプログラムに関する。本願は、2020年5月19日に出願された特願2020-87372号に対して優先権を主張し、その内容をここに援用する。
This disclosure relates to a hot water storage plan creation system, a hot water storage plan creation method, and a program. The present application claims priority to Japanese Patent Application No. 2020-87372 filed on May 19, 2020, the contents of which are incorporated herein by reference.
飲食店の厨房や浴場施設へ温水を供給するために用いられる給湯システムでは、給湯機が水道水を加熱して、加熱後の温水を貯湯タンクに蓄える。そして、貯湯タンクに蓄えた温水を厨房や浴場施設へ供給する。このような給湯システムでは、日々、需要予測に基づく湯沸かし量が設定され、運用されることが多い。しかし、需要予測には誤差が含まれるため、突発的な需要の増加などにより、湯の不足が生じる可能性がある。特許文献1には、予想外の出湯があった場合でも、給湯使用時刻までに必要な量の湯水を貯湯タンクに貯湯する給湯機の制御方法が開示されている。
In the hot water supply system used to supply hot water to the kitchens and bath facilities of restaurants, the water heater heats tap water and stores the heated hot water in the hot water storage tank. Then, the hot water stored in the hot water storage tank is supplied to the kitchen and bath facilities. In such a hot water supply system, the amount of water heater is often set and operated based on the demand forecast every day. However, since the demand forecast contains errors, there is a possibility that there will be a shortage of hot water due to a sudden increase in demand. Patent Document 1 discloses a control method of a water heater that stores a required amount of hot water in a hot water storage tank even when an unexpected hot water is discharged.
日々の需要予測を満たしつつ、湯切れを回避することができる湯沸かし量の設定を自動的に行う方法が求められている。
There is a need for a method that automatically sets the amount of water heater that can avoid running out of hot water while satisfying daily demand forecasts.
本開示は、上述の課題を解決することのできる貯湯計画作成システム、貯湯計画作成方法及びプログラムを提供することを目的としている。
The purpose of this disclosure is to provide a hot water storage plan creation system, a hot water storage plan creation method, and a program that can solve the above-mentioned problems.
本開示の貯湯計画作成システムは、所定期間における単位時間毎の貯湯需要の予測データを取得する予測データ取得部と、前記予測データに基づいて、前記所定期間における前記単位時間毎の目標貯湯量を定めた貯湯計画を作成する計画作成部と、を備える。
The hot water storage plan creation system of the present disclosure has a forecast data acquisition unit that acquires forecast data of hot water storage demand for each unit time in a predetermined period, and a target hot water storage amount for each unit time in the predetermined period based on the forecast data. It is equipped with a planning department that creates a defined hot water storage plan.
また、本開示の貯湯計画作成方法は、貯湯計画作成システムによって実行される貯湯計画作成方法であって、所定期間における単位時間毎の貯湯需要の予測データを取得するステップと、前記予測データに基づいて、前記所定期間における前記単位時間毎の目標貯湯量を定めた貯湯計画を作成するステップと、を有する。
Further, the hot water storage plan creation method of the present disclosure is a hot water storage plan creation method executed by the hot water storage plan creation system, and is based on a step of acquiring forecast data of hot water storage demand for each unit time in a predetermined period and the forecast data. It has a step of creating a hot water storage plan that defines a target hot water storage amount for each unit time in the predetermined period.
また、本開示のプログラムは、コンピュータに、所定期間における単位時間毎の貯湯需要の予測データを取得するステップと、前記予測データに基づいて、前記所定期間における前記単位時間毎の目標貯湯量を定めた貯湯計画を作成するステップと、を実行させる。
Further, in the program of the present disclosure, a step of acquiring forecast data of hot water storage demand for each unit time in a predetermined period and a target hot water storage amount for each unit time in the predetermined period are determined based on the forecast data. To execute the steps to create a hot water storage plan.
上述の貯湯計画作成システム、貯湯計画作成方法及びプログラムによれば、日々の給湯の需要予測量を満たす湯沸かし量の設定を自動的に行うことができる。
According to the above-mentioned hot water storage plan creation system, hot water storage plan creation method and program, it is possible to automatically set the amount of water heater that satisfies the daily demand forecast amount of hot water supply.
<実施形態>
以下、本開示の一実施形態による給湯システムを図1~図8を参照して説明する。
(システム構成)
図1は、本開示の一実施形態における給湯システムの一例を示す図である。
図示するように給湯システム1は、給湯機2と、貯湯タンク3と、施設4と、制御システム100と、を備える。給湯機2と貯湯タンク3とは配管6Bで接続され、貯湯タンク3と施設4とは配管6Cで接続されている。給湯機2には、配管6Aを通じて水が供給される。給湯機2は、例えば、圧縮機、凝縮器、膨張弁、蒸発器を含む冷媒回路を備えており、凝縮器で熱交換することにより、水を加熱して湯水を生成する。給湯機2は、生成した湯水を、配管6Bを通じて貯湯タンク3へ送る。貯湯タンク3は湯水を蓄える。貯湯タンク3には、貯湯量を計測するセンサ5が設けられている。センサ5は、例えば、水位センサである。制御システム100は、センサ5の計測値を取得し、センサ5が計測する貯湯量が目標値となるように給湯機2を制御する。施設4の需要に応じた量の湯水が貯湯タンク3から施設4へ、配管6Cを通じて供給される。 <Embodiment>
Hereinafter, the hot water supply system according to the embodiment of the present disclosure will be described with reference to FIGS. 1 to 8.
(System configuration)
FIG. 1 is a diagram showing an example of a hot water supply system according to an embodiment of the present disclosure.
As shown in the figure, the hotwater supply system 1 includes a water heater 2, a hot water storage tank 3, a facility 4, and a control system 100. The water heater 2 and the hot water storage tank 3 are connected by a pipe 6B, and the hot water storage tank 3 and the facility 4 are connected by a pipe 6C. Water is supplied to the water heater 2 through the pipe 6A. The water heater 2 includes, for example, a refrigerant circuit including a compressor, a condenser, an expansion valve, and an evaporator, and heats water to generate hot water by exchanging heat with the condenser. The water heater 2 sends the generated hot water to the hot water storage tank 3 through the pipe 6B. The hot water storage tank 3 stores hot water. The hot water storage tank 3 is provided with a sensor 5 for measuring the amount of hot water stored. The sensor 5 is, for example, a water level sensor. The control system 100 acquires the measured value of the sensor 5 and controls the water heater 2 so that the amount of hot water stored by the sensor 5 becomes the target value. An amount of hot water corresponding to the demand of the facility 4 is supplied from the hot water storage tank 3 to the facility 4 through the pipe 6C.
以下、本開示の一実施形態による給湯システムを図1~図8を参照して説明する。
(システム構成)
図1は、本開示の一実施形態における給湯システムの一例を示す図である。
図示するように給湯システム1は、給湯機2と、貯湯タンク3と、施設4と、制御システム100と、を備える。給湯機2と貯湯タンク3とは配管6Bで接続され、貯湯タンク3と施設4とは配管6Cで接続されている。給湯機2には、配管6Aを通じて水が供給される。給湯機2は、例えば、圧縮機、凝縮器、膨張弁、蒸発器を含む冷媒回路を備えており、凝縮器で熱交換することにより、水を加熱して湯水を生成する。給湯機2は、生成した湯水を、配管6Bを通じて貯湯タンク3へ送る。貯湯タンク3は湯水を蓄える。貯湯タンク3には、貯湯量を計測するセンサ5が設けられている。センサ5は、例えば、水位センサである。制御システム100は、センサ5の計測値を取得し、センサ5が計測する貯湯量が目標値となるように給湯機2を制御する。施設4の需要に応じた量の湯水が貯湯タンク3から施設4へ、配管6Cを通じて供給される。 <Embodiment>
Hereinafter, the hot water supply system according to the embodiment of the present disclosure will be described with reference to FIGS. 1 to 8.
(System configuration)
FIG. 1 is a diagram showing an example of a hot water supply system according to an embodiment of the present disclosure.
As shown in the figure, the hot
制御システム100は、所定の対象期間に必要となる湯水の需要量予測を行い、その需要量予測に応じた貯湯量の目標値(貯湯計画)を算出する。そして、制御システム100は、貯湯計画に基づいて、給湯機2を運転する。次に制御システム100について説明する。
The control system 100 predicts the demand amount of hot water required for a predetermined target period, and calculates the target value (hot water storage plan) of the hot water storage amount according to the demand amount prediction. Then, the control system 100 operates the water heater 2 based on the hot water storage plan. Next, the control system 100 will be described.
(制御システムの機能)
図2は、本開示の一実施形態における制御システムの一例を示す機能ブロック図である。制御システム100は、湯水の需要量を予測する需要量予測装置10と、需要量予測に基づいて貯湯タンク3へ貯湯する湯水の貯湯計画を作成する貯湯計画作成装置20と、給湯機2の制御装置30と、を備えている。需要量予測装置10と貯湯計画作成装置20と制御装置30とは通信可能に接続されている。 (Control system function)
FIG. 2 is a functional block diagram showing an example of a control system according to an embodiment of the present disclosure. Thecontrol system 100 controls the demand amount forecasting device 10 for predicting the demand amount of hot water, the hot water storage plan creating device 20 for creating a hot water storage plan for storing hot water in the hot water storage tank 3 based on the demand amount prediction, and the water supply machine 2. The device 30 is provided. The demand amount forecasting device 10, the hot water storage plan creating device 20, and the control device 30 are communicably connected to each other.
図2は、本開示の一実施形態における制御システムの一例を示す機能ブロック図である。制御システム100は、湯水の需要量を予測する需要量予測装置10と、需要量予測に基づいて貯湯タンク3へ貯湯する湯水の貯湯計画を作成する貯湯計画作成装置20と、給湯機2の制御装置30と、を備えている。需要量予測装置10と貯湯計画作成装置20と制御装置30とは通信可能に接続されている。 (Control system function)
FIG. 2 is a functional block diagram showing an example of a control system according to an embodiment of the present disclosure. The
需要量予測装置10は、データ取得部11と、予測モデル作成部12と、需要量予測部13と、記憶部14とを備える。
データ取得部11は、需要量予測に必要な種々のデータを取得する。
予測モデル作成部12は、種々のパラメータ(説明変数)と湯水の使用量(目的変数)との関係を学習し、湯水の需要量を予測する予測モデルを作成する。予測モデルの説明変数は、例えば、給湯システム1が稼働する環境における、外気温、曜日、天気、月や季節、時間、1日のうちの時間帯(朝、昼、晩)など、湯水の需要に影響があるパラメータである。湯水の使用量とは、例えば、貯湯タンク3から施設4へ供給された湯水の量である。本開示では、施設4へ供給された湯水の量が既知であるとする。データ取得部11は、上記で例示した説明変数と、そのときの湯水の使用(目的変数)を取得し、これらを対応付けて学習データとして記憶部14に蓄積する。予測モデル作成部12は、蓄積された学習データを読み出して、重回帰分析等の処理により、外気温や曜日等の説明変数と目的変数である湯水の使用量の関係を示す予測モデルを作成する。このように、予測モデル作成部12は、給湯システム1の設備構成などに依らず、実際の運転データ(上記の説明変数、目的変数)に基づいて予測モデルを作成する。これにより、どのようなシステムにも導入することができ、精度の高い需要予測モデルを作成することができる。なお、施設4の需要は、施設側の都合により変化することがあり得るので、予測モデル作成部12は、定期的に予測モデルを作成し直してもよい。 The demandamount prediction device 10 includes a data acquisition unit 11, a prediction model creation unit 12, a demand amount prediction unit 13, and a storage unit 14.
Thedata acquisition unit 11 acquires various data necessary for forecasting the demand amount.
The predictionmodel creation unit 12 learns the relationship between various parameters (explanatory variables) and the amount of hot water used (objective variable), and creates a prediction model for predicting the demand for hot water. The explanatory variables of the prediction model are, for example, the demand for hot water such as the outside temperature, the day of the week, the weather, the month, the season, the time, and the time zone of the day (morning, noon, evening) in the environment where the hot water supply system 1 operates. It is a parameter that affects. The amount of hot water used is, for example, the amount of hot water supplied from the hot water storage tank 3 to the facility 4. In the present disclosure, it is assumed that the amount of hot water supplied to the facility 4 is known. The data acquisition unit 11 acquires the explanatory variables exemplified above and the use of hot water (objective variable) at that time, associates them, and stores them in the storage unit 14 as learning data. The prediction model creation unit 12 reads the accumulated learning data and creates a prediction model showing the relationship between the explanatory variables such as the outside air temperature and the day of the week and the amount of hot water used as the objective variable by processing such as multiple regression analysis. .. In this way, the prediction model creation unit 12 creates a prediction model based on actual operation data (explanatory variables and objective variables described above) regardless of the equipment configuration of the hot water supply system 1. As a result, it can be introduced into any system and a highly accurate demand forecast model can be created. Since the demand of the facility 4 may change due to the convenience of the facility, the prediction model creation unit 12 may periodically recreate the prediction model.
データ取得部11は、需要量予測に必要な種々のデータを取得する。
予測モデル作成部12は、種々のパラメータ(説明変数)と湯水の使用量(目的変数)との関係を学習し、湯水の需要量を予測する予測モデルを作成する。予測モデルの説明変数は、例えば、給湯システム1が稼働する環境における、外気温、曜日、天気、月や季節、時間、1日のうちの時間帯(朝、昼、晩)など、湯水の需要に影響があるパラメータである。湯水の使用量とは、例えば、貯湯タンク3から施設4へ供給された湯水の量である。本開示では、施設4へ供給された湯水の量が既知であるとする。データ取得部11は、上記で例示した説明変数と、そのときの湯水の使用(目的変数)を取得し、これらを対応付けて学習データとして記憶部14に蓄積する。予測モデル作成部12は、蓄積された学習データを読み出して、重回帰分析等の処理により、外気温や曜日等の説明変数と目的変数である湯水の使用量の関係を示す予測モデルを作成する。このように、予測モデル作成部12は、給湯システム1の設備構成などに依らず、実際の運転データ(上記の説明変数、目的変数)に基づいて予測モデルを作成する。これにより、どのようなシステムにも導入することができ、精度の高い需要予測モデルを作成することができる。なお、施設4の需要は、施設側の都合により変化することがあり得るので、予測モデル作成部12は、定期的に予測モデルを作成し直してもよい。 The demand
The
The prediction
需要量予測部13は、予測モデル作成部12が作成した予測モデルに基づいて、予測対象期間における単位時間毎の湯水の需要量を予測する。需要量予測部13は、単位時間毎の需要量予測値を予測データとして出力する。予測データには、単位時間毎の湯水の需要量を貯湯タンク3における貯湯量として表したデータが含まれる。例えば、単位時間を1時間とすると、予測データには、”7:00、1%”、”8:00、2%”、・・・などの情報が含まれる。ここで、”7:00、1%”とは、7:00~8:00に、貯湯タンク3の貯湯量全体の1%分に相当する湯水の需要が見込まれることを示している。
記憶部14は、データ取得部11が取得したデータや予測モデル作成部12が作成した予測モデル等を記憶する。 The demandamount prediction unit 13 predicts the demand amount of hot water for each unit time in the prediction target period based on the prediction model created by the prediction model creation unit 12. The demand amount prediction unit 13 outputs the demand amount prediction value for each unit time as prediction data. The forecast data includes data expressing the demand amount of hot water for each unit time as the amount of hot water stored in the hot water storage tank 3. For example, assuming that the unit time is one hour, the prediction data includes information such as "7:00, 1%", "8:00, 2%", and so on. Here, "7:00, 1%" indicates that the demand for hot water corresponding to 1% of the total amount of hot water stored in the hot water storage tank 3 is expected from 7:00 to 8:00.
Thestorage unit 14 stores the data acquired by the data acquisition unit 11 and the prediction model created by the prediction model creation unit 12.
記憶部14は、データ取得部11が取得したデータや予測モデル作成部12が作成した予測モデル等を記憶する。 The demand
The
貯湯計画作成装置20は、予測データ取得部21と、実績データ取得部22と、設定受付部23と、計画作成部24と、記憶部25と、を備える。
予測データ取得部21は、需要量予測装置10が出力した予測データを取得し、取得した予測データを記憶部25に書き込む。
実績データ取得部22は、貯湯タンク3の湯水の使用実績を示す実績データを取得し、取得した実績データを記憶部25に書き込む。実績データとは、例えば、単位時間毎の貯湯タンク3の貯湯量である。実績データには、”7:00、80%”、”8:00、80%”、・・・などの情報が含まれる。ここで、”7:00、80%”、”8:00、80%”とは、7:00および8:00の時点で、貯湯タンク3の貯湯量が80%であったことを示している。更に、7:00~8:00の間に貯湯タンク3から施設4へ供給された湯水と、給湯機2が貯湯タンク3へ供給した湯水の量が等しかったことを示している。実績データは、貯湯計画を作成する際に、効率優先の貯湯計画を作成するか、湯切れ防止優先の貯湯計画を作成するかを判断するために使用される。
設定受付部23は、貯湯計画の作成処理に必要な設定を受け付ける。 The hot water storageplan creating device 20 includes a prediction data acquisition unit 21, an actual data acquisition unit 22, a setting reception unit 23, a plan creation unit 24, and a storage unit 25.
The forecastdata acquisition unit 21 acquires the forecast data output by the demand amount forecasting device 10, and writes the acquired forecast data in the storage unit 25.
The actualdata acquisition unit 22 acquires actual data indicating the actual usage of hot water in the hot water storage tank 3, and writes the acquired actual data in the storage unit 25. The actual data is, for example, the amount of hot water stored in the hot water storage tank 3 for each unit time. The actual data includes information such as "7:00, 80%", "8:00, 80%", and so on. Here, "7:00, 80%" and "8:00, 80%" indicate that the amount of hot water stored in the hot water storage tank 3 was 80% at 7:00 and 8:00. There is. Further, it is shown that the amount of hot water supplied from the hot water storage tank 3 to the facility 4 between 7:00 and 8:00 was equal to the amount of hot water supplied by the water heater 2 to the hot water storage tank 3. The actual data is used to determine whether to create a hot water storage plan that prioritizes efficiency or a hot water storage plan that prioritizes prevention of running out of hot water when creating a hot water storage plan.
Thesetting reception unit 23 receives the settings necessary for the process of creating the hot water storage plan.
予測データ取得部21は、需要量予測装置10が出力した予測データを取得し、取得した予測データを記憶部25に書き込む。
実績データ取得部22は、貯湯タンク3の湯水の使用実績を示す実績データを取得し、取得した実績データを記憶部25に書き込む。実績データとは、例えば、単位時間毎の貯湯タンク3の貯湯量である。実績データには、”7:00、80%”、”8:00、80%”、・・・などの情報が含まれる。ここで、”7:00、80%”、”8:00、80%”とは、7:00および8:00の時点で、貯湯タンク3の貯湯量が80%であったことを示している。更に、7:00~8:00の間に貯湯タンク3から施設4へ供給された湯水と、給湯機2が貯湯タンク3へ供給した湯水の量が等しかったことを示している。実績データは、貯湯計画を作成する際に、効率優先の貯湯計画を作成するか、湯切れ防止優先の貯湯計画を作成するかを判断するために使用される。
設定受付部23は、貯湯計画の作成処理に必要な設定を受け付ける。 The hot water storage
The forecast
The actual
The
計画作成部24は、予測データに基づいて、貯湯計画を作成する。貯湯計画とは、例えば、単位時間毎の貯湯タンク3における貯湯量である。貯湯計画には、例えば、”6:00,80%”、”7:00,80%”、”8:00,90%”、・・・などの情報が含まれる。ここで、”7:00,80%”とは、7:00の時点でセンサ5が計測する貯湯量と80%を比較して貯湯量が80%に満たなければ、80%となるように運転することを示している。つまり、制御装置30に”7:00,80%”の目標貯湯量を与えた場合であって、7:00の時点でセンサ5が計測する貯湯量が80%に至らない場合、制御装置30は、貯湯量が80%となるように給湯機2の運転を開始する。これに対し、本開示では、7:00の時点で80%が達成できるような貯湯計画を作成する。例えば、7:00の時点で貯湯量80%を達成するために1:00から湯沸かしが必要な場合、給湯機2が、1:00から湯沸かしを開始できるような貯湯計画を作成する。
記憶部25は、予測データ、実績データ、各種設定など種々の情報を記憶する。 Theplan creation unit 24 creates a hot water storage plan based on the forecast data. The hot water storage plan is, for example, the amount of hot water stored in the hot water storage tank 3 for each unit time. The hot water storage plan includes information such as "6:00, 80%", "7:00, 80%", "8:00, 90%", and the like. Here, "7:00, 80%" means that the amount of hot water stored by the sensor 5 at 7:00 is compared with 80%, and if the amount of hot water stored is less than 80%, it becomes 80%. Indicates to drive. That is, when the target hot water storage amount of "7:00, 80%" is given to the control device 30, and the hot water storage amount measured by the sensor 5 does not reach 80% at 7:00, the control device 30 Starts the operation of the water heater 2 so that the amount of hot water stored becomes 80%. On the other hand, in this disclosure, a hot water storage plan is created so that 80% can be achieved at 7:00. For example, if it is necessary to boil water from 1:00 in order to achieve 80% of the hot water storage amount at 7:00, the water heater 2 creates a hot water storage plan so that the water heater can start boiling from 1:00.
Thestorage unit 25 stores various information such as prediction data, actual data, and various settings.
記憶部25は、予測データ、実績データ、各種設定など種々の情報を記憶する。 The
The
制御装置30は、センサ5が計測した貯湯タンク3の貯湯量を取得し、センサ5が計測した貯湯量と、貯湯計画作成装置20が作成した貯湯計画に設定された目標貯湯量と、に基づいて給湯機2の運転を制御する。例えば、貯湯計画における7:00の貯湯量が80%で、7:00にセンサ5が計測した貯湯量が70%であれば、制御装置30は、貯湯タンク3の貯湯量が80%となるように給湯機2を運転する。
The control device 30 acquires the hot water storage amount of the hot water storage tank 3 measured by the sensor 5, and is based on the hot water storage amount measured by the sensor 5 and the target hot water storage amount set in the hot water storage plan created by the hot water storage plan creation device 20. Controls the operation of the water heater 2. For example, if the amount of hot water stored at 7:00 in the hot water storage plan is 80% and the amount of hot water stored by the sensor 5 at 7:00 is 70%, the amount of hot water stored in the hot water storage tank 3 of the control device 30 is 80%. The water heater 2 is operated as described above.
(貯湯計画の作成処理)
次に計画作成部24による、貯湯計画の作成処理について説明する。図3A~図3Dは、それぞれ一実施形態における貯湯計画の作成処理を説明する第1図~第4図である。
最初に、計画作成部24は、次の変数を用意する。
・Demand(i):予測データに含まれるコマiにおける需要予測量。単位は%。
・Necessary(i):各コマの開始時刻で確保すべき貯湯量。単位は%。
・C1:1コマで沸かせる湯量。単位は%/コマ。
・C2:計画対象期間の終了時刻において確保すべき貯湯量。単位は%。
・Afford(i):コマiの需要予測量がC1以下であるかどうかのフラグ。需要予測量がC1以下(そのコマの開始時刻から湯沸かしを開始しても、コマの終了時刻までに需要予測量を賄える)であれば”1”、C1より大きい場合は”0”である。
・Target(i):コマiの目標貯湯量。単位は%。貯湯計画は、対象期間における単位時間毎のTarget(i)によって構成される。
・Lowlim:貯湯タンク3における貯湯量の下限値。常にこの値は下回らないようにする。単位は%。
例えば、C1,C2、Lowlimの値については、ユーザが設定を行い、設定受付部23が、これらの変数に対する設定を受け付け、各値を記憶部25に登録する。 (Processing for creating a hot water storage plan)
Next, the process of creating a hot water storage plan by theplan creation unit 24 will be described. 3A to 3D are FIGS. 1 to 4 illustrating a process of creating a hot water storage plan in each embodiment.
First, theplanning unit 24 prepares the following variables.
-Demand (i): Demand forecast amount in the frame i included in the forecast data. Units%.
-Necessary (i): The amount of hot water that should be secured at the start time of each frame. Units%.
・ C1: The amount of hot water that can be boiled in one frame. The unit is% / frame.
・ C2: The amount of hot water to be stored at the end of the planned period. Units%.
-Favord (i): A flag indicating whether or not the demand forecast amount of the frame i is C1 or less. If the demand forecast amount is C1 or less (even if boiling water is started from the start time of the frame, the demand forecast amount can be covered by the end time of the frame), it is "1", and if it is larger than C1, it is "0".
-Target (i): Target hot water storage amount of coma i. Units%. The hot water storage plan is composed of Target (i) for each unit time in the target period.
-Lowlim: The lower limit of the amount of hot water stored in the hot water storage tank 3. Always try not to fall below this value. Units%.
For example, the values of C1, C2, and Lowlim are set by the user, thesetting receiving unit 23 accepts the settings for these variables, and each value is registered in the storage unit 25.
次に計画作成部24による、貯湯計画の作成処理について説明する。図3A~図3Dは、それぞれ一実施形態における貯湯計画の作成処理を説明する第1図~第4図である。
最初に、計画作成部24は、次の変数を用意する。
・Demand(i):予測データに含まれるコマiにおける需要予測量。単位は%。
・Necessary(i):各コマの開始時刻で確保すべき貯湯量。単位は%。
・C1:1コマで沸かせる湯量。単位は%/コマ。
・C2:計画対象期間の終了時刻において確保すべき貯湯量。単位は%。
・Afford(i):コマiの需要予測量がC1以下であるかどうかのフラグ。需要予測量がC1以下(そのコマの開始時刻から湯沸かしを開始しても、コマの終了時刻までに需要予測量を賄える)であれば”1”、C1より大きい場合は”0”である。
・Target(i):コマiの目標貯湯量。単位は%。貯湯計画は、対象期間における単位時間毎のTarget(i)によって構成される。
・Lowlim:貯湯タンク3における貯湯量の下限値。常にこの値は下回らないようにする。単位は%。
例えば、C1,C2、Lowlimの値については、ユーザが設定を行い、設定受付部23が、これらの変数に対する設定を受け付け、各値を記憶部25に登録する。 (Processing for creating a hot water storage plan)
Next, the process of creating a hot water storage plan by the
First, the
-Demand (i): Demand forecast amount in the frame i included in the forecast data. Units%.
-Necessary (i): The amount of hot water that should be secured at the start time of each frame. Units%.
・ C1: The amount of hot water that can be boiled in one frame. The unit is% / frame.
・ C2: The amount of hot water to be stored at the end of the planned period. Units%.
-Favord (i): A flag indicating whether or not the demand forecast amount of the frame i is C1 or less. If the demand forecast amount is C1 or less (even if boiling water is started from the start time of the frame, the demand forecast amount can be covered by the end time of the frame), it is "1", and if it is larger than C1, it is "0".
-Target (i): Target hot water storage amount of coma i. Units%. The hot water storage plan is composed of Target (i) for each unit time in the target period.
-Lowlim: The lower limit of the amount of hot water stored in the hot water storage tank 3. Always try not to fall below this value. Units%.
For example, the values of C1, C2, and Lowlim are set by the user, the
また、貯湯計画の作成処理においては以下の仮定を置く。
(a)1日の需要総量は、1日に沸かせる湯の総量以下であるとする。つまり、給湯システム1の設備容量は需要に対して十分であるとする。
(b)一例として、1コマは1時間とする。また、貯湯量の計画期間を24時間とする。
(c)1時間に沸かせる湯量C1は、過去の運転データから算出する。
(d)貯湯タンク3の下限値Lowlimは常に確保するようにする。 In addition, the following assumptions are made in the process of creating a hot water storage plan.
(A) It is assumed that the total daily demand is less than or equal to the total amount of boiling water per day. That is, it is assumed that the installed capacity of the hotwater supply system 1 is sufficient for the demand.
(B) As an example, one frame is one hour. In addition, the planning period for the amount of hot water stored is 24 hours.
(C) The amount of hot water C1 to be boiled in one hour is calculated from past operation data.
(D) The lower limit value Lowlim of the hot water storage tank 3 is always secured.
(a)1日の需要総量は、1日に沸かせる湯の総量以下であるとする。つまり、給湯システム1の設備容量は需要に対して十分であるとする。
(b)一例として、1コマは1時間とする。また、貯湯量の計画期間を24時間とする。
(c)1時間に沸かせる湯量C1は、過去の運転データから算出する。
(d)貯湯タンク3の下限値Lowlimは常に確保するようにする。 In addition, the following assumptions are made in the process of creating a hot water storage plan.
(A) It is assumed that the total daily demand is less than or equal to the total amount of boiling water per day. That is, it is assumed that the installed capacity of the hot
(B) As an example, one frame is one hour. In addition, the planning period for the amount of hot water stored is 24 hours.
(C) The amount of hot water C1 to be boiled in one hour is calculated from past operation data.
(D) The lower limit value Lowlim of the hot water storage tank 3 is always secured.
計画作成部24は、以下の[1]~[7]の処理により、貯湯計画を作成する。
[1]まず、計画作成部24は、需要量予測装置10が出力した予測データを取得する。図3A~図3Dの丸印は、各コマi(各時刻)におけるDemand(i)を示す。
[2]次に計画作成部24は、各コマiのTarget(i)の初期値としてLowlimを設定する。図3Bの星印は、各コマiにおけるTarget(i)の初期値を示す。 Theplan creation unit 24 creates a hot water storage plan by the following processes [1] to [7].
[1] First, theplan creation unit 24 acquires the forecast data output by the demand amount forecasting device 10. The circles in FIGS. 3A to 3D indicate Demand (i) in each frame i (each time).
[2] Next, theplan creation unit 24 sets Lowlim as the initial value of the Target (i) of each frame i. The asterisk in FIG. 3B indicates the initial value of Target (i) in each frame i.
[1]まず、計画作成部24は、需要量予測装置10が出力した予測データを取得する。図3A~図3Dの丸印は、各コマi(各時刻)におけるDemand(i)を示す。
[2]次に計画作成部24は、各コマiのTarget(i)の初期値としてLowlimを設定する。図3Bの星印は、各コマiにおけるTarget(i)の初期値を示す。 The
[1] First, the
[2] Next, the
[3]次に計画作成部24は、各コマiの開始時刻において確保すべき湯量を算出する。まず、最終コマのNecessary(24)については、以下の式(1)で計算する。
Necessary(24)=Demand(24)+C2 ・・・(1)
その他のコマ(i=0~23)のNecessary(i)については、以下の式(2)で計算する。
Necessary(i)=Demand(i)+Necessary(i+1) ・・・(2)
つまり、コマiの需要予測量に、コマiよりも未来の需要予測量を全て加算する。図3Bの菱形印は、各コマiにおけるNecessary(i)を示す。 [3] Next, theplan creation unit 24 calculates the amount of hot water to be secured at the start time of each frame i. First, the sensitivity (24) of the final frame is calculated by the following equation (1).
Demand (24) = Demand (24) + C2 ... (1)
The sensitivity (i) of the other frames (i = 0 to 23) is calculated by the following equation (2).
Demand (i) = Demand (i) + Demand (i + 1) ... (2)
That is, all the future demand forecast amounts are added to the demand forecast amount of the frame i. The diamond-shaped mark in FIG. 3B indicates the Necessary (i) in each frame i.
Necessary(24)=Demand(24)+C2 ・・・(1)
その他のコマ(i=0~23)のNecessary(i)については、以下の式(2)で計算する。
Necessary(i)=Demand(i)+Necessary(i+1) ・・・(2)
つまり、コマiの需要予測量に、コマiよりも未来の需要予測量を全て加算する。図3Bの菱形印は、各コマiにおけるNecessary(i)を示す。 [3] Next, the
Demand (24) = Demand (24) + C2 ... (1)
The sensitivity (i) of the other frames (i = 0 to 23) is calculated by the following equation (2).
Demand (i) = Demand (i) + Demand (i + 1) ... (2)
That is, all the future demand forecast amounts are added to the demand forecast amount of the frame i. The diamond-shaped mark in FIG. 3B indicates the Necessary (i) in each frame i.
[4]次に計画作成部24は、予測データに基づいて、各コマiのAfford(i)を設定する。例えば、9:00~16:00(コマi=9~16)のAfford(i)を”0”、それ以外のAfford(i)を”1”とする。
[4] Next, the plan creation unit 24 sets the Friend (i) of each frame i based on the prediction data. For example, the Friend (i) of 9:00 to 16:00 (frame i = 9 to 16) is set to "0", and the other Friend (i) is set to "1".
[5]次に計画作成部24は、Afford(i)が”0”のコマについては、Target(i)=Necessary(i)と置く。図3Cにおける9:00~16:00の星印は、この処理を行った後のTarget(i)を示す。
[5] Next, the plan creation unit 24 sets Target (i) = Security (i) for the frame whose Afford (i) is "0". The asterisks from 9:00 to 16:00 in FIG. 3C indicate Target (i) after this processing.
[6]次に計画作成部24は、Afford(i)が”1”から”0”に変化する最初のコマ(コマiαとする。)については、そのコマiαのDemand(iα)が示す湯量を沸かすのに必要な時間(コマ数)Kを算出し、コマiαから算出したコマ数分だけ遡ったコマiまでの目標貯湯量を、Necessary(iα)と置く。具体的には、計画作成部24は、以下の式(3)でKを算出する。
K=ceil{(Necessary(iα)-Lowlim)/C1}+1 ・・・(3)
ここで、ceilは整数の切り上げを意味する。また、湯を沸かし時間に余裕を持たせるため、1を加算する。そして、計画作成部24は、以下の式(4)でTarget(i-K)を算出する。
Target(iα-K)=Necessary(iα)(K=1,2、・・・、K) ・・・(4)
図3Cにおける1:00~8:00の星印は、この処理を行った後のTarget(i)を示す。 [6] Next, theplanning unit 24 determines the Demand (i α ) of the frame i α for the first frame (referred to as the frame i α ) in which the Friend (i) changes from “1” to “0”. The time (number of frames) K required to boil the amount of hot water indicated by is calculated, and the target amount of hot water stored up to the frame i calculated from the frame i α is set as the Necessary (i α ). Specifically, the plan creation unit 24 calculates K by the following equation (3).
K = ceil {(Necessary (i α ) -Lowlim) / C1} + 1 ... (3)
Here, ceil means rounding up an integer. In addition, 1 is added in order to allow time for boiling water. Then, theplan creation unit 24 calculates Target (i-K) by the following formula (4).
Target (i α- K) = Nessesary (i α ) (K = 1, 2, ..., K) ... (4)
The asterisks from 1:00 to 8:00 in FIG. 3C indicate Target (i) after this processing.
K=ceil{(Necessary(iα)-Lowlim)/C1}+1 ・・・(3)
ここで、ceilは整数の切り上げを意味する。また、湯を沸かし時間に余裕を持たせるため、1を加算する。そして、計画作成部24は、以下の式(4)でTarget(i-K)を算出する。
Target(iα-K)=Necessary(iα)(K=1,2、・・・、K) ・・・(4)
図3Cにおける1:00~8:00の星印は、この処理を行った後のTarget(i)を示す。 [6] Next, the
K = ceil {(Necessary (i α ) -Lowlim) / C1} + 1 ... (3)
Here, ceil means rounding up an integer. In addition, 1 is added in order to allow time for boiling water. Then, the
Target (i α- K) = Nessesary (i α ) (K = 1, 2, ..., K) ... (4)
The asterisks from 1:00 to 8:00 in FIG. 3C indicate Target (i) after this processing.
[7]最後に計画作成部24は、100%を超過したTarget(i)については、そのTarget(i)の値を100%とし、また、小数を含むTarget(i)の値を整数に切り上げる。このようにして得られたTarget(i)(i=0~24)が貯湯計画である。図3Dに貯湯計画を示す。図3Dの黒色の星印が、貯湯計画である。
[7] Finally, the planning unit 24 sets the value of the Target (i) to 100% for the Target (i) exceeding 100%, and rounds up the value of the Target (i) including the decimal to an integer. .. The Target (i) (i = 0 to 24) thus obtained is a hot water storage plan. Figure 3D shows the hot water storage plan. The black star in FIG. 3D is the hot water storage plan.
[1]~[7]の処理により、計画作成部24は、単位時間毎の目標貯湯量を含む貯湯計画を自動的に算出する。計画作成部24は、作成した貯湯計画を制御装置30へ出力する。なお、上記の処理は1例である。例えば、[2]において、Target(i)の初期値にLowlimよりも安全な値(大きな値)を設定してもよい。また、以下に説明するように、C1には、湯切れを回避できる値を設定することができる。
By the processes of [1] to [7], the plan creation unit 24 automatically calculates the hot water storage plan including the target hot water storage amount for each unit time. The plan creation unit 24 outputs the created hot water storage plan to the control device 30. The above process is an example. For example, in [2], a value (larger value) safer than Lowlim may be set as the initial value of Target (i). Further, as described below, a value that can avoid running out of hot water can be set in C1.
(1コマで沸かすことができる湯量の設定)
例えば、貯湯タンク3から湯水の流出がない時間帯において、センサ5が計測する貯湯量が45%のときに目標貯湯量95%が与えられ、センサ5が計測する貯湯量が95%となるまでに10時間かかったとする。つまり、1時間あたり5%分の湯を沸かすことができるとする。この5(%/時間)を所定の安全率(”2”とする。)で割って、変数C1を算出する。この例では、C1=2.5(%/時間)となる。このように実測値に基づいて安全側(少なめ)にC1を設定することによって、湯切れが生じない貯湯計画を作成することができる。C1の設定は、ユーザが行っても良いし、計画作成部24が、センサ5の計測値を取得して上記のような計算により、設定してもよい。 (Setting the amount of hot water that can be boiled in one frame)
For example, in a time zone when hot water does not flow out from the hot water storage tank 3, the target hot water storage amount of 95% is given when the hot water storage amount measured by thesensor 5 is 45%, and until the hot water storage amount measured by the sensor 5 reaches 95%. It took 10 hours. That is, it is assumed that 5% of hot water can be boiled per hour. The variable C1 is calculated by dividing this 5 (% / hour) by a predetermined safety factor (referred to as "2"). In this example, C1 = 2.5 (% / hour). By setting C1 on the safe side (less) based on the measured value in this way, it is possible to create a hot water storage plan that does not cause running out of hot water. The setting of C1 may be performed by the user, or the planning unit 24 may acquire the measured value of the sensor 5 and set it by the above calculation.
例えば、貯湯タンク3から湯水の流出がない時間帯において、センサ5が計測する貯湯量が45%のときに目標貯湯量95%が与えられ、センサ5が計測する貯湯量が95%となるまでに10時間かかったとする。つまり、1時間あたり5%分の湯を沸かすことができるとする。この5(%/時間)を所定の安全率(”2”とする。)で割って、変数C1を算出する。この例では、C1=2.5(%/時間)となる。このように実測値に基づいて安全側(少なめ)にC1を設定することによって、湯切れが生じない貯湯計画を作成することができる。C1の設定は、ユーザが行っても良いし、計画作成部24が、センサ5の計測値を取得して上記のような計算により、設定してもよい。 (Setting the amount of hot water that can be boiled in one frame)
For example, in a time zone when hot water does not flow out from the hot water storage tank 3, the target hot water storage amount of 95% is given when the hot water storage amount measured by the
また、給湯機2が湯を沸かす能力は、配管経、配管長さ、配管高さ、貯湯タンク3の種類(開放型、密閉型)や台数、外気温、設定温度などのシステム構成や運転条件によって異なるため、給湯システム1ごとに設定することが好ましい。そこで、例えば、計画作成部24が、単位時間あたりの湯沸かし量を算出する学習モデルを機械学習などによって作成し、この学習モデルによって、湯沸かし量を算出し、算出した湯沸かし量に基づいてC1に設定してもよい。例えば、学習モデルは、外気温、供給される水の温度、湯水の設定温度を入力すると、単位時間あたりに沸かすことができる湯水の湯量を出力する。計画作成部24は、給湯機2が運転中で、且つ、貯湯タンク3から湯水の流出が無い時間帯にセンサ5が計測した貯湯量と、同時間帯における外気温や水温に基づいて学習モデルを作成する。また、計画作成部24は、貯湯計画の対象期間における時間毎の外気温や水温の推定値を作成した学習モデルに入力して、時間毎のC1を算出し、時間毎のC1を用いて貯湯計画を作成してもよい。
In addition, the ability of the water heater 2 to boil water includes the system configuration and operating conditions such as piping diameter, piping length, piping height, type (open type, closed type) and number of hot water storage tanks 3, outside air temperature, and set temperature. It is preferable to set it for each hot water supply system 1 because it differs depending on the hot water supply system 1. Therefore, for example, the plan creation unit 24 creates a learning model for calculating the amount of water heater per unit time by machine learning or the like, calculates the amount of water heater by this learning model, and sets it to C1 based on the calculated amount of water heater. You may. For example, the learning model outputs the amount of hot water that can be boiled per unit time by inputting the outside air temperature, the temperature of the supplied water, and the set temperature of the hot water. The planning unit 24 is a learning model based on the amount of hot water stored by the sensor 5 during the time when the water heater 2 is operating and there is no outflow of hot water from the hot water storage tank 3, and the outside air temperature and water temperature during the same time. To create. Further, the plan creation unit 24 inputs the estimated values of the outside air temperature and the water temperature for each hour in the target period of the hot water storage plan into the learning model, calculates the C1 for each hour, and stores the hot water using the C1 for each hour. You may make a plan.
(湯切れリスクへの対策)
上記の説明では24時間後までの貯湯計画を作成することとしたが、例えば、翌々日に大需要が予定されている場合、湯切れが生じる可能性がある。次にこのような湯切れリスクを低減する貯湯計画の作成方法について、図4A、図4Bを参照して説明する。
図4A,図4Bは、それぞれ、本開示の一実施形態における長期の貯湯計画の作成処理を説明する第1図、第2図である。
計画作成部24は、湯切れリスクを低減するため、より長期的な貯湯計画を作成する。例えば、計画作成部24は、未来におけるN日分(N>1)の需要予測に基づいて、貯湯計画を作成する。N=2とすると、計画作成部24は、48時間先までの貯湯計画を作成する。需要量予測装置10は、48時間先までの各時間の需要予測量を含む予測データを作成する。貯湯計画作成装置20では、予測データ取得部21が、48時間分の予測データを取得し、計画作成部24が、48時間分の貯湯計画を作成する。図4Aに上記の[1]~[6]の処理を経て作成されたTarget(i)(i=0~48)の値をプロットしたグラフを示す。図4Bには、計画作成部24が、さらに上記の[7]の処理を行って作成した貯湯計画を示す。 (Countermeasures against the risk of running out of hot water)
In the above explanation, it was decided to create a hot water storage plan up to 24 hours later, but for example, if a large demand is planned the day after next, there is a possibility that the hot water will run out. Next, a method of creating a hot water storage plan for reducing such a risk of running out of hot water will be described with reference to FIGS. 4A and 4B.
4A and 4B are FIGS. 1 and 2, respectively, illustrating the process of creating a long-term hot water storage plan according to the embodiment of the present disclosure.
Theplanning unit 24 creates a longer-term hot water storage plan in order to reduce the risk of running out of hot water. For example, the plan creation unit 24 creates a hot water storage plan based on the demand forecast for N days (N> 1) in the future. Assuming that N = 2, the plan creation unit 24 creates a hot water storage plan up to 48 hours ahead. The demand amount forecasting device 10 creates forecast data including a demand forecasting amount for each time up to 48 hours ahead. In the hot water storage plan creating device 20, the forecast data acquisition unit 21 acquires forecast data for 48 hours, and the plan creation unit 24 creates a hot water storage plan for 48 hours. FIG. 4A shows a graph in which the values of Target (i) (i = 0 to 48) created through the above processes [1] to [6] are plotted. FIG. 4B shows a hot water storage plan created by the plan creation unit 24 by further performing the process of [7] above.
上記の説明では24時間後までの貯湯計画を作成することとしたが、例えば、翌々日に大需要が予定されている場合、湯切れが生じる可能性がある。次にこのような湯切れリスクを低減する貯湯計画の作成方法について、図4A、図4Bを参照して説明する。
図4A,図4Bは、それぞれ、本開示の一実施形態における長期の貯湯計画の作成処理を説明する第1図、第2図である。
計画作成部24は、湯切れリスクを低減するため、より長期的な貯湯計画を作成する。例えば、計画作成部24は、未来におけるN日分(N>1)の需要予測に基づいて、貯湯計画を作成する。N=2とすると、計画作成部24は、48時間先までの貯湯計画を作成する。需要量予測装置10は、48時間先までの各時間の需要予測量を含む予測データを作成する。貯湯計画作成装置20では、予測データ取得部21が、48時間分の予測データを取得し、計画作成部24が、48時間分の貯湯計画を作成する。図4Aに上記の[1]~[6]の処理を経て作成されたTarget(i)(i=0~48)の値をプロットしたグラフを示す。図4Bには、計画作成部24が、さらに上記の[7]の処理を行って作成した貯湯計画を示す。 (Countermeasures against the risk of running out of hot water)
In the above explanation, it was decided to create a hot water storage plan up to 24 hours later, but for example, if a large demand is planned the day after next, there is a possibility that the hot water will run out. Next, a method of creating a hot water storage plan for reducing such a risk of running out of hot water will be described with reference to FIGS. 4A and 4B.
4A and 4B are FIGS. 1 and 2, respectively, illustrating the process of creating a long-term hot water storage plan according to the embodiment of the present disclosure.
The
上記したように、計画作成部24は、将来必要になる湯量を、その量の湯水を沸かすのに必要な時間を考慮しつつ積み上げることによって貯湯計画を作成する。したがって、長期的な需要予測に基づいて貯湯計画を作成することにより湯切れリスクを低減することができる。ここで、長期的(例えば、N>1)な需要予測に基づいて貯湯計画を作成することを湯切れ防止モード、短期的(例えば、N≦1)な需要予測に基づいて貯湯計画を作成することを効率優先モード、これらをまとめて計画モードと呼ぶ。計画作成部24は、ユーザの設定に基づいて、または、最近の使用湯量の傾向などに基づいて、湯切れ防止モードと効率優先モードの何れかの計画モードに切り替えて貯湯計画を作成することができる。例えば、湯切れリスクよりも効率を優先する(できるだけ湯沸かしに消費するエネルギーを削減することを優先とする)場合、ユーザは、効率優先モードを設定する。効率優先モードにおける貯湯計画の作成対象期間は24時間に限らず、12時間や6時間であってもよい。効率優先モードを設定して貯湯計画を作成することにより、給湯システム1の運転コストを抑制することができる。また、湯切れ防止モードにおける貯湯計画の作成対象期間は48時間に限らず、72時間や1週間であってもよい。湯切れ防止モードを設定して貯湯計画を作成することにより、対象期間に必要な湯量を確保することができる。なお、湯切れ防止モードの場合、例えば、1日ごとにN日先までの需要予測に基づくN日先までの貯湯計画を作成してもよい。
As described above, the plan creation unit 24 creates a hot water storage plan by accumulating the amount of hot water required in the future while considering the time required to boil that amount of hot water. Therefore, it is possible to reduce the risk of running out of hot water by creating a hot water storage plan based on a long-term demand forecast. Here, creating a hot water storage plan based on a long-term (for example, N> 1) demand forecast is created based on a hot water shortage prevention mode and a short-term (for example, N ≦ 1) demand forecast. This is called the efficiency priority mode, and these are collectively called the planning mode. The planning unit 24 may switch to either the hot water shortage prevention mode or the efficiency priority mode to create a hot water storage plan based on the user's settings or the recent tendency of the amount of hot water used. can. For example, if efficiency is prioritized over the risk of running out of hot water (priority is given to reducing the energy consumed for boiling water as much as possible), the user sets the efficiency priority mode. The period for creating the hot water storage plan in the efficiency priority mode is not limited to 24 hours, but may be 12 hours or 6 hours. By setting the efficiency priority mode and creating a hot water storage plan, the operating cost of the hot water supply system 1 can be suppressed. Further, the period for creating the hot water storage plan in the hot water shortage prevention mode is not limited to 48 hours, but may be 72 hours or one week. By setting the hot water shortage prevention mode and creating a hot water storage plan, it is possible to secure the required amount of hot water during the target period. In the case of the hot water shortage prevention mode, for example, a hot water storage plan up to N days ahead may be created based on the demand forecast up to N days ahead every day.
(突発的な湯切れリスクへの対策)
湯切れ防止モードで貯湯計画を作成しても、突然の需要増加などにより、湯水が足りなくなる場合がある。このような場合、予測データを手動で補正し、補正後の予測データに基づいて計画作成部24に、上記の[1]~[7]を実行させることにより、湯切れを回避する貯湯計画を作成することができる。この様子を図5A、図5Bに示す。
図5A、図5Bは、それぞれ、一実施形態における給湯需要の変動への対処を説明する第1図、第2図である。
例えば、11:00~13:00まで需要の突発的な増加が見込まれる場合、図3Aの予測データにおける11:00~13:00のDemand(i)の値を図5Aに示すように補正する(図5AのH1内)。補正後の予測データに基づいて、計画作成部24が作成した貯湯計画を図5Bに示す。図3Dと比べ、11:00前における貯湯目標値が増加していることがわかる。これにより、需要増加に対応した貯湯計画を作成することができる。 (Countermeasures against sudden risk of running out of hot water)
Even if a hot water storage plan is created in the hot water shortage prevention mode, there may be a shortage of hot water due to a sudden increase in demand. In such a case, the forecast data is manually corrected, and theplan creation unit 24 is made to execute the above [1] to [7] based on the corrected forecast data to create a hot water storage plan for avoiding running out of hot water. Can be created. This situation is shown in FIGS. 5A and 5B.
5A and 5B are FIGS. 1 and 2, respectively, illustrating how to deal with fluctuations in hot water supply demand in one embodiment.
For example, when a sudden increase in demand is expected from 11:00 to 13:00, the value of Demand (i) from 11:00 to 13:00 in the forecast data of FIG. 3A is corrected as shown in FIG. 5A. (Inside H1 in FIG. 5A). FIG. 5B shows a hot water storage plan created by theplan creation unit 24 based on the corrected forecast data. It can be seen that the hot water storage target value before 11:00 is increased as compared with FIG. 3D. This makes it possible to create a hot water storage plan that responds to increasing demand.
湯切れ防止モードで貯湯計画を作成しても、突然の需要増加などにより、湯水が足りなくなる場合がある。このような場合、予測データを手動で補正し、補正後の予測データに基づいて計画作成部24に、上記の[1]~[7]を実行させることにより、湯切れを回避する貯湯計画を作成することができる。この様子を図5A、図5Bに示す。
図5A、図5Bは、それぞれ、一実施形態における給湯需要の変動への対処を説明する第1図、第2図である。
例えば、11:00~13:00まで需要の突発的な増加が見込まれる場合、図3Aの予測データにおける11:00~13:00のDemand(i)の値を図5Aに示すように補正する(図5AのH1内)。補正後の予測データに基づいて、計画作成部24が作成した貯湯計画を図5Bに示す。図3Dと比べ、11:00前における貯湯目標値が増加していることがわかる。これにより、需要増加に対応した貯湯計画を作成することができる。 (Countermeasures against sudden risk of running out of hot water)
Even if a hot water storage plan is created in the hot water shortage prevention mode, there may be a shortage of hot water due to a sudden increase in demand. In such a case, the forecast data is manually corrected, and the
5A and 5B are FIGS. 1 and 2, respectively, illustrating how to deal with fluctuations in hot water supply demand in one embodiment.
For example, when a sudden increase in demand is expected from 11:00 to 13:00, the value of Demand (i) from 11:00 to 13:00 in the forecast data of FIG. 3A is corrected as shown in FIG. 5A. (Inside H1 in FIG. 5A). FIG. 5B shows a hot water storage plan created by the
また、需要の突発的な減少が見込まれる場合にも、予測データを手動で補正することで、需要減に対応した貯湯計画を作成することができる。これにより、無駄な湯水の作成を回避することができる。
Also, even if a sudden decrease in demand is expected, it is possible to create a hot water storage plan that responds to the decrease in demand by manually correcting the forecast data. This makes it possible to avoid the creation of useless hot water.
(計画モードの自動設定)
図6は、一実施形態における計画モードの切り替えを説明する図である。
図6にある一日の実績データを示す。実績データP1は、貯湯計画に対し、貯湯量の減少が少なかった場合の実績データ、実績データP2は、貯湯計画に対し、貯湯量の減少が多かった場合の実績データである。
計画作成部24は、例えば、最新の1週間分の実績データを参照して、1週間の貯湯量の推移が、実績データP1が示すような傾向であれば、予測データの誤差は許容範囲内と判定し、効率優先モードを選択して貯湯計画を作成する。また、1週間の貯湯量の推移が、実績データP2が示すような傾向であれば、計画作成部24は、予測データの誤差が大きいと判定して、湯切れ防止モードを選択して貯湯計画を作成する。より具体的には、計画作成部24は、過去の所定期間(例えば、前日、1週間、1週間前の同日)の実績データを取得し、例えば、貯湯残量とLowlimとの差が所定の範囲内となるコマが所定数以上あれば、湯切れ防止モードを選択し、そのようなコマが所定数未満であれば、効率優先モードを選択する。このように日々の貯湯残量に応じて翌日以降の計画モードを選択することで、湯切れを回避しつつ、需要予測に沿った無駄のない貯湯計画を自動的に作成することができる。 (Automatic setting of planning mode)
FIG. 6 is a diagram illustrating switching of a planning mode in one embodiment.
The actual data of one day shown in FIG. 6 is shown. The actual data P1 is the actual data when the decrease in the hot water storage amount is small with respect to the hot water storage plan, and the actual data P2 is the actual data when the decrease in the hot water storage amount is large with respect to the hot water storage plan.
For example, theplanning unit 24 refers to the latest actual data for one week, and if the transition of the amount of hot water stored for one week tends to be as shown by the actual data P1, the error of the predicted data is within the permissible range. And select the efficiency priority mode to create a hot water storage plan. Further, if the transition of the amount of hot water stored in one week tends to be as shown by the actual data P2, the plan creation unit 24 determines that the error of the predicted data is large, selects the hot water shortage prevention mode, and plans the hot water storage. To create. More specifically, the planning unit 24 acquires actual data for a predetermined period in the past (for example, the same day one week before, one week before), and for example, the difference between the remaining amount of hot water stored and Lowlim is predetermined. If the number of frames within the range is more than a predetermined number, the hot water shortage prevention mode is selected, and if the number of such frames is less than a predetermined number, the efficiency priority mode is selected. By selecting the planning mode for the next day or later according to the remaining amount of hot water stored on a daily basis in this way, it is possible to automatically create a lean hot water storage plan in line with the demand forecast while avoiding running out of hot water.
図6は、一実施形態における計画モードの切り替えを説明する図である。
図6にある一日の実績データを示す。実績データP1は、貯湯計画に対し、貯湯量の減少が少なかった場合の実績データ、実績データP2は、貯湯計画に対し、貯湯量の減少が多かった場合の実績データである。
計画作成部24は、例えば、最新の1週間分の実績データを参照して、1週間の貯湯量の推移が、実績データP1が示すような傾向であれば、予測データの誤差は許容範囲内と判定し、効率優先モードを選択して貯湯計画を作成する。また、1週間の貯湯量の推移が、実績データP2が示すような傾向であれば、計画作成部24は、予測データの誤差が大きいと判定して、湯切れ防止モードを選択して貯湯計画を作成する。より具体的には、計画作成部24は、過去の所定期間(例えば、前日、1週間、1週間前の同日)の実績データを取得し、例えば、貯湯残量とLowlimとの差が所定の範囲内となるコマが所定数以上あれば、湯切れ防止モードを選択し、そのようなコマが所定数未満であれば、効率優先モードを選択する。このように日々の貯湯残量に応じて翌日以降の計画モードを選択することで、湯切れを回避しつつ、需要予測に沿った無駄のない貯湯計画を自動的に作成することができる。 (Automatic setting of planning mode)
FIG. 6 is a diagram illustrating switching of a planning mode in one embodiment.
The actual data of one day shown in FIG. 6 is shown. The actual data P1 is the actual data when the decrease in the hot water storage amount is small with respect to the hot water storage plan, and the actual data P2 is the actual data when the decrease in the hot water storage amount is large with respect to the hot water storage plan.
For example, the
また、計画作成部24は、効率優先モードと湯切れ防止モードの何れかを選択するのでは無く、貯湯残量とLowlimとの差に応じて対象期間の長さを多段階に設定してもよい。例えば、計画作成部24は、過去の所定期間の実績データから貯湯残量とLowlimとの差の代表値(例えば、平均値、最頻値、最小値、最大値、中央値など)を算出する。そして、計画作成部24は、代表値が10%以下なら対象期間の長さを48時間に設定し、10%~20%であれば対象期間の長さを36時間に設定し、20%~30%であれば対象期間の長さを30時間に設定し、30%以上であれば24時間に設定する等、貯湯残量とLowlimとの差に応じて対象期間を設定する。このように、貯湯残量とLowlimとの差を予測モデルの誤差の大きさと考え、予測モデルの誤差の大きさに応じた対象期間を設定する。これにより、予測モデルの誤差を補償する貯湯計画を作成することができる。
Further, the planning unit 24 does not select either the efficiency priority mode or the hot water shortage prevention mode, but may set the length of the target period in multiple stages according to the difference between the remaining amount of hot water stored and Lowlim. good. For example, the planning unit 24 calculates a representative value (for example, average value, mode value, minimum value, maximum value, median value, etc.) of the difference between the remaining amount of hot water stored and Lowlim from the actual data of the past predetermined period. .. Then, the planning unit 24 sets the length of the target period to 48 hours if the representative value is 10% or less, and sets the length of the target period to 36 hours if the representative value is 10% to 20%, and 20% to 20%. If it is 30%, the length of the target period is set to 30 hours, if it is 30% or more, it is set to 24 hours, and the target period is set according to the difference between the remaining amount of hot water stored and Lowlim. In this way, the difference between the remaining amount of hot water stored and Lowlim is considered as the magnitude of the error of the prediction model, and the target period is set according to the magnitude of the error of the prediction model. This makes it possible to create a hot water storage plan that compensates for errors in the prediction model.
また、計画作成部24は、対象期間の長さに代えて、貯湯計画を補正してもよい。例えば、計画作成部24は、過去の所定期間の実績データに基づいて、貯湯残量とLowlimとの差が所定の範囲内となるコマが所定数以上あれば、作成後の貯湯計画の各コマ(あるいは、湯水消費が多い傾向がみられる時間帯の各コマ)の目標貯湯量:Target(i)に所定値を加算(例えば、+5%)した貯湯計画を作成し、貯湯残量とLowlimとの差が所定の範囲内となるコマが所定数未満であれば、[1]~[7]の処理によって作成した貯湯計画を制御装置30へ出力してもよい。
Further, the plan creation unit 24 may revise the hot water storage plan instead of the length of the target period. For example, if the plan creation unit 24 has a predetermined number or more of frames in which the difference between the remaining amount of hot water and Lowlim is within a predetermined range based on the actual data of the past predetermined period, each frame of the hot water storage plan after creation is created. (Or, each frame in the time zone when hot water consumption tends to be high) Target hot water storage amount: Create a hot water storage plan by adding a predetermined value to Target (i) (for example, + 5%), and set the remaining hot water storage amount and Lowlim. If the number of frames whose difference is within a predetermined range is less than a predetermined number, the hot water storage plan created by the processes of [1] to [7] may be output to the control device 30.
また、計画作成部24は、更に効率のよい貯湯計画を作成するため、例えば、効率優先モードで作成した貯湯計画に対し、過去の所定期間の実績データに基づいて、湯水残量とLowlimとの差が所定の範囲内となるコマについては、そのコマのTarget(i)に任意の補正量を加算(例えば、+5%)し、貯湯残量とLowlimとの差が所定値よりも大きいコマについては、そのコマのTarget(i)から任意の補正量を減算(例えば、-3%)し、コマごとに加算又は減算した補正量を学習させて、需要に対して過不足の無い貯湯計画を算出するようにしてもよい。また、この学習において、外気温、時間、天候等のパラメータと共に、湯水残量とLowlimとの差および適切な補正量の大きさを学習するようにしてもよい。このように日々の貯湯残量に応じて翌日以降の目標貯湯量を調整することで湯切れしない最小限の貯湯量に適正化された貯湯計画を作成することができる。また、日々の実績に基づいて目標貯湯量の補正を行うことにより、例えば、施設4における需要の変化に予測モデルが対応しきれない間でも、実際の需要に近い貯湯計画を作成することができる。
Further, in order to create a more efficient hot water storage plan, the plan creation unit 24, for example, with respect to the hot water storage plan created in the efficiency priority mode, the remaining amount of hot water and the Lowlim based on the actual data of the past predetermined period. For frames whose difference is within a predetermined range, add an arbitrary correction amount to Target (i) of that frame (for example, + 5%), and for frames where the difference between the remaining amount of hot water and Lowlim is larger than the predetermined value. Subtracts an arbitrary correction amount (for example, -3%) from the Target (i) of the frame, learns the correction amount added or subtracted for each frame, and creates a hot water storage plan that is just right for the demand. It may be calculated. Further, in this learning, the difference between the remaining amount of hot water and Lowlim and the magnitude of the appropriate correction amount may be learned together with the parameters such as the outside air temperature, the time, and the weather. In this way, by adjusting the target amount of hot water stored from the next day onward according to the remaining amount of hot water stored on a daily basis, it is possible to create a hot water storage plan optimized for the minimum amount of hot water stored so that the hot water does not run out. Further, by correcting the target hot water storage amount based on the daily results, for example, it is possible to create a hot water storage plan close to the actual demand even while the forecast model cannot cope with the change in the demand in the facility 4. ..
(貯湯計画作成処理の動作)
次に貯湯計画作成処理の流れについて説明する。
図7は、一実施形態における貯湯計画作成処理の一例を示すフローチャートである。
まず、ユーザが、貯湯計画作成装置20に各種設定を行う。例えば、ユーザは、貯湯計画の作成に用いる変数C1、C2、Lowlimの設定、計画モードを自動で設定するか固定するか、あるいは、対象期間の設定を貯湯残量とLowlimとの差に応じて設定するかを設定する。計画モードを固定する場合、ユーザは、効率優先モード、湯切れ防止モードの何れかを設定する。また、ユーザは、効率優先モード、湯切れ防止モードそれぞれにおける対象期間の設定を行う。対象期間の設定を貯湯残量とLowlimとの差に応じて設定する場合、ユーザは、その差に応じた対象期間の設定を行う。設定受付部23は、これらの設定を受け付け(ステップS1)、記憶部25に書き込む。 (Operation of hot water storage plan creation process)
Next, the flow of the hot water storage plan creation process will be described.
FIG. 7 is a flowchart showing an example of the hot water storage plan creation process in one embodiment.
First, the user makes various settings in the hot water storageplan creating device 20. For example, the user sets the variables C1, C2, and Lowlim used to create the hot water storage plan, automatically sets or fixes the planning mode, or sets the target period according to the difference between the remaining hot water storage amount and Lowlim. Set whether to set. When fixing the planning mode, the user sets either the efficiency priority mode or the hot water shortage prevention mode. In addition, the user sets the target period in each of the efficiency priority mode and the hot water shortage prevention mode. When setting the target period according to the difference between the remaining amount of hot water stored and Lowlim, the user sets the target period according to the difference. The setting receiving unit 23 accepts these settings (step S1) and writes them in the storage unit 25.
次に貯湯計画作成処理の流れについて説明する。
図7は、一実施形態における貯湯計画作成処理の一例を示すフローチャートである。
まず、ユーザが、貯湯計画作成装置20に各種設定を行う。例えば、ユーザは、貯湯計画の作成に用いる変数C1、C2、Lowlimの設定、計画モードを自動で設定するか固定するか、あるいは、対象期間の設定を貯湯残量とLowlimとの差に応じて設定するかを設定する。計画モードを固定する場合、ユーザは、効率優先モード、湯切れ防止モードの何れかを設定する。また、ユーザは、効率優先モード、湯切れ防止モードそれぞれにおける対象期間の設定を行う。対象期間の設定を貯湯残量とLowlimとの差に応じて設定する場合、ユーザは、その差に応じた対象期間の設定を行う。設定受付部23は、これらの設定を受け付け(ステップS1)、記憶部25に書き込む。 (Operation of hot water storage plan creation process)
Next, the flow of the hot water storage plan creation process will be described.
FIG. 7 is a flowchart showing an example of the hot water storage plan creation process in one embodiment.
First, the user makes various settings in the hot water storage
次に計画作成部24は、対象期間が可変か否かを判定する(ステップS2)。計画作成部24は、計画モードに自動が設定された場合や、対象期間を貯湯残量とLowlimとの差に応じて設定することが選択された場合、対象期間は可変と判定し、計画モードに効率優先モード又は湯切れ防止モードが設定された場合、対象期間は可変ではないと判定する。対象期間が可変と判定した場合(ステップS2;Yes)、実績データ取得部22が、実績データを取得する(ステップS3)。計画作成部24は、実績データに基づいて、湯切れを起こすリスクを判定し、湯切れリスクが所定の基準以上の場合には湯切れ防止モードを選択し、湯切れリスクが基準未満の場合には効率優先モードを選択する。計画作成部24は、選択した計画モードに対応する対象期間を設定する(ステップS4)。あるいは、計画作成部24は、実績データに基づく貯湯残量とLowlimとの差に応じた対象期間を設定する(ステップS4)。
Next, the plan creation unit 24 determines whether or not the target period is variable (step S2). The planning unit 24 determines that the target period is variable when automatic is set in the planning mode, or when it is selected to set the target period according to the difference between the remaining amount of hot water stored and Lowlim, and the planning mode is determined. When the efficiency priority mode or the hot water shortage prevention mode is set in, it is determined that the target period is not variable. When it is determined that the target period is variable (step S2; Yes), the actual data acquisition unit 22 acquires the actual data (step S3). The planning unit 24 determines the risk of running out of hot water based on the actual data, selects the hot water running out prevention mode when the hot water running out risk is above a predetermined standard, and when the hot water running out risk is less than the standard. Selects efficiency priority mode. The planning unit 24 sets the target period corresponding to the selected planning mode (step S4). Alternatively, the plan creation unit 24 sets a target period according to the difference between the remaining amount of hot water stored and Lowlim based on the actual data (step S4).
次に貯湯計画作成装置20は、需要量予測装置10へ対象期間を指定し、予測データの作成を指示する。需要量予測装置10では、需要量予測部13が、指定された対象期間における説明変数の値(予測値)を予測モデルに入力して、対象期間における単位時間毎の湯水の需要予測量を含む予測データを作成する(ステップS5)。需要量予測部13は、予測データを貯湯計画作成装置20へ出力する。貯湯計画作成装置20では、予測データ取得部21が、予測データを取得する(ステップS6)。
Next, the hot water storage plan creating device 20 designates a target period to the demand amount forecasting device 10 and instructs the demand amount forecasting device 10 to create forecast data. In the demand amount prediction device 10, the demand amount prediction unit 13 inputs the value (prediction value) of the explanatory variable in the designated target period into the prediction model, and includes the demand prediction amount of hot water for each unit time in the target period. Prediction data is created (step S5). The demand amount forecasting unit 13 outputs the forecast data to the hot water storage plan creating device 20. In the hot water storage plan creating device 20, the prediction data acquisition unit 21 acquires the prediction data (step S6).
次にユーザが、対象期間における需要に変更が見込まれるかどうかを判断し、変更が見込まれる場合(ステップS7;Yes)、変更するコマと補正量を貯湯計画作成装置20へ入力する。設定受付部23は、需要を変更する補正量を取得し、図5Aを用いて説明したように予測データを補正する(ステップS8)。
予測データの補正が完了すると、又は、需要に変更がない場合(ステップS7;No)、計画作成部24は、上記の[1]~[7]の処理を行って、上記の処理で設定された対象期間の貯湯計画を作成する(ステップS9)。 Next, the user determines whether or not the demand in the target period is expected to change, and if the change is expected (step S7; Yes), the frame to be changed and the correction amount are input to the hot water storageplan creating device 20. The setting reception unit 23 acquires a correction amount for changing the demand, and corrects the forecast data as described with reference to FIG. 5A (step S8).
When the correction of the forecast data is completed or when there is no change in the demand (step S7; No), theplanning unit 24 performs the above processes [1] to [7] and is set by the above process. Create a hot water storage plan for the target period (step S9).
予測データの補正が完了すると、又は、需要に変更がない場合(ステップS7;No)、計画作成部24は、上記の[1]~[7]の処理を行って、上記の処理で設定された対象期間の貯湯計画を作成する(ステップS9)。 Next, the user determines whether or not the demand in the target period is expected to change, and if the change is expected (step S7; Yes), the frame to be changed and the correction amount are input to the hot water storage
When the correction of the forecast data is completed or when there is no change in the demand (step S7; No), the
以上、説明したように本実施形態によれば、湯水の需要予測に基づいて、対象期間における単位時間毎の目標貯湯量(給湯機2への指令値)を自動的に算出することができる。また、給湯システム1の運転データに基づいて算出した予測データに基づいて目標貯湯量を算出するため、給湯システム1の設備構成(貯湯タンク3の種類や台数、給湯機2の能力や台数、配管径や配管長さ)、運転条件に依存せずにどのようなシステムにも適用することができる。
As described above, according to the present embodiment, the target hot water storage amount (command value to the water heater 2) for each unit time in the target period can be automatically calculated based on the demand forecast of hot water. Further, in order to calculate the target hot water storage amount based on the predicted data calculated based on the operation data of the hot water supply system 1, the equipment configuration of the hot water supply system 1 (type and number of hot water storage tanks 3, capacity and number of water heater 2 and piping). It can be applied to any system regardless of the diameter (diameter and pipe length) and operating conditions.
また、需要の予測データに基づく無駄のない計画でありながら、湯の沸き上げに要する時間を考慮した貯湯計画を作成することができるため、実際の需要が予測データ以下であれば、湯切れを未然に防ぐことができる。
また、計画作成の対象期間を任意に設定することにより、湯切れをより確実に回避する貯湯計画(湯切れ防止モード)、又は、無駄の少ない効率を優先した貯湯計画(効率優先モード)を作成することができる。あるいは、湯切れ防止モードと効率優先モードの中間的な長さを対象期間に指定して、効率と湯切れ防止を両立する貯湯計画を作成してもよい。また、効率優先モードと湯切れ防止モードは、実績データに基づいて自動的に選択することができるので、ユーザは、何れの計画モードを採用するかについて考える必要が無い。更に、実績データが示す貯湯残量に応じて対象期間を柔軟に変更することで、予測モデルの誤差を補償する貯湯計画を作成することができる。
また、予測困難な突発的なイベントにより、実際の需要が予測データと乖離することが見込まれる場合、手動で予測データを補正することにより、需要の変動に対応した貯湯計画を作成することができる。 In addition, although it is a lean plan based on demand forecast data, it is possible to create a hot water storage plan that takes into account the time required to boil water, so if the actual demand is less than the forecast data, the hot water will run out. It can be prevented in advance.
In addition, by arbitrarily setting the target period for creating a plan, a hot water storage plan (hot water shortage prevention mode) that avoids running out of hot water more reliably, or a hot water storage plan that prioritizes efficiency with less waste (efficiency priority mode) is created. can do. Alternatively, a hot water storage plan that achieves both efficiency and prevention of running out of hot water may be created by designating an intermediate length between the hot water running out prevention mode and the efficiency priority mode in the target period. Further, since the efficiency priority mode and the hot water shortage prevention mode can be automatically selected based on the actual data, the user does not need to think about which planning mode to adopt. Furthermore, by flexibly changing the target period according to the remaining amount of hot water stored in the actual data, it is possible to create a hot water storage plan that compensates for the error of the prediction model.
In addition, if the actual demand is expected to deviate from the forecast data due to a sudden event that is difficult to predict, it is possible to create a hot water storage plan that responds to fluctuations in demand by manually correcting the forecast data. ..
また、計画作成の対象期間を任意に設定することにより、湯切れをより確実に回避する貯湯計画(湯切れ防止モード)、又は、無駄の少ない効率を優先した貯湯計画(効率優先モード)を作成することができる。あるいは、湯切れ防止モードと効率優先モードの中間的な長さを対象期間に指定して、効率と湯切れ防止を両立する貯湯計画を作成してもよい。また、効率優先モードと湯切れ防止モードは、実績データに基づいて自動的に選択することができるので、ユーザは、何れの計画モードを採用するかについて考える必要が無い。更に、実績データが示す貯湯残量に応じて対象期間を柔軟に変更することで、予測モデルの誤差を補償する貯湯計画を作成することができる。
また、予測困難な突発的なイベントにより、実際の需要が予測データと乖離することが見込まれる場合、手動で予測データを補正することにより、需要の変動に対応した貯湯計画を作成することができる。 In addition, although it is a lean plan based on demand forecast data, it is possible to create a hot water storage plan that takes into account the time required to boil water, so if the actual demand is less than the forecast data, the hot water will run out. It can be prevented in advance.
In addition, by arbitrarily setting the target period for creating a plan, a hot water storage plan (hot water shortage prevention mode) that avoids running out of hot water more reliably, or a hot water storage plan that prioritizes efficiency with less waste (efficiency priority mode) is created. can do. Alternatively, a hot water storage plan that achieves both efficiency and prevention of running out of hot water may be created by designating an intermediate length between the hot water running out prevention mode and the efficiency priority mode in the target period. Further, since the efficiency priority mode and the hot water shortage prevention mode can be automatically selected based on the actual data, the user does not need to think about which planning mode to adopt. Furthermore, by flexibly changing the target period according to the remaining amount of hot water stored in the actual data, it is possible to create a hot water storage plan that compensates for the error of the prediction model.
In addition, if the actual demand is expected to deviate from the forecast data due to a sudden event that is difficult to predict, it is possible to create a hot water storage plan that responds to fluctuations in demand by manually correcting the forecast data. ..
図8は、一実施形態における制御システムのハードウェア構成の一例を示す図である。
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。
上述の需要量予測装置10、貯湯計画作成装置20、制御装置30は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。また、CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。 FIG. 8 is a diagram showing an example of the hardware configuration of the control system in one embodiment.
Thecomputer 900 includes a CPU 901, a main storage device 902, an auxiliary storage device 903, an input / output interface 904, and a communication interface 905.
The demandamount forecasting device 10, the hot water storage plan creating device 20, and the control device 30 described above are mounted on the computer 900. Each of the above-mentioned functions is stored in the auxiliary storage device 903 in the form of a program. The CPU 901 reads the program from the auxiliary storage device 903, expands it to the main storage device 902, and executes the above processing according to the program. Further, the CPU 901 secures a storage area in the main storage device 902 according to the program. Further, the CPU 901 secures a storage area for storing the data being processed in the auxiliary storage device 903 according to the program.
コンピュータ900は、CPU901、主記憶装置902、補助記憶装置903、入出力インタフェース904、通信インタフェース905を備える。
上述の需要量予測装置10、貯湯計画作成装置20、制御装置30は、コンピュータ900に実装される。そして、上述した各機能は、プログラムの形式で補助記憶装置903に記憶されている。CPU901は、プログラムを補助記憶装置903から読み出して主記憶装置902に展開し、当該プログラムに従って上記処理を実行する。また、CPU901は、プログラムに従って、記憶領域を主記憶装置902に確保する。また、CPU901は、プログラムに従って、処理中のデータを記憶する記憶領域を補助記憶装置903に確保する。 FIG. 8 is a diagram showing an example of the hardware configuration of the control system in one embodiment.
The
The demand
なお、需要量予測装置10、貯湯計画作成装置20、制御装置30の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各機能部による処理を行ってもよい。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、CD、DVD、USB等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また、このプログラムが通信回線によってコンピュータ900に配信される場合、配信を受けたコンピュータ900が当該プログラムを主記憶装置902に展開し、上記処理を実行しても良い。また、上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
A program for realizing all or part of the functions of the demand amount forecasting device 10, the hot water storage plan creating device 20, and the control device 30 is recorded on a computer-readable recording medium, and the program recorded on the recording medium. May be processed by each functional unit by loading and executing the above in the computer system. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer system" includes the homepage providing environment (or display environment) if the WWW system is used. Further, the "computer-readable recording medium" refers to a portable medium such as a CD, DVD, or USB, or a storage device such as a hard disk built in a computer system. When this program is distributed to the computer 900 by a communication line, the distributed computer 900 may expand the program to the main storage device 902 and execute the above processing. Further, the above-mentioned program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. ..
以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
As described above, some embodiments according to the present disclosure have been described, but all of these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.
<付記>
各実施形態に記載の貯湯計画作成システム、貯湯計画作成方法、プログラムは、例えば以下のように把握される。 <Additional Notes>
The hot water storage plan creation system, the hot water storage plan creation method, and the program described in each embodiment are grasped as follows, for example.
各実施形態に記載の貯湯計画作成システム、貯湯計画作成方法、プログラムは、例えば以下のように把握される。 <Additional Notes>
The hot water storage plan creation system, the hot water storage plan creation method, and the program described in each embodiment are grasped as follows, for example.
(1)第1の態様に係る貯湯計画作成システム(制御システム100、貯湯計画作成装置20)は、所定期間における単位時間毎の貯湯需要の予測データを取得する予測データ取得部21と、前記予測データに基づいて、前記所定期間における前記単位時間毎の目標貯湯量を定めた貯湯計画を作成する計画作成部24と、を備える。
これにより、日々の給湯の需要予測量を満たす、無駄のない湯沸かし量の設定を自動的に行うことができる。 (1) The hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the first aspect has a forecast data acquisition unit 21 that acquires forecast data of hot water storage demand for each unit time in a predetermined period, and the forecast. A plan creation unit 24 that creates a hot water storage plan that defines a target hot water storage amount for each unit time in the predetermined period based on the data is provided.
As a result, it is possible to automatically set a lean water heater amount that satisfies the daily demand forecast amount of hot water supply.
これにより、日々の給湯の需要予測量を満たす、無駄のない湯沸かし量の設定を自動的に行うことができる。 (1) The hot water storage plan creation system (
As a result, it is possible to automatically set a lean water heater amount that satisfies the daily demand forecast amount of hot water supply.
(2)第2の態様に係る貯湯計画作成システム(制御システム100、貯湯計画作成装置20)は、(1)の貯湯計画作成システムであって、前記所定期間の設定を受け付ける設定受付部23、をさらに備える。
これにより、任意の対象期間の貯湯計画を作成することができる。例えば、効率を優先する場合、所定期間に短期間を設定し、未来における需要量の変動を見込んだより保守的な貯湯計画を作成したい場合には、所定期間に長期間を設定することにより、所望の貯湯計画を作成することができる。 (2) The hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the second aspect is the hot water storage plan creation system of (1), and the setting reception unit 23 that accepts the setting of the predetermined period. Further prepare.
This makes it possible to create a hot water storage plan for any target period. For example, if efficiency is prioritized, a short period is set for a predetermined period, and if you want to create a more conservative hot water storage plan that anticipates future fluctuations in demand, you can set a long period for a predetermined period. The desired hot water storage plan can be created.
これにより、任意の対象期間の貯湯計画を作成することができる。例えば、効率を優先する場合、所定期間に短期間を設定し、未来における需要量の変動を見込んだより保守的な貯湯計画を作成したい場合には、所定期間に長期間を設定することにより、所望の貯湯計画を作成することができる。 (2) The hot water storage plan creation system (
This makes it possible to create a hot water storage plan for any target period. For example, if efficiency is prioritized, a short period is set for a predetermined period, and if you want to create a more conservative hot water storage plan that anticipates future fluctuations in demand, you can set a long period for a predetermined period. The desired hot water storage plan can be created.
(3)第3の態様に係る貯湯計画作成システム(制御システム100、貯湯計画作成装置20)は、(2)の貯湯計画作成システムであって、前記設定受付部23は、前記予測データの変更を受け付ける。
これにより、突発的な需要の変化にも対応した貯湯計画を作成することができる。 (3) The hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the third aspect is the hot water storage plan creation system of (2), and the setting reception unit 23 changes the prediction data. Accept.
This makes it possible to create a hot water storage plan that responds to sudden changes in demand.
これにより、突発的な需要の変化にも対応した貯湯計画を作成することができる。 (3) The hot water storage plan creation system (
This makes it possible to create a hot water storage plan that responds to sudden changes in demand.
(4)第4の態様に係る貯湯計画作成システム(制御システム100、貯湯計画作成装置20)は、(1)~(3)の貯湯計画作成システムであって、貯湯タンク3の貯湯残量の実績データを取得する実績データ取得部22、をさらに備え、前記計画作成部24は、前記実績データに基づいて前記所定期間を設定する。
(4) The hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the fourth aspect is the hot water storage plan creation system of (1) to (3), and is the remaining amount of hot water stored in the hot water storage tank 3. Further, the actual data acquisition unit 22 for acquiring the actual data is further provided, and the plan creation unit 24 sets the predetermined period based on the actual data.
(5)第5の態様に係る貯湯計画作成システム(制御システム100、貯湯計画作成装置20)は、(4)の貯湯計画作成システムであって、前記計画作成部24は、前記実績データが示す前記貯湯残量が所定の閾値未満の場合、湯切れ防止モードについて設定された第1期間(例えば、48時間)を前記所定期間に設定し、前記貯湯残量が前記閾値以上の場合、効率優先モードについて設定された前記第1期間より短い第2期間(例えば、24時間)を前記所定期間に設定する。
(5) The hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the fifth aspect is the hot water storage plan creation system of (4), and the plan creation unit 24 is shown by the actual data. When the remaining amount of hot water is less than the predetermined threshold value, the first period (for example, 48 hours) set for the hot water shortage prevention mode is set to the predetermined period, and when the remaining amount of hot water is equal to or more than the threshold value, efficiency is prioritized. A second period (for example, 24 hours) shorter than the first period set for the mode is set as the predetermined period.
(6)第6の態様に係る貯湯計画作成システム(制御システム100、貯湯計画作成装置20)は、(4)の貯湯計画作成システムであって、前記計画作成部24は、前記実績データが示す前記貯湯残量と所定の閾値との差に基づいて、前記差が大きいほど前記所定期間に短い期間を設定し、前記差が小さいほど前記所定期間に長い期間を設定する。
(例えば、計画作成部24は、差の代表値が10%以下なら対象期間に48時間を、10%~20%であれば36時間を、20%~30%であれば30時間を、30%以上であれば24時間を設定する)
第4~第6の態様によれば、貯湯残量の実績に基づいて、湯切れを回避しつつ需要予測に沿った無駄のない貯湯計画を自動的に設定することができる。 (6) The hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the sixth aspect is the hot water storage plan creation system of (4), and the plan creation unit 24 is shown by the actual data. Based on the difference between the remaining amount of hot water stored and the predetermined threshold value, the larger the difference is, the shorter the period is set in the predetermined period, and the smaller the difference is, the longer the period is set in the predetermined period.
(For example, theplanning unit 24 takes 48 hours in the target period if the representative value of the difference is 10% or less, 36 hours if it is 10% to 20%, and 30 hours if it is 20% to 30%. If it is% or more, set 24 hours)
According to the fourth to sixth aspects, it is possible to automatically set a lean hot water storage plan according to the demand forecast while avoiding running out of hot water based on the actual result of the remaining amount of hot water stored.
(例えば、計画作成部24は、差の代表値が10%以下なら対象期間に48時間を、10%~20%であれば36時間を、20%~30%であれば30時間を、30%以上であれば24時間を設定する)
第4~第6の態様によれば、貯湯残量の実績に基づいて、湯切れを回避しつつ需要予測に沿った無駄のない貯湯計画を自動的に設定することができる。 (6) The hot water storage plan creation system (
(For example, the
According to the fourth to sixth aspects, it is possible to automatically set a lean hot water storage plan according to the demand forecast while avoiding running out of hot water based on the actual result of the remaining amount of hot water stored.
(7)第7の態様に係る貯湯計画作成システム(制御システム100、貯湯計画作成装置20)は、(1)~(6)の貯湯計画作成システムであって、前記計画作成部24は、第1の前記単位時間の前記貯湯需要(Demand(i))が単位時間あたりに作成できる湯量C1を超える場合、前記第1の単位時間の前記貯湯需要および前記所定期間における前記第1の単位時間より未来の前記単位時間毎の前記貯湯需要の合計を、前記第1の単位時間における前記目標貯湯量(Target(i))として設定する(上記[5]の処理)。
(7) The hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the seventh aspect is the hot water storage plan creation system of (1) to (6), and the plan creation unit 24 is the first. When the hot water storage demand (Demand (i)) in the unit time of 1 exceeds the amount of hot water C1 that can be created per unit time, the hot water storage demand in the first unit time and the first unit time in the predetermined period The total of the hot water storage demand for each unit time in the future is set as the target hot water storage amount (Target (i)) in the first unit time (process of the above [5]).
(8)第8の態様に係る貯湯計画作成システム(制御システム100、貯湯計画作成装置20)は、(7)の貯湯計画作成システムであって、前記計画作成部24は、前記第1の単位時間の前記貯湯需要が単位時間あたりに作成できる湯量C1を超える場合、当該貯湯需要の湯水を作成するのに要する時間に相当する前記単位時間の数を算出し、前記第1の単位時間以前の前記数分の前記単位時間それぞれの前記目標貯湯量に、前記第1の単位時間の前記目標貯湯量を設定する(上記[6]の処理)。
第7~8の態様によれば、需要量が単位時間あたりの湯水作成能力を上回る場合でも、必要な時間までに需要を満たす湯量を作成できるような貯湯計画を作成ことができる。 (8) The hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the eighth aspect is the hot water storage plan creation system of (7), and the plan creation unit 24 is the first unit. When the hot water storage demand for the time exceeds the amount of hot water C1 that can be created per unit time, the number of the unit hours corresponding to the time required to create the hot water for the hot water storage demand is calculated, and the number of the unit hours is calculated before the first unit time. The target hot water storage amount for the first unit time is set for the target hot water storage amount for each of the unit times for the number of minutes (process of [6] above).
According to the seventh to eighth aspects, even if the demand amount exceeds the hot water preparation capacity per unit time, it is possible to create a hot water storage plan that can produce the hot water amount that meets the demand by the required time.
第7~8の態様によれば、需要量が単位時間あたりの湯水作成能力を上回る場合でも、必要な時間までに需要を満たす湯量を作成できるような貯湯計画を作成ことができる。 (8) The hot water storage plan creation system (
According to the seventh to eighth aspects, even if the demand amount exceeds the hot water preparation capacity per unit time, it is possible to create a hot water storage plan that can produce the hot water amount that meets the demand by the required time.
(9)第9の態様に係る貯湯計画作成システム(制御システム100、貯湯計画作成装置20)は、(8)の貯湯計画作成システムであって、前記計画作成部24は、前記単位時間あたりに作成できる湯量C1を、実際に単位時間あたりに作成された湯量に基づく機械学習により算出する。
これにより、貯湯計画の精度を向上することができる。 (9) The hot water storage plan creation system (control system 100, hot water storage plan creation device 20) according to the ninth aspect is the hot water storage plan creation system of (8), and the plan creation unit 24 per unit time. The amount of hot water C1 that can be created is calculated by machine learning based on the amount of hot water actually created per unit time.
This makes it possible to improve the accuracy of the hot water storage plan.
これにより、貯湯計画の精度を向上することができる。 (9) The hot water storage plan creation system (
This makes it possible to improve the accuracy of the hot water storage plan.
(10)第10の態様に係る貯湯計画作成システム(制御システム100、貯湯計画作成装置20および需要量予測装置10)は、(1)~(9)の貯湯計画作成システム(制御システム100、貯湯計画作成装置20および需要量予測装置10)であって、湯水の需要に影響する条件を入力すると前記条件下での湯水の需要量を出力する予測モデルを作成する予測モデル作成部12と、前記所定期間における前記条件と、前記予測モデルとに基づいて前記予測データを作成する需要量予測部13と、を更に備える。
(10) The hot water storage plan creation system (control system 100, hot water storage plan creation device 20 and demand amount prediction device 10) according to the tenth aspect is the hot water storage plan creation system (control system 100, hot water storage) of (1) to (9). The planning model 20 and the demand forecasting device 10), the forecasting model creating unit 12 that creates a forecasting model that outputs the demand for hot water under the conditions when a condition that affects the demand for hot water is input, and the above. Further, the demand amount prediction unit 13 for creating the prediction data based on the condition and the prediction model in a predetermined period is further provided.
(11)第11の態様に係る貯湯計画作成方法は、貯湯計画作成システム(制御システム100、貯湯計画作成装置20)によって実行される貯湯計画作成方法であって、所定期間における単位時間毎の貯湯需要の予測データを取得するステップと、前記予測データに基づいて、前記所定期間における前記単位時間毎の目標貯湯量を定めた貯湯計画を作成するステップと、を有する。
(11) The hot water storage plan creation method according to the eleventh aspect is a hot water storage plan creation method executed by the hot water storage plan creation system (control system 100, hot water storage plan creation device 20), and hot water is stored every unit time in a predetermined period. It has a step of acquiring demand forecast data and a step of creating a hot water storage plan that defines a target hot water storage amount for each unit time in the predetermined period based on the forecast data.
(12)第12の態様に係るプログラムは、コンピュータ900に、所定期間における単位時間毎の貯湯需要の予測データを取得するステップと、前記予測データに基づいて、前記所定期間における前記単位時間毎の目標貯湯量を定めた貯湯計画を作成するステップと、を実行させる。
(12) The program according to the twelfth aspect has a step of acquiring forecast data of hot water storage demand for each unit time in a predetermined period on a computer 900, and based on the forecast data, for each unit time in the predetermined period. To execute the step of creating a hot water storage plan that defines the target hot water storage amount.
1・・・給湯システム
2・・・給湯機
3・・・貯湯タンク
4・・・施設
5・・・センサ
6A、6B、6C・・・配管
100・・・制御システム
10・・・需要量予測装置
11・・・データ取得部
12・・・予測モデル作成部
13・・・需要量予測部
14・・・記憶部
20・・・貯湯計画作成装置
21・・・予測データ取得部
22・・・実績データ取得部
23・・・設定受付部
24・・・計画作成部
25・・・記憶部
30・・・制御装置
900・・・コンピュータ
901・・・CPU
902・・・主記憶装置
903・・・補助記憶装置
904・・・入出力インタフェース
905・・・通信インタフェース 1 ... Hotwater supply system 2 ... Hot water supply machine 3 ... Hot water storage tank 4 ... Facilities 5 ... Sensors 6A, 6B, 6C ... Piping 100 ... Control system 10 ... Demand forecast Device 11 ... Data acquisition unit 12 ... Prediction model creation unit 13 ... Demand amount prediction unit 14 ... Storage unit 20 ... Hot water storage plan creation device 21 ... Prediction data acquisition unit 22 ... Achievement data acquisition unit 23 ... Setting reception unit 24 ... Plan creation unit 25 ... Storage unit 30 ... Control device 900 ... Computer 901 ... CPU
902 ...Main storage device 903 ... Auxiliary storage device 904 ... Input / output interface 905 ... Communication interface
2・・・給湯機
3・・・貯湯タンク
4・・・施設
5・・・センサ
6A、6B、6C・・・配管
100・・・制御システム
10・・・需要量予測装置
11・・・データ取得部
12・・・予測モデル作成部
13・・・需要量予測部
14・・・記憶部
20・・・貯湯計画作成装置
21・・・予測データ取得部
22・・・実績データ取得部
23・・・設定受付部
24・・・計画作成部
25・・・記憶部
30・・・制御装置
900・・・コンピュータ
901・・・CPU
902・・・主記憶装置
903・・・補助記憶装置
904・・・入出力インタフェース
905・・・通信インタフェース 1 ... Hot
902 ...
Claims (12)
- 所定期間における単位時間毎の貯湯需要の予測データを取得する予測データ取得部と、
前記予測データに基づいて、前記所定期間における前記単位時間毎の目標貯湯量を定めた貯湯計画を作成する計画作成部と、
を備える貯湯計画作成システム。 A forecast data acquisition unit that acquires forecast data for hot water storage demand for each unit time in a predetermined period,
Based on the forecast data, the plan creation unit that creates a hot water storage plan that defines the target hot water storage amount for each unit time in the predetermined period, and
Hot water storage planning system equipped with. - 前記所定期間の設定を受け付ける設定受付部、をさらに備える、
請求項1に記載の貯湯計画作成システム。 A setting reception unit that accepts the setting of the predetermined period is further provided.
The hot water storage plan creation system according to claim 1. - 前記設定受付部は、前記予測データの変更を受け付ける、
請求項2に記載の貯湯計画作成システム。 The setting reception unit accepts changes in the prediction data.
The hot water storage plan creation system according to claim 2. - 貯湯タンクの貯湯残量の実績データを取得する実績データ取得部、をさらに備え、
前記計画作成部は、前記実績データに基づいて前記所定期間を設定する、
請求項1から請求項3の何れか1項に記載の貯湯計画作成システム。 It also has a performance data acquisition unit that acquires the performance data of the remaining amount of hot water stored in the hot water storage tank.
The planning unit sets the predetermined period based on the actual data.
The hot water storage plan creation system according to any one of claims 1 to 3. - 前記計画作成部は、前記実績データが示す前記貯湯残量が所定の閾値未満の場合、湯切れ防止モードについて設定された第1期間を前記所定期間に設定し、前記貯湯残量が前記閾値以上の場合、効率優先モードについて設定された前記第1期間より短い第2期間を前記所定期間に設定する、
請求項4に記載の貯湯計画作成システム。 When the remaining amount of hot water stored indicated by the actual data is less than the predetermined threshold value, the planning unit sets the first period set for the hot water shortage prevention mode to the predetermined period, and the remaining amount of hot water stored is equal to or higher than the threshold value. In the case of, the second period shorter than the first period set for the efficiency priority mode is set as the predetermined period.
The hot water storage plan creation system according to claim 4. - 前記計画作成部は、前記実績データが示す前記貯湯残量と所定の閾値との差に基づいて、前記差が大きいほど前記所定期間に短い期間を設定し、前記差が小さいほど前記所定期間に長い期間を設定する、
請求項4に記載の貯湯計画作成システム。 Based on the difference between the remaining amount of hot water stored and the predetermined threshold value indicated by the actual data, the planning unit sets a shorter period in the predetermined period as the difference is larger, and sets a shorter period in the predetermined period as the difference is smaller. Set a long period,
The hot water storage plan creation system according to claim 4. - 前記計画作成部は、第1の前記単位時間の前記貯湯需要が単位時間あたりに作成できる湯量を超える場合、前記第1の単位時間の前記貯湯需要および前記所定期間における前記第1の単位時間より未来の前記単位時間毎の前記貯湯需要の合計を、前記第1の単位時間における前記目標貯湯量として設定する、
請求項1から請求項6の何れか1項に記載の貯湯計画作成システム。 When the hot water storage demand in the first unit time exceeds the amount of hot water that can be created per unit time, the planning unit may use the hot water storage demand in the first unit time and the first unit time in the predetermined period. The total of the hot water storage demand for each unit time in the future is set as the target hot water storage amount in the first unit time.
The hot water storage plan creation system according to any one of claims 1 to 6. - 前記計画作成部は、前記第1の単位時間の前記貯湯需要が単位時間あたりに作成できる湯量を超える場合、当該貯湯需要の湯水を作成するのに要する時間に相当する前記単位時間の数を算出し、前記第1の単位時間以前の前記数分の前記単位時間それぞれの前記目標貯湯量に、前記第1の単位時間の前記目標貯湯量を設定する、
請求項7に記載の貯湯計画作成システム。 When the hot water storage demand in the first unit time exceeds the amount of hot water that can be created per unit time, the planning unit calculates the number of unit hours corresponding to the time required to create hot water for the hot water storage demand. Then, the target hot water storage amount for the first unit time is set for the target hot water storage amount for each of the unit times for the number of minutes before the first unit time.
The hot water storage plan creation system according to claim 7. - 前記計画作成部は、前記単位時間あたりに作成できる湯量を、実際に単位時間あたりに作成された湯量に基づく機械学習により算出する、
請求項8に記載の貯湯計画作成システム。 The planning unit calculates the amount of hot water that can be created per unit time by machine learning based on the amount of hot water actually created per unit time.
The hot water storage plan creation system according to claim 8. - 湯水の需要に影響する条件を入力すると前記条件下での湯水の需要量を出力する予測モデルを作成する予測モデル作成部と、
前記所定期間における前記条件と、前記予測モデルとに基づいて前記予測データを作成する需要量予測部と、
を更に備える請求項1から請求項8の何れか1項に記載の貯湯計画作成システム。 A prediction model creation unit that creates a prediction model that outputs the demand for hot water under the above conditions when a condition that affects the demand for hot water is input.
A demand amount forecasting unit that creates the forecast data based on the conditions in the predetermined period and the forecast model.
The hot water storage plan creation system according to any one of claims 1 to 8, further comprising. - 貯湯計画作成システムによって実行される貯湯計画作成方法であって、
所定期間における単位時間毎の貯湯需要の予測データを取得するステップと、
前記予測データに基づいて、前記所定期間における前記単位時間毎の目標貯湯量を定めた貯湯計画を作成するステップと、
を有する貯湯計画作成方法。 It is a hot water storage plan creation method executed by the hot water storage plan creation system.
Steps to acquire forecast data of hot water storage demand for each unit time in a predetermined period,
Based on the forecast data, a step of creating a hot water storage plan that defines a target hot water storage amount for each unit time in the predetermined period, and
How to make a hot water storage plan. - コンピュータに、
所定期間における単位時間毎の貯湯需要の予測データを取得するステップと、
前記予測データに基づいて、前記所定期間における前記単位時間毎の目標貯湯量を定めた貯湯計画を作成するステップと、
を実行させるプログラム。 On the computer
Steps to acquire forecast data of hot water storage demand for each unit time in a predetermined period,
Based on the forecast data, a step of creating a hot water storage plan that defines a target hot water storage amount for each unit time in the predetermined period, and
A program to execute.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21808900.1A EP4113028A4 (en) | 2020-05-19 | 2021-05-17 | Hot water storage plan creation system, hot water storage plan creation method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020087372A JP7531308B2 (en) | 2020-05-19 | 2020-05-19 | Hot water storage plan creation system, hot water storage plan creation method and program |
JP2020-087372 | 2020-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021235383A1 true WO2021235383A1 (en) | 2021-11-25 |
Family
ID=78606382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/018580 WO2021235383A1 (en) | 2020-05-19 | 2021-05-17 | Hot water storage plan creation system, hot water storage plan creation method, and program |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4113028A4 (en) |
JP (1) | JP7531308B2 (en) |
WO (1) | WO2021235383A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011027408A (en) * | 2004-06-15 | 2011-02-10 | Osaka Gas Co Ltd | Cogeneration system |
JP2011089702A (en) * | 2009-10-22 | 2011-05-06 | Rinnai Corp | Hot water supply system |
JP2011247513A (en) * | 2010-05-27 | 2011-12-08 | Mitsubishi Electric Corp | Heating control system, heating control method, and program |
JP2014149094A (en) * | 2013-01-30 | 2014-08-21 | Noritz Corp | Hot water supply device |
JP2019207058A (en) | 2018-05-29 | 2019-12-05 | 株式会社ノーリツ | Storage water heater |
JP2020087372A (en) | 2018-11-30 | 2020-06-04 | パナソニックIpマネジメント株式会社 | Management system, management system control method, and program |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8972073B2 (en) * | 2010-11-10 | 2015-03-03 | Panasonic Corporation | Operation planning method, operation planning device, heat pump hot water supply system operation method, and heat pump hot water supply and heating system operation method |
DE102012003227A1 (en) * | 2012-02-20 | 2013-08-22 | Sma Solar Technology Ag | SYSTEM FOR PROVIDING HEAT AND OPERATING PROCESS FOR SUCH A SYSTEM |
-
2020
- 2020-05-19 JP JP2020087372A patent/JP7531308B2/en active Active
-
2021
- 2021-05-17 WO PCT/JP2021/018580 patent/WO2021235383A1/en unknown
- 2021-05-17 EP EP21808900.1A patent/EP4113028A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011027408A (en) * | 2004-06-15 | 2011-02-10 | Osaka Gas Co Ltd | Cogeneration system |
JP2011089702A (en) * | 2009-10-22 | 2011-05-06 | Rinnai Corp | Hot water supply system |
JP2011247513A (en) * | 2010-05-27 | 2011-12-08 | Mitsubishi Electric Corp | Heating control system, heating control method, and program |
JP2014149094A (en) * | 2013-01-30 | 2014-08-21 | Noritz Corp | Hot water supply device |
JP2019207058A (en) | 2018-05-29 | 2019-12-05 | 株式会社ノーリツ | Storage water heater |
JP2020087372A (en) | 2018-11-30 | 2020-06-04 | パナソニックIpマネジメント株式会社 | Management system, management system control method, and program |
Non-Patent Citations (1)
Title |
---|
See also references of EP4113028A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4113028A1 (en) | 2023-01-04 |
EP4113028A4 (en) | 2023-08-16 |
JP2021181852A (en) | 2021-11-25 |
JP7531308B2 (en) | 2024-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5121024B2 (en) | Distribution network response type controller | |
JP6598876B2 (en) | Power control device, operation planning method, and program | |
US9829209B2 (en) | Integrated demand control method and integrated demand control device | |
JP5203855B2 (en) | Hot water storage type hot water supply apparatus, operation planning apparatus, and operation planning method | |
JPWO2015151363A1 (en) | Air conditioning system and control method for air conditioning equipment | |
JP6908107B2 (en) | Air conditioning system control method, air conditioning system control device and air conditioning system control program | |
KR20130142185A (en) | Demand control device for facility equipment | |
US10437273B2 (en) | Device operation setting apparatus and device operation setting value determination program | |
WO2021235383A1 (en) | Hot water storage plan creation system, hot water storage plan creation method, and program | |
JP2020067196A (en) | Hot water system | |
JP6453744B2 (en) | Power demand management apparatus and power demand management method | |
EP3995755B1 (en) | Water heater and heating control method therefor, and computer-readable storage medium | |
JPWO2018150461A1 (en) | Centralized voltage control device and centralized voltage control system | |
EP3508800B1 (en) | Hot water supply system, control device, control method and program | |
CN112032955B (en) | Control method of air conditioner | |
JPH0588715A (en) | Heat source estimation controller | |
JP2010286190A (en) | Method of predicting load and load predicting device | |
WO2022044750A1 (en) | Planning system, planning method, and program | |
WO2024171507A1 (en) | Control device, heat source system, and control method | |
JP2014055741A (en) | Air conditioner | |
CN112032974B (en) | Control method of air conditioner | |
JP7351678B2 (en) | Start-up control device, start-up control method and program | |
CN113901294A (en) | Information processing method and device | |
NO20201333A1 (en) | Methods and systems relating to the regulation of electrical power consumption | |
JP6262011B2 (en) | Power supply system and program thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21808900 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021808900 Country of ref document: EP Effective date: 20220930 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |